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I

MISSING MEASUREMENTS IN A REGRESSION PROBLEM

WITH NO AUXILIARY RELATIONS*

This paper deals with the problem of estimating the coefficients of classical
and generalized regression models when some sample measurements are missing and
no auxiliary relations are postulated. It is shown that all relevant informa-
tion about the regression coefficients is contained in the complete portion of
the sample and that there is no gain in using the incomplete portion.

1. INTRODUCTION

In considering the problem of missing measurement in the context of a

regression model, most authors have attempted to fill the missing values by

using some approximation scheme. Commonly the approximations of the missing

values have been derived by invoking ad hoc the existence of an auxiliary

relation between the variables for which some observations are missing and

the variables for which all observations are available. [See, e.g., Dagenais

(1973), Gourieroux and Monfort (1981), or Conniffe (1983).] This ad hoc

relation is then used to predict the missing values of the variables of

interest.

The problem with using an auxiliary relation is that for the predictions

to work the relationship should also hold in previously unobserved situations,

which means that there should be a reason for it. Such a reason would be

provided by theory. Without any justification for the postulated auxiliary

relation other than that provided by the observed correlations, its presump-

-tior, is inappropriate. For instance, in an equation designed to explain changes

over time in the household demand for wine, the explanatory variables would

typically include household income and price of wine. Clearly, a prediction

of household income on the basis of the price of wine is absurd. In the case

where there is some theoretical justification for the auxiliary relation to hold

in unobserved situations, this should be made explicit whether there are missing

*This paper represents a substantially revised and generalized~ version of an
earlier paper presented at the Econometric Society European Meeting in Athens,
1979. [See Kmenta (1981)]. The' generalizations were derived independently
by Balestra.
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measurements or not. In such a case the researcher would be dealing with a

system of equations (typically a recursive one) rather than with a single

regression equation.

Another approach to the problem of missing values in regression is to

assume that the values of the dependent and of the explanatory variables all

come from a multivariate normal distribution. The missing values are then

treated as unknown parameters to be estimated along with the regression coef-

ficients. This approach was initiated by Anderson (1957) and was followed by

other authors whose work is summarized and extended in a series of papers by

Afifi and Elashoff (1966, 1967, and 1969). A formal analysis of the problem

is presented in Kelejian (1969); computational results and some further deriva-

tions are given in Beale and Little (1975). We regard the assumption of a

multivariate normal distribution as unduly restrictive since it excludes purely

nonstochas.tic variables, dummy variables, and variables generated by distribu-

tions other than normal.

In what follows we consider the problem of estimating the coefficients of

a regression model with missing measurements when no auxiliary relations can

be justified and when the omission of incomplete observations leaves the sample

selection rule unaffected. In Section 2 we discuss the estimation of a multiple

regression model for which all classical assumptions are satisfied, and in

Section 3 we extend the analysis to the generalized regression model. For each

model we consider the case of missing values of explanatory variables separately

from the case of missing values of the dependent variable.

2. CLASSICAL MULTIPLE REGRESSION MODEL

Consider a regression model

Y = XS + £ (2.1)

where Y is a (n x 1) vector of values of the dependent variable, X is a (n x K)
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matrix of values of the explanatory variables, 3 is a (K x 1) vector of

unknown parameters, and e is a (n x 1) vector of unobservable stochastic

disturbances. Further, in accordance with the specification of the classical

regression model it is assumed that E is normally distributed with

E(c) = 0

E(Ec') = cyI

The explanatory variables are thought to be non-stochastic.

Missing measurements on X

Let us now suppose that of the total of n observations only n1 (n1 < n)

are complete while in the remaining n2 = n = n1 observations the values of one

or more of the explanatory variables are missing. In this case we may partition

X and y as follows:

X= [i] Y = (2.2)

where X -* (n1 x K) is a matrix of measurements on X corresponding to the

complete observations, and X2-' (n2 x K) is a matrix of measurements on X with

at least one value in each row missing. The partition of Y conforms to that of

X but.there are no missing values.

To estimate 1, we may apply the least squares method to the set of complete

obs-ervations to obtain

* = (X'X 1)~X Y1 . (2.3)

Under the conditions of the classical regression model this estimator has all

desirable properties given the sample information used. Its variance-covariance

matrix is

Var-Cov( *) = a (X X ). (2.4)
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If all the values of X were available, the least squares estimator of

would be

= (X'X) 1 X'Y (2.5)

with the variance-covariance matrix given as

Var-Cov(e) = -(X'X) (2.6)

C= 2 (X'X) + X'X ) I

The loss of observations clearly involves a loss of efficiency. Formally,

Var-Cov(S*) -Var-Cov(e) a2 [(XX 1 ) -(X'X)] (2.7)

= u2(XX) X[I + X2(xx 1 lXIVX(12( 12 1

which is clearly a non-negative definite matrix.

