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Semiparametric Estimation of Simultaneous Equation Microeconomnetric Models
with Index Restrictions

by Lung-fei Lee*

1. Introduction
This article concerns about estimation of simultaneous equation microeconometric models, such as si-

multaneous equation sample selection model, simultaneous equation models with limited dependent and/or
qualitative dependent variables with index restrictions. The literature of semiparametric econometrics has
mostly considered estimation of regression-type equations but not explicitly simultaneous equation models
with limited and qualitative dependent variables with a few excepts [Newey (1985), Powell (1987) and Lee
(1991)]. Newey (1985) considered a simultaneous equation model which contains a single limited dependent
variable and the structural equation is linear in the explanatory endogenous variables (which are continuous
and not limited). Powell (1987) and Lee (1991) considered the estimation of sample selection models by some
semiparametric instrumental variables methods. This article considers simultaneous equation microecono-
metric models which allow nonlinear simultaneous equation structures and suggests general semiparametric
methods for the estimation of such models. The proposed estimation method is motivated by minimum
distance methods for the estimation of models of quantal responses. It has broad applications for both

parametric and semiparametric models. This article will focus on the estimation of semiparametric models.
To motivate the basic idea, consider the classical minimum distance (MD) estimation methods [Berkson

(1944), Taylor (1953), Rothenberg (1973), and Chamberlain (1982), among others]. In the context of quantal
response, the minimum distance method was developed for models with many observations of responses for
each value of the independent variable. In a parametric binary choice model, one specifies a parametric
probability function F(z, Q), i.e., Prob(y = l|z) = F(z, p). For each value of the independent variable, the
corresponding frequency of responses provides an unrestricted estimate, p(z,), of the response probability.
The minimum distance estimator of Q is derived by the minimization:

min Zw(r)(P(z,) - F(ri,1))2,

where m is the number of distinct values of z and w(z3 ) is some weighting function. For disaggregated data
with continuous explanatory variables, one has to use the method of maximum likelihood [see, e.g., Amemiya
(1981)]. However, with the development of nonparametric methods, nonparametric regression functions can
be consistently estimated without grouped data, even though that its rate of convergence can be slower
than the usual rate of convergence for the grouped data case. The main idea in nonparametric regression
estimation is local smoothing, in that, at each value of the regressor, its neighboring points are used to
construct a 'frequency' estimate. As E(ylz) = Prob(y = li|) in the binary response model, Prob(y = 1jz)
can be estimated by a nonparametric procedure. For a random sample of size n, suppose that E~(yiz) is a
nonparametric regression estimate of Prob(y = liz) at z. Then a generalization of the MD method is

min w(z)(E,,(yiz) - F(za, 3))3.

where w(zi) is an appropriate weight and n is the sample size.
Although the proposed estimation method has its merit for the estimation of parametric models, the

main interest in this article concerns estimation of semiparametric microeconometric models. In Section 2,
we will point out its relevance for the estimation of semiparametric models. Simultaneous equation sample
selection models, simultaneous equation models with limited dependent variables, and simultaneous equa-
tion disequilibrium market models provide some of the interesting examples. Another related model is a
semiparametric regression model with a Box-Cox transformation on the dependent variable. An interest-
ing feature of this estimation method is that it unifies the estimation of simultaneous equation models in
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a general framework without emphasis on the construction of appropriate instrumental variables for esti-

mation. Section 3 provides the asymptotic properties of consistency and asymptotic distribution of the

semiparametric estimator. Section 4 discusses the possibility of more efficient estimation procedures which
take into account variance structure of the semiparametric models. Generalized semiparametric minimum

distance estimators are introduced. We compare efficiency gains of system estimation as compared with
single equation estimation. Semiparametric efficiency bound for conditional moment restrictions on some

semiparametric models has been studied in Chamberlain (1992). The semiparametric models considered in
Chamberlain (1992) include the semiparametric regression model of Engle et al. (1986) and Robinson (1988),
and a model of sample section of known index. In Section 5, we compare our estimators and their asymptotic

variances with the Chamberlain efficiency bounds for those models. When the disturbances of those models

are also functions of indices, our generalized semiparametric estimators can achieve such efficiency bounds.

In Section 6, we investigate some general semiparametric instrumental variables methods for the estimation

of semiparametric simultaneous equation models. It is shown that the generalized semiparametric minimum

distance estimator is asymptotically the best semiparametric instrumental variables estimator. Final conclu-

sions are drawn in Section 7. Some of the basic properties of nonparametric estimates of unknown functions

and proofs of asymptotic properties of our estimators are collected in the Appendix.

2. Sinultauneous Equations Models withaIndex Restrictions
and Semuiparaanetric Miniamuma Distance Estimaaation

There are many simultaneous equation models in the microeconometrics literature, which include simul-

taneous equation sample selection models, endogenous switching regression models, disequilibrium market

models, and simultaneous equation models with qualitative and limited dependent variables. In this section,
we will introduce the semiparametric minimum distance method for the estimation of semiparametric models

with index restrictions. We show how conditional moment equations, which form the estimating functions

for our semiparametric estimation method, can be derived from the various microeconometric models.

As a general fraumkework, we consider estimation of 0 in the following system of equations:

where e is the parameter space of 0, W(zi) is some weighting matrix at z;, and n is the sample size. The
appropriate weighting matrix shall take into account trimming of the tail distributions of z so as to control
for the erratic behavior of denominators in kernel nonparametric regression functions in (2.2) and (2.3) Isee
Robinson (1988), Powell (1987), Ichimura and Lee (1991)]. We make the general weighting in (2.4) by an
arbitrary W(x) to illustriate its role in the asymptotic distribution of the SMD estimator. In a subsequent
section, we discuss the optimal weighting for some of the semiparametric models.

The equation (2.1) can be derived from a specific model. The following semiparametric simultaneous
equation models are interesting examples.

Example 1: Simultaneous equation sample selection models
Consider a system of latent equations g(y*, z,#Q) = u, where the value y of the vector y can be observed

only if the choice criterion z6 > E is satisfied. The disturbances u and E are correlated. The z is a vector of
exogenous variables. The g system can be a simultaneous linear or nonlinear equations system. An empiricial
example of this model is Heckman (1974). With the observed sample y, it implies an equations system with
unknown functions:

E[g(y,z, 0)I1 = 1, z] = E(uIJ = 1, z),

where I is a dichotomous indicator with I = I indicating that z6 > E. It implies also that

E[g(y,z,#)Il = 1,zb] = E(ull = 1,:z).

(2.5)

(2.6)

Under the index assumption that the joint distribution of u and a conditional on z may depend on z only

through :6,
E(ul I = 1, x) = E(ulxb > e, x) = E(ul I = 1, xb). (2.7

The unknown function E(uII = 1,x) in (2.5) and E(u|I = 1, x6) in (2.6) can be eliminated by taking the
difference of (2.5) and (2.6) using the identity (2.7):

l:(f(s, l())I|r] = lEf(2, ())|rb(0)], (2.1) E[(y.:,1
3 )II = 1,.] = E[g(y,r,Il)II = l,zaJ. (2.8)

where z is a finite dimensional (row) vector of exogenous variables, z is a finite dimensional vector consisting

of endogenous and/or some exogenous variables in r, f is a (column) vector-valued function with known
functional form, z6 is an m-dimensional (row) vector of indices, and Q and 6 can be functions of 0 (a finite
dimensional column vector). The latter specification captures possible parameter constraints on Q and 6.

The E(f(z,I3)|z) can be estimated by a nonparametric kernel regression. Suppose that z is a k-dimensional
vector of continuous random variables and K(-) is a kernel function on Rk with a bandwidth sequence {an}.

Let (z ,,z"), i =1,--, n, be a random sample of size n. Define A~.(t;,) = (_ jr f(z",)K ( )

and A~(z;) = E I ('-' . The E(f(z,ii)lz) at z = z; can be estimated by

These moment equations in (2.8) are valid for both the truncated sample selection model and the censored

sample selection model. For the truncated sample selection model where only sample observations on y and
x and the event I = 1 are available, (2.8) can be used for the SMD estimation. For the censored sample
selection model, the events of either I = 1 or I = 0 are also observed. For this case, additional information
is available in that

E(Ilz) = E(Ijzb), (2.9).

The censored sample selection can be estimated with (2.8) and (2.9). Alternatively, (2.8) and (2.9) imply

that

E(Ig(y, x, 0)|21J= E[Ig(y,x, #)I:6]. (2.10)

En(f (z,13) I) = An(tis,0)I/Bn(xi)- (2.2)

Similarly, let J be a m-dimensional kernel function with a bandwidth sequence {6). Define Aj.(zi,6) =

- 1 ) ; f(:j,I )J ("s ~' ) and B i n( i) = ( n_ 6 ? " i J (* )-* . T he E (f(z,#)|z6) at z6 =c e m
can ne estimated by

The (2.9) and (2.10) can be used together for the SMD estimation.
For an endogenous switching sample selection model, there are observed outcome equations for each

alternative. Consider, for example, a model with two choices. Let I = 1 indicate the first alternative and

I = 0 for the second alternative. There are outcome equations for each possible alternative: gi(yi, r,01,) = ut

for alternative 1, and 92(92, z,#2) = u2 for alternative 2. This model implies the following conditional

moment equations:

To simplify notation, let

E,,(f (z, /) z6) = A,,,(xi, )/BDin (.T, 0).

G:n(zi,0) = En(f(z,j3)Iia) - En~f(Z,/3)k;6),

(2.3) E[ly~,0,= 1,x] =E[ga(yi,z,/Ja)II = 1:61,,

E[9(y2 z,02)I =0, x] = E[g2(y2, x,/02)I J = 0,:],

(2.11)

and G(zi,68) = E(f(z,#f))zI) - E[f(z, /)1zr6). A semiiparametric minimum distance (SMD) estimation

method can be defined as

and (2.9). These equations can be used together for the SMD estimation. For models with polytomous

choices, the estimation can be extended to incorporate equations for all alternatives. For the polytomous
case, the z6 will be a vector of indices.

Example 2: Multi-market Disequilibrium Models
min G'n(xi, 6)W(zi)G (a+,0),ese2

2

(2.4)



Multi-market disequilibrium models have been specified in Ito (1980) and Gourieroux et al. (1980).
Ito's two-market disequilibrium system is specified as

= d y+21(1-I)

y' = b' + 02(l - I )

Id =Id + 0(y - i')

P'=' + 2(y - yd),

where yd, la, y' and 1' are effective demand and supply, y , Il' and I' are notional demand and supply, and
the observed dependent variables are y = min{y',yd} and I inin(I,1d). The notional demand and suply
equations are y= = za + u1 y' - za, + u2, l4 = z#j+ v,, and I' = z/, + v2. For this two-market model,
there are four regimes of excess demand and/or excess supply. In most applications, regime classification
information may not be available. For analysis, it is convenient to define latent regime indicators 1 and I2
in that 11 = I if and only if yd < y', otherwise, Il = 0; and 12 = I if and only if I' < to, otherwise, 12 = 0.
The implied equations for each regime have been derived in Ito (1980). Let y' = d - ' and 1* = 1' - IP.

Regime (I1= 1,12 = 1): This regime occurs if and only if y' < n2
1
' and 1' < th y'. The equations for

the observed dependent variables are y = yd and 1 = '.
Regime (1, = 0,12= 0): This regime occurs if and only if y' > all' and t' > #2y'. The observed

equations are y = y' and 1 = !.

Regime (11 = 1,12 = 0): This regime occurs if and only if y' < al' and I' > Q, y'. The observed
equations are y = y' + (y' - asil')/(1 - ni,?Q) and I = 1' + ( y*31  - I')/(1 - ni/i).

Rtegime (I, = 0,12 = 1): This regime occurs if and only if y* > "21' and ' < #2Y*. The observed
equations are y = yd + (021' - y')/(I - 0202) and 1 = Id + (1' -/#2y*).

From these regime characterizations, the regime probabilities are functions of two indices z(as - a,)
and z(ld - p,) because the regime inequalities involve only the variables y' and 1' and some unknown
paramiieters.'C( ombliininig regimes, sinceI I = 112 + 11(I - 12)'

y = ly + 0 - I1)y

= ' + 1y* + -') 1,(l - 12)(/1iy -1')+2 12(1- I)1 2 (' -/2y'),

because 1112(1 - I') = 0 and (1 - I, )( I - 12)(1 - Id) = 0. It follows that

E'(y~z) = za, + E(1 ) y' + 1 iE[Ii(1 - 12)(11y' - 1')z]) + _02 E[(1 - 11)12(1' - #2y)|x].

