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I. Introduction

Recent theoretical advances in the Industrial Organization literature have

provided insight into modelling the demand for differentiated products.

Lancaster (1979) introduced and developed what he termed the "Characteristics

Approach" to modelling the demand for differentiated products, while Dixit and

Stiglitz (1977) pioneered what has come to be known as the "Love of Variety"

approach to the subject. Both of these approaches have been applied to

international trade theory. The result has been a heightened awareness of the

role that product differentiation plays in trade theory. This work is

presented in Helpman and Krugman (1985).

There have thus far been relatively few empirical applications of the new

theories of trade. In this paper, I present a new technique for

econometrically estimating the demand for differentiated products. I adopt a

Lancasterian approach to product differentiation and use theoretical results

from this approach to solve several empirical problems. I then apply the

technique to the demand for automobiles.

The estimates derived from this method allow me to analyze many trade and

industrial policies for the U.S. automobile industry. For example, what would

be the effect of a tariff applied only to Japanese imports on the total

automobile import demand? Would domestically produced auto sales replace the

Japanese imports or might German and Swedish imports rise, leaving total

imports relatively constant? Some economists have argued for a tariff on all

small foreign cars. Such a tax does not discriminate by country of origin and

hence is viewed more kindly by GATT. As foreign small cars became more costly,
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would domestic car sales rise substantially or would the U.S. just trade

imports of small cars for imports of larger cars? Optimal industrial policy -

toward the U.S. auto industry may involve subsidies to domestic producers

thereby possibly lowering the price of domestic autos.' Or perhaps government

policy may involve subsidizing only one producer (e.g. Chrysler). What effects

would these policies have on demand for different types of foreign and domestic

automobiles?

All of these questions are, in a formal sense, quite similar. Each

considers the effect of a tax placed on a subset of a group of differentiated

products. Parameters needed to answer questions such as those posed above are

own and appropriately-defined cross price elasticities of demand. Any analysis

of the taxation of differentiated products must estimate (or use existing

estimates of) these demand elasticities. The approach developed in this paper

provides a utility-consistent technique for deriving these elasticities. While

I apply the methodology to issues of trade and industrial policy in the U.S.

automobile industry, I believe that the general approach will have wider

application. The methodology could, for example, be used to estimate demand

elasticities in other differentiated products industries such as

microcomputers, audio-video equipment, lumber, and steel. All of these

industries have been the subject of recent policy debate.

This paper is a first attempt at solving some of the empirical issues

associated with the analysis of taxation of differentiated products. While the

paper provides some answers, it also raises a number of microeconomic and

econometric issues for future research.

In Section II, I provide a brief critical review of the literature.

Section III develops the methodology that is then applied in Section IV. Using
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the aemana system estimates in section iv, Section V addresses many of the

policy concerns posed in this introduction. Section VI concludes the paper

with a brief summary.

II. A Brief Summary of the Literature

In theory, estimating the demand system for a set of differentiated

products is no different than estimating a decand system for several homogenous

products. A typical estimated equation in such a system would regress quantity

of a good demanded on its own price, the prices of the other differentiated or

homogenous products, and several other variables such as income and personal

and demographic characteristics. Food is a good example of a set of

differentiated products whose demand functions are nicely estimated by standard

techniques. Recent work based on Deaton and iuellbauer's Almost Ideal Demand

System provide excellent examples of this approach. 2

For many sets of differentiated products, though, standard techniques are

inapplicable. In the case of automobiles, there are over 100 models available

and few models are available for more than four consecutive years. The

standard techniques would imply a system of, say, 100 equations with 99 cross

price effects. With so few years of data, the system is not estimable with any

degree of accuracy. In the case of VCRs or micro-computers, technology changes

so quickly that no more than two or three years of data is likely to be

available.

Several approaches to these problems have been taken in the empirical

literature. Almost all of them have been applied to the automobile industry--

at least partially because data is relatively plentiful. I will accordingly

focus on this body of research.
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The easiest way around the problems posed by product differentiation is to

ignore the issue. Not surprisingly, this was the approach first adopted. Work

by Suits in 1958 used time series of total quantity of autos sold, average auto

price, and real disposable income to arrive at aggregate demand elasticities.

While it is surely unfair to judge the econometric methods of 30 years ago by

the standards permitted by today' s computing technology, Suits' approach is

incapable of addressing the issues raised in this paper's introduction.

Surprisingly, research as recent as Toder (1978) uses elasticities imputed in

part from Suit's original work, when analyzing current automobile trade and

industrial policy. Tarr and Morkre (1984) and Dixit (1986) in turn use

elasticities derived from Toder.

Time series techniques, even modern ones, are not applicable to

investigating the effects of trade policy in the U.S. automobile industry. This

is because both products and tastes have changed significantly over the period

of estimation (approximately the last 20 years.) A 1965 Toyota is not the same

car as a 1985 Toyota. As Toyotas change, the meaning of a single (constant)

elasticity of demand for Toyotas becomes unclear. Tastes for autos and the

characteristics which comprise them have also changed. While it may be

theoretically possible to control for the reputation effects and network

externalities that are responsible for this shift of tastes, it is not easy to

do so in practice.

The most recent comprehensive study of the U. S. demand for automobiles is

reported in Toder et. al.'s Trade Policy and the U.S. AutomobileIndustry.. In

that book, demand elasticities are estimated using three methodologies. As

most studies of the welfare effects of trade policy in the auto industry have

used elasticity estimates from Toder, it is worthwhile to take a close look at

4



these alternative approaches. Each will be discussed in turn.

Toder's first approach is a time-series analysis. This work is more

sophisticated than earlier work in that it introduces hedonic price indices.

Toder estimates the following regression:

FIn (--) = a + a ln( Pf
DP= 0 1 2

d

-- is the foreign to domestic auto sales ratio.

Pf
-g--is the ratio of foreign to domestic hedonic prices.

d

Z is a vector of exogenous variables.

The estimation uses annual data from 1960 to 1974. Estimates of

a ranged from -0.9 to -1.7, depending on the Z vector. The coefficient ac

is the elasticity-of substitution in demand. Using the estimate of

a1 and older estimates of total market demand elasticities, conventional price

elasticities of demand can be derived.

There are at least four problems with this approach. First, as mentioned

above, tastes seem to have changed over time, since casual empiricism suggests

that a foreign car in 1960 was viewed very differently than one in 1974. As

tastes vary over time, the economic relevance of the estimates of the

elasticity of substitution in demand is called into question. Second, older

estimates of the total market elasticity of demand are required to convert

Toder's results into standard price elasticities of demand. While Toder used

hedonic price indices, the older studies did not. As cars are not homogenous

products, it is unclear exactly what the results of the older studies by Suits

and others mean. Also, the older studies were conducted before auto imports

were an empirically relevant phenomenon. Using these older out-of-sample
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market elasticities to derive the standard elasticities of demand may yield

very misleading results. Third, even if the time-series would yield accurate

estimates, the agglomeration of all foreign carsprevents the analysis of taxes

applied to only a subset of foreign autos. Fourth, regressing relative demands

on relative hedonic prices does not follow from either a -Lancasterian or Dixit-

Stiglitz model of product differentiation. The choice of using relative

demands and relative prices of domestic and foreign goods allows Toder, like

all his predecessors, to estimate a single equation instead of a complete

demand system. Toder's implicit assumption that an otherwise homogenous good

is differentiated only by country of origin is termed the Arrnington Assumption.

