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This article introduces semiparametric methods for the estimation of si equation
conometric models with index restrictions. The methods are motivated by some semiparametric minimum
distance procedure, which unifies the estimation of both regression-type models and simult equation
models in a general framework without emphasis on the construction of instrumental variables. The methods
can be applied, for cxamplec to the estimation of simultancous equation ple selection model: dog
nous switching reg dels, A iya's simultaneol quation limited dependent variables models,
and simultaneous equation dlsequlllbnum markets models. The equations can be nonlinear simultaneous
equations. Both single equation and system estimation methods are introduced. Optimal weighting pro-
ccdures are introduced. The estimators are /n-consistent and asymptotically normal. For the estimation
of nonparametric regression and some sample selection models where the variances of disturbances are also
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with conditional t restricti The weighted estimator is also shown to be optimal within a class of
semiparametric instr | variables estimat.
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Semiparametric Estimation of Simult Equation Micr tric Models
with Index Restrictions

by Lung-fei Lee*

1. Introduction
This article concerns about on of simult quati i tric models, such as si-
It ti le selection model, simul ti dels with limited dependent and/or
qualitative dependent vannbles with index restrictions. The Iluntute of semiparametric econometrics has
mostly idered esti of regression-type equations but not explicitly simultaneous equation models
with limited and qualitative dependent variables with a few excepts [Newey (1985), Powell (1987) and Lee
(1991)]. Newey (1985) idered a simult equation model which contains a single limited dependent
variable and the structural equation is linear in the explanatory endogenous variables (which are continuous
and ot limited). Powell (1987) and Lee (1991) idered the estimation of sample selection models by some
parametric instr: tal variables methods. This article considers simultaneous equation microecono-
metric models which allow nonlinear simultaneous equation structures and suggests general semiparametric
methods for the estimation of such models. The proposed estimation method is motivated by minimum
distance methods for the estimation of models of quantal responses. It has broad applications for both
parametric and semiparametric models. This article will focus on the estimation of semiparametric models.
To motivate the basic idea, ider the classical mini distance (MD) estimation methods [Berkson
(1944), Taylor (1953), Rothenberg (1973), and Chamberlain (1982), among others]. In the context of quantal
response, the minimum distance method was developed for models with many observations of responses for
each value of the independent variable. In a parametric binary choice model, one specifies a parametric
probablllty functlon F(z,B), i.e., Prob(y = 1|z) = F(z,B). For each value of the independent variable, the
corresp q y of resp provides an unrestricted estimate, p(z;), of the response probability.
The mlmmum distance estimator of B is derived by the minimization:

n;in Ew(xi)(ﬁ(z;) — F(z;,0))%,
i=1

where m is the number of distinct values of z and w(z;) is some weighting function. For disaggregated data
with continuous explanatory variables, one has to use the method of maximum likelihood [see, e.g., Amemiya
(1981)]). However, with the development of nonparametric methods, nonparametric regression functions can
be consistently estimated without grouped data, even though that its rate of convergence can be slower
than the usual rate of convergence for the grouped data case. The main idea in nonparametric regression
estimation is local smoothing, in that, at each value of the regressor, its neighboring points are used to
construct a ‘frequency’ estimate. As E(y|z) = Prob(y = 1|z) in the binary response model, Prob(y = 1|z)
can be estimated by a nonparametric procedure. For a random sample of size n, suppose that E,(y|z) is 3
nonparametric regression estimate of Prob(y = 1|z) at 2. Then a generalization of the MD method is

mpin Y w(zi)(Ealylz:) - F(zi,8))*.
izl

where w(z;) is an appropriate weight and n is the sample size.

Although the proposed estimation method has its merit for the eshmal.lon of patametnc models, the
main interest in this article concerns estimation of ip tric ic models. In Section 2,
we vnll point out its relevance for the estimation of semiparametric models. Simultaneous equation sample

dels, simult equation models with limited dependent variables, and simultaneous equa-
tion disequilibrium market models provide some of the interesting examples. Another related model is a
semiparametric regression model with a Box-Cox transformation on the dependent variable. An interest-
ing feature of this estimation method is that it unifies the estimation of sinultaneous equation models in

* 1 appreciate having fi ial support from NSF under grant SBR-9223325 for my rescarch. | would
like to thank two anonymous referees, Professor Peter Robinson and Professor C. Kao for their valuable
and suggestions on an earlier version of my article.

1



a general framework without emphasis on the construction of appropriate instrumental variables for esti-
mation. Section 3 provides the asymptotic properties of istency and asymptotic distribution of the
semiparametric estimator. Section 4 di the possibility of more efficient estimation procedures which
take into account variance structure of the semiparametric models. Generalized semiparametric minimum
dist timators are introduced. We compare efficiency gains of syst timation as pared with
single equation estimation. Semiparametric efficiency bound for conditional moment restrictions on some
semiparametric models has been studied in Chamberlain (1992). The semiparametric model d in
Chamberlain (1992) include the semiparametric regression model of Engle et al. (1986) and Robinson (1988),
and a model of sample section of known index. In Section 5, we compare our estimators and their asymptotic
vatiances with the Chamberlain efficiency bounds for those models. When the disturbances of those models
are also functions of indices, our generalized semiparametric estimators can achieve such efficiency bounds.

In Section 6, we investigate some general semiparametric instr tal variables methods for the estimation
of semiparametric simultaneous equation models. It is shown that the generalized semiparametric minimum
distance estimator is asymptotically the best semiparametric instr tal variables estimator. Final concl

sions are drawn in Section 7. Some of the basic properties of nonparametric estimates of unknown functions
and proofs of asymptotic propertics of our estimators are collected in the Appendix.

2. Simultancous Equations Models with Index Restrictions
and Semiy tric Mini Distance Estimation

There are many simultaneous equation models in the micr trics literature, which include simul-
taneous equation sample selection models, endogenous switching regression models, disequilibrium market
models, and simultaneous equation models with qualitative and limited dependent variables. In this section,
we will introduce the iparametric mini distance method for the estimation of semiparametric models
with index restrictions. We show how conditional moment equations, which form the estimating functions
for our semiparametric estimation method, can be derived from the various mi tric model,

As a general framkework, we consider estimation of 0 in the following system of equations:

Elf(z.80)|2] = E[S (=, A0)I=8(0)], @n

where z is a finite dimensional (row) vector of exogenous variables, z is a finite di ional vector g
of endogenous and/or some exogenous variables in r, f is a (column) vector-valued function with known
functional form, z§ is an m-dimensional (row) vector of indices, and § and & can be functions of @ (a finite
dimensional column vector). The latter specification captures possible parameter constraints on 8 and 8.
The E(f(z,P)}z) can be esti d by a nonparametric kernel regression. Suppose that z is a k-dimensional
vector of continuous random variables and K(-) is a kernel function on R* with a bandwidth sequence {an}.

Let (z,2:), i = 1,---.n, be a random sample of size n. Define A,(z;,0) = m Y rai (2. 8)K (5'::—")
and B.(z:) = F-TllT-'E Yra K (if—_fi) The E(f(z.0)lz) at r = z; can be estimated by

En(f(2,8)|zi) = An(Zi, 0)/ Bn(zi)- (22)

Gimilarly, let J be a m-dimensional kernel function with a bandwidth sequence {b,}. Define Asn(2i.6) =
Gt L /5. A (‘ ‘s__’") and Byn(%i) = Gaziyr Lii ! ("'_‘o-f) The E(f(z,P)|z6) at =8 = zi§

can he estimated by

En(f(z,B)|zi8) = Ayn(%i,0)/Bin(zi, 0). (2.3)

To simplify notation, let

Ga(2i,0) = En(f(2,0)|2i) = Enlf(z,8)|=:8},

and G(zi,0) = E(f(z,P)|zi) = E|f(z,0)]zi6). A scmiparametric mini dist (SMD) estimati
method can be defined as

l'léiggG:‘(zi,G)W(ti)Gn(zi.0), (2.4)
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where © is the parameter space of 8, W(z;) is some weighting matrix at z;, and n is the sample size. The
appropriate weighting matrix shall take into account trimming of the tail distributions of z so as to control
for the erratic behavior of denominators in kernel nonparametric regression functions in (2.2) and (2.3) [see
Robinson (1988), Powell (1987), Ichimura and Lee (1991)]. We make the general weighting in (2.4) by an
arbitrary W(z) to illustriate its role in the asymptotic distribution of the SMD estimator. In a subsequent
section, we discuss the optimal weighting for some of the semiparametric models.

The equation (2.1) can be derived from a specific model. The following semiparametric simultaneous
equation models are i i 1

" "
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Example 1: Simult quati ple selection models

Consider a system of latent equations g(y°, z,8) = u, where the value y of the vector y* can be observed
only if the choice criterion z6 > ¢ is satisfied. The disturbances u and ¢ are correlated. The z is a vector of
exogenous variables. The g system can be a simultaneous linear or nonlinear equations system. An empiricial
example of this model is Heckman (1974). With the observed sample y, it implies an equations system with
unknown functions:

Elg(y,z.B)l = 1,z) = E(u|l = 1,2), (2.5)

where [ is a dichotomous indicator with I = 1 indicating that 6 > ¢. It implies also that
Elg(y,z,B) = 1,z8) = E(u|l = 1,z6). (2.6)

Under the index assumption that the joint distribution of u and ¢ conditional on z may depend on z only
through z4,
E(u|l =1,z) = E(u|z6 > ¢,z) = E(u|l = 1,26). (2.7)

The unknown function E‘(ull = 1,z) in (2.5) and E(u|l = 1,z6) in (2.6) can be eliminated by taking the
difference of (2.5) and (2.6) using the identity (2.7):

Elgly. 2,81 = 1,2] = Elg(y,z.8)|l = 1,28} (2.8)

These moment equations in (2.8) are valid for both the truncated sample selection model and the censored
sample selection model. For the truncated sample selection model where only sample observations on y and
z and the event I = 1 are available, (2.8) can be used for the SMD estimation. For the censored sample
selection model, the events of either I = 1 or I = 0 are also observed. For this case, additional information
is available in that

E(l|z) = E(I|z8), (2.9).

The censored ple selection can be estimated with (2.8) and (2.9). Alternatively, (2.8) and (2.9) imply
that

Ellg(y, z.8)lz] = Ellg(y. 2, 8)Iz8). (2.10)
The (2.9) and (2.10) can be used together for the SMD estimation.
For an end switching le selection model, there are observed outcome equations for each

alternative. Consider, for example, a model with two choices. Let I = 1 indicate the first alternative and
I = 0 for the second alternative. There are outcome equations for each possible alternative: g;(y;,z,61) =
for alternative 1, and gs(y2,z,02) = ug for alternative 2. This model implies the following conditional
moment equations:

Elgi(ys, 2,8 = 1.2] = Eloy(ws. 2. 8] = 1, 28], (2.11)

Elg2(y2,2,8:)|1 = 0,z] = Elgz(v2, . 8:)|1 = 0, ), (2.12)

and (2.9). These equations can be used together for the SMD estimation. For models with polytomous
b , the estimation can be extended to incorporate equations for all alternatives. For the polytomous
case, the z6 will be a vector of indices.

Example 2: Multi-market Disequilibrium Models



Multi-market disequilibrium models have been specified in Ito (1980) and Gourieroux et al. (1980).
Ito's two-market disequilibrium system is specified as

V=it tall-P)

P =P 48(y- i

where y4, 14, i and I are effective demand and supply. g*, i, 7 and I' are notional demand and supply, and
the observed depvndrm variables are y = min{y’, y*} and I = min{l*,18}. The notional demand and suply
equations are §% = zag + uy, §* = za, + uy, 19 = 28, 4+ vy, and = zf, + vz. For this two-market model,
there are four regi of excess d d and/or excess supply. In most applications, regime classification
information may not be avmlnhle For analysis, it is convenient to define latent regime indicators I; and I,
in that [; = 1 if and only if y* < y‘. otherwise, 1) = 0; and I, = 1 if and only if l' <, otherwise, I = 0.
‘The implied equations for each reglme have been derived in Ito (1980). Let y* = §9 — §* and I* = l‘ -

Regime (I} = 1,1, = i): This regime otcurs if and only if y* < a3l* and I* < By°. The equations for
the observed dependent variables are y = §¢ and I = I,

Regime (/y = 0,13 = 0): This regime occurs if and only if y° > al* and I" > fry". The observed
equations are y = §° and I = {4,

Regime (I} = 1,I; = 0): This regime occurs if and only if y*° < a,I* and I* > B,y*. The observed
equations are y = §* + (v° — oy I')/(1 = oy By) and I = I + (Byy* = I)/(1 = 1 By).

Regitme (I, = 0 Iz = 1): This regime occurs if and only if y* > azl* and I* < fy°. The ohserved
equations are y = ¢ + (azl* — y*)/(1 — azf;) and | = 4 (" = B2y°).

