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1. Introduction

Tel: 313-764-2363

November, 1993

Abstract

This article has compared the performance of two methods of simulated maximum likelihood for the

estimation of discrete choice models with group data. One method of simulated likelihood uses simulators

which are statistically independent across individuals in the sample. The alternative method allows simu-

lators to be correlated across individuals. The comparisons are based on the criteria of statistical efficiency

and computation time cost. As the simulated maximum likelihood method with dependent simulators can

take into account the presence of sufficient statistics in group data, it can have advantages over the simulated

likelihood method with independent simulators in term of computation cost saving and statistical efficiency.

The computation time cost of the simulated likelihood method with dependent simulators can be inexpensive

as the method of simulated moments of McFadden (1989). This is so especially for group data with either

large sample sizes or small number of groups. Besides theoretical analysis, Monte Carlo results provide some

evidence.
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Lung-Fei Lee, Department of Economics, The University of Michigan, 611 Tappan Street, Ann Arbor,

Michigan 48109-1220

Estimation methods by simulation have been introduced by Lerman and Manski (1981), McFadden

(1989), and Pakes and Pollard (1989), among others. There are method of simulated moments (MSM) and

simulated maximum likelihood method (SML)(or simulated M-estimation method). McFadden (1989) has

concentrated on the MSM that use additive structure of moment equations. Efficiency of the MSM depends

on chosen moment equations. The SML method is conceptually more straightforward. Earlier work by

Lerman and Manski (1981) and Pakes (1986) have shown the need of a large amount of simulations for the

SML. The MSM of McFadden is introduced to overcome such a burden. However, recent work by Borsch-

Supan and Hajivassiliou (1993) has displayed that only a moderate amount of simulations is needed for the

SML method if the probability simulator is a good one. The simulated likelihood function is constructed

by replacing the response probabilities by simulated probabilities. The simulated maximum likelihood es-

timator (SMLE) is derived by maximizing the simulated likelihood function. Following McFadden (1989),

the simulated probabilities in Borsch-Supan and Hajivassiliou (1993) are generated independently for each

individual decision unit in the sample. Incidentally, the simulated likelihood method used in the empirical

study of patents in Pakes involves statistically dependent simulators, i.e., simulators that can be correlated

across different individual units.

The asymptotic properties of the MSM have been studied in McFadden (1989) and Pakes and Pollard

(1989). Lee (1992a,1992b) has pointed out some differences on asymptotic properties of the SML method

with dependently simulated probabilities (SML-DS) and the SML with independently simulated probabilities

* I appreciate having financial support from NSF under grants SES-9208620 and SBR-9223325 for my
research. This article was motivated by comments on my previous work on simulated maximum likelihood
estimation by Professors Ariel Pakes and Steven Stern.



(SML-IS). If choice probabilities involve some continuous explanatory variables, the SML-IS will be preferred

to the SML-DS in terms of statistical efficiency when computations costs are equalizing. The dependency of

simulators can reduce statistical efficiency due to correlation of simulated probabilities. Some Monte Carlo

results are reported to confirm such performances in finite samples in Lee (1992a).

In contrary to the previous studies, this article considers the circumstance with aggregated (or grouped)

data for the estimation of discrete choice models. For models with aggregated data, as the sample obser-

vations can be divided into groups according to values of explanatory variables and choice patterns, there

are sufficient statistics summarizing the sample information. For such models, it seems natural to approach

estimation with dependent simulators than with independent simulators. In this article, we will investigate

the issues of practical values of dependent simulators vs. independent simulators. Monte Carlo comparisons

of statistical and computational efficiencies are reported. The general conclusion is that when the number

of aggregated groups are not large, the SML-DS may be preferred to the SML-IS in terms of both statistical

and computational efficiencies.

This article is organized as follows. In section 2, we review the asymptotic properties of SML methods

with dependent and independent simulators derived in our previous work. In section 3 we will focus on the

efficiency comparison when the computation costs are controlled for. Monte Carlo results are provided in

section 4 to report the performance of the two methods in finite samples. Section 5 summarize the findings.

2. Asymptotic Properties of Simulated Likelihood Estimation Methods: Review

For a discrete choice model with L alternatives, let P(lIz, 0) be the response probability of alternative

1, 1 = 1,..., L, where z denotes a vector of explanatory variables and 0 is a finite dimensional parameter

vector. Let dl be the dichotomous indicator of alternative 1, which takes the value 1 when the alternative I is

chosen and is zero, otherwise. With a cross-section independent sample of size n, the log likelihood function

is
a L

G'(9) = du in P(Izi,0). (2.1)
1=1 1=1

The simulated likelihood method replaces the computational difficult response probabilities by some statis-

tical simulated probabilities. Various simulators have been introduced in McFadden (1989), Hajivassiliou

and McFadden (1990), Borsch-Supan and Hajivassiliou (1993), and Stern (1992), among others. So far,

Monte Carlo evidence in Borsch-Supan and Hajivassiliou suggests that the importance sampling simulator

suggested in Borsch-Supan and Hajivassiliou (1993), which is known as the Geweke-Hajivassiliou-Keane sim-

ulator [see Geweke (1989) and Keane (1990)], provides the most accurate stochastic simulator to the choice

probabilities. In this article, our concern is not on the performance of any particular simulator, but on the

statistical and computational efficiencies of using simulators that are statistically independent or not for

SML estimation.