This assumption makes little sense from a consumer theory viewpoint, unless

there is some basis for supposing that goods are homogenous within countries

but not across countries. Toder's first approach is, then, a utility

inconsistent approach to modelling demand for differentiated products.

Toder's second method employed a cross-sectional approach to the demand-

estimation problem. Toder used transport costs to introduce cross-sectional

price variation. The units of observation were each of the continental United

States. Here the regression- estimated was:

F f
-D- = a0 + al(-P + a 2 PC2029 + a 3 PCI + a4PGAS

d

where: --- is the ratio of foreign to domestic new car sales.

Pf
-P-- is the ratio of delivered foreign to domestic list prices.

d

PC2029 is the percentage of population between ages 20 and 29.

PGAS is the price of gasoline.

While the problems of time varying parameters are not present in this

cross-sectional approach, this method still relies on previously derived market
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elasticities to construct conventional price elasticities of demand. The

cross-sectional methodology yielded generally unsatisfactory results. This is

not surprising, since one might suspect that variables other than transport

costs, gasoline costs, per capita income, and the percentage of population in

their 20's explain why foreign cars are more predominant.in New Jersey or

California than they are in Michigan or Indiana.

Toder's third approach is by far the most innovative. Although

computationally complex, the intuition behind this methodology--termed a

hedonic market share model-- is straightforward.

The model requires only one year's data on sales, list prices and

characteristics of automobiles. Let {a } be the -set of marginal rates of
n

substitution between N characteristics and price. Toder et. al. posit a log-

normal distribution of {a } across consumers. Next, they estimate

coefficients,O , which form a vector of sufficient statistics for the

probability distribution of the a's. Let S be the vector of actual shares of

auto sales by model. They next choose 0 to maximize the likelihood of

observing S. In brief, the technique selects statistics describing a

distribution of consumer's utility functions that reproduce as nearly as

possible the actual market shares observed.

Toder et. al. then apply the estimated taste distribution to a new set of

available models (differing from the old set by price) to generate a new market

share distribution. In this sense, the model simulates the relevant

elasticities. Unlike the previous two approaches, the hedonic market share

model can, in principle, predict market share elasticities for any subset of

models. In practice only a elasticity of substitution in demand between all

foreign and all domestic cars is estimated. This yielded coefficients of -2.3
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and -2.1 depending on the price increase simulated.

There are at least three major problems with this approach--the first two

of which are related.

1. The model is computationally quite difficult. Toder uses five

characteristic variables to estimate the taste distribution. Calculating the

maximum likelihood estimates for 5 requires a fifth-order numerical integration

between each iteration of the likelihood function maximization. The cost of

such computational techniques is often prohibitive. Also, some experts at

numerical analysis question the accuracy of such a high order integration of a

complicated distribution function.

2. More importantly, this technique does not yield standard errors. For

policy analysis, point estimates without standard errors are of limited use.

Without the standard errors, it is impossible to know whether and how well the

data fit the model.

3. The results of this technique hinge critically on the choice of the

distribution function of tastes. Toder et. al. used a log-normal distribution.

The choice of the distribution function is completely arbitrary yet possibly

key to the results. While all non-robust estimation methods are subject to

this critique, the problem is compounded here by the lack of standard errors of

the estimates. Without the standard errors, it is especially difficult to

ascertain whether the distribution function of tastes chosen fits the model.

Bresnahan (1981) also models the demand for automobiles. Using

sophisticated econometric techniques, he accounts for product differentiation

and avoids the pitfalls of time-series analysis. His goal, though, is more
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ambitious than just a model of automobile demand, as he focuses on the issue of

departures from marginal cost pricing in the automobile industry. Because he

looks at a broader range of issues than just the demand side of the model, his

results are not disaggregated enough to analyze the questions posed in the

introduction of this paper. While he does not estimate elasticities, per se,

estimated parameters can be manipulated to give an industry demand elasticity

(a proportionate change of all prices) of .25 and an elasticity for the average

product (one price changes and all others are constant) of 3.2. Bresnahan is

very forthright about the quite restrictive assumptions that he requires on the

demand side of his model. The most serious of these is the assumption that the

density of consumer tastes is uniform (as opposed to Toder's log-normal

assumption.) Bresnahan' s methodology also is computationally complex and, like

Toder's hedonic market-share model, it does not yield estimates of standard

errors. Bresnahan, though, approximates the variances of parameter estimates

in four ways. Although variances depend on the approximation used, this does

give some feel for how well the data fit the model. In short, Bresnahan's

method is carefully developed, but it is not suitable for addressing the types

of issues raised in the introduction of this paper.

Finally, there are a number of studies of automobile demand that

investigate the question of whether or not a car is purchased at all, and if

so, how many are purchased. These studies are fairly common in mode-of-

transportation studies. Methods used range from simple logit to multinomial

logit to multinomial probit. A quite technically sophisticated example of this

approach is found in Train (1986).* These studies ask a set of questions that

are for the most part only tangentially related to questions about the demand

effect of taxes on differentiated products. As such, their results are not

very useful to the issues with which I am concerned.*
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III. Methodology.

In this section, I explain my approach to the estimation of demand for

differentiated products. I do this in two steps. In step 1, I derive a demand

function that I wish to estimate. I avoid many of the pitfalls of previous

approaches by relying on results from Lancasterian consumer theory. In step 2,

I explain how the insights offered by Lancasterian consumer theory are

empirically implemented.

Step 1: I avoid the problems associated with time-series analysis by

using only three years of data--1983 to 1985.5 Three years of time-series

data, though, leaves few degrees of freedom. I introduce the much needed

additional price quantity variation by using a cross section of (the same) 100

models of automobiles for each year. The data, then are a time-series cross

section, or panel, consisting of 300 observations.'

While using panel data instead of only time-series introduces additional

price-quantity variation, it also poses some problems. It may be wrong to

regress quantity on price since, across observations, the good is not the same.

I address these problems using results from the Characteristics Approach to

product differentiation.

In the Lancasterian model of product differentiation, a good is

represented by its bundle of characteristics. Different models of the good

contain different bundles of these characteristics. With this view of product

differentiation, as tastes vary across consumers, demands for a model, given

its price, will vary with the model's characteristics bundle. Because products

are identified by their bundle of characteristics, it is appropriate to control

for the cross sectional variation in models by including in the demand function
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those characteristics which differentiate models.

Lancaster hence posits that the quantity demanded of a model depends on

its own price and characteristics and on the =rice and characteristics of

competing models. In log-linear form, this izplies:

In Q = a + a1ln P. + a ln . +'X + t 'X
it 1 it 2 jt it jt

where: Qi is the quantity demanded of model i in year t.

P.tis the price of model i in year t.

P. is the vector of prices of substitutes to a model with sales Qi.it it

X. is a characteristics vector of model i in year t.it

Xjt is a characteristics vector of model j in year t.