From these regime characterizations, the regime probabilities are functions of two indices z(aq — a,)
and z(Bq — B,) because the reglme inequalities involve only the variables y* and I° and some unknown
parameters. Combining regimes, sinee Iy = LT + 11 (1 = 1,),

y=hLy'+ (1 - L)Y
=§'+ h(l'l‘—s'l’Hmh(l — L)W -T) 4 a1 - ln)’z('—i")

=VHh T h(l L)(By® -1 M+ ‘, ——(1- WL(" - A:¢"),

becanse Iyla(l = 1°) = 0 and (1= L)(1 = I)(1 - i*) = 0. 1t follows that

E(y|z) = za, + E(hy’|2) + —F(’I(l = h)(Ahy - l')"“’ E[(' = L)L(I° - Bay’)l2).
Let 28 = (z(ag—a,), (Ba—B,)). By index restrictions, E(1y"|z) = E(I y"|z6), E[h(1-1)(fiy" -I")|z] =
E[h(1- L)y — ")|z8] and E[(1 - L) I2(I" = B2y’ )|z) = E(1 = I))I2(I* - B2y°)|z6]. By eliminating these
unknown functions,

E(y - za,|2) = E(y - za,)2(aq - a,), (84 - B,))- (2.13)

Similarly,
E(l - zB4)z) = E(l - zBulx(0a — 0,), 2(Ba = B,))- (2.14)

The (2.13) and (2.14) can be used for the SMD estimation.?The a), a2, 8; and B; are not directly identifiable
from (2.13) and (2.14). However, if this disequilibriun model has been derived from behavioral models
(fixed price equilibrium models), all the parameters will be functions of basic structural parameters of utility

! The listing of regimes above demonstrates that the relevant indices in estimation are the two indices
z(aq - @,) and z(B4 — B,) instead of the indices zay, za,, 284, and z5,.

3 There are symmetry properties in (2.13) and (2.14). The (2.13) implies E(y—zag4|z) = E(y—zad|z(ag—
a,), z(B4 — B,)) and vice versa. The (2.14) is equivalent to E(I—z8,|z) = E(l - zf,|z(aq - a,), 2(Ba — B,)).
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and production functions. All the structural p ters are captured in the notional d d and supply
equations [see, e.g., Lee (1986)]. For such models, these spill-over effects will be estimable.

Example 3: Tobit Simultaneous Equation Model
A Tobit simultaneous equation model has been introduced in Amemiya (1974):

m
=Y wy+ehtu,  I=1,m,
i#l

where the observed dependent variables are y; = max{y;,0}, 1 = 1,.--,m. For this model, there are several
different reduced form equations. For the model to be a well defined probability model (coherency), the
regime conditions have to be mutually exclusive and exhaustive so that the regime piobabilities sum to
one. Let I' be the m x m matrix which has ones on the diagonal and —7;; in the (i, j)th place. The
model is coherent if and only if every principal minor of T is positive [Amemiya (1974)]. The joint event
(regime) probabilities are functions of zf,: - -, 28, which are the indices for this model. For exposition
and notational simplicity, consider a two-equation model:

=yn +zb +uy,

. (2.15)
¥ =nv2 +z02 +uy.

For model identification, it is assumed that there is at least one exogenous variable in each structural
equation not included in the other [Amei (1974), A ption 3.3]. There are four regimes; namely,
(1. 1 > 0,2 >0, (). 1 > 0,y2 =0, (#id). y1 = 0,y; > 0, and (iv). y; = 0,y; = 0. The model coherency
condition is that 1 — 9,72 > 0. Define four mutually exclusive and exhaustive dichotomous indicators Iy,
I=1,---,4, for the four regimes. Let y = (y1,¥2), ¥ = (¥],¥3), u = (w1, u2), and B = (By, B).

-7
-N 1
yI'y = 2B + u is observed ile)l‘," +uly > 0. The indices are £ B. Since E(ully = 1,z) = E(u)l) = 1,zB),
it implies that E(yI'y — zB|I; = 1,z) = E(yI'y — zB|l; = 1,zB). As the zB on both sides cancels each
other, the conditional moment equations are simply

For the regime (i), let I') = . The reduced form equations are y* = zBI';' + ul';. The

EWrli|l, = L.£) = E(yT\ |, = 1,2B). (2.16)

; -;"). The reduced form equations are y* = zBT;' 4+ ul;'. The
w1 = 2Py + ) is observed if zBT3' + ul';' > 0. The conditional moment equation is

For the regime (ii), let ['; = (

E(wnll; = 1,2) = E(wni|l. = 1,2B). (2.17)

1 0

For the regime (iii), let ['3 = ( - l)' The conditional moment equation is
-

E(y:|I3 = 1,z) = E(ya|l3 = 1,2B). (2.18)

For the regime (vi), the reduced form equations are y* = 2B + u. Except for the regime indicator, no
observations on the continuous dependent variables are available.

In addition to the above conditional t equations, t equations for the regime probabilities
are:

E(hlz) = E(h|zB), 1=1,2,3. (2.19)
These conditional moment and probabilities equations can be used jointly for estimation.
Alternatively, the regimes (i) and (ii) can be combined such that y; = yam + (I + I2)zBy + (1) + I2)u.
Since E((Iy + I2)u|z) = E((I) + I)ulzB) and E(I) + Ib|z) = E(I, + I;|zB), it follows that
E(yi —ymlz.h+ L =1)=E(yi ~yom|zB.h + L =1), (2.20)
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and
E(I + ILjz) = E(I, + I|zB). (2.21)

As Iy + I2 = 1 if and only if y; > 0, the above moment equations provide information for the estimation of
the structural equation of y;. Similarly, the regimes (i) and (iii) can be combined for the estimation of the
structural equation of y;. The corresponding moment equations are

E(y: ~yimle,h+Ih=1)= E(y2 —yimalzB, i + = 1), (2.22)

and
E(L + Llz) = E(I, + L1]zB). (2.23)

‘These moment equations can be used for estimation.

The above examples provide some important models that can be estimated by the SMD method. In
a subsequent section, we will provide more detailed analysis of the sitnultaneous equation sample selection
models. Many more microcconometric models may he estimated by this method. There is some similarity
of this method with the iparametric li least sq method introduced originally in Ichimura
(1987) and extended in Ichimura and Lee (1991). The model considered in Ichimura and Lee (1991) is an
index model motivated by a single equation (truncated) sample selection model:

y=zB+7(z6) + v, (2.24)

where 7(-) is an unknown function of an index zé. The iparametric nonli least squares (SNLS)

method introduced in Ichimura and Lee (1991) is

min 3™ (s = 28(0) ~ Ealy = 2B(@)|=:(0)])”,
=1 .

where E,(y — z3|z6) provides a nonparametric estimate of 7(z8). This approach is motivated by replacing
the unkown function r by a nonparametric function in an intermediate step and the final estimation is
done as an M estimation method. Similar ideas are used in Robinson (1988), among others. The SMD
approach takes an alternative view. Conditional on y being observed, the sample selection equation implies
that E(ylz) = 28 + r(z6) and E(y|r6) = E(z|z6)B + v(z6). The unknown r is then eliminated by taking
the difference to have the estimating moment equation E(y — zf8|z) = E(y — z|z6). However, as it can be
shown in subsequent sections, these two approaches provide asymptotically equivalent estimates for (2.24).
For the estimation of (2.24), the SNLS iay be preferred as it is relatively computationally simpler. The
SMD approach involves the computation of E,(y|z). On the other hand, the SMD is applicable to the
estimation of simultancous cquation models and models with implicit function where the dependent variable
y can not be separated out, while the SNLS is not applicable to such models. An illustrative example is the
sample selection model (2.24) with a Box-Cox transformation on y: (y* — 1)/A = zf8 + r(z6) + v. The SNLS
method mingx i, (4} = 1)/A = Ea[((y* = 1)/MN)|2i6(0)] - [z; — En(2]zi6)}8(6)}* would not be consistent
[sce Amemiya (1985) for the regression case without sample selection). The relevant SMD estimation is
minga iey (Enl(y* = 1)/ = zB(0)|z:) — Enl(y* - l)/z\) - zﬂ(0)|z.6(0)]) \ Whlch can be shown to be
consistent. As a remark, we note that Powell (1991) has cc of limited dependent variable
model with the Box-Cox transformation under quantile restrictions but the semiparametric estimation of
sample selection models with the Box-Cox transformation has not been considered in the literature.
For the estimation of a single linear simultaneous equation sample selection model:

y=z20+r1(z6)+v, (2.25)

where 2z contains endogenous variables. Given a consistent estimate of §, Powell (1987) has suggested a
generalization of Robinson's semiparametric least squares [Robinson (1988)] to a two-stage semiparametric
instrumental variable approach for the estimation of 3 in (2.16). In a subsequent article, Lee (1991) has con-
sidered in some detail the identification problem for a linear simultaneous equation sample selection system

6

and derived an asymptotically efficient two-step semiparametric instrumental variable method (conditional
on a given consistent estimate of §) for the estimation of (2.25). The SMD method in this article differs from
these articles in that one does not need to care about the construction of appropriate instrumental variables
for estimation. It can be easily extended to the estimation of nonli simult tion semiparametric
models. It can be designed for the estimation of a single equation and/or a system of equations.

3. Semi tric Mini distance Estimation

In thw section, we discuss asymptotic properties of the SMD method. Detailed proofs of the results can
be found in the Appendix A3. The underlying regularity conditions and ptions are ized in the
Appendix A2.

Let 6; denote the SMD estimate from (2.4). Let 8, be the true parameter vector, and let 8, and §,
denote, respectively, B and § evaluated at § = 6,. For any possible value 8 of 8, in ©, E(.|z6) denotes
E(.]1z8(9)), a conditional expectation conditional on z5(8) for a given value 8, for simplicity. Furthermore,
E(.|z;) stands for E(.|z) evaluated at z = z;, and E(.|z;6) for E(.|z6) evaluated at z6 = z;6. All the
expectation operations are taken with respect to the true data generating process at 0,. The following
propositions show that, under proper identification conditions and regularity conditions, 8; is \/n-consistent.
To simplify notation, denote

Gu(e,00) = LEUESNE) _ IEUC D))

and

u=f(z,0) — E(f(z,6)l=)

throughout this article. u is the disturbance of the model. As a convention, for any function, say, f(z,8) of
0, f3(z,0) with a subscript 8 will denote its gradient y—&'ﬂ with respect to 6.

Proposition 3.1 Under Assumplions 1-6 and the idrnliﬁcnlion condition that, for any 0 # 0,, G(z,0) #
0 with positive probability on X where X = {z|W(z) # 0}, 0; is a consistent estimator of 0, and

Vn(f; - 6,) = - (E(G‘(z,Go)W(r)G'n(z.ﬂo)))-' % E[G(z;) — Ca(xibo))ui + op(1), 3.1
where Ci(z:) = Gi(xi,00)W(z:), and Coz:8,) = E{G)(z,00)W(2)|z:bs). Consequently, /a(f) — 6,) 2
N(0,9;), where
Q) = (E[Gy(z,00)W(2)Gr(2,0,)]) " £1 {E[Gy(z,00)W(2)Go(2,6,)]} " (3.2)
and Ty = E[(C,(z) — Ca(z6,)) Var(ulz) (Ci(z) ~ C;(x6.,))']4
We note that [Ichimura and Lee (1991), Lemma 4]
Go(z,05) = E(for(2,8,)|2) = E(for(2,86)]260)
- VBUG. At (ESE - b (EE ), 9
where VE(.|z6,) denotes the gradient of E(.|z6,) with respect to its argument vector z§,.

It is interesting to point out an implication of Proposition 3.1 for the special model with f(z,8) =y -
fi(2,B)- fa(2, 8), where f; depends only on z. For this case, G(z,0,) = E(y|z)— f1(z,8s)— E(f2(2,8,)|) -
E(f(z,8,)|z8,), and the model is equivalent to

¥ = fi(2,80) + f2(2,85) + E(f (2, Bo)|8,) + u. (34)
7



An alternative estimation approach for this model can be

g 2l = S0 P) = Ea( oz, B)l=0) = Ealf (2, D)) W) 35)

% [ = f1(zi, 8) = En(fa(z,B)lzi) = En(f(z,B)|z:8)).

For the model where the term f3(z,0,) vanishes, the estimation method (3.5) will be the SNLS method
originally iptroduced in Ichimura (1987). By arguments similar to the proof of Proposition 3.1, the SNLS
estimator Oy of @ from (3.5) is consistent and asymptotically normal. For any possible value 8, denote

(z.0) = /i(z,8) + Elf2(z, B)lz) + E[/(z. B)I=é],

and ry(z,0) = ﬂ%ﬁ”. The 6y has the same asymptotic distribution as the SMD estimator 6; for this
model, which can be scen from the following proposition.

Proposition 3.2 Under Assumplions 1-6 and the idcnli!irah’nn condition that, for any 0 # 0,, r(z,0) #
r(x,0,) with positive probability on X, the SNLS estimator 8y from (3.5) is consistent, and

Vn(fng —00) = {E[ry(z,00,)W(z)re(z,0,)]} " % 3 {ritzi, 0)W (i) ~ E(Iri (. 00)W () zib) i + 0p(1).
i=1

(3.6)
The limiting distribution of Gy, for (3.3) is the same as the limiting distribution of f; in Proposition
3.1 because E(f{y(z,8o)|z) = f1y(2,85)/

4. G alized Semir tric Estimation

We see from Proposition 3.1 that the asymptotic distribution of SMD estimator depends on the weight-
ing function W(z;). If W(z) is selected as functions of rf,, the asymptotic distribution for the corre-
ponding SMD estimator has sirpl ion | C;(zﬁ,) will be zero as E {Gy(z,0,)W (26, )|xi8,)
= E(Gy(z,0,)]zi6s} W(2i8,) = 0, by (3 3). In terms of the issue of selecting the optimal weighting func-
tion, one may suspect that the appropriate weight function shall be the inverse of the variance function of
u. Unfortunately, if the conditional variance function of u (conditional on z) is a general function of z (not
a function of z6,), such a weighting function does not ily improve efficiency because the presence
of the additional term C3, which captures the effect of using nonparametric functions to replace the correct
regression functions as an intermediate step in estimation. However, in many microeconometric models such
as the simultaneous equation models introduced before, the conditional variances may depend on z only
through their dependence on z8,. With such heteroskedastic variance models, the optimal weighting func-
tion is indeed the inverse of the variance function because the complicated Ca(z6,) can be zero. In general,
if the (limiting) weighting function depends only on z6, Ca(z6,) will be zero, that can be regan:led as an
orthogonality property of an estimation procedure. Thus for models where heteroskedastic variances are
functions of z6,, more efficient estimator may be derived by some generalized semiparametric procedures.

Let 6 be a \/v_l-conslnent estimator of 0, for ple, 8; from the previous SMD estimation. Define a
nonparametric variance function:
Va(zib) = Enlf(2,8)1' (2, 0)|2i8] = Enlf (z,0)|zib) Enl' (2. B)]z:8), (TR

where 6 and § are 6(6) and B(0) evaluated at 6. This nonparametric variance function is an estimate of the

variance function V(z6,) where
V(z6,) = Var[f(z, 8 )|z6o) 4.2)

is the variance function f(z,0,) conditonal on zé,. This is so no matter whether Var(f(z,5,)|z) equals
Var(f(z,8.)126,) or not. The feasible weighting matrix Wy (z;6) will be Wy(zi6) = V,~'(zi6). Denote

BEn(f(z, B(0))zi) _ OEalS(z,8(8))=:ib(0)]
o0 a0’ ’

G,..,.(:;,O) =

"

Our suggested generalized semiparametric minimum distance (GSMD) isat tep esti

based on a generalized semiparametric li least sq p dure:

b6 =~ { 3 talzi,O)Gh o=, OWaleib)Gn 0(z1,6)) ™"
= (4.3)
% 3 ta(20, )G @1, OWalzd) (Gali,8) — o (20, 0)3)

where t,(z,0) is a trimming function which goes to 1 as n goes to infinity. The function of l..(z.é) is to
trim the erratic behavior of nonparametric regression and variance functions at their tails. The trimming
becomes less severe as n goes to infinity. The detailed description of this trimming is in the Appendix A4.
This two-step GSMD estimator is motivated by the GSMD method :

min z"::,.(n.é)(:;,(r,-_o)w.,(mi)(:,,(r.-,o).

However, for parameter value of 8 not in the neighborhood of 6, the trimming by l,.(z..ﬂ) does not control
properly the tails of the p tric regressions at §. The two-step estimator overcomes this difficulty.
If t,.(z.,o) were replaced by t,(z;,0) in the minimization method, the global minimum would be be zero
at values of @ such that all the observations are tri d out. One possible remedy is to introduce penalty
functions for trimmed observations. However, the two-step method seems simpler.

Proposition 4.1 Under Assumptions 1-5 and 7 and the identification condition that, for any 8 #0,,
E[f(z,3(0))|z) — E[f(z,B(0))|z6(6)) # O with positive probability, Oc is a consistent, asymptotically normal
estimator with

Vil - 6,) — N(0,9). (4.9)
where Qg = D~'(6,)Z D~ (8,) with D(0,) = E [G)y(2,8,)V " (26,)Ge:(2,0,)]. and
= E[Gy(z.0,)V = (zb,)Var(u|z)V ! (z8,)Gy(z,6,)] .
Furthermore, if Var(u|z) = Var(u|z6,), then Qg = D~'(6,).

One can compare the limiting variance matrix Qg with the variance matrix € in Proposition 3.1 for
the model where Var(u|z) = Var(u|z5,). For such a model

£1 = E([Ci(z) = Ca(28)]V (26,)[C1(2) = Co(28.)]').
Since E(G(z,05)|z65) = 0 by (3.3),
E(Gy(2,0)W (2)Go(2,8,)) = E(Go(,0,)C}(2)) = E(Gy(z,0,)[Ci(x) = Ca(26,)]) -
Hence Q; can be written as

Qs = (E(Gy(=,00)[Ci(z) = Co(=8:)])} " E([C1(2) = Cal28)IV (26,)Ci(2) - Calzbo)]')

1 (4.5)
x {E([C\(z) — C2(26,))Go(x,80))) " -
Comparing this Q; with Qg by the generalized Schwartz inequality, we see that Q; > Qg. Hence bc is
asymptotically efficient relative to 6y as it uses the optimal weighting.
When f is a system of equations, the above estimation method is a system estimation method. For the

estimation of the cl | linear (nonlinear) simult equation model, it is well-known that the three
stage least squares (nonlinear three stage least squares) estimator is eficient relative to the two stage least
squares (nonlinear two stage least sq ) estimator. As a system estimation method, one may expect that

a system GSMD estimator will be asymptotically efficient relative to estimators derived from single equation
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methods. For the case that Var(f(z,0,)|z) = Var(f(z,8,)|zé,), there is indeed possible efficiency gain in the
system GSMD method. To see that, let f ist of two comg ts such that f'(z, 8) = (fi(z,B), f3(z,0)).
Suppose that 8, is the parameter vector in the first set of moment equations:

E[fi(z,8(80,0))|z] = E[f1(2, B(85.1))|26(80,1)], (48)
and 0, is the parameter vector in the remaining moment equations
Elf2(2.8(0,.2))|z] = Elf2(2, A(06.2))|26(6 2)). (4.7

Consider first the case that 8, and 0; are distinct parameters. The 8, can be estimated by using only the

wnoment equations (4.6) of fy. Let f; , be the GSMD estimator using f, alone. Let 4, .G be the corresponding
_ [ Vi(zb) Via(zbe)

GSMD estimator using both f; and fz in (4.6) and (4.7) as a system. Let V(z4,) = (Vzn(iﬂ’o) Vaa(z62)

1 12
be the corresponding partitioned variance matrix, and let V='(zé,) = ( g,,g?; l‘j”g?;) be its inverse
. o

watrix. Let Ay(z) = E(fg, (2, fo)le) - 2EULGLNE) and Ay(2) = E(f,, (2,00)l) - 2ELG SR From

Proposition 4.1, the limiting variance matrix of y/n(6y,, — €o,1) is ), where
= E[A(2)V,7 (z6) A(2)],
and the limiting variance matrix of /n(fy.¢ - 0.1) is 21,6, where
R ¢ = ElA(z)V " (zb) A(2)]
— E[Ay(2)V (26, Ay (2)/{ E[ Ao (2)V ?(186) Ay (2)]) " E[A2(2)V ' (260) A} (2)].
Since V1(28,) - V;71'(26,) = V'?(z6,){V?*(z6,)} ~' V2! (24, ), the Schwartz inequality implies that

6 - 971 = E[A2)V 28 {VP(28:)) 'V (260) A} (2)]
— E[Ay(2)V " (28,) Ay(2){ ElA2(z)V 22 (260 ) ()]}~ E[Ax(2)V 2 (28,) A} (2)] 2 0.

This shows that 6, ; is efficient relative to 6, ,. For the case that 8, and 8, contain some common parameters,
the system GSMD estimator which incorporates common parameter constraints will be more efficient than
the GSMD estimator of (8),0,) without imposing the constraints. To see that for our semiparametric
estimators, let 8, and #; be function of parameters 1. Then

QE(f'(z.80)|z) _ BE(S'(2,8,)l28,) _ (6] 06)
a - n - ( ' A ) AG).

where A(z) = (A‘é") A,(:z))' Let 7jg be the generalized semiparametric estimator of 1 and let 0(, G =

0,(tic) and 0;‘5 = 05(iig) be the corresponding constrained estimators of §, and ;. By Rao’s delta method,

the asymptotic variance matrix of (0(l },0(" ) is

(Z,,i) {(8—»; a_oz) E[A(z)V~"(=6,)A'(x)] (_”)} (?’; .?;;)

The asymptohc variance of the unconstrained estimator (01,g,62,6) is { E(A(z)V~!(z8,)A'(z))}~*. By the
Schwartz inequality, the asymptotic variance of (0| G 0, ) is apparently larger than the asymptotic variance

of (61%.64%).
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For the sample selection and limited dependent variables models, some of the conditional moment
restrictions can be expressed as conditional moments conditional on the occurrence of regimes. It is desirable
to g lize the p tric estimation methods to cover such cases. Suppose there are L mutually

lusi and haustive regimes in a model. Let I; be a dichotomous indictor of the regime {, = 1,---,L
such that Z,_ I; = 1. For the regime I, the conditional moment equations are

E(fi(z,80)lz, 11 = 1) = E(fi(z,6o)|z60, 1 = 1). (48)

In addition to these conditional moments, the regime probabilities satisfy also the index restriction,

E(INz) = E(N|z6), 1=1,---,L. (4.9)

To unify notations, denote f§(z,8,) = (Iy,--+,Ir_y) and Iy = 1. The moment restrictions (4.8) and (4.9)
can be summaried as

E(fi(2,8.)1z. 1y = 1) = E(fi(2,80)1z60, i = 1), 1=0,1,---,L. (4.10)

The disturbances in this model are w; = fi(z,8.) = E(fi(z,B8.)|z, i = 1), 1=0,1, -+, L. It is apparent that
E(hwljuilz) = 0 and E(liwI;|z) = 0 for all j #1, j,l,s = 1,---, L, i.e, all the relevant disturbances are
mutually uncorrelated. The E(f{(z,8)|zi, Ii = 1) can be estimated by

Ealhe Bl = 1) = Y hsntes ok (525 /S nyw (B25) .

A IR

Since

o z;n,f.(z,.m ( "") 2. E(L (2. B)lzi)h(z:)

= E(fi(z, f)lzi, I = 1) E(Iilzi)h(zi),

and —=hy et Lpwi I K€ ( ) =+ E(Ii|z:)h(z;) where h(z) is the marginal density of z, En(fi(z, B)|zi, I =
1) is a consistent estimate of E(fi(z, B)zi, I = 1). Similarly, E(fi(z,B)|zi6,Ii = 1) can be estimated by

Bu(rte Mt 1= 1) = 3 s it )3 (258 /21 J(#zE.
i

Let Vi(28,) denote Var(w|xdy, fj = 1) for {=0,1,---,L. Let
Vau(2i8) = Ealfi(z. 0)f1(2. Bz, 1 = 1] = Ea(fil2. B)l2:6. I = DEa(fi(z, )z, 1 = 1), (4.13)

Let W, (28) = V.7 (z6) be the weighting matrices for /= 0,---, L. Denote
G (24,0) = Ealfilz.Mzi I = 1) = Eo{filz, B)l2ié, [y = 1),

and Gg’),,(z.', 8) = M@M’-ﬂl — 25 ‘5.,,"‘. Li=1) The GSMD estimator of 8 for this model can be
defined as

feG =~ { 3 ta(zi,0) Z LG, (zi, 0)Wa (2 6)Gf,'),,(z.-.0)}

(4.14)

x zcn(:.,o) Z Gy (i, O)Wa (2:6)( G (20, 6) ~ GV (20,0)9),
1=0
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where the trimming functions will be applied to all the conditional nonparametric functions and variances.
Denote G{(z,0) = 2EUs L= hi=t) _ 2E(N(sMsbhi=1) wiph similar arguments for the proof of Proposition
4.1, we have the following asymptotic properties:3

Corollary 4.1 For the conditional moment restrictions model, under the identification condition that,
Jor any 8 # 0,, E’(Ig(z pONIh =1, :) E(fi(z, ﬂ(ﬂ))lh = 1,26(0)) # 0 with positive probability for some |,
te{0,1,---, L}, 0¢al.’ll ist ymplolically normal estimator and

Vi(be.g — 05) — N(0,9.c), (4.15)

where Qe g = D"(o,) QGD"(%) with

L
D.(8:)=E (2 l.c&"'(z.o,)tf,-'(xa.)c££>(x,oo)) .

1=0
and

Lee= (Z LG (2.0,)V, (28 )Var(ulr, Iy = 1)V, (26,)Go (2‘00)) .

1=0

Furthermore, if Var(wilz, ) = 1) = Var(w|réo, Iy = 1) for all1 = 0,---, L, then Qg = D7'(6,).

5. Semiy tric Regression and Sample Selection Models

In a recent article, Chamberlain (1992) has investigated semiparametric efficiency bound for semipara-
metric models with conditional moment restriction. The conditional moment restriction considered is

Elp(2.9,0,,9.(x2))z] = 0, (5.1)

where 23 is a subvector of 2, p(r,y, 0, ) is a known function, but go(r2) is an unknown measurable mapping
to a finite dimensional space. Chamberlain (1992) has derived an cfficiency bound for 8 of models with
the conditional moment restriction (5.1). Several concrete examples are idered. Among them are a
semiparametric regression model [Engle et al. (1986), Robinson (1988)] and a sample selection model. As
these models are special cases of models considered in this article, it is worthy of investigating whether our
estimates can attain Chamberlain's efficiency bounds for these models.

5.1. Semiparamelric Regression Model

The iparametric regression model [Engle et al. (1986), Robinson (1988)] is specified as

E(ylz) = 2,8, + go(z2). (5.2)
where the regression function consists of a parametric p t and a nonparametric p t. For this

model, p(z,y,0, 7) = y — 210 — 7 in Chamberlain’s framework. Let 0?(z) denote Var(y|z). The information
bound [Chainberlain (1992), p. 569] for @ is

1o (5) oo () () /o)) o0

If the model is homoskedastic with a2(z) = 2 a constant, then

J = 07 E{[z) = E(zl22)]lx1 - E(z4|r2))'} = 07 E[Var(z,|22)]- (5.4)
If the variance satisfies also an index restriction with ¢2(z) = o?(z2), then
J = B{lo~Yz))lz1 - E(z1|z2)]lz1 — E(zi|z2)]'}. (5.5)

3 The t Jiti in A ptions 2, 4, 6, and 7 need, of course, be modified accordingly to
conditional moments conditional on the additional regime occurrence in additional to z and z8.
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This model is a special index model with z6 = z;. In our estimation framework, f(z,0(8)) = y — 2,0 and
Go(z,0,) = —[z1~ E(z1|z2))'. With W(z) in Proposition 3.1 being an identity matrix (and trimming function
goes to unity everywhere) for the homoscedastic variance model, £; = 02 E([z1 — E(z:)z2))'[z1 — E(z1]z2)])

and
U = oY E([z1 - E(z1|z2))'[21 = E(zi|z2)})} ",

which attains the variance bound of Chamberlain. For the model where o%(z) = 0%(z3), as V(z3) =
Var(f(z,8,)|z2) = Var(y|z), Proposition 4.1 implies that

Qe = {E(e™(=2)[z1 — E(x1]|z2)][z1 = E(z1lz2)])} ",

which attains the variance bound of Chamberlain for the index variance model. 4However, for the general
case where 0%(z) is a general function of z, neither 67 nor ¢ attain the efficiency bound. Apparently our
estimation methods have utilized only index restrictions for estimation.
5.2. Sample Selection Model with Known Indez

The sample selection model considered in [Chamberlain (1992), p.568] is

Y =z10,+ 2270 + €, (5.6)
and |
_ |1 ifge(z2,v) 20,
= {0, otherwise, (5.7)

where z = (zy,z;) and y = (y;,1), where y; = Iy", are observed; so y" is observed only if ] = 1. The
function g, depends on z only via z3 but is otherwise unrestricted. The disturbances ¢ and v satisfy that
E(¢|z,v) = E(c|v) and v is independent of z, conditional on z2. This model is thus a sample selection model
with index restriction where the indices are 6§ = z,. This model implies that E(y,|z,I = 1) = 2,0, + ¢(73),
where ¢(z2) = 227, + E(u|z3,1 = 1). Thus

Pz, 0,7) = Iy — 210 - 7] (5.8)

in Chamberlain’s framework. Chamberlain points out that one may also extend the p function to include
the restriction that E(I|z) = E(I|z3), so that

e,y = { - =0l 5.8y

Chamberlain derives the efficiency bound for this model and has pointed out that the efficiency bound for 8
is the same with either one of the above p. Let 0?(z) denote Var(y;|z,/ = 1). The efficiency bound for 8 is

r=s{oum s () = () e () /e gk )l) . oo

For the case that ¢%(z) depends on z only through z,, 02(z) = ¢?(z;) and
J = E{E(I|z2)0~}(z2)[z1 — E(z)|z2))[z1 — E(z1]22)]'}- (5.10)

In our framework, this model implies that E(I(y, — z,0,)|z) = E(I(y1 — 16, )|z2) and E(I|z) = E(l|z,).
Hence f'(z,8) = (I(y — 18),1). For the model that 0*(z) = o%(z,), since I(y — 216,) = I(y - =10, —
q(x2)) + Iq(x2),

Var(I(y = 210,)|z) = Var(I(yy — 210, — g(z2))|z2) + ¢*(z2) Var(I|z7)

= 0%(z2) E(I|z2) + ¢*(z2)Var(I|z2), G-t

4 As in Chamberlain’s discussion, the variance restrictions were not assumed to be known; otherwise, they
should be incorporated into the conditional moment restriction (5.1). The efficiency bounds were obtained
by the SMD or GSMD estimators if the true (but unknown) variance restrictions happened to be there.
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and
. _ (0¥ (z2)EUI|z2) + ¢*(z2)Var(I|zy) q(z3)Var(l)zs)
Viza) = ( D ralYarlllea) - a(zal¥ntllen) ). 6.12)

As E(fy(z, fo)|z) - 2ELGLAE) = [ E(l{za)(2) ~ E(zlaa, I = 1)), 0] = [~ E(I|22)(z1 ~ E(z22)), 0] and
the first diagonal elemcnt of V=Y(z3) is {E(I|z2)0?(z2)} =" by a formula of inverse of a partitioned matrix,
Proposition 4.1 implies that

Q6 = {E((E(llz2)(z) ~ E(z122), 0V (22)[E(I[22)(z1 ~ E(z1lz2),01)} "
= {E(E(l|z2)o~}(z3)[z1 - E(zi|za)l[z1 - E(zilz2)))} ™",

which attains the efficiency bound of Chamberlain for this model. It is interesting to note that if the moment
equation E(I|z) = E(I|z;) were ignored but only the equation E(I(y, — z16,)|z) = E(I(y1 — 18, )|z2) was
used in estimation, i.e., f(z,8) = I(y— z,0), then the limiting variance matrix for the GSMD estimator of §

would be {E(W%-(},If-}}“‘—ﬂ[n — E(z)|z2))[r1 — E(z1[22))')} ~", which were larger than the variance bound
from (5.10) for this model as seen frotn (5.11). The point is that even though the equation E(1|z) = E(I|z,;)
does not contain 0, it helps to improve efficiency for the estimation of # when it is included in estimation
(asina ingly unrelated regression framework). This point has been noted in Chamberlain (1992) in his
efficiency analysis. The above methods provide an example.

It is of interest to note that if the conditional moment restriction E(y — z16,)z.1 = 1) = E(y —
z10,)28,,1 = 1) is used for estimation. Corollary 4.1 implies that

Q¢ = {E(le72(22)[z1 = E(zi)22)) [21 ~ E(21)22)))) "
= {E(E(1|z)07*(z2)[z1 — E(zi]z2)][z1 — E(21|z2)])} !
= {E(E(|z2)a~Y(z2)[xy — E(ri|z2))'[2) = E(z1]22)))) "

which attains the Chamberlain clliciency bound for the index variance model. The addition of the conditional
moment restriction E(/|z) = E(I|z3) does not help because I — E(I|z) is uncorrelated with the disturbance
y—=28, - E(y — 2\0,|2,] = 1) = y - 218, — g(z5). This conditional moment approach differs from
the approach of using the moment condition of I(y — r,0) in that the conditional moment approach uses
nonparametric estimate of g(z3) directly but the previous moment approach uses the nonparametric estimate
of E(I|z)q(z3). The variance of I(y—z,0,) conditional on z is larger than the variance of I(y — 2,8, - g(z2))
conditional on z as the former contains the additional term ¢?(z;)Var(I{z;) in (5.11).
5.9. Sample Selection Model with Unknown Indez

The previous ple selection model that the indices in the choice equation are ;. A more
general model assumes that the index in the conditional moment and variance is z6(6,) with unknown
coefficients. In this paragraph, we derive the limiting covariance matrix for such a model. For generality,
consider a structural simultaneous equation where

oy 2. ) = ¢ (5.13)

is a potential outcome equation before selection. The estimation of 8 can be based on the equations
E(g(2.8.01 = 1,7) = E(9(z.80)/1 = 1,26,) and E(I|z) = E(l|z6,). Let G{(=.8,) = [E{9u(z. B =
1,z)~E(golz, fo)|I = 1,260) + 9—‘—5@31(: E(z|z6, ))'Vq(z5 )], where Vg(z4,) denotes the gradient of g(z6,)
with respect to zé,. The limiting variance Q. g of 05 G follows from Corollary 4.1:

E(I1z6) 1 ) {VE(I|25,))° 8'(6,) , 95(6,)\1""
{E( L GV(z2,0,)GS" (2.6,) + Nty 20 (@~ B8 (= - E(zl=b,)) 557 )}

For the semiparametric binary choice model, the semiparametric efficiency bound has been derived in Cosslett
(1987) and Chamberlain (1986), which is 132Uzl 208ed (7 _ E(z)28,)) (2 — B(z]26y)) 2P . Comparing
the inverse of the efficiency bound and the limiting variance matrix of the GSMD estimator, the limiting
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variance matrix of the GSMD estimator is asymptotically more efficient. Even for the case that §' =
(B',8'), as long as Vg(z6,) does not vanish with probability one, the GSMD estimator of 6§ (with proper
normalization) will be efficient relative to semiparametric estimators derived for estimating only the binary
choice equation. The syst timation of both the discrete choice equation and the outcome equation gains
efficiency because the disturbances of the discrete choice and the outcome equation are correlated.*For a
linear simultaneous equation sample selection model, Powell (1987) has derived a two-step semiparametric
instrumental varable method for the estimation of the outcome equation conditional on a given /n-consistent
estimate (first stage estimate) of the parameters in the choice equation. Lee (1991) generalized Powell's
method to take into account heteroskedastic errors and autocorrelated errors introduced from the first stage
estimate. These methods are single equation semiparametric instrumental variable method. As will be shown
in the next section that the GSMD is asymptotically equivalent to the best iparametric instr tal
variable estimator, the GSMD is asymptotically efficient relative to the two-step estimator in Powell (1987).

For an endogenous switching regression model with two regimes and an outcome equation for each
regime, the GSMD estimation can be based on two conditional moment equations and a choice probability
equation. Let g1(y},z,8,) = €1 and g2(y3,2,B,) = €2 be, respectively, the potential outcome equations for
regime 1 (I = 1) and regime 2 (I = 0). The implied conditional moment equations are

E(g1(2.8)I1 = 1,z) = E(91(2. 80l = 1, 26) (5.14)

and
E(g2(2,8,)|1 = 0,2) = E(g2(z, )| = 0,26,). (5.15)

Let q1(z6,) = E(e1|I = 1,26,) and gy(z8o) = E(ea|] = 0,z6,). Let o}(x8,) denote the conditional variance
of 91(z, Bo)—q1(28, ) conditional on I = 1 and z, and let 02(z4,) denote the conditional variance of ga(z, 8, )~
q2(z6,) conditional on I = 0 and z. With (5.14) and (5 15) and E(I = l|r) = E(I = 1|zé6,), the limiting
variance of 6. g follows from Corollary 4.1 which is

{E(—E("'6°’o‘."(z,o,)a&' V2,00) + ELZI20) (24,38 (2,0,)

EIEs) of(et)
(VEUIz8,)" 066) 8500,
# ATBUSN 0610, _ gy - petenn )}

where

G{"(z,8.) = [E(g10(2.8:)1 = 1,2) ~ E(g10(z, 80\ = 1,}6.) + 95 (00)(¢ ~ E(2126,))Vay (25,)]

and

G(z,00) = [E(g20(2, B.)1 =0,2) = E(gas(z,B.)] = 0,26,) + 8—6;:°) (z ~ E(z|c6o))' Vg2(265)).

6. Semiparametric Instrumental Variables Estimation )
Instead of the SMD or GSMD methods, it is possible to suggest semiparametric instrumental variables
methods for the estimation of semiparametric simultaneous equation models. The (2.1) can be rewritten as

1(2,80) = E(f(2,8s)|=8:) + w, (6.1)

where u satisfies E(ulz) = 0. Denote un(zi,2i,0) = [(2i,0) — Ea(f(z,8)|2i6) and une(zi,2:,0) =
2"—"%’.7’—“11. Furthermore, u(z;,z;,0) = f(2;, B) — E(f(2, B)|2:8) and ug:(2;,2,0) = Mzr'ofuﬂ~ Let w be a

5 The sample selection model with unknown indices has not been covered in Chamberlain analysis of
conditional moment restriction model, it is unknown what is the efficient bound for the conditional moment
equations of this model.
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matrix of instrumental variables (functions of z).°A ic instr tal variable (SIV) estimator
taking into auount possible variance structure of u can be defined as

n n -1
by =~ { 3 talzi, 6)up oz, 70, OV, (zib)ws (Ztn(z;.o’)w:vn"(zaé)wa)

i=1 i=1
i ta(2i,0)u} Vn-l(zig)“n,i‘(zi‘zi:é)} B

n n -1
X ztu(:;,ﬂ‘)u:...(z;.z.-,é)Vn"(z.-s)w,- (zln(zi,é)wfv;'(z,-s)w.-)

(6.2)

x Zl“(z;,0)|4u:Vn"(zi5) (u,.(zi.:.-,é) - u.._.v(z.-,z;.é)li) .
iz

‘This two-step SIV estimtor is motivated from the following semiparametric nonlinear (weighted) two-stage
method:

-1,
‘.i Z'n(flvo)u (20,2, 0)V, (z,&)w, (zwl n-l(zié)'”i) wavn_'(ziﬁ)"n(l-’-‘i-o)-

i=1 i=1

The asymptotic distribution of this two-step SIV estimator can be derived with similar arguments in the
previous proofs. Some of the details are in the Appendix A6. Let A = E (uj(z,z,0,)V~"(z6,)w) and
= E(w'V~"(z6,)w). By uniform convergence of nonparametric functions,

Vil - 0,) = —{AA=' A} TAAY Z (0, 06V, (266 )up (2i, 74, 80) + 0p(1).