Let hj(v, z, 0), 1 = 1,..., L, be smooth kernel functions (a terminology from U-statistics, not nonpara-

metric kernel estimation) used in the construction of simulators such that f h(v, z, 9)y(v)dv = P(llz,9),

where y(v) is the density function of simulated random variable. Averaging over Monte Carlo draws from

'y(v) gives a smooth unbiased estimator of P(z,0). Let i denote an individual in the sample with explanatory

variable z.. Simulators that are independent across observations can be constructed as

= h(v,',zs, 0),
j=1

(2.2)

where the v,, j = 1,..., r, are r independent random draws from y(.) for each individual i, which are also

independent across different i, i = 1,...,n. Dependent simulators can be constructed by drawing m random

variables, say, v('),... , v("), and using them to construct the simulators

f°,,(zie) = ± hi(vi), t;,e) (2.3)
,=1



for all i, i = 1...,n. Based on these simulators, the simulated log likelihood function with independent

simulators is

The 6D is not asymptotically efficient unless m converges to infinite faster than n, that is, unless A = 0.

The second term in (2.7) reflects the error introduced in the simulated likelihood due to simulation of the

response probabilities. For the case that m goes to infinite at a rate slower than n, A = oo and
n L

E6= du iIn fly ,zi,6e),

a=1 e=1
and the one with dependent simulators is

(2.4)

i(#D - ) + N(0, n), (2.10)
n L

GD(D) = E diynf,,,(za, ). (2.5)
~=1 1=1

The simulated maximum likelihood estimator (SMLE) can be derived by maximizing the above (pseudo-

likelihood) functions with respect toe8. Let 9D and 9, denote, respectively, the SMLE of 9 based on dependent

simulators and independent simulators. The independent simulator approach is the one emphasized in the

simulation estimation literature [McFadden (1989), lajivassiliou and McFadden (1990), Borsch-Supan and

lajivassiliou (1993), and many more). Some asymptotic properties for both the SML-IS and SML-DS are

derived in Lee (1992a, 1992b) among others under some mild regularity conditions-[see also Gourieroux and

Monfort (1993)]. Due to the nonlinearity of log simulated likelihood functions in terms of simulation errors

fI,,(zd,9) - P(lIz.,9) and f,,, (z,,9) - P(Ilxj,9). Consistency of the SMLEs of 9 requires that r and m go

to infinity.

The rate of convergence and the limiting distribution of #D - 9. where 9. denotes the true parameter

vector can be derived by the theory of generalized U-statistics [Lee (1990)]. The rate of convergence depends

on the sample size n relative to the size m of total random draws. If lim..(n/m) = A is finite, the rate of

convergence is of order 1/J. On the other hand, if limno,.(n/m) = oo, the rate of convergence can only

be of order 1//". When lima.....(n/m) = A is finite,

as noises in the simulators dominate the model noise.

For the approach with independent simulators, when lim...O,,(n/2/r) = 0, the asymptotic distribution

of 8, will be asymptotically efficient, i.e.,

-,rNIe - O.)-i N(0, E). (2.11)

This includes the case that r increases proportionally to n. Under such designs, 9f is efficient relative

to Bo. However, when r increases slower than 5, the limiting distribution of 9l becomes nasty. When

lim~.-o(ni/2r-1) = p is a finite positive constant,

f(#g - 9.) - N(pEw, E), (2.12)

where

W = P(llz,9.) B0IlnPIz,6,)var(h(v, z,9.)z) - cov hr(v, z,9.), h(v,z,.) F)] }. (2.13)

Thus when r increases at the rate n, an asymptotic bias exists in the limiting distribution. The situation

becomes worse when r increases at a rate slower than f because the asymptotic bias will dominate the

variance. Indeed, when lim..c(n1/
2
r-

1
)= oo,

n($o - .)-°DN(0, ED),

where

with

ED =E +AA,

and

1-E = -E LE I P(I 9Z ) _B(l i9) 0ln P(z,9.)

EoAh(vz,9.) -Bn P(lz,9.) i
x oE e - 09 h,(v,z,9.)jv -E.v

4

(2.6)

(2.7)

(2.8)

(2.9)

[see Lee (1992b), Theorem 2]. In conclusion, while the 9, may be efficient relative to 9
D when m and r are

approximately the same, there might be biases in the limiting distribution of 9, when r is not large compared

to n. It is interesting that biases due to simulation in it can be reduced by a bias-corrected procedure. A

bias-adjusted estimator 
9
A can be derived by correcting a bias term directly from Of:

" 0 lnf',(zi,,9l)0oln4fl (z ,9r) 1 *I *
9A = 51 -n dig '89 89' n FFv,.(rdB1), (2.15)

09'5J n.1 =

5

r(#g -9,) -4 Ew, (2.14)



where v,(z;,,) = w,.,(z,,9)/r with

dr. Olnf' (z;,) -(I ( 8))
,.[f ,66))2a= (Sr,i(zi, 6) - [ff,i(;,6)]2)

- (Ci(zi,0 ) - f,(z,6) i,))

(2.16)

Sr,i(ze, 6) =1 h (o n, z , 6)

j=1

and

Cr,,i,(z;, 6) = 1Erhl(v; 0, z , ) 8hrlv , z",6).

;=1

The bias-corrected estimator BA improves upon Og by eliminating the leading bias term in Og due to simu-

lation. Another valuable property of BA is that the asymptotic efficiency of 
9

A requires only that r goes to

infinity faster than the rate n" 4 instead of n'" 2 [Lee (1992b)].

