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Semiparametric Minimum-distance Estimation

by Lung-fei Lee*

1. Introduction

The use of minimum-distance (MD) estimation methods has a long history in statistics and econometrics;
e.g., Berkson [1944], Neyman [1949], Taylor [1953], Ferguson [1958], Rothenberg [1973], and Chamberlain
[1982], among others. The MD estimation techniques are methods for imposing restrictions in estimation.
In the context of the qualitative response (QR) model, MD methods were first proposed by Berkson [1944]
for instances when there are many observations of responses for each value of the dependent variable. These
mimimum-distance estimation methods share some common features. There are deterministic relations or
restrictions on the parameters of interest. The estimation procedure tries to solve for the unkown parameters
of interest while the unrestricted components in the relations can be estimated consistently. As there are more
equations of restrictions than unknown parameters, minimization with respect to some distance measure is
used to resolve the over-identification problem.

As pointed out in many textbooks, the Berkson method for the QR model can be used only when there
are many observations on the dependent variable (the response variable) for each value of the independent
variable. This is so because the frequencies of responses are used to create the unrestricted estimates of
the response probabilities. The Berkson method is applicable to situations with grouped data or discrete
explanatory variables. For disaggregated data with continuous explanatory variables, one has to use the
method of maximum likelihood (see, e.g., Amemiya [1985]). However, from the recent development of non-
parametric methods, we see that nonparametric regression functions can be consistently estimated without
grouped data, even though that its rate of convergence can be slower than the usual rate of convergence for
the grouped data case. The main idea in nonparametric regression estimation is local smoothing, in that,
at each value of the regressor, its neighboring points are used to construct a 'frequency' estimate or sample
mean. One may wonder whether MD type estimation methods can be generalized to the semiparametric
setting. This article provides a positive answer to this question.

In this article we consider the generalization of MD estimation methods to the estimation of models
with disaggregated data and conditional expectation structures. The conditional expectation structures
provide model restrictions for identification and estimation. We consider models with conditional expectation
structures of which the conditioning arguments are either exogenous variables or functions of exogenous
variables in index forms involving unknown parameters. The MD estimation methods can be applied to the
estimation of parametric models or semiparametric models.

This article is organized as follows. In Section 2, we introduce a semiparametric MD estimation method.
The semiparametric MD method can be applied to the estimation of parametric and serniparametric models.
Section 3 considers the semiparametric MD estimation method with as many restrictions as the number
of the sample size. Asymptotic properties of the estimator are analyzed. Section 4 considers a weighted
MD estimation procedure. Asymptotic efficiency issues are discussed for some models. The semiparametric
MD estimation procedures possess some transformation-invariance properties as shown in Section 5. In
the same section, a local goodness-of-fit test statistic is developed. Applications of the semiparametric
MD procedure to the estimation of some semiparametric simultaneous equation models with qualitative
and/or limited dependent variables and endogenous switching regression models are illustrated in Section
6. Section 7 points out possible generalizations of the estimation method to semiparametric models with
model restrictions not covered in the previous sections. Section 8 provides a summary of this article. Four
appendices are provided. Appendix 1 collects some propositions which are useful for the proofs of our results.
Appendix 2 summarizes the assumed regularity conditions. Relevant asyrptotic properties of nonparametric
kernel regression functions and their derivatives are summarized in this appendix for reference. Appendix
3 collects the proofs of the main results of this article. Appendix 3 considers semiparametric MD methods
with a finite number of restrictions. Asymptotic .properties and their relations with minimum chi-square
methods are derived.

* I am grateful for support from the NSF under grant no. SES-90 10516 for my research.
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2. Conditional Expectation and Semiparametric Minimum-distance Estimation
In the context of the QR model, MD methods were proposed by Berkson [1944] for instances when there

are many observations of responses for each value of the independent variable. Consider a binary response
case. Let y be the dichotomous indicator, and z a vector of explanatory variables. In a parametric QR
model, one specifies a parametric response probability F(z, a) explained by z, i.e., Prob(y = 1jz) = F(z, a).
The logistic or normal probability models with z and a appearing as an index za in F(za) are the popular
specfications. With many observations of responses for each z, Prob(y = 1|z) can be estimated by a frequency
estimate, say j(z). The Berkson MD estimators of a are derived by minimization:

M

m ZW(z)(13(z;) - F(zx, a))2, (2.1)
i=1

where m is the number of distinct values of z, and w(a;) is some weighting function. An optimal weighting
function for this method is the inverse of the variance function of P(). For models with za as an index, a
computationally simpler Berkson MD estimation procedure is possible. As F is a strictly increasing function,
F-1[Prob(y = 1|z)] = za. The parameter a can be estimated by a least-squares or weighted least-squares
procedure to the equation:

F-1[3(zi)]= zxa + e1, i = 1,...-, m, (2.2)

where ei = F- 1[p(zi)] - F-1[Prob(y = 1|z;)]. This modified MD method is computationally simple, and
the optimal weighted least-squares estimator is asymptotically efficient (see, Amemiya [1981]). Such a com-
putationally simple MD procedure can be generalized to the estimation of many complicated QR models
(Amemiya [1981]). For the case that z is a continuous random vector (with an absolutely continuous distri-
bution), many observations of y for each z will not be possible. In such a circumstance, the recommended
estimation method is usually the method of maximum likelihood.

The MD estimation methods for the QR model rely on the availability of a consistent estimator of
Prob(y = 1|z) for each z. When z is a continuous random vector, a frequency estimate of Prob(y = 1|z)
does not exist, but nonparametric estimates of E(ylz) exist at each value of z. As E(yiz) = Prob(y = 1|z)
in the binary QR model, this motivates a nonparametric or semiparametric MD estimation procedure. For a
random sample of size n, suppose that En(yiz) denotes a nonparametric regression estimate of Prob(y = 1|z)
at z. Then a semiparametric version of (2.1) is

min w(z,)(En(yIzi) - F(zi, a))2, (2.3)
i=1

and a corresponding version of (2.2) is

F-1 [En(y|=;)] = zia + ei, i = 1, -.-.-, n. (2.4)

The QR model motivates our estimation approach. However, this approach can be applied to the
estimation of many parametric and semiparametric models. Consider the estimation of e in the following
equation of a parametric model:

G[E(f(zi, #(e))Iz), z,aa(9)] = 0, (2.5)

where G and f are functions with known functional forms and a and 3 are functions of a deep parameter
vector e. To simplify notation, 0 in a(G), fl(G), and 'y(6) will be suppressed in subsequent presentations when
there is no danger of confusion.

For the binary QR model, G[E(yjiz), z, a] = E(yiz) - F(z, a) or G[E(yIz),z, a] = F-'[E(yz)] - za.
The model also includes regression models and simultaneous equation models. A regression model,

y =g(z, a)+c, E(elz)=O, (2.6)

implies E(yiz) = g(z, a). A simultaneous equation model,

f(zi,#) = u, E(uiz) = 0, (2.7)
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where zi is a vector consisting of endogenous and exogenous variables and x is the vector of all exogenous
variables in the system, implies E(f(z, /Q) Ix,) = 0. Many other econometric models may imply some relations
as in (2.5).

Semiparametric MD methods can be applied to the estimation of (2.5). The vector of conditional
expectations E(f(zi, p/)|) can be estimated by nonparametric kernel regressions. Suppose that x is a k-
dimensional vector of continuous random variables and K(-) is a kernel function on Rk with a bandwidth
sequence {an}. Let (z1,,xi), i = 1,..-, n, be a random sample of size n. E(f(zi,3)Ixi) can be estimated by

E((f1, )Izf(zij,(1))Kaan
En(Kf(zi,()i)= 1"z)(2.8)

(n-1)an j i a

A semiparametric minimum-distance (SMD) estimation procedure can be defined as

mia Ix(xi)G2 [En (f(zi, 3(0))Iz,), xi, a(0)], (2.9)
eie

where rn < n, 0 is the parameter space of 0, and Ix is an indicator of some set X which is a compact
subset contained in the interior of the support of z. X is constructed to trim the tails of the distribution
of x because the nonparametric regression estimates at the boundary of the support of z might not be
well-behaved.

The semiparametric MD estimation approach can be generalized to the estimation of semiparametric
models. We consider the estimation of semiparametric models with index restrictions (Stoker [1986] and
Ichimura [1987]), which have broad applications in microeconometrics. We consider estimation of 0 in the
following equation:

G[E(f (zi,1(0))|jz), E(g(z2, -y(9))|x6(0)), z, a(9)] = 0, (2.10)

where f and g are vector-valued functions, and f, g, and G are functions with known functional forms, and
x6 is an rn-dimensional vector of indices. Equation (2.10) differs from (2.5) in the conditioning arguments.
As the 6's can be arbitrary functions, it also generalizes (2.5) to allow subsets of variables in x to be the
conditioning variables. E(f(zi,#/3)|xi) can be estimated by (2.8), and E(g(z2 ,y)|z6) can be estimated by

(n1bFj#; g z2j, )J b

En(g(z2 ,Y)|z;6) = 1 g )ia-i)1(2.11)
(1)bn j J x,6n

where J is a rn-dimensional kernel function with a bandwidth {bn}. An SMD estimation procedure is

min Ix(xi)G2[En (f(zi, fl(0))Ixi), En(g(z2 , y(O))|Iz,6(0)), z;, a(0)]. (2.12)
i=1

Some specific applications of this method to the estimation of simultaneous equation models with qualitative
and limited dependent variables will be provided in a subsequent section.

A special feature of (2.5) and (2.10) is that there are no explicit disturbances in the structural equations.
Stochastic elernents are introduced only through the nonparametric regression estimates of E(f(zi,#f)|z)
and E(g(z2,7-)|zx6) in the estimation procedure. As the function G may be nonlinear, the sampling errors
En(f(zi,1#)|z) - E(f(zi, #L)Ix) and E,(g(z2 ,7y)|z6) - E(g(z2 ,7)|zS) appear implicitly in the estimated equa-
tion. As in classical MD estimation, consistency of the estimator of 0 is possible be cause the sampling errors
converge in probability to zero as the sample size n increases to infinity. Consistency of the SMD estimator
of 0 requires a large (infinite) sarnple so that Ea(f(zi, fl)|x) can converge in probability to E(f(zi, 13)|x), and
En(g(z2 ,7)|z16) is a consistent estimate of E(g(z2, 'y)|ziS). The number mna of equations used for estimation
is an interesting issue. In classical MD estimation, only a finite number of restrictions is available. For
our model, there are implicitly infinitely many restrictions. There must be some benefit of using all the
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restrictions for estimation. Indeed, that is the case. As shown in Appendix 4, SMD estimators derived from
a finite and fixed number of restrictions (not depending on sample size) can be consistent and asymptotically
normal. However, the rate of convergence of the parameter estimates is as slow as the rate of convergence
of the nonparametric regression function estimates. With a finite and fixed number of restrictions, a prop-
erly weighted SMD procedure is also a minimum chi-square procedure. Its minimized distance function is
proportional to a chi-square random variable with the number of degrees of freedom being the number of
overidentification restrictions. With a finite and fixed number of restrictions, the SMD method shares some
of these familiar properties of the classical MD methods. The details are referred to Appendix 4. In the
subsequent sections, we investigate the semiparametric MD method with as many restrictions as the number
of sample points. The number of restrictions increases as the sample size increases. With infinitely many
restrictions, the semiparametric MD estimators can converge at the V/ii parametric rate.
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3. Semiparametric Minimum-distance Estimation

With m~ = n, the SMD estimation is

min>j Ix(xi)G2 [E,(f(zi,#(0))Iz), E (g(z2,7y(0))Ix6 ()), zx, a(B)]. (3.1)

Let #I denote the SMD estimate from (3.1) and B, the true parameter vector, and let ao, #4, 7o and 6S denote

respectively the functions a, #, y, and 6 evaluated at 00. For any possible value 0 of 6o in 8, E(.|1,6,0) refers

to a conditional expectation conditional on z6 for a given value 0. At 9o, E(.1x60) represents E(.j6 0 , 00)

for simplicity. All the expectation operations are taken with respect to the true data generating process at

00. The following propositions show that, under proper identification conditions, BI can be consistent and

its rate of convergence is O(f), the parametric rate of convergence. Detailed proofs of all the propositions

in this article can be found in Appendix 3. Appendix 2 summaries the underlying regularity conditions and

assumptions for the model.