ﬂl

It follows from the U-statistic theory that
I n
7-5 gl"(zi.l),)wEV,,"(zi6, Yn(zi, 2i, 00) = —= Z(w. E(w]zi6,))'V ™ (zi60)ui + 0p(1).

Hence /a(f;v — 0,) L. N(0,9v) where

Wy = (AL A) LAV E ([ = E(w]28,)]'V = (26, ) Var(ulz8,) V= (26, )[w — E(w|z6,)])
x AT'A'{ANT AT
For the model where Var(ulz) = Var(u|zé,), Qv becomes
Qv = (AATTA)PANTTAA T A{AN AYY Y (6.3)
where A, = E([w— E(w|z6,))'V~ '(zﬁ.)[w E(w|zé,))). From this result, it is interesting to note that better
instrumental variables are w — E,(w]z5) instead of w, if E(w]z6,) # 0. Using w — En(w|z8) as instrumental

variables, the limiting variance matrix of the corresponding SIV will be

Qv,e = (AN A}, (6.4)

¢ Alternatively, one may assume that w does not provide extra information in the presence of z in any
conditional expectation function conditional on z and w. If that were not the case, z should be enlarged to
include w.
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because A = E (uj(z,z 0.)V '(:6.)w) E (uj(z,2,0,)V =" (6,)[w — E(wl|z6,)]) by (3.3). By the general-
ized Schwartz inequality, Q,V . 2 ;). It remains to compare the GSMD estimator with any SIV estimator.
Since w is a function of z and E(u)(z,z,8,)|z) = Gj(z,6,),”

E () (2,7, 80)V =\ (26,)[w — E(wlz6,))) = E {E(u',(z,z,o,)v-‘(za,)[w - E(w]z6,)]) lz}
= B(Gy(z.8:)V " (zb)[w - E(ulz6,)]).

1t follows that ;v . can be rewritten as
Qv = {E (Gh(z,00)V " (26,)[w — E(wlzbo)]) A" E ([w = E(w|zb, )’V ~'(z6, )Gg-(z,O,))}"

Comparing this variance matrix with ¢ in Proposition 4.1 for the model Var(u|z) = Var(u|z§,) by the
generalized Cauchy-Schwartz inequality, it is apparent that QG > Q5 v.- To show that the GSMD is a SIV
estimator, take

, 98'(8,)z’ 86'(0,
w= E(fu(z.fo)lz) = ¥ E(;(z,a.nz.s,)(_ ((%:)z _ E( (0)z .s)) ©5)
then w — E(w|zé,) = Go(z,6,) from (3.3) and Qv,. = Q¢. The optimal instrumental variables vector
is Go:(z,0,) (or some consistent estimates of it). The GSMD is asymptotically equivalent to the best SIV
estimator for the model where E(u|z) = E(u|z6,) and Var(u|z) = Var(u|zé,).

7. Conclusion

This article has considered the estimation of broad classes of general nonlinear simultaneous equation
models with qualitative and limited dependent variables, and models with sample selection subject to index
restrictions. A general semiparametric estimation method, which is motivated by the classical minimum dis-
tance estimation method of quantal response models, is introduced. Conditional on the vector of exogenous
variables, (conditional) moment equations can be derived from a structural microeconomic model. Such
equations contain unknown functions because of unspecified distribution of distrubances in the model. The
unknown functions can, however, be eliminated by exploring index restrictions in the model. After elimi-
nating such unknown functions, the implied moment equations are expressed as differences of conditional
moment equations conditional on all exogenous variables and conditional moment equations conditional on
indi The implied t equations become the estimating functions for our approach. To estimate the
structural parameters, the conditional moment equations are replaced by nonparametric regression functions
and the structural paramneters are derived by minimizing some average distances of the nonparametric re-
gression functions. The estimators are shown to be \/n-consistent and asymptotically normal. The GSMD
estimators which take into account of unknown heteroskedastic disturbances with index restrictions are also
introduced. The GSMD estimators are shown to be efficient relative to unweighted SMD estimators. The
GSMD estimators which take into account of correlation across different structural equations are shown to
be asymptotically efficient relative to single equation estimates. For the estimation of semiparametric regtes-
sion models and some sample selection models with known indices, efficiency bounds have been derived in
Chamberlain (1992). Our semiparametric estimators can attain the eflicient bound when the heteroskedastic
distrubances happen to satisfy also the same index restriction. For models with indices involving unknown
parameters, semiparametric instrumental variables approach is introduced. The GSMD estimator is asymp-
totically equivalent to the best iparametric instr al variables estimator. An interesting feature of
the proposed estimation approach is that it provides a unified estimation framework for the estimation of
regression-type and simultaneous equation type models. For the estimation of simultaneous equation models,
all one shall concern about for structural estimation is the set of appropriate exogenous variables used for
conditioning. These methods are of particular interest for the estimation of nonli simultaneous equations
models with sample selection or limited dependent variables.

7 If w were not a function of z, the following equality will still hold if w does not provide extra information
in the presence of z. This is so, since E(u}(z,z,0,)|z,w) = E(uj(z,z,0,)|z) under such a circumstance.
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Appendix

A1l: Some Useful Propositions
The following propositions will be used repeatedly in subsequent proofs of asymptotic properties of our
timat The first proposition is useful for establishing uniform convergence in probability of nonpara-
metric regression functions with index restrictions and their first and second order derivatives. This uniform
law of large numbers generalizes slightly the uniform law of large numbers in Ichimura and Lee (1991). The
following three propositions summerize the bias order of nonparametric functions and their first and second
derivatives. These biases are familiar results in the nonparametric regression literature and semiparametric
econometrics literature [e.g., in Rao (1983), Robinson (1988), Powell et al. (1989), and Ichimura and Lee
(1991)]. They are summarized here for convenient reference and are useful to justify some of the regular-
ity conditions in Appendix A2 on our model. The remaining propositions will be useful for deriving the
asymptotic distributions of our estimators.

Proposition A1.1 (A Uniform Law of Large Numbers) Let {z;} be a sequence of i.i.d. random
vectors. The measurable function h(z,0,a,) takes the form h(z,0,a,) = ;‘yhl(z,0)h2 (z,ﬂ,ﬂf:ﬂ), where

a, = 0(;‘;), p>0,d2>0,0¢€0, and s(z,0) is a finile dimensional veclor-valued function. Suppose that

the following conditions are salisfied :

(1) © is a compact subset of a finite dimensional Euclidean space.

(2) The function hy(z,0) is differentiable with respect to 6. The rth order moment, where r > 2, of
supyc o |hi(z,0)] is finite. The first moment of supge g Iﬂ‘g’l‘ﬂl erisls and is finite.

(3) |ha| < c for some constant c.

(4) E(h1h3) = O(ad) uniformly in 0 € ©, for some d.

(5) The functions hy(z,0,u), and s(z,0) salisfy the bounded Lipschitz condition of order 1 with respect to 8

and u.

Ifimp— I:—na.’.('“l')d—a =00, then supyeq ',’; Yoiei h(zi,0,a,) — E(h(z,0, a,.))' -2, 0. Furthermore,
in addition to the above conditions, if E(h(z,0,a,)) converges to a limit function ho, () uniformly in 0 € ©,
then supye g H et h(zi,0,a,) - In,.,(ﬂ)' L.o.

Proof: This theorem generalizes slightly the uniform law of large number in [Ichimura and Lee (1991),
pp. 22-23) in that the the condition (2) is used to replace the original conditions 2 and 3 in that article.®In
the orginal proof, the distribution of z was divided in an interior component and a tail component. The proof
can be modified by dividing the distribution of sup, |hy(z, 0)| into interior and tail components instead. With
this slight modification, the original arguments for the proof in Ichimura and Lee (1991) will go through
with little change. Q.E.D.

Proposition A1.2 Let K(v) be a function on R™ with a bounded support D such that [, |K(v)|dv < co.
Lett(z,0) be a continuous m-di ional random vector. Suppose that E(c(z, z;,0)|¢, z;, 0)g(t]0), where g(t|60)
is the density function of t(z,0), is uniformly continuous in {, uniformly in (0, ;). Then

4(z;,0) —t(z2,6)

E ez, 2.0 K¢ wi| - Ele(z,z,0)16(z, 8), 2, 6)g(t(2, 0)19) | = 0.
ap

liin sup
n=00 g,

Furthermore, if K(v) is a function with zero moments up to the order s*, i.c., fD v:‘ o vim K(v)dv = 0,
Joralli; >0, j=1,...,m, ir 4 +im < s and [ o]l |K(v)|dv < oo, and E(c(z, zi,0)|t, zi,0)g(t]0) is
differentiable on R™ to the order s*, and the s* order derivatives are uniformly bounded, then

sup (z,0) —t(z,o))

1,0

— ] ~ Ele(z, 2, 0)lt6z:,0), z.-.oly(«z.-.v)lo)|| = O(at)).

E [C(Z-zi.ﬁ)ék (

8 The original result is formulated to include U-statistics. Here we only need statistics with a single sum.
The above proposition can also be modified for U-statistics.

? A function g(t, z;, ) is said to be uniformly continuous in ¢ uniformly in (8, z;) if Ve > 0, there exisits a
& > 0 (may depend on ¢ only) such that whenever ||t; — t,|] < &, |lg(t, 2i,0) — g(t2, zi, 0)|| < ¢ for all (z;,0).
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Proposition A1.3 Let K(v) be a function on R™ with a bounded support D such that K(v) goes to zero
at the boundary of D and its gradient ’—'%ﬂ is bounded. Suppose that &[E(c(z, zi,0)|t, z;,0)g(t]9)], where
9(t|6) is the density function t(z,0), are uniformly continuous in t, uniformly in (z;,0). Then

| 0K (spi,q-n(.,q)

lim sup “E [c(z, z;,ﬂ)m—“——-—“'—

n—oo ;.0 an v

] - B B(ete, 0,005, 0), li.’)g(i(ln@)l’)ln =o.

Furthermore, if K(v) has zero moments up to the order s*, E(c(z,zi,0)|t, z;,0)g(t]6) is differentiable at
t everywhere to the order s* + 1, and these derivatives are uniformly bounded, then

1 OK (Utl=tn)

E [:.'(z,z.>,0)a“m+l —

=0(al).

sup
2,0

] ~ B 1B(ela. 5O (2,0), 20, )o(t (2. Y1)

Proposition A1.4 Let K(v) be a twice differentiable function on R™ with a bounded support D such that
K(v) and its gradient ﬂ;—sﬂ go to zero at the boundary of D, and the gradient ﬂ;—&ﬂ and its hessian matriz

a—;%("l) are bounded. Suppose that %;,,[E(c(z.z.-,ﬂ)|l,z.~.0)y(!|0)] are uniformly continuous in t, uniformly
in (2;,0). Then

| 8K (i(h;!l%’.(i:!l) 2
n'L";i“l: E c(z,z;,@)—a:.”- dvdr Iz‘ —aur?v:w(f(l.Zi-a)ll(li.o).2-‘.9)!('(2-"9”9)] =0.

Proposition A1.5 Let {Cjn(2i)}, j = 1,2 be two sequences of measurable functions of an i.i.d. sample
{2}, The {da(2i)) is a sequence of measurable functions with the property that either E(|da(z)|) < oo
uniformly in n or sup, |da(zi)| = Op(1). Suppose that, for each j,

(1) sup,, |E(Cjn(2)lz) - Cf.n(z,«)l = O(a;l’"), for some measurable functions C.(.j)(zi), and
(2) sup, var(Cja(2)lzi) = O(h5-), j=1.2

If limp o ‘/’_'“;.'u = o0 and limy ., unf",_’ =0 forj=1,2, then
Ly 1) (2) 4
77 L el [Cun(s) = | [Cante) = €] -0,

Proof: This is Lemma 6 in Lee (1992). The proof follows from the Markov and Cauchy inequalities. See
also [Ichimura and Lee (1991), Lemma 10]. Q.E.D.