The computation of the likelihood functions CD and CI involve double summations - one over the

sample observations n and one over the number of simulated random variables m (or r) in the construction

of simulated probabilities. When there are continuous regressors in the model, the choice probabilities will, in

general, different across individuals. For the continuous regressors' case, the computation costs of these two

simulated likelihood functions might be expected to be similar when m and r are about the same. The total

number of simulated random variables for the dependent simulators case will be m and the total number of

simulated random variables for the independent simulators case is nr, which will be n times large. Iowever,

the cost for generating the random variables will, in general, be a small component of the total cost for the

derivation of the SMLE in an iteration algorithm. As the SML-IS can be more efficient relative to the SML-

DS with the computation cost controlled for, the SML-IS is the preferred simulated likelihood approach.

However, when the explanatory variables are all discrete or the individuals in the sample observations can

be grouped together according to their common value of z and choice patterns, the SML-DS might have its

value if the number of groups is not really large. This is the issue that we like to address in the subsequent

sections.

3. Simulated Likelihood and Group Data

For the model with group data, it is quite natural to use dependent simulators since they can take

into account the simplicity of sufficient statistics. Suppose that z takes on only K values, say, c1,..., cK,

where K is a finite integer. The individuals in the sample who have the same value of z and are observed to

choose the same alternative can be put into a group. The sufficient statistics are nik = {i15..5c) d,,1, for

l = 1,.. -- , L, and k = 1,..., K. The log likelihood function in (2.1) becomes

K L

G'(9) = EE ni,k In P(Itck,9). (3.1)
k=1 1=1

The simulated log likelihood function (2.5) becomes

K L

£D(0) = Z E nibIn f!,, (cL,0). (3.2)
k=1 1=1

Hlowever, the simulated log likelihood function L(0) in (2.4) can not be simplified because the simulator

f,.,,,(ce,G) where i E {ijz; = cc) depends on i through the simulated random variables , ... , '(r). The

independently simulated probabilities can be numerically different for individuals in a group. On the other

hand, the simulated probabilities with dependent simulators are the same for all the individuals in a group.

Besides the above simulated likelihood approaches, it is possible to introduce a hybrid approach that allows

the simulated probabilities to be the same for all individuals in a group but independent across different

groups. Let ,4i1, j = 1, .. , m; k = 1,.-.-, K, be mK independent draws from y(.). Define the simulators

i if °;; (c&, 9) = -Eh 0 c,) , (3.3)

for alternative j and group k. The simulated log likelihood function with (3.3) is
K L

'H(9) = Eni, in f (ck,6). (3.4)

k=1 1=1

The simulated maximum likelihood estimate derived from (3.4) will be termed the SML estimator with hybrid

simulators (SML-IHS). As shown below, the simulated likelihood in (3.4) can be put into the framework of

simulated likelihood with dependent simulators. Therefore, the asymptotic analysis in Lee (1992a) is directly

applicable to derive the consistency and limiting distribution for the hybrid SML estimator. Let I,,(z) be a

dichotomous indicator such that Lc,(z) = 1 ifZ = cc; 0, otherwise. The Lu(G) can be rewritten as

n L (KK
L(9)Z=)2 di; E le.)lnf (c, )

i=115=1 k=1
n L

= ~dlnf,,,(z,9),
i=1 i=1

76



where ff,i(zi,9) = E , hf(vu), ziG) with

K
hH(vO), z9,) =- I.(zi)hl(o , ck,6), (3.5)

and e) = (v - - -, 4)). So the simulated likelihood in (3.4) is essentially a simulated likelihood with

dependent simulators. It uses simulators fg,(z, 9) instead of f ,(z, 9).

With group data, the SML-DS or SML-HS may have computational advantage over the SML-IS. The

outer summations in (3.2) and (3.4) are taken over K instead of n. In contrary, the outer summation for

E,(0) in (2.4) is taking over n. For the computation of (3.2) and (2.4), the proper comparison is, however, not

to compare K with n, but rather to compare the product K L with n. The reason is that for the SML-IS only

response probability corresponding to the chosen alternative for an individual needs to be simulated. So the

total number of simulated probabilities will be n for the independent simulators' case, no matter how large

is L. On the other hand, for the SML-DS or SML-IIS, members within a group identified by the value of z

(an exogenous group) may have chosen different alternatives, so the total number of simulated probabilities

can be KL. If n is not too large, it is possible that for each exogenous group some alternatives might not

be chosen. So there may be less than KL simulated probabilities. However, one may expect that the total

number of simulated probabilities for the dependency case will be close to KL for large n and moderate

L. For each simulated probability, it takes m summations over the kernel function for the dependency case

and its takes r summations for the independence case. To compare the two simulated likelihood approaches,

one should consider both the statistical efficiency and computational costs. It is convenient to consider one

conditional on the other. For our theoretical discussion, we presume that K Lm = nr might represent the

same computation time cost for both the simulated likelihood approaches. In practice, this of course might

not be exact. Conditional on KLm = nr, it may be sensible to discuss statistical relative efficiency as if

computation cost has been controlled for.

Denote G = KL. The number of alternatives L in a choice model is predetermined and is a constant.

The number of exogenous groups K may be finite but for some circumstances it may increase with sample size

n. Let us consider first the case that K is a fixed finite constant. From section 2, the asymptotic distribution

of 9D and its asymptotic efficiency depend on n/m. On the other hand, the asymptotic distribution of 9

depends on n'/2/r. The 9A depends on nl/4
/r. As Gm = nr and G is a fixed finite constant, n/m = O(1/r).

It follows that if r is fixed, 9g and #A will be inconsistent but BD is consistent and asymptotically normal.'