I posit that the above model may be subject to country-of-origin specific

errors, and hence use a fixed effects model. Allowing also for time dependent

shifts of demand gives:

in Q = a + a ln P. + a 1nP. +O'X + r'X, + a3JAPAN. + a GERMAN.+
it 0 + 1 it 2 jt it jt 3 4G i

+ a SWEDE.+ a' T (1A)5 i 6t

where: JAPAN. = 1 if model i is Japanese.

GERMAN. = 1 if model i is German.
1

SWEDE. = 1 if model i is Swedish.
1

Tt is a time dummy for year t.

-Equation (1A) is consistent with a Lancasterian approach to consumer demand for

autos..

Somewhat surprisingly, Lancaster' s work does not discuss the hedonic price

literature. This literature posits that the price of a good is a linear

combination of the implicit prices of the attributes of' the good. Thus in

equation (1A), Xi, would be highly collinear with P±,. An analogous
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relationship holds for X,t and P,. According to the hedonic approach, the

price of a good already contains information about the qualities of the good.

Hence, estimating (lA) merely introduces severe multicollinearity. Instead,

the hedonic hypothesis argues in favor of estimating the following demand

function.

In Q = a + a ln P. + a ln? . + a JAPAN. + a GERMAN. + a SWEDE. + a'T (1B)
it1 2 it 2 jt 3 1 4 i 5 i 6t

I econometrically consider equations (lA) and (1B). In both, I assume the

consumer takes as given all independent variables.

The functional form of the demand function should follow from the density of

consumers over characteristics space. Formally, demand for a model is given by

integrating the density of consumers over the neighborhood of the model.

Making the link between distribution of consumers to functional form of demand

is a difficult question that I do not address. Rather, I consider equations

(lA) and (1B) as convenient statistical approximations of demand.

In standard consumer theory, with 100 models, 99 models could serve as

substitutes for model i, and thus 99 prices would appear in P,. This would

imply 9900 cross price terms to be estimated in the standard demand system.

This is not feasible with only 3 years of data. Again, I rely on the theory of

product differentiation to, in effect, place many zero restrictions on the

vector a2'

The earliest work on product differentiation by Hotelling (1929) arranged

products along a line. In Figure 1, model B competes for customers with models

A and C, but not with any other models.

. . Figure 1.
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Here, models A and C are termed "neighbors" of model B, whereas the other

models (D, E, etc.) were not. Were there 100 models arranged along the

spectrum, this set-up would imply 97 zero restrictions on the vector a2 for

good B. Only the price of B and the prices of its neighbors, A and C, would

enter the demand function for B.

Lancaster extends the Hotelling model to allow products to differ across

more than one dimension. Lancaster posits that'each good is a bundle of

several characteristics. In this case, if there are n products, each product

may have up to n-1 neighbors and all have at least one neighbor. 8 I rely on

the Lancasterian approach to product differentiation to endogenously determine

which products compete with each other for consumers. This, in turn, allows me

to place zero restrictions on a2 in a utility-consistent manner.

Step 2: Empirically determining the neighbors for each product is

complicated by the fact that while characteristics of the goods are observed,

individual consumer tastes over these characteristics are not. I adopt an

approach to this problem that is based in part on a methodology developed by

Feenstra (1986).9,o

The first task in any Lancasterian model is to define the metric in

characteristics space that is to be used to determine how far apart any two

products are. To.this end, let x = (x 1 , x2 , ... xn) > 0 be a vector of

physical characteristics which differ across models and Xn be the

n-dimensional space in which products are differentiated. Let

e = (9, 92' ''' en) represent the vector of taste parameters for a particular

individual.

I assume that all individuals have the same form of utility function,

namely CES, but that individuals differ in their vector of tastes 9. Then, an
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individual's utility is given by:aa

n a
U(x,) =.i eix. (2)

i=1 i i

The parameter 6 is related to the elasticity of substitution between

characteristics, a. i.e.

1

a 6-1

The twin constraints of utility increasing in x and concavity of utility in x

imply a e (0, -1). This range of a is perhaps overly restrictive for the case

of substitutability of auto characteristics. In order to permit

a c (0, -o.), I take a Box-Cox transformation of (2). This yields:

U(x,6) =118.x.

where x. = (x. - 1)/6 , 0 not equal to 6 < 1.

~-6
and x. =ln x. if6S = 0.

1 i

As I will be working with the case of less than perfect substitutability

between characteristics, I will, for notational simplicity, henceforth use the

(still CES) utility function:

6
U(x,e) =is:. (x. - 1) / 6 (3)

The price of a model depends upon its characteristics. I specify the

functional form for P(x). In particular,

P(x) = exp(a + S'x) (4)

where a > 0 and S=(S , P2 * '''an ) > 0 are parameters.

Denoting the homogeneous numeraire good by N and exogenous income by Y,

the consumers problem is to:

Max U(x,e) + N
x,N (5)

subject to P(x) + N 5 Y.
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The additively separable form of the utility function in (5) and the linearity

in N implies that the optimal choice of auto characteristics is independent of

income. The first order conditions for (5) imply:

6-1e.x. = . exp( 'x + a) (6)
1 1 1

at an optimum x

Equation (6) can be solved for the unobservable taste parameters in terms

of observables. As in Feenstra (1986), it proves to be very useful to do so.

I find:

e. = (x.) . exp(W'x + a) (7)
1 1. 1

* *
I next define a surplus function S(x,x ) = U(x,x ) - p(x). This function

gives the surplus associated with a model having characteristics vector x if

the consumer's optimal choice is described by x*. Simple'substitution gives:

* * 1 * 1- 6
S(x,x ) = exp(O'x + a) E [-i--] (xi) (x. -1) exp(5'x + a)(8)

It is easy to verify that S is maximized when x = x*. This surplus function

will serve as the metric for measuring distance in characteristics space.

Having defined the metric, I turn now to the task of using this metric to

determine which products compete with one another. (i.e. which are neighbors)

While there are many models of automobiles, and hence many available bundles of

characteristics, there is not a continuum of products available on the market.

Thus, a consumer may find that her optimal model, x*, does not exist in the

market. In this case, the consumer receives less surplus than she would if x*

had been available. In Figure 2, I illustrate an iso-surplus contour for a

typical consumer for the case of 2 characteristics. In the figure, S(x,x) is

constant along any contour and S(x,x) decreases as one moves away from x*.

Thus, the consumer whose optimal characteristics bundle is x* is indifferent

15



between point A which entails slightly more horsepower and less weight and

point B which gives relatively much more horsepower and a heavier auto.

Two models A and B would be neighbors if there is any consumer who is

indifferent between A and B who prefers these two to all other models.

Graphically, in Figure 2, A and B would not be neighbors-if there existed a

model such as C.

Different consumers may have different ideal models. Because of this,

there are many iso-surplus contours that will pass through any two models.

*
In Figure 3, individual 1 has an optimal choice of x1 , and A and B lie on the

same iso-surplus contour--S. Another consumer, individual 2, has an optimal

*
choice of x 2 . For this consumer, A and B also lie on the same iso-surplus

contour (S 2 ). The analogous story applies to consumer 3 whose optimal choice

*
is x3 .

