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I. Introduction

Recent theoretical advances in the Industrial Organization literature have
provided insight into modelling the demand for differentiated products.
Lancaster (1979) intrcduced and developed what he termed the "Characteristics
Approach" to modelling the demand for differentiated products, while Dixit and
étiglitz (1977) pioneered what has come to be known as the "Love of Variety"
approach to the subject. Both of these approaches have been applied to
international trade theory. The result has been a heightened awareness of the
role that product differentiation plays in trede theory. This work is
presented in Helpman end Krugman (1985).

There have thus far been relatively few empirical applications of the new
theories of trade. 1In this paper, I present a new technique for
econometrically estimeting the demand for differentiated products. I adopt a
Lancastefian approach to product differentiation and use theoretical results
from this approach to solve several empirical problems. I then apply the
technique to the demand for automobiles.

The estimates derived from this method allow me to analyze many trade and
industrial policies for the U.S. automobile industry. For:example, what would
be the effect of a tariff applied only to Japanese imports on the total
automobile import demand? Would domestically produced auto sales replace the
Japanese imports or might German and Swedish imports rise, leaving total
imports relatively constant? Some economists have argued for a tariff onm all

small foreign cars. Such a tax does not discriminate by country of origin and

hence is viewed more kindly by GATT. As foreign small cars became more costly,



would domestic car sales rise substantially or would the U.S. just trade
imports of small cars for imports of larger czrs? Optimal industrial policy
toward the U.S. auto industry may involve subsidies to domestic producers
thereby possibly lowering the price of domestic autos.!  Or perhaps government
policy may involve subsidizing only one producer (e.g. Chrysler). What effects
would these policies have on demand fér different types of foreign and domestic
automobiles?

All of these questions are, in a formal sense, quite similar. Each
considers the effect of a tax placed on a subset of a group of differentiated
products. Parameters needed to answer questions such as those posed above are
own and sppropriately-defined cross price elasticities of demand. Any analysis
of the taxation of differentiated products must estimate (or use existing
estimates of) these demand elasticities. The approach developed in thi$ paper
provides a utility-consistent technique for deriving these elasticities. While
I apply the ﬁethodology to issues of trade and industrial policy in the U.S.
automobile industry, I believe that the general approach will have wider
application. The methodology could, for example, be used to estimate demand
elasticities in other differentiated products industries such as
microcomputers, audio-video equipment, lumber, and steel. All of these
industries have been the subject of recent policy debate.

This paper is a first attempt at solving some of the empirical issues
-associated with the analysis of taxation of differentiated products. While the
paper provides some answers, it also raises a number of microeconomic and
econometric issues for future research.

In Section II, I provide a brief critical review of the literature.

Section III develops the methodology that is then applied in Section IV. Using



the aemana system estimatea in dection 1V, Section V addresses many of the
policy concerns posed in this introduction. Section VI concludes the paper

with a brief summary.

II. A Brief Summarv of the Literaturg

In theory, estimating the demand system for a set of differentiated
products is no different than estimating a decand system for several homogenous
éroducts. A typical estimated equation in such a system would regress quantity
of a2 good demanded on its own price, the prices of the other differentiated or
homogenous products, and several other variebles such as income and personal
and demographic characteristics. Food is & good example of a set of
differentiated products whose demand functions are nicely‘estimated by standard
techniques. Recent work based on Deaton and Muellbsuer's Almost Ideal Demand
System provide excellent examples of this approach.?

For many sets of differentiated products, though, standard techniqﬁes are
inapplicable. In the case of automobiles, there are over 100 models available
and few models are available for more than four consecutive years. The
standard techniques would imply a system of, say, 100 equations with 99 cross
price effects. With so few years of data, the system is not estimable with any
degree of accuracy. In the case of VCRs or micro-computers, technology changes
so quickly that no more than two or three years of data is likely to be
available.

Several approaches to these problems have been teken in the empirical
literature. Almost all of them have been applied to the automobile industry--

at least partially because data is relatively plentiful. I will accordingly

focus on this body of research.



The easiest way around the problems posed ty product differentiation is to
ignore the issue. Not surprisingly, this was the epproach first adopted. Work
by Suits in 1958 used time series of total quantity of autos sold, average auto
price, and real disposable incéme to arrive at aggregate demand elasticities.
While it is surely unfair to judge the econometric methoés of 30 years ago by
the standa;ds permitted by today's computing technology, Suits' approach is
incepeble of addressing the issues raised in this paper's introduction.
Surprisingly, research as recent as Toder (1978) uses elasticities imputed in
part from Suit's original work, when analyzing current automobile trade and
industriel policy. Tarr and Morkre (1984) and Dixit (1986) in turn use
elesticities derived from Toder.