Proposition 3.1 Under Assumptions 1-5 and the identification condition that, for any B $ 0,

G[E(f(zi,#(0))jx), E(g(z2 , 7(0))|Iz6(0), B), x, a(e)] # 0

with positive probability on X, 51 is a consistent estimator of 0, and

V($0 -0Bo)

= - {E (Ix(x)Ge[E(f(zi, # )Iz), E(g(z2, y)|x6.), x, ao]Ge'[E(f(zi ,#3 )jz), E(g(z2 , 7 )|xo), x, o])}~1

xv 1(z)(f(zi,#) - E(f(zi,o)|xz)) + C2(z)(g(z,2i,7o) - E(g(z2, To)|zio)) +0,(1),

where

C1 (z;) = Ix(x)Ge[E(f(zi,o)Ixi), E(g(z2,)I);)),zxao]ViG[E(f(zi,#o)|z;),E(g(z2, 70)|2;6o)i, ao],

and

C2 (xi) = E{Ix(z)Ge[E(f(zi,po)|z),E((z2 ,7o)|lxo),x, aoI

x V2G[E(f(zi,#4)|z), E(g(z2,7Yo)|zo),z, ao] ziton ,

G(...) is the gradient vector of G w.r.t. 0, V 1G( .- ) is the derivative of G w.r.t. its first vector of arguments,

and V 2G(...) is the derivative of G w.r.t. its second vector of arguments. Consequently,

($1 - 0) .+'N(0,fr),

where

= Er {E (Ix(z)Ge[E(f(zi, o)z), E(g(z 2, 70o)|6o), x, ao]Ge'[E(f(zi, fo)x),E(g(z2 , 70)x6o), xao)} ,

and

Er =E[(C1(z)(f(zi,3o) - E(f(zi,p0 )Iz)) + C2 (z)(g(z2 ,7o) - E(g(z2 ,o)|zb6o)))

x (C1(x)(f(zi,#eo) - E(f(zi,30 )|z)) + C2 (x)(g(z2 ,7y ) - E(gf(z2,7o)|k6)))].

The explicit expression for G9 is derived in Appendices 2 and 3:

Ge[E(f(zi,#f)|z), E(g(z2 , 7)|z6,0), z, a]

= LE z0 I:) ,E BEg(2e)z ,), VG[E(f(zi, /#)|z), E(g(z2 ,7)|z6,0) ,x, a],
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where VG[-...] denote the gradient vector of G w.r.t. E(f (zifi)1a), E(g(z2,7r)Iz6, 6), and a. Here,

0E(g(z2,'y) 1z6,6) _ 1 0A, (z, e)_ A, (x, 6)OBj (x,60)
0- Bj(x,6) 06 B;(x,) 06 -

with
Aj(x,6) = E(g(z2, ')1z 6, 6)p(z616), (3.2)

B.,(z,60) = p(z6 16), (3.3)

0Br(8, 0) = (.i- E(zjz~6, 6))e06 Op(z 1 ) - f OE(zxzi6, ) 061, p(ax, 6), (3.4)

and
8Aj(f, 6) = _ 9( ';, ) 6p(zxIOl) + E(g(z2 , 7)(x+ - rxt) 006 ,P(8 &IG)

06f ~0(g(z 2,7)( Bz 86 )~} ~.1) 6 1(3.5)

where 6, denotes the lth component of 6, and p(z616) is the density function of z6 given 6.
The SMD estimation of (2.5) can be regarded as a special case of (3.1). Let BS denote the serniparametric

estimator of the true parameter vector 60 from (2.9) with mn~ = n. Consistency and the asymptotic distri-
bution of BS follow from Proposition 3.1. Because (2.5) has simpler conditioning arguments, the asymptotic
covariance matrix is simpler.

Coroliary 3.1 Under Assumptions 1-3 and Ike identification condition that, for any 6 #B,

G[E(f (z1 , /i(6))IzT), z, a(8)] $ 0

witk positive probability on X, BS is a consistent estimator of 60 and

= - E (Ix(z)Ge[E(f(zi, ,o ) Iz), z, aol ' Gee [E(f(zi ,/o )I x), z, o)

±
X 7n Ix(zs)Ge[E(f(zi, fl.)Izi), j, ao . V'1G[E(f (zi , /, )Iz,),xi; o~](f (zii,.) -E(f(zi, /3.)jz,)

+ oP(l).

Consequently, F/ni(BS - B,) -D- N(O, (i), where

S=f{E (IXxz)Ge(E(f(zi,fio)Ix),z, ao] . G,'[E(f(zi,13.)Iz), za]}

X E {E (Ix (z)Ge(E(f (z1, /3o)Iz), x, ao] ' Ge E(f Uzi,Q/o) Ic), z,

and
E = E{Ix(z)GeIE(f(zi,3o)Iz), x, a.] .VjG[E(f(z 1 , #a)Iz),zx, ao]
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which motivates an alternative estimation approach as

n

mmn IX (xi)(Cy: - F[IEn(fi(z ,,O)Izxi), En(g(z 2, 'y ),),a])? . (3.7)

By arguments similar to those in the proof of Proposition 3.1, the estimator BA of B from (3.7) is consistent

and asymptotically normal. In addition, 9A has the same asymptotic distribution as the SMD estimator B1
of this model.

Proposition 3.2 Under Assumptions 1-5 and the identification condition that, for any 6B$#8,,

F[E(fi(zi, ,)jz), E(g(z2, 'Y)IxS, 6), X, Oi] i F[E(f1 (zi, fl0)Ix), E(g(z2, 'o)1atbo), x, a0]

with positive probability on X, the semiparametric estimator 9A from (3. 7) is consistent, and

= {E(Ix(x)Fe[E(fi(zi,/3o)Iz), E(g(z2, 'o)1z6 0), z, ao]Fei[E(fi(zi,flo)Ix),E(g(z2 , 'yo)1x60), x, ao)}'1

7n=: I
_1x - V ' F[E(f1 (zi, g) jx ), E(g(z 2 , 'Yo) Ixio), x,ao][h (zi1, 3o) - (fi(zi , o)Ia 4.))

- E{Ix(x)FeE(f(z,o)x),E((2 ,o)Ix6o), ,a]

Similarly, the model E(ylzx) = F[E(fi(zi,3)Ix), z, at] is equivalent to

y = F[E(fi(zi,130)x), x,cr 0] +E, E(clx) = 0, (3.8)

which can be estimated by

n

i= V FE+.1zrt)Ix) i ) 39

The asymptotic distribution of the estimator 6A,S from (3.9) follows immediately from Proposition 3.2.

Coroliary 3.2 Under Assumptions 1-3 and the identification condition that, for any B 6 $ 6,

F[E(fi(zi, 3)Ix), x, a] $ F[LE(fi(zi,fi0 )Ijr), x, ao]

with positive probability on X, the semiparametric estimator BAS from (3.9) is consistent, and

,, (AS-96) = {E (Ix(x)F9 [E(f 1(zi, /#o)Ix), x, ao] F'[K(fi(zi, 6) 1r), x, 1}

x1(i^- Ffi~i/oI~,~a]f~i~~)-Ef( 1 ~)x)) io(



exogenous variables z in the model and has a constant variance c2, a well-known estimation method is a
nonlinear two-stage least-squares (NL2S) method (Amemiya [1974]): ming f'(Z, #)W(W'W)-1 W'f(Z, Q),
where f(Z,#Q) denotes the n-dimensional vector consisting of f(z;,#Q), and W is some matrix of instrumen-
tal variables. Amemiya [1974] showed that the NL2S estimator is consistent and asymptotically normal,
and, in general, the asymptotic covariance of the estimator depends on the choice of W. Amemiya [1985]
pointed out that the best nonlinear two-stage least-squares (BNL2S) estimator with a minimum asymp-

totic covariance matrix corresponds to W = E (8Ifzp.)|). The asympotic covariance matrix of v/i
1i

times the BNL2S estimator is u2 E af(z,.) affe.) I . This model implies that E(f(z,#)1) = 0,

and G[E(f(z,#/)1:), z, a] = E(f(z,#/)1) in our format with 0 = Q. The model can be estimated by the
SMD method. From Corollary 3.1, we see that the SMD estimator is asymptotically equivalent to a BNL2S
estimator, since V1G[f(z,#,3,)I), x, a] = 1 and E[(f(z,/3,) - E(f(z,#,)I))21] =2 for this case. The
SMD estimation is one of the feasible best nonlinear two-stage least-squares procedures. There are various
suggestions in the econometric literature on the construction of feasible BNLS estimators, e.g., Amemiya
[1985], Newey [1987, 1990], Andrews [1989], and Robinson [1989]. All these approaches suggested ways to
construct some optimal instruments for W. For this simultaneous equation model, the SMD estimation
happens to be the same as an approach described briefly in Newey [1991].
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4. Weighted Semiparametric Minimum-distance Estimation

Since the model in (2.5) is a special case of (2.10), the asymptotic distribution of Bs is simpler than
the asymptotic distribution of BI for the general model (2.10). The asymptotic distribution of BI might be
simplified for some special cases. If Ge[- - -] and V 2G[- - -] were functions with x appearing only in the index
form z6 and trimming of the regressors could be done such that Ix(.) were a function of z6, then

C2 (z5)

= E{Ix(zo )Ge[E(f(zi , po)jx), E(g(z2 , 7yo)jx&), z, ao]VG[E(f(zi, po)|x), E(g(z2 , 7')IX6o), z , ao] ;60o }
= Ix(z6o)Ge[E(f(zi,po)Izi), E(g(z2 , 7v0)Ix6), xi, ao]V2G[E(f(zi,fpo)|xi), E(g(z2 , 7o)Ix=;6o), x, aol,

and the asymptotic distribution of #1 would be simplified as

(#r - Bo)

= - {E (Ix(xo)Ge[E(f(zi, p3o )jx), E(g(z2 , yo)|jx60), x, ao]Ge,'[E(f(zi, P.)Ix), E(g(z2 ,7oy)|zxo), x, ao]}

x {E I x(z;6o)GTe[E(f(zi,#eo)|zi), E(g(z2,7Yo)|z;6o), zi, ao]

x 17 1 G[E(f(zi,#4o)|zi), E(9g(z2,7"o)|z;6bo ) i, ao]

x (f(zi, io) - E(f(zi, po)|zi), g(z2, 'Yo) - E(g(z2 ,'o)|xz6o))'} + op().

For some special models, when Ix(-) is a function of z6, it might be possible that C2(x;) = 0. A good
example of this case is the Ichimura binary choice index model (Ichimura [1987]). Under such circumstances,

,tF(#1 - 60)

= - {E (Ix(xo)Ge [E(f(zi, #i )|z), E(g(z 2, '7o)Ix6o), x, ao]Ge:,[E(f(zi, po)Ix), E(g(z2 , 7o )Ixo), x, ao])}-

x 7 1 {Ix(x6o)Ge[E(f(zi,# fo)Ix), E(g(z2 ,'o)|jxz6o), xi, ao]

x ViG[E(f(zi, pO)|1i), E(g(z2,7o)|z;64), zi, ao][f(zi, po)-E(f(zi, #)|z;)]} + o,(1).

For these special models, a weighted semiparametric MD estimation procedure may be possible. The trim-
ming of the indices is, however, a tedious and technically complicated problem. While there are suggestions
(see, e.g., Manski [1985], Robinson [1988], Klein and Spady [1987], and Lee [1991]) for different semiparamet-
ric models, the technical difficulty remains. So far, the technical complication of trimming can be overcome
only in the adaptive estimation approach (see Manski [1985]) and in certain two step estimation methods.
For the estimation of the general model (2.10), a properly weighted semiparametric MD approach does not
seem to be possible. For these reasons, we limit our attention in this section to the estimation of the equation
(2.5), for which a weighted semiparametric MD estimator can be derived.