An ideal algorithm for determining neighbors would proceed in steps. For

every possible pair of models in the sample, one would conduct a detailed grid

search in characteristics space. At every point in the grid search, one would

pose the following question. Is the consumer whose ideal model is this point

in characteristics space indifferent to the 2 potential neighbors. If the

answer is no, move on to the next point on the grid and repeat the question.

If the answer is yes, ask if any of the other 98 models in the sample give

higher surplus than the pair being considered. If the answer here is no, the

pair of potential neighbors are indeed neighbors.

This algorithm will determine which multi-dimensionally differentiated

products are neighbors. Unfortunately, the algorithm is computationally

infeasible for the case of automobiles. This is because I find that at least 5

characteristics are necessary to adequately account for differentiation between
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autos. The algorithm described above, then, would require very many

5-dimensional grid searches entailing many calculations at each point in each

search. This is too expensive on a mainframe computer and too time consuming

on an advanced personal computer.

I refir.e the. above definition of neighbors. (Two models were neighbors if

there existed a consumer indifferent between them and who preferred them to all

other available models.) Amending this definition allows me to derive a

'computationally feasible method for determining neighbors to each model in my

sample. I take the smallest iso-surplus contour containing the potential

neighbors as the basis for comparison. In Figure 3, this is S1-- the surplus

that consumer 1 obtains. This is akin to saying that it is the preferences of

the consumer whose optimal bundle is most similar to the potential neighbors

that, on the margin, matter. In diagram 3, then, when I ask if A and B are

neighbors, I use the preferences of consumer 1 and then look for a point such

as C that lies within S1 . If a point such as C exists, A and B are not

.neighbors. This method is economically sound if it will always be the case

that if ccnsumer 1 has a model preferred to A and B, so will all other

consumers. There exist examples in which this will not be true, and this issue

will be discussed in detail. First, though, it is convenient to state a

working definition of "neighbors."

Definition: Models A and B are considered neighbors if, for the smallest

iso-surplus contour containing both of them:

Sa' [ b'x) c,x*) for all models c.

17



Figure 2

Figure 3.
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This is, I believe, an economically intuitive and computationally

straightforward definition of neighbors. It is not a perfect definition -for at

least two reasons. I discuss each in turn.

The first problem with the definition of neighbors concerns identifying

the x* which defines the highest surplus associated with indifference between

models A and B. Recall that x* is a consumer's optimal choice of

characteristics and as such is not observed. I posit that x* is the midpoint

of a line drawn between two potential neighbors, A and B, where the surplus

function provides the metric. Since a model is represented by a vector of its

characteristics, I find x* by varying 9 from 0 to 1 until x* = Ox, + (1-n )x,

and S(xA,x*) = S(x$,x*). If iso-surplus contours were proper ellipsoids, the

x* defined in the above linear fashion would indeed identify the smallest iso-

surplus contour containing A and B. Insofar as the iso-surplus contours

defined by (8) are not proper ellipses, defining x* as the mid-surplus point on

the line between points A and B may not'yield the smallest contour containing A

and B.

There are two possible responses to this critique. First, the iso-surplus

contours defined by (8) are, in fact, not too different from ellipses for the

case of automobiles. Iso-surplus contours derived from data are drawn in

weight-horsepower space in figure 4. Due to the symmetry-of (8), contours are

similarly shaped in the'space of any two characteristics. Second, if x* was

poorly defined by drawing a line between A and B, one would expect the method

to yield nonsensical sets of neighbors. I show in the next section that this

is not the case. 2
2

A second problem is that this definition of neighbors which uses the

smallest iso-surplus contour as the basis for comparison may falsely reject

potential neighbors. This is demonstrated in Figure 5.
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Figure 5

Suppose there are only 3 models, A, B, and C. My definition of neighbors

rules out A and B as potential neighbors, since the iso-surplus contour drawn

is the smallest containing A and B and C is preferred to A and B. Yet for a

consumer whose optimum is x*' , A and B are neighbors. My method for

determining neighbors, though, will never account for the preferences of a

consumer with an optimal choice of x* ' in Figure 5. Because I find the optimum
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bundle by drawing a line between 2 models, and do so for all pairs in the

sample, I will never account for the preferences of a consumer whose optimum

bundle lies outside the outermost envelope of available models. The

preferences of these consumers are ignored. In figure 5, this envelope'is

defined by the triangle ABC-- an area which does not include q'.

For the automobile market, this problem is not likely to be an empirically

important one. This is because, in a market with as many models as the auto

market, it is unlikely that there are very many consumers whose ideal lies

outside this outer envelope. Were this the case, one would expect such

profitable market niches to be readily filled.

The algorithm for finding neighbors, then, is as follows.

Step 1: Find x' such that S(x),x') = S(x 2 ,x*) using the above described

linear method.

Step 2: See if there exists a model j not equal to 1,2 such that

S(xa,x*) < S(x,x*). Models 1 and 2 are neighbors if no such j exists in the

sample.

Step 3: Repeat the above two steps for all possible pairs in the sample.

This algorithm ensures that.if 1 is a neighbor of 2, then 2 is a neighbor of 1.

If 3 is a neighbor to 2, though, it need not be a neighbor to (2's neighbor) 1.

The number of neighbors a model has depends on its characteristics and the

characteristics of the other models in the sample. The actual number of

neighbors for each model is endogenous and will differ across models.

This procedure yields the neighbor(s) to every model in the sample. I use

these neighbors as the elements of Pin the demand equation (1). Conversely,

models which are not neighbors are assumed to have no cross price effect in

(1).
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This concludes the description of the methodology. In this section, I

have explained how I use results from a Lancasterian model of product

_differentiation to derive an estimable demand function. The resulting demand

function circumvents many of the myriad problems that plagued earlier attempts

to estimate the demand for differentiated products--specifically automobiles.

IV. Data and Results.

- The data s-et comprises almost all automobile models which were sold in

calender years 1983 - 1985. Specialty models with annual sales of under 4000

were excluded (e. g. Ferrari and Rolls Royce). Models which were not produced

for all of each of the three years were also deleted. This allows me to avoid

the problems that would be posed by a model which is introduced in October and

hence has very low annual sales for the calender (as opposed to model) year. A.

similar, though less severe, problem would exist for models withdrawn after

October. Models included in the sample are given in Table 1. Each model/year

observation consists of the following variables.

1) Sales by Nameplate
2) Suggested retail list price for the base model
3) Wheelbase of the base model
4) Length "t
5) Width it
6) Height "i
7) Weight "
8) Headroom " it
9) Legroom "

10) Number of engine cylinders of the base model.
11) Engine displacement
12) Fuel injection or carburation "
13) Manual or automatic transmission "

14) Power or manual steering"
15) Power or manual brakes "
16) Air conditioning as standard on the base model.
17) Horsepower (HP) of the base model
18) Turning radius"
19) Country of origin.
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All data were collected from issues of Automotive News' annual Market Data Book

Issue.

Some variables of economic significance are absent from the above list.