Time series techniques, even modern ones, are not applicable to
investigating the\effects of trade policy in the U.S. automobile industry. This
is because both products and tastes have changed significantly over the period
of estimatioﬁ (approximately the last 20 years.) 4 1965 Toyota is not the same
car as a 1985 Toyota. As Toyotas change, the meaning of a single (constant)
elasticity of demand for Toyotas becomes unclear. Tastes for autos and the
characteristics which comprise them have also changed. While it may be
theoretically possible to control for the reputation effects and network
externalities that are respomsible for this shift of tastes, it is not easy to
do so in practice.

The most recent comprehensive study of the U.S. demand for automoSiles is
reported in Toder et. al.'s Trade Policy and the U.S. Automobile Industry. In
that book, demand elasticities are estimated using three methodologies. As

most studies of the welfare effects of trade policy in the auto industry have

used elasticity estimates from Toder, it is worthwhile to take a close look at



these alternative spproaches. Each will be discussed in turn.

Toder's first approach is a time-series anzlysis. This work is more
sophisticated than earlier work in that it introduces hedonic price indices.
Toder estimates the following regression:

. Pf -
In (-3-) =ga, +ca. In( 5=-) +c, Z
Pd 2

g- is the foreign to domestic auto sales ratio.

P
-§§- is the ratio of foreign to domestic heconic prices.
d

Z is a vector of exogenous variables.
The estimation uses annual data from 1960 to 1974. Estimates of
@, ranged from -0.9 to -1.7, depending on the Z vector. The coefficient «

is the elasticity of substitution in demand. Using the estimate of

1

c¢. and older estimates of total market demand elasticities, conventional price

1
elasticities of demand can be derived.

There are at least four problems with this approach. First, as mentioned
above, tastes seem to have changed over time, since casual empiricism suggests
that a foreign car in 1960 was viewed very differently than one in 1974, As
tastes vary over time, the economic relevance of the estimates of the
elasticity of substitution in demand is called into question. Second, older
estimates of the total market elasticity of demand are required to convert
Toder's resulés into standard price elasticities of demand. While Toder used
hedonic price indices, the older studies did not. As cars are not homogenous
products, it is unclear exactly what the results of the older studies by Suits

and others mean. Also, the older studies were conducted before auto imports

were an empirically relevant phenomenon. Using these older out-of-sample



market elasticities to derive the standard elesticities of demand may yield
very misleading results. Third, even if the time-series would yield accurate
estimztes, the agglomeration af all foreign cers prevents the analﬁsis of taxes
applied to only a subset of foreign autos. TFourth, regressing reiative demands
on relative hedonic prices does not follow from either a Lancasterian or Dixit-
Stiglitz model of product differentiation. The choice of using relative
demands eand relative prices of domestic and foreign goods allows Toder, like
all his predecessors, to estimate a single equation instead of a complete
demand system. Toder's implicit assumption that an otherwise homogenous good
is differentiated only by country of origin is termed the Armington Assumption.
This assumption mekes little sense from a consumer theory viewpoint, unless
there is some basis for supposing that goods are homogenoums within countries
but not across countries. Toder's first approach ié, then, a utility
inconsistent approach to modelling demand for differentiated products.

Toder's second method employed a cross-sectional approach to the demand-
estimetion problem. Toder used transport costs to introduce cross-sectional
price variation. The units of observation were each of the continental United
States. Here the regression estimated was:

P

Fo_ -
5~ = % + al( Pd) + a2P02029 + a3PCI + cAPGAS
where: -g-- is the ratio of foreign to domestic new car sales.
P
,ﬁf_ is the ratio of deljvered foreign to domestic list prices.
d

PC2029 is the percentage of population between ages 20 and 29.
PGAS is the price of gasoline.
While the problems of time varying parameters are not present in this

cross-sectional approach, this method still relies on previously derived market
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elasticities to comstruct conventional price elasticities of demend. The
cress-sectional metﬁodology vielded generally unsatisfactory results. This is
not surprising, since one might suspect that variables other than transport
costs, gesoline costs, per capita income, and the percentage of populetion in
their 20's explain why fcreign cars are more predominant .in New Jersey or
California than they are in Michigan or Indiana.

