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Dynamic Determinacy and the Existence of Sunspot Equilibria

If we can think of an economic model as defining a function from agents' preferences, en-
dowments, and technologies to market prices and quantities, comparative statics exercises will be
straightforward. Two complications revealed in recent work, however, are the possibility of large
numbers of sunspot solutions - even arbitrarily close to more conventional outcomes - and in-
determinacy. In the former instance, an "extrinsic random variable"- a variable with realizations
not directly affecting the underlying characteristics of households or production - can influence
equilibrium outcomes. Essentially, if all agents think a sunspot variable is important, it may be-
come so - see, for example, Cass and Shell [6] and Azariadis [1]. In the case of indeterminacy,
a model (generically) may exhibit a continuum of equilibria (unrelated to extrinsic randomness)
consistent with given initial conditions, perfect foresight, and market clearing restrictions. In fact,
a stationary solution may have a continuum of equilibrium paths in its local vicinity converging
to it - see, for instance, Calvo [7], Laitner [13], Woodford [15], and Kehoe and Levine [12]. In
either case, we are left unsure about which equilibrium a given model should direct us to after a
parameter change.

The purpose of this paper is to show that a condition needed for avoiding indeterminacy in the
vicinity of a stationary solution, say, x*, also rules out stationary sunspot equilibria arbitrarily close
to x*, or at least it rules out local stationary sunspot solutions which are not virtually indistin-
guishable from x*. Thus, an eigenvalue condition characterizing local (equilibrium) dynamics also
yields results about sunspots. More precisely, if a model with no historical (or "predetermined")
endogenous variables has a stationary solution x* which is determinate in the sense that every
possible given initial condition in some open neighborhood of it constitutes the starting point of
a single stable equilibrium time path converging to it, then Theorem 1 below establishes that for
any extrinsic random variable there exists a neighborhood of z* not containing (entirely within
it) any stationary sunspot equilibrium based on the random variable. Theorem 2 presents similar,
but slightly weaker results for models containing historical as well as non-historical arguments: a
stationary sunspot equilibrium near a determinate stationary solution x* must assign very small
probabilities to states other than those extraordinarily close to x*. Our framework allows an ar-
bitrary (finite) number of state variables, and it encompasses extrinsic random variables with an
arbitrary (finite) number of states.

Our theorems complement a number of existing articles. For example, Azariadis [1], Azariadis
and Guesnerie [2], and Guesnerie [11] show, in the context of consumption loan frameworks with
no historical variables, that a sufficient condition for local stationary sunspot equilibria is the
existence of one or more eigenvalues of modulus less than 1 for a model's forward dynamics in
the vicinity of a conventional stationary solution - in fact, a condition leading to indeterminacy
(see Section 1). Woodford [16] considers a model with infinite lived agents. The local dynamics
can be analyzed in terms of two state variables - one historical and the other nonhistorical. He
derives a similar result - showing that having two stable eigenvalues, which implies dynamic
indeterminacy, is sufficient for the existence of a stationary sunspot in each neighborhood of a
given stationary solution. Grandmont [9, 10] obtains results for both existence and non-existence:
for a consumption loan model having a single nonhistorical state variable in each period, he proves
that an eigenvalue condition implying local instability in the backward dynamics (in other words,
the case with indeterminacy - see Section 1) is necessary and sufficient for local sunspot activity.
Woodford [15] summarizes a large number of examples in the same vein.1

1 As revisions on this paper proceeded, the author became aware of Woodford [17], which inde-
pendently (and with a somewhat different technology) reaches conclusions analogous to ours.
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The macroeconomics literature on linear rational expectations models (with intrinsic ran-
domness) provides parallel results. In particular, Blanchard and Kahn [4] show that eigenvalue
configurations leading to dynamic indeterminacy imply the existence of solutions containing ex-
trinsic random variables (see also Gourieroux, Laffont, and Monfort [8] and Broze, Gourieroux,
and Szafarz [5]).

The organization of the present paper is as follows. Section 1 sets up our framework of analysis.
Section 2 introduces sunspots and presents our theorems, and Sections 3-4 proves them.