In particular, I lack data on the incomes of consumers and on the actual

transaction price. I use the suggested list price of the base model for Pit.-2

This introduces systematic bias in so-far as some models consistently sell for

more or less than list price. For some Japanese models, this may have been the

.case in my sample.1 4

I compute neighbors for the 1984 models. I assume that product

characteristics do not change so much that neighbors change over the sample

period. I will relax and test this assumption in future work. Indeed,

computing neighbors for each year provides an alternative test of Feenstra' s

(1985) upgrading results. Here, differential upgrading would take the form of

changing neighborhoods over time.

I begin by estimating the hedonic price equation P(x). Like most

researchers before me15 , I find that the functional form of P(x) which best

fits the data is:16

P(x) = exp (a + S'x). (4)

I find that a linear combination of the following five characteristics accounts

for almost 90 percent of the variation of P(x)--weight, horsepower,and dummies

for power steering, air conditioning, and foreign. Dummy variables take the

value of 2 if a car is foreign, and if air and power steering are standard and

a value of 1 otherwise. This differs from the usual 1-0 convention because
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Table 1

Models Used in the Sample

Toyota Tercel
Corolla
Celica
Camry
Cressida
Supra

Nissan Sentra
Maxima
300zx
200SX
Stanza
Pulsar

Honda Accord
Civic1.5S

Mazda 626
RX- 7
GLC

Suburu DL/GL
Chry/Ply Colt
Volvo DL

760 GLE
VW Jetta

Quantum

BMW 320/318
530/528
733

Mercedes 300D
300SD
190E

American Motors Alliance Chevrolet Camaro
Eagle Celebrity

Plymoth Horizon Corvette
Turismo MonteCarlo
Reliant Chevrolet
Plymoth GF Oldsmobile Firenza
LeBaron Cutlass/Cie
NewYorker/5thA Cutlass/Sup

Dodge Omni 01ds88
Charger 01ds98
Aries Toronado
Dodge600 Pontiac 1000
Diplomat Sunbird

Ford EXP Firebird
Escort 6000

Mustang Bonneville
T-bird GrandPrix
LTD Volkswagon Rabbit
CrownVict.

Mercury Lynx
Cougar/XR7
Capri
Marquis
GrandMarqui
Continental
MarkVii
Lincoln

Buick Skyhawk
Skylark
Century
Regal
LeSabre
Electra
Riviera

Cadillac Cimarron
Seville
Cadillac DV
ElDorado

Chevrolet Chevette
Cavalier
Citation

Audi 5000
4000

Mitsubishi Tredia
Cordia
Starion

Saab 900 S
900 Turbo

Porsche 944
911

Isuzu I -mark
Impulse

Peugeot 505
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some dummies are raised to negative powers. The only effect of this change is

to alter the constant term in the hedonic regression. Numerical experiments

show that this has no effect on the determination of neighbors. I estimate the

log of equation (4) to give:

In P = .215 + .209 Weight + .0045 HP + .1261 PS + .4703 Air + .161 Foreign (9)
(.123) (.056) (.0009) (.052) (.050) (.044)

standard errors are in parentheses.
100 observations. R2 = .885

It is useful to view dummy variables here as proxies for various degrees of

luxury and/or quality. Hence an optimal choice of characteristics, x*, may

involve .5 units of air conditioning. This jrst means that the consumer would

prefer less luxury than is imposed by the all or nothing choice of air

conditioning but more than is afforded by a no-air model. The coefficients in

(9) are used to parameterize the surplus function of equation (8). While the

coefficients'are subject to measurement error, their very small standard errors

argue that neglecting this error is unlikely to be an empirically relevant

omission.

The only remaining unknown in the surplus function is the parameter 6 which

is related to the degree of concavity of the utility function. Recall that the

elasticity of substitution, a = 1/ (6-1). This parameter is not identifiable

with the data available. Following Feenstra (1986), I posit many different

values for 6 and replicate the entire methodology from the beginning for each

of these. I find that the choice of 6 over a wide range of plausible values

does not affect the qualitative results. I consider values of

6 = .5, -1, -3, -6, and -8. Only at values of -8 and below do results change

substantially. That is, the choice of neighbors is mostly unaffected until
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6= -8. At -8, neighbors become much more numerous and, to a degree, counter-

intuitive.

Once 6 has been specified, I compute neighbors for every model using the

1984 data.17  The results for 6= -3 are given. in Table 2. Table 2, for

example, tells us that the neighbors of the Honda Accord,'model 13, are the

Toyota Camry, Nissan Stanza, Mazda 626, Mitsubishi Tredia and Cordia, Chevrolet

Cavalier, and Pontiac Sunbird. An intuitive way of interpreting Table 2 is to

note that it answers the question: What other autos did the consumer consider

before she decided to purchase the one actually selected?

In addition to varying 6, another type of sensitivity test was conducted in

calculating neighbors. Because iso-surplus contours are not perfect ellipses,

the linear method of finding the optimal mode) x* is, as noted above, only an

approximation. I used another approximation and re-tested for neighbors. This

other approximation was based on finding x* such that consumers whose ideal

models were A and B were equally dissatisfied with x*. This approximation

yielded the same qualitative results as the linear approximation of x*.

The next step in the methodology is to estimate the demand functions given in

(lA) and (1B). Models have, on average, about 6 neighbors. With 100 models,

this implies 600 cross price terms to be estimated. While this is certainly an

improvement over the previous 9900 terms, the demand functions are still not

accurately estimable with only 300 observations. I take the mean price of

neighbors as the observation for P,,. Similarly, I take the mean

characteristics of neighbors as the observation for X,,. Because the demand

functions use the log of P,,, it matters that the average of the logs is not

the log of the averages. Numerical experiments show that this approximation

does not affect results. There are other specifications for P,,. Recall that
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Table 2

Neighbors when 6 = -3.

Model

1
2
3
4

5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45

Model Name

Toyota Tercel
Corolla
Celica
Camry
Cressida
Supra

Nissan Sentra
Maxima
300zx
200SX
Stanza
Pulsar

Honda Accord
Civici.5S

Mazda 626
RX-7
GLC

Suburu DL/GL
Chry/Ply Colt
Volvo DL

760 GLE
VW Jetta

Quantum
BMW 320/318

530/528
733

Mercedes 300D

Numnber
of

Neighbors

6
2
4
8
4
3
4
3
3
8
5
8
5
1
9
4
7
8
3

10
4
6
5
6
4

- 5
8
5
2
3
6
5
3
6
4
3
4
3
4
5
7
2
5
3
4

Model Numbers of
Neighbors

17
18
4
3
6
5

12
25
6
3
4
7
4

100
4
3
7
2
7

10
5

12
12
10

8
9

21
26

8
20
10
13
13
16
20

8
5
9
2

23
10

1
41

1
3

18
39
10
11
21

9
17
29
26
11
10
11
15

13
10
12
12
17
16
25
18
15
20
21
28
25
27
35
35
11
15
32
20
24
34
6

26
22
24
20
80
59
50

4

19 42 44 80

16 45
13 15 45 52 81 82
37 67
37
19 100
36
38
16 20 24 31 41 53
12 31 53
17 18 22 23 31 100
32 33 81