From Corollary 3.1, we see that G[E~(f(z1 ,#,)jxi), x;, a0 ] might be treated asymptotically as if it were
a random variable u;, where u; = ViG[E(f(z 1 i#)|xi), x, ao][f(zi;,#/) - E(f(zi,#i)|xz)]. Conditional on
x;, u; is a heteroskedastic disturbance with a variance v(x;), where

v(zi) = VI G[E(f (zi, /h1)|z;~), zi, a0 ]o 2 (z;)V1 G[E(f (Zi, #34)|Ix), zi, ao],

with u2 (z,) = E[f(zi,#a)f'(zi,#0 )|z;] - E(f(zi,#i0 )|Ix)E(f'(zi,#i0 )|Ix). A relatively efficient estimation
procedure shall take into account this heteroskedasticity. With a lL/-consistent estimate 5, u 2(z.) can be
estimated by

8l(zi, 6) = En[f(zi,I3)f'(zi,P)|z;] - En(f(zi,fi)|Ix)En(f'(zi, j)|Ix),

and v(zi) can be estimated by

vn(zi, 6) =VG[nfz,)|),z,]&()1GE fzi )zz,&,

9



where & = a($) and #i = fl(). A feasible weighted semiparametric minimum-distance (WSMD) estimation
procedure is

n1
mn Ix(zi) 1 G2 [En(f(zi,f3(G))|z;), zi, a(O)]. (4.1)

ese v.(z,)

Proposition 4.1 Under Assumptions 1-3 and 6 and the identification condition in Corollary 3.1, the
WSMD estimator 0. from (4.1) is consistent, and

i(, - 6.)

= - E (Ix(z) .GD[E(f(zi, p.)|z), x, ao]Ge,[E(f(zi, Io)|x), , ao])

1
x {Ix(z;) ~z)Ge[E(f(zi , #,)|z;), zi, a.]V'1G[E(f(zi, #,)|z;), z , a.]

x (f(zig, #,) - E(f(zi,#60 )Iz;))} + o,(1).

Consequently, V (5w -0,B) -+ N(0, (t), where

= {E (Ix(z)-1-jGe[E(f(zi, .)|z),z, ao]Ge[E(f(z1 ,#P)Iz), x, ao) .

The WSMD procedure can be easily generalized to the estimation of a system of equations with G
being a finite dimensional vector-valued function. In this case, vn (z;,#6) becomes a matrix and the WSMD
procedure will be generalized to

n

min Ix(z,)G'[E~(f(zi,#(0))|z;), z;, a(6)][vn(zi, $)]~ 1G[E(f(zi, p(0))|Iz;), zi, a(0)].Bee =

Let $M,W be the systematic WSMD estimator. The limiting distribution of /(#M,, -8,.) will be N(0, laM),
where

M = {E (Ix(z)G'[E(f(zi,,o)|z), x, a.] [v(x)]-'Ge,[E(f (z1, fl)|1z), x, a.])}-1,

and v(z) = V'G[E(f(zi, pe)|z), x, a.] 2 (
x)V1G'[E(f(z1, .)Ix), x, a.].

Comparing the asymptotic distribution of the SMD estimator #s with the asymptotic distribution of
the WSMD estimator 9w, we see that 6. is asymptotically efficient relative to Os. Asymptotic efficiency
issues in the estimation of models with conditional moment restrictions have been studied in Chamberlain
[1987]. Chamberlain considers the model with conditional moment restrictions:

E[f(zi, Oo)|z] = 0, (4.2)

where f has a known functional form; and he finds that for any /-consistent estimator B of e,, the random
variable /(6 -0B,) can be no more concentrated about zero than a random variable distributed N(0, 0),
where

LA = {E [E(0 f'(zi,6.) F) [E(f(zi,0.)f'(zi, e.)z)]E 1E *~ z,] . (4.3)

For this case, we see that the WSMD estimator $M,u. would attain the efficiency bound found by Chamberlain
if trimming of z were absent. The model (4.2) is essentially a nonlinear simultaneous equation model
with unknown heteroskedasticity. It includes the linear regression model with unknown heteroskedasticity
as a special case. For the linear regression model, Robinson [1987] provides an estimator which attains
Chamberlain's efficiency bound. Newey [1987, 1990] reports an estimator that attains the bound for the
conditional moment restriction model (4.2). Newey's approach suggests procedures to construct an optimal

10



instrumental variables matrix for estimation. Chamberlain's efficiency bound is constructed for the model
in (4.2). For the general equation model (2.10), the efficiency issue remains to be investigated.

As an illustration, it is interesting to demonstrate a WSMD estimation procedure for a QR model.
Consider a binary choice model

y = P(zxa)+ E, (4.4)

where y is a dichotomous response and P is the conditional choice probability. For this model, E(Ejz) = 0
and var(elz) = P(xa0 )[1- P(za)]. As a popular parameter probability model, P might be a logit or probit
probability function. If P is assumed to be invertible, then (4.4) implies that P-1 [E(yjz)] = za.. With this
relation, G[E(ylz),z, a] = P- 1[E(yz)]- za. It follows that G0 [E(yI), z, a] = -z' and V 1G[E(yjz),z, a] =

,(p-i yz)) , where p is the probability density corresponding to P. The WSMD estimator of a is

(n 1 ( -1 1
v(x) 7n(zi)

where the weight vn(zi) is vn(xi) = (En(y2Ixi) - E(ylxi))p2( .l[ (31 i)]). The asymptotic covariance

matrix of /A(&w - a.) is E(Ix(x), arIz)P2(P-1[E(yIZ)])x'z)-. This WSMD estimator would be asymp-

totically efficient if there were no trimming, as is the maximum likelihood estimator. An interesting point is
that this asympotically efficient estimator has a closed form expression, and its computation does not require
an iterative algorithm.
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5. Some Related Properties

5.1 Invariance Properties

The SMD estimation procedures possess some invariant properties. Suppose that 0 is a differentiable
origin-preserving transformation, i.e., qO(z) = 0 if and only if x = 0, and 88i ) 0. The model (2.10) will be
equivalent to

44[E(f(zi,3o)Iz),E(g(z2,70)xz60 ),z, ao] = 0,
where t o G is a composite function of 0 and G. Let 0, be the SMD estimator from

n

Let v(z, B,) = (E(f(zi, j3.o)jz), E(g(z, 'rY ja6),z, a,) denote the vector of arguments in the above functions.
Since t9[v(z, 6o)] = VqS(0) -Ge[v(z,e)], Vi$[v(z, ea)] =oVh(o) "ViG[v(x, ea)], and V 2A[v(z, 6o)] =oV40)*
V2G[v(z, Os)], it follows from Proposition 3.1 that

_- {E(Ix(~c$ e[v(z,Go )] ei [v(z, Go)])}... 1-ii:{ IXx:i ~v(z,, e)] " V'1 [v(z,,e)]

x (f(zi, 3) - E(f(zi, I3)Ix;)) + E{Ix (z)$. [v(z, 60)]V~44v(a, 60)]xzt60 }

x (g(z2i, 'yo) - E(g(z2, 'v)Ixido))} + °p(l)

_- {E(IX(x)G[v(x, Go )]Gei[v(z, O0))'1"1 n {Ix~rs)Ge[v(xi: 6w)] . ViG[v(zi,60)]

x (f(zi,,flo) - E(f(zi,60 )Izxi) + E{Ix(i)Ge[v(z,G0 )] 'V' 2Gfv(zi,6 0o)] z, 0}

X (g(z2, yo) - E(g(z2, 'o)Izi~bo))} + Op (l),

which has the same asymptotic distribution as V'-B - B,) in Proposition 3.1. Hence the SMD estimator is
asymptotically invariant with respect to the origin-preserving transformation ¢. A similar conclusion holds
for the WSMD estimator.

Consider a special model with G as a sum of two functions:

G[E(f (i,,6)Iz), E(g(z2,71)I z6, e),:, a]

= Gi [E(fi(z1 ,fl)Iz),E(g1 (z2 ,7Y)I 6, B),x, a] - G2 [E(f2 (z1 , fi) 1 ), E(g2 (Z2,'y)I 6, 6),:, a].

The structural model is

G4EF(f1 (z,fRl.)Iz),g(z 2 .)j:~ll60 ),:, a0]-= G2[E(f (y., ,3lIz), Efg2(z2,70 )_1z60),xa].
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The SMD estimation method can be applied to the function 14 instead of G. To simplify notation for this
case, let v(x, 6) = (E(f(zi, #)Iz), E(g(z2, y)|6, 0), x, a), v1 (x, 6) = (E(fi(zi, /)|z), E(gi(z2 , 7r)1X6, 6), X, a),
and v2(x,0) = (E(f 2 (zi,fl)x),E(g 2 (z2 ,7)|x6,6),z,a). Since v1(z,Bo) = v2 (x, Bo),

ve[v(x,64)] = Vt(Gi[v1(z, 6)]){G1,e[v1(z,G 0 )] - G2 ,[v 2 (z, 64)]}
= Vfk(G1[v1(x, Go)])Ge[v(x, G0)],

and VW[v(z, 0B)] = Vf(G1[v1(z, 6B)])VG[v(z, 6B)]. From these relations, we see that the WSMD estimation
procedure is asymptotically invariant with respect to any strictly monotonic transformation because the
factor Vf(G1 [v1(z, 60)]) has been cancelled out by the weighting scheme in the asymptotic covariance matrix.
However, the unweighted SMD procedure may not be asymptotically invariant with respect to a monotonic
transformation. The following example provides an illustration. Consider a nonlinear regression model:
y = f(za0 ) + e, E(ez) = 0, where za appears as an index and f is invertible. This model implies two
possible formulations for G, say, G(1) and G(2): G(1)[E(yIz), x, a]= E(y I) - f(xa), and G(2)[E(ylz), x, a] =
f-1(E(ylz))-xza. Let ai be the SMD estimator derived with G i), and let &2 be the SMD estimator derived
with G(2). Corollary 3.1 implies that

I f Of(xao) Of (zag) ~'i1 Of(zga 0 )
- a0 ) = 1 E Ijx(z, )I ) (Z Ii(t+op(1),

which would be asymptotically equivalent to the standard nonlinear regression estimator if there were no
trimming. The SMD estimator &2 is computationally simpler as it does not involve an iterative algorithm.
It has the following asymptotic distribution from Corollary 3.1:

(&2 - ao) = {E(Ix(z)z'x)}K Z Ir(x)x VI()Ei + o,(1),
f=1

where Vf(-) denotes the derivative of f. The asymptotic distributions of the two estimators are apparently
different. On the other hand, the WSMD estimators have the same asymptotic distributions. Suppose that
the disturbance c is homoskedastic. In this case, weighting of the SMD estimation with G(1 ) is unnecessary.
For G(2), the weight at each x can be chosen as (Vf(x&i)) 2 , and the WSMD estimator &2,w will have the
following asymptotic distribution from Proposition 4.1

i(&2,w - a,) = {E(Ix(z)(Vf(xao)) 2 z'z)} ' fEIx(x)Vf(ziaz')xge+ op(1),

which is asymptotically equivalent to &1 because *) = Vf(zaa) -"'.

5.2 A Local Goodness-of-Fit Test Statistic

In Appendix 4, we demonstrate the similarity of the SMD estimation procedure to the minimum chi-
square procedure when some finite restrictions are used for estimation. The minimized weighted-distance
function multiplied by a proper rate of convergence is asymptotically distributed chi-square. This can
be used as a goodness-of-fit test statistic. Unfortunately, when there are infinitely many restrictions, the
corresponding minimized-distance function might not be proportional to a chi-square random variable with a
finite degree of freedom. Indeed, it is not clear what its limiting distribution is in general. A straightforward
generalization of the statistic of Appendix 4 is, however, possible for a local goodness-of-fit test.

Let 0 be the SMD estimator from Section 3. Let ar, 1 = 1,.--.-, L, be some specified values of z, lying
inside the interior of the support of x. By a Taylor expansion of G at G4,

= G[En(f(zi, p60)|Ix), En(g(z2 , 70)|z16 0 ), xt, a0] + G9e,[E,(f(zi, l)Izi) , En(g(z2 , ji)|xil), z,, &](6 - 64)

= V'i 2G[E,(f(zi,#0 )|Ix), 2n(g(z2 ,70 )|zrj6 0 ), a,1, a0 ]

x [En(f(zi,p%)|z1 ) - E(f(zi,3o)|zr), E(g(z2 ,7,)|zr60 ) - E(g(z2 ,74)|zr6a)]'

+ Ge,[En(f(zi,,#)zr), En(g(z2 ,7)|zr ), zi, ]($ - Ge).
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As # is /-consistent,

naG[E (f(zi,#($))|zi), En(g(z2, 7($))|zr6(5)), zr, a($)].