1. Local Dynamics

Until the introduction of extrinsic uncertainty, the model we consider consists of the following
elements: a time-t vector of state variables Xt E R", a (time-autonomous) system of excess demand
functions Z(xz, Zt+1) E R", and a set of initial conditions. The vector zj may contain prices and/or
quantity variables such as capital stock figures. Time is discrete. We restrict our attention to
equilibrium time paths.

Our analysis begins at time 0. The sequence of vectors {zo, xi , ... } is an "equilibrium" if
Z (zt z,+l) = 0 all t > 0 and if x0 satisfies initial conditions. This definition implicitly requires
perfect foresight. The vector z* E R" defines a "stationary equilibrium" if Z(z*, x*) = 0. Assume
such an z* exists. Normalize variables so that z* = 0.

To consider non-stationary equilibrium paths in the vicinity of x*, assume that Z(.,.) is twice
continuously differentiable in some open neighborhood of (z*, x*). Define

A1  aZ(x*,z*)/aBz, A2  BZ(z*,z*)/oze+1-

Assume

det(A2 ) # 0. (Al)

Using the implicit function theorem and (Al), Z(.,.) uniquely defines a difference equation

zt+1 = c(xt) all t > 0 (1)

with

Z(xz, (zt)) =0

all Xt in some open neighborhood of z*. Well-known theorems show we can study the behavior of
(1) locally using the linear system

xt+ 1 =A.- with A--(A 2)-" -A 1 . (2)

For simplicity, we assume below that the eigenvalues of A are distinct and that none have modulus
1.

Consider the makeup of the vector ze = (ai,,..., zwt). Some components may be "historical"
variables: variables with time-t levels fixed by events of prior dates (for example, lags may mean
the time-t capital stock depends only on earlier investraent behavior). The remaining elements of
zj are "non-historical"- their values being deterrnined during period t. Without loss of generality
let zi, i = 1,..., h be historical, au (zit, ... , zae), and Vt (ah+1,s,..., znt). Then given initial
conditions will consist only of values for u0 ; our analysis must determine vo and zg = (Ut, Vt) all
t >0.
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If h* eigenvalues of A have modulus less than 1, consider three cases: (i) h* < h; (ii) h* = h;
and (iii) h* > h. Stationary equilibria have, of course, long been a cornerstone of dynamic analysis.
For x* to warrant special attention, however, we presumably want to insist on being able to reach
it (via an equilibrium time path) from any uo in an open neighborhood of 0 E Rh - ruling out,
in general, case (i). In case (iii), for any Uo in a small enough open set containing 0 E Rh there
will be a continuum of values vo E Rn-h such that t+1 = (t) all t > 0 implies Ixt - x*I -+ 0 as
t -+ oo. Thus, for the possibility of determinacy within the class of convergent equilibrium paths,
we are left with only case (ii).2 Laitner [13], Kehoe and Levine [12], and Begg [3, ch. 3] discuss
similar issues.

A precise condition for a unique convergent equilibrium path originating from each x0 in some
neighborhood V of x* and lying entirely within some small given open set U is

Condition 1. The matrix A has h distinct eigenvalues e, with lei| < 1 and n - h distinct
eigenvalues e3 with 1e3 1> 1. The projection of the stable manifold for (2) onto the space containing
all historical subvectors u has dimension h.

2. Sunspot Equilibria

Suppose we have an extrinsic random variable with outcomes a1, ..., aM. As stated, "extrinsic"
means the variable's realizations have no affect on agents' preferences, on production technologies,
or on endowments. Let the random variable have transition matrix 1I = [rxj] - the probability
of transiting from state a, at time t to state aj at time t + 1 being vij. Assume all agents in the
model can observe the current realization a, and know H. We now define a stationary sunspot
equilibrium and present our theorems.

Following Guesnerie [11], if all agents anticipate time-(t + 1) state vector xt+1(a3) conditional
on a3 (in that time period), if all maximize expected utility, and if we have outcome a, at time t,
let time-t excess demand be

Z(zt(ag), zt+1(a1), ... , zt+1(au); II) E R".

Our definition is conventional:

Definition 1. For any oo > M > 2, the vectors x(ai),..., x(aM) E R", at least two of which differ
from one another, and the n x n probability transition matrix II for the extrinsic random variable
having realizations a1, ..., am determine a "stationary M-sunspot equilibrium" if for all i = 1, ..., M,
Z(x(ag),x(al),...,z(aM);fl) = 0.