The obvious question to be answered is whether or not the incomplete

observations contain any information about the regression parameters that could

be used in their estimation. To find this out, we take the approach of viewing

the missing values of the explanatory variables as unknown parameters to be

estimated along with the regression parameters. This can be most conveniently

accomplished in the framework of maximum likelihood estimation. The log-

likelihood function may be written as

L(YjB,X 2 ', 2 ) = -(n/2)log 2Tr - (n/2)log 6 2 - (l/2a 2 ){Y'Y - 2S'X'Y 1 - 2' X'Y2

+ 'X'X + 'X'X20}(2.8)
1 1 21

Setting the two sets of partial derivatives with respect to S and X2 equal to

zero., we get the following two normal equations:

X'Y + X'Y2  = X X2X 25 (2.9)

Y2 = 22'(2.10)

1 See Balestra (19717)
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A ,
Disregarding the trivial case 6 = 0, from (2.10) we obtain

A
Y2-2X2 = 0 (2.11)

so that X2 must be chosen in such a way that each error corresponding to the

missing observations is identically zero. This can always be done. Substituting

A
for Y2 from (2.11) into (2.9) and solving for 3, we obtain

= (X'X 1)X'Y (2.12)

which is exactly the same as the least squares estimator of $ based on complete

observations only. Thus we have to conclude that the incomplete observations

provide no additional information about the regression parameters in this case.

Although the actual estimates of X2 are not needed in the maximum like-

lihood estimation of 6, it is worth noting that X2 is not in general identified.

That is, equation (2.11) does not yield a unique solution for X2 except in

special circumstances. Given Y2 and 6, each row of equation (2.11) represents

a system of one equation in K unknowns. Therefore, a unique solution obtains if

and only if there is one single unknown per row. This condition is satisfied

when only one value of the explanatory variables is missing per row. This would

occur, for instance, in the case of a simple regression model.

Missing measurements on Y

Let us now consider the model given in (2.1) and partitioned as in (2.2).

Suppose that XI and X2 are available but Y2 is missing. A natural way to pro-

.ceed.is as. follows. First, we use the available information on Y and X to

estimate Y2 ; next, we expand the sample using the predicted values for Y2 ; and

finally, we estimate the regression coefficients from the full , expanded sample.

A linear predictor for Y2is defined by:

=AY1  (2.13)

where A is a n2xn matrix of constants. For the predi ctor to be unbiased

(in the sense that the prediction errors have zero expectation.) , it is

necessary that:
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AX1 = X2  (2.14)

The expanded sample thus becomes:

Y = Xg + ~ (2.15)

where

Y= = 1 [: Y = FYl (2.16)
LY 2j AY A 1

and

S=[= 1 = jEC = Fe (2.17)
.. 2. . Li A

Note that the matrix F has full column rank equal to n1 . Note also that in

the expanded sample e must be replaced by ~, since Y takes the place of Y2 .

From the easily checked fact that

FX1 = A (2.18)

the expanded sample may be written as

FY1 = FX1R + Fe1  (2.19)

which represents a linear transformation of the model corresponding to the

complete observations only. It is therefore evident that no additional

information can be gained by expanding the sample using any linear unbiased

predictor for Y2 . The rest of this section provides a detailed proof of the

above assertion in the case of.a classical regression model.

- When the disturbances are homoskedastic and independent, the best linear

unbiased predictor of Y2is Y2= AY1 where

A'= X2(Xa'X 1) 1 X' (2.20)

Using (2.20), we may estimate 8 in (2.15) by ordinary least squares, although

this is an inappropriate procedure since £ does not satisfy the classical

assumptions. Noting that
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X'F = X + X X2(XX) 1)X' (2.21)

=X'X 1 (X'X1 )1 X~ + X X2(x{ 1  X

= (X X + X X 1X1  X'X -

= (X'X)~=X'Y = (X'X) 1 X'FY = (X'X) X'X(X'X 1 )~X'Y 1 = (X X 1)~X'Y (2.22)

which is just the ordinary least squares estimator based on the complete observa-

tions.

