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Oligopoly Behavior When
Conjectural Variations Are Rational

Abstract: This paper considers the following question: if each firm in an

n-firm oligopoly has "rational conjectural variations," if n is exogenously

given, and if we rule out increasing returns to scale, must aggregative in-

dustry output and its market price converge to competitive levels as n

diverges to infinity? By rational conjectural variations we mean that at

equilibrium, the responses from its rivals which each firm believes will

follow a change in its output must correspond to reactions the rivals them-

selves perceive to be profit maximizing. In this framework we show that the

answer to our question is "no" -- market outcomes near the cartel level and

near the competitive level can both result no matter how large n is.





Oligopoly Behavior When
Conjectural Variations Are Rational

The purpose of this paper is to consider the following question: if

each firm in an n-firm oligopoly has "rational conjectural variations," and

if we rule out increasing returns to scale and explicit collusion, must the

aggregate -industry output and its market price converge to competitive levels

as n diverges to infinity? The latter type of convergence does generally

emerge in the context of the Cournot model. As is well known, however, al-

though the Cournot behavioral assumption requires each firm to believe that

a change in its output will elicit no quantity adjustments from its rivals,

normally the rivals will, in fact, want to react (given the overall Cournot

framework). With "rational conjectural variations," on the other hand, the

responses that a firm anticipates from its rivals must correspond to changes

1/
which the rivals themselves desire.- Laitner [1980] shows that for a fairly

broad class of duopoly problems, many industry outputs can be rational

conjectural equilibria. The present paper shows that as we shift from

duopoly to an n-firm oligopoly, a similar result carries over: given an

nrbitrarv n = 2,3,..., any aggregative industry quantity of output strictly

between monopoly and perfect competition solutions can be incorporated into

a rational conjectural outcome. Thus, the answer to our basic question is

"no" -- with rational conjectural variations, as n approaches infinity, an

oligopoly's output and price need not converge to competitive levels.

All our firms are alike, we examine only symmaretric outcomes, the single

good which is produced is perfectly homogeneous, each firm has constant or

increasing costs, and, in particular, the number of firms is exogenously given.

Within this framework, our analysis implies that an antitrust action which

converts, say, a duopoly into a ten firm oligopoly night cause industry

'wZDur to rise toward the competitive level, might leave it unchanged, or
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might cause it to decline toward the monopoly level. There is no a priori

reason to believe one result is more likely than the others -- in the context

presented. (This does not imply, however, that real world data should show

no correlation between concentration and monopolistic pricing -- in practice,

low concentration may often accompany low entry barriers, for example, and the

latter may lead to low prices.)

Sections 1 and 2 establish our result for n-firm oligopolies. Although

the arguments are constructive, the rational conjectural variation functions

which we derive are somewhat complicated. Section 3, however, shows that the

functions can easily be approximated. Section 4 uses the approximations in

contrasting the Cournot and Bresnahan [1981] models with our own.
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1. Assumptions and Definitions

We begin with a list of our assumptions and a precise definition of

rational conjectural variations.

The assumptions are:

(Al) There are n > 2 firms producing for the market in which we are interested.

All firms are alike. The number n is exogenously given.

(A2) The production costs of any firm producing X units of output are given

by C(X). C(-) is twice continuously differentiable. C'(X) > 0 and

C"(X) > 0 for X > 0. C(0) = 0.-

(A3) Let Z be aggregative industry output. Then P(Z) gives the market price

per unit of output. P(-) is continuous and nonincreasing for all Z > 0.

P(0) > C(0). For all Z > 0 with P(Z) > 0, we have P(-) twice continuously

differentiable, P'(Z) < 0, and P"(Z) < 0. P(0) > C'(0).

(A4) If firm i has output X. and if the aggregative output of the remaining

n - 1 firms is Y., let V(X.,Y.) give the rate at which firm i anticipates
1 1

that Y. will change in response to an infinitesimal change in X. -- in
11

3'other words, let firm i believe that dY./dX. = F(X.,Y.).- Then all firms
1 1 1 1

use the same function (in each case the given firm's output and Z minus

its output being the appropriate arguments of F(-)). Furthermore, in

the same notation, firm i believes that all of its rivals will react in

the same way to a change in X. -- in other words, if firm j, j # i, pro-

duces output X., firm i believes that dX./dX. = F(X.,Y.)/(n - 1).

We call F(-) the "conjectural variation function" of each firm. We say

that #: R + R "solves" F(-) if Q(X,Y,X) = N and 36(X,Y,X*)/WX* = F(X*,$(X,Y,X*))

all X,Y,X* > 0. Notice that if #(- is the unique solution for F(-), and if

(X.,Y.) characterizes the present outputs of firm i and all other firms,
1 1
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respectively, then firm i believes that if it changes its output from X. to

Xi, Y. will change to YY = $(X.,Y.,XY) in response.
1 1 1 1 1 1

Given an output X. for firm i and an aggregative output Y. for its n - 1

rivals, the profits of firm i will be

H(X.,Y.) = P(X. +Y.) - X. - C(X.). (1)
1 1 1 1 1 1

Suppose the conjectural variation function F(") used by all firms has a unique

solution $(-). Then we define the "stable set" for firm i, K.(F(-)), as

K.(F(-)) = {(X.,Y.) > 0: H(X.,Y.) > H(X,4(X.,Y.,X.))~1 1 -- 1 1 1 i11

all X. > 0 and X. # X.}. (2)
1 - 1 1

K.(F(-)) is a set of "stable points" for firm i in the sense that if (X.,Y.) E
1 1

K.(F(-)) and firm i's output is X1, then the firm anticipates lower profits

subsequent to any change in X. on its part -- in other words, firm i will want

to avoid initiating such a change.

For any given Y. there may be more than one X. with (X.,Y.) E K.(F(-)).

Suppose, for example, that (X.,Y.), (X.,Y.) E K.(F(-)). Then one of the two
1 1 1 1 1

points may yield higher profits to firm i than the other (although if, for

example, H(X.,Y.) > H(X.,Y.) and #(-) solves F(-), we cannot have $(X.,Y.,X.)=Y.).
1 1 1 1 1 1 i1

Thus, if F(-) has a unique solution 4(-), we define a "preferred stable set"

for firm i as:

Kt(F(-)) = {(X.,Y.) E K.(F(-)):

H(X.,Y.) > H(X.,Y.) all
1 1 - 1 1

(X. ,Y.) E K. (F( -))}. (3)
1 1 1

We have

1 (F-) 1K(F-) 4

4/
although both sets might be empty.-
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We are interested in symmetric outcomes. Suppose (A1)-(A4) hold, $(*)

is the unique solution of F(-), all firms have output X > 0, and Y = (n-1)X.

Suppose further that all firms are satisfied --

(X,Y) E K.(F(')) all i. (5)
1

Then the tuple (X,F(-)) potentially defines an equilibrium for our model. In

fact, we will pose the slightly more demanding requirement that

(X,Y) E K*(F(-)) all i. (6)

And, we want conjectural variations to be "rational" rather than arbitrary.

Suppose firm j contemplates modifying its output from X. = X to X. = X + 6.
J J

Given (A4), firm j believes that if it does so, Y. = I X. will change from

Y. = Y to Y. = #(X,Y,X+S) -- the output for each firm, k, Q # j, changing from
J J1

X = X to X = $(X,Y,X+S)/(n - 1). The latter adjustment will be sensible from

the point of view of firm Z if

(X ,,Y ) ($(X,Y,X+S)/(n - 1),

[(n-2)/(n-1)] -(X,Y,X+S) + X + 3) EX*(F(-)). (7)

Our "rationality" concept is a "sensibility" requirement on anticipations along

these lines:

Definition: Let (Al)-(A4) hold. Let X* > 0 and suppose $(-) is the unique

solution for F*(-) = F(-). Then (X*,F*(-)) defines a "symmetric rational

conjectural equilibrium" (SRCE) for our model if

(i) (X*,Y*) = (X*,(n - 1)X*) E K*(F*(-)) all i = 1,... ,n, and
1

(ii) there exists an E > 0 such that |6|< E implies ($(X*,Y*,X*+6)/(n -1),

[(n-2)/(n-1)] - (X*,Y*,X*+6) + X*+ 6) EK*(F*(-)) all i = 1,... ,n.

Our definition is analogous to Laitner's [1980] and Bresniahan's [1981].

It requires that firms' conjectural variations be "sensible" in the
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immediate vicinity of a given equilibrium point (X*,Y*) . In contrast to

Bresnahan, we allow F*( ) to have two arguments and we do not require that

5/
it be a polynomial.-
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2. Symmetric Rational Conjectural Equilibria

We now show that as we choose larger and larger values of n, the set of

aggregate output and price realizations which can be consistent with rational

conjectural variations does not shrink to the perfectly competitive outcome

alone.

We use the following notation. As in Section 1, Z stands for total

market output. For any given n, we call Zm (n) the "monopoly" value of Z if

P(Zm(n)) + Zm(n) - P'(Zm(n)) - C'(Zm(n)/n) = 0. (8)

Given assumptions (Al)-(A4), Zm(n) corresponds to market output when (given

n) joint profits are maximized in a regime of full, explicit cooperation.

We call Z (n) the "competitive" value for Z if it is such that

P(Zc (n)) - C'(Zc(n)/n) = 0. (9)

Thus, Zc (n) gives the value of Z if each firm seeks to maximize

profits and believes that the market price of output is totally

of its behavior. (In this case, each firm's profits will be at

and they may be positive.) Our assumptions imply that

0 < Zm (n) < Zm(n+l) and Zm (n) <

Zc(n) < Zc(n+l) all n > 2.

its own

independent

least zero,

(10)

Let

S(n) = {Z Zm (n) < Z < Ze(n)}.

Note that if

s(n) = Zc (n) - Zm(n),

our restrictions (A2)-(A3) guarantee

lim inf {s(n*)} > 0.
n-o n*>n

(11)

(12)

(13)

Our basic result is
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Proposition 1: Suppose assumptions (Al)-(A4) hold. Fix any n > 2. Let Z be

aggregative industry output. Let S(n) be as in line (11). Then for any Z*c S(n),

if X* = Z*/n, we can construct a conjectural variation function F*(.) = F(-)

such that F*(-) has a unique solution $(-) and such that (X*,F*(-)) defines an

SRCE.

A proof is given in the appendix to this paper.

The conclusions of Proposition 1 can be restated in slightly different

terms as follows:

Corollary 1: Let the suppositions and notations of Proposition 1 hold. Let

S*(n) = {Z: Z = nX* with (X*,F*(-)) an SRCE}. Then S(n) CIS*(n) all n > 2.

Thus, while Cournot behavior in our framework would imply Z(n) + Z (n) as n + cc
for all Z(n) C S*(n), such convergence is not implied if conjectural variations

are rational.

Economists sometimes argue that when n is large, if firm i changes its

output, the effect on the profits of each individual rival will be inconsequential

and will therefore be ignored. Actually, let (X*,F*(.)) be an SRCE generated

in the proof of Proposition 1, let X. give the output of firm i, and let X.
1J

give the output of firm j with j # i. Then in the proof of Proposition 1 the

only a priori restrictions that we have on firm i's anticipations about dX./dX.
Jl

are (assuming Y* = (n - 1)X*)

dX /dX = F*(X*,Y*)/(n - 1) E (-l/(n - l),l), (14)

given rationality. In fact, the proof shows that for any x E (-l/(n - 1),1)

we can find a Z* E S(n) with X* = Z*/n, Y* = (n - 1)X*, (x*,F*(*)) an SRCE,

and F*(X*,Y*)/(n - 1) = x. Hence, dX./dX. in line (14) need not converge to
J 1

0 as n +> o.
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If we look at the first-order condition for profit maximization on the

part of firm i, the effects of the "rationally" anticipated reactions of each

individual rival do converge to 0 as n + o. The output choice of firm i depends

on the sum of such effects taken over n - 1 rivals, however, and the sum does

not necessarily become infinitesimal for large values of n.

A second corollary which follows directly from the proof of Proposition

1 is

Corollary 2: Given assumptions (Al)-(A4), let (X*,F*(-)) be an SRCE con-

structed in Proposition 1. Let Y* = (n - 1) X*. Then for some open set

W with (X*,Y*) c W, we have F*(X,Y) continuously differentiable all (X,Y) c W.

This corollary provides the basis for the analysis in the next section.
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3. Approximations

The conjectural variation function F*(*) generated in the proof of

Proposition 1 is somewhat complicated. Nevertheless, since, as Corollary 2

notes, F*(.) is continuously differentiable in the vicinity of the equilibrium

point (X*,Y*), at each of our SRCE tuples (X*,F*(-)) (with Y* = (n - 1)X*) we

can be sure there is a linear function

G(X,Y;(X*,F*(-))) = aX + (3Y + Y (15)

such that

G (X*,Y*; (X*,*(-))) = F*(X*,Y*) (16)

and such that for any E > 0 we can find T > 0 with

(X,Y) - (x*,Y*)| < T

implying

F*(X,Y) - G(X,Y;(X*,F*(-)))I < E.

C(*) will be the first-order Taylor series approximation of F*(-) about (X*,Y*).

We now derive a, , and y, and briefly examine G(*)'s properties.

Line (16) gives one linear constraint for a, fB, and -. Step 4 in the

proof of Proposition 1 implies two others. On the one hand, given the construc-

tion of F*(-), for an open set U containing (X*,Y*) we have

F*(X,Y) = i(X,Y) all (X,Y) E UflK (17)

(where $(-) is defined in Step 1 of the proof of Proposition 1). Thus,

dG(X*,Y*;)/dYK dG(X*,Y*;-)dY -1 =
'' K dX = B dY

aB-~ + 6 = dF*(X*,Y*) /dY K

dlp(X*,Y*) /dY K =

A/[X* - P'(X* + Y*)] 2 (18)

where B is defined in the proof of Proposition 1 and
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A P' (X* + Y*) [C"(x*) . B~1 -

P' (X* + Y*) . (1 + B~1) - P'(K* + Y*) - B -

X* -"P"(X* + Y*) . (1 + B~1)] -

[C'(x*) - P(X* + Y*) - X* .P'( X* + Y*)]

[P' (X* + Y*) - B- 1+ X* . P"(X* + Y*) (1 + B1 ].

On the other hand, Step 4 (in the proof of Proposition 1) also shows that

F*(.) is constant along a line L. Thus, if b is as defined in the appendix,

dG(X*,Y*;.)/dX = dG(X*,Y*--)/dX dY= .(n - bdX

a + (n - 1) bQ = dF*(X*,Y*) /dX L = 0. (19)

Lines (18)-(19) show that

a -1
=N v

where

B

N=

.1

1

(n-1)b J

A/[x* .P' (X" + Y*)]

0/ 
.

The matrix N is invertible because

det(N) = 0 iff B = (n - 1)b

and Step 2 in the proof of Proposition 1 shows B # (n - 1)b. Given a and 6,

line (16) determines y.

For a specified X* with nX* E S(n), Section 2 does not prove that

there is a unique conjectural variation function F(-) making (X*,F*(-)) an

SRCE. However, the first-order condition for each firm does imply that if

(X*,F(-)) and (X*,F*(-)) are SRCE's and Y* _ (n - 1)X*, then
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F*(X*,Y*) = F(X*,Y*) = $(X*,Y*). (20)

Furthermore, if F*(-) and F(-) are differentiable, line (18) must hold for

both. We can understand this as follows. If firm j changes its output by dX.,

for firm j's expectations to be borne out and for symmetry among its rivals to

be preserved, firm i, i # j, must react by changing its output by

dX. = F*(X*,Y*)dX./(n - 1) = F(X*,Y*)dX./(n - 1) - bdX. (21)
1J J J1

(see line (20) and the definition of b in the proof of Proposition 1). Firm i

will only desire the latter reaction if its marginal profits are still zero (as

at (X*,Y*)) when we reach

(X* + dX.,Y* + dX. + [(n - 2)/(n - 1)]
1 J

F*(X*,Y*)dX.). (22)
J

Thus, using lines (21) and (22), marginal profits for firm i must be unchanged

in the direction

dY./dX. = [1 + (n - 2)b]dX./dX. = [1 + (n - 2)b]b~1 = B (23)
1 1 J 1

(where B is as defined in the proof of Proposition 1). For marginal profits to

remain equal to zero, F(X,Y) and F*(X,Y) must remain equal to (X,Y) as we move

away from (X*,Y*) in this direction -- which is what line (18) requires. In

contrast, our decision to make the F*(-) in the proof of Proposition 1 constant

along L was arbitrary. Line (19) need not, therefore, hold for every F(-) with

(X*,F(-)) an SRCE.

Finally, notice that if (X*,F*(-)) is an SRCE and G(-;(X*,F*(-)))

approximates F*(-) near (X*,Y*), we cannot zonclude that (X*,G(-;(X*,F*(-)))

itself is an SRCE -- that usually will not be the case. For, while the defini-

tion of an SRCE requires F*(.) to have exact properties for a range of values

X* + S where 161 < E some E > 0, a Taylor series approximation such as G(-)

will normally only be precise at one point (in our case, (X*,Y*)).
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4. Examples

We now study several specific examples.

Example 1: Cournot's Solution.

Suppose (X,Y) with Y = (n - 1)X constitutes a Cournot equilibrium. The

Cournot conjectural variation function is, of course, F(X,Y) = 0 all (X,Y).

Let (X,F*(-)) be the SRCE constructed in the proof of Proposition 1, and let

G(.) = G(-;(X,F*("))). We can then compare G(-), F*(.), and F(e).

Line (18) shows that

dF*(X,Y)/dY K = dF*(X,Y)/dY X = = dG(X,Y; )/dX dX =

= -[P' (X -+ Y) + X - P"(X + Y]/

[X P' (X + Y)] < 0. (24)

Line (19) gives

dF*(X,Y)/dX = dF*(X,Y)/dK dY =00

dG(X,Y;-)/dX = a = 0. (25)
dY = 0

Thus,

G(X,Y;(X,F*(-))) = Y - Y, < < 0. (26)

Line (25) shows that

F(X,Y) = G(X,Y;-) = F*(X,Y) all X > 0. (27)

However, line (24) implies that F(X,Y) does not equal G(X,Y;(X,F*(-))) or

F*(X,Y) any (X,Y) # (X,Y) with (X,Y) near (X,Y). Since Section 3 establishes

that for any SRICE (X,F**(-)) with F**(-) differentiable, G(-;(X,F**(-))) must

satisfy equation (18) -- and, hence, line (24) -- we see that (X,F(-)) is

not an SRCE and that F(-) is not a linear Taylor series approximation at

(X,Y) for any differentiable F**(-) w~ith (X,Fk*(-)) an SRCE.
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Example 2: Bresnahan's Solution.

Bresnahan [1981] develops a model in which

C(X) = cX + (c/2)X2 ; c,c >0, (28)

P(Z) = Max{0,d 0 - d Zj; d0 ,d > 0. (29)

His most important restriction, however, is the fact that he limits his attention

to SRCE tuples (X*,F*(*)) in which F*(X,Y) is a polynomial (of finite degree) in

L.. Within that class, Bresnahan shows that (given lines (28)-(29)) there is only

a single SRCE tuple, (X**,F**(-)), and that F**(X,Y) = f, a constant, all (X,Y).

We now compare Bresnahan's solution with our own.

We have

Proposition 2: Suppose lines (28)-(29) hold. Let P(0) - C'(0) = d0- c > 0.

Fix amy integer n > 2. Let R(n) = {(X*,F*(-)): X* = Z*/n with Z* E S(n),

(X*,F*(.)) is the SRCE generated in the proof of Proposition 1, and for some

open set V with (X*,Y*) = (X*,(n - l)X*) E V we have G(X,Y;(X*,F*(*))) = F*(X,Y)

all (X,Y) E V}. Then R(n) has one and only one element. The element is Bresnahan's

solution. If (X*(n),F**(.)) E R(n) and Z*(n) = n - X*(n), then lim Z*(n) = Zc(n).

A proof is provided in the appendix.

Proposition 2 shows that if (X*,F*(*)) is one of our SRCE's from Proposition

1, and if we demand that F*(*) and G(';(X*,F*(*))) equal one another one some

open set containing (X*,Y*) = (X*,(n - 1)X*), then X* will be unique. Requiring

that G() and F*(-.) exactly coincide on an open set is a very restrictive be-

havioral assumption, however. Yet, the significance of the unique value of X*

6/
emerging in this example seems to depend on the realism of that assumption.-
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5. Conclusion

We have examined a partial equilibrium model of oligopoly behavior in

one market. The good sold in the market is homogeneous. There are n > 2

firms in the oligopoly, and the number is exogenously given. Explicit collusion

is not allowed. We find that under specified demand and cost conditions, any

aggregative output (strictly) between monopoly and perfectly competitive levels

can emerge and be consistent with all firms having rational conjectural varia-

tion functions. Because this outcome is shown to be independent of n, we find

that a large n alone is no guarantee that market behavior will closely mimic

the perfect competition paradigm.
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Appendix

1. Proof of Proposition 1:

Fix X* as stated. Let Y* = (n - 1)X*. Let

1p(X,Y) = [C'(X) - P(X + Y) - X - P'(X + Y)]/

[X -"P'(X + Y)].

Notice that $(X*,Y*) < C*.

Step 1: Let

b = $(X*,Y*)/(n - 1),

a = Y* - (1 - b).

Let

B=b +(n-2),

A = B Y* - X*.

Define

K = {(X,Y) > 0:

L = {(X,Y) > 0:

X = B~ Y - A},

Y = a + (n - 1)bX}.

We want a subset of K to serve as K*(F*(-)) any i, and L to give firm i's

anticipation of the aggregate reaction of all other firms if it changes its

output X when the initial point is (X*,Y*). Notice that by construction,

(X*,Y*) c Kfl L.

Step 2: We digress to show that B-I < °nd that K and L are not coincident.

Let

A(X) =I$(X,(n - 1)X).

Then

A'(X) < 0.
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So, Z* E S(n) implies

(Zc (n) /n) = -1 < X (Zs;/n) = (n-i) - b < A (Zm(n) /n) = n - 1.

Thus,

-1/ (n- 1) < b < 1.

So,

B > n - 1 or B < -1

Hence,

B~ j < C.

Suppose

(n - 1)b = B --

in other words, that K and L coincide. The preceding paragraph shows

-1 < (n - 1) b < (n - 1)

and

B > n - 1 or B < -1.

Thus, we have a contradiction. So,

(n - 1)b # B.

Step 3: We now define F*(-) on I in such a way that (X*,Y*) E K*(F*(*)).

Define

F*(X,Y) = $(X*,Y*) all (X,Y) E L with Y > 0.

Define

F*(X,0) = 0 all X > 0.

Let k(-) solve F*(-) starting at (X*,Y*). Then for any X > 0,

(X,$(X*,Y*,X)) c I or $(X*,Y*,X) = 0.

Let (X,Y) = (X,#(X*,Y*,X)) some X > 0. If Y = 0,

1 + F*(X,Y) = 1 > 0.
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Tf Y > 0, using the function X(-) defined in Step 2,

1 + F*(X,Y) = 1 + $(X*,Y*) = 1 + X(Z*/n) > 1 + X(Zc(n)/n) > 0.

Let (X,Y) be as above. If X is firm i's output, the firm perceives its

marginal profit at (X,Y) to be

M(X,Y) = P(X + Y) + X- P' (X + Y) - (1 + F*(X,Y)) - C' (X).

If Y > 0,

dM(X,Y)/dX dY = F*(X,Y)dX

2 P'(X + Y) - (1 + F*(X,Y)) +

X - P"(X + Y) - (1 + F*(X,Y))2 -

C"(X) < 0.

By construction,

M(X*,Y*) = 0.

Thus, as we move along L to larger values of X with X > X*, M(X,Y) is negative.

7/
If Y becomes 0, M(X,Y) drops to an even lower value and remains negative.-

If we move away from X = X* in the other direction, M(X,Y) is positive. If

8/Y becomes 0, M(X,Y) remains positive.- Thus, (X*,Y*) E K.(F*(-)) any i.

Step 4: We now define

Step 2 shows that

of B shows that if B <

that B| > |(n - l)b|.

the slope of K = IBI >

F*(-) for points not in LU{(X,0): X > 0}.

if B > 0, then B > (n - 1)bl. The definition

0, then b < 0. In the latter case, Step 2 shows

Thus, in all circumstances, the absolute value of

(n - 1)bI = the absolute value of the slope of L. So,

IBI > I(n - l)bj = |$(X*,Y*)I.

We also have X* > 0, Y* > 0, $(X*,Y*) + 1 > 0, and $(-) continuous. So,

there exists q c (0,o) such that X* - a > 0, Y* - n > 0,
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Ui = (x* - r~, X* + r) x (Yk - -i , Y* + rj)

imp lies

4(X,Y) + 1 > 0 all (X,Y) E Cl (U) ,

and

Ipt(X,Y)I <K B all (XY) c C1 (U) .

Let

LY(X Y) =_((x,Y) } + {L - x Y)}

Let YL and YU be such that

yL= inf{Y: (K,Y) £u q}

YU = sup{Y: (K,Y) E U fl K}.

Then

0OKY K<y <Co.

In fact, since Step 2 shows 0 # 3B the slope of K,

YL U.

Let KL and XU be such that

(XL ,YL) 9 (XU,YU) E KI

and let

L = { (x,Y) > 0 : (K,Y) E L(XL ,YL ) U ILJu9YU)

Let

M*(X,Y) = P(X + Y) +1-X " P' (X+ Y) "(1 +F%(K*,Y*)) - C' (K) .

Since

1 A+ F*(X*,Y*) > 0,

for some Z & (X^ + Y*,5o) we have
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M*(X,Y) < 0 all (X,Y) E V = {(X,Y) > 0: X > X* and

X +7Y> , }

Let V# be

V#= { (X,Y) > 0: (X,Y) 4 V} .

Then adjusting our choice of fl (above) downward if necessary, Step 3 shows that

if 1* = X*/2, X > X* + r* and (X,Y) e L A V# imply M*(X,Y) < 0, and X <X* - *

and (X,Y) E L imply M*(X,Y) > 0. Thus, M*(X,Y) < 0 for X > X* + n* and (X,Y) E L,

and M*(X,Y) > 0 for K < X* - fl* and (X,Y) E L.

Let

F*(X,Y) = $(X,Y) all (X,Y) E K {~ U.

For (X,Y) E L(X,Y) some (X,Y) E K ( U, X > 0, and 7 > 0, let

F*(X,Y) = F*(X,Y).

Let

F*(X,Y) = 4(X*,Y*) all (X,Y) E L

with X > 0 and Y > 0.

For all other (X,Y) with Y > 0, let

F*(X,Y) = -1.

Let

T = {(X,Y) > 0: 7 > 0 and (X,Y) E L(X,Y)

some (X,Y) E K ~) U} U

{(X,Y) > 0: (X,Y) s L and

X > X* + 11* or X < X* - n1*} Ui

{(X,Y) > 0: Y = 0}.

Let $(*) solve F*(*) everywhere. Then the continuity of $P(-) implies that

there exists an open interval I with Y* £ I such that if Y E I and (X,Y) E K,

we have $(X,Y,X) 6 T all X > 0.
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Note that

dF* (X,Y) /dX d all (K,Y) E T.

Thus,

dM(XY)/dX d= F(*,*d

2 P' (X + Y) " (1 +F F*(X,Y)) 4-

X " P"(X + Y) " (1 +F F*(XY))2

C" (X) < 0 all (X,Y) E T.

We have

M(X,Y) = 0 all (X ,Y) E K (1 UI

Suppose (X,Y) E K (n (Rl X I), K > 0, and (KY) = (,~(,Y~)). Then

(X,Y)j <K B all (XY) £ClI(U) ,

A9/our condition for dM (X ,Y) /dX above, and our discussion of N"(*) on L imply -

M(X,Y) > (<) 0 for X < (>) XI.

Hence,

Kfl1(R >X I) CZK. (F*(")) all i.

Step 5: Let T#/ be the complement of T. Let (XY) 6 T11/(h(ZR1> I). Then

F*(X,Y) _ -1. So, M(X,Y) = P(X + Y) - C' (X) > 0, or H(K,Y) < H(X,Y) with

(X,) £K.For (XY) E (T f(R X I)) - K, M(X,Y)# 0. Thus ,

K (T(Rl x I)QK*Y(F*(.)) all i.
1

Step 6: We have

11
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We now show that (X*,F*(-)) satisfies the rest of the definition of an SRCE.

Let b() solve F*(-). There exists an c > 0 such that 161 < c implies

[(n - 2)/(n - 1)] - $(X*,Y*,X* + 6) +

X*S+ 6< iI.

So, 161 < c implies

(C(x*,Y*,X* + 6)/(n - 1),[(n - 2)/(n - 1))

$(x*,Y*,x* +6 X ) =

([Y* + 6 - b - (n -1)]/(n - 1),[(n - 2)/(n - 1)]-

[Y* + 6 - b - (n - 1)] + X* + 6) =

(X* + 6 - b,(n - 2)(X* + 6 - b) + X* + 6) =

(X* + 6 - b,Y* + 6 - b - (n - 2) + 6) =

(X* + 6 - b,Y* + B - 6 - b) =

- l *+1 b
(X* + B B6b,Y*+B6 - b) Kf\(R xI)C

K*(F*(-)) all j.

(where the second-to-the-last equality follows from the definition of B in

Step 1, and the first inclusion follows from the definition of K and our restric-

tions on the size of S). Thus, (X*,F*(-)) is an SRCE. //

2. Proof of Proposition 2:

Step 1: Step 4 in Proposition 1 implies that for F*(.) and G(-) to be equal on

some open set W con tai ininog (X*,Y*), C(-) must equal J)(-) on K f~ IT W t. Line

(18) shows

dG(X,Y;-.)/dY K = B~ + 

Also,

d$(XY)IdYIK =2/X *P'(X +

where, given lines (28) - (29),
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A =-Xd [cB +-d +dB 1+ dB 1] +

[c+cX - d +dX4-dY+dX]dB t l

- Xd + cdB -- ddB -1+ dYB-
0

But, along K,

YB 1= A +K.

So,

A-Xd 2 +cAB 1-

d2X = [c -

d 0dB +-dA+-

dci + dAB~dB~1

Thus,

dG(XY; )f/dY lKY =cB' --+

implies

A = (d 0 -- c) /(dB)

and
a-1+S 0

Step 2: Using Step 1 of the proof of Proposition 1,

A = [(n - 1)3B1 - 1]X*.

So,

(d 0 -c)/d = n _- -B)X

Also, Step 1 shows

B -+1+n 2

So,

(d 0 -c)/d = (n -1 - b

(1 b- 1 ) X*.

-- ri + 2)KX*=

From Proposition 1 we also have that
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(n - 1)b = (x*,Y*) =

[c + cX* - d0 + dX* + dY* + dX* ]/[.-X*d] =

[(c - d0 )/(-dX*)] - [(c + nd + d)/d].

Thus, substituting from the preceding paragraph,

-1 ---1 -l1 - -1
(n - 1)b = 1 - b -cd - (n + 1) -b - cd -n.

So,

(n - 1)b 2 + (n + cd1)b + 1 = 00.

Therefore,

b = {-(n + cd~1) + (n + cd~1) 2 - 4(n - 1)1}/

(2 - (n - 1)).

Step 3: For b to be real, we need

(n + cd~1)2 2>4 -(n - 1).

That is true iff

n2 + 2cd~1n + (cd~1)2 > 4 n - 4 iff

6(n) = n 2 + (2cd~1 - 4)n +

((cd)2 + 4) > 0.

We have

0(2) > 0 and e'(2) > 0.

So,

0(n) > 0 all n > 2.

Step _4: Step 2 in the proof of Proposition 1 shows

-/n- 1) < b < 1.

Thus, for n > 2, only

b ={-(n +cd~1) +r(n +cd~)2 - 4(n -) }/

(2 - (n - 1))
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is feasible. Since this b < 0, we must have b > -1/(n - 1).

b > -1/(n -1) 1ff --2 <

- (n +cd~1) + (n + c-1) 2 - 4(n 1) 1f f

n +cd'- 2 </(n + cdfI) 2 4(n -1) if f
(n +cd-1) 2 - 4 (n + cd 1) + 4 <

(n + cdl) 2 
-

4(n - 1) 1ff -4cd-1 < 0,

which is true.

Step 5: Returning to Step 2,

*= Cd 0 - c)/[d ' (1 -bp1)]}

We need

P(nX*) =d - dnK* > 0.

But,

b > -1/(n - 1) iff -b < 1/(n - 1)

1ff -b1>n-1 1ff 1-b1 >n

1ff d0-dnX* >c1-d0+Ic=

C > 0.

Step6: Let n =2. Then

b = -1 -[c/(2d) ] + [c. (/1 + (4d /c)),f(2d)] .
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urn Z7*(n) = [(d 0 - c) /d]"

urn n/ [1 - (b(n))-1].

We have

urmn/nf[l - (b(n))-1] =

uirn nI{1 + 2(n -1/[--cd^1-

/(n +cd ) 2-4(n - 1)11}=

lim{2/(n + cd ' -!G(n+ &f 1 ) 2 - 4(n } )

.5* lim{n + cdl - (n + cd 1 ) 2
- 4(n- 1) } =

.5" lim{n +cd 1 - r[n + (cd 1- 2))2 +4cd 1}=

.5" lim{n + ed - [n +cd - 2]}=1

Therefore,

urn Z*(n) = (d0 -- c) /d.

So d0 - d .l~i Z*(n) = c = urn C' (X*(n)). /



Notes

1. See Laitner [1980] and Bresnahan [1981] for detailed discussions of
rational conjectural variations. See also Marschak and Selten [1974].

2. The last restriction here is not strictly necessary for most of our
results. It simplifies our proofs, however, by ruling out some types
of "corner solutions."

3. Note that even more general specifications -- dY./dX. = O2(X1 ,. . .,X) --

are possible. We avoid such generalizations in the interests of simplicity.
If we did not restrict our attention to symnrnetric equilibria, we would
have to use Q(').

4. The distinction between K*(F(-)) and K.(F(*)) is a detail which does not

play an essential role in our analysis.

5. See Section 4. Note also that Bresnahan [1981] (and Laitner [1980]) sets
n = 2.

6. As stated, Bresnahan [1981] allowed F*(-) to be a polynomial in X, but
then proved that only the constant polynomial was relevant. Note also
that he allowed a constant term in line (28) -- see note 2 above. Finally,
recall that the definition of an SRCE involves exact properties on an
open set. For a less restrictive concept in the same vein, see page 644
of Laitner [1980].

7. Note that for Y to drop to 0 as X increases we must have F*(X,Y) < 0 along

L. Also, along the X-axis, dM(X,Y)/dX = 2 - P'(X) + X' P"(X) - Cr(X) < 0.

8. In order for Y to drop to 0 as X decreases, we must have F*(X,Y) > 0
along L. See note 7.

9. See also note 7.
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