' The computation advantage of the MSM of McFadden (1989) is that r can be a fixed finite integer. The

8

When r goes to infinity, n/m must go to zero. Therefore while 9, and 94 become consistent, the 9o must

be asymptotic efficient. This provides very strong justification from the statistical point of view in favor of

the SML-DS or SML-lIS for the estimation of discrete choice models with group data.

It is of interest to consider the possibility that K increases (and therefore G) as sample size increases.

This may be the case, as n increases the z may take more distinct values. Depending on the rate of increase

for C, there are many different patterns. The time cost condition Gm = nr implies that m = nr/C and

n/m = C/r. For fixed finite r, m goes to infinity when G = o(n). That is, as long as the number of groups

increases at a rate slower than n, the 
9
p will be consistent even Og and 

9
A are not. 

9
p is asymptotic normal

but inefficient under such a circumstance. When 9g and 9A become consistent (i.e., r goes to infinity), the

#o can become asymptotically efficient as long as G increases at a rate slower than r. This is so, because

m goes to zero when C = o(r). When C increases at the rate of n, it would be similar to the continuous

regressor case and the 9, and 0A will be favorable. When G increases at a rate not slower than r, the detailed

comparison will depend on how fast r goes to infinity. Table 1 provides a list of results. The comparisons

can be generalized to the bias-adjusted SMLE. The necessary modifications in Table 1 are simply to replace

the power factor } of n by } in A = }(1 - t), }, and 4 +6 for the relevant columns. In summary, when G

is not large as compared with n, the 
9 

can be a favorable estimator.

REMARKS: McFadden (1989) introduced the MSM. For the MSM, there are no fundamental differences

in the use of independent simulators or dependent simulators for group data. Let di = (d1 ,,, ... , d,i)' be the

vector of discrete choice indicators. For independent simulators, let f (z, 9) = (f 1 ;(z, 9),.-.-.- , f,. ,(z, 6))'

and for the dependent (hybrid) simulators, let fm (z,0) = (ff,,(z,9), ---, fn,,(z, 9))'. With instrumental

variables matrix w, the simulated moments with independent simulators are

Zw;(d - f, (zi,9)),
i=1

and the simulated moments with dependent simulators will be

Zw(d - fn(z;,6)).

(3.6)

(3.7)

With group data, it is natural that w, will be the same for all i in an exogenous group. Let we, denote the

common value of wt in the group with z = ck. Let nk = (nl,,, ... , ng,k)' and let n(,5 ) be the number of i in

above analysis suggests that the SML-DS may have the same computation advantage as the MSM. However
with r fixed, both the SML-DS and the method of simulated moments are consistent but not asymptotic
efficient.

9



the exogenous group with x = CC. It follows that

n / / K

Zw(d, - f,!,(z ,e)) = E wh(nk - fr~ke)

is=1 k=1 (is:=c& )

and
n / / K

Zwid - fm(zi,G)) = EwR(nk - fl(c)fm(Ck,9)).
i=1 k=1

(3.6)'

(3.7)'

From (2.2), we have 1 ~f j (ck, 8) _=-1-E; Er hi v{'},c ,), hc saprobability

nk is.. lij= ( + ewhcisasimulator 
that is common for all individuals in an exogenous group. The latter simulator and the hybrid

simulator fm,g(ck, 9) differ only in the number of simulated random variables used in their constructions.2

When K = 1, these simulators are the same.

Table 1: Asymptotic Properties of SMLE

Criterion: nar = Gm
Keys: C- consistency, C- inconsistent estimator, n'- stochastic convergence at the rate O,(1/n');

N- asymptotic normal, B-asymptotic bias, D-degenerate limiting distribution;
E- asymptotic efficient, E- not asymptotic efficient.

r

A=0 A=E/2 A=1/2 A=1/2+d

K o9, GD of GD i1 GD 9, GD

0(1) ~C, 1 /2  
C n 2  

C, 
1 /2  

C, 
1 /2  

C, n
1

/
2  

Cu
1/2  

Cu
1 /2

- N B,D N B,N N N N

- E E E E E E E

O(n°71) ~Cu 1 12  
Cun 

2  
C n"

2  
Cu

1
/

2  
Cun"

2  
C, n1

2  
Cun1

2

- N B,D N B,N N N N

- E E E E E E E0(n°) C , Cu/
2  

Cu"c
2  Cun" 2  

Cu"n1
2  

Cu"n1
2  

Cun"
2  

C,un
1

/
2

- N B, D N B, N N N N

- E E E E

0(nA+7) C C,un 
19)2  Cu" 2  C,un( 1

q)
2  

C, n"
2  

C,un(1-9)
2  C, n1

2  
C, n(1-n)

2

- N B,D N B,N N N N

- E E E E E E E

Notes: A > 0, 6 > 0, 0 < 7< 1, and- 0 < < 1 in the above Table.

2 This difference does raise issues on sampling design that may be an interesting research topic for future
investigation.
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4. Some Monte Carlo Results

In this section, we report some Monte Carlo experiment results for the simulated likelihood estimation

methods in terms of statistical efficiency and computing time cost. Two discrete choice panel data models

are investigated.

The first model (Model 1) is a dynamic discrete choice model with individual random component and

serial disturbance:

yi, = Q#+ Ad,,..a + (i + E, (4.1)

and

tic= P i,,-i + (1 - p2)112w,,, (4.2)

where yi, is the latent dependent variable which sign determines the choice d11 as d1 = 1 if y, > 0 and

dig = 0, otherwise; f; is an individual random N(0,1); and ti is a stationary AR(1) disturbance with wi,

being a N(0,1) random variable. The process is assumed to start at i = 1 with d .0 = 0. The disturbances

f, and eng are independent. The egg in (4.2) has a unit variance, which reflects the normalization used for

this model. The value of the true parameter vector (#, A, , p) is (1,0.2,05s,0.4).