Let zA = (z(a,,-n.), z(fi -#,)). By index restrictions, E(1y'x) = E(I y'|6), E[I,(1 -I2)(#i y' -l')|z] =
E~l,(l - I2)(31y -' *)1r6] and E[(l - 11)12(1' -,2y* )I] = E(1 - 11)12(1' -,#2y')ib]. By eliminating these
unknown functions,

and production functions. All the structural parameters are captured in the notional demand and supply
equations [see, e.g., Lee (1986)]. For such models, these spill-over effects will be estimable.

Example 3: Tobit Simultaneous Equation Model
A Tobit simultaneous equation modelohasbeen introduced in Amemiya (1974):

yI=Z:7Ijy1+Zll+ul, 1 = 1,.--,m,
j#1

where the observed dependent variables are yg = max(yi,0), 1 = 1,.-.-.-, m. For this model, there are several
different reduced form equations. For the model to be a well defined probability model (coherency), the
regime conditions have to be mutually exclusive and exhaustive so that the regime piobabilities sum to
one. Let r be the m x m matrix which has ones on the diagonal and -7i j in the (i,j)th place. The
model is coherent if and only if every principal minor of F is positive [Amemiya (1974)]. The joint event
(regime) probabilities are functions of zfi,"". - , 4z,,,, which are the indices for this model. For exposition
and notational simplicity, consider a two-equation model:

y* = Y271 + zfl + u,

y2 = Y172+Z2+u2.
(2.15)

For model identification, it is assumed that there is at least one exogenous variable in each structural
equation not included in the other [Ameimya (1974), Assumption 3.3]. There are four regimes; namely,
(i). y1 > 0, y2 > 0, (ii). yi > 0,3y2 = 0, (iii). yi = 0,3y2 > 0, and (iv). yi = 0,3y2 = 0. The model coherency
condition is that I - 7172 > 0. Define four mutually exclusive and exhaustive dichotomous indicators 1i,

.-= 1, 4, for the four regimes. Let y = (y1, y2), y' = (Y;',Y;), u = (ui, u2), and B = (#1,102).

For the regime (i), let i'2 = 1 j2)g. The reduced form equations are y' = zBFr' + ui1. The

yli = r B+ u is observed if zlll ' +± e 1 > 0. The indices are zB. Since E(ul1l = 1, z) = 1(uIli = 1, zB),
it implies that E(yI'1 - zBI:i = 1,z) = E(yli - zB1]i = 1,zB). As the zu on both sides cancels each
other, the conditional moment equations are simply

E(yrii, =1,r) = E(yrilli =1,:8). (2.16)

For the regime (ii), let [2 = ( 2). The reduced form equations are y' = zBF' + utl';. The

y = x101 + ui is observed if zBl'i -+ ul'' > 0. The conditional moment equation is

E(y|I2 = 1,iz) = E(yi|I2 = 1, zB).

For the regime (iii), let [3 = 1 . The conditional moment equation is
\-7' 1 )/

E(y2|la = 1, x) = E(y2|I3 = 1, zB).

(2.17)

(2.18)E(y - :n.I:z) = E(y - xnI x(Cd - n, ). x(d - 16,))- (2.13)

Similarly,
E(1 - xldl) = E(1 - xziaI(rsj - r,),z()d -1,)). (2.14)

The (2.13) and (2.14) can be used for the SMD estimation. 2The al, 02, /i and #2 are not directly identifiable
from (2.13) and (2.14). However, if this disequilibrium model has been derived from behavioral models
(fixed price equilibrium models), all the parameters will be functions of basic structural parameters of utility

' The listing of regimes above demonstrates that the relevant indices in estimation are the two indices
z(a - a.) and x(/3 - Q,) instead of the indices Zad, za,, zl, and :0,.

2 There are symmetry properties in (2.13) and (2.14). The (2.13) implies E(y-zadz) = E(y-zadvz(aa-
a,), x(& - #.)) and vice versa. The (2.14) is equivalent to E(1- z,Iz) = E(I - z, z(ad - a,), z(#d -A, )).
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For the regime (vi), the reduced form equations are y' = illB+ u. Except for the regime indicator, no
observations on the continuous dependent variables are available.

In addition to the above conditional moment equations, moment equations for the regime probabilities
are:

E(Iz) = E(IiIzB), I = 1,2,3. (2.19)

These conditional moment and probabilities equations can be used jointly for estimation.
Alternatively, the regimes (i) and (ii) can be combined such that y = y271 + (i + J2)zi +(1, + 12)u.

Since E((I + 12 )ulz) = E((1 + 12)ulzB) and E(I + 121) = E(1 + I2 |zB), it follows that

E(y1 - Y27zIX, 1 12 = 1) = E(y1 - y 2 71IzB, I + 12 = 1), (2.20)



and
E(I + 12|z) = E(Ii + I2|zB). (2.21)

As 1I + '2 = I if and only if ym > 0, the above moment equations provide information for the estimation of
the structural equation of yi. Similarly, the regimes (i) and (iii) can be combined for the estimation of the
structural equation of y2. The corresponding moment equations are

E(y2 - v 72|, I + Is = 1) = E(y2 - py72[zB, 11 + I = 1),

and

(2.22)

(2.23)E(Im + 131z) = E(I + IIazB).

I'hese moment equations can he used for estimation.

The above examples provide some important models that can be estimated by the SMD method. In
a subsequent section, we will provide more detailed analysis of the simultaneous equation sample selection
models. Many more microeconometric models may be estimated by this method. There is some similarity
of this method with the semiparametric nonlinear least squares method introduced originally in Ichimura
(1987) and extended in Ichimura and Lee (1991). The model considered in Ichimura and Lee (1991) is an
index model motivated by a single equation (truncated) sample selection model:

and derived an asymptotically efficient two-step semiparametric instrumental variable method (conditional
on a given consistent estimate of 6) for the estimation of (2.25). The SMD method in this article differs from
these articles in that one does not need to care about the construction of appropriate instrumental variables
for estimation. It can be easily extended to the estimation of nonlinear simultaneous equation semiparametric
models. It can be designed for the estimation of a single equation and/or a system of equations.

3. Semiparametric Minimum-distance Estimation
In this section, we discuss asymptotic properties of the SMD method. Detailed proofs of the results can

be found in the Appendix A3. The underlying regularity conditions and assumptions are summarized in the
Appendix A2.

Let dr denote the SMD estimate from (2.4). Let 9. be the true parameter vector, and let P, and 6.
denote, respectively, Q and 6 evaluated at 9 = 9.. For any possible value 9 of 9. in 9, E(.IzO) denotes
E(.|z6(6)), a conditional expectation conditional on x6(9) for a given value 9, for simplicity. Furthermore,
E(.tzi) stands for E(.I|) evaluated at x = zx, and E(.|z;6) for E(.|r6) evaluated at z6 = zi6. All the
expectation operations are taken with respect to the true data generating process at 90. The following
propositions show that, under proper identification conditions and regularity conditions, 9, is /si-consistent.
To simplify notation, denote

Ge'(z,9s) = OE(f(z,0.)[z) OE(f(z,fi)z6o.)

and
u = f(z,#.) - E(f(z,0.)|z)

throughout this article. u is the disturbance of the model. As a convention, for any function, say, f(z, 9) of

9, fj(z,0) with a subscript 0 will denote its gradient 81' '''a with respect to 6.
Proposition 3.1 Under Assumptions 1-6 and the identification condition that, for any 0 $ 4, G(:,9) $

0 with positive probability on X where X = {zW(x) $ 0), 0, is a consistent estimator of 0. and

- 0) = - {E(G'(z,6O)V(x)Ge,(z.9,))) -=1 j[C(z,) - C2 (rj6.)]u; + or(l), (3.1)

where CI(z,) = G'(zi,.)V(z,), and C2(z,6.) = E{G',(z,9.)W(z)jz;6.). Consequently, fr/(9, - 9.) --.

N(0,01), where

y= z#3+r(z6)+ v, (2.24)

where r(-) is an unknown function of an index ab. The semiparametric nonlinear least squares (SNLS)
method introduced in Ichimura and Lee (1991) is

mi n (y; - x;#(0) - E,[y - z#(6)|rjb(©)]),

where E,(y - zi|ljz) provides a nonparametric estimate of r(z6). This approach is motivated by replacing
the unkown function r by a nonparametric function in an intermediate step and the final estimation is
done as an A estimation method. Similar ideas are used in Robinson (1988), among others. The SMD

approach takes an alternative view. Conditional on y being observed, the sample selection equation implies
that E(yjz) = z13 + r(z ) and E(ylzb) = E(zlz6)13+ r(zb). The unknown r is then eliminated by taking
the difference to have the estimating moment equation E(y - z/l|z) = E(y - r/hlz). Ilowever, as it can be
shown in subsequent sections, these two approaches provide asymptotically equivalent estimates for (2.24).
For the estimation of (2.24), the SNLS may be preferred as it is relatively computationally simpler. The
SMD approach involves the computation of E,(ylz). On the other hand, the SMD is applicable to the
estimation of simultaneous equation models and models with implicit function where the dependent variable
y can not be separated out, while the SNLS is not applicable to such models. An illustrative example is the
sample selection model (2.24) with a Box-Cox transformation on y: (y^ - 1)/A = z/3+ r(z6) + v. The SNLS
method min.,, E",{(y; - 1)/A - E,,[((yA - 1)/A)|z;6(O)] - [z; - E5(zlz;6)]#(6))

2 
would not be consistent

[see Amemiya (1985) for the regression case without sample selection]. The relevant SMD estimation is
mineA , Ia - (En[(y

5 
- 1)/A - z/(6)Iz;] - En[(y - 1)/A) - z#(0)Iz;6(0)])

2
, which can be shown to be

consistent. As a remark, we note that Powell (1991) has considered estimation of limited dependent variable
model with the Box-Cox transformation under quantile restrictions but the semiparametric estimation of
sample selection models with the Box-Cox transformation has not been considered in the literature.

For the estimation of a single linear simultaneous equation sample selection model:

il = (E[G',(z,.)WV(z)Ge,(z,9,)])~1 El {E[G'(z,O.)W(x)G,(r,6O)]}~

and Ej = E[(C(r) - C2(zls))Var(ulz)(Ci(x) - C2(z6.))'

We note that [Ichimura and Lee (1991), Lemma 4]

G,,(x,o.) = E(f,,(z,0o)Iz)- E(fe,(z,04)|z6s)

- 7'IE(f(z 0) 06'(-.)z' -E (6,)z' i ))

(3.2)

(3.3)

y = z#+ r(z6)+ v, (2.25) where VE(.jz6s) denotes the gradient of E(.I6) with respect to its argument vector 26,.
It is interesting to point out an implication of Proposition 3.1 for the special model with f(z, Q) = y -

f,(z,#p)-f 2(z,#Q), where fi depends only on a. For this case, G(z,6B,) = E(yjz)- fl (r, /,)- E(f2(z, /. )|:)-
E(f(z,0.)|z6.), and the model is equivalent to

where z contains endogenous variables. Given a consistent estimate of 6, Powell (1987) has suggested a
generalization of Robinson's semiparametric least squares [Robinson (1988)] to a two-stage semiparametric
instrumental variable approach for the estimation of/, in (2.16). In a subsequent article, Lee (1991) has con-
sidered in some detail the identification problem for a linear simultaneous equation sample selection system

6

y = f (z,/3) + f2(zj$) + E(f(z,/?. )|z.) + u. (3.4)



An alternative estimation approach for this model can be

mn [y, - f:(ze, 0) - En(f2(z,#)zi) - En(f(z,3)|z,6)]' W(zi)

x [y - ft(zi, 0) - En(f 2(z, 3)Iza) - En(f(z,3)|z1 6)].

Our suggested generalized semiparametric minimum distance (GSMD) estimator is a two-step estimator
based on a generalized semiparametric nonlinear least squares procedure:

(3.5) BG = - (Zt t(zi, 6)G',(zi, 9)W(z,)G,(z, B)}

x n(zi,5)G',,(z,)Wn(z$) (Gn(zi,5) - Gn,,,(za)$)
'=1

(4.3)

For the model where the term f 2(z, /3.) vanishes, the estimation method (3.5) will be the SNLS method
originally introduced in Ichimura (1987). By arguments similar to the proof of Proposition 3.1, the SNLS
estimator 

9
NL of 9 from (3.5) is consistent and asymptotically normal. For any possible value 9, denote

r(z,69) = ft(z,(/) + E[f 2(z,I)|)zJ]+ E[f(z, 0)|z6],

and re.(z,9) = r8,). The $NL has the same asymptotic distribution as the SMD estimator 0, for this
model, which can be seen from the following proposition.

Proposition 3.2 Under Assumptions 1-6 and the identification condition that, for any 9 $ 95, r(z, 9) $
r(x,9.) with positive probability on X, the SNLS estimator 

9
NL from (9.5) is consistent, and

Vn($NL -9.)= {Er',(z,9.)W(z)r,(z ,9.)]}- (.rL(z.,)W(z;)- E([r'(z,6.)W()Iz;6))u;+o,(1).