Thus, z(a1), ... , x(aM) and fl characterize a stationary sunspot equilibrium if given a time-t real-
ization of the extrinsic variable ai, zt = z(ai) clears all current markets provided agents anticipate
xt+1 = x(aj) in the event of random realization ag next period.

Assume () is twiCe continuously differentiable. In the event that x+(al) = xt+1(a2=

..= xt+1(aM) = , for any x we should have

Z~z,,.., z;H) Z~z2).(A2)

2 Nonconvergent paths may lead to contradictions of market clearing conditions within a finite
number of periods - or they may define legitimate equilibria (see, for example, Woodford [15]).
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Two derivative properties follow from the underlying model's first-order conditions in the same
special case: for any H,

Zi(,..., 2; H) = Zi(x, 2), (A3)

Zi+1 (z,72,..., x; II) = 7r;gj- Z2(z, x) V j = 1, ... , M. (A4)

We treat these as assumptions - see Guesnerie [11, p. 108].

Let j| . || be the Euclidean norm. Fix any M < oo. Define the "radius" of any M-sunspot
equilibrium characterized by

8 = (x(a1),..., x(aM),ll) (3)

as
M

r(s) = F, ||z(ay)||. (4)
j=1

Our first result is

Theorem 1. Suppose h = 0 - so that a model's endogenous variables are all non-historical.

Suppose assumptions (A1)-(A4) and Condition 1 hold for stationary state x* = 0. Fix any M < oo.

Then there exists EM > 0 such that no stationary M-sunspot equilibrium has radius less than em.

Section 1 shows that Condition 1 leads to the saddlepoint configuration in the neighborhood
of x* desired for a unique convergent equilibrium time path. Theorem 1 shows that in the context
of a model with no predetermined variables - such as the popular consumption loan systems
mentioned in the introduction - for any M, the same saddlepoint implies the existence of an open
set V containing x* such that no stationary M-sunspot equilibrium exists having all state vectors,
x(ai), in V. In the latter particular sense Condition 1 insures that x* is "isolated" from sunspot
equilibria.

To allow historical variables as well, we need an additional definition. Let 8 be as in (3). For
m = 1, 2, ..., use the notation

(H) M = H - H-. - H [igm]
Then define

T

p(i, T, s) 1: x;;(m). (5)
M=1

If we have a stationary M-sunspot equilibrium s, and if the extrinsic random variable's current
realization is ai, p(i, T, s) gives the probability of at least one repeat of a; over the next T periods.
If the realization a; is visited very infrequently, p(i, T,s) will be near 0 even for a large T.

Our second theorem shows that if Condition 1 holds at z* = 0, even if h > 0, for any T and S
we can find EM > 0 such that s as in (3) and r(s) < EM implies

. max [x(a,)/r(s)] . p(i, T, s) < 6. (6)

In other words, in a small enough neighborhood of x* states z(a,) in a stationary sunspot equi-
librium 8 either (i) are nearly transitory (with p(i, T, 8) very small) or (ii) have a norm || x(a,) |
which is a tiny faction of the sunspot's radius. A stationary sunspot equilibrium with the latter
two properties is virtually indistinguishable from the conventional stationary solution xz* -- giving
us our analogue to Theorem 1.

3 The theorem does not rule out sunspots with some, but not all, state vectors arbitrarily close
to z* - see, especially, Grandmont [10, p. 23].
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Theorem 2. Suppose h > 0. Suppose assumptions (A1)-(A4) and Condition 1 hold for stationary
state x* = 0. Fix any M < oo. Fix any integer T <coo and constant 6 > 0. Then there exists

an cm > 0 such that for any stationary M-sunspot equilibrium s - see (3) - with r(s).< EM,

inequality (6) holds.

The next two sections present proofs.

3. Proof of Theorem 1

The proof of Theorem 1 is straightforward. We begin with a preliminary result, Lemma 1.

Fix any M. Suppose each open neighborhood V of x* contains a stationary M-sunspot

equilibrium. Then for each k = 1, 2,...we can find a stationary M-sunspot equilbrium, characterized

by s k (xk(al),...,xk(aM),flk), with
r(sk) < 1/k.