Since the Geweke-Hajivassiliou-Keane recursive simulator is a powerful simulator for discrete choice

probabilities, we use a similar simulator for our study. Their recursive simulation procedure can be easily

adopted to our model (4.1)-(4.2). Define a sign indicator Dl such that D, = 1 if d, = 1 and D, = -1 if

de = 0. Let 4 denote the standard normal distribution function. The recursive simulators are generated by

the following steps:

1.) Generate to from N(0,1), generate independently (ffrom N(0,1), and generate u1 ,...,ur independent

uniform [0,1] random variables.

2.) Compute w, and e, recursively from t = 1 to I = T as follows:

2.1) Compute w, = "-[ue4(D,(#+ Adt...1 +o( +pe,-i)/ l-p .

2.2) Update the AR disturbance process as e, = pct,-1 + (1 - p2)iw.

The simulated log likelihood function with independent simulators is

Cr,= ln V11J 4 ID46(3+)Ad,,,..1 +u&t , -p(i_,)/ 1-pa . (4.3)
=1 "==1n

The simulated log likelihood function with dependent simulators is

CD = nD,...D,.In - E1 D, (#3+ Ad .._ + t(". +f))/±'l-pi ,(4.4)
(D,...,D,) nI1j.m.t a

12

where nD,..- - is the number of sample observations that have (Di,.. -, Dr) as chosen choice path over the

sample periods.

The Monte Carlo results for the SML-DS based on (4.4) are reported in Table 2. The results for

the SML-IS based on (4.3) are reported in Table 3. The number of periods is set to four. So the model

corresponds to a discrete choice model with 16 alternatives. Samples with various sizes n and numbers of

simulated variables m or r are tried. For each design, the means and standard errors of estimates based

on 600 replications are reported. In addition, the average CPU time (in seconds) and average number of

iterations (for successful convergence of a maximization algorithm) for a replication are reported.
3 The latter

statistics provide information about computing time cost.

From Table 2, we see that the SML-DS provides accurate estimates of /3 and s for all the sample sizes

from 100 to 400 unless m is quite small. With m = 60 or more, the biases for Q and o are small. For

the estimates of the dynamic effect A and serial correlation coefficient p, there are biases. The bias for A is

upward. The bias of p is downward. Such biases are not due to errors in the use of simulated probabilities.

They are finite sample biases. As sample sizes increase from 100 to 400, these biases for A and p are reduced.

As n and/or m increase, the standard errors of the estimates are decreased as expected. The time cost for the

computation of the SML-DS is approximately linear in m. With m fixed, the computing cost has increased

slightly as n increases from 100 to 400. The computing cost for the dependent simulator approach depends

on the number of groups but not on sample sizes. For small n, some discrete choice patterns (alternatives)

may not be observed in the sample. When the alternatives are not chosen, they do not contribute to the

likelihood function and these choice probabilities need not be computed. So for small n, the effective groups

can be less than 16. When n becomes larger, it is likely each of all the 16 alternatives may be chosen by

some individuals in the sample and their probabilities need be computed.

The SML-IS estimates are reported in Table 3. There are biases in the SML-IS estimates. Except the

estimates of p, these biases are reduced as r increases. The biases for all the estimates tend to be smaller when

both n and r increase. For the estimate of 3, if only n increases but r does not, the biases do not necessarily

become smaller. The latter phenomenon is not surprising theoretically. The bias adjusted SML estimates

have effectively smaller biases than the bias unadjusted SML except the estimates of p. Their variances are,

a The maximization algorithm is a conjugate gradient method described in Press et at. [1986), Chapter
10. The Fortran programs ran in an IBM RS/6000 Model 580 workstation. Comparing it with the speed of
the IBM RS/6000 Model 320H workstation, the 320H machine is slow by a time factor of 2.6.

13



however, slightly larger. For the estimates of p, as r increases but n fixed, their biases may even be worsened.

The bias behavior of the estimates of p can better be understood when they are compared with the SML-DS

estimates in Table 2. There are both finite sample bias and simulation bias in these estimates. For the

SML-IS, the biases due to simulation happen to be biased upward but the finite sample biases are biased

downward. So under certain combinations, the combined biases can be smaller. As r becomes large, the

biases due to simulation are reduced and the remaining biases are mainly due to finite sample biases. The

computation costs of the SML-IS are also linear in n or r. The computation cost depends on the sample size

because the number of simulated probabilities is propositional to n. Comparing the time costs from Table 2

and Table 3, the SML-IS are much more expensive. With time cost being equal, a moderate r corresponds to

a much larger m. As an example with n = 400, the time cost for r = 20 for the SML-IS can be used for the

computation of the SML-DS with m greater than 500. The formula m = nr/G has slightly overestimated

the time cost for the SML-DS. With equal time cost, the actual m can be larger than nr/G. The extra time

saving for the SML-DS is due to the slightly smaller number of iterations for successful convergence of the

numerical algorithm. As large m may be used with moderate time cost, the biases due to simulation in the

SML-DS are smaller than the corresponding biases in the SML-IS. The variances of the SML-IS for Q are

slightly smaller than the variances of the corresponding SML-DS estimates. On the other hand, the variances

of the SML-DS for a and p are smaller except small im. As the variances of the SML-DS are on average

compatible with the variances of the SML-IS estimates, the performance of the SML-DS seems better.