= V7, 2G[En(f(zi,.o)|xi),En(g(z 2,7.o)jxi6),xi,a.]

x [ (En(f(zi,#.)Ixt) - E(f(zi,/o)Ixt)), nb(En(f(zi,o )|lxi) - E(f(zi,#o)|xz))]'

+ Ge,[En(f(zi,#o)i), E.(g(z2 ,7 )|z6o), xi, a]/ -/ 6($ - .)

= ViG[E(f(zi,#o)|zi), E(g(z2,7.o)|zr6.), zi, a.](En (f(zi,#o)|zr) - E(f(zi,#0 )|xz))+ o,(l),

under the assumption that lim,,...o = 0 (which is in general the case in practice as m < k). Define

Vo(xi)= ViG[E (f(zi,)|), E z )| ] ) JK(v)dv

x [E(f2(zi,Lj)Ixi) - E2(f(zi, 3)|xz)] ViG[En(f(zi,3)xz), En(g(z 2 ,i)|x6), xr, &].

Since nn(E (f(zi,/3 0 )|ix) - E(f(zi,#3.)|xi)) converges in distribution to N(0, E), where

E = h(p) [E(f 2 (zi,#.i)Ixi) - E2 (f(zi,#.)Ixi)] -JK2(u)du,

it follows that ja r£ G[En(f(zi, p($))|Ix), E(g(z2,ir)|zrb),z&] N(0,1). A local goodness-of-fit

test statistic can be constructed as

L

nl~ Zn(z1)G2[En(f(zi, $())|xzi), En(g(z 2 ,7($))Ixi6(#)), x,1a($)],

which is asymptotically distributed chi-square with L degrees of freedom. This statistic has L degrees of
freedom because 6 converges at a faster rate than the nonparametric regression functions and the slow
convergent random variables dominate the asymptotic distribution.1This test statistic is useful for detecting
the goodness-of-fit of the model at some specified points, such as the sample mean or median, which are
regarded as important points by an empirical investigator. However, if it were regarded as an over-all
goodness-of-fit statistic, it would suffer from the arbitrary number of restrictions for the test. Subsequent
research should consider how to utilize all the information to derive more powerful test statistics. Much
research needs to be done on the development of goodness-of-fit statistics in the semiparametric framework.

1It is possible to derive test statistics with a faster rate of convergence. For example, at a point zi, take a
sample average of G over a neighborhood of z with fixed diameter. A 1 /i multiplication of such an average
will converge in distribution to a normal variable. An asymptotic chi-square statistic can be constructed
with this average value. However, the computation of such a statistic will be much complicated. We leave
the possible approach for future investigation.
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6. Semiparametric Estimation of Simultaneous Equation Microeconometric Models
In this section, we point out briefly possible applications of the SMD approach to the estimation of some

semiparametric simultaneous equation microeconometric models, namely, endogenous switching regression
models and simultaneous equation limited dependent variables models based on index restrictions. Many
other models may also be estimated with the SMD estimation framework. We will demonstrate briefly
how some conditional moment equations can be derived from a specific semiparametric model with index
restrictions. Detailed analysis on any specific model and its identification conditions will not be reported
here due to space limitation.

6.1 SEMIPARAMETRIC ENDOGENOUS SWITCHING REGRESSION MODELS

Consider a model with two regimes:

y1 = Z10k1,o + Ei, (6.1.1)

and

y2 = z2a 2,0 + E2, (6.1.2)

where y1 can be observed only when z6 ;> u and y2 can be observed only when z3 60 < u. In this
framework, y is the observed value of the dependent variable, and zi, x 2 , and x3 are subvectors of z. Let
I be a regime indicator with I = 1 for the first regime, and I = 0 for the second regime. There are two
possible situations depending on whether I is observable or not. If I is observable, the model is a switching
regression model with sample separation information. If I is not observable, it is a model without sample
separation information. Assume either that the disturbances ei, E2, and u are independent of z, or their
distributions conditional on z are only a function of the index a36O. This model implies that

y = Izia 1 , + (1 - I)x2a2,O + t161+ (1 - I)c 2 . (6.1.3)

For the model with sample separation information, (6.1.3) implies

E(yjx) = E(Ix)xiri,0 + E((1 - I)Ix)z2a2,o + E(Iei + (1 - I)e21z), (6.1.4)

and

E(yIx3za) = E(Iz1 |xz6 0 )ai,o + E((1 - I)z2 zax6 0)a2, + E(Ie1+ (1 - I) 21x3 60). (6.1.5)

By the index property of the model, E(Ie1 + (1- I)e21x) can only be a function of x360 ; hence, E(Ie1 + (1 -
I)e2 1x) = E(Iti + (1 - I)e21x3 6). Therefore,

E(ylz) - E(yx 36) = {E(Ix)xi - E(Izijza60)}ai,o + {E((1 - I)Ix)xz2 - E((1 - I)z2 |x36)}a2 ,o. (6.1.6)

The sample separation indicator implies also that

E(Ilx) = E(Ix 360 ). (6.1.7)

The parameters in the model can be estimated by the SMD procedure applied to (6.1.6) and (6.1.7).
For the model without sample separation information, (6.1.3) implies

E(ylx) = xz2 a2 , + E(Ijx)(xai,0 - x2a 2,) + E(e2 |z) + E(I(Ei - E2 )Ix), (6.1.8)

and
E(yjxa6o, zi1,0 - z2a2 ,0 )

= E(z 2 |za6, ziai,o - z2a2,a)a2 ,a + E(I|z350,xziai,0 - z2a2 ,a)(zia1,0 - z2a2,o) (6.1.9)

+ E(e2 + I(Ei - e2)|za6,xzia1,0 - za,)
Since E(I1z3 60, z1ai,0 - z 2 a2,0 ) = E(Ijz), and E(e2 +I(qi - E2)|za60 , ziai,0 -a=2 a2,o) = E(c2 +I(ql -E2)Iz),
the difference of (6.1.8) and (6.1.9) is

E(ylz) - E(y~xa6o, ziai,o - z2a2,o) = [z'2 - E(z,2 |za60, Xia1,o - z2a2,o)]a2,o. (6.1.10)
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The SMD method can be applied to (6.1.10).
Disequilibrium market models can be regarded as special cases of the above models. The simplest

disequilibrium market model consists of a demand equation and a supply equation where the price is fixed

and the traded quantity is determined by the short side, i.e., y = min{yli,y2}. This model implies that

E(yIz) - E(yIiai,o - 222,o) = [z2 - E( 2 |1iaii,o - z2a 2,o)]a2,o, (6.1.11)

which can be used for the SMD estimation.
The estimation procedure can be easily generalized to the estimation of models with a Box-Cox trans-

formation. For example, instead of (6.1.1) and (6.1.2), the equations are ~ = zx1a1,o + Ei, and

~ = z2 a 2,o + E 2 . With sample separation information, this implies

/yA -1 yA -1|
E ( 1 -E 136o) = [E(IIz)zi-E(Izia3 6o)]ai,o+[E((1-I)|z)z2-E((1-I)z2a36o)] 2,o,

which can be estimated within the SMD framework.

6.2 SEMIPARAMETRIC SIMULTANEOUS EQUATION MODELS WITH LIMITED DEPENDENT VARIABLES

There are various cases of such models. Consider the following model with mixed discrete and limited

dependent variables:
y* = z161,0 + Ei,

y2 = 11ao + z262,o + E2,

where y is a latent variable with dichotomous indicator Ii, y2 is a limited dependent variable determined by

the latent variable y4 as y2 = max{ y,0}. Either the disturbance ei is independent of:x, or its distribution
depends only on z161,,; either E 2 is independent of x, or its distribution depends on z161,, and/or x262,..
Let 12 be a dichotomous indicator : 12 = 1 if and only if y2 > 0. The first equation implies that

E(IiI) = E(IiI 161,,). (6.2.1)

The second equation implies that I2Y2 = I2I1ao + I2:262,o + 12E2. Since E(I2E2 |z) can only be a function of

zi51,0 and x262,o, it follows that

E(I2y2 |z) - E(I2y21 1 61,,: 2 62 ,o)
(6.2.2)

= [E(1211I x) - E(1211 |1 61,0, z262,o )]ao + [E(121z)x 2 - E(I2: 2I|i61,0, x262,0)]62,0.

The SMD procedure can be applied to the estimation of (6.2.1) and (6.2.2).
Simultaneous equations with limited dependent variables can be estimated within this framework. Con-

sider a two equation model:
y* = x161,0 + ei,
2y = Yiao + 262,o + f2,

where y*,1 = 1, 2 are latent variables and the observed dependent variables are yj = max{y,*, 0},l = 1, 2. The
distribution of c1 conditional on:x is assumed to depend only on x161,0 and the distribution of e2 depends on
x161,. and/or x262,0. Let I1 denote the dichotomous indicator of yi : I1 = 1 if and only if yi > 0. Similarly,
let 12 be the dichotomous indicator for ,. The first equation implies that

E(y1|Iz) - E(y1|z:161,.) = [E(1 1 |Iz)zi - E(lizij 161,.)]61,a, (6.2.3)

and the second equation implies that

E(y/2|Iz) - E(y2|z161,,, z262,o)(624
= [E(12y1|:) - E(12y1 |: 161,,, z262,O)]aO + [E(12|z)z2 - E(12: 2 |z161,,,2=262,o)]62,..(.24

These equations (6.2.3) and (6.2.4) can be used for the SMD estimation.
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7. Possible Generalizations

In the previous sections, we considered the SMD estimation of equations involving nonparametric re-
gression functions with or without index restrictions. The SMD methods can in principle be generalized to
the estimation of equations involving other nonparametric functions. As an illustration, we discuss a case
of the estimation of sample selection models subject to Tobit selection rule described in Lee [1990]. This
example is interesting because the SMD method provides a different view of looking at the estimation and
identification of such a model.

The model in Lee [1990] is a model with two equations

yi = xao + u, (7.1)

and
y2 = xf0 + v, (7.2)

where yi is a Tobit regression model with observation y1 = max{0, yil}, and y2 is a latent outcome equation
with y2 = y being observed only when y* > 0. Conditional on y2 being observed,

E(y2|y1 > 0, x) = x,1 + E(vlu > -xao). (7.3)

The estimation method in Lee [1990] is based on the assumption that u and v in (7.1) and (7.2) are inde-
pendent of the regressor z. Under this independence assumption, Lee [1990] suggested a two-stage method
for the estimation of (7.2). Let f(v, u) be the joint density of (v, u), and fu(-) be the marginal density of u.
It follows by definition that

lu=f * .vf(v, u)dudv
E(vlu > -za.)=~ ~*

-Cl fu(t)dt

-f2 fO f°v f(v,u)p(z)duzdv

f ff(t)p(z)dtdz

where p(z) is the density of xa0 . Given a consistent estimate & from some semiparametric estimation of
(7.1), Lee's method is a semiparametric least-squares procedure:

min Ix(zi) y2 - - A"(zi), (7.4)

where
i ** ** 10U - uj (a) z - zjadud

A ,= 12fiLa )-) v(fl)K , dudz,
, ia J-Va (n- 1)an an an

and

/* * 1 K u - u (a) z - zj& uzB( i) =J]= 2 )K [a 'Idudz,
, ii _,ia (n - 1)a, an ' an

with u, (a) = y15 - zja and vv (3) = y2? - xf. This method differs from Ichimura's semiparametric least-

squares method in the construction of a nonparametric estimate of the conditional expectation E(vju >
-za0 ). Ichimura's method used only the index restriction in the model. The estimates An and B,, above
indirectly estimate the density functions of the model by using the independence restriction in addition to
the index restriction. An especially interesting feature of this estimation method is that even though the

regressors z appearing in both (7.1) and (7.2) are the same, the parameter /# is identifiable from the above
estimation procedure. Lee [1990] provided a proof based on the identification of a least-squares procedure.
Let

,, n- 1)a, !/, [a a ]dd
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and
****J 1 *_u- u1(&) z- -a

D(x) = . (n 1) 2  Z2jK [, dudz.

This two-stage estimator of /3 has a closed form expression. The two-stage estimator /3 is

= () D (xi) ' D (xi) D (zi) ' Cn(Xi)
#_ IX (xi) z2; - z2; - xazi) z2; - (Y21

Bn~xi Bn~ i) x(7.5)

". provides a consistent estimate of E(Izczao > xiao). / is a consistent estimator of $34 under the

identification condition that the components of z - E(zza.Ixo > zao) where zx E X are not linearly
dependent. The curiosity about the identification of /3 is that there are no conditions to rule out the
special case that E(vlu) is a linear function of u and E(ulu > -za c.) is a linear function of za, in (7.3).
When u is either a uniform variate or an exponential variate, E(ult > -xa.) can be a linear function
of xac. 2 Under such circumstances, /3 can not be identified from the bias-adjusted regression equation
(7.3). The estimation method in (7.4) seems to utilize a semiparametric bias-adjusted regression equation
for estimation. The consistency of the estimation procedure (7.4) seems questionable from this point of view.
However, the estimation procedure can be understood from a different angle. The model with (7.1) and (7.2)
implies (7.3). It also implies the following equation at each point z

E(y2|u > -xiao, xao > xiao) = E(zxxao > xiao)/3o + E(vlu > -iao, a.a > ziao). (7.6)

Since u > -zxia and xao > xiao imply y1 > 0, the conditional expectation functions E(azcxa > ziao) and
E(y 2 | u> -ziao, xao > zao) can be estimated with observed sample.

Since E(vlu > -ziao, zao > xiao) = E(vlu > -xiao), under the independence property, the difference
of (7.3) and (7.6) is

E(y2 |y1; > 0, xi) - E(y2 u > -ziao, zao > ziao) = [xi - E(xlxao > ziao)]/3. (7.7)

Equation (7.6) provides a source for the identification of /3o because, even if E(vlu > -ziao) were linear in
xiao, E(zxlao > xiao) would in general not be linear in xia.. Equation (7.7) can be used for estimation by
some SMD procedure. The estimator in (7.5) will be asymptotically equivalent to such an estimator.

The above example illustrates that there are semiparametric models with other conditional expectation
functions different from the ones with index restrictions. The SMD method can be generalized to the
estimation of such models. Indeed, it may be possible to generalize the SMD procedures to estimate models
involving many other nonparametric functions, such as derivatives of nonparametric regression functions.
The details may be best left for a case by case study, since the detailed asymptotic analysis might be
different with different nonparametric functional estimates.

2 I am grateful for Professor Peter Schmidt for pointing out the exponential variate case.
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8. Conclusions

The SMD estimation methods introduced in this article are useful for the estimation of parametric
and semiparametric models. For the estimation of parametric QR models, the WSMD estimation method
provides an asymptotically efficient alternative to the maximum likelihood method even with disaggregated
data. For some of the QR models, the SMD estimators have closed form expressions while the classical
maximum likelihood method requires numerical iterative algorithms for computation. The SMD methods
can be applied to the estimation of linear or nonlinear simultaneous equation models. There is no need to
consider how to construct (optimal) instrumental variables for estimation. All that are required in the model
are a list of proper conditioning variables and conditional expectation functions, which are structural. The
SMD methods provide a unified framework for estimation. Once the conditional expectation functions or
related functions are determined and the model is identifiable, the execution of the estimation procedure
makes no distinction between the estimation of regression equations or simultaneous equations. With only
conditional moment restrictions as in Chamberlain [1987], the WSMD estimator attains the Chamberlain's
semiparametric efficiency bound.

The SMD methods can be applied to the estimation of many semiparametric models with index re-
strictions or certain moment restrictions. In the MD framework, the distinction between the estimation of
parametric models and semiparametric models is also minimal. The important ingredients for semiparamet-
ric models are the identification of some implied structural equations which involve conditional expectations
or related functions, which can be estimated by familiar nonparametric functions.

In this article, some local goodness-of-fit test statistics were also derived for the testing of model re-
strictions. However, many issues, such as asymptotically efficient estimation and testing of semiparametric
models, have not been completely discussed here. Future research shall address some of such issues.

19



Appendix 1 : Some Useful Propositions

The following propositions are useful for the proof of our results. These propositions and their proofs
can be found in Ichimura and Lee [1991] and Lee [1991]. The first four propositions are useful for establishing
uniform convergence in probability of nonparametric regression functions with index restrictions and their
first and second order derivatives (see Appendix 2). The last two propositions will be used in the proofs in
Appendix 3. They are provided here for convenient reference.

Proposition A1.1 (A Uniform Law of Large Numbers) Let {.y} be a sequence of i.i.d. random

vectors. The measurable function h(y, an, 6) takes the form, h(y,an, 6) = 11hi (y,6)h2 (y,6, '-e)), where

an = O( ±;), p > 0, d > 0, 6 E e, and s(y, 0) is a finite dimensional vector-valued function. Suppose that
the following conditions are satisfied :
(1) e is a compact subset of a finite dimensional Euclidean space.
(2) The function hi(y, 6) is uniformly bounded by a 6-order polynomial of y:

a
sup Ihi(y,6)I ZcII|y|II',
,Ee j=0

where c,, j = 0,. - -- ,6, are constants.
(3) The first 6 -r moments of y exist, where r > 2.
(4) |h2 | < c for some constant c.
(5) E(hih2) = O(ar ) uniformly in 6 0E.
(6) The functions h2 (y,6, u), and s(y, 6) satisfy the bounded Lipschitz condition of order 1 with respect to 6

and u.

If lm. jn-~a (l+ 6 d= oo, then supOee |E 1 h(ys,6, an) - E(h(y, 6, an))| -- + 0. Furthermore,
in addition to the above conditions, if E(h(y, an, 6)) converges to a limit function ho(6) uniformly in 6 E e,
then supgee |} nl., h(yi, an, 6) - ho(6)I --+ 0.

Proposition A1.2 Let K(v) be a function on Rm with a bounded support D such that fD IK(v)Idv < oo.
Let t(z, 0) be a continuous m-dimensional random vector. Suppose that E(c(z, zi,6)|t, z;,6)g(tI6), where g(t|6)
is the density function of t(z, 6), is uniformly continuous in t, uniformly in (6, z). Then

S(t(zi,6)-t(z,6)
no is upEc(zzi,) Kan i' z - E[c(z, zi ,6)It(zi, 6), z;,6]g(t(zi,6)|6) = 0.

Furthermore, if K(v) is a function with zero moments up to the order s*, i.e., fD vii .- v,;K(v)dv = 0,
for all i, 0, j = 1,... , in, ii + -.- -+ im < s* and fD IIvII'IK(v)Idv < oo, and E(c(z, zi, 6)|t, zi, 6)g(t|6) is
differentiable on R'" to the order s*, and the s* order derivatives are uniformly bounded, then

sup E [c(zz;, K t 96))t(z,6)) z - E[c(z, z:,6)It(z;, 6), z;,6]g(t(z;,6)|6) = O(af).

Proposition A1.3 Let K(v) be a function on R' with a bounded support D such that K(v) goes to zero
at the boundary of D and its gradient is bounded. Suppose that z[E(c(z, z,6)It, zi, 6)g(tI6)], where
g(tI6) is the density function t(z, 6), are uniformly continuous in t, uniformly in (zi,6). Then

[1 1 B.9K (*('''G)-t(''%)
lim su E cz, _ _ __+ o* z -- [~~,z,)|~i6,z,)~tz,)6]=0

Furthermore, if K(v) has zero moments up to the order s*, E(c(z, zi,6)|t, zi, 6)g(t|6) is differentiable at
i everywhere to the order s* + 1, and these derivatives are uniformly bounded, then

sup E [c(z~ , i6)ar+1 z, *] - -j[E(c(z, z;, 6)It(z., 6),;, 6)g(t(zi,6)|6)] = O(af ).
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Proposition A1.4 Let K(v) be a twice differentiable function on R m with a bounded support D such that

K(v) and its gradient 8Kv) go to zero at the boundary of D, and the gradient 8Kv and its hessian matrix

eaaare bounded. Suppose that fj-[E(c(z, zi, 0)It, zi, 0)g(tIOB)] are uniformly continuous in t, uniformly
in (z1, 0). Then

12-40sup1E9 c(zz~)a'~ vv zi] - Ov2v' [E(c(z, zi, 0)Ijt(zi, 0), zi, 0)g(t(zi,0)10)1 = 0.

Proposition A1.5 Let C,1 (z1 ), j = 1, 2 be two sequences of measurable functions of an i. i. d. sample
{z,}. Suppose that, for each j,
(1) supZ IE(C,,12(zi)Izi) - C, (zi) I =O(a, n), for some measurable function C, (z, ), and
(2) supZ var(C,n 1 (z,)Izi) = O( -~) j = 1, 2. n l ?

If1m1 . ara2= x0, urn 2...0,2= 0, l n-ooara= 0, and 1irn-... 00  2 na282 = 0,then
2,nnna,1,aA

>= Iz(zs) ICi,1 (zi) - Ci(z,)I " IC2112(zi) - C2(z,)I p >+ 0.

Proposition A1.6 Let {z1) be an i. i. d. sample and e11 (zi, z2, an) be a sequence of vector-valued random
functions with bandwidth {an2}. Suppose that
(1) there exist square integrable functions hj (z), j = 1, 2 such that j E(412(z1, z2 , a 2)Ij) I< h,(z, ), j = 1, 2,
(2) E(41 2(zi, z2 , an)) = O(an) and var(412(z1, z2, an)) = a
(8) limn--.,. 0 E (4'12(z 1 , z2, an)1Izj) =_j b(z ), a. e., for some measurable functions tkj, j = 1, 2, and
(4) 1irn 2 ., i/-an = 0 and lin- ,onan = o

If tVbi(z) and 1k2(z) are zero a. e., then 1 E41 >nZ' ton(zi, zj"an) P- 0.
On the other hand, if irn.{[b 1(z) + b12 (z)][bi(z) + tk2 (z)]'} = E, then

n n1

1:Z Z41 2 (zi, zj,an) ~N(O, E).

i=1 jai
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Appendix 2: Regularity Conditions, Nonparametric Regression and Related Functions

This appendix collects regularity conditions for our model and points out some of the useful properties
of nonparametric regression functions with index restrictions and related functions. Assumption 1 below
contains the basic regularity conditions of our model. Asumptions 2 and 3 are conditions for the nonpara-
metric regression function of f(zi, 15) on z and its first and second order derivatives. Assumptions 4 and 5
are conditions for the nonparametric regression function of g(z2, 7) on zo and related functions. Assumption
6 is an additional assumption which is required only for the weighted estimation method.

Assumption 1:
(1.1) e is a compact convex subset of a finite dimensional Euclidean space, and the true parameter vector 6

is in the interior of e.
(1.2) The sample observations (zi, z11, z2 ), i = 1,.-".-, n, are i.i.d.3

(1.3) a(0) is a twice continuously differentiable vector-valued function of 0.
(1.4) G[u, v,z, a] is twice differentiable in (u, v, a) for each x and is a measurable function of x for each

(u, v, a).
(1.5) sup9 ||G[E(f(zi, P)|z), E(g(z2 ,y)|:6), x, ai|| is dominated by a square-integrable function of x.
(1.6) E(Ix (z)Ge[E(f(zi, 3o)|x), E(g(z2 , 70 )jx6), z, ao]Go'[E(f(zi, fl)Ix), E(g(z2, 70)I60), x, a0]) is nonsin-

gular.

Assumption 2:
(2.1) x is a k-dimensional vector of continuous random variables with a density h(z) on Rk.4
(2.2) X is chosen to be a compact subset contained in the interior of the support S, of x.

(2.3) f is a vector-valued function which is twice differentiable w.r.t. . sup IIf(zi, 1)II, supe ||af =,)bpof

1 31and sup 9 || 72|| where ji, 32 = 1, -- -,dimO, are bounded by a ti-order polynomial of zi. The first
ti - r1 moments with r1  2 exist.

(2.4) h(z), E(||f(zi,5)||2 |x), E (|aZ1,;) 2|z), and E (||a f ;)I2|z), where ji, j2 = 1,"- , dim6, are
bounded on S, x e.

(2.5) h(z), E(f(zi,3)|jz), E ( 1 ),I and E eej(iz), where ji, j2 = 1,... - , dimO, are differentiable
w.r.t. z to the order si. These s order derivatives are uniformly bounded on S: x e.

Assumption 3:
(3.1) K(v) is a continuous kernel function on Rk with a bounded support.
(3.2) K(v) is a kernel with zero moments up to the order si, i.e., fy-11--.""vi'K(v)dv = 0 for all 0 < it,

l= 1,- - , k, and 1 5ii+.- --+ik <si.

(3.3) The bandwidth sequence {a,} is chosen with a rate of convergence such that

n ~k(1+ 2tiIri) 2knna=but imailm im naik = , but lina =0.
n-looInnn-nn-boo

Assumption 4:
(4.1) 6(6) is twice differentiable w.r.t. 0, and its first two order derivatives are bounded on e.
(4.2) For each 06 E e, :6 is an m-dimensional vector of continuous variates with a density p(z 6 |0).
(4.3) p(z6|0) is bounded away from zero uniformly on X x 0.

(4.4) g is a vector-valued function which is twice differentiable w.r.t. 6. sup9 ||g(z2,7-)||, sup9 || 8(eZ2,) L, and

sup9 ||a~ z) }||, where J1, j2 = 1,--. ,dim6, are bounded by a t 2-order polynomial of za. The first
(12 + 2) - r2 moments with r2  2 of (z2, z) exist.

x , z1, and z2 may contain common variables.
4 This assumption can be generalized to allow some of the variables in x to be discrete. Nonparametric

regression functions with discrete regressors can be found in Bierans [1987]. This assumption simplifies
greatly the presentation of the proofs.
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(4.5) The functions p(x6j6), E(IIa,1141a,), E(11 g(Z2, 7)1121x6, 6), E(11z1I1411(z2, 7r)1121x6, 6), E (ii a 7) 121:6, 9)

E I I a e? Y 112IIXI2I1 j21 ,6e) and E (II8;: rIY 1216,6), whereAij = 1, " ", dimO9, are .bounded on S,,xEJ.

(4.6,) p(x56j8), E(g(z2 ,7)IxS,60), and E (835(;7)Ix6,6), and E (a'(Z;7Ixb 9) whlere '1 '2 = 1,... , dim 9

are differentiable w.r.t. :6 to the order s2, and these s2 order derivatives are uniformly bounded on
S,, x e. E(a,, - ::6S,60, :i)p(:6 16) and E(g(z2, 'y)(2i - x) 6,69, x=)p(aSj6) are differentiable w.r.t. :6 to
the order s2 + 1, and these s2 + 1 order derivatives are uniformly bounded on S,,xe.

(4.7) For any 6,1 and 6j, 21 jr2 = 1, " "", dimO, E (0: r)Ix5, 9)p(:6j6); the first order derivatives of E(zx-

x:I 6 , O, xi)p(:6 16), E(g(z2, 7)(:i-x)IS,9 x ~ xl) and E(e 8 . (xi -:):6,6, xj)p(:6 16) w. r.t. :6;
and the second order derivatives of E((x, - x,) ( ( - x)I:x6, 6, :i)p(x6 10) and E(g(z2 ,7y)(Xj - x) 0 (xi -
x) I 6, 6, :i)p(:6 j6) w. r. t. x6 are uniformly continuous in :6, uniformly in (xi, 6) E Sr x0.

Assumption 5:
(5.1) J(u) is a twice continuously differentiable kernel function on 11 with a bounded support. a2'u u' satisfies

the bounded Lipschitz condition of order 1 w.r.t. u.
(5.2) J(u) is a kernel with zero moments up to the order s2.
(5.3) The bandwidth sequence {bn} is chosen with a rate of convergence such that

urmn ~i~b("1+4)+2(t2+2)(mn+2)/r2 = o, urn nb2(m+i) = o, urn nbrn+2ak - co but urn nb2 = 0.
n-4oo In n n 'n-woo n'n-+oo n _ ' n-boo n

Assumption 6:
(6.1) sup IIf(zr,fQ) f'(zi,,)II is bounded by a ti-order polynomial of z1.
(6.2) E(IIf (zi, f)f'(zr,13)1121x) is bounded on Sr x 0.
(6.3) E(f (zi, /3) f'(zi, ,3)I x) is uniformly continuous on Sr. x e.
(6.4) v(:) is strictly positive and bounded away from zero on X.
(6.5) The matrix K(Ix (x) vr)Ge [E(f (zr , /3o )jax),:x, ao]Ge' [E(f (zi, #o )I x), x, a0 ]) is nonsingular.

A relatively stronger but simpler rate of convergence for {bn} can be used to replace the rate in As-
sumption 5.3. Given the rate of {an} in Assumption 3.3, a rate for {b~} such that

lim n b(m+4)+2(t2+2)(m+2)/r2 = oo urn nbn(m+2) = 00, urn nbn2 = 0,
n-oo Inn n--;co n.- oo

implies Assumption 5.3. Under these stronger rates, si and s2 can be chosen such that

s* > max {k k(1 +2t/ri)}

and

42> max m+27 1[(m +4) + 2(t2+ 2)(m +2)/ r2 ]}

.. 1 - n 1 1 1 , __ __ -1 -- --_--- --_-1_r___-___-- i'L'
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Any pi and P2 satisfying these inequalities will satisfy the rate requirements. This is so, since nan --+ 0 if
and only if pi > 1/q, and Hari -- 00 or1nan- oo if and only if pi < 1/q. Similar inequalities hold for bri .6

Denote A,(z, 0) = 2ja E,, 7 g(z5, -Y)J ("ib ) , and B,(z,,0) = (n-1)b ' 7 1J iab;6 -ztn)
Proposition A1.1-A1.4 can be applied to these functions under the conditions in Assumptions 4 and 5. The
variances of Aj,n(z1 , 6) and Bjn(zi) have the familiar order O(nb ) uniformly on S,, x e, i.e.,

sup var(A1 x(z8)jxi = O(-) and sup var(B x (96)z")=0(b.

s~xe ng's~xe nbg

Proposition A1.1 implies that if lin .,D0 _bri+ 2
zm/r2 -=oo, supxxe IA,,(z, 6) - E(A.,,n(z, 6) Iz,)I 0,

and supxxe Bai x6 ) - E(Bj,n (x, 6)Izjx) I L 0. Proposition A1.2 guarantees that

sup IE(A,(z,6)z)-Aj (xi,0)I = O(br2) and sup IE(B,(z,6))-Bj (z,,6)I - O(b"2),
xxe xxe

where Aj (x, 6) and Bj (x, 6) are in (3.2) and .(3.3). Hence A.,,n(z, 6) converges to Aij(x, 6) and Bj,n (x, 6)
converges to Bj (x,6) in probability uniformly on X x e. Since p(z616) is bounded away from zero on X x 0,
by uniform continuity Bj,n (x) 6) is bounded away from zero on X x 0 in probability. Uniform convergence of
Bj,n(z, 6) and A.,,n(z, 6) implies that En(g(z2, 'y)1z6b, 6) converges in probability to E(g(z2, 'y)1x6, 6) uniformly
on X x 0. Similarly, let

An (xi,6) = z >f(z5/3)K ( ) and Bn (xi) = k1Kz(n- 3 'a n-1a ji a

It follows under Assumptions 2 and 3 that sups x e var(An (x, 0) I x) = OQff), sups.~ var(Bn (x)Ifxi) =

( ),supxxe IE(A(z,60) Izi) - A(zi,9) I = O(an'), and supxxe IE(Bn(z)Ia,) - B(x,) I = O(ani ), where

A(z,69) = E(f (zi,fl)Izx)h(x16), and B(x) = h(x). As lin-.,,. n k+2tik/7 1 = 00, En(f (zi, 3)jzx) converges
in probability to E(f (zi, /3)Ijx) uniformly on X x 0.

The first and second order derivatives of A (xi , 6) are &A,, . i e)-= _1 >nr=8 Z i , K ))
89, (n-1)a~ 3 9 89t a,1

8
2
An xi 89) 1 n__2_f_____ ______and 8989' =- (n-1)aR 82fz,e K(-t'). The variances of these derivatives have order 0a

uniformly on Sz, x 0, and the biases are 0(ani ). As limn-.,,. In n a = 00, 81: converges in

y ae a (), 89A,89z converges in

llprobability to 8 2( .-) uniformly on X x e0 where 82A( 9) = E 182f/ M,P) x h(z). On the other hand,40 89, 89'89,89'

001

1 B 89(x2;, ) (_81-x5 b06n __________b

6 fm menso n iieodro 1 ad(2)eit ri+1 and r cn e ettoinintyTe)at
reurmnts or bnd b8willbe ir.Her, 1)nd :a:echsnsuhtat9, <p<*an
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Their variances have order O( nb2) uniformly on S, x e, and their biases have O(b'2) uniformly on S, x O.

Proposition A1.1 implies that as lim.. ;" in bm+2)+ 2 (2+)(m+)/r2=o,

Bj,,(xi, 6) _ 9Bj(xi,0) = (l)andsup-A ,, (z;,(6) _ OAj(xi,0) =sup =o, (1), and sup =po(1),xxe 869 9 0 1 xxe 86, 01
where the explicit expressions of a8,(z: a)and 8A'';" are in (3.4) and (3.5). The second order deriva-
tives are relatively complicated. However, they can be analyzed similarly by Propositions A1.1-A1.4. It

follows that as lim in +4+22+2X(n+2n2 = oo, supx e 82B , -( 2",') _ 8B ,,'a)I = o,(1), and

supxxe j 2jA(z,e) _ 02 A 3(,'9) = op(1). More properties on nonparametric kernel regression functions

with index restrictions and their derivatives can be found in Ichimura and Lee [1991].
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Appendix 3 : Proofs of Main Results

Proof of Proposition 3.1: Let QI,,,(9) = n E Ix (x,)G2 [En(f(Zi )l x,), En(g(z2, y)Izs 6), x;,a].
By the uniform law of large numbers of Appendix 1, En(f (z1 , P) I x) and En(g(z2 , 7Y)1Z,6b) converge in proba-
bility, respectively, to E(f(zi, /3)1x;) and E(g(z2, 'y)Izi6, 9) uniformly in (x;,9) E X xe. Since G is a uniformly
continuous function on its arguments, G2 [E~ (f (zi, f)lzx), Efl(g(z2, 'v)lx~6), -Ti, a] converges in probability to
G2[E(f (zi,fl)lz-T), E(g(z2, 7)lz;,,0),zx, a] uniformly in (x;,,0) E X x e. Let

Qin(e) = Ix(xt)G2 [E~f(z1 , l 3)Izt), E(g(z2 , 7)kd6, 0), x+, a].

It follows that

sup jQi,(9) - Qi~n(9)l
sup I G 2[En (f (Z1,l)It), En(g(z2,7')I xi), -Ti, a] - G 2 [E(f(zi,13)lx,), E(g(z2,') jx,6, 9), xi, allI

i.e., Qi,n(9 ) - Q n(9 ) converges in probability to zero uniformly on e. The classical uniform law of large
number (e.g., Amemiya [1985]) implies that QIM(9) converges in probability to QI(9) uniformly on e, where

Qi(9) = E (Ix(x)G2[E(f(zi, a)I x), E(g(z2 , Y)1x ) x, a]).

Under our identification condition, Qi(9) has a unique minimum at 9 = 90. The consistency of Gj follows
from the uniform convergence of Qi,n(9) to QI(9) and the unique minimizer of Qj(9) being B,.

The SMD estimator BIr satisfies the first order condition:

x G[E 1(f(zi, /3(Oi))Izc) , E7 ((z,fi(Oi))Ix:6(Oi)), xi, a(6r)] = 0.