Define
M

Xk(ai) xk (ag)/Z ||x(aj) ||. (7)
.=1

(Definition 1 shows we are not dividing by 0.) Then since (Xk (ai), ..., X, (am)) for each k lies in

the compact set

m

S -{(Xl,...,XM)Ifor all i,Xi E R" and Z |XjI|=1}c R"M,
=1

and since each row of Ik lies in the unit simplex in RM, there is a vector (X* (a1), ... , X*(am)) E S,

a probability transition matrix fl*, and a subsequence

sk(e) = {(Xk(e)(al), ..., Xk(t)(aM),flk(e)} all e = 1,2,...,

with
limk(t) = (X*(al),...,X*(aM),fl*). (8)

t-+00

We now use a Taylor series approximation. Let ZG(.) be the derivative of 4(.) with respect to

its i'th (vector) argument. Using linear approximations and (A2),4

M

Zi z*, z*,..., z*, H*)" - zaia+ Z "+1(z*, x*, ... , z*, H*) - z(a3) as

.1

N~ea),z~i,.. eau;H)= 0 V i= 1,..., M. (9)

The error is second order. Thus, dividing by ~j~ 1~ zk(a,) || and taking limits as in (8) (using
subsequences if necessary),

M

Zi(z*,z*, ..., z*,fl*).X*(a)+ Zi+1(z*, z*..., z*,fl*).-X*(a,) =0 Vi= 1,..., M. (10)
=1

4 Note that (A2) implies the derivatives of Zxz, *, ... , x*, fl*) with respect to the elements of
H*are allO0.
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Employing (A3)-(A4), (10) becomes

Al - X* (ag) + j - A2 - X *(a j) = V i= 1, ... , M, (11)

j=1
where II* [r]. Using (Al) and (11),

A"- X*(ag) = [ i - X*(ay) Yi. (12)
j=1

We can use (12) to show that X*(ai) all i = 1, ..., M must lie in the stable manifold for (2).

Lemma 1. Let X*(ai) all i = 1,...,M be as above. Let (A1)-(A4) hold. Then each X*(as) lies
in the stable manifold for (2).

Proof. Define (L*)" = [nir(m)] all m = 1, ..... Multiplying (12) through by A,

M

A2 -X*(at)= -A. -X*(aj)=
'=1

M M .M M

n ie-X(at) = (( 'xi -xt) -X* (ae) =
j1 a=1 E=1 ;=1

x g(2) - X *(ae) Y'=1 .. ,M

e=1

Repeating the process, for any m =2, 3,...,

M
A",- X*(ai) = r(m) -X*(ag) Vdi=1, ... , M. (13)

j=1

Now (II*)' is itself a probability transition matrix. Thus, for any m,
m M . n.

| n r3(m) -'X*(ag) 11 jir(m)- || X*(aj)||1 || X*(a 3 ) ||= 1. (14)
j=1 =1 j=1

If X*(ai) is not in the stable manifold for (2), some component of the vector on the left-hand side
of (13) must diverge for large enough m - contradicting (14). 1

In words, if Xt = X *(a 2 ), the right-hand side of (12) gives the expected value (as of time t) for
Xt+ 1 . Multiplying through by A, we generate the expected value (as of time t) for Xt.+2 . Continuing
in this way, if we began off of the stable manifold for (2), the expected values must explode - an
impossibility for for (X*(ai), ... , X*(QM)) derived frorn "stationary" sunspot equilibria. This result
generalizes Guesnerie [1986, Thmn. 3, part 2].

The proof of Theorem 1 follows irnmediately:

Proof of Theorem 1. Fix M. Suppose each open neighborhood 'Y of x* contains a stationary M-
sunspot equilibrium. Construct X* (a1) all i = 1, ... , M as above. Since h = 0, the stable rnanifold
for (2) is only the origin. Thus, Lemrma 1 irnplies X*(as) = 0 E R" all s. But, by construction,
(X*(a1), ..., X*(aM)) E S, contradiction. I
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4. Proof of Theorem 2

We begin with a second lemma, establishing a general connection between non-historical vari-
ables and existence possibilities for stationary sunspot equilibria. Lemmas 1-2 yield Theorem 2.