23 32 57 69 81 82 88
20 34

1 18 19 56 100
17 1 22 51 61 94

1
24 30 34 35 41 54 62 98
27 37
39 55 61 100
31 40 76
31 35 40 76
27 92
38 68 85
28 74 75 79 92 93
74 77 78

40
12 23 24 76
33 81 95
39
36 54 60 62
29 30
37
21 36
85
33 55
30 41 76
40 43 59 83 98

76 87 99
94
46 53

300SD
190E

Audi 5000
4000

Mitsub Tredia
Cordia
Starion

Saab 900 S
900 Turbo

Porsche 944
911

Isuzu I-mark
Impulse

Peugeot 505
Alliance
Eagle
Horizon
Turismo
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46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99 -
100

Reliant
Plymoth GF
LeBaron
NewYorker/5thA
Omni
Charger
Aries
Dodge600
Diplomat
EXP
Escort
Mustang
T-bird
LTD
CrownVict.
Lynx
Cougar/XR7
Capri
Marquis
GrandMarqui
Continental
MarkVii
Lincoln
Skyhawk
Skylark
Century
Regal
LeSabre
Electra
Riviera
C imarron
Seville
Cadillac DV
ElDorado
Chevette
Cavalier
Citation
Camaro
Celebrity
Corvette
MonteCarlo
Chevrolet
Firenza
Cut lass/Cie
Cutlass/Sup
01ds88
01ds98
Toronado
1000
Sunbird
Firebird
6000
Bonneville
GrandPrix
Rabbit

3
7
5
5
3
2
4
6
7
4
5
5
6
3
6
7
4
3
3
3
4
4
4
5
6
5
4
3
5
5

11
5
3
7
5
6
6
5
5
3
5
4
3
3
5
4
8
4
5
5
3
3
6
4
5

4 45 52
20 34 49 54 73 91 92
10 53 70 76 84
47 60 73 75 92
44 1 51
18 50

4 46 53 82
10 11 45 48 52 70
20 34 47 58 73 91 92
22- 39 61 95
17 18 22 61 80
15 '63 70 71 82
20 34 54 62 92 98
41 43 64
34 49 65 67 75 92
17 18 22 55 56 80 94
20 34 58 92

3 57 71
59 76 8-3
60 67 75

7 68 77 79
5 65 66 79

26 66 78 85
15 32 81 88 95
48 53 57 71 82 84
57 63 70 84 89
41 76 86 98
47 49 91
27 28 77 79 93
27 49 65 92 93
23 24 31 40 43 48 83 92 96 97 98
28 66 74 78 79
28 68 77
27 28 66 67 74 77 93
42 56 61 1 94
4 13 15 32 69 82
4 15 52 57 70 81

41 64 76 96 98
48 70 71 76 89
26 38 68
20 41 72 76 90
43 91 92 99
15 69 70 95
71 84 97
41 43 76 86 99
54 73 87 92
25 27 49 54 58 60 75 76
27 74 75 79
18 44 61 80 1
15 32 55 69 88
76 83 97
76 89 96
20 41 58 72 76 83
41 43 87 90

7 12 14 17 22
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the estimated demand equation is just a converient statistical representation.

Perhaps Pt should be the average price of neighbors weighted by their sales.

This representation of P,, yields the same cualitative results, but standard

errors on the parameters in the demand function are larger.

I estimate (1A) and (1B) using OLS. Because (1B) is nested within (1A), a

straightforward F-test is used to test which specification should be used.

That is, I test to see if own and neighbor's =ean characteristics are jointly

statistically significant.1 8 , 1 9 For all values of d tested, the data cannot

reject the hypothesis that own and neighbors' characteristics are jointly

insignificant.

The existence of multicollinearity in (LA) is confirmed by collinearity

diagnostics following the approach of Belsley, Kuh, and Welsch (1980).

Singular Value Decomposition analysis indicates multicollinearity. The SVD

analysis does not indicate that the data matrix 4s so ill-conditioned as to

suggest numerical error in the estimates. Due to the multicollinearily in

(1A), estimated standard errors are inflated. This biases the F-test toward

rejecting joint statistical significance of own and neighbors' mean

characteristics. I nonetheless accept the results of the F-tests and use (1B)

as the demand function in the analysis that follows. Table 7 in the Appendix

presents the results of instead using (1A). As the collinearity diagnostics

indicated, results are very similar to those obtained using (1B) (and given in

Table 4), except that standard errors are inflated.

OLS estimates of (1B) are presented in Table 3. In Table 3, equation 3.1

presents estimates of the demand function excluding any cross price effects.

This equation is roughly a panel data version of the older time-series studies

which neglected cross-price effects. Equation 3.1 gives a highly significant

total market elasticity of demand of - .794. This estimate is in line with
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existing, older estimates. Equation 3.1, though, is misspecified, as cross-

price effects are omitted.

Equations 3.2 to 3.6 in Table 3 give estimates when the demand function

includes the price of neighbors, hence allowing'for the possibility of

substitution. Varying 6 from .5 to -6 affects the significance of the

parameters on own and neighbor's price but the point estimates are fairly

constant. (Recall that the choice of & only enters the demand function via its

effect on the determination of the set of neighbors.) For 6 = .5, -1, -3 and

-6, the coefficient on neighbor's price is highly significant. For these

values of 6, the coefficient on own price is somewhat stable across equations

and is highly significant.

For values of 6 between -1 and -6, the total market elasticity (a + a2)

varies from -. 81 to -. 83 - -all of which are statistically significant at the

90% level. As theory would lead one to expect, allowing for substitutability

leads to a more elastic own price elasticity. This is evidenced by own price

elasticities (al) greater in absolute value than the coefficient of -. 794 in

equation 3.1.

In sum, the "neighbors" approach to restricting the dimensionality of the

demand function in conjunction with a short panel of data seems to fit the data

remarkably well. I have completed some sensitivity analyses in the spirit of

Learner (1985). These ad hoc specification tests include using other hedonic

characteristics to control for cross sectional variation. The results have

been exceptionally robust to such tests.
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Table 3

Estimrated Denmand Funtctions
Standard Errors in Parentheses

Variable Definitions:
LOGSALE - Log of sales in 1000's.
LOGLIST - Log of the list price in $iOO00's
LOGPN - Log 'o f the average price of the neighbors in $000.

D84 - 1 if the year is 1984 , 0 otherwise.
D85 - 1 if the year is 1985 , 0 ctherwise.
SWEDE
JAPAN
GERMAN

1
1
1

if
if
if

the car is
the car is
the car is

Swedish, 0 otherwise.
Japanese, 0 otherwise.
German, 0 otherwise.