(3.6)
The limiting distribution of $NL for (3.3) is the same as the limiting distribution of 9, in Proposition

3.1 because E(fI,(x,#,)Iz) = f',(z,0.)/

4. Generalized Seniparanetrie Estimation
We see from Proposition 3.1 that the asymptotic distribution of SMD estimator depends on the weight-

ing function W(z.). If W(z) is selected as functions of zI., the asymptotic distribution for the corre-
sponding SMD estimator has simpler expression because C2 (z6.) will be zero as E {Ga(z,O.)W(z6.)z;6.)
= E (G(z,0.)jz;.) IV(z 16.) = 0, by (3.3). In terms of the issue of selecting the optimal weighting func-
tion, one may suspect that the appropriate weight function shall be the inverse of the variance function of
u. Unfortunately, if the conditional variance function of u (conditional on z) is a general function of z (not
a function of z6.), such a weighting function does not necessarily improve efficiency because the presence
of the additional term C2, which captures the effect of using nonparametric functions to replace the correct
regression functions as an intermediate step in estimation. However, in many microeconometric models such
as the simultaneous equation models introduced before, the conditional variances may depend on z only
through their dependence on zO.. With such heteroskedastic variance models, the optimal weighting func-
tion is indeed the inverse of the variance function because the complicated C2(z60) can he zero. In general,
if the (limiting) weighting function depends only on z, C2(zbs) will be zero, that can be regarded as an
orthogonality property of an estimation procedure. Thus for models where heteroskedastic variances are
functions of 6,, more efficient estimator may be derived by some generalized semiparametric procedures.

Let 0 be a fri-consistent estimator of 9, for example, 9, from the previous SMD estimation. Define a
nonparametric variance function:

where t.(z,#B) is a trimming function which goes to 1 as n goes to infinity. The function of t.(z,#) is to
trim the erratic behavior of nonparametric regression and variance functions at their tails. The trimming
becomes less severe as n goes to infinity. The detailed description of this trimming is in the Appendix A4.
This two-step GSMD estimator is motivated by the GSMD method

m in r(i,5)G'.(zi,6)W.n(z$)G.(z;,6).

llowever, for parameter value of 9 not in the neighborhood of 0, the trimming by tin(z;,0) does not control
properly the tails of the nonparametric regressions at 9. The two-step estimator overcomes this difficulty.
If t5(z;,9) were replaced by t.(z;,9) in the minimization method, the global minimum would be be zero
at values of 9 such that all the observations are trimmed out. One possible remedy is to introduce penalty
functions for trimmed observations. However, the two-step method seems simpler.

Proposition 4.1 Under Assumptions 1-5 and 7 and the identification condition that, for any 9 69,,
E[f(z,i?(9))jzJ - E[f(z,O(6))|zb(6))] 0 with positive probability, OG is a consistent, asymptotically normal
estimator with

f (So =- [) --. N(0,VGo), a

when QG = D-'(6.)EGD- (6.) with D06) = E [G'i(r,6.)V-'(z6.)G,,(x,0.)], and

(4.4)

EG = E [G'(z,Bo)V-1(zh4)Var(ulz)V-(z6o)Ge(z,6.)].

Furthermore, if Var(ulz) = Var(ulz6.), then nG = D-'(00).

One can compare the limiting variance matrix Sc with the variance matrix S11 in Proposition 3.1 for
the model where Var(ulz)= Var(ulzh.). For such a model

E/ = E([Cj(z) - C2(z6,)]V(zao)[C(z) -C2(zb4)]')

Since E.(G'(z,©o)|l,,) = 0 by (3.3),

E(G'(x,6.)W(z)G,,(z,9.)) = E(C',(r,9.)C'(z)) = E(G'e(z,,.)[C(z) - C2 (z60)J').

Hence 1, can be written as

V,(z,6) = nfz1f';3)i1 - En~f(z,TiIZialEn[f'(z,fi)Ii,6J, (4.1) Ir = (E(G',(x,9)[C1(z) - C2(z6)]'))' E([Ct(z) - C2 (z6.)]V(zh.)[Cs(z) - C
2
(zA.)]')

x {E([Ca(z) - C2(zAs)]G,,(z,9)))~
(4.5)

where 6 and 0 are 6(9) and 13(0) evaluated at 0. This nonparametric variance function is an estimate of the
variance function V(zh.) where

V(z6.) = Var[f(z,/3o)|z.] (4.2)

is the variance function f(z,0p.) conditonal on z6,. This is so no matter whether Var(f(z, fls)|z) equals
Var(f(z,#.)|z6,) or not. The feasible weighting matrix W(z,6) will be Wn(Zi6) = V 5 (z;6). Denote

~ = E n(f(z,#(6))zi) OEn[f(z,#3(6))Iz,6(6)]
09,, -, -

Comparing this 0, with 
0

G by the generalized Schwartz inequality, we see that 0, > OG. lence AG is
asymptotically efficient relative to 0, as it uses the optimal weighting.

When f is a system of equations, the above estimation method is a system estimation method. For the
estimation of the classical linear (nonlinear) simultaneous equation model, it is well-known that the three
stage least squares (nonlinear three stage least squares) estimator is effcient relative to the two stage least
squares (nonlinear two stage least squares) estimator. As a system estimation method, one may expect that
a system GSMD estimator will be asymptotically efficient relative to estimators derived from single equation



methods. For the case that Var(f (z,O90)Iz) = Var(f (., 0,)IxA, ), there is indeed possible efficiency gain in the
system GSMD method. To see that, let f consist or two components such that f'(z, fi) = (f;(z, p), ff(z, p)).
Suppose that 0, is the parameter vector in the first set of moment equations:

E[f,(z, j90,, ))Ix] = E[f, (z. #(.,1)) z(0,, )J, (4.6)

and 02 is the parameter vector in the remaining moment equations

E[fs(z, $(0,.2))IzJ = E[h2(z,Ii( 5 2))z6(Os,2)I. (4.7)

Consider first the case that 01 and 02 are dlistinct parameters. The 0, can he estimated by using only the
moment equations (4.6) of fl. Let 01, be the GSMI) estimator using!f, alone. Let 

0
,, be the corresponding

GSNID estimator using both f and f in (4.6) and (4.7) as a system. Let V z6,)= kV 2 (z65) V 2 (zb))

be the corresponding partitioned variance matrix, and let V (zoo) -=(V21(z6) V'N(zas) be its inverse

8F(J:(. P. )s.) _______________matrix. Let A,(z.) = E(f,.,(z,Ps0)Ix)- ~ and A 2 (z) = E(f 2 *,(z,AoI~fz) 89e From

Proposition 4.1, the limiting variance matrix of V4(
0',, - 90,1) is (2,,, where

andc the limiting variance matrix of v (O,.(; - 0,1) is 11,(, where

- E(A,(z)V 2
z(zbs)A (x){E[A2(z)V' 2 2(ib)A(x))-' E[A 2(x)V 2

1(xbs)A' (r)1.

Since V"1(i6.) - V,'1(z15 ) = V'
2
(z6)fV

2 2
(z6))'V

2 1(r6), the Schwartz inequality implies that

it-.G ,-Ill- F(A,(z)V 1(b1
2  

2 Xs xst ,)} VI1zs)IIx)J

- E[A1(r)I"
2
(zbs)/12(z)J{E[A2(x)V

22
(zbo)A'2(x)J}-' E[A2(r)V

21
(rzs )A'1(x)J > 0.

This shows that 91,G is efficient relative to 0,.. For the case that 0, and 02 contain some common parameters,
the system GSMD estimator which incorporates comtmon. parameter constrainits will be more efficient than
the CSMD estimator of (0,02) without imposing the constraints. Tro see that for our semiparametric
estimators, let 01 and 02 be fu~nction, of p~arameters ij.'Ten

OE(f'(z,, )I))_t9E(f'(z,/J,)Ixbs) -(00I O2o AZ)

where A(x) = (Aa A) (). Let ,j be the generalized semiparametric estimator of ; and let 0G=
O()o) and 02 c = 02 (Oc) be the corresponding constrained estimators of 0, and 02. By Rao's delta method,

the asymptotic variance matrix of (Or ,, B )) is

Sd C 1 8qTh e a s y m p to tic v a r ia n c e o f th e u n c o t s tra in e d e s tim a o r ( O , ,
0 
2 ,c ) is { E ( A ( z ) V ( ) A '( x) ) } 1. B y th e

Schwartz inequality, the asymptotic variance of (01,c, 02c) is apparently larger than the asymptotic variance

10

For the sample selection and limited dependent variables models, some of the conditional motnent
restrictions can he expressed as conditional moments conditional on the occurrence of regimes. It is desirable
to generalize the semiparametric estimation methods to cover such cases. Suppose there are L mutually
exclusive and exhaustive regimes in a model. Let It be a dichotomous indictor of the regime 1, l1, I., L
such that ELi.I I = 1. For the regime 1, the conditional moment equations are

Efzoz, = 1) = E(f((z,fis)jz6s,I, = 1). (4.8)

In addition to these conditional moments, the regime probabilities satisfy also the index restriction,

E(Idzx) = E(Iljzbs), 1 = 1,., L. (4.9)

To unify notations, denote fo(z,,os) = (11, " ", IL-I) and lo = 1. The moment restrictions (4.8) and (4.9)

can be summaried as

E(f;(z,,141zJh = 1)= E(fi(z,fi.)Izbs,11 = 1), 1 = 0 OI..L. (4.10)

The (disturbances in this ntodel are ug = f,(z,O,)- E(fa(z,1
3

,t = 1), 1 = 0, 1, - , L. It is apparent that
E(I1uI1;u Ix) = 0 and E(I1utI; () = 0 for all j 96 1, j,1,s = I, ""., L, i.e., all the relevsnt disturbances are
mutually uncorrelated. The E(f( (z, i) z;,, = I) can be estimated by

En(f,(z,f3)Ia',I = I)= ZI;i(zi,13K (Liz)/EIliK '(E'~) (4.11)

Since

= E(Ji(z,i)Izi, I, = l)E(Ij)zi)h(z,),

and (ni): iI K (!!~) 2. E(J, Iz,)h(z,) where h(z) is the marginal density of z, E,,(f j(z, ji tx, Ii =
1) is a consistent etmt of E(f,(z,f/3)Ix;,,I1 = 1). Similarly, E(f,(z, 3)1x16,JIt = 1) can be estimated by

Let V,(xb.) denote Var(ul:Psf, Ij = 1) for 1 = 0, 1, "", L. Let

V,,(z,6) = E,(f,(z,P)f(,A)Iz.,S, It = 1] - E,(f,(z,3)Iz~6, I, = I)E,,(fi(zaQ)fr, , It = 1), (4.13)

Let ,,,(x6) = V,-,'(x6) be the weighting matrices for 1 = 0,.. . , L. Denote

G)(ie)= E,,(f,(z, $)I x: , I ) - E,,(f,(z,fi)Ix,,It = 1),

and G(),(; 0) = OE,(f(z e),,=1) - E(f,(.p,,I,=i) The G'SN1D estimator of 0 for this model can he

defined as

0
c,G = - {Z tnzsA)E h " ,) 0)} (4.14)xiB

n L
xnx Z mG, (xi,, ) Wn,,,(z,)(GnP(zi,0) -Gn

11



where the trimming functions will be applied to all the conditional nonparametric functions and variances.