By a Taylor series expansion,

-{n 1j Ix(x,)Ge(En(f(zi,3)x), En(g(z 2 , )x~6), xi, i]G*'[En(f (zi, f#)Ixi) ,En(g(z,')Ix~6), Xi, 6

n

X+ Ix( xGee[En(f(zi,3)x,), 7(g(z2 ,7x~) jx,6 0),x,, a0] ) n((xY)xa) xa]

1"
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where VG[- " ] denotes the gradient vector of G w.r.t. En(f (zi, /)I x), En(g(z2 ,7y)I x5), and a; and

Gej[En(f (zi, )I -i), En(g(z2 ,7y) jxi6), xi, a]

=En(0f'(zi~/3)1i.) En(g'(z2, y)1 xj6) 06]'V 2GEfzi3)j)Egz,)Ij)xj

+[En (0af(z x: z. OEn 'z')1i)0a] G[En(f (zl,)I xi), En(g(z2,)xi6), i, a],

whee VG[.]dotes the hesan matry ix fGw) .EnfZ,/)aEngz,7I6, n .,ic

G [En '(zifj3Ix),Enga2E'()Ixi)yxi i bGEf) i 1c)x)Ea~ 2yaIa)x, 0]=0

Ge [En eaei)~ingz, )Ixa6)ao, &] -~+ Ge [E(f 0)j 3)I.))E n ( z2 , y))Ijxi6b) ) i a0]
and

Gee' [En(f(Zi, /3)I xi), En(g(z2 , yjIxi65), xi, a] -p-+ Gee, [E(f(zi, f 0 )IxT)) E(g(z2, 'y0)I xj6), xi, ao]

uniformly in xi E X. It follows that

91 i- o) = -{ E (Ix (x)G [E(f (zi,o) Ix), E((z 2, ̂o)X60),x, ao]

x Get [E(f (zl,fl3o)Ix), E(g(z2,7o)jxbo), x, ao]) + oP(1)}-1

,\i=1
X G[En(f (zi,13o)Ixi), En(g(z2,13o)Ixibo),x-T,,ao]}.

Denote An, Bn , Aj,n, Bj1,n by

An(xi) = k1 f______a )
(n -1)a 1  an

Bn(xi) = k n )n j ,i ( an

Aj n xi) - 1 n (xi6
A.~~x)= n 1)bm g(zj,yo )J -x6

( n- n, bn I

and Bj,n(xi) = (n-1)bm J g . ).'b As n goes to infinity, An(x,) converges in probability to

A(x,) uniformly in xi E X, where A(xi) = E(f (zi , P0)Ixi) h(x,); Bn (xi) converges in probability uniformly
to B(xi)(= h(xi)); Aj,n(xi) converges in probability uniformly to Aj(x,) = E(g(z2,70o)Ixi60)p(xj60 ); and
Bj n(Xj) cnvergesin prrobl.iity uniiformly to BjR 5. in ce 8E (f(zlS3 0)liz) - 1 8A, z (:
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where the remainder 1413 (xi) is

Rn,i~xi) _ = ~ fz,~Ixin9z~'oIxaoiQo

xI- (A(x,) - A(x.)) - Ann(z,) (B(z) - x),

1n (0fl (Z r)) OA(x,)

1 8(z (x00' 06') A~(~ (B(z)

-_ ( 0j,( )(A- ) - AzB )
B(,) 00'08 B~s

- A___,(2----- i---A x )- 3 (j - B,,(x ) -,(z)

______ ______ A a(x) - A j,(x ) (B~lx) 0Jx)]
A 1,8(x) I*~6 i) AJ' ) p, (i) '06

where'/'G0 [" " " denotes the derivative vector of G9[" " ] w.r.t. the arguments En(f (zi, Q)xIz), En( e I,
En(g(z2 , y)jx,6), and 8E~t(8~IT6 in that order, and Bn(z,) lies between Bn(z,) and B(z,), etc. On the
other hand, since G[E(f (zi, f30)iz ), E(g (z2 , yo) Ijxi S), Xi) a0] = 0, by a Taylor series expansion up to the
second order,

=1V12G [E(f (z1 , f3 )jz x), E(g(z2, '70)Izxi6o), xi, a0]

[(AI\ 1 - E(f (zi, fl0)jax)Bn(zi))- (A., ,(z 1) - E(g(z2, 'Yo)I xo)B,n(z,)) 11a

where
=n2xi [Ta(xi) - T~i]TGT i)[nx)- Tx)

Tn (xi) = [ 1,Bn(i) J~~i) ~x),T (xi) = [A(zx), B(z, ), A.,(xi), B,(xi)], and VTG[.. .1 is the
hessian matrix of G with respect to Tn (xi). The above equation is valid because

An2i- E(f(z1, ,3)xIz)Bn(xi) = [An(xi) - A(xi)]- E(f(z1,30 )jzi)[Bn(xi) - x)]

and A.,,n(xi) - E(f (zi, ,G)Izx)B,,(zi) = [A.,,(z,) - A. (.Ti)] - E(f (zi, f3)Jz)[B,,n(z,) - B, (ar)]. It follows

that

1

-- {Ix(,)G[E(f(z,3o)I.), E((z2,o)Iio),x, ao]

s= i1
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where Rn = Ln,i + Ln,2 + Ln,3 with

Ln,i = ZIx (xi)Ge [E(f (zi, 3o) Ixi) , E9z,7)Iio) i oRi)
i=1

in
Ln,2 -= Ix(zi) V'1,2G [En(f(zi,13o)Ixi) , E(gn(z2 , 70) jxi.5), xi, a0]

1___11 '
X ( x) - 1~~loIx)nx) (Ajn(Zi) - E(g(z2 ,70 )Izibo)BJ,n(xi)) IR, 1(xi),

h~xi) p(zibo)

and Ln,3 = *nZE- 1 IX(xi)Rn,1(xi)Rn,2(Xi). Since each term within the summations of Ln,i, Ln,2, and Ln,3

contains errors of higher orders: i.e., (An(xi) - A(z,)) 2, etc, Proposition A1.5 implies, under the assumed
bandwidth rates in Assumptions 3 and 5, that Ln,ij converges to zero in probability for all 1.

The remaining term can be analyzed as a U-statistic since

E= {Ix(xgi)Ge[E(f(zi, ,60)Ixi), E(g(z 2, "yo) jx, 0 )Xi, a0]

x V, 2 G[E(f (z1 , i30 )j .), E(g(z 2 , 7yo)Izxi6o ), xi, ao]

_ 1 n n

EAi1n-1) ZU(w, w,an) +U2(wi, wj,bn)},

where wi = (i i)

U1(wi, wj, an)
= Ix (xi)Go [E(f (z, f 0) Ixi), E((z 2 ,y0 ) Izib6), xi,ao] .V G[E(f (z1 ,flo) I .T), E(g(z2 ,y70 ) Ix 0)xi, ao]

x (f(zl~,P0) -E(f(z,.O)I)j)) -K (2

and

U2(wi,wj, bn)

= Ix(z.)Ge [E(f(zi, 30)Ix1), E(g(z 2, 'Va)jx,6 0 ), xi, a0] .V G[E(f (z1 , /3)I xi), E(g(z 2, 'yo)Ix:60), xi, a0]

x(g(z 2j, 7 0) - (9(z2, 7)Io))(X 6 )b Jbi)

E[Uj (wi, w,,an) Iwi] converges to zero for 1 = 1, 2, but

lim E[U1(w, , wi, an) 1w1]
n-* oo

= TI __)Gr [Evfzi, @0a x),E11-, )\ r x,/_a0]. V G1 E-ft'/z. 12 \60)1x,/g_/ -yo)xiC), 1 ,a1
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The asymptotic distribution follows from the central limit theorem for U-statistics in Proposition A1.6 of
Appendix 1 (see, also, Powell, Stock, and Stoker [1989]). Q.E.D.

Proof of Corollary 3.1: By the uniform law of large numbers of Appendix 1,

Qn(6) = ~~ Ix (z,)G2 [En(f(zi , j) zI), x a;,c]

converges in probability to Q'*(B) = E (Ix(z)G2 [E(f(zi, #)Iar), r, a]) , uniformly in 0 E 0. Under our
identification condition, Q*(0) has a unique minimum at 6B=B,. The consistency of BS follows from
the uniform convergence of Qn(G) to Q(8) and the unique minimum of Q*(B) being B,. The asymptotic
distribution of BS follows from Proposition 3.1 with C2(z) = 0. Q.E.D.

Proof of Proposition 3.2 : Let

QF,n(O) = n Zx(,)(yg - F[E''+(fi( 1 ,e)jzt), Er(g(z2 , 7)Jxi 6) ) 2 ,

and QF. (6) = n±E7.1 hfr,)(y. - F[En(f1(z, Q)I x.) ,E(g(z 2, 'Y) Iz ,), xs,aJ)2. Since
SUP IQF,n(6) - Fne)

OE e

_2X supIF[E(fi(zi,I3)Izi), nE'(g(z 2,7y)Iz,6), :, a] -F[E(fi (zi,3)Ixi) ,E(g(z2, 7)12i,,), xj, o]I! i
s=1

+ sup 1F2 [En(fi(zi,6)Iaxs), En(g(z2 ,y')Izt6),xt,a] - F 2 [E(fi(zi,6)z:), E(g(z 2 ,y)Iz16, 6),a;,,ca]I
Xxe

Qi,(0) converges in probability to QF~(6) uniformly in 0 E 0. It is apparent that QF~r(6) converges in
probability to QF(0) uniformly in 6, where

QF(6) = E(Ix(z)(y - F[E(.f1 (z1,/3)j x), E(g(z2, 'Y)1 X e), z, «])Z)"

QF(6) is uniquely minimized at 6B,. Therefore, BA is consistent.
By a Taylor series expansion and the uniform convergence of the nonparametric regression and their

derivative functions,

1 ( -0,,) = {E(Ix(z)F[E(fi(zi,3o)Iz),E(g(za,yo)I:60 ),z, aoJ

x Fe, [E(fi(zi,fQo)Iz), E(g(z2 ,'o)Ixdo),X, ao]) + O~)

X (y: - F[E(fi (zi, 6,,)I 1) , En(g(za ,70,) Iz,60 ), xaol

Let A1,n(z,) = ak fi(zj , ~1K (',!i). By similar arguments as in the proof of Proposition 3.2,

~=Z{Ix(z,)F[E(fi(zi,flo)Izj),E(g(z2,7o)z,6o),z1,aJ

X (y, -F[E(fi(i, f3,) j), E((z,,)Ix5,) x, a] -V 2 [) 1 z f})~) ~~ 2 y) z6,,za
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where tw,= =(~

U(wi,w,,bn) = Ixx)eEf~i a)r)E9zf)x~)x~o

x {ci - Vi2F[E(fi(zi, 30 )z).E(g(z 2 ,1 0 ) Ixib4), X,,ao]

1 1 (~X
[(f 1(z1i,fl 0 ) - E__ z, 0 1xi) K-x -_

h(x)anK an

(g(z2j, 7) -E(g(z 2,7)jz50))( 1
6 ) J ~ o x~oi]}

As limn- .o E[U(w,, wj , bn)jw,] = Ix (xi )Fe [E(fi(zi, iQo) I i), E(g(z2,'-Yo) jI4A), xi, ao]c,, and

lima E[U(w, , wi)bn)Iwi]

_- Ix (z,)F[E(fi(zi,@o)I xi), E(g(z2, 70)I xi6o), -Ti, co]
x V F[E(fi(z, fl0 )I x), E((z 2,'y0 )I xi6), xi, ]"[fi(zu, Ef~z, )-x)

- E{Ix(x)Fe [E(f i(zi, /3o) Jx),E(g(z2,7Yo) Izxo), x,cao]

x V F[E(fi(zPo)Ix), E((z 27)'Yo) 0 ), x,ia 0] aiso}Eg(z 2i,'ro) - E(g(z2, 7Yo) jxi60)],

the asymptotic distribution of 9A follows from the U-statistic central limit theorem. Q. E.D.

Proof of Proposition 4.1: Let Qn,,,(G) = n In(Ti) ( 1 G2[En (f (zl f)I),xa.Bth
uniform law of large number with bandwidth (Proposition A 1.1 of Appendix 1) under Assumption 6, 8rn(X,)

converge in probability to o.2 (xi) uniformly on X. It follows that v (.Ti, 0) converges in probability to
v(xi) uniformly on X. Since X is compact and v(s) is continuous, v (x) is bounded away from zero on

X : Consequently, vn (xi, 0) is bounded away from zero in probability on X, and sups:s Ex -= Op (1)I
These conditions imply

1 1 _ _ _ _ _ _ _

sup - supIvxi- nie)

< O,,(1)" sup Iva) - vn(ri, )j
x

= op(l).