Toder's third approach is by far the most ianovative. Although
computationally compléx, the intuition behind this methodology--termed a
hedonic market share model-- is straightforward.

The model requires only one year's data on sales, list prices and
characteristics of automobiles. Let {ai } be the set of marginal rates of
substitution between N characteristics and price. Toder et. &l. posit a log-
normal distribution of {ai } across consumers. Next, they estimate
coefficients,B , which form a vector of sufficient statistics for the
probability distribution of the a's. Let S be the vector of actual shares of
auto sales by model. They next choose B to meximize the likelihood of
observing S. Iﬁ brief, the technique selects statistics describing a
distribution of consumer's utility functions that reproduce as nearly as
possible the actual market shares observed.

Toder et. al. then apply the estimated taste distribution to a new set of
available models (differing from the old set by price) to generate a new market
share distribution. In this sense, the model simulates the relevant
elasticities. Unlike the previous two approaches, the hedonic market share
model can, in principle, predict market share elasticities for any subset of

models. In practice only a elasticity of substitution in demand between all

foreign and all domestic cars is estimated. This yielded coefficients of -2.3



and -2.1 depending on the price increase simulated.
There are at least three major problems with this epproach--the first two

of which are related.

1. The model is computationally qgite difficult. Toder uses five
characteristic variebles to estimate the taste distribution. Calculating the
meximum likelihood estimates for B requires & fifth-order numerical integration
£etween each iteration of the likelihood function maximization. The cost of
such computational techniques is often prohibitive. Also, some experts at
numerical analysis question the accuracy of such a high order integration of a
complicated distribution function.

2. More importantly, this technique does not yield sténdard errors. For
policy analysis, point estimates without standard errors are of limited use.
Without the standard errors, it is impossible to know whether and how well the
data fit the model.

3. The results of this technique hinge critically on the choice of the
distribution function of tastes. Toder et. al. used a log-normal distribution.
The choice of the distribution function is completely arbitrary yet possibly
key to the results. While all non-robust estimation methods are subject to
this critique, the problem is compounded here by the lack of standard errors of
the estimates. Without the standard errors, it is especially difficult to

ascertain whether the distribution function of tastes chosen fits the model.

Bresnahan (1981) also models the demand for automobiles. Using
sophisticated econometric techniques, he accounts for product differentiation

and avoids the pitfalls of time-series analysis. His goal, though, is more



ambitious than just & model of automobile demand, as he focuses on the issue of
departures from marginal cost pricing in the sutomobile industry. Because he
looks at a broader range of issues than just the demand side of the model, his
results are not disaggregated enough to analyze the questions posed in the
introduction of this paper. While he does not estimate elasticities, per se,
estimated paremeters cén be manipulatéd to give an industry demend elasticity
(a proportionete change of all prices) of .25 and an elasticity for the average
broduct (one price changes and all others are constant) of 3.2. Bresnahan is
very forthright about the quite restrictive assumptions that he requires on the
demand side of his model. The most serious of these is the assumption that the
density of consumer tastes is uniform (as opposed to Toder's log-normal
assumption.) Bresnahan's methodology also is computationally complex and, like
Toder's hedonic market-share model, it does not yieid estimgtes of standard
errors. Bresnahan, though, approximates the variances of parameter estimates
in four ways. Although variances depend on the approximation used, this does
give some feel for how well the data fit the model. In short, Bresnahan's
method is carefully developed, but it is not suitable for addressing the types
of issues raised in the introduction of this paper.

Finally, there are & number of studies of automobile demand that
investigate the question of whether or not a car is purcha;ed at all, and if
so, how many are purchased. These studies are fa%;ly common in mode-of-
transportation studies. Methods used range from simple logit to multinomial
logit to multinomial probit. A quite technically sophisticated examplé of this
approach is found in Train (1986).® These studies ask a set of questions that
are for the most part only tangentially related to questions about the demand
effect of taxes on differentiated products. As such, their results are not

very useful to the issues with which I am concerned.*
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ITI. fethodologv.

In this section, I explain my approach to the estimetion of deménd for
differentiated products. I do this in two steps. In step 1, I derive a demand
function that I wish to estimate. I avoid many of the pitfalls of previous
epproaches by relying on results from ﬁancasterian consumer theory. In step 2,
I explain how the insights offered by Lancasterian consumer theory are
eﬁpirically implemented.

Step 1: I avoid the problems associated with time-series analysