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"RATIONAL" DUOPOLY EQUILIBRIA 1

Consider a simple duopoly problem of the Cournot quantity-adjustment

variety. Assume that- both firms want to maximize their own profits and that

cooperation agreements, side-payment contracts, and interfirm communications

(other than notifications of the intent to market certain quantities) are

ruled out. Then there are two possible analytical approaches in the static

case. One we might label the "nonconjectural" model. In it the duopolists

make their output decisions in isolation -- locked in separate rooms perhaps.

Only after both have fixed their plans does each learn his rival's choice, and

at that point no further output changes can take place.2 The Cournot equili-

brium is a natural concept for this type of model: Given sufficiently well

behaved cost and demand functions, each duopolist can develop a "best-reply"

function showing his profit-maximizing production level for each fixed output

of the other firm. In a "nonconjectural" problem, each firm will want to choose

a point on its best-reply function curve. A Cournot equilibrium has the de-

sirable feature that both firms are choosing best-reply output levels at the

same tim.

We call the- second possible model "conjectural." In this model firms

make their output decisions simultaneously (as above), but each knows as it

makes its decision what output its rival will choose.3 Thus each firm should

take account of the fact that its output decision will affect its rival's

behavior. So, conjectural variation terms, functions showing the (immediate)

reactions from their rivals that firms expect as responses to changes in their

outputs, play an important role. We can think of the following story. At

time t - s, s > 0, both duopolists announce their output decisions for the

period to begin at time t, each firm attempting to maximize its profits in

light of its conjectural variation function. After the first announcement

both firms reevaluate their decisions and issue a (simultaneous) announcement
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of corrections. The time is t - d, e > 6 > 0. The process continues until

the corrected output bundle satisfies both firms. Each firm's chosen output

at time t will reflect, therefore, a knowledge of its rival's output plans.

Although most empirical analyses use price in place of quantity as a deci-

sion variable for producers, existing data suggest the conjectural model may

be realistic, at least some cases (see Blair [2, chapter 19] and Kaplan,

Dirlam, and Lanzillotti [10, pages 31-36], for example). 4

In this paper we examine conjectural models. In particular, we study

various types of "conjectural equilibria" -- stopping points for the itera-

tive process outlined in the preceding paragraph. Such outcomes are Nash

equilibria conditional on expectation functions: at equilibrium neither duo-

polist perceives any advantage to changing his output. In Section I we find,

as might be imagined, that if we do not require that expectations correspond

to reality, the set of possible "conjectural equilibrium" outcome points

may well be enormous.

In Section II we attempt to remedy the overabundance of solutions by

requiring that expectations ("conjectural variations") be "rational" -- in

other words, we try demanding that the reactions each firm expects from its

rival be the reactions which actually would occur according to the overall

model. This constraint seems consistent with the "perfect information assump-

tion" of traditional microeconomic theory. Surprisingly, we can show that the

set of output pairs qualifying (with the correct choice of.conjectural varia-

tion functions) as "rational conjectural equilibria" for a given problem may

still be very large.

Section III extends the analysis to a dynamic model, which permits a

wider "rationality"~ requirement. Although an extreme multiplicity of equili-

bria continues to prevail, we are able to define "rationality" in a more sa-

tisfactory way than is the case for the static model.
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I. Conjectural Equilibria

First we lay out a simple model. Then we present our definition of

a "conjectural equilibrium" and prove that a large set of output combinations

can qualify.

The model has the following elements. Two firms produce a single

homogeneous product which cannot be.obtained elsewhere. If Q = X + Y is the

sum of their outputs, P(Q) gives the market price. The firms' total cost

functions are t(X) and Y(Y), respectively. Each firm attempts to maximize

its own profits. Although the firms make their output decisions simultaneously,

plan changes are always possible before production begins. So, each firm is

aware that its choice of a production level will affect its rival's behavior.

If at any prospective output point (X,Y) with each firm aware of how much its

rival plans to produce the first firm believes that an infinitesimal change

D in its output level will elicit a reaction A (3Y/K)c1(Xy) in the planned

output of its competitor, we define F(X,Y) = (aY/,X)e . Similarly wa

let the second firm's "expectation function" be G(X,Y) = (X/aY) eIX .5

Provided second-order conditions are satisfied, a solution of the sys-

tem

P(Q) + K0 P'(Q) - (1 + F(X,Y)) - 0'(X) = 0, (1)

P(Q) + Y - P'(Q) . (1 + G(X,Y)) - '(Y) = 0, (2)

is -an equilibrium for the recontracting process outlined in the introduction

to this paper. To calculate a Cournot equilibrium we solve the system after

setting F(X,Y) = 0 = G(X,Y) all (X,Y). With our conjectural model there is

no reason to require tha~t a firm should expect that a change in its output will
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cause absolutely no change in its competitor's production level, however.

Any outcome satisfying the following definition, therefore, has just as much

appeal as Cournot's in terms of firms' expectations.

Dl) A "Conjectural Equilibrium" is a tuple (X*,Y*,F*(-),G*(.)) such that

if F*(-) and G*(*) give the expectation functions of firms 1 and 2, respec-

tively, then at (X,Y) = (X*,Y*) neither perceives that it can increase its

profits by changing its output.

Each conjectural equilibrium (X*,Y*,F*(-),G*(.)) has the same game-theoretic

"stability" property as an ordinary Cournot equilibrium: given F*(-) and

G*(-), neither duopolist has any incentive to move away from (X*,Y*).

On the other hand, as in the case of conventional Cournot equilibria,

an equilibrium (X*,Y*,F*(-),G*(-)) will not usually have to attribute "ration-

ality". For, definition D1 does not require any correspondence between the

actual reaction of the first firm to changes in Y, 3X/3Y, and the second

firm's expectations, G*(X,Y), even at (X*,Y*). Similarly for aY/aX and F*(X,Y).

Yet, with ut some theory of expectations there seems to be no reason to pre-

fer one equilibrium tuple to another.

What is more, with proper choices of F*(.) and G*(.) a great variety

of output combinations (X*,Y*) can be made to satisfy D1, as the following

proposition shows.

Proposition 1: Suppose C(-) and 'i(.) are nondecreasing and strictly convex,

4(0) = f(O) = 0, and P'(0) = '"(0) = 0. Let the market demand curve be down-

ward sloping. Suppose P(Q) > 0 and P"(Q) < 0 all Q > 0. Then with the correct

choice of F*(,) and G*(.) we can incorporate any point (X*,Y*) > (0,0) with

P(X* + Y*) -'(X*) > 0 and P(X* + Y*) - '(Y*) 0 into a conjectural equi-
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librium l X*,Y*,F* ,G* 6

The appendix at the end of this paper supplies a proof. The proposition

shows that if cost and demand functions meet the specified hypotheses, then

any positive output combinations up to and including competitive-market- out-

comes can be made to constitute conjectural equilibria. , For example,

fixing F*(X,Y) = -1 = G*(X,Y) all (X,Y), any pair of competitive-market out-

puts (X*,Y*) solves system (1) - (2). Suppose (XC ,c) > (0,0) is the cartel

outcome. Then setting F*(X,Y) = Yc/Xc and G*(X,Y) = K cY all (X,Y), (XC Yc)

solves the system. In each case we have a "stable" (in the game-theoretic

sense) equilibrium provided the hypotheses of the proposition hold.
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II. Rational Expectations

Our conjectural model simultaneously allows equilibrium output pairs

as varied as the competitive-narket and cartel outcomes. In this section we

attempt to make the model more selective by requiring rational expectations.

We will say the first firm's expectations are "rational" at a point (X,Y) if

the firm can accurately predict the response of its rival to an infinitesimal

change in K.-Simailarly for the second firm's expectations.

One issue immediately arises: in a static model we can only require

rational expectations for each firm on a restricted set. For, according to

our model each firm chooses its output to naximize its (perceived) profit

function. If a firm is not maximizing (perceived) profits at (X,Y), it

should immediately adjust its output, not waiting for its competitor to

make any changes. If, for example, the first firm is not maximizing its

profits at (X,Y), (3X/3Y)(XY), the firm's actual variation, should equal

+ or -=, and the second firm should not ask what the first's response to

an infinitesimal change in Y will be until X has reached a profit-maximizing

level through independent adjustments. Define

K(F(-)) = {(X,Y): firn I perceives X to be profit maximizing (for

itself) given expectation function F(.) and an output Y for its

rival}. (3)

Then if F(-) is the first Lirtf'b expectation fuuLtionL, we can uily Lrequite

that the second firm's expectations be "rational" at (X,Y)GE K(F(-)). Si-

milarly, if the second firm' s expectation function is G(-), we can only re-

gjuire rational expectations for the first firm on I
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L(G(.)) = {(X,Y): firm 2 perceives Y to be profit maximizing

given X and expectation function G(-)}. (4)

Using these ideas, we make the following definition:

D2) A "Rational Conjectural Equilibrium" is a point (X*,Y*) and a pair of ex-

pectation functions (F*(-),G*(-)) such that (i) (X*,Y*)E K(F*(-))CL(G*(-))

(i.e., at (X*,Y*) each firm perceives its output to be profit maximizing);

(ii) the actual variation (3X/9Y)I equals G*(X,Y) at all (X,Y) UK(F*(-))

where U is some open neighborhood of (X*,Y*); and, (iii) (DY/3X) = F*(X,Y)
(xY)

all (X,Y)(e V (1L(G*(-)) where V is some open neighborhood of (X*,Y*).

This definition requires rationality of expectations for each firm at all

possible points in the immediate vicinity of (X*,Y*). We apparently achieve

a greater degree of restrictiveness than with D1 at the expense only of as-

suming away non-rationality.

Actually, however, in terms of points (K,Y) which can qualify (with

the correct choices of F*(-) and G*(.)) as equilibria the new definition does

not turn out to be much stronger.

Proposition II: Suppose P(-), c(-), and Y'() satisfy the hypotheses of

Proposition I. Then if (X*,Y*) also satisfies the hypotheses, we can con-

struct F*(-) and G*(-) such that (X*,Y*,F*(-),G*(-)) satisfies fl2 provided

IY*P'(Q*)/(P(Q*) - '(Y*) + Y*P'(Q*))I ' |X*P'(Q*)I(P(Q*) - '(X*) +

X*P(Q*)|> 1 where Q* = X* + Y*.

In the proof, which is given in the appendix, we construct K(F*(-)) and

L(G*(-)) to be straight lines. The new assumption at the end of the pro-
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position requires that the former line be steeper than the latter. This is

analogous to requiring "stable" reaction functions in the case of the standard

-Cournot model. While the new assumption rules out competitive-market outcomes

(for which the product of absolute values is 1), it does not exclude some

outcomes with X + Y infinitesimally smaller than the market-solution sum.

Similarly, it rules out the cartel outcome (for which the product of absolute

values is again 1), but it does allow some outcomes for which X + Y is infi-

nitesimally larger than the cartel sum. In fact, if (Xc ,yC) and (Xm ,Ym) are

the cartel and competitive-market outcomes, respectively, the new assumption

does not exclude any output point (X*,Y*) with (Xc Yc) <(X*,Y*)< (X',Ym) from

being a component of an equilibrium tuple (x*,Y*,F*(-),G*(.)). 1 0

Thus, although imposing "rationality" limits the set of equilibrium

tuples (X*,Y*,F*(.),G*(-)) a great deal, it leaves a large set of points

(X,Y) which can fit into such tuples (at least-given the hypotheses of

Proposition II). Furthermore, the concept of rationality embodied in defi-

nition D2 is far from satisfying. For, consider any point (X**,Y**)EV(1

(L(G*(-)) - K(F*(-))). Assume (X*,Y*,F*(-),G*(-)) satisfies D2. Then the

first firm' conjectures about its rival's reactions to changes in X are ac-

curate at (X**,Y**). Yet, the second firm's reactions are based on its con-

jectures at (X**,Y**). The latter conjectures are meaningless at (X**,Y**),

however, since (X**,Y**)EK(F*( )). In a sense, therefore, we have succeeded

in imposing "rationality" at one, and only one, additional level of sophisti-

cation. -

Even at (X*,Y*) the last argument is true. For if firm 1 varies X

slightly, the response of firm 2 will coincide with the former firm's expec--

tations. Since firm 2 is reacting to a non-profit-maximizing action on the

part of firm 1, however, its change in Y cannot be based on "rational" ex-

pectations.
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III. A Dynamic Model

In this section we stop asking that one firm's expectations about its

competitor's behavior be rational even if the competitor's behavior is based

on expectations which are themselves unfounded. We switch to a discrete-time

dynamic model with a cost-of-adjustment function for each firm (see, for example,

Gould [7]). We assume that each wants to maximize the present value of its

future cash flow. The adjustment costs make initial conditions important and

the evolution of X(t) and Y(t) nontrivial. In place of the concept of

rationality of Section II, we require (i) that the first firm's expectation

about Y(t + 1) - Y(t) conditional on X(t + 1) - X(t) be accurate if X(t + 1) -

X(t) is a change the first firm perceives to be consistent with its goal of

maximizing its own profits; (ii) that the second firm's expectation about

X(t +1) - X(t) conditional on Y(t + 1) - Y(t) be accurate if the latter ad-

justment is perceived to be profit maximizing; and, (iii) that if the first

(the second) firm perceives X(t + 1) - X(t) (Y(t + 1) - Y(t)) to be profit

maximizing, the reaction it anticipates must be profit maximizing for its

rival concttional on the rival's expectations. Thus, the dynamic-model

analogues of firms' conjectural variation functions must be rational for all

profit-maximizing changes initiated by either firm. The competitor's reac-

tion in each case must not only be correctly anticipated, but also must itself

be based on profit maximization and rational expectations. We will require

this stringent variety of rationality for all points which could be initial

conditions for our model. Proposition IV (below) and our examples show that

a multiplicity of equilibria continues to be a problem.

In the new model the first firm determines its optimal output time
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path by solving

CO)

Max Z (1 + r)-t(X(t) P(X(t) + Y(t)) - 4(X(t),X(t + 1) X(t))) (5)
{X(t)>0} t=s

subject to:

Y(t + 1) = F(X(t),Y(t),X(t + 1)), (6)

(7)Y(s) = y, X(s) = x

where s is the time now, r is the interest rate, 4(-) includes costs of adjust-

ment as well as conventional production costs, and (x,y) gives ini-

tial conditions. Line (6) replaces the firm's conjectural variation function

11
of earlier sections. The second firm uses a similar setup with y(-) in place

of @(-) and G(X(t),Y(t),Y(t + 1)) = X(t + 1) in place of (6).

The additivity and stationarity of criterion function (5) enable us

to write down a recursion for the present value of all future profits at

any time s. Let the value be a function V(-). Then V(-) does not depend on

s. We have

V(X(s),Y(s)) = Max

{X(s+l)>0}
{X(s)P(X(s) + Y(s)) - 4(X(s),X(s + 1) - X(s))

+ (1 + r)~1 V(X(s + 1),F(X(s),Y(s),X(s + 1)))}. (8)

If a finite valuation function exists, it will satisfy line (8). If the finite

V(-) is nondecreasing and concave and F(-) is concave in X(t + 1) (or if V(") is

concave and F(-) is linear in X(t + 1)), and if 4(-) is convex in its second

argument, then (8) will define a single-valued function g(-) assigning to'each

. pair (X(t),Y(t)) the first firm's optimal level of output at t+1, X(t+l) =

g(X(t),Y(t)). To show that the functional form of g(-) will depend on F(-)
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we write

g(.) = (F(-))-(9)

Notice that an open-loop solution of the dynamic optimization problem will

enable us to determine g(-) independently of the initial conditions (x,y).

For the second firm let

f(-) = (G(-)) (.10)

with f(X(t),Y(t)) = Y(t + 1) giving the optimal level of Y(t + 1) for all

X(t) and Y(t).

Continuing to assume that g(-) and f(-) are single valued, for the new

model

D3) A "Dynamic Conjectural Equilibrium" is a tuple of functions (f*(-),g*(-),

F* (-) ,G*(-)) such that (i) if the expectation functions for firms 1 and 2 are

F*(-) and G*(.), respectively, then g*(-) = P(F*(-)) and f*(-) = Q(G*(-));

and (ii) for any initial conditions (X(0),Y(0)) = (xy) the actual time

path of (X(t),Y(t)), which is generated by (X(t + 1),Y(t + 1)) = (g*(X(t),Y(t)),

f*(X(t),Y(t))), is a solution path for the systems (K(t + 1),Y(t + 1)) =

(G*(X(t),Y(t),Y(t + l)),F*(X(t),Y(t),X(t + 1))) = (G*(X(t),Y(t),Y(t + 1)),

f*(X(t),Y(t))) = (g*(X(t),Y(t)),F*(X(t),Y(t),X(t + 1))).12 A "Long-_Run

Equilibrium Point" is a pair (X*,Y*) such that f*(X*,Y*) = Y* and g*(X*,Y*) =

X* with (f*(-),g*(--),F*(-),G*(-)) a dynamic conjectural equilibrium.

If (f*(-),g*(-),F*(-),G*(-))-is an equilibrium tuple , let{(*t,())
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with X*(t + 1) g*(X*(t),Y*(t)), Y*(t + 1) = f*(X*(t),Y*(t)), X*(0) = x, and

Y*(O) = y be an "equilibrium path." Then at every point along such a path

we will have game-theoretic "stability": each firm will be maximizing its

(perceived) valuation function at every t. The same will be true at an equi-

librium point (X*,Y*) -- neither duopolist will perceive any benefit to

changing his output. In other words, (f*(-),g*(-),F*(-),G*(-)) can be viewed

as a Nash equilibrium as follows. The function f*(-) gives the optimal be-

havior of firm 2 conditional on expectation function G*(-). The function

g*(-) gives the optimal behavior for firm 1 conditional on expectation func-

tion F*(-). \Yet, from any initial conditions g*(.) and f*(-) generate a time

path consistent with that generated by (G*(-),F*(-)). So, each firm chooses

a control function which maximizes its profits given the perceived, and actual,

behavioral inclinations of its rival13

In order to be able to establish the existence of a dynamic conjectural

equilibrium we make very strong assumptions about functional forms:

P(Q) = a + ". Q, a >0,8< 0; and, (11)

Z, = (,Z*) = a - Z2 + a - Z*2, a > 0. - (12)

(Adding linear or quadratic terms to (12) will not change our proofs below.)

This specification can perhaps be viewed as an approximation to a wide variety

of more realistic problems. We have

Proposition III: Suppose r > 0. Fix any d with Idi < 1. There exist a, b, c

and A, B, C such that if Y(t + 1) = F(X(t),Y(t),X(t + 1)) = aX(t) + bY(t) +

c + dX(t + 1), X(t + 1) = G(X(t),Y(t),Y(t + 1)) = aY(t) + bX(t) + c + dY(t + 1),

X(t + 1) = g(X(t),Y(t)) = AY(t) + BX(t) + C, and Y(t +- 1) = f(X(t),Y(t))



13

AX(t) + BY(t) + C, then (f (.),g(-),F(-),G(e)) constitutes a "dynamic conjec-
tural equilibrium" for our model. Furthermore, for our solution the linear

system (g(-),f (-)) has eigenvalues of modulus less than 1. 14

The proof is in the appendix.

We can also show that different choices of d in Proposition III will

yield different equilibrium tuples.

Proposition IV: In the proof of Proposition III different values of d must

yield different equilibrium tuples.

Thus, we have a repetition of the multiple-equilibrium phenomenon that Propo-

sitions I and II established. Although Proposition IV does not insure the same

wide assortment of equilibria that prevailed in the static model must reappear,

the following numerical example shows that great variety may well again be the

typical case.

Sc ting a = 10, S = -1, a = 2, and r = .1, we calculated equilibrium

tuples for different values of d, |dj < 1. Tables I and II present the re-

sults, including the coefficients of V(X,Y) = VI - X + V2 - XY + V3 Y2 +

V4 - X + V5 - Y + V6 for firm 1, the eigenvalues of the system (g(-),f(-)),

and the long-run equilibrium point (X*,Y*) = (X*,X*).

As we fixed-different values of d, a familiar train of solutions ap-

peared. As d approached 1, X* approached the long-run cartel solution

(X = 1.25) . When d equaled 0, X* approximately equaled the long-run Cournot

equilibrium outcome (K = 1.43). As d approached -1, X* approached the comupe-

titive-market' long-run equilibrium (K = 1,67). Demanding rational expects-

tions for the dynamic model did not, therefore, lead to any more restricted
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Table I

Equilibria ofCoefficients for Dynamic a Symmetric Duopoly Problem15

Trial

1

2

3

4

5

6

7

8

9

V1

-4.31

-4.31

-4.31

-4.32

-4.31

-4.32

-4.32

-4.32

-4.32

V2

-1.12

-1.11

-1.12

-1.11

-1.12

-1.11

-1.13

-1.11

-1.13

V3

.00

.00

.00

.00

.01

.00

.01

.00

.01

V4

14.00

14.00

13.98

14.00

13.96

14.00

13.93

14.00

13.91

V5

-. 23

-. 23

-. 24

-. 22

-. 24

-. 22

-. 25

-. 21

-. 25

V6

61.50

61.89

60.94

62.13

60.18

62.24

59.21

62.24

53.51

a

-. 03

-.11

.06

-. 19

.14

-. 26

.24

-. 31

.30

b

.34

.34

.34

.34

.34

.34

.34

.34

.34

c

.99

.72

1.26

.47

1.55

.23

1.84

.09

2.04

d

.00

.25

-. 25

.50

-.50

.75

-. 75

.90

.90
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Table II

Coefficients, Long-run Equilibria, and Eigenvalues (E1,E2) for g*(.)

Trial A B C X* El E2

1 -. 03 .34 .99 1.44 .31 .37

2 -. 03 .33 .97 1.39 .30 .36

3 -. 03 .35 1.01 1.48 .32 .38

4 -. 03 .32 .94 1.35 .30 .35

5 -. 03 .36 1.04 1.53 .32 .39

6 -. 02 .32 .92 1.31 .29 .34

7 -. 03 .36 1.06 1.58 .33 .40

8 -. 02 .32 .91 1.28 .29 .34

9 -. 04 .37 1.07 1.61 .33 .40
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set of equilibria than we observed in Section II.

In closing this section, let us compare our dynamic model with Friedman's

[6]. The differences are apparent immediately: Although Friedman's duopoly

game is repeated over and over, his model is "nonconjectural" within each

time period because (using our notation) his function F(-) does not depend

on X(t + 1) and his function G(-) does not depend on Y(t + 1). At Friedman's

equilibrium point (X*,Y*) each firm is maximizing its perceived profit func-

tion and each firm's expectations about its rival's reactions after a one-

period time lag are rational. On the other hand, firms' expectations are not

necessarily rational away from (X*,Y*). Furthermore, because Friedman's firms

do not incur adjustment costs, the problem alluded to at the end of Section II

reappears: Suppose firm 1 varies X infinitesimally starting at (X*,Y*). Then

firm 1 will be able to correctly anticipate its rival's response. Firm 1

will not perceive its own change in X to be profit maximizing, however, so

its expectations are not rational about any output adjustment it would ac-

tually want to make. The same argument shows that the second firm's response

to the first firm's output change can not itself be based on rational expec-

tations (see Section II). In this section, our model is contemporaneously

"conjectural", rationality prevails everywhere,16 and rationality is only de-

fined in terms of output changes which firms perceive to be profit maximizing.

Each firm's response to a profit-enhancing output change on the part of its

rival will always itself be based on rational expectations. Our analysis

a1lso poinlt a <>ut -t lie protLJea er mun i pie equii I L' ici.
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IV. Conclusion

This paper appraises conjectural duopoly models as an alternative to

nonconjectural ones. Working in Cournot's familiar quantity-adjustment

framework, we first define the simplest of our equilibrium concepts, the

"conjectural equilibrium," and show that many different output combinations

can satisfy the definition if we make the correct choice of expectation

functions.

We.then attempt to require rational expectations for the static model.

The results are disappointing for two reasons. First, an enormous variety

- of output combinations (K*,Y*) can still fit into equilibrium tuples

(X*,Y*,F*(-),G*(-)) (see Proposition II). Second, we can only require that

one firm's expectations be accurate if the other is profit maximizing. Yet,

the latter firm's profit-maximizing behavior can not itself be founded on

rational expectations unless both firms are profit maximizing. At a point

(X*,Y*) where both are maximizing, a change in output by the first firm

will be followed by a correctly anticipated reaction from its rival. However,

the change by the first firm must be contrary to its desire to profit maximize

and hence the rival can not come up with a "rational" response.17 Thus, even

at points with both firms maximizing profits we can only have one-sided ra-

tionality of expectations.

Our dynamic model in Section III is difficult to analyze. However,

our numerical computations and Proposition IV show that an over-

supply of equilibria, and even of long-term equilibrium points, continues

to be a problem. On the other hand, the dynamic model allows a wider (start-

ing from any initial condit'ions) and more satisfactory concept of rational

expectations than our static model -- our dynamic conjectural equilibria re-

quire that any profit-maximizing output change 'by one firm be accompanied by
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a fully anticipated and profit-maximizing response grounded on rational ex-

pectations from its rival.

Our numerical examples produce long-term equilibrium points (X*,Y*) as

well as tuples (f*(-),g*(-),F*(-),G*(-)). Although there is a large and di-

verse set of such points, each point is globally stable -- Proposition III in-

dicated this would be the case. Because of our rationality requirements, the

process of convergence in the stability analysis is much more credible than, for

instance, the usual convergence story for the nonconjectural Cournot model.18

Perhaps the final conclusion that we should draw from this analysis

is that although conjectural duopoly models are interesting and in some

applications realistic, they are troubled with an overabundance of possible

equilibrium output bundles in each case. If we employ such models, there-

fore, we should not expect particular outcomes in the space of output com-

binations. Instead, we should concentrate on investigating equilibrium

tuples (X*,Y*,F*('),G*(-)) (or (f*(-),g*(-),F*(-),G*(-))) -- assumptions

about rationality do imply observable limits on the set of possible equili-

bria in the space of tuples.
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Appendix

Proof of Proposition I: Fix any (X*,Y*) > 0 with P(X* + Y*) - Of (X*) 0 and

P(X* + Y*) - Y' (Y*) > 0. Define F*(X,Y) = F* and G*(X,Y) = G* all (X,Y) k

with F* and G* constants chosen so that if Q* = X* + Y*, then P(Q*) + X*P'(Q*)

(1 + F*) = t'(X*) and P(Q*) + Y*P'(Q*)(1+ G*) =-T'(Y*). The last step is

possible since X*,Y*,P'(Q*) # 0. We have I + F* > 0 and 1 + G* > 0 because

P'(Q*) < 0.

Both firms now satisfy their first-order conditions at (X*,Y*). We

next show the first firm's second-order conditions hold globally. The ar-

gument for the second firm is analogous.

Differentiating the first firm's perceived marginal profit function

and using the constraint (3Y/3X)jX Y)= F*, we have 2P'(Q)(1 + F*) +

XP"(Q)(1 + F*) 2 - V"(X) < 0 all (XY) because each term is less than 0 and

V"(x)> 0. //

Proof of Proposition II: Fix any (X*,Y*) satisfying the proposition's hy-

potheses. Let T = {(X,Y) > (0,0) P(X + Y) - 4'(X) < 01. Let T be the

complement of T.

Step 1: For constants A, B, A*, and B* define 4(X) = A + BX, P(Y) = A* + B*Y,

K = { (X,$(X)) X > 0, cp(X) > 0), and L = { ($(Y),Y) : Y > 0, p(Y) > 0}. Choose

the constants so that $(X*) = Y*, $(Y*) = X*, P(Q*) + X*P'(Q*)

(1 + (1/p' (Y*))) - 4' (X*) = 0, and P(Q*) + Y* ' (Q*)(l + (114'(X*))) -

Y' ( Y*) = 0. Then 1 + (1/B3*) >. 0 and 1 + _(1/B) > 0. Also, |BI I B*I =

IY*P '(Q*) /(P (Q*) - IP' (Y*) + Y*P '(Q*))I | jIX*P' (Q*) /(P(Q*) - ' (X*) + x*Pr'(Q*))I

> 1. So, |BI = |slope of Kj > I1/B*| = j slope of LI.

Step 2: Consider firm 1. The firm's perceived marginal profit function is
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MP1(K,Y) = P(Q) .+ K?' (Q) (1 + F(KXY)) 4'(X) where Q = X + Y. Along K let

F(X,Y) be such that lPl(X,Y7) = 0. Then 1 + F(K,Y)> 0 all (K,Y) G. KAflrT

F(Xi*,Y*) = 1/B* = the slope of L. Thus, for sotie convex open set U

containing (X*,Y*) we have IF(X<Y I I3 = the slope of Kj all (X,Y)eCUfl K.

Let L* = { ( (Y) ,Y): Y > 0, fl(Y) 0}. Let l* (X,Y) _ {((,Y)} +- (L* - { (X*,Y*)I))

all (X,Y) F K. Then for each (X,Y) L*(K' ,Y') with (X' ,Y') CKflU let

F(X,Y) = F(K',Y').

Step 3: Let mKy)CEK flU. Suppose F (X,Y) is the path of points (K'Y')
firma 1 expects to encounter if starting from (X,Y) it varies X. Then at

(X,Y) the graph of ?(X,'Y) cuts K and has a smaller absolute slope than K.

Let S = {t(K,Y): (X,Y)ELCx) some (X' ,Y') KflU} . te now define

F()on the complement of S. Set F (X, Y) = -l all(X)GT Let (XL,YL) be
the lower limit point of K fU and let (X~U,YU) be the upper limit point.

To begin, set F (X, Y) .F (X' , Y ' all (X, Y) E L* (X' ,Y ') 'where (K' ,Y') E.K and

(X,Y) T. If in the case of any of the diagrams below K0 > 0, let F (X' ,Y' )

=1/3B* all (X' ,Y') G closure (R).

Case A: Suppose K has positive slope.

For (X, Y)EF Kf1)U consider P (X,Y) to the right of K.

X
Li)

( Lf. )
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In diagram (i) F(X',Y') = on the upper boundary of R. So, if P(X,Y) falls

as X increases, P(X,Y) must exit into T above the upper boundary of R., In

diagram (ii) set F(X,Y) = 0 along the X-axis to the right of X0 .

Suppose (X',Y') is to the right of K, (X',Y') T, and (X',Y') E L*(X",Y")

with (X",Y")G K - T and (X",Y") > (XU,YU). Then if F(X',Y') > slope of K,

change F(.) so that F(X',Y') = slope of K.

Thus, if (X,Y)e" K f1U, P(X,Y) will stay to the right of K as K is

increased, finally exiting into T.

Consider (X',Y') to the left of K, (X',Y') > (0,0), (X',Y') T, and

(X',Y')G. L*(X",Y") with (X",Y")E K - T, (X",Y") <_(XLYL). Then if F(X',Y') >

slope of K, change F(-) so that F(X',Y') = slope of K. For (X',Y') on the

X-axis to the left of any insection point (Xo,Y 0 ) let F(X',Y') = 0.

Thus, if (X,Y) E KO U, P(X,Y) will stay to the left of K as X is de-

creased, finally exiting into T or terminating on the Y-axis.

Case B: Suppose K has a negative slope.(Note that K cannot be horizontal

since L must have a lower absolute slope.) Then 1 + (1/B) > 0 and B < 0

implies ' < -1. For F(-) unmodified in Case A above, 1+ F(X',Y') > 0 all

(X',Y')E K(0T , so F(X',Y') > -l all (X',Y').

Let (X,Y)EE K!A1U. Then to the right of K P (X,Y) cannot fall faster

r "",

1l

(Li
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than K as X is increased. Let F(X',Y') = 0 for (X',Y') on the X-axis to the

right of (X0,Y0). Since F(X',Y') = 1/B* on the upper boundary of R, P(X,Y)

must stay to the right of K as- K is increased, exiting into T.

For (X',Y') to the left of K with (X',Y') ) (0,0) and (X',Y') G T,

let F(K',Y') = 0 if Y' = 0. No other modifications are needed -- if P(X,Y)

rises as K falls, 1 + F(K',Y') > 0 insures that the rise cannot be as fast

as that of K. P(X,Y) will terminate on the Y-axis or in T.

Step 4: Let (K,Y) GUA0K. Suppose dMP1/dKL*(XY) gives the rate of change

in perceived marginal profit as we move along L*(X,Y). Then if (X',Y')62

L*(X,Y), dNTl(X',Y')/dX = P' (Q')(1 + (1/B*)) + P'(Q')(1+ F(X',Y')) +

X'P"(Q')(L + (1/B*))(1 + F(X',Y')) + X'P'(Q')(FX(K' ,Y') + FY(K',Y')/B*)) -

4"(X') where Q' = X' + Y' and (X',Y')(EL*(X,Y). If we are on a portion of

F(-) unmodified in case A or B above, then 1+ (1/Bk) > 0; 1 + F(X',Y') =

1+ F(X,Y) > 0; FX(X',Y') + FY(X',Y')/B* = dF(X',Y'g X' along L*(X,Y),

whict = 0; and, ''(K') > 0. So, dMRl(X',Y')/dK < 0 in that situation.L* (x,Y)

Consider case A. Then MRI(-) is zero along K, so it is negative to the

right of K where F(-) is unmodified. The modifications in R and along the X-

axis do not affect this result. Modifications in the northeastern part of the

graph do not affect the result either since holding K' and F(-) constant and

increasing Y' lowers MP1(X',Y'). To the left of K MPI(-) is positive with

the unmodified F(-) function. All possible modifications make MPl(.)

even mrore positive by reducing the term multiplying X'P'(Q'), a nonpositive

number.

Similar arguments hold for case B. Thus as firna 1 considers changing

K starting at (X,Y)(C K flU, it perceives that its profit function would fall

after any feasible increase or decrease in K. So, KflUCK(F(-)).

We can repeat this analysis for firm 2, letting MP2(-) replace MPl(-),
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G(-) replace F(-), and V replace U. Then L(VCL(G(-)).

Step 5: Suppose we start at (X,Y) = K lU, but firm 2 changes Y infinitesi-

mally to Y + dY. Then MPl(X,Y + dY) & 0 depending on whether (X,Y + dY)

is to the left or right of K. In either case firm 1 will want to change X

to X + dX such that MP1(X + dX,Y + dY) = 0. That requires (X + dX,Y + dY)

CK A(U. So, dX = dY/4' (X) = dY/B. But G(-) is level along K

with G(X,Y) = G(X*,Y*) = 1/4'(X*) = 1/B. So, (3X/3Y)eI = 1/B =

(3X/3Y) (XY) the actual response of firm 1. Similarly, F(X,Y) = 1/B* =

(3Y/3X) all (K,Y) e.L A V. Thus expectations are rational for firm 1

along L !1V and for firm 2 along K flU.

So, (X*,Y*,F('),G(-)) satisfies D2.//

2 2
Proof of Proposition III: Let ir(X,Y,X*) X.. (a + OX + SY) - X - a(X* X)

Form n*(-) from r(-) by dropping all nonquadratic terms. Given any A and

B simulate the equation system

X(t + 1) = A Y(t) + B - X(t),

Y(t + 1) = A - X(t) + B - Y(t)

forward from each (X(0),Y(0)) = (K,Y) to form

00

V*(X,Y,A,B) = (1 + r) %*(X(t),Y(t),X(t + 1)).

t=0

Let S = {(A,B): IAI + |B < 11. Then for each (A,B) G S the equation system

above has eigenvalues of modulus less than or equal to 1 and the function

V*(X,Y,A,B)' defined from simulations is finite, strictly concave in X, and

quadratic (with no linear or constant terms) for each (X,Y).

Suppose
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1 -- d A

i(A,tB)z
-d 1 B

Then if (a,b) = $(A,B),

X(t + 1) = A - Y(t) + B -X(t)

Y(t + 1) = aX(t) + bY(t) + dX(t + 1)

will generate the same time path from any initial conditions as the system

of the first paragraph. If we choose X* to maximize

r*(X,Y,X*) + (1 + r)1V*(X*,Y*,A,B)

subject to

Y* = aX + bY + dX*

our control rule will have the form

X* = A*Y + B*X

where A* and B* are independent of X and Y. The control rule will be unique.

Let $(-) De such that

$ (A, B) = (A*, B*) .

For each (X,Y), V*(X,Y,A,B) varies continuously with (A,B). Thus,

Berge's [1] "maximum theorem" shows $(-) is continuous on S. For (A,B) G S

let $*(A,B) = $(A-,B) if $(,B 5E, and let 4*(A,B) = y - 4(A,B) otherwise

with y < 1 such that y -4(A,B) lies on the boundary of S closest to 4(A,B).

Then $*: S +- S and **(-) is continuous on S. So, Brouwer's fixed-point

theorem shows $*(-) has at least one fixed point on S. Let (A,B) be any

such fixed point.



25

Step 2: Since the equation system defined at the beginning of Step 1 has

a symmetric matrix, its eigenvalues are real. We can easily see that the

same is true for its eigenvectors. But, if (el,e2) is such a vector, (e2,el)

is a second eigenvector for the same eigenvalue. Let (e3,e4) be an eigen-

vector for the second eigenvalue. Then (e4,e3) must work as well. (el,e2)

and (e2,el) must both be orthogonal to both (e3,e4) and (e4,e3) (see Hadley

[8]). The only way that can be true is if tell = 1e21 and 1e31 = 1e41. In

other words, we can assume El = (el,e2) = (1,1) and E2 = (e3,e4) = (-1,1).

Suppose (A,B) E S is a fixed point for $*(-) but not for #(-). Then

4(A,B) = T*- (A,B) where T > 1 and (A,B) E aS. Suppose A + B = 1. Choose

a very large x > 0, and set (X,Y) = (x,x). Then the definition of *(-)

shows the first firm's optimal behavior in the maximization problem outlined

in Step 1 is to choose X* = T - (A - Y + B - X) = T - x - (A + B) = T x =

T X with T > 1. The definition of 4(-) and a graph of developments after

the choice of X* will show that for a large enough x, X*' = T - X cannot be

optimal: X* = 0 will dominate. This contradicts the definition of 0(-).

Other cases of (A,B) E 3S are similar. For example, let A > 0, B < 0,

and Al + Bj = 1.. Suppose 4(A,B) = T - (A,B), T > 1. Then A - B-= 1. For

large x > 0 let (X,Y) = (-x,x). Then X* = rT-(A : Y + B - X) = r- (A - B) - x

= TX. A diagram will show that for a large enough x, X* = 0 will dominate

(from the first firm's point of view) the control rule defined by 0(-). Again

we have a contradiction of the definition of $(-). The same type of argument

applies for any part of the boundary of S.

Thus, we can assume $*(A,B) = (A,B) EsS implies $(A,B) =(A,B)EE S.

In fact, the same diagrammatic arguments which work above will show that

$(A,B) = (A,B)(eint S in each such case. (A,B)deint S implies the eigen-

values of our original equation system both have modulus less than one.
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Step 3: Let 4(A,B) = (A,B) 6 int S. Then A and B define an optimal control

rule X* = AY + BX for firm 1 given Y* = aX + by + dX* with (a,b) =

4p(A,B); and, 'Y* = AX +- BY defines the same for fir 2 given X* = aY + bX

+ dY*.

Now we switch from Tr*(-) back to Tr(-). Let (A,B) and (a,b) be as gene-

rated above. For any c, the right choice of C will make X* = AY + BX + C

give the optimal behavior for firm 1 given Y* = aX + bY + c + dX*. (Simi-

larly, Y* = AX + BY + C will be optimal for firm 2 given (-) and X* =

aY + bX + c + dY*.) In fact, simple algebra will show the "right" choice

of C will be given by

C = g - c + h

where g and h depend only on exogenous constants and A and B, which we are

no longer changing.

For a complete equilibrium tuple it remains only to show that

c/(1 - d) = g - c + h

for some c. This will be true unless g = 1/(1 - d) and h j 0. Suppose g =

1/(1 - d) and h # 0. For any c let c* = (1 - a)(gc + h). Let C= c/(1 - d)

and C* = c*/(1 - d).

For larger and larger values of c, (C*,C) vill become arbitrary close

in relative terms to the 45-degree ray in the positive orthant. Set (X,Y) =

(0,0>. Consider the evolution of the system,

X(t +1 1) = A - Y(t) + B - X(t) +I C*,

Y(t + I) = A - X(t) + B - TY(t) + C

from (X(0),Y(O)) = (X,Y), and notice that for firm 1
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°-t
V(X,Y,A,B,C,C*) = (1 + r)-it(X(t),Y(t),X(t + 1)).

t=0

For large enough c, a diagram will show that firm 1 is better off setting

A = B = C* = 0 than adopting C* given (X,Y) = (0,0) and any (A,B) E S. This

contradicts the definition of C*. So, if h # 0, then g # 1/(1 - d).

Thus, for any (A,B) = $(A,B) E int S we can find c such that C =

gc + h makes

X*= AY + BX + C

optimal for firm 1 given

Y* = aX + bY + c + dX*

and (a,b) = (A,B). And,

Y*= AX + BY + C

is optimal for firm 2 given

X* = aY + bX+ c + dY*. //

Proof of Proposition IV: Suppose d / d', |dl and Id'! < 1, yet we have the

same equilibrium values A,B,C,a,b,c in both cases. By simulating. the system

(g(.),f(-)) forward from different initial conditions (x,y) and calculating

the present value of each firm's profits in each case, we can determine

V(x,y) for each firm. Suppose we calculate V(-) for the second firm in this

way. Then f(x,y) must satisfy 2ca - (f(x,y) - y) = (1 + r) [V 2(gxy,~~)

+ d - V1 (g(xc,y),f(x,y))]. But that cannot be true for both d and d' if d'# d'

unless V1 (g(x,y),f(x,y)) = 0 all (x,y). An examination of V(x*,y*) at dif-

ferent points (x*,y*) in the extremities of the positive orthant will show
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V (x*, y*) cannot be 0 everywhere. However, the correct choice of (x, y)

will yield (x*,y*) = (g(x,y)f(x,y)) for any (x*,y*). So, for d' / d we

must have different set of parameters A', B', C', a', b', c'. 1/
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Notes

1. 1 wish to thank Ted Bergstrom, John Cross, and Hal Varian for help-

ftil comments on an earlier draft of this paper.

2. Cyert and de Groot [3j and Friedman [5, chapter 5], [6] deal with

sophisticated variants of this model.

3. Marschak and Selten [ii], [12] work with this type of model.

Hahn [9] uses similar ideas in a different context.

4. In order to avoid the complications of having to incorporate pro-

duct differentiation we work exclusively with quantity-adjustment models.

5. F(') and G( ) represent an alternative to Marschak and Selten's

[11, [12. approach, which is to use response functions. For example,

$((X,Y),X')= (X',Y') might show the response of firm 2 to a change in X.

A benefit of our approach is that information requirements for firms and

overall complexities are greatly reduced -- F(X,Y) and G(X,Y) are single

numbers at each point (X,Y), while at (X,Y) $((X,Y),X') is a function as-

sociating a number with each X'.

6. Our conventions are (a',b') > (a,b) implies a' > a, b' > b and

(a',b') >a,b) implies a' > a, b' > b.

7. The hypotheses here provide a sufficient but not necessary set of

conditions for our results. They are chosen to make the proofs in the ap-

pendix as straightforward as possible. No attempt is made to find the least

restrictive set of sufficient conditions for the results of Proposition I

(and Proposition II).

8. Mor e specifically, suppose at the output point (X,Y) the second

-firm perceives itself to be profit maximizing. We say the first firm's ex-

pectations (given by F(-)) are "rational" at (X,Y) if for any infinitesimal

change A in X, (X+ A, Y + A - F(X;Y)) gives a new output bundle at which firm

2 perceives itself to be maximizing its profits -- i.e., a new point at which
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the second firm is content to stop the tatonnement process outlined in the

int roduc t ion .

9. Our definition of rationality here corresponds to Marschak and-

Selten's [L1, [12] concept of a response function which is a "weak convolu- -

tion."

10. For the cartel case, P(Q) + QP'(Q) - P(X) = 0 = P(Q) + QP'(Q) - Y''(Y).
Thus (X*,Y*) > (X ,YC) implies the denominators in the new assumption are

Less than -X*P'(Q*), -Y*P'(Q*), respectively. (X*,Y*) < (XmYm) implies the

denominators are greater than Y*P'(Q*), X*P'(Q*), respectively.

11. Note that although we are switching to a dynamic problem -- from which

a sequence of points {(X(t),Y(t))}t>0 evolves such that at time t firm 1 per-

ceives the output X(t) to be profit maximizing given X(t - 1), Y (t - 1), and

Y(t), and firm 2 perceives Y(t) to be profit maximizing given X(t - 1), Y(t - 1),

and X(t) -- our model is still "conjectural." In other words, given X(t - 1)

and Y (t - 1) we can think of the point (X(t),Y(t)) as being determined as fol-

Lows: At time t - c, s > 0, each firm selects a tentative output, X(t) or

Y(t), for time t. If each firm behaves as the other expected, (X(t),Y (t)) is

the output bundle for time t. Otherwise, at time t - 6, c > 6 > 0, the firms

announce a corrected bundle (X(t),Y(t)). The "corrections" continue until both

firms are satisfied -- all changes taking place before time t. The process

recurs at each time t. In line (6), firm 1 reasons that Y(.t - 1) depends on

X(t +1) because of this tatonnement: given X(t) and Y (t), firm 1 believes

that if it announces output X(t + 1) for time t + 1, its rival will choose

Y~t +F 1) = F(X(t),Y(t),X(t + 1)) and the tatonnement will stop immediately.

The variable X(t + I) is an argument of F(-) because firm 1 may believe that

if it announces X*(t +F I) # X(t'+ 1) instead of X(t + 1), the tatonnement will

not stop instantly -- rather it may converge to a point (X*(t + 1),Y*(t + 1))

with Y*(t + 1) # Y (t + 1).
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12. Note that if the systems (g*(-), f*(.)) and (G*(-),F*(-)) always

generate the same time paths, then (g*(-),f*(-)), (G*(-),f*(-)), and

(g*(-),F*(-)) must always generate the same paths.

13. Suppose {(X*(t),Y*(t))} t>0 is an "equilibrium path." We do not re-

quire that if firm 1, for example, deviates from the path by choosing X(t) #

X*(t) at some t > 0 that it necessarily be able to predict the second firm's

responses (at all s > t) accurately: The first firm's deviation would be an

irrational -- i.e., non-profit maximizing -- form of behavior, so it would con-

tradict the second firm's expectations, assuming they were "rational." Thus,

the second firm would have no transparently sensible response which the first

firm, in turn, could "rationally" anticipate. Given a "dynamic conjectural

equilibrium" such deviations should never occur.

14. In fact, we could prove that no solution exists for which the linear

system (g(-),f(-)) has eigen values of modulus greater than or equal to 1.

15. The figures presented in both tables are rounded.

16. Note that we can specify any initial conditions (X(0),Y(0)) = (x,y)

for our quadratic model. Starting at any such point, the first firm's expec-

tations of how its rival will react to an output change X(1) - X(O) will be

"rational" if firm 1 perceives X(1) - X(O) to be a profit-maximizing change

for itself. Similarly for the second firm.

17. Note that since K and L are never coincident in the proof of Pro-

position II, the first firm could never move away from (X*,Y*) expecting to

have its profits remain unchanged.

18. See Fellner [4] and Friedman [5] for evaluations of stability analy-

ses for the Cournot model.
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