Dependent Variable is LOGSAILE

Eqn. (3.1) (3.2) (3.3) (3.4) (3.5) (3.6)
6=..5 6= -1.0 6= -3. 0 6= -6.0 6= -8.0

CONSTANT

LOGLI ST

LOGPN

D84

6.085
(.278)

5.814 6.087
(.276) (.277)

6.041
(.270)

6.004
(.267)

5.772
(.411)

-. 7942 -1.814 -1.333 -2.076 -2.271 -. 912
(.119) (.254) (.319) (.313) (.311) (.165)

1.112
(.246)

.522
(.287 )

1.250 1.444 .237
(.284) (.282) (.229)

D85

SWEDE

JAPAN

GERMAN

.114
(.116)

1672
(.117)

-1.321
(.253)

-. 554
(.117)

-1.01

(.117)

.3954

.111 .118 .122 .120 .108

.161 - .173 .178 .179 .155

-1.350 -1.316 -1.228 -1.181
(.245) (. 252) (.246) (.244)

-1.302
(.254)

-. 607 -. 570 .578 - .594 -. 529

(.11 ) (. 12) .11928

-. 615 -. 843 - .537 - .424
(. 183) (.189) (.193) (.196) (.183)

.3976.4349 .4022 .4330 .445 0
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V. On the Enpirics of Taxation Schemes for Differentiated Products.

The methodology by which the demand functions in Table 3 were derived was

based on Lancasterian consumer theory. That theory tells us that not all

differentiated products need be substitutes. It also tells us to group

products according to their characteristics and not only, as the Armington

Assuzption implies, according to their country of origin. 20  The elasticities

that are estimated in the equations of Table 3, then, are the relevant ones

from the vantage point of consumer theory.

Trade policy, though, typically taxes a good based on its country of origin.

The analysis of trade policy issues requires trade elasticities. I derive

these elasticities from the estimates of the demand system provided in Sections

III and.IV. This is accomplished by perturbing the system on whatever margin

trade policy operates to simulate the elasticity relevant to the study of trade

taxes. This approach is more likely to give valid elasticities than direct

estimation of import demand equations (see, for example Leamer and Stern),

because it is based on a utility-consistent framework for demand.

Suppose, for example, that policy makers wish to know how the demand for

domestic autos changes when a tariff is applied to al auto imports.

To derive this elasticity, I increase the price of all foreign cars by one

percent--my proxy for a small change. This increases the demand for models of

domestic autos which have as neighbors some foreign model. Summing the new

demand for all domestic autos gives the information needed to construct the

relevant elasticity.

This approach requires a caveat. I have nothing to say about the effect of

large taxes. This is because the estimated demand system is only a local

representation of demand. The system may behave quite differently at a point
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far from the initial situation. This is a standard warning in the empirical

tax analysis literature. Also, here, large taxes may change the neighbors of a

model. I assume that the taxes I consider are small enough that neighbors do

not change. Preliminary numerical experiments indicate that this is indeed the

case for the one percent price changes .I consider.

In Table 4, I give a wide variety of elasticities corresponding to various

policy scenarios. For each elasticity, I also give its standard error. This

statistic is computable given the variance-covariance matrix of the estimates

of the initial demand equation. These elasticities all are simulated using the

demand equation (3.4). That is, 6 from the utility function is set to -3. I

take this as a central case for expositional purposes. Appendix A presents the

same elasticities when the entire methodology is conducted using other values

of 6. That appendix shows that results remain qualitatively similar for a

range of 6's.

Table 4 is easily interpreted. The table shows, for example, that the

elasticity of demand for domestically produced automobiles with respect to the

price of Japanese autos is .187. That is, a one percent increase in the price

of all Japanese cars (via a tariff perhaps) yields a .187 percent increase in

demand for domestically produced autos. Were such a price increase applied to

all imported autos, demand for domestically produced autos would rise instead

by .367 percent. This example illustrates an error present in earlier studies

of U.S. - Japanese auto trade policy. These studies used an imputed elasticity

of demand for domestic autos with respect to a foreign price change. This is

because there were no estimates available of elasticities of domestic demand

with respect to a change in only the Japanese price. Table 4 tells us
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Table 4

Elasticities 'of.Demand using Eq. lB
6 = -3

Standard errors in parentheses.

QUANTITY CHANGE

Domestic
Autos

All
Imports

Japanese
Imports

German
Imports

Swedish
Imports

P
R All Domestic -1.187
I (.146)
C
E

.225
(.051)

All Foreign
C
H
A
N
G
E

Japanese

German

.367 -1.045
(.084) (.129)

.187 -. 663
(.042) (.081)

.112 -. 279
(.025) (.036)

.024 -. 064
(.005) (.011)

.096 -. 376
(.021) (.046)

.213
(.048)

-1.030
(.128)

-1.43
(.187)

.317
(.072)

.071
(.016)

-. 550
(.067)

.258
(.058)

-1.078
(.132)

.393 .300
(.089) (.068)

.076
(.017)

-. 897
(.118)

-1.717
(.240)

.745
(.169)

Swedish .247 -1.971
(.056) (.292)

All Foreign
weighing

< 2300 lbs.

-. 199
(.025)

0.0
---
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that this error leads one to believe that demand for domestic autos is twice as

responsive to a small tariff on Japanese cars than is actually the case. The

difference arises due to substitution by American consumers away from Japanese

cars toward other foreign cars not affected by the trade policy.

Suppose that the purpose of trade or industrial policy in the U.S.

automobile industry is to increase demand for domestically produced autos.

Table 4 shows that a tax on all imports has less that half the effect on

domestic demand than an equal subsidy on domestic models would have (.367 v.

-1.187). (Consequences for government revenue are, of course, quite

different.) An increase in a tariff on Swedish autos has very little effect on

domestic demand. The relevant elasticity is .034. This is because most of the

neighbors to Swedish autos are also foreign.

Suppose that the purpose of trade taxes is to reduce imports from a specific

country. Then Table 4 shows that a tax on only Swedish cars reduces Swedish

imports by relatively less than the same tariff on German autos. Swedish cars

are the most elastically demanded import, followed by German models, then

Japanese models (-1.97 v. -1.71 v. -1.43). This is because Japanese models

have many Japanese neighbors, while this is not the case for Swedish models.

Indeed, most neighbors to Swedish models are German. This is evidenced by the

relatively high cross price elasticities between German and Swedish autos.

Perhaps contrary to prior beliefs, a tax on all imports would have roughly

the same relative impact on Japanese, German, and Swedish producers.

Some economists have argued for a tax on all small foreign cars instead of a-

tax on Japanese autos. Such a tax does not discriminate on the basis of

country of origin and is viewed more kindly by GATT. I arbitrarily define

small cars to be those weighing under 2300 pounds. (For purposes of

comparison, a Toyota Tercel weighs 1985 lbs., a Honda Accord 2187 lbs., and a

35



Saab 900 2612 lbs.) While such a broadly based tax might make a Trade

Representative's job more easy, the policy is only half* (.096 v. .187) as

effective as is a direct tax on imports at increasing demand for domestically

produced autos. Swedish producers are totally unaffected by such a tax since

no Swedish export to the U.S. weighs less than 2300 lbs. (there is a reason

Volvos are so safe), and no Swedish car has a neighbor weighing less than 2300

lbs.

It is possible to investigate the effects of various other trade and

industrial policies using Table 4. The above scenarios provide only a

beginning.

VI. Summary

This paper has developed a new methodology for investigating empirically the

effects of taxes on differentiated products. The approach adopted a

Lancasterian, utility-consistent view of product differentiation. Using this

approach, I calculated which multidimensionally differentiated products were

neighbors. This information proved a useful basis for decreasing the

dimensionality of the demand estimation problem. Using a panel of 100

automobile models over 3 years, a demand function was estimated. This yielded

quite reasonable and statistically significant demand elasticities.