Let Q~ e = E=Z .I x(xi);-4--G 2 [E(f(zi ,/3)jx1),axi, a] . Then,

sp jQ,(0) - Q~w( )I <su G[En (f(z1, )I :), :, a]- G[E(f (z,13) Ix:), : u 2E z x "a 2Ex x ,a]
8Ee Xx0 vn(xi, 0) v(xi)

1
xx Is(up ~ ) IG2[E(f(i, /)Iz), xi, a] - G2[E(f(zi ,l)I xi), xi, al

x sup .G 2 Efz1,fI)x),xi,a] - Ivn(x,,6) - v(x,)I
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The consistency follows because 0o, is the unique minimizer of Qw (0). The WSMD estimator satisfies the
first order condition:

SIX (.T) vn (:i, 0) Go [E(f (z1 , /3(et)I xi), -Ti, (w G [E(f(zi, fl(6,))Izxi), xi, (w = 0.

It follows by a Taylor series expansion that

1 1
0 = -= Ix(zj) =Go [E(f(zi,flo)Ixi),zi,ao] G [E(f (z,fl0 )Iz), i, ol

+ 3 IX (xi) Gog [E(f(z1, / )Ijz), xi, ] Gee [E(f(z1, fi)Izi), xi, a
i=1 v x,0

+ ! IX(.i) 1 G88' [E(f(zi , it)Izxi), i,, a] G [En (f(zi, )Izxi), xi, a] }. -- 0)

,,where lies between 6~ and 60. The uniform law of large numbers with a bandwidth implies that

J( - 6o)=- E (Ix(z)7LGe[E(f(zflo)Ix), xao] "Goi[E(f (zi, f@o)Ix), xaoI) +op(1)}

1 n 1

By a Taylor expansion, z - -= -- 8e s e(0 -6O ). Therefore,

n 1

- ~Ix(xs) Ge[E7'(f (zi, fe50)jzi), i,.ao]" G[E7 (f(zi,P0o)I zi), i, a0 ]

- IG[E(xiIIi) ,zGo][G(e[En ,flo x),i,Iao)Izj),xj~,afo 2 1 Ov, '(=,,6)Vo] ~
i=1 v7'(z,6) .96

=_ Ix(zi) Ge[En(f (ziI/30)I xi),zxi, aoI "G[E ' (f (zi,I3 0)Izi), xi, a0] + oo(l).
6n(x, o)

Denote

A(2 )(z - 1 n i-
An( (ni-)1)ak f (z,flo)f (zj, lo)K,

D7'(xi) = (A (xi), B7'(z,), vec'[A(,2) (xi)]),
and D(zi) = (A'(z,), B(z,), vec'[A(2)(z,)]). By a Taylor expansion of 1 w.r.t. D,1(x,) at D(z,),

= I+ R , where Rn =3 ,*)~Dfl (z --D xi,,and VD t i,0,o )denotes the gadient
of 7 (z,,_ \)w r t. D_ fr.), valuated at se point between D(..'(z,ad D(,.



where j4W7)_= zT 1 Sn~ with

= ~i ZIx (xi) ( 6 G[E(f (zi) fl0)Ixi), -Ti, a]n2x)

1n1 1
Sn 2 = - V') 1G [En(f(zi,Il)Ixi), xi, ao] [An(x,) - E(f(z1 ,flo)I xi)Bn(xi)] Rn (x)

v41 ~xi)h~xx
1)

Sn,3 = ( L xi) j ,(xi)R,, 2(x,),

Sn,4 = E IX (xi )Ge [E(f (zi, /3o) Ixi ), xi, ao] -VG[E(f (zi, flo) I xi), xi, 010
i=1

X [An(x,) - E fz ,f3) I x")B (i )]

Sn,5 = ~IXxiz) Go[E(f (zi, 13) Ixi), T, 'i]n2x)R,(i)

i=1

Sn,6 = - E Ix(xs)V i G [En(f (zi, ~o ) Izx), xi, ao] [An(z,) - E(f (zi), I3) Iz)Bn(xi )] h n1xix,)x )
i1 xi

and S,),7 = * Ei1Ix (Zi)Rn,1(Zi)Rn,2(xi)Rn,3(Zd ). Since all Sn,l, I = 1,.. ", 7, involve errors of higher
order terms, Proposition A1.5 implies that all of them converge in probability to zero. Using arguments
similar to those in the proof of Proposition 3.2, the result follows from Proposition A1.6. Q.E.D.
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Appendix 4: SMD Estimation with Finite Restrictions

Suppose that zi, 1 = 1, - -"-, L, where L does not depend on n, are predetermined regressor vectors in
the interior of the support of z. With L equations, an SMD estimation procedure is

L

G2[E.(f(zi,# (6))|1xi), En(g(z2,7'(6))|zr6(6)), zy, a(6)]. (A4.1)
1=1

As the points of zi are in the interior of the support of z, trimming of the regressors as in (2.12) is done
implicitly. Let 6L denote the SMD estimator from (A4.1). The identification of 6B requires the condition
that for any 0 # ,,

G[E(f (zi, #(6))|I.T), E(g(z2, 7(6))|zr6b(6),6), zi, te(e)] # 0,
for some 1 E {1,."" , L}. The consistency of #L follows from the uniform convergence of SL, (0) to SL(6),
where

L

SL,.(6) = ZG 2 [E(f(zi,#)Izi), En(g(z2 ,7)Iz 6), zi, a],
l=1

and SL(6) = j1 G2 [E(f(zi,#)Ixi), E(g(z2 ,7)|xr6,6), zr, a], uniformly one8 as n goes to infinity and from
the identification condition.

The estimator BL satisfies the first order condition:

L

Ge[E.(nf (zi,#Q(#L))|I)l, En(g(z2 ,7-($L))|zr6(#L)), zr, (#L)]
11

x G[En(f(zi,#,(#L))|t), En(g(z2 , 7 (#L))|x16(#L)), zi, a(#L)]= 0.

By a mean value theorem applied twice to G,

jnK(#L - 6B)

= -{ Ge[En(f(z,#)Ixi), En(g(z2,')Ixir), zr, &]Gei[E(f(zi,f#)Izr),En(g(z2 ,j')z),z 1 , &]}

L

x {Ge[E.(f(z1, j)|zt), En(g(z2, i)|zr), zr, &]V'1,2G[E (f(zi, $,)|Ix), E~(g(z2,7o)|zr6o), zr, ao]
1=1

x ( k[E, (f(zi, )|) - E(f(zi,#)Ixi)], (al/b )1/n [En(g(z2,7o)|Ixo.) - E(g(z 2 ,oy)|x16)])};

where B lies between #L and 60, R,(...) lies between En(."-") and E(- -"-), and V 1,2G(- --) denotes the gradient
vector of G w.r.t. to its first two vectors of arguments. It is well known from the nonparametric regression
estimation literature (see, e.g., Bierens [1987]) that, with a proper rate of convergence for an and a higher
order kernel to correct the bias,

v/na(E (f(zi,#o)|z,) - E(f(zi,fl)|xi)) . N (0, ( )[E(f2(z, i,)|I) - E2 (f(zi,# 0 )|z,)] JK2(u)du,

and
s/n(E(g(z2,7yo)|zi6.) - E(g(z 2, 7o)|zr16.))

h Nz0, [E~g2(z2 , 7o)|z:16o) - E2(g~z2,70)|zr6.)] JK2(u)du).

Since G and G. are continuous functions,
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and Ge[En(.f(zi, )I XI), E((Z2, )jY1 ), X ,& GEfzij)I)Egz,')xj),,a]Asm<k

will go to zero as n goes to infinity. Consequently, v4 n " (BL - B,) D N(O, (i), where

L -1

L -L

X EViG[E(f(zi, #@)Ixi), E(g(z 2, 'yo)jxibo), xi, ao] Ge' [E(f(zi, Qo ) I x), E((z 2 , o)xi bo), x 2 aol.

of E (f~i, l~ )xi)to (xz,f) IE fxi). Th asymt otic disYo jtribution o Li o i ae yt e so h si

covreneoThe nonparametric regression e strE~9x,'ojiate-E((z ,)jj osntifuneteaypoi
dsrbten SMDBesThiion pocue (A4as)aismanluneightenrour. thaxispossibleltoideriveseiht

ofestimatio poceureto improvi~j.Tshsymptoticeficdibuiency.fThBweightd oeuialsobyuesfltorhathe

construction of a goodness-of-fit statistic. At each xi, define

vn(x1) = V1G[En(f(z1 , P)IJxi), En(g(z 2 y) Ixi6), xi~ B,(x1) [E(f2(z 1, /Ixi) - E' (f~zi, /3)Ixi)

where B~ (xe) is a kernel estimate of the density of x at xi, and the estimates &, ft, and b are evaluated at*
BL. The inverse of vn (xi) can be used as a weighting function in the following estimation procedure:

mm Z1  G , P[Fn~f (6 ()) Ixi), En(g(z 2 , 'y(0))I1xi 6(G)), xi, a(G)]." (A4.2)

Let BL,,W denote the weighted SMD estimator from (A4.2). The estimator 0L,w has the same rate of conver-
gence as the unweighted SMD estimator BL but is relatively more efficient: X/n" j,, - Go) A N(O, Q),
where
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The optimally weighted MD estimation procedure in Berkson [1944], Taylor [1953], etc., is also known
as a minimum-chi-square procedure because its minimized weighted objective function multiplied by its
corresponding sample size is asymptotically distributed chi-square with a degree of freedom equal to the
number of equations minus the number of restricted parameters. With a finite number of restrictions, the
semiparametric weighted MD estimation procedure (A4.2) is also a minimum chi-square procedure because

L

nan -'jn(1) G2 [En (f (z1, I(GL,u, ))Izi), En(g (z2 , 7(OL,.w )) Izl6(OL,w)), xi, G(OL,)] -£D x2(L - dime).

This result can be shown as follows. By a Taylor expansion of G at 0,

= G[En(f(zi, f~o)Izi), En(g(z2 ,70o)jzj6.), xi, a.J + Ge4[En(f (zi,fQ)jzx1), En(g(z2, 'r)I zi6),z1, &J(OL,w - 9o)

_ V ,2G[En(f (z1, fl 0)Izxi), En(g(z2, 'yo)Izi8o), xi, a0]

x [E(f(zi,I3o)Ixi) - E(f (z, 30)Ixi), En(g(z 2,'y0 )I z,60) - E(g(z2 , 'y0)jxg60)]'

+ Ge'[En(f(zi, l) jx), En(g(z2,!j)j x1 ), xi, &](OL,w - 6.).

As the nonparametric regression functions converge in probability to their limiting functions, it follows that

= VG[~f(zl Q)I,),E(( 'v o)I xi6.), xi, a] an E~f(z,,6)Izi) - E7(f(zi,Po)I x1))

+ Gei [E(f (zrIlo)I x1), E(g(z2 ,'Yo )I xl6), xi, a.] /n(BLw - Bo)+-Fop(l).

Let GL be a vector of dimension L with its lth element being

Let GL,e' be the L x dim6 matrix of the derivatives of G w.r.t. 8'. Let H~ be a vector of dimen-
sion L with its lth element being V'G[E(f (zi, i.)Ii), E(g(z2,y) Iz6 0 ), z1 , co] 'Jaj(En (f (z1,I3o)I xi) -
E(f (zi, p.)I1p)). Finally, let V be an L x L diagonal matrix with elements v(x,), 1 = 1, ". , L. In terms of
these matrices and vectors, n/ainGL = Hn + GL,G'" anetw- Uo) + op (I). Since v/n (L,w - 0~) =
-{GL,GV- 1 GL,9I}- 1 GL,9V- 1 H 1 + op(l), it follows that /GL = V 11 2MV-112H., where M = I -

V-1 2 GL, e,1{GL, e V 1GL, e, }-1GL, e V1 1 which is an idempotent matrix with rank (L - dim6). The result
follows because nanG'LV'1GL = H; V"12MV'" 2Hn, and V-1/2H1 is asymptotically normal N(O, I).
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