One might expect that the advantage of the dependent simulator approach would disappear or its

performance might be worsened when there are many more groups in a sample data. To investigate this

possibility, we simulate another model (Model 2):

terms of smaller biases, and even smaller variances for n = 200. However, both the SML-IS approaches with

or without bias adjustment provide better estimates for a and p. It is interested to see that the SML-HS

is a mixture of the independent simulator and the dependent simulator approaches. There are no obvious

winners here for n = 100 or 200. Table 4C provides results for n = 400. As n becomes larger, the m can now

be more than 3.5 times larger than r with a similar time cost. The SML approach with dependent simulators

provides better estimates for p and Q. The A and p are still better estimated by the SML with independent

simulators and their bias-adjusted estimates. Their differences are, however, smaller than the cases with

smaller sample sizes. The hybrid SML estimator becomes more interesting. It provides better estimates of

A than the SML-IS and SML-DS approaches. On average, the hybrid simulator seems the preferred one for

this case with n = 400.

"4 pxi + 4.ad,. .~4 , (4.5)

where t, is a AR(1) process as in (4.2). The z, takes with equal probabilities on ten different values from

-0.8 to 1.0 with increment 0.2. With 16 alternatives in choices, the (maximum) number of groups is 160.

Tables 4A-4C report, respectively, the results of the SML-IS with or without bias adjustment, the SML-DS

estimates, and the SML-llS estimates, The results reported in Table 4A and Table 4B are, respectively, for

the sample sizes n = 100 and n = 200. Since the number of groups is no larger than 160, the dependent

simulators approach and the hybrid approach have some time saving advantage. The m can be 1.8 to 2.5

times larger than r for a similar time cost. Overall, the SML-DS provides better estimates of f
3 

and e in
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Table 2
Model 1: SML-Dependent Simulators (SML-DS)

'True parameters: 0 = 1, A = 0.2, o = d.5 & 0.7071, and p = 0.4

n m A# A p time #iteration

100 30 1.0122 (.3275) .2730 (.2562) .7508 (.4218) .3026 (.2522) 2.4998 8.27
100 60 0.9894 (.2624) .2625 (.2569) .6912 (.3396) .3180 (.2472) 4.9221 8.12
100 120 0.9912 (.2424) .2568 (.2470) .6914 (.3281) .3275 (.2435) 9.8890 8.18
100 180 0.9898 (.2420) .2560 (.2495) .6877 (.3185) .3266 (.2424) 14.9338 8.14
100 375 0.9881 (.2366) .2566 (.2455) .6829 (.3096) .3267 (.2419) 30.9701 8.14

200 30 1.0149 (.2561) .2647 (.1917) .7737 (.3232) .3190 (.2006) 2.7735 7.78
200 60 0.9947 (.2076) .2500 (.1866) .7120 (.2749) .3413 (.1957) 5.6663 7.91
200 120 0.9963 (.1739) .2456 (.1824) .7123 (.2449) .3469 (.1893) 11.2064 7.84
200 180 0.9892 (.1647) .2424 (.1801) .6974 (.2443) .3520 (.1907) 16.9629 7.91
200 375 0.9872 (.1547) .2408 (.1788) .6916 (.2277) .3556 (.1877) 35.7265 7.98
200 750 0.9872 (.1515) .2419 (.1804) .6915 (.2212) .3535 (.1899) 70.9905 7.91

400 30 1.0143 (.2151) .2571 (.1478) .7802 (.2561) .3270 (.1571) 2.9658 7.73
400 60 0.9955 (.1604) .2416 (.1353) .7243 (.2068) .3486 (.1434) 5.9923 7.79
400 120 0.9933 (.1352) .2345 (.1293) .7159 (.1901) .3621 (.1392) 12.0979 7.86
400 180 0.9908 (.1243) .2309 (.1304) .7054 (.1754) .3662 (.1366) 18.2331 7.89
400 500 0.9866 (.1151) .2272 (.1247) .6941 (.1644) .3715 (.1332) 50.5710 7.86
400 750 0.9877 (.1097) .2287 (.1245) .6944 (.1634) .3693 (.1356) 75.6673 7.80

Table 3
Model 1: SML-Independent Simulators (SML-IS)