Denote G)(z,0) = 2!LfL l- a( [ l,t=1) . With similar arguments for the proof of Proposition
4.1, we have the following asymptotic properties:

3

Corollary 4.1 For the conditional moment restrictions model, under the identification condition that,
for any 0#9,, E(f,(z, p(6))|I = 1, z) - E(fg(z, #(6))IIg = 1, z6(O)) 0 0 with positive probability for some 1,
1 E {0,1,- -, L}, #e,G is a consistent, asymptotically normal estimator and

V "e,:- 95) -. N(0, fl,,),

where c, = D;*'(Oo )EJ.G D ' (Oo) with

D,(G@) =E 1,'
1 

(r, 0, )V -' (xr6)G((, 0))
end , = F.( i;C~'t'.ran.)'(rss)Vr(uu r, i1= )vF'(s6 5 )G~e'(2es))

(4.15)

This model is a special index model with z6 = z2. In our estimation framework, f(z, p(9)) = y - zxG and
G,(x, 9.) = -[z1- E(z1|#2)]'. With W(z) in Proposition 3.1 being an identity matrix (and trimming function
goes to unity everywhere) for the homoscedastic variance model, El = o

2
E([z1 - E(z:|z2)]'[xs - E(zsI| 2)])

and
= 

2
{E([zi - E(z1 lz 2)]'[z, -E(z1z2 )])}-,

which attains the variance bound of Chamberlain. For the model where o
2
(z) = e2(z2), as V(z 2) =

Var(f(z,0.5 )|z2) = Var(yjz), Proposition 4.1 implies that

n0 = (E(s-2(x2)[zi - E(zxiz 2)][zi - E(zilz2)]'))~ ,

which attains the variance bound of Chamberlain for the index variance model.
4
llowever, for the general

case where ,2(z) is a general function of z, neither 9j nor 9c attain the efficiency bound. Apparently our
estimation methods have utilized only index restrictions for estimation.
5.2. Sample Selection Model with Known Indez

The sample selection model considered in [Chamberlain (1992), p.568) is

and

p =zO.+ 27 +e,

1 0, if seo(z2, ) '0
0, otherwise,

(5.6)

(5.7)
Furthermore, if Var(uslx, 1, = 1) = Var(uIx85, I, = 1) for all! = 0,.-.- -, L, then Oc,G= =-ec(00)-

5. Semiparasmetric Regression and Sample Selection Models
In a recent article, Chamberlain (1992) has investigated semiparametric efficiency bound for semipara-

metric models with conditional moment restriction. The conditional moment restriction considered is

where z = (x1,z2) and y = (y,I), where y, = ly*, are observed; so y* is observed only if I = I. The
function g, depends on z only via z2 but is otherwise unrestricted. The disturbances e and v satisfy that
E(clz, v) = E(tlv) and v is independent of zi conditional on 22. This model is thus a sample selection model
with index restriction where the indices are rS = x2. This model implies that E(yilz, I = 1) = z10 + q(z 2),
where q(z2) = z27. + E(ulz 2, I = 1). Thus

E[p(x, y,G., .(22))|zJ]= 0, (5.1)

where 22 is a suhvector of x, p(r, y,!, r) is a known function, but q(z2) is an unknown measurable mapping
to a finite dimensional space. Chamberlain (1992) has derived an efficiency bound for 0 of models with
the conditional moment restriction (5.1). Several concrete examples are considered. Among them are a
semiparametric regression model [Engle et al. (1986), Robinson (1988)) and a sample selection model. As
these models are special cases of models considered in this article, it is worthy of investigating whether our
estimates can attain Chamberlain's efficiency hounds for these models.
5.1. Semiparametric Regression Model

The semiparametric regression model [Engle et al. (1986), Robinson (1988)) is specified as

P(z, y,0,r)= I[y - :10 - r] (5.8)

in Chamberlain's framework. Chamberlain points out that one may also extend the p function to include
the restriction that E(I z) = E(I1z 2), so that

p(z, yOr) = ((.8 ,)- 1-T)

Chamberlain derives the efficiency bound for this model and has pointed out that the efficiency bound for 9
is the same with either one of the above p. Let o2(z) denote Var(yIz, I = 1). The efficiency bound for 0 is

i-Ff (Iz) /E zizi /~ £( f z ( 1 l2 B 59=EE(|2)E LE J1 - E f) x2 )E (2x)|x2)/E o2( . (5.9)

For the case that e2(z) depends on z only through 22, ,2(z) =, 2(x2) and

E(yI) = z,94. +9.(z2), (5.2)

where the regression function consists of a parametric component and a nonparametric component. For this
model, p(z,y,, r) = y- zo - r in Chamberlain's framework. Let e2(z) denote Var(ylz). The information
bound [Chamberlain (1992), p. 569] for 0 is

J = E(!.) - E E , r.2 E / 2 .J=F() EV?2~ ) F(jIz2)/E~~2I

If the model is homnoskedastic with 2(=) ,2 a constant, then

J = o'Ef{[zi - E(z.ri2 )][za - E(zi, r2)]'} = e- 2
E[Var(:Ir2)].

if the variance satisfies also an index restriction with u2() = 0,2(Z2), then

J = E{7-2(2)[zi - E(zlz2)][zi - E(zi z2)]').

(5.3)

(5.4)

(5.5)

J = E{E(11r2)o'
2

(z
2 )[z, - E(z1z23)][z, - E(:,jz 2)J'). (5.10)

In our framework, this model implies that E(I(y - zi,9)|z) = E(I(yi - zOs)Iz2) and E(Ifr) = E(1|Z2).
Hence f'(z,Ip) = (1(y - z0O),JI). For the model that o2(z) = e2(22), since I(y - zi,.) = I(y - r 1 , -

9(r2)) + Iq(z2),

Var(I(y - zi6.)Iz) = Var(I(y, - z2B. - 9(:2))|22)+ q
2
(z 2)Var(1Iz 2)

= o2(z2)E( Iz2) + q
2
(z2)Var(IIr2),

(5.11)

3 The moment conditions in Assumptions 2, 4, 6, and 7 need, of course, be modified accordingly to
conditional moments conditional on the additional regime occurrence in additional to z and x8.

12

As in Chamberlain's discussion, the variance restrictions were not assumed to be known; otherwise, they
should be incorporated into the conditional moment restriction (5.1). The efficiency bounds were obtained
by the SMD or GSMD estimators if the true (but unknown) variance restrictions happened to be there.
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and

V(z) = (o 2
(z2)E(1Iz2) + q

2
(z2)Var(Iz2) q(: 2)Var(I( 2)

e(z2 )Var(Ilz 2) Var(IIz 2) (5.12)

As E(fj(z,13.)|z)- gEtJ' *.)l:,) = [-E(Iz 2 )(zj -E(z:1 z 2,I = 1)), 01= [-E(I{z 2)(zi -E(ziIz 2)), 0]jand
the first diagonal element of V-'(z 2) is (E(I(:2)f

2
( 2))' by a formula of inverse of a partitioned matrix,

Proposition 4.1 implies that

QG = (E((E(Ifr 2)(x1 - E(zzI: 2),0]V-'(z2)(E(IIz 2)(zi - E(zl z2),0]')} }

= {E(E(IzI2)e-
2
(x2)[z, - E(zi lz2))][z - E(zIz2)]')}~',

which attains the efficiency bound of Chamberlain for this model. It is interesting to note that if the moment
equation E(Ijz) = E(IIz2) were ignored but only the equation E(l(y, - i,9.)|z) = E(I(y1 - 2105)12) was
used in estimation, i.e., f(z,0p) = I(y- z16), then the limiting variance matrix for the GSMD estimator of 0

would be {E(var(I !1.y - )[r - E(zi jz2)][." - E(z:[F2)]')}-', which were larger than the variance bound
from (5.10) for this model as seen frorh (5.11). The point is that even though the equation E(l|z) = E(I (x2)
dois not contain 0, it helps to improve efliciency for the estimation of 0 when it is included in estimation
(as in a seemingly unrelated regression framework). This point has been noted in Chamberlain (1992) in his
efficiency analysis. The above methods provide an example.

It is of interest to note that if the conditional moment restriction E(y - z:,|, I = 1) = E(y -
:,0,J:6o, I = 1) is used for estimation. Corollary 4.1 implies that

el f= {E(Ia-
2
(: 2)[:, - E(zilr2)'[zi - E(zilz2))))~'

= (E(E(Ilz)- 2
(: 2 )[z, - E(z1lz2)]'[zi - E(zIl2)))-

= {E(E(lIz2)e-
2

(
2
)(r - E(rIr 2 )]'I[z - E(zIl2)))~'

which attains the Chamberlain efficiency bound for the index variance model. The addition of the conditional
moment restriction E(IIz) = E(Ij: 2) does not help because I - E(lfz) is uncorrelated with the disturbance
y - z0. - E(y - ,0zi.z, I = 1) = y - z10. - q(z2). This conditional moment approach differs from
the approach of using the moment condition of I(y - z16) in that the conditional moment approach uses
nonparametric estimate oftq(z 2) directly but the previous moment approach uses the nonparametric estimate
of E(Iz)q(z2). The variance of I(y - zio.) conditional onz is larger than the variance of I(y - 0,,- q(22))

conditional on z as the former contains the additional term g
2(x2)Var(Ilz2 ) in (5.11).

5.9. Sample Selection Model with Unknown Index
The previous sample selection model assumes that the indices in the choice equation are x2. A more

general model assumes that the index in the conditional moment and variance is z6(0.) with unknown
coefficients. In this paragraph, we derive the limiting covariance matrix for such a model. For generality,
consider a structural simultaneous equation where

variance matrix of the GSMD estimator is asymptotically more efficient. Even for the case that 9' =
(p', 6'), as long as Vq(z6,) does not vanish with probability one, the GSMD estimator of 6 (with proper
normalization) will be efficient relative to semiparametric estimators derived for estimating only the binary
choice equation. The system estimation of both the discrete choice equation and the outcome equation gains
efficiency because the disturbances of the discrete choice and the outcome equation are correlated.'For a
linear simultaneous equation sample selection model, Powell (1987) has derived a two-step semiparametric
instrumental varable method for the estimation of the outcome equation conditional on a given fri-consistent
estimate (first stage estimate) of the parameters in the choice equation. Lee (1991) generalized Powell's
method to take into account heteroskedastic errors and autocorrelated errors introduced from the first stage
estimate. These methods are single equation semiparametric instrumental variable method. As will be shown
in the next section that the GSMD is asymptotically equivalent to the best semiparametric instrumental
variable estimator, the GSMD is asymptotically efficient relative to the two-step estimator in Powell (1987).

For an endogenous switching regression model with two regimes and an outcome equation for each
regime, the GSMD estimation can be based on two conditional moment equations and a choice probability
equation. Let g9(y, z, /p,) = et and g2(yi, z,p.) = e2 be, respectively, the potential outcome equations for
regime I (I = 1) and regime 2 (I = 0). The implied conditional moment equations are

E(gm(z,i3o)Il = 1,x) = E(gm(z,/3s)I = 1,b) (5.14)

and
E(92(z,0.)jI =0,-) = E(92(z,I0.)II =0,z6.). (5.15)

Let g(zo.) = E(ell = 1, zb.) and 92(z6.) = E(c2 |I = 0, 
6
.). Let o, (zb.) denote the conditional variance

of g1(z, f.)-gi(z64) conditional on I = 1 andz, and let z(z6.) denote the conditional variance of g2(z,0.)-

q2(6o.) conditional on I = 0 and z. With (5.14) and (5.15) and E(I = 1|r) = E(I =l(|rbo), the limiting
variance of BecG follows from Corollary 4.1 which is

L, E:ljz6.)(((z,6.)G (,6)+ E( - 1|zAo.) ;2) . -)o(2'(r,6.)
(xb o) g(zb.){ )2 ( )j(r.) )

+ Var(II:6.) 86 (z - E(zr26.))'(z -E(z G)) , -

where

C l(x ,0.)= { E(gme(z,0.)|I = 1,z) - E(g,(z,.)|I = 1,:6,) + 86'(6.)(: - E(x|#6.))' 9:(16.)],

and

G~ ( ,il)(1 0,:) E~g9(z,3,)I 0:.) 86'(G.)
S(2)x, ) - [E(gz.(z,0.)I = 0,z) - E(22,0)|I = 0,zo) + 0 (z - E(zroe))'VQ2(z6.)].

a. Semiparasnetric Instrunental Variables Estimation
Instead of the SMD or GSMD methods, it is possible to suggest semiparametric instrumental variables

methods for the estimation of semiparametric simultaneous equation models. The (2.1) can be rewritten as

g(y',z,11.)=c (5.13)

is a potential outcome equation before selection. The estimation of 0 can be based on the equations
E(g(z,#.)f = l,:) = E(g(z,,)|I = 1, ze) and E(Ij) = E(Il6.). Let ' (z,,6,) = [(E(9,,,)1I =
1,:)- E(g.(z,#,)II = 1,:6.)+ * ) 1(:- E(zIA,))'q(:6,)), where Vq(zbe) denotes the gradient of q(zd6)

with respect to :6,. The limiting variance .,o of bc,G follows from Corollary 4.1:

{( E(Ilz.)G (z, .)G')(z,6)+ {VE(Ijz6.))
2 06'(6.)(z - E(zxl6.))'(z - (I ))06(6,)

\ 2(z6,) Var(I~z6.) 986 -8E' xd 198
For the semiparametric binary choice model, the semiparametric efficiency bound has been derived in Cosslett
(1987) and Chamberlain (1986), which is °~E f f) - "- (z- E(zz:e))'(: - E(z::os))8a;d. Comparing
the inverse of the efficiency bound and the limiting variance matrix of the GSMD estimator, the limiting

14

f(z,13,) = £(f(z,13,)Iza,) + u, (6.1)

where u satisfies E(ulz) = 0. Denote us(zi, zi,6) = f(z, p) - En(f(z,~3)|z,6) and u,, , ,9,,) =

' Furthermore, u(ziszB) = f(z ,R) - E(f(z,D)1z;6) and us,(z;, z;,B6) = "u" "o. Let w be a

The sample selection model with unknown indices has not been covered in Chamberlain analysis of
conditional moment restriction model, it is unknown what is the efficient bound for the conditional moment
equations of this model.
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matrix of instrumental variables (functions of z).
6
A semiparametric instrumental variable (SIV) estimator

taking into account possible variance structure of u can be defined as

v = - {>tn(z,E)u',*(z1, z,, )V-'(z;6)w; ( t(z1,5)wV,-1(z;$)wi

i1i=1
" -1

tn(za , )w V,-'(z 6)un,,,,(z;, ti ,)

because A = E (u',(z,z,e.)V- t (z6.)w) = E (u'(z,z,e.)V- 1
(z6.)[w - E(wjz6.)]) by (3.3). By the general-

ized Schwartz inequality, 0- ;> O7,,. It remains to compare the GSM D estimator with any SIV estimator.

Since w is a function of z and E(u4(z,z,e.)|z) = G'(z,8.),7

E (u'(z,z,e)V-(z5.)[w - E(wfz6.)]) = E {E (u',(z, z,e.)V- (z6.)[w - E(wlz6s)]) Iz}
= E(G',(z,0.)V-1(zo.)[w - E(wlzo.)]).

It follows that 
1 1

1v.e can be rewritten as

nrv,, = { E (G',(z,O)V-
1
(z6.){w - E(wjzd.)]) A,-' E ([w- E(wlz6)]'V-'(z6.)G,,(z,Os))}-.

Comparing this variance matrix with (2 in Proposition 4.1 for the model Var(ulx) = Var(ulz6.) by the

generalized Cauchy-Schwartz inequality, it is apparent that -1' %> 0-. To show that the GSMD is a SIV

estimator, take

X Z nlzi,O l4V ,(zi6) (un(z~,z1,t) - unB'(zi,zs.O)O)
di

(t.2)

This two-step SIV estimtor is motivated from the following semiparametric nonlinear (weighted) two-stage
method:

min t.(=i, 5)u'(z , zi, 6)V.-' (z;$)w; W. V,,- ('z)w; w; V,-' (z;5)un(zi, zi, O).

The asymptotic distribution of this two-step SIV estimator can be derived with similar arguments in the
previous proofs. Some of the details are in the Appendix A6. Let A = E (u'(z,z,O.)V-'(z6.)w) and
A = E(w'V-'(z6.)w). By uniform convergence of nonparametric functions,

( - 04) = -(.AA-'.l')-'A-A~ t.(x ,0.)w V1~'(z;6.)n( i,zi,6.)+}o,(1)-

It follows from the U-statistic theory that

-, -Z.(..,s)w4V-'(zd6.)n,(z;, zi, 9.) = (w;- E(wjz,6s))'V-'(z,6.)u; + o,(l).

Ilence fa($rv - 9.) - N(0,11v) where

Otv = {AA-'A'}-'AA-'E([w' - E(wfr6.)J'V-(z6.)Var(ulz6.)V-
1

(z6.)[w - E(wf|6.)J)

x A-tA'{AA~'A')-'

For the model where Var(ulz) = Var(ulz6.), 
tOiv becomes

w = E(fe,(z,#o)Iz) - V'E(f(z,03.)|z6.) ('()z' - E ,o. (6.5)

then w - E(wlz6) = G,,(z,G.) from (3.3) and flrv,, = 1G. The optimal instrumental variables vector

is G,,(z,G.) (or some consistent estimates of it). The GSMD is asymptotically equivalent to the best SIV

estimator for the model where E(ulz) = E(ulzh.) and. Var(ulz) = Var(ulz6s).

7. Conclusion
This article has considered the estimation of broad classes of general nonlinear simultaneous equation

models with qualitative and limited dependent variables, and models with sample selection subject to index

restrictions. A general semiparametric estimation method, which is motivated by the classical minimum dis-

tance estimation method of quantal response models, is introduced. Conditional on the vector of exogenous

variables, (conditional) moment equations can be derived from a structural microeconomic model. Such

equations contain unknown functions because of unspecified distribution of distrubances in the model. The

unknown functions can, however, be eliminated by exploring index restrictions in the model. After elimi-

nating such unknown functions, the implied moment equations are expressed as differences of conditional

moment equations conditional on all exogenous variables and conditional moment equations conditional on

indices. The implied moment equations become the estimating functions for our approach. To estimate the

structural parameters, the conditional moment equations are replaced by nonparametric regression functions

and the structural parameters are derived by minimizing some average distances of the nonparametric re-

gression functions. The estimators are shown to be J-consistent and asymptotically normal. The GSMD

estimators which take into account of unknown heteroskedastic disturbances with index restrictions are also

introduced. The GSMD estimators are shown to be efficient relative to unweighted SMD estimators. The

GSMD estimators which take into account of correlation across different structural equations are shown to

be asymptotically efficient relative to single equation estimates. For the estimation of semiparametric regres-

sion models and some sample selection models with known indices, efficiency bounds have been derived in

Chamberlain (1992). Our semiparametric estimators can attain the efficient bound when the heteroskedastic

distrubances happen to satisfy also the same index restriction. For models with indices involving unknown
parameters, semiparametric instrumental variables approach is introduced. The GSMD estimator is asymp-

totically equivalent to the best semiparametric instrumental variables estimator. An interesting feature of

the proposed estimation approach is that it provides a unified estimation framework for the estimation of

regression-type and simultaneous equation type models. For the estimation of simultaneous equation models,

all one shall concern about for structural estimation is the set of appropriate exogenous variables used for

conditioning. These methods are of particular interest for the estimation of nonlinear simultaneous equations

models with sample selection or limited dependent variables.

If w were not a function of z, the following equality will still hold if w does not provide extra information

in the presence of z. This is so, since E(u,(z, z,6.)Iz, w) = E(u'(z, z,0.)Iz) under such a circumstance.

17

S~v= (AA'A')-'AA-'AeA'A'{AA'A')-', (6.3)

where A. = E([w- E(wmvz.)]'V -(zos)[w- E(wjz5.)]). From this result, it is interesting to note that better

instrumental variables are w - E,(wjz6) instead of w, if E(wlzds) # 0. Using w - E,(wjz6) as instrumental
variables, the limiting variance matrix of the corresponding SIV will be

flIv,, = {AA, A'}-t, (6.4)

s Alternatively, one may assume that w does not provide extra information in the presence of z in any
conditional expectation function conditional on z and w. If that were not the case, z should be enlarged to

include w.
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Appendix

Al: Some Useful Propositions
The following propositions will be used repeatedly in subsequent proofs of asymptotic properties of our

estimators. The first proposition is useful for establishing uniform convergence in probability of nonpara-
metric regression functions with index restrictions and their first and second order derivatives. This uniform
law of large numbers generalizes slightly the uniform law of large numbers in Ichimura and Lee (1991). The
following three propositions summerize the bias order of nonparametric functions and their first and second
derivatives. These biases are familiar results in the nonparametric regression literature and semiparametric
econometrics literature [e.g., in Rao (1983), Robinson (1988), Powell et al. (1989), and Ichimura and Lee
(1991)]. They are summarized here for convenient reference and are useful to justify some of the regular-
ity conditions in Appendix A2 on our model. The remaining propositions will he useful for deriving the
asymptotic distributions of our estimators.

Proposition A1.1 (A Uniform Law of Large Numbers) Let (z;} be a sequence of i.i.d. random
vectors. The measurable function h(z,0,an) takes the form h(z,0,an) = rhu(z,,)h 2 (z,O,'.e , where
an = O(l;), p > 0, d > 0, 0 E e, and s(z,0) is a finite dimensional vector-valued function. Suppose that
the following conditions are satisfied
(1) 9 is a compact subset of a finite dimensional Euclidean space.
(2) The function hi(z,6) is differentiable with respect to 9. The rnh order moment, where r > 2, of

supece h (z, )| is finite. The first moment of supee h(s,,)| exists and is fnite.
(3) 1h21 <c for some constant c.
(4) E(h2h2) = O(a,) uniformly in 0 E 9, for some d.
(5) The functions h2(z,60, u), and s(z, 9) satisfy the bounded Lipschitz condition of order I with respect to 9

and u.
If(lim. ai+ =/r)d-d ooh , E h ,a) - E(h(z,, a I)) A0. Furthermore,

in addition to the above conditions, if E(h(z,0,a~)) converges to a limit function h,(0) uniformly in 0 9E ,
then sup*EI n E h(z,, an) - hc,(6)[ P"0.

Proof: This theorem generalizes slightly the uniform law of large number in [Ichimura and Lee (1991),
pp. 22-23) in that the the condition (2) is used to replace the original conditions 2 and 3 in that article.

8
In

the orginal proof, the distribution of z was divided in an interior component and a tail component. The proof
can he modified by dividing the distribution of sup,|hi(z,6)I into interior and tail components instead. With
this slight modification, the original arguments for the proof in Ichimura and Lee (1991) will go through
with little change. Q.E.D.

Proposition A1.2 Let K(v) be a function on R'" with a bounded support D such that fD IK(v)Idv < oo.
Let t(z,0) be a continuous m-dimensional random vector. Suppose that E(c(z, z,6)|t, z; ,9)g(tj1), where g(tI|)
is the density function of t(z,0), is uniformly continuous in t, uniformly in (0, z).9Then

limnsup E [c(z, z , 0)4 K(t(z,6) - t(z, 9) z; - E[c(zz;,6)It(z;, ), z;,]g(t(z;,6)6) = 0.
j-",,,, an an

Furthermore, if K(v) is a function with zero moments up to the order s, i.e., fD vi' -.- v, K(v)dv = 0,
for all ij >0,j = 1. m, ii + +i,n < s* and fD1|||||KI(v)Idv < oo, and E(c(z,z;,0)|t, z;,O)g(t|6) is
differentiable on R'" to the order s*, and the s' order derivatives are uniformly bounded, then

II[ 1 lt(z.,9) -t(z,) \l)sup gE [c(z, z;,0)-;;-K z;- E[c(z, z;, 6)|t(z., 0), zi,6g(t(z , 6)10) = O(a', ).
',1 an a"n )

* The original result is formulated to include U-statistics. llere we only need statistics with a single sum.
The above proposition can also be modified for U-statistics.

* A function g(t,z;,69) is said to he uniformly continuous in t uniformly in (9, z) if e > 0, there exisits a
6 > 0 (may depend one only) such that whenever lt, -1211| ; 6, |g(t 1, z;,0) - 9(t 2 , z;,0)|| <e for all (zi, 0).
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Proposition A1.3 Let K(v) be a function on R'" with a bounded support D such that K(v) goes to zero
at the boundary of D and its gradient " is bounded. Suppose that e[E(c(z,z;,)It, z;,8)g(t9)], where
g(t|9) is the density function t(z,9), are uniformly continuous in t, uniformly in (zi,). Then

E i 8K i~e) i
n sup E c(z, zi, 9)'m+1 8 av% z; - [E(c(z, zi,)It(z;,9), zi,)g((z,69)9)] = 0.

Furthermore, if K(v) has zero moments up to the order s', E(c(z,z, 9)jt,z;, 9)g(t|9) is differentiable at
t everywhere to the order s' + 1, and these derivatives are uniformly bounded, then

I K ('''' 0'1'')
sup E c(z, z;, ) 1+1 0 ' )s2z1 - [E(c(z, z1,6)|t(z1, B), z1,,9)g((z;, 6)|6)] = O(a' ).
s~B aI nJ

Proposition A1.4 Let K(v) be a twice differentiable function on l' with a bounded support D such that
K(v) and its gradient K° go to zero at the boundary of D, and the gradient 8Ka ) and its hessian matrix

.av are bounded. Suppose that aja{,4E(c(z,z;,9)|t, z, 9)g(t|)] are uniformly continuous in t, uniformly
in (zi,O). Then

1 8
2
K ('''')~'(z')) 82

lim sup E c(z, z;, 6) ' ' ' -a z;- 2[E(c(z, z;, 9)|t(zi, 9), zi, 9)g(t(z;, 6)|6)] = 0.n-O,,,, a'n+2 OvOc' I O vv'

Proposition A1.5 Let {C,,(z;)), j = 1,2 be two sequences of measurable functions of an i.i.d. sample
(z). The {dn(z;)) is a sequence of mieasurable functions with the property that either E(Idn(z)I) < oo
uniformly in ni or sup, Idn(z;)| = Op(l). Suppose that, for each j,

(1) sups, IE(C,n(z)|z;) - C 1 
(zi)I|= O(a;',,), for some measurable functions C(,V(z;), and

(2) sups var(C,n(z)|z,) = O(-k), j = 1, 2.

If Iil... n !,a' = oo and lim.... ia ', = 0 for j = 1,2, then

1 in,1' '

dn(z,) jC,,(zi) - C' '(zi) . C2.n(z,) - C(2)(zi)I P 0.

Proof: This is Lemma 6 in Lee (1992). The proof follows from the Markov and Cauchy inequalities. See
also [lchimnura and Lee (1991), Lemma 101. Q.E.D.

Proposition A1.6 Let {A,(zi)) and (Crun(z,)). I = 1,2 be sequences of measurable functions of an
i.i.d. sample (z;). Suppose that,
(1) n i72 IAn(z.)I|= Op(1);
(2) for each I E {1,2), Cu,,(z) = (n-i) ; -J;-h (z,, zi)h'(zj, z;, s,( ,,)) satisfies the conditions (I)-

(5) of Proposition A1.1 with a being the compact support of z; and
(3) sups] IE(Cu,n(z)|z.) - him (zi)I|= O(a'' ) for some su > 0 and measurable functions hPn(z).

If lim.. "o in a2(1+ ,-J' = oo and limn., na
2n = 0, wheret = t1 + t2 , for l = 1, 2, then

An(z1)|C,,n(z;) - hn,((zi)|''C2 ,n(zi) - h 2)(z;)|t2 P 0.

Proof: Since sups In- 1/2 i_1= An(z;)IC,,(zi)-h,)(zi)|''C2,n(z)- h
2
)(z)|'2| < ,i sup,, IC,n(z)-

h ,)(zi)|t sups |C2,n(z,) - h,
2
)(zi)I|'n - A, An(z,)|, it is suflicient to investigate the convergence of
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n5
1
* sups, Cjnz;) -h ,z) As alg,n = 0(1/n) in Proposition All, ns = 0(1 ar,"). Therefore,

si'
1' t 11G,(z 1) is proportional to (n £': o, - 4r.,9, 

1
(zj , zdl4

2
(z,,zi,,s(zj, z,) . Proposition A1.l

implies that if fn'i~n+5 {tp))d goes to infinity, n'l(
2
t)[C,,(z,) -- E(C,,,,(z.)jz,)J P- 0 uniformly

in j. This rate requirement is equivalent to that "'-r'"'''" (i+l/r)d,-Jdge oifiiy ic

nA1sup f!~t,,,(z1) - nlZjt

< {sup jvo
t21

[C,,(z.) - L(Ce,,(z,)jz,)Jj + SUP In' 1 12' 1
[E(Ce~n(z,)jzi) - h)z~

th~e results follow. Q.E.D.

Proposition A1.7 Let {z,) be an i.i.d. sample and a
4

,zn)) be a sequence of vector-valued random
functions with bandwidth (a.,). .Suppose that
(1) there exist square integrable functions qj(z), j= 1,2 such that Ilt(4n(:,an)Izj) < q(z 1), j = 1,2,
(4)? E%(*,(z,an)) = O(a,) and var(+,,(z,e,,)) =n()
(3) lim,,~55 l(4n(z, a,)1zj) = ,',(z, ), se., for some measurable functions ,/j, j= 1, 2, and
(4) Er.,,,a, = 0 and lirn,,...,,. nan = o

If #'t(z) snd 01(z) are zero ac., then n~n-!) 1 j n~ z,,a,,) -~- 0.
On the other hand, if lur,.., , (ft,(Z) .+. t'(z)J[t,(:) + tba(:)') =5V, then,

Proof: This result generalizes slightly the central limit theorem for U-statistics in Iloeffding (1948). It
follows fromt a U-statistics result in P'owell, Stock and Stoker (1989). It is Lemmrra 8 in Lee (1992). QE.D.

Proposition A 1.8 Suppose that K is an r-dimensional kernel function with a bounded support D such
that JD IK(v)Idu' < co and with a bandwidth an,. Let A,,(slre6,) -=(_ - h* sK (t''a') and let
g~6 jo be the density of z65 . Denote A(sfrb.) = E(sfrl5 )g(zdO 05 ). Let f,,(s, xbo) be measurable functions
such that sup,, If (a, zbs)1 is square integrable. Suppose that
(1) E(sjzt~s)g(z6.16.) is uniformly continuous at :6.,
(2) E(f,,(a,z6.)fr.6.)g(x66.f 9) is continuous in rho ae. uniformly in n,
(3) there exists a measurable function h(x61,,) such that

E(f.(szA.lr&.)j < l(A.)

with Kf h(x6)A(sjzd.)f < o for large n, and
(4) liin,..., E(f,(s, i6.) jz6.)= c(r-6,) a. e.

lf lim,,...., ,,o = oo and lim,, ,3oah' = 0, then

. E f,(,, ~A (skA,) - A(sjxAs)]

- Ire Esc(xeC,)g(zet(i6,,) - 6[c(z(,)E(sjzc.)g(x~os6,)J.
e_!

Proof:

1 n

l-i f,,(si,zi6s)(An(s1:ebo) - A(sjz,6,,,0,,)) =n /ri ot i
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where s = (a, a) and

"ns, a)=fn(si5oe6)[4 1 K(ads ai. -AJ(sa.As)J

By (1), lim,,.. 0, E(A,,(stzi6.)f a) = A(sJxi,). Therefore, E(b,,(i,,ij,a,)&,) converges to zero. On the
other hand,

E($,,(ij, &, n a)(i,) = s"E fndsJ~ xjbo)- 1--( (a0. -x,0 r.' )ix]s - ) I

Since limn .. ,j, s1 z1bo)1- E[fn (s, 6a,6)gzbJ(z6,,18°)} = 0 by condition (2), it

follows that, by conditions (3) and (4) and the Lebesque convergence theorem,

Iim ,F(4b(,(a1,Anm,)J1) = sic(:,Iso)(:aIbOs) - E(c(a6,o)(sJzits)g(:6.j0.) a..

The result of the proposition follows as the projection of a U-statistics (see Proposition A 1.7). Q.ED.
A2: Regularity Conditions, Nonparanetric Regression and Related Functions

This appendix collects regularity conditions for our model and points out some of the useful properties
of nonparametric (index) regression functions and their first and second order derivatives. Assumption 1
below contains the basic regularity conditions of our model. Asumption 2 contains regularity conditions on
the regression function of f (z, J3) on a and its first and second order derivatives. Assumption 3 describes
some basic desirable properties for tlhe kernel function I[ and its bandwidth a,,. Assumptions 4 and 5
are conditions for the nonparametric regression function of f (z, O) on ad and related functions and the
kernel function J. Assumption 6 contains additional regularity conditions for the SMD estimator. Finally,
regularity conditions for te GSMID estimator are in Assumption 7.

Assmptiosn 1:
(1.1) D is a compact convex subset of a finite dimensional Euclidean space, and the trtue parameter vector 0

is in the interior of 8.
(1.2) The sample observations (zi, z ), 1= 1, " ", n, are i.i.d.1n
(1.3) a is a k-dimensional vector of continuous random variables with a density h(a) and a compact support

5C~R't.
(1.4) 6(9) is twice differentiable wert. 9, and its first two order derivatives are bounded on e.
(1.5) For each 6 E 0, ad is an m-dinmensional vector of continuous variates with a density p(x6J6).
(1.6) f is a vector-valued measurable function with known form which satisfies thme relation F.[f (z,?()fr

E[f(z,il(Os)Ir.).

Assumnption 2:
(2.1) f is differentiable a~rt. 6 to the third order. The rth order moment, where r > 2 of sup, 1flf(z,/3lJj,

sup9sL 8 0)j and sup9 jj Iz8) fl, where 03's are components of 0, are fimite. The first inorument of

sup9 1~ ) for all , , jj3, exist.

(2.2) h(i), E(jt f(z, ))12 Jx), E (II ,) 112a), and E (l1 *r71 ~ 1212) are bounded on Sr x8O.

(2.3) h(r), £(f(:, 13) a), E (OA-e z) , and E( '(?)fit, are differentiable w.r.t. a to the ordersr Thee
s2 order derivatives are uniformly bounded on St, x 0.

Assumption 3:
(3.1) K(v) is a continuous kernel function on Rt with a bounded support.
(3.2) K(v) is a kernel with zero moments up to the order s,, i.e., f vi' " -" vkl((v)dv = 0 for all 0 < it,

to and z may contain common variables.

21



(3.3) The bandwidth sequence {an) is a sequence of positive constants such that lim-. an = 0 and

lim..- I a
2
0(+I/r)k-k =oo.

Assumption 4:

(4.1) The functions p(z
6
[G), E(||z||

4
|z6), E(I|f(z,#)1121z6), E(IIz||4|If(z,I)II2z6), E (|asz)2|z6),

E (1*8''l-|2||zI|2|z6), and E (||a?/(',#) 12|z6), where0 0's are components of 9, are bounded on S, xeO.

(4.2) p(z6l9), E(f(z,p)1z6), and E (1!&'5  Iz6,6), and E (a |" z6) are differentiable w.r.t. z6 to the

order s;, and these s; order derivatives are uniformly bounded on S, x e. E(z; - zIz6, z;)p(z6|G) and

E(f(z,/3)(zj - z)|z6, z,)p(z6t9) are differentiable w.r.t. z6 to the order s; + 1, and these s2 + 1 order

derivatives are uniformly bounded on S, x e.
(4.3) The function E (0#I31 1z6) p(z6j0); the first order derivatives of E(zx-zz6, zi)p(x6IO), E(f(z,/3)(z-

z)[z6,xz)p(z6|6), and E( a 2p(r; - z)|x6,z1 )p(z6U) w.r.t. z6; and the second order derivatives of

E((z; - z)®(z; - z)jz5, z;)p(z619) and E(f(z, /3)(z; - z) ® (z; - z)[zo, z,)p(z6|6) w.r.t. z6 are uniformly
continuous in z6, uniformly in (z;,9) E S, x 0."1

Assumuption 5:

(5.1) J(u) is a twice continuously differentiable kernel function on R"' with a bounded support. aa,

satisfies the bounded Lipschitz condition of order 1 w.r.t. u.

(5.2) J(u) is a kernel with zero moments up to the order s2 with s4 > 2.

(5.3) The bandwidth sequence {bn) is a sequence of constants such that limn...., b = 0 and

lim nb20+1xn(+2-" = oo.

Assumption 6:
(6.1) The weighting function W(z) is bounded.
(6.2) The set X where X = {zlW(z) # 0), is contained in the interior of S,.

(6.3) h(z) is bounded away from zero on X, and p(z610) is bounded away from zero uniformly on X x 6.12

(6.4) E(G',(z, 9,)W(z)G,'(z,9,)) is nonsingular.

(6.5) The bandwidths a, and b, satisfy the rate of convergence that limn-...,nak = oo, limn.... nan,' = 0;

and lim,..n o (rn+ = co and lim,_. nb' = 0.

Assumption 7:
(7.1) The rth moment of sup9Ee||f(z,/)f'(z,?)I| exists, where r > 2.

(7.2) E(f(z,I3)f'(z,13)|z) is uniformly continuous on S, x e.
(7.3) V(z6.) is positive definite for each z E S,.
(7.4) The matrix E(G',(x,9,)V-'(zo. )Ge(z,6,)) is nonsingular.
(7.5) The bandwidths an and b satisfy the following rates of convergence:

lim + 2(1+)(k+3/2)-k = o,0im na + 0= , 0 im na -2) = 0, liana -' = 0nlr Inn an n-= n- nn

and

nim -b2 = o, nlim Inn b + n+~n = 00, lim n(+ = oo,
n-oo'nn" n- Inn n-oo

lim no '
2

) = 0, lim nb28 = 0.

" ® refers to the Kronecker product.
12 Assuming that the support S, is a rectangle, a simple procedure to construct such an X is to truncate

the variables in x. More sophisticated procedure is to trim some fixed proportion of the values in the tail

distribution for each variable. For the latter, the asymptotic analysis will only be slightly complicated under
LeCam's discretization device.
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Assumptions 2, 3, 4, and 5 are used mainly to justify the uniform convergence of nonparametric func-
tions and their derivatives to their desirable limiting functions. These assumptions provide the regularity
conditions and bandwidth rates for the applications of Propositions A1.1-A 1.4 in Appendix Al. The addi-
tional rates of convergence in Assumptions 6 and 7 are needed mainly for the applications of Propositions
A1.5-A1.7 to derive the asymptotic distributions of the SMD and GSMD estimators. The rate require-
ments in Assumptions 3, 5, 6, and 7 of the bandwidth parameters a, and b~ depend on the existence of
moments of order r. The rate requirements in Assumption 7 are, in general, stronger than the requirements
in other assumptions. This is so because the trimming of the regressors and indices are relaxing as sample
size increases. The nonparametric functions need to converge fast enough to dominate the divergence of

-- , and . If trimming of the tail distributions of z is fixed as in Assumption 6, then 8E)

and BB,,,{: a) will be stochastically bounded and the rate requirements can be weaker. When r = o, using

the fact that, for any real numbers p and v with v > 0, n'/[ln n]5 goes to infinity, the rate requirements in

Assumptions 3, 5 and 6 are satisfied if limn...~ nark = oo ,limn.... na,' = 0 and lim..,,. nbn"+ = o and

limn...rnol = 0. The rate requirements in Assumptions 3, 5, 6, and 7 are satisfied if limn., naln+4 = o
and lim,. nal'i = 0 for an, and if lim,...., nbg(rn+

4
) = oo and lim~... nb

2
'a = 0 for 1, when r = co.