Since the variance-covariance matrix of 2 is (2.15) is

Var-Coy ( X) = a2 FF' (2.23)

which is a positive semi-definite matrix of rank n , the generalized least

squares estimator of in (2.15) becomes

- (X'R yX-lX'R+Y = (X'R+X)~X'R+FY (2.24)

where R+ is a general ized inverse of R such that

RR+R = R and R+RR+ = R+. (2.25)

From (2.21) and (2.18) we first observe that

X'R = X'FF' = (X'X)(X'X 1)~X 1 F' = (X'X)(X X1 )~X' (2.26)

or, solving for X',

X' = (X'X 1 )(X'X) 1 X'R. (2.27)

Using (2.25) it can be shown that RR+F = F, so that by (2,21)

X'R+F = (X'X )('X~X'RR+F = (X'X )(X'X)~X'F =X (.8

and therefore

X'R+X = X' R+FX1 = X X1  (2.29)

where reference is made to (2.18) and (2.28). From (2.28) and (2.29) it is

evident that the generalized least squares estimator of 3 is simply the

ordinary least squares estimator,^ i . e. , that
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= (x'x 1 ) 1x'Y1  (2.30)

3. GENERALIZED REGRESSION MODEL

The model to be considered in this section is the same'as the model of

the preceding section except for the specification of the variance-covariance

matrix of the disturbances. Specifically, we postulate

(3.1) Y = XS + £

where the dimensions of the vectors and matrices involved are the same as in

(2.1) but now

E (cc')= Q

where Q is a known positive definite matrix which can be partitioned in

accordance with (2.2) as

X11 p12

= [21 22(3.2)

We shall call its inverse by V and write accordingly

1v11  v12]
V = V~ =j(3 .3 )

Again, we consider the case of missing measurements on X and on Y in turn.

Missing Measurements on X

To estimate Q3 in (3.1) , we may apply the generali zed least squares method

to the set of compl.ete observations to obtain

13* = (X3'V 11X1)~ X'V1 Y1 . (3.4)

The variance-covariance matrix of 13* is

Var-Cov(13*) = (X3'V 1 X )~1 . (3.5)
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If all observations were complete, the generalized least squares estimator of

8 would be

=(X'VX) 1X'VY (3.6)

and its variance-covariance matrix would be

Var-Cov(a) = (X'VX)~ . (3.7)

The loss of efficiency as a result of omitting the incomplete observations

can be determined as follows. First we note that there exists a nonsingular

matrix P-+(n x n) such that

PpP' = 621 (3.8)

so that (3.1) can be rewritten as

PY = PX + Pc (3.9)

where

E(Pee'P') = 21

Further, in accordance with the partitioning of the matrix, P can be

par ti tio ned as 2

P =[(3.10)

..P21 22

Using (3.9) and (3.10) in conjunction with (2.7), the exact formula for the loss

of efficiency becomes

Var-Cov(X) - Var-Cov() ) - (X'VX) 1  (3.11)

=a2(XPPX)lX2 2[I + P22X2( 1  P1 1 X11 X 1 22 22 X2( 1 1 1 X11X1

The question concerning the potential information about the regression

parameters can again be approached by viewing the mi ssing values of X as

unknown parameters to be estimated. The estimation can be carried out by

2See Riddell (1977).
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maximizing the following log-likelihood function (conditional on initial values

of Y if applicable)

L(YI3,X 2 ) = (n/2)log 2r + (l/2)logjV| - (1/2)q

where

q = Y'VY - 26'X'V 11Y1 - 2 'X'V 22Y2  - 2S'X'V 2Y1  - 2 'X'V1 2Y2 +

6'X V X + S'X V22 X2S + 2 'X'V1 2 X1 S (3.12)

The first order conditions for the maximization of L with respect to 5

and X2 are

-X'V Y - X'V Y - X'V' Y - X'V Y + X'V XS + X'V2X +
11 1 2 22 2 2 12 1 1 12 2 1 11 1 2 222

A A
+ X'vj 2 X f3 + X V2X =0 (3.13)

-V2 '- V 2V ' +V2X + V' 2X1B' = 0 (3.14)

Disregarding the trivial case S = 0, from (3.14) we get

A _ 1 -lA
(Y2 - X2 ) =- V2 2V12(Y1 - x1 ) (3.15)

In this caseX2 must be chosen so that the errors corresponding to the missing

observations are linear combinations of the errors pertaining to the complete

observations. We may write (3.13) as

-XV (Y - X) - XV22 (Y - X2 ) - VV12(Y1 - X ) -

-X'V12 (Y 2 2- X) 0 (3.16)

and, using (3.15), we get

X'[ -V1 2 12 X1  = X'[V - V12 V 12  (3.17

From the expression we derive the maximum likelihood estimator of S as

6 = (X'7~ X )~1 X'Q 1 Y (3.18)

which is exactly the same as the generalized least squares estimator of 6 based

on the complete observations. Again, no additional information is gained by
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treating X2 as unknown parameters. As for the uniqueness of the solution for

X2, the same remarks apply as in the classical regression case.