Recognizing that tax policy often acts on a different margin than consumer

theory, the demand elasticities necessary for tax policy analyses were

simulated.. This provided the first estimated set of such elasticities. These

elasticities provide some insight into a number of possible policy scenarios.

The methodology developed in this paper provides ample opportunities for

Leaner-type ad-hoc specification tests. Many of these are presented in the

Appendix. Results appear robust.

The elasticities estimated and given in Table 4 are well suited to
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simulation analyses of strategic trade and industrial policies concerning the

U.S. automobile industry. This is the subject of ongoing research.
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APPENDIX A

Table 5

Elasticities of Demand using Eq. 1B
6 = -1

Standard errors in parentheses.

QUANTITY CHANGE

Domestic
Autos

All
Imports

Japanese
Imports

German Swedish
Imports Imports

P
R
I
C
E

C
H
A
N
G
E

All Domestic

All Foreign

Japanese

-. 967
(.154)

. 112
(.062)

German

Swedish

.162 -. 918
(.089) (.137)

.086 -. 559
(.047) (.089)

.042 -. 259
(.023) (.037)

.015 -. 078
(.008) (.011)

.051 -. 338
(.028) (.052)

.122
(.067)

-928
(.140)

-1.080
(.198)

.120
(.066)

.026
(.014)

-. 491
(.076)

.100
(.055)

-. 906
(.134)

.147 .108
(.081) (.059)

-1.173 .343
(.241) (.189)

.101 -1.326
(.056) (.318)

.053
(.029)

-. 859
(.124)

All Foreign
weighing

< 2300 lbs.

-. 188

(.028)
0.0
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Table 6

Elasticities of Demand using Eq. 1B
6 = -6

Standard errors in parentheses.

QUANTITY CHANGE

Domestic
Autos

All
Imports

.239
(.046)

P
R
I
C
E

C
H
A
N
G
E

All Domestic

All Foreign

Japanese

-1.247
(.083)

Japanese
Iiports

.231
(.045)

-1.052
(.125)

-1.568
(.190)

German Swedish
Imports Imports

.267
(.052)

-1.088
(.128)

.100
(.019)

-. 922
(.117)

German

Swedish

.426 -1.060
(.145) (.125)

.226 -. 709
(.044) (.082)

.124 -. 243
(.024) (.035)

.026 -. 074
(.005) (.010)

.119 -. 390
(.023) (.045)

.427
(.083)

.071
(.014)

-. 581
(.067)

.466 .361
(.091) (.070)

-1.849 .821
(.236) (.160)

.269 -2.144
(.052) (.288)

All Foreign
weighing

< 2300 lbs.

-. 189

(.024)
0.0
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Table 7

Elasticities of Demand using Eq. 1A
6 = -3

Standard errors in parentheses.

QUANTITY CHANGE

Domestic
Autos

All
Imports

Japanese
Imports

German Swedish
Imports Imports

P
R All Domestic
I
C
E

All Foreign
C
H
A
N 'Japanese
G
E

-1.412
(.533)

.201
(.103)

German

Swedish

.328 -1.285
(.168) (.580)

.167 -. 793
(.083) (.309)

.100 -. 358
(.056) (.195)

.021 -. 091
(.011) (.068)

.086 -. 462
(.044) (.206)

.191
(.584)

-1.275
(.098)

-1.636
(.046)

.284
(.145)

.064
(.033)

-. 672
(.293)

.230
(.118)

-1.314
(.569)

.352 .268
(.180) (.137)

-1.886 .666
(.405) (.342)

.221 -2.113
(.113) (.385)

.067
(.034)

-1.152
(.633)

All Foreign
weighing

< 2300 lbs.

-. 250
(.124)

0.0
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Endnotes

1. See Dixit (1986) who argues this point.

2. See, for example, Deaton and Muellbauer (:980).

3. Other simpler examples of this type of methodology are Johnson (1978) and
Cragg and Uhler (1970).

4. Demand for automobiles is the most prevalent example of modelling the
demand differentiated products. I am unaware of any modelling approach for
other differentiated products that is not mentioned in this section of the paper.

5. This is the most recent.data available until April 1987.

6. Note that this differs from the usual panel in which goods are the same,
but demand is across consumers and over time. Here, the consumers are assumed
the same, but goods differ across models, and these models are tracked over
time.

7. Actually, it is sufficient to include in the regression those
characteristics of which a linear combination account for the product
differentiation.

8. This differs from the Dixit-Stiglitz approach to product differentiation.
There, all products are neighbors.

9. The approach I use to find neighbors when products are multidimensionally
differentiated benefitted greatly from discussions with Rob Feenstra. I am
very grateful for his many helpful suggestions.

10. Recent theoretical work by Caplin and Nalebuff (1986) has also addressed
the issue of determining neighbors to a good when products are
multidimensionally differentiated. They show that if preferences can be
represented by a utility function that is Cobb-Douglas in product
characteristics and income, then there exists a straightforward way of finding
neighbors. Using the unit simplex in Cobb-Douglas parameter space, they show
that a hyperplane divides all consumers who prefer good x to good y form those
who prefer y to x. Because set of consumers who prefer one model to another
(i.e. the model's neighborhood) are defined by hyperplanes, finding neighbors
is a tractable problem. The tractability comes from the functional form of the
utility function. While this is an elegant result, it is not applicable to the
automobile market. This is because the utility function that permits the
tractability of the problem also implies that all consumers purchase the same
value of the most preferred model but differ in quantit-ies purchased. For big-
ticket items such as automobiles, this is just not the case.

11. This function over characteristics is sometimes referred to in the
literature as a sub-utility function.
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12. While I realize this line ofreasoning has strong Bayesian overtones, I do
not know another way of getting a feel for the validity of a new methodology.
This is another reason why the auto industry is a good candidate to which to
apply a new methodology. If my methodology were first applied to lumber and I
found Clear Pine-2 to be a neighbor to grade 3 Birch, few economists would have
any idea of how well neighbors are defined.

13. This is also the practice adopted by Feenstra (1985). In that paper,
Feenstra puts forth the argument that for national welfare considerations,
dealer mark-ups represent an intra-country transfer.

14. Implicit discounts due to selectively applied low financing rates have
also been ignored due to lack of data.

15. The most recent examples are Feenstra (1985) and (1986). Griliches is a
much earlier example.

16. I also estimate this function without logarithms. This functional form
yielded a loss of about .20 in the R2 .

17. This procedure is programmed in IBM Profortran for implementation on IBM-
compatible personal computers. The program is available to researchers on
request.

18. Throughout this paper, "statistically significant" means statistically
significant from zero at the 90% confidence level unless stated otherwise.

19. Because FOREIGN is a near linear combination of SWEDE, JAPAN, and GERMAN--
the fixed effects, I do not include FOREIGN in equation (lA) as an own
characteristic.

20. Indeed, demand estimation according to the Armington Assumption, using my
data set, yields statistically insignificant and nonsensical demand
elasticities.
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