Proposition A1.6 Let {An(2i)) and {Cin(2)}. ! = 1,2 be sequences of measurable functions of an
i.i.d. sample {z;}. Suppose that,
(1) 251 1Aa(z) = Op(1);
(2) for each | € {1,2}, Cin(zi) = (TET) ):;'ﬁ :J.—hg”(z,',z.-)hg”(zj-,zi, EL%‘-:Q) satisfies the conditions (1)-
(5) of Proposition A1.1 with © being the cn;;v:pacl support of z;; and
(3) sup,, |E(Cin(2)lzi) - hS."(z.-)| = O(ay!,) for some 8; > 0 and measurable functions h(z).
1=/ (41/ 1)

If limp .o L——n:—-——aﬁf,'“"“'—"' =00 and limp_ oo na,’l'n" =0, where t =ty + 1y, forl = 1,2, then

% 3 An(@)ICualz) = B(z)Con() - AP ()] 2= 0.
i=1

Proof: Since sup,, [n=!/2 50| An(2)ICun(z:) — b (20)]*ICa,n(z) ~ h)(2:)I17] < /i sup,, IC.n(2) ~
Az sup,, |Ca.n(zi) — A2 (z)) A 1An(zi)), it is sufficient to investigate the convergence of
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n sup, |Cjn(2i) — BL(z)I". As ajn = O(1/n*') in Proposition Al.l, n = O(l/n"") Therefore,
WNC, () is proportional to 7155 Y5, ‘17:7)757.-,3": Oz, 208z, 20,812, ) /ar.n). Proposition ALl

implies that if rﬂ-uz(”'l')("“/(“’ 0-d goes to infinity, nV/O[C, o (2:) ~ E(Cia(2)]2)) < 0 uniformly
in z;. This rate requirement is equivalent to that 2=722" g Hitrna =% goes to infinity. Since

ntt sup |Cralz) — B ()"

L
< {rup 161020 = BCCA M0 + sup B Crntelzd =BT}

the results follow. Q.E.D.

Proposition A1.7 Let {z;) be an i.i.d. sample and {@,(z,an)} be a sequence of vector-valued random
Junclions with dandwidth {a,)}. Suppose that
(1) there cxist square integrable functions ;(z), j = 1,2 such that | E(®a(z,an)l2;) ) < (z5), j = 1,2,
(2) E(®a(2,00)) = O(al) and var(®n(2,a0)) = O(2- )
(3) limn_os E(®a(z,an)lz;) = ¥;(z;), a.c., for some measurable functions ¢, j = 1,2, and
(4) limn_o nal = 0 and lim, oo nal, = co.

If ¥1(2) and ¢y(z) are zero a.c., then W'I:l—) Lict Ljgi ¥al2is 2j,0n) Zaq.

On the other hand, of lim . {[¥4(2) + ¥a(2))[Vn(2) + 2 ()]} = £, then

f(n- 1) ZZ"'-"':Z: aa) 2. N(0,E).

iz i

Proof: This result generalizes slightly the central limit theorem for U-statistics in Hoeffding (1948). It
follows from a U-statistics result in Powell, Stack and Stoker (1989). It is Letuma 8 in Lee (1992). Q.E.D.
Proposition A1.8 Suppose that K is an r-dimensional kernel function with a bounded support D such
that f, |K(t)ldv < co and with a bandwidth an. Let An(s|ribo) = FITJTT;EE;#-"J'I" (E'_‘_s.‘_:ak) and let
9(280105) be the density of 28,. Denote A(s|zby) = E(s|z60)g(56,10,). Let fo(5,26,) be measurable functions
such that sup, |fa(8, 26,)| is square integrable. Suppose that
(1) E(s)28,)g(x6010,) is uniformly conlinwous af z5,,
(2) E(fa(2,26,)|26,)9(28.10,) is continuous in 28, a.e. uniformly in n,
(3) there erists a measurable function h(zé8,) such that

E(Ja(s,28,)|26:)| < h(2bo)

with E{h(z6,)A(slz6,)| < 00 for large n, and
(4) lim, oo E(!n(’ 28, )i26,) = e(26,) e

Iflim, ., naf, = oo and liny_.oo na? = 0, then

Jalsi zibo)[ An(slzibe) — A(s)zib,))

8ic(ziCo)9(2iCol60) — B[‘(‘(o)E("I(n)D(‘Co'60)]

S- 3
it i

Proof:

z S8, zi6o Y An(slibo) — A(s)zi60.0,)) = l)\/'_l ZZ‘),.(&..;,. an),

|=I i=l jgi

20

where 3 = (s,z) and

®n(3i,5,8,) = f,.(s,,:.&,)[-—a, (-z-ﬁsn—z’-f'-)—A(slzsb,)]‘

By (1), limn—oo E(An(sl2i6,)|2:) = A(s]2:8,). Therefore, E(®,(5;,5;,a.,)[5:) converges to zero. On the
other hand,

Bl = siB [ty 23601 K (=250 ) ] — BB e 060l Aele8.)

Since limp.co {E[f,.(sj,zjb,);’:f((ﬁi’f:’—’ﬁ‘) |zi| = Elfn(8,260)|Zib0]9(i60105)} = O by condition (2), it
foll that, by diti (3) and (4) and the Lebesque convergence theorem,

..I.i.l.'.l, E(Pu(8;, 5i,an)5i) = 8ic(7ibo)9(7ifo[0,) — E(c(28,) E(s]265)g(16,10,)) a.e.

The result of the proposition follows as the projection of a U-statistics (see Proposition A1.7). QE.D.
A2: Regularity Conditions, Nonp. tric Regression and Related Functi

This appendix collects regularity conditions for our model and points out some of the useful propertics
of nonpararactric (index) regression functions and their first and second order derivatives. Assumption 1
below contains the basic regularity conditions of our model. Asumption 2 contains regularity conditions on
the regression function of f(z,5) on « and its first and second order derivatives. Assumption 3 describes
some basic desirable properties for t.he kemel function K and its bandwidth a,. Assumptions 4 and 5

are diti for the p tric function of f(z,8) on z8 and related functions and the
kernel function J. A ption 6 contai addmonal gularity conditions for the SMD estimator. Finally,
regularity conditions for the GSMD estimator are in A ption 7.

Assumption 1:
(1.1) © is a compact convex subset of a finite dimensional Euclidean space, and the true parameter vector 6,
is in the interior of ©.

(1.2) The sample observations (zi,2),i=1,-..,n, are i.i.d.'°
(13) zisa k- dlmcnsmnal vector of contmnous random variables with a density h(z) and a compact support
S. C R

(1.4) 8(8) is twice differentiable w.r.t. 9, and its first two order derivatives are hounded on ©.

(1.5) For each @ € ©, z6 is an m-dimensional vector of continuous variates with a density p(z6|6).

(1.6) f is a vector-valued measurable function with known form which satisfies the relation E{f(z,3(8,))]z] =
Elf(2.8(0,)]26,).
Assumption 2:

(2.1) f is differentiable w.r.t. 8 to the third order. The rth order moment, where r > 2 of supg ||f(2, A)I,
supg "Q’L(‘_?‘Q"‘ and supg “%"L’fﬁ,‘ﬁ)", where 6;'s are components of ¢, are finite. The first moment of

Supe "%ﬂf‘%}'" for all jy, 52, fa, exist.

(2:2) h(z), EQS (. B)IFl2). E (1%52P)z2), and E (u::,_’,l;gagzunz) are bounded on S, x 8.

(2.3) h(z), E(J(z,B)Iz), E (215(‘5’.&'2) and E( P l:r) are differentiable w.r.t. z to the order s}. These
s} order derivatives are unifonnly bounded on S, x 0.

Assumption 3:

(3.1) K(v) is a continuous kernel function on R* with a bounded support. )

(3.2) K(v) is a kernel with zero moments up to the order s}, i.e., [v}' ---v}* K(v)dv = 0 for all 0 < i,
I=1,---,kand 1<) + -+, < 5}.

19 z and : may contain common variables.
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(3.3) The bandwidth sequence {a,} is a sequence of positive constants such that lim,_.oa, = 0 and
2141/ r)k-k _

limy o 2500 0.
Assumption 4:

(4.1) The functions p(z616), E(I=|"1z8). E(IS(z,0)I2lz6), BNz, 0)PIz6),  E (1452 P12s),
E (||l-’%%'lﬂ||’"zll7|zﬁ). and E (ll%:,l;f%‘ﬁluzlzé), where 8;’s are components of 0, are bounded on S; x 6.

(4.2) p(z616), E(f(z,B)|z6), and E (%ﬂm,a), and E (%’,f;fgelzo) are differentiable w.rt. z6 to the
order 33, and these s3 order derivatives are uniformly bounded on S; x ©. E(z; — z|zé, ;)p(z5|9) and
E(f(2,B)(zi — z)|z6,z;)p(z6]0) are differentiable w.r.t. 26 to the order s3 + 1, and these s3 + 1 order
derivatives are uniformly bounded on S; x ©.

(4.3) The function E (g—:{-%‘,e-lﬂ) p(26]0); the first order derivatives of E(z;—z|z8, z;)p(28]0), E(f(z, B)(zi—

1
z)|z6,z;)p(z6|0), and E(_’ls%.'ﬂl(,‘. — z)|26,2;)p(z6|0) w.r.t. z&8; and the second order derivatives of
E((z: — 2)® (i — 2)|26,2;)p(26|8) and E(f(z,B)(z; — z)®(zi — z)|zé,2:)p(26]6) w.r.t. z§ are uniformly
continuous in 28, uniformly in (z,,0) € S¢ x o.M
Assumption 5:
. . . . . . m o 8%J(u)
(5.1) J(u) is a twice continuously differentiable kernel function on R™ with a bounded support. i3
tisfies the bounded Lipschitz condition of order 1 w.r.t. u.
(5.2) J(u) is a kernel with zero moments up to the order s with s3 > 2.
(5.3) The bandwidth sequence {b,} is a sequence of constants such that limp_.co bx = 0 and

lim B p20141/r)mi)-m _
n—colnn "
Assumption 6:
(6.1) The weighting function W(z) is bounded.
(6.2) The set X where X = {z|W(z) # 0}, is contained in the interior of S;.
(6.3) h(z) is bounded away from zero on X, and p(z6|6) is bounded away from zero uniformly on X x ©.12
(6.4) E(G)(z,8,)W(z)Gy(z,0,)) is nonsingular. .
(6.5) The bandwidths a, and b, satisfly the rate of convergence that lim,_.c na2t = oo, limy—.co na:"." =0;
and limy, oo 162 *?) = 0o and lim,—oo b3 = 0.
Assumption T:
(7.1) The rth moment of supyee |If(z, 8)f'(2,8)l exists, where r > 2.
(7.2) E(f(2,8)f'(z.P)lz) is uniformly continuous on S, x ©.
(7.3) V(z6,) is positive definite for each z € S;.
(7.4) The matrix E(G)(z,0,)V " (26,)Gs(z,0,)) is nonsingular.
(7.5) The bandwidths a, and b, satisfy the following rates of convergence:

1-40+3) 3 - .
lim 2_______(.'2.(“.)(“3/2) L 0o, lim "“:(Hn = oo, "“":o "“:(s. 2) _ 0,

. 217
lim nap ' =0,
n—oo Inn n-sco n—co

and

n'- 5('*5)bz(l+!)(m+z)-m
——'n

. n - .
lim ——b2UH/NUMED=M = o0 Jim
I n—co Inn

n—oco innN

lim nba”3i"2 =0,  lim nb3’? = 0.
n=—-00 n-—-00

=00, lim nb2"+) = o,
noos

1! ® refers to the Kronecker product.

12 Agsuming that the support S; is a rectangle, a simple procedure to construct such an X is to truncate
the variables in 2. More sophisticated procedure is to trim some fixed proportion of the values in the tail
distribution for each variable. For the latter, the asymptotic analysis will only be slightly complicated under
LeCam's discretization device.
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Assumptions 2, 3, 4, and 5 are used mainly to justify the uniform convergence of nonparametric func-
tions and their derivatives to their desirable limiting functions. These assumptions provide the regularity
conditions and bandwidth rates for the applications of Propositions A1.1-A1.4 in Appendix Al. The addi-
tional rates of convergence in Assumptions 6 and 7 are needed mainly for the applications of Propositions
A1.5-A1.7 to derive the asymptotic distributions of the SMD and GSMD estimat The rate requi
ments in Assumptions 3, 5, 6, and 7 of the bandwidth parameters a, and b, depend on the existence of

moments of order r. The rate req ts in A tion 7 are, in general, stronger than the requirements
in other ptions. This is so b the trimming of the regressors and indices are relaxing as sample
size i The tric functions need to converge fast enough to dominate the divergence of

B—_fx—.) and m‘:.-)». If trimming of the tail distributions of z is fixed as in Assumption 6, then B—J:;

and B_:-'(lm will be stochastically bounded and the rate requirements can be weaker. When r = oo, using

the fact that, for any real numbers g and v with v > 0, n*/[Inn]* goes to infinity, the rate requir ts in
Assumptions 3, 5 and 6 are satisfied if limp oo na2* = 00, limp o na?’ = 0 and limpco nb2™*? = 00 and
limp, 00 nb?" = Q The rate requi ts in A ptions 3, 5, 6, and 7 are satisfied if limp - oo na2®* = oo

and limy o na2’t = 0 for a,, and if limg— e nb2™** = oo and limy o nb2*3 = 0 for b, when r = 0o

Such an ay, exits only if s} > k + 4, and b, exists only if 53 > m+4. Forr =2, if lim, .o m':wu:k-;s =00

and lim, .o nai = 0 for ap, and limp oo i b4m+3) — o6 and limp—oo nb3* = 0 for b, then the rate

requirements in the above assumptions will be satisfied. Finally we note that the assumption that z consists
of all continuous random variables in Assumption 1.3 can be relaxed to allow mixed continuous variables
and discrete variables with finite supports. Nonparametric regression functions with discrete regressors with
finite supports can be found in Bierans (1987).*Our subsequent proofs can be generalized to cover such
cases. The continuous assumption greatly simplifies the presentation of proofs. The assumption of compact
supports (or finite supports for discrete variables), however, can not be easily relaxed. This is so even for
the parametric binary logit model. For models with growing regressors, the logit maximum likelihood esti-
mator can be consistent and asymptotically normal only if the regressors grow with some slow rates [see, for
example, Gourieroux and Monfort (1981)).