Missing measurements on Y

Let us consider now the specification of the generalized regression model

in (3.1) in the case where there are no missing values in the X matrix but

the values Y2 are not available. Under these circumstances we may replace Y2

by its generalized least squares predictor Y2 derived from the complete

observations. It is well known that Y2 is given as Y2 = AY1 where 3

o s r a i .A = X x' -IX - Q - + s - 1l

2 1ll11' 111 12 11 M (3.19)

and

. M =- X1(xQX 1YX 1 M ~(3.20)

Replacing the missing values Y2 by Y2 as defined above, we obtain an extended

specification of the model of the form given in (2.15)-(2.17). Assuming

(incorrectly) that the variance-covariance matrix of the disturbance in (2.15)-

(2.17) is S, we can use generalized least to obtain the following estimator

of B:

= (X' X lX-jY = (X'~ X~X'Q 1 FY (3.21)

Now

X' 1 F = + X + (X'V + XV22X2X'1 1XyX +

(X1 V + V12 ) + 112X2+22 21l1 1 1 + 12 11

(X+V+2 + XVV22 )Q121M

(x'V 1 + X V'2 ) + X - X X - XV 2X) X+

+- (X'V12 + X V22)1 2 M

The predictor may be expressed' as Y 2 = 1 + '2' 1 (Y 1 - X A) where is
the generalized least squares estimator based on the complete observations.
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= (X V11 + X )[)- X (X'QiX )X'jj] + (X'V12 + XV 22 ) QUM +2 121 1 1 1 11 12 2212 11

+ X'~ 1 X(XQ-1 X ) 1 X r1
1 11 1 1 11

= IX(V o + V1 ) + X2(2 1 + V22 12)] 1M~+ X'~ 1 X(X'r"jX ) 1 X'" 1

L~1\11 ~11 1212 21211 22211 1 11 1 1 11

Noting that, from the properties of an inverse of a partitioned matrix,

V 1 + V12Q12 = I (3.22)

V 1+ V22 2 = 0 (3.23)

and that

X' 1 M = 0 (3.24)
11

we see that

X'Q 1 F = X'Q 1 X(XQ 1 X )~1 X'Q (3.25)
1 11 1 1 11

Substituting this result into (3.21) we obtain

= (X'( 1 X1 )~X'Q~Y (3.26)

which is the generalized least squares estimator based on the complete observa-

tions only.

Since the variance-covariance matrix of the disturbance

in'(2.15)-(2.17) is not S but

F F' =R,

which is a positive definite matrix of rank n1 , the appropriate generalized least

squares estimator should be based on the generalized-Penrose inverse of R. This

is

R= F(F'F)Y 1 ~2(F' F)~F' (3.27)
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From the fact that FX = X, see (2.18), we get

X = (F'F) 1 F'X (3.28)

so that:

X'R+ = X'F(F'F) 1 Q i (F'F)~ 1 = X'~(F'F) F' (3.29)

-l

X' R+F = X'jQ (3.30)

X'R+X = X1'Q(F'F) 1 F'X =X'G~1X(

The proper generalized least squares estimator of 6 is thus given by

= (X'R+X) 1 X'R+Y (X'R+X) 1 X'R+FY = (X iX )X'Q Y)1 1 11 1 1 11y1  (.2

which again is the same as the generalized least squares estimator based only

on the complete observations. No information is gained by first estimating Y2 .

We may note, finally, that this conclusion is valid for any unbiased predictor

Y2, since in the proof only the fact that FX1 = X is used.

The preceding result pertaining to the generalized regression model applies

not only to the standard cases of heterskedos tic or autoregressive disturbances,

but also to seemingly unrelated regressions and to models of pooled cross-section

and time-series data typically characterized by a rather complicated structure

'of ~te disturbance variance-covariance matrix.
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