For a model with only historical variables, sunspot equilibria are impossible: if all the com-
ponents of state variable x are historical (x = ut), then all the elements of xt+1 are determined
by period t; hence, at time t agents cannot rationally anticipate several distinct outcomes for Xt+1
related to extrinsic sunspot realizations occurring at t+1. Similarly, if the model has a combination
of historical and nonhistorical variables, agents at time t can anticipate sunspot variations only in
the elements vt+1 of Zt+1.

Thus, we can see

Lemma 2. Let (x(ai), ... , z(aM),II) determine a stationary M-sunspot equilibrium. Let IT = [ij].
Suppose x(ai) - (u(a), v(ai)) with u(ai) E Rh being a subvector of historical variables. Then for
any i = 1, ... , M, there must be ui E Rh such that for every j = 1, ... , M with 7rj > 0, the subvector
u(a3) = u,.

The idea of the proof of Theorem 2 is as follows. Suppose that Condition 1 holds and that
we have a stationary M-sunspot equilibrium in every open neighborhood V of x*. Construct a
convergent subsequence as in Section 3. If xfy > 0 and rs >0, the argument of Lemma 2 shows
that X* (a3) and X* (at) must have common historical components. Lemma 1 shows they must
both be in the stable manifold for (2). Given the last part of Condition 1, we can then see that
X*(a 3) = X*(at). Thus, (12) collapses to

A -X*(a,) = X*(aj).

Since the same reasoning applies for all i, we must be able to move among X*(a1), ..., X*(am) with
multiplication by A. With each X*(.) on the stable manifold for (2), however, such multiplication
leads to convergence to 0 for all states which are not transitory (under W*).

Formally,

Proof of Theorem 2. Fix M < oo. Suppose (A1)-(A4) and Condition 1 hold. Fix any T and S.

If there exists some open neighborhood of x* = 0 not containing any stationary M-sunspot
equilibrium, we are done. Otherwise for any k = 1,2,... we can find such an equilibrium 8k. As in
(8) there must be a convergent subsequence ak(t).

Consider any i = 1,..., M. Let "k = [ryJ be the transition matrix in sk. Let *r* [ryJ]. If

* - > 0 and ir > 0, by the definition of 11* we can find L so large that I> L implies 7r t) > 0

and at > 0. Let xk(am) = (uk(am), vk(am)). Then Lemma 2 implies there exists ui such that

uk(E) (a3) =ui = uk(e) (at) all 1 > L. Let X*(ain) = (U*(am),V*(am)). Then by construction,
U*(a3 ) = U*(ae).

Lemma 1 shows X*(am) is in the stable manifold for (2) each m = 1, ... , M. Hence, the
preceding paragraph and the last part of Condition 1 imply X*(ag) = X*(ae) when i > 0 and
irf,>0. Hence, for any i, if eg> 0,

A - X*(ai ) = X*(ag ).
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Repeating, if arj > 0,
A2 -X*(ai) = X*(at).

Suppose Theorem 2 is incorrect. Then we could have chosen ak with

H(sk) . max [k(ai)/r(/()1- p(i,T,8k) > 6
:=1,...,M

all k. Define
8** =(X*(a1),..., X*(aM), H*).

Then
lim H(sk(e)) = max X*(ai) -p(i,T, s*)=- H*.

t-oo0 i=1,...,u

So,
H* > S. (15)

Suppose for some i that p(i,T,s*) > 0. Then ,(m) > 0 some m E {1, ... , T}. Thus, going
back two paragraphs,

Am -,X*(at) = X*(ai). (16)

Multiply by Alm over and over, and using (16), for any v = 1,2,...,

At"" X*(ai) = X*(ai). (17)

So, using Lemma 1,
X*(a) = lim Am' .-X*(a) = 0. (18)

Hence, for any i = 1, ... , M,

p(i, T, s*) = 0 or X*(ai) = 0.

Thus, H* = 0 - contradicting the supposition that Theorem 2 is incorrect. I

5. Conclusion

Theorems 1 and 2 establish a relationship between determinacy and the existence of sunspot
equilibria. This enhances the value of learning about a given stationary state's (local) determinacy
(see, for example, [14]) - although it unfortunately seems to have little bearing on the existence
of stationary sunspot equilibria with at least some state outcomes isolated from x*.
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