The following paragraphs provide a brief summary of elementary properties of E,(f(z,8)|zi6) and its
first and second order derivatives under Assumptions 1, 4 and 5. Similar properties hold for E,(f(z,8)|z)
under Assumptions 1-3. These properties generalize some of the familiar properties in the nonparametric
regression and semiparametric econometrics literature [e.g., Rao (1983), Robinson (1988), Powell et al.
(1989), and Ichimura and Lee (1991))].

Since E(f(z,8)|z6)p(z6]0) and E(f?(z,B)|z6)p(z5|0) are bounded on S x ©, the variances of Ayn(zi,0)
and Bja(zi) have the familiar order O(7x) uniformly on S; x ©. For any constant ¢ > 0, the uniform law
of large numbers of Proposition Al.1 impfies that

sup Ib,',‘AJ,.(z.',o) - E[b:‘AJ,.(J:i,O)]I =op(1),
5.x8©

iflimp o ,,‘Lnb.z.('“/')('"“)"" = 00. With the kernel J of order 53, under Assumnptions 4 and 5, Proposition
A1.2 implies that

sup |E(Asn(z,0)|z:) — As(x:,0)] = O(8%),
5, x0
where A(z,0) = E(f(z, 0)|z6)p(x6]0). Hence, if limg oo 8620 H/MHIM — o and img_ oo 0837° = 0,

sup [B7[Asa(2,0) ~ As(z.0)] = op(1). (A21)
S.x8

13 [n the statistics literature, Devroye and Wayner (1980) provides very general conditions for the proof
of some consistent properties of nonparametric regression functions which cover the mixed continuous and
discrete regressors without restrictions on their supports.
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Similar conclusion holds for By,(z,6) with its Imnt being By(z,0) = p(26]0). Let t,(z,0) be a trimming
function such that t,(z,8) # 0 only if Bya(z,0) > 2b,. Since

En(f(z,B)l=ib) — E(f(2,B)|=i6)

1
= m[(hn(ti.o) — Ay(2:,0)) Bs(2i,0) — As(zi,0)(Byn(2i,0) — By(2:,9))),

sup Ita(z,6) [En(f (2, B)lz:8) — E(f(2,8)lz:8)]]

< oup 17" Asn(2,0) = As(z.Oll + sup |E(=.A)Ied)| - sup 167 (Bra(z,6) ~ Ba(=, 00} (A22)
S, x0 $.x0 5.%x0

=op(1),
when limy, oo m%-b.’.““"x'"“)_'" = 00 and linpoo b53™" = 0. As plim,_ o tn(z,0) = 1 at each z and
0, the above result indicates that by proper trimming of the tails of the nonparametric density estimate of
z6 and relaxing it slowly as sample size increases, E,(f(z,8)|zi6) can converge in probability uniformly to
E(f(z,P)|2i6) in some desirable fashion.
Let VJ(u) = 8J(u)/Bu. The first order derivatives of A;,(2;,0) and Bja(z;,0) with respect to 8 are

Arnatond) = i ):Jr(z,.ﬁ)l (222)

b o (5 ) ()

n

and

Bno(zi,0) = I)bil‘“ Z (12;;, ) vJ ( ;2-6) .

As p(z619), E(llfe(z,8))1?|26) and E("f(z ﬂ)(z. — r)|||z4, 2;) are bounded, their variances have order
o( —.—-l-rn) uniformly on S; x ©. By Proposition A1.3 their biases have order O(by ) uniformly on S, x ©

under Assumptions 4 and 5. Proposition ALl implies that as lim,_q b2 H/MMHIF-m _ o ang
litty oo 802~ = 0,
Jup 1167 (A o1(2i,0) = Asoe(2i, O] = 0p(1). (A23)
g X

Similar result holds for By, o:(2:,8). For the second order denvauves. it follows from Propositions A1.1 and
Al.4 that as limg_.o -'-‘-b’“'“l'x'"““)"" = 00 and limpco b2~ =0,

3 Asn(2i,0) 02A,(z; 0)]"
e - - = R A24
S nb.. 96,00 36,00 op(1) (424)
for each component 6; of 6. Similar result holds for —,-’fé,i,'ﬁ.

Since 2EaUGRNE) = oo hy or(2,0) - Eg-:{;:;}u,,._,»(z,o) and its limit is

SE((z.P)=8) _ 1 Arent)
I3 = BJ(Z,G)AJ"(: 0) - B(z.0) Bjo(z,9).

OEn(f(2,8)|z8) _ OE(f(z,B)|zé)
oy ae

[Asnge(2.0) - Ase(z,0)) - EnlIGBNZO) gy oy Bp(z,0)]

1
= Bin(z.0) Byn(z, 0)
1

+[Esn(f(2.8)128)Byoi(2,0) — Asor(z.0)) mmwh(z-o) — By(z,9)]
= (Esn(f(2,0)26) = Es(f(2,8)|28)]Bys(z, 0)3 (z 9’

24

From (A2.1), a8 supg, g 16 '[Bsn(2,0) = By(2,0)]| = 0p(1) when lim,_.o, (203" +1/X™+1)°™ = o0 and
limp—oo bai ™' = 0, it follows that, with probability arbitrarily close to one for large n, whenever By, (z,0) >
Abg, By(z,6) > 2b,. Therefore, under the rate limp_oo (Bb20 /(™4 2=" = o5 and limpaco b3 ™7 = 0,

(o) (LU _ OB PN

The second order derivatives of the nonparametric regression function is
PE.(f(2,8)z8) _ 1 82Asn(2,0) 8%Byn(z,0)
96,00 = Bu(z,0) ( 00~ Bl B0 =50 o
_ 0Byn(2,0) O0Esn(f(2,0)I28) _ OE;n(f(z,B)Iz6) 8B.h-(zv0))
o6 86’ 86, a0 '

= or(l). (A2.5)

sup
Sa

It follows that
DEn(f(2,B)lz6)  F*E(f(2,8)|z¢)

96,06' 36,00
=1 8%Asu(z.0) _ 87A,(z,0) : 8°B,u(z.0) : 8’By(z.0)
= B;,.(z.()){ [ 30,00 ~ 96,00’ ] - [E"'U (z.P)lzb) P Lt (. A)l=h) 30,00
. [BM () 2EUCND _ g, (. 651(1;315":6)]
OE;n(f(z,8)|z8) OE;(f(z, B)|=6) 92A,(z,0)
[_‘W_‘—B o(z,0) - 3—0,310'(3,9)] } + (W

2 z z
- B ) Tpes®) _ py z,0) 22NN PEN PN s, )

1
X BB =0 — Banlz.0)).
- p2HNMA3)=m _ ) and fimpg oo 62372 = 0,
su PE(f(2,0)|26) _ 8*E(f(2,P)lz6)
srle 80,00' 39,00

A3: Scmiparametric-distance Estimator

Under the rates that lim,_ . %

tn(z,0) =op(1). (A2.6)

Proof of Proposition 3.1: Let
13,
Qrald) = - ch(ri.o)w(ti)cn(ze.o).

and Qj ,(0) = Ly G'(2i, 0)W(2:)G(zi,0). From Appendix Al, E.(f(z,8)z:) and E.(f(z,B)|2:é) con-
verge in probabllny respectively, to E(f(z,8)lz;) and E(f(z,8)|z:8) uniformly in (:,0) € X x ©. As
LY 5 IW(2)ll = Op(1), Qr.a(6) - — Q},.(8) converges in probability to zero uniformly on ©. The classical
uniform law of large number (e.g., Amemiya [1985], Theorem 4.2.1) implies that Q7 ,(9) converges in proba-
bility to Q}(0) uniformly on ©, where Qj(0) = E(G'(z,0)W ()G(z,0)). Under the identification condition,
Q;(6) has a unique global minimum at 6 = 0,. The consistency of 8 follows.

The SMD estimator 8; satisfies the first order condition: Z,_ Gn '(z.,O,)W(z. )(‘,.(z,.ﬂ,) = 0. With-
out loss of generality, take f to be a scalar valued function for simplicity.'*By a mean value theorem,

Vit -0 =-{3 chn W ()G a(20) + 1 3 G, DIV ()Gl D)}

x W Z {Gus(2:,80)W(2:)Gnlzi.0)},
i=1

14 This simplifies only the notation for sencond order derivatives.
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where Gp g0 denotes the second order derivative matrix of G, w r.t. 6. Since @ converges m probability
to 6o, it follows from (A2.2), (A2.5) and (A2.6) that Gu(zi,8) & G(zi,0,) = 0, G pr(2:,0) L Cui(2:,6.),
and G o0 (2:,0) & Gooi(2:,0,), where Ggpr is the second order derivative matrix of G w.r.t. 8, uniformly
in z; € X. It follows that

Valdy - 0,) = —{E(Gl(x,0)W(2)Gu(z,0,) + 0p(1)} ' 'lﬁ Z (G o2, 0,)W (2:)G (i, 00) ).

Denote An(zi) = An(%i.00), Asn(zi) = Asn(zi,00) and Byn(z:) = Bn(2,0,) for simplicity. As n goes
to infinity, A (z;) converges in probability to A(z;) uniformly in z; € X, where A(z;) = E(f(z, 8.)|z:)h(=:);
B..(z;) converges in probability uniformly to B(z;)( = h(z;)); Asn(Zi) converges in probability uniformly to

A,(z)( = E(f(z,80)lzbo )p(za.))- and By n(z;) converges in probability uniformly to By (z:)( = p(z:6.0.)).

Since 2E 7] Li) - VR )A,. o(zi), and
0E';‘(I(Z.ﬁo)lfiﬁo) _ 1 . AJn(’t)
a0 = T e = gy Bonelm)

Ghn o(zi) 0o) is a function of An(z:), Ba(z:), Asn(z:). Bin(2:), Ane(2:), Asne(2i), and By, e(zi). By using
the expansion of difference, () o(z4,8,) = Gy(#i.8,) + Ry, (z:) where Ry 1(2:) = Ra1,1(2) + Ra 1 2(2:),

R, |("‘
B(: ) ———[An.o(2i) = As(2i)] - B’( )AO(I-)[B"(I-) - B(zi))
- (, 3 Ay 0(2i) = Aso(zi)] + fxi,:; [Byn.o(zi) = Bue(zi)]
+ E;bl”'(z‘)["""(t‘) — As(z)] + {Ase(:) — 2E5(2:) Byo(2:)} Bz( )[I!;..(r.) - By(z:)),
and
R 1 3(2i)
= B M= Ba(e) = B = g (Balz) = Bzl Ana(zi) = Ao(z)

+ m[ﬂh(h) = By(z:))[Asn.0(z:i) — Ase(zi)]

+ __B‘z’nl(,‘)[/‘l"(‘i) = Ay(z:))[Bun,o(zi) — Bio(r:))

E(zi) 2 _ 1 . N "2
RV re e "(B,n(:.) 5@ ~ BBl A B = Ba(e)
Ey(=i) ! _
= By \Bra@) BJ(I))[BJ-(I-)—Bl(l'-)][BJnl(Tl) Bys(zi))
1
~ BB By * o) Pt = Dol Asn(s) = st

On the other hand, since G(z;,0,) = 0, by an expansion up to the second order, Gn(2;,0,) = €n(2:) +
Ra 2(z;), where

1
afe0) = [(An(e) = A=) = B Bl (Bue) = Bl 3
~ [(Asnled = As() = BUG. 876 (Ban2) = Ba(@)] =5
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and

e {An(2) = A(2)][Bal(2:) = B(2:)] = E(f(2, 86 )12i)[Bn(2:) = B(z:)]*}

R,..,(:;) = —

Bz( 3)
+ —s;im {[Asn(zi) = As@)Ban(zi) = Ba(zi)] = B(f(2,00)|2i0)[Brn(zi) = Ba(zi))?)

t BBz ,'Bn(,,,) {[An(=i) — A(z))[Bn(=i) - B(zi))* = E(f(z, B:)|2:)[Bal(z:) — B(z:)]*}

- m{ [Asn(z:) = As(2[Bra(z:) = Bo(za)]? = E(f(2.Bo)lzife)[Banlzi) = Ba(z)F').