Such an an exits only if s' > k + 4, and 6n exists only if s > m + 4. For r = 2, if lim,.. ,",na
4

+9 - o
and lim,...., nan'' = 0 for an, and lim,,....o ," ,bif3+ = o and limnra... nb'2 = 0 for b,, then the rate
requirements in the above assumptions will be satisfied. Finally we note that the assumption that z consists

of all continuous random variables in Assumption 1.3 can be relaxed to allow mixed continuous variables

and discrete variables with finite supports. Nonparametric regression functions with discrete regressors with

finite supports can be found in Bierans (1987).
1
a0ur subsequent proofs can be generalized to cover such

cases. The continuous assumption greatly simplifies the presentation of proofs. The assumption of compact

supports (or finite supports for discrete variables), however, can not be easily relaxed. This is so even for

the parametric binary logit model. For models with growing regressors, the logit maximum likelihood esti-

mator can be consistent and asymptotically normal only if the regressors grow with some slow rates [see, for
example, Gourieroux and Monfort (1981)].

The following paragraphs provide a brief summary of elementary properties of En(f(z, 1)|z,6) and its

first and second order derivatives under Assumptions 1, 4 and 5. Similar properties hold for E,(f(z,I#)Iz)

under Assumptions 1-3. These properties generalize some of the familiar properties in the nonparametric

regression and semiparametric econometrics literature [e.g., Rao (1983), Robinson (1988), Powell et al.

(1989), and Ichimura and Lee (1991)].
Since E(f(z,3)1z6)p(z6|0) and E(f

2
(z,/3)|zb)p(zo6[) are bounded on S, xeO, the variances of Ajn(z;,6)

and Ben(zi) have the familiar order O(;,,,) uniformly on S, x e. For any constant c > 0, the uniform law

of large numbers of Proposition Al1.1 implies that

sup |b-cAJn(z;,O) - E[b-eAjn(z, )]I= op(l),

if han ,, nb
2

(+'/r)(mn+c)~" = oo. With the kernel J of order s;, under Assumptions 4 and 5, Proposition

A 1.2 implies that
sup |E(An(z,9)lzt) - A,(z,0)| = O(b'),

S, se

where A,(x 0 = E fz fi) 6)p 6[0. Ilence, if lim, inn.,, bI.5(1/lr)(rn~e)rn = 00 and limi,, bn.- = 0-

sup |b-~c[Ajn(r,9) - Aj(z,0))|= op(I).
S-xe

(A2.1)

13 In the statistics literature, Devroye and Wayner (1980) provides very general conditions for the proof

of some consistent properties of nonparametric regression functions which cover the mixed continuous and

discrete regressors without restrictions on their supports.
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Similar conclusion holds for B,,,(z,9B) with its limit being B.,(z,9B) = p(r.61O). Let t,~(., 0) be a trimming
function such that 1",(z,90) # 0 only if B,,,(z,90) > Abn. Since

E,,(f(z,/3)Iz.6) - E(f(z,13)Iz,6)

= B,,,(zi, e)B,(ZJ,e)[(AJn(z 9,) - A,(z., 9))Bj(zi,, ) - Aj(zi,, )(BJ,,(zi,,) - jz,),

sup It,(z,9) [E,,(f(z, $)l z,6) - E(f(z,fi)I z,6)jI
S.

{s- sup Ib;'[A,,,(z,9) - A,(z, 0)]I + sup I E(f(z,fi)IzO)I'slap b;'[B,,,(z, 0) - B.,(z,90)J) (A2.2)
f s!e !s

= op(l),

wlhena ina,,.... bnI+/r("+I-" = eo and lin-,,,b'- = 0. As plim,,..,t,,(z, 9) = 1 at each z and
9, the above result indicates that by proper trimming of the tails of the nonparametric density estimate of
x6 and relaxing it slowly as sample size increases, £,,(f(z, 0)Iz;6) can converge in probability uniformly to
I.(f (z,P/)Iz;6) in sonmc desirable fashion.

Let VJ(u) _ OJ(u)/Olu. The first order derivatives of A,,, (zi,9) and B.,,(zi, 0) with respect to 0 are

1 " li- j
+ 1 t

and

As p(zG[O), E(II f"'(z,fi)1 21z0) and E(1 f (z, #)(z, - r)1121.rA, r,) are bounded, their variances have order
O(J ,) uniformly on 5s x 0. fBy Proposition A 1.3 their biases have order O(b') uniformly on S x 9

under Assumptions 4 and 5. Proposition A 1.lI implies that as limn_ .n.ib(1+l/e)(m+I+c)-m = oand
litttn, ,'-I = 0

From (A2.1), as susX jb;'[B,,(z.,0) - B,(z,9)1I = op(l) when limn,... , r!Lb1/?)(+)m = oo and
limn,.,b'-' = 0, it follows that, with probability arbitrarily close to one for large n, whenever 13,,(z,90) _
Ab,,, B,(z,9) > nbn. Therefore, under the rate limi., 5 . b(+/r)(m+

2
)-m = ad em..., 2

sup 4dZ, 0 89 ~ z3l6)_8~,#I) =- P(l). (A2.5)

The second order derivatives of the nonparametric regression function is

02E,,(f(z,3)1z6)_ 1 0 ~,90- E,(!(z,O)IzG) 09n,0

0Bj,,(z,9) OE,,(f(z j$)1Z6) OE,,(f(z, /3) OB.,,(z,9)
0, 0' 0, 0' )

It follows that

0
2
E,(f(z,.0)1z6) -

2
E(f(z,13)IzO)

09,00' 0,0'
_ 1 f[

2
Ah,(z,9) _0

2
A,(x,9)1 F11 6 0

2
Bjin(z90) -Ff(?[O 

2
BJ~z9)J

ll.,,(z,0)1[ 00,00' 09,00' 1 Fnf l)r)8,0 -F~~,)r)0,0

EB0(r 0 EJn(f(z, 3)[ zb)-B6 ) OE.(f(zj3#)Iz6)1

- [EJnJf(z,#I
6

)BJ, 0 0jf03'z ~~ )] } + (
2
AJ(z;9)

- EJ~f~z 0)za
2
B,(z,0 9 (,) OE,(f(z,13)Iz6) _OE,(f(z,13) sO)B~,r
8000 E8fzf)s) -B.(,) 0' 01, Be.

X B,(5,9)/B,,(z,0)(flJ(s0) - Bnr0

Under the rates that limn,~, ,bn(a+/r)(m'+3)m" = oo and limn,__bn'- 2
- 0,

sp1 (i, 0
2
E,(f(z,13)1s6) _02E(f(z,13)1s6) =II 1)

Ssu x49 49,490,) Ia (A2.6)

S1p. h Ani ie AJl( 0]I=o()
(A2.3)

Similar result holds for Bj,,.',(;,9). For the second order derivatives, it follows from Propositions A1.1 and
A 1.4 that as lim,,..,, .ab( 1+1 r)(n%{

2
t)m.n= oo and lim.. , ' = 0,Inne

sup-J 2 A,,(s,, 9_ 02A(si,,0) ]jj OP(l),
ss xe O n 00 00' 009,0',

for each component 9 of 9. Sinmilar result holds for a: a.
Since 'I'E fIs _ = se A.,,(x, 0) Aa!fB.( )and its limit is

00' Z, B ,,(z) B". ,

OE,.(f(z,/3)js6) OE(f (z,P)I sO)
09'09

= 1 [is x )- ,(,e)-E! ,(f (z, 3 sO) [B.n,, (z,90) - B~e'(z,9)
BJ,(=, 9)Bi(,)

4+ [E.,,(f(z,i3)Is)B,.(s,9) - AJ,(s,9)) n=e)j=e)B x,)-B,(s,9)J

- [Ejn(f(z,13)I6b) - E.,(f(z,f)Is)Bje (s,9)
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(A2.4)

A3: Scaaiparametric-distanace Estimator

Proof of Proposition 3.1: Let

In

and Qj,,(9) =-n>n_ G'(s;, 9)W(s.)G(s;, 9). From Appendix Al, E,,(f(z, 3)ls,) and E,,(f (z, 3)js,6) con-
verge in probability, respectively, to E(f (z,i3)Is,) and E(f (z,13)jIsa) uniformly in (zi,,9) E X x 0. As
n E 1. IIW(si)II = O,,(l), Q,,,(9) - Q;,,,(9) converges in probability to zero uniformly on 0. The classical
uniform law of large number (e.g., Amemiya [1985J, Theorem 4.2.1) implies that Q,,n(9) converges in proba-
bility to Q;(9) uniformly on 0, where Q1(9) = E(G'(s,9)W(s)G(s,9)). Under the identification condition,
Q1(0) has a unique global minimum at 9 = 9.. The consistency of 9, follows.

The SMD estimator it satisfies the first order condition: G5,,,(s;,,,)W (s1 )G,,(s;, 9) = 0. With-
out loss of generality, take f to be a scalar valued function for sianplicity.'

4
By a mean value thecorem,

/(,- 0)= .- {n ZGe(xe)W(a)G,(z;, + ! ZGne(si,)W()G,(xi,)}

v=1

14 This simplifies only the notation for sencond order derivatives.
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where Gn,ee' denotes the second order derivative matrix of G. w.r.t. 0. Since 0 converges in probability
to ., it follows from (A2.2), (A2.5) and (A2.6) that Gfl(xi,O) L G(z,,) = 0, C,,,e(zi,,) . Ge(ri, 9,),
and -°+ .z,9)AG, (i,,s), where Ge.' is the second order derivative matrix of G w.r.t. 9, uniformly
in z, E X. It follows that

V/n(4, -9.0) = -(E(G'0(z,0.)W(x)G.(z,0.) -- o ,(l ) }) - (; ~i©oWZ)InZo

Denote A. (xi) = A. (xi,o), A,,(z,) = A~n(zi,,8,) and Ih,,(z,) = BJn~dz,,8,) for simplicity. As n goes
to infinity, A.(z,) converges in probability to A(x,) uniformly in z; E X, where A(z;) =Ef(z )z)hx;

B,(z,) converges in probability uniformly to B(zi)( = h(z1)); AJ,5 (z,) converges in probability uniformly to

AJz(= E(f(z,10 )1z60 )14zas)); and By,n(z.) converges in probability uniformly to BJ(zi)( = p(zre5,j9,)).

Since eE ('8P)ti) = s--An,, (zi), anid

OE,(f(zj3.flii6.) 1Ar(x.)

S )!II r. l J, B ( ? RJG,(ez ,, .) is a fu n ctio n o f A ,,(x ,), B ( x,), A~, (z,), flJ ad r,), A,,*,(z.), A j , (zi), an d B . , (z,). B y usingthe expansion of difference, ('n0(x, ) = GA(xi,0.) + Rn, 1(zi) where R,.(2i = R.. *,(zi) -+ R,i
2

(i),

=UB) [An,,(z,) - A,(z,)J - 021 (zx Ae(zi)[B,(z,) - Iiz)J

I;r [,iJ,.,rj - AJB(rij+ i) BJe(z,))

+ ---- I j,(z;)AJ, (ri) - A,(z,)J + {Aj.(r,) - 2Ej(z,)fIj,(ri)) B2() [IRj,(r,) - B~iJ

and

= 1 A(z,)[(,(z) - B(r,)1
2 

- t l()[ll(xri) - B(z,)J[A,(z,) - A,(z,)J

+ t B zi - Bj (zi)lIAJn,e(z) - Jz )
BJn(zs)BJ(z,)

+8(.)[A1Jn(zu) - A,(ai)J[R,,(x,) - Bor)

f E(,) Bi,(z)( 1 ± 2 - 1 2 AA . )[inx)- Jx)2

l J(i)(Bj 1 -1 ) Bj ( ) Bj(z,) j[B n5(a.)~z 1)i 3 " B nz) - B,(z,)J
J(zi) 1 1

B- IJ i(B1 : + B.~:)BJg(xg)[Bjn(z,) - Bj(x,)J(A.,,(x,) - Aj(z,)J.