True parameters: /3 = 1, A = 0.2, u = 0~5 -10.7071, and p = 0.4

n r A3 A p time #iteration

Bias unadjusted SML-IS

100 10 0.8600 (.2064) .3002 (.2451) .4418 (.3410) .3743 (.2161) 6.5768 8.93

100 20 0.9180 (.2214) .2689 (.2489) .5271 (.3823) .3657 (.2494) 13.3913 8.93

100 30 0.9430 (.2294) .2610 (.2485) .5764 (.3667) .3561 (.2472) 19.8165 8.79

100 50 0.9536 (.2253) .2622 (.2481) .6028 (.3540) .3442 (.2527) 32.4477 8.51

100 75 0.9678 (.2310) .2592 (.2451) .6309 (.3401) .3370 (.2497) 48.9048 8.46

100 100 0.9722 (.2285) .2593 (.2457) .6431 (.3351) .3344 (.2462) 63.7048 8.28

100 200 0.9798 (.2311) .2563 (.2488) .6593 (.3123) .3321 (.2459) 127.4555 --

200 10 0.8385 (.1238) .2863 (.1693) .3870 (.2607) .4168 (.1609) 13.4586 8.89

200 15 0.8820 (.1343) .2646 (.1752) .4764 (.2815) .4073 (.1780) 20.2135 8.76

200 30 0.9253 (.1403) .2477 (.1805) .5538 (.2893) .3914 (.2048) 40.2684 8.63

200 50 0.9492 (.1448) .2442 (.1795) .6086 (.2746) .3777 (.1977) 66.3789 8.44

200 75 0.9614 (.1488) .2439 (.1820) .6344 (.2653) .3696 (.1975) 98.5324 8.25

400 10 0.8239 (.0815) .2786 (.1210) .3515 (.2063) .4377 (.1203) 28.3107 9.02

400 20 0.8963 (.1004) .2506 (.1250) .5173 (.2263) .4121 (.1434) 54.1355 8.38

400 30 0.9249 (.1056) .2373 (.1272) .5726 (.2117) .4068 (.1449) 88.8999 8.26

400 50 0.9465 (.1064) .2336 (.1277) .6123 (.2093) .3934 (.1521) 134.3421 8.22

Bias Adjusted SML-IS

100 10 0.9313 (.2335) .2348 (.2628) .5458 (.3900) .3907 (.2629) 6.6214 --

100 20 0.9720 (.2448) .2317 (.2634) .6018 (.4100) .3638 (.2889) 13.4800--
100 30 0.9860 (.2463) .2359 (.2594) .6365 (.3792) .3492 (.2764) 19.9489 --

100 50 0.9829 (.2361) .2483 (.2559) .6459 (.3577) .3350 (.2731) 32.6678 --

100 75 0.9892 (.2387) .2503 (.2506) .6632 (.3392) .3286 (.2639) 49.2385 --

100 100 0.9888 (.2347) .2529 (.2500) .6686 (.3331) .3274 (.2568) 63.7048 --

100 200 0.9887 (.2340) .2533 (.2510) .6736 (.3094) .3277 (.2511) 128.3383 --

200 10 0.9056 (.1404) .2173 (.1817) .4851 (.3056) .4428 (.1973) 13.5470 --
200 15 0.9431 (.1507) .2154 (.1866) .5656 (.3125) .4159 (.2110) 20.3467 -

200 30 0.9675 (.1509) .2222 (.1894) .6145 (.3023) .3868 (.2286) 40.5315 --

200 50 0.9792 (.1519) .2300 (.1856) .6523 (.2794) .3698 (.2135) 66.8177 --

200 75 0.9831 (.1537) .2351 (.1864) .6666 (.2654) .3622 (.2080) 99.1950 --

400 10 0.8874 (.0919) .2083 (.1304) .4468 (.2463) .4695 (.1483) 28.4887 --

400 20 0.9511 (.1120) .2127 (.1340) .6006 (.2432) .4138 (.1668) 54.4894 --
400 30 0.9694 (.1144) .2122 (.1346) .6397 (.2201) .4017 (.1627) 89.4788 --
400 50 0.9775 (.1119) .2196 (.1325) .6587 (.2120) .3856 (.1634) 135.2229 --
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Table 4A
Model 2: SML

True parameters: 6 = 1, A = 0.2, a = 0~5 = 0.7071, and p = 0.4

Table 4B
Model 2: SML

True parameters: Q = 1, A = 0.2, u = 0~5 =0.7071, and p = 0.4

Ap p time #iteration

n r SML-IS

100 10 0.8942 (.2180) .2624 (.2031) .4390 (.3201) .3945 (.2009) 5.7118 8.56
100 30 0.9523 (.2372) .2368 (.2124) .5682 (.3323) .3757 (.2262) 16.1881 7.93
100 60 0.9681 (.2414) .2344 (.2129) .6017 (.3142) .3660 (.2291) 32.0720 7.71
100 100 0.9760 (.2432) .2347 (.2134) .6132 (.3169) .3627 (.2253) 52.3226 7.66

n r Bias adjusted SML-IS

100 10 0.9417 (.2422) .2144 (.2184) .5330 (.3654) .4005 (.2450) 5.7118 -
100 30 0.9816 (.2504) .2196 (.2208) .6182 (.3405) .3692 (.2479) 16.3189 -
100 60 0.9855 (.2483) .2262 (.2179) .6310 (.3144) .3603 (.2407) 32.3391 -
100 100 0.9872 (.2475) .2299 (.2163) .6323 (.3158) .3587 (.2322) 52.7601 -~

n m SML-DS

100 10 0.9492 (.2442) .3029 (.2934) .6555 (.4340) .3174 (.2653) 2.9911 7.49
100 30 0.9871 (.2537) .2620 (.2430) .6628 (.3345) .3380 (.2299) 8.4911 7.27
100 60 0.9856 (.2480) .2503 (.2306) .6387 (.3169) .3481 (.2327) 17.1010 7.42
100 100 0.9968 (.2515) .2426 (.2193) .6574 (.3098) .3537 (.2193) 28.3476 7.34
100 170 0.9960 (.2468) .2344 (.2062) .6569 (.2940) .3576 (.2191) 47.7947 7.29

n m SML-HS

100 10 0.9147 (.2751) .2646 (.2141) .4747 (.3620) .3865 (.2158) 3.3444 8.60
100 30 0.9726 (.2604) .2381 (.2074) .5856 (.3448) .3711 (.2267) 9.2843 7.88
100 60 0.9856 (.2574) .2268 (.2058) .6114 (.3230) .3770 (.2180) 17.9849 7.79
100 100 0.9894 (.2583) .2332 (.2072) .6388 (.3072) .3623 (.2191) 29.0862 7.51
100 170 0.9907 (.2480) .2247 (.2060) .6296 (.2989) .3759 (.2205) 50.1789 7.58

# A a p time #iteration

n r SML-IS

200 15 0.9024 (.1613) .2383 (.1485) .4716 (.2952) .4178 (.1767) 17.3225 8.35
200 30 0.9451 (.1762) .2316 (.1482) .5755 (.2743) .3949 (.1766) 32.5617 7.75
200 60 0.9645 (.1803) .2246 (.1482) .6092 (.2616) .3902 (.1778) 65.7558 7.58

n r Bias adjusted SML-IS

200 15 0.9425 (.1770) .2029 (.1594) .5486 (.3246) .4196 (.2091) 17.4534 -
200 30 0.9752 (.1861) .2139 (.1552) .6279 (.2829) .3889 (.1944) 32.8239 --
200 60 0.9828 (.1860) .2164 (.1522) .6402 (.2625) .3845 (.1870) 66.2960 --

n m SML-DS

200 20 0.9666 (.1731) .2736 (.2265) .6748 (.3128) .3331 (.2134) 8.6362 7.04
200 40 0.9745 (.1739) .2532 (.1980) .6610 (.2753) .3513 (.2012) 17.2600 7.15
200 80 0.9823 (.1749) .2348 (.1849) .6618 (.2540) .3665 (.1894) 34.5802 7.19
200 150 0.9914 (.1719) .2353 (.1686) .6920 (.2355) .3598 (.1791) 64.2499 7.06

n m SML-HS

200 20 0.9413 (.1988) .2417 (.1719) .5652 (.2999) .3867 (.1919) 9.3663 7.74
200 40 0.9582 (.1789) .2250 (.1604) .6072 (.2814) .3878 (.1855) 18.4547 7.69
200 80 0.9752 (.1758) .2276 (.1550) .6544 (.2547) .3724 (.1774) 35.3625 7.37
200 150 0.9893 (.1793) .2261 (.1568) .6716 (.2409) .3683 (.1772) 65.2645 7.22
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Table 4C
Model 2: SML

True parameters: A = 1, A = 0.2, o = 5 .7071, and p = 0.4

Q A p time #iteration
n r SML-IS

400 20 0.9252 (.1219) .2304 (.1081) .5388 (.2300) .4172 (.1379) 45.1274 7.81
400 30 0.9494 (.1204) .2277 (.1100) .5974 (.2123) .4014 (.1393) 71.9591 7.44
400 60 0.9663 (.1222) .2202 (.1047) .6322 (.2013) .3972 (.1341) 134.6610 7.42

n r Bias adjusted SML-IS
400 20 0.9646 (.1335) .2043 (.1164) .6124 (.2464) .4126 (.1592) 45.4756 -
400 30 0.9815 (.1280) .2109 (.1160) .6534 (.2191) .3938 (.1535) 72.5335 --
400 60 0.9854 (.1262) .2122 (.1077) .6648 (.2009) .3910 (.1407) 135.7403 -

n m SML-DS
400 50 0.9882 (.1278) .2420 (.1594) .6884 (.2083) .3599 (.1557) 29.7029 6.93
400 100 0.9963 (.1240) .2346 (.1340) .6907 (.1832) .3690 (.1395) 59.5965 6.96
400 150 0.9981 (.1218) .2297 (.1275) .7009 (.1707) .3713 (.1315) 88.1383 6.92
400 200 1.0001 (.1231) .2297 (.1242) .6965 (.1655) .3705 (.1314) 118.6600 6.94

n m SML-HS
400 50 0.9711 (.1360) .2171 (.1104) .6336 (.2144) .3995 (.1348) 31.7462 7.44
400 100 0.9857 (.1289) .2189 (.1097) .6644 (.1863) .3883 (.1283) 61.6710 7.28
400 150 0.9952 (.1297) .2185 (.1052) .6765 (.1772) .3850 (.1266) 91.0383 7.17
400 200 0.9961 (.1260) .2176 (.1071) .6822 (.1705) .3838 (.1244) 121.2005 7.15

5. Conclusion

This article has considered simulation methods for the estimation of discrete choice models with group

data. Sufficient statistics in terms of observed frequencies are available in group data. The simulated

maximum likelihood estimation method can take into account such a characteristic when the simulated

probabilities are allowed to be correlated across individual decision units in the sample. The maximum sim-

ulated likelihood approach with dependent simulators can be compared with the approach with independent

simulators in terms of computation time cost and statistical efficiency. When the number of aggregated

groups is not too large, the simulated maximum likelihood method with dependent simulators may be at-

tractive in terms of computational cost saving and statistical efficiency. Conditional on time costs being

equal, the maximum simulated likelihood approach with dependent simulators can be statistically efficient

relative to the approach with independent simulators. As the computation cost of the simulated likelihood

approach with dependent simulators does not, in general, increase in proportion to sample size, the depen-

dent simulator approach is especially valuable for the estimation of models with large sample sizes. Monte

Carlo results are provided to show our claims.

This article has addressed only simulated likelihood methods. In addition to the simulated maximum

likelihood approach, our discussions are also relevant to other M-estimation methods such as the Pearson or

Neyman minimum chi-square estimation methods, or quasi-likelihood methods (Laroque and Salanie (1990),

Gourieroux and Monfort (1993)]. For the simulated method of moments of McFadden, the comparisons

with dependent or independent simulators are irrelevant as they are essentially indistinguishable. The

simulated likelihood approaches are interesting because their implementations are straightforward. The

computation cost for the simulated maximum likelihood estimator with dependent simulators can be as low

as the method of simulated moments when the number of aggregate groups is not large. Besides estimation,

for the approaches with dependent simulators, one may also construct goodness-of-fit statistics from the

simulated likelihood function. The statistical testing issues, however, are subjects for future research.
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