It follows that
f ZG', o(2i. 80 )W(2:)Gn(zi,0,) = \/. 'z.;c.(:.. )W (2i)en (i) + Ra,

where R, = RS.') + RQ) + R.‘.:” with

(1) — L : ! (z; z; z;
B = o 3Ol W) Rl

B = = S (Runa(m) + Rusal)Wlzien )
i=1

and ﬂs.s) = ﬁ Z?.:l(R,..m(z.') + Ra,1,2(2i))W(zi)Rn 2(zi). Since each term within the summations of

R, RD, and R contains errors of higher orders: i.e., (An(2:) — A(#:))?, ete, Proposition A1 implies,
under the assumed bandwidth rates in Assumptions 3, 5 and 6, that R,, = op(1).
The remaining term can be analyzed as a U-statistic since

‘/- ZG.(Z.,%)W(Z.)(,.(:,) = \/-(n I} zz{uln(wu w;j) + Uzn (wi, wj)},
i=1j=1

where w; = (24, 2,),

Urn(wi,u5) = Gi(zi,B)W (2015, ) = B/ Bl i (B,

and

Uk, 05) = =Gali, 0 W (i)F (25, Bo) = BT (2, Bo)lzibo)] s gt (B0 5%,

E[Ut,.(w.-.w;)|w.-] converges to zero for [ = 1,2, but
nli!rD\o E[Urn(w;, wi)luy] = Giy(zi,00)W (i) u;,

and
nllﬂgo E[Uan(wj, wi)|w) = —E{G‘(:,oo)lV(z)|:¢6,}ug.

The asymptotic distribution follows from the central limit theorem for U-statistics in Proposition A1.7.

Q.ED.
Proof of Proposition 3.2 : Denote r,(z;,8) = fi(z:.8) + E.(f2(2.8)|2:) + En(f(z,8)]z:6) and

v o(2i,0) = 2D Let Qpa(6) = L S5, lyi — ralzi, O W(zi)lyi — rn(=:,0)]. By Proposition Al.1 and
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uniform laws of large numbers, QF,n () converges in probability to QF(0) uniformly in 0, where Q(60) =
E(ly - r(z,0))W(2)ly — (=, 0)]) As Q}(8) is uniquely minimized at 6,, 6y is consistent.

By a Taylor series expansion and the uniform convergence of the nonparametric regression functions
and their derivatives,

Vi(ine - 86) = (Elry(z,0.)W (2)re(z,0)] + o,(l)r'% S o2, 0)W (20)(wi = ralz:,00))-
i=1

Let Az n(z) = iu_-‘IFE Tiai f2(z. B) K (’a—‘_’l-) and ¢ = y; — r(z;,0,). By similar arguments in the proof
of Proposition 3.2,

Z T o(2i, 0)W(2:) (8 = ra(2:.6,)))}

77 Lorbtess 0 (s { = (Vaton) = B Bl Butellir
1
~Asalz) - E(f(z.a.)lzia.)B,."(:.»nm)}

,ZE”"”'-

i=1j=

where w; = (r;,2) and

0w, b) = v QW e E = (Ualer o) = BUfaCe Aol o (B

an

= UG o) = B Aol g (25021 )
As lim, oo E[U(w;, wj, bp)|wi] = ry(zi,0:)W(zi)¢;, and

Jim E[U(wj, wi, bn)lwi] = =rp(z:.0.)W (2:)[fal2i, Bo) — E(faz. B )lzi)] + E{ra(z,0.)W () =i Jui,

the asymptotic distribution of y g follows from the U-statistic centeal limit theorem in Proposition A1.7.
QE.D.
A4: Trimming

‘The function of trimming is to control for the erratic behavior of the nonparametric regression estimates
o that uniform convergence of the nonparametric regression functions and their derivatives is feasible on
the relevant range. Let p be a distribution function with support on the interval [2, A), where A > 0 is a
specified constant, such that both the first and second order derivates of p at the end points % and A are
zero. A simple p with these smooth property is the following function

te-3 15 A
= =1 - w?)2dw, =<c<a,
ple) /.. A g S¢<

where 18(1 — w?)? is a density function with support [—1,1]. This p is apparently a bounded polynomial
function on [&,A]. There are three sets of relevant nonparametric regression functions in our method,
namely, En(f(2,0)I%:), En(f(z,5)z:6) and V,(2:8). Define the following function

1 A<e
t(c)={ plc) 4$<ec<aA (Ad.1)
0 c¢c<%
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The denominator in E,(f(z, ﬂ)l.t.) is B,.(z.) and the corresponding trimming function will be ¢*( B, (z;)/an).

The sample z; will be deleted in the esti p dure if B,(z;) is less than Aa,. and is down-weighted if
it is greater than @a, but less than Aa,. Since a, goes to zero as n goes to infinity and Bn(z;) converges to
the density h(z;) of z at z;, t*(Ba(zi)/an) goes to 1 in probability as n goes to infinity. A similar trimming
has been used in prinson_(lDSB). For E,.(!(z,ﬁ)lz;i), the denominator is B;,.(:.-,é), and the trimming
function will be ¢*(B,,(z;,0)/b,). For the nonparametric variance matrix, the sample observations at which
Va(2i8) ate nearly singular will be deleted. Since

Va(2:8) = Van(z:,6)/ B3, (2:,0), (A4.2)

where
n( i ‘)— n( J .) E !(l ﬂ)!’(z —) ‘..l ' - ( 'é)/l, (=i l) ( )
Via(zi,0 Bjn(zi,0 ( ])b"‘ £ J J’ﬁJ Y Asn(zi, In i, 0), A4l

from (4.1). Thus W,(z;:8) = B2, (z:,0)V}. (2. 0)/det[V;,(z:,0)] where V;, is the adjoint of V,. The
determinant det[V;,(z:,0)) is a finite order polynomial of nonp tric estimators of unknown functions.
The trimming function for W,.(z.-é) can be t*(det([V},(zi,6)])/bn). The overall trimning function tn(2:,6)
is the product of the above tritnming functions, i.e.,

1n(2i, 0) = t*(Bn(2:)/8a) - " (Bya(zi,0)/b,) - * (det([V}, (i, 6)])/bn). (A4.4)

AS5: Generalized Semiparametric Estimator
Proof of Proposition 4.1
To simplify notation, let

D, (0) = - Z:n(z..o)o" 823, 0) W (£:6) G (2, 6).

and
n
Un(8) = % gl..(t;,O)C',,_,(z;,0)[4/,.(:;6)0,.(:;,0).

It follows that
Vilfic = 8,) = Va(l - 6,) - D7 (0)U.(6). (A5.1)
By the uniform conver;ence of nonparamemc regression functions and their derivatives in Appendix
A2, D,(6) - D;(6) = op(1) where D () = 15tz 6)G!(2:, )V =(2:8)Go-(2:,6). Define D3(8) =
L z'_, Gy(z:,0)V "1 (2:8)Go(2:,8). As to(z:, ) converges in probability to 1 a.e., it follows by the Markov
lity and the dominated convergence theorem that Dj,(6) — D3 (6) = op(1). On the other hand, D2(8)
converges in probability to D(6), where D(6) = E(G)(z,0)V ~1(26)Gs(2.0)), uniformly in 8. Since Gisa
consistent estimate of § and D(8) is continuous in 4, D(é) converges to D(6,) in probability. Therefore,
D.(6) converges in probability to D(f,).
It remains to analyze Un(f). Without loss of generalization, consider that f is a scalar function for
notational simplicity. By a mean value theorem, U, (§) = U, (0 )+ Ud(8)\/n(6 — 0,), where

n
U6) = % ;, 0%;{l,.(:.-,9)(7,._.(:,-,9)“’,.(:;6)0,.(:.», 0).
The latter term can be decomposed into a sum of two terms: U/3(8) = U31(8) + Dn(6) where
1~ @
Ud(9) = 5 ¥y 37 {0 (26, )G 020, O)Wa(2i8) (2, 0).
i=1
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Since 0 lies between 6; and 6, (',.(zi,ﬂ) converges in probability to G(z;,60,) = 0. By uniform convergence
of nonparametric functions, U} (0) = op(1). Hence U3(0) = Da(6) + op(1) = D°(6,) + op(1). Therefore
(A5.1) is reduced to f(ﬂg 0.) = -D"(O)U,.(O.) +0,(1).

Let Rua(2;) = Vo' (zibe) = V= '(zibo) =V '(r.6a)[V(=-5o) Va(zi8o)]V ™! (2i6,). We have Wy (2:6,) =
V"(zi6.) + R..;(z‘). Define

(.00 = (2 o (222D e e o)

where V;(z,0,) is the probability limit of V; ,(z,8,). With ¢,(z;) and the remainders Rn1(z;) and Rpo(z;)
defined in the proof of Proposition 3.1,

Ua(6,) = % SIE (20,00) + (ta(71,00) = £ (24,0 (G (24, 80) + Ru (2]
=1
% [V'I(J‘..ﬂo) + R,.:s(fi)][‘n("') + an(zi)]

f

where Ra = R + R + - + R is the overall remainder term consisting of fifteen terms of high order
errors of nonparametric functions, where, for example

-= Z ©(£:,00)GH(2i, 06)V ™ (21, B0 )en (i) + R,

R = % z":::'(z.»,o, )G (0. 80 )W (2ib0) Rualz:).
i=1

R = — }::,, (23,00 Rur(2:)Wal7:6,)ei( 7:).

R = ﬁ Zr:"(n.0.,)c?;(r.-.0.)11"3(:;)«..(:‘).
i=1

and
R = —E[l..(:. 0.) — t2(2:,0,)1G5(2:.0.)V " (2:. 60 )en(2:),

etc. The applications of Propositions A1.5 and AL1.6 imply that R, = op(1). The U-statistic central limit
theorem in Proposition A1.7 can be applied to the following term:

Ec (2:,0,)GY (2, 0.)V "N ziboJen(2i) =

\/'7(': 1) ZZ{UM(WHW;)"' UZn(‘”nW])}y
i=lg=1

where

Ui, 05) = (20 000G, 0)V = a8 (e ) = B e s o b (2,

and

i0o — Z;6
Ul ;) = A2 (20, 0)G 22,00V U 3,80) ~ BU G Pollsenll iy (o) -

By the asymptotic unbiasedness of nonparametric functions, E[Upn(w;, w;)wi] eonmges to zero for I = 1,2.
Furthermore, lim,_.o, E[Uin(w;, wi)lwi] = Gy(zi,0,)V ~"(zibo)ui, but

nli-n;lu E[Uan(w;, w))|wi] = -E IG',(:.',ﬂg)V"(riﬁo)lz.—F,} u; = 0.
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In conclusion,
V(b - 0,) = —D"(o,)% ;G’,(:.-,o.)V"(:,-&.)u; +op(1).

QED.
A6: Semiparametric Instrumental Variables

By the uniform law of large numbers in Proposition A1.1, 1 37 ta(zi,0)ul, ,(2i, 2:,6)V, ! (zi8)w; 2=
A, and 2 0 ta (2, 6)wiV, (zi6)wi B A. Denote

Uno(8) = ‘/-D..(z.,o)w.v H(zi6)un(2i, 2, 8). (46.1)

i=1
By the mean value theorem,
Un,o(6) = Un,u(8a) + Ul (8) - V(6 - 65),
where U,'f.',(é) =1 E;' 1 387 2 {tn(2i,0)w;V,7  (2:8)un(2i, 2i,8)}, which coverges in probability to A’. As shown

below that U, 4(6,) is stochastically bounded hence

Vi(bry — 0) = —{AAT1 A"} LAAT U, o (80) + 0p(1).

Since
Un(zi, i\ 0)
=u; = {Ea (f(z Bo)|zi60) — E(f(z2,B,)z:6,))
=u- 5 (.1: )[AJ-(I.)— E(f(z,B)|zi80) Byn(z:))
+ m[ﬂln(n) = By(zi){{Asn(=i) = Ay(2i)] = E(f(2.Bo)|7i80)[Ban(xi) — Bi(2:)]).
Un,u(6) = El (2:,00)wlV " zibo )i = =——[Asn(z:) = E(f(2,B0)|2i60) Byn(zi)]} + Ra, (A6.2)

B()

where R, is the remainder. As the remainder contains high order error terms, R, = op(1). By Proposition
A1.8in Appendix Al,

%Ztn(:;.ﬂ.)ww"(r.&a B (e — As i)

(A6.3)
Z{E(w'IZ-J W (2:8)S (2. B) = E[E(w'|266)V = (200) E(S(2, Bo)|z80)]} + 0p(1),

and
% : tn(i 00 )l V = (2:6 )E_(ﬁ”(’:)ﬂlgh( 3= By
% Z {E(o|zib0)V ™" (2i60) E(f (23, Bozif) = BIB(w/ 260)V ™" (z60) B/ (2. Be)l=bo)]} + ().
It follows from (46.2) — (A6.4) that (A6.4)
Uno(8,) = % g("" — B(wlzi6))'V "' (zibo)ti + 0p(1). (A6.5)
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