On the other hand, since G(zi,©o) = 0, by an expansion up to tihe second order, GndziG,) = ,dri) +
Rn,2(zj , where

en(zi) = [(A,(z,) - A(zj)) - E(f(z,jLo,)Iz)(B(z,) - xi) 1

- [(AJ.(ri) - AJ(z )) - E(ft,i)tX,~s)(Bjn (xi) - 1Jz)]p~io~)
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and

Rn2x)_- 1 [A(z ) - A(x,)J[B,,(z,) - B(z6)J - E(f(z,13.)Ix.)[B,(x 1) - D(z,)J
2
)

+ B](z, ([Ajn(-z,) - Aj(z,)J[Bj,(zi) - Bj(z,)J - E(f(z,Ps)Iz,6.)[Bjn(z,) - R,(x,)J
2

)f

+ B
2
(xi)B,,(xi ([An(zs) - A(x,)J(B,(x.) - B(z, )]

2 
- E(f(z, 0.)Iz,)[B,,(z,) - B(x. )]

3
1

-B3(zi)Bi 5(zi) ([A~,(z,) - Aj,(z,)J[Bj,(z,) - Bj(z,)J
2 

- E(f(zrfl.)Izib.)[Bjn(ai) - Bj(zi)]').

It follows that

In ZGn, ,(x,9)W(zi)G,,(Zi,,9) = InZG'(Zi, 9.) W(zdcn(z,) + Rn,

where R~ = ,1+ R +RP with

-n.L 1(R,,1r(x) ± Rn,2(x))'1V(2-i)c,,(z),

and Itn = f, J: r1(Rn,1,'(xi) + Rn,,, 2())W(xzdRn, 2(zi). Since each ternm within thre summations of

R ,,'2), and 
1 

i$t contains errors of higher orders: i.e., (A,,(r) - ,%j)),etc Plroposwitiorn Al1.5 imprjlies,

uinder the assumed bandwidth rates in Assumpjtions 3, 5 and 6, that R~ = Ip().
The remaining term can be analyzed as a U-statistic since

$ ZG'(,o)W(xt)n(Zs) = [(1 -1: jU.(w.,w,,) + U2 n, drv,,

where i = ( i)

Uj,(w,,wj) = G'*(zi,,o)W(zi)[f(zj,,0) - E____ ______{)akIC a

anid

U2,(tvi, W,) = -Gi'.(zi,0.)W(z,)[f(zj,fis) - E(f(z43so)Izio)](iGI ) J( - i6.)jb

E[Urndwi, w1)Iwi] converges to zero for I = 1, 2, but

lim E[U,,(tv,, wi) Iu'I = G'e(xi,, 0)W(x) u,

and
lire E[U2n(wj,w,)IwsJ = -E{G'(x,0o)WV(z)Izsao}ui.

Thre asymptotic distribution follows from thre central linit threorenm for U-statistics in Proposition A 1.7.
QE.D.

Proof of Proposition 3.2 Denote rn(x,G) = fr(zi,I) 4 En(12(2,13)Iz,) 4+ E,(f (z,j3)Iz6b) and

r,,(zi,,) _= r~ Let QF',n(
0

) = n ~y - r,(xi, 9)J'W(z,)[yi - r,(xz,9)]. By Proposition Al. l and
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uniform laws of large numbers, QF,,,(e) converges in probability to Q.(0) uniformly in 0, where Q%(0) _
E([y - r(z, 9)J'W (z)Ip - r(z, 0))). As Q.(O) is uniquely minimized at 90,, NL is consistent.

By a Taylor series expansion and the uniform convergence of the nonparametric regression functions
and their derivatives,

l/n(9NL - 00) = (Efr'(z,0,)W(z)r'(z, 9,)) +o()V' InZ{r,es(z,)W(z)(y. - r~i0)}

Let A 2 5,(z,) =tom l- Ej. Zf2(zj.I3o)K (C " and c! = y; - r(z., 00). By similar arguments in the proof
of Proposition 3.2,

In1
= ~ r Y'(r , 9.)tV(z.){(' i- r(A 2. 00)))Ef(IsI~)nz~~-

11=1

- [A, 5n(ri) - E(f(z.i~s)Iz,6.)B,(a,)J ] j,,9)

=n n

i =1_

where wi =(:i,z1;) andl
1 1 IX, - tfIuta,b,,) = r(i0) r) (-(12 $)- (f21- i ) J I

ll EhG '(r,) nn nna,

1f(1 ,Ii) - _________~bj ZiO-jb

As lin,.,., E[U(wi,, Wj, b,,)fwij = r'(z,,9)V(z;)c;, and

lim E[U(w,, wi, 6n) jwi = -rs(zi, 9.)W(z1)[f2(zi, ii,) - E(f2(z, 13,)lix)J 4. E(4(z,9,).V(z)lizd6.)ui,

the asymp~totir diistriliation of 
0
N L follows fromthe tl. -stait at central limit. theaoremi in Proposition A 1.7.

QE.D.
A4: TrimmingThle function of trimming is to control for the erratic bhlavior of the nonplarametric regression estimates
so that uniform convergence of the nonparametric regression functions and their derivatives is feasible on
the relevant range. Let p be a distribution function with support on the interval ( , A], where A > 0 is a
specified constant, such that both the first and second order derivates of p at the end points Q and A are
zero. A simple p with these smooth property is the following function

The denominator in E,,(f(z,13)Iz,) is B,,(z,) and the corresponding trimming function will he i'(B,,(z,)/an,).
The sample x; will be deleted in the estimation procedure if B,,(z,) is less than ia,, and is down-weighted if
it is greater than ia,, but less than Aan. Since an, goes to zero as n goes to infinity and B,,(x,) converges to
the density h(z,) of x at z;, t'(B,,(x,)/an,) goes to I in probability as n goes to infinity. A similar trimming
has been used in Robinson (1988). For E,,(f(z, i3)Iz.6), the denominator is B,,,(;, 0), and the trimming
function will be t'(Bjn,(zi,G)/b,,). For the nonparametric variance matrix, the sample observations at which
V,,(x,6) are nearly singular will be deleted. Since

V,,(Z,6) = VnZ~)BnZ~)

where

VJ,,(Zi,,) = BJ(i9)n )^' f(z,hf'(,1)J (ia b ) AJn(Zi,O)A'j,,ti, 0),

(A4.2)

(A4.3)

fro (41).Thu lV,(z6) B
2

(z 0 )V '(z;, 0)/det[V3,,(z;,6)] where V;~, is the adjoint of V,,. The

determinant det[V,,,(z. ,.B)) is a finite order polynomial of nonparametric estimators of unknown functions.
The trimming function for W,,(z,6) can be t'(det([Vj,,(z.,0)J)/b,,). The overall trimming function t1,(z;,,)
is the product of the above trimming functions, i.e.,

t,,(zi, ) = t*(B,,(zi)/a,) .t*(Bj,,(zi,9)/b,,) t'(det((V3,,(z, )J)/b,,).

A5: Generalized Sensiparamnetric Estinmator
Proof of Proposition 4.1
To simplify notation, let

Dn (0) =!Z,(,,) 1 (,)tVn(i6)S(I,)

(A4.4)

and

11,,(9) - k. Ztn(r,, 9)G,( i ,9)W,,(z,)G,,(z,,O).
i.K

1

p~) _ 6(1 - w2)2dw, 2Ac0

It follows that
i,/j(Ot; -906) = 6/e(0 -0,) - D;' (0)(I~(9). (A.1.)

By the uniform convergence of nonparametric regression functions and their derivatives in Appendix
A2, D,,(9) - D;(0) = op(l) where D~(9) = n E _ tn(tz,,)G' (r;,,)V'

1
(zg6)G,.(z,). Define D?,(o)_

~ ~G'(z,)V '(z~A)G,.(z;, 0). As 1,, (z;, 0) converges in probability to 1 se., it follows by the Markov
inequality and the dominated convergence theorem that D;,(0) - Dn(0) = op(l). On the other hand, Dn(9)
converges in probability to D(0), where D(0) = E(G'(z,9)V'(zb)Ge.(z,9)), uniformly in 9. Since 9 is a
consistent estimate of 9 and D(0) is continuous in 0, D(0) converges to D(05) in probability. Therefore,
D,,(0) converges in probability to D(05).

It remains to analyze U, ,(). Without loss of generalization, consider that f is a scalar function for

notational simplicity. By a mean valuse theorem, U,,(0) = U, ,(9O.) + U(9)V (0 - 0, ), where

The latter term can be decomposed into a sum of two terms: I ld(0) - U'(0) + D~ (0) where

U,'(9) =n ~ i,)nax, 0~i))nx,)

29

where f (1 - u,2)2 is a density function with support [-1, 11. This p is apparently a bounded polynomial
function on [A, A). There are three sets of relevant nonparametric regression functions in our method,
namely, E,(f (z,1)Iz,), lE,(f (z, i)I z~) and V,.(zst). Define the following function

28
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Since 0 lies between 9, and 0°, G,,(Z;,,0) converges in probability to G(=j,,Bo) = 0. Bly uniform convergence
of nonparametric functions, U14' (0) = op(l). Hence U (0) - D (0) + op(l) = D° (9°) + op(l). Therefore

(A5.1) is reduced to f/(9a- G - -D-'(e)U.(e.) + op(l).
Let R,,3(z,) = V','(=i6.)- V 1

(Zibs) = ln (Z,6.)[V(z,6.)- V,(z= )JV'(z,9.). We have W5(z,6.) =

V-'(z,6.) + R53(=i)" Define

0. _,B) =tB= ) I- bx) t"(det(V(_, es))bs),

where V(_, Bo) is the probability limit of V,,,n(z,0B°). With fn (_;) and the remainders R5 1(Z;) and R,,2(Z; )
defined in the proof of Proposition 3.1,

Un(e.) _ = j[ Z rj(O.) + (1(zi,, 0) - t'(=i,0.o))J [G(zi, 0.) + R51(Z,)J

X [V1]'i, 0.) + Rn3,(7,)J[en(71) + R. 2 (Zi)1

E tZ',(ri, 05)G#(zi, 0,)V-' (ri, 0o)fn(ri) + Rn,,
0 1.

where R~, = R~1) + + " " + 141
5
) is the overall remainder terms consisting of fifteen terms of high order

errors of nonparametric functions, where, for example

Rp1 Zl ' (r ,0 )G',B,,eO)W, (iibs)R. 2(Zi),

and

etc. TIhe applications of Propositions A 1.5 and A 1.6 imply that If, = op( I). The U-statistic central limit
theorem in Proposition A1.7 can be applied to the following term:

where

U~U, Wj,) = t toCa -V Zn zo E(!z' °Izi)Jh( i) kI( ( z )

and

U25(w tj)_,w,'(r9) V '= io ,o- E (f zP~m~) ~z6,0)'~(ziosz1s)

By the ssymptotic unbiasedness of nonparametric functions, E(U,.(w,, my3 )fwj] converges to zero for 1 1, 2.
Furthermore, limn....,,,E[Uj,,(w,, w,)Jw1J = G;(ti,O)V-'(z 16 )u,, but

lim E(1J2 (u',u',)Iu'iJ = -E (G'(i,0)V-'(zibo)kzils} i, =0.
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In conclusion,

Q.E.D.
A6: Semiparametric Instrumental Variables

By the uniform law of large numbers in Proposition Al.l, In E"-1I(z. 96)u , ,(z;, z1, G)1V,1 (z~6)w, _L.~
A, and IE, 1t,(z, )wl'~ 

1
(x~6)w, -PA. Denote

U5v = 1 nZtE (, )w1 '(z)u,(z, z~ ). (A6.1)

By the mean value theorem,

where Ud'.(9) = n _1 8 ,{I,(x;,,)w.V, '(x)u,(zi,z.,9)), which coverges in p~robability to A'. As shown
below that U,, 5(0.) is stochastically bounded, hence

V(e -60.) = -{AA-'A')'AA-U,(0) + op(l).

Since

u,(z, x, 60)
= u, - {E,,(fzfij,.)- E(f(z,Q1r)Iz6)

= -U H1 (z; A~,,(z) - E(f(z,I3s)Iri6.)BJ5 (Zj)1

+ B x1B~i[Bjn(i) - flJ(x;)J{[.lJ,,(zi) - A,(z,)) - E(f(z, 9o)fix~I)Rn(r,) - Jx),

= ~v = ZI_,,~(j s)W'V'(jAs)(U, - L~jzj) [Am (zi) - E(f(z,/3.)Iz,6.)Bjn(i)1) + R, (A6.2)

where R~. is the remainder. As the remainder contains high order error terms, R~, = op (l ). By Proposition
A1.8 in Appendix Al,

--- EI,(Zi,O)wV'(zibs) li[Ajn5(z,) - Aj(zs)J
Bn ,)(A6.3)

1: Ew ;,V1rb~~iQ)- E[E(w'Irs) V-'(zbs)F(f(z, o,)1z6.)) + op(l),

and E nzi,0s)w Vt(a6) E(f(z/3 5Q)! ty)[Di(=) -B(=)

(A(
It follows from (A6.2) - (A6.4) that

U... (0.) = 1 Ej(w, - E(wz 66))'V-'(z,6o)tu, +}o0(1). (A6
"is)

6.4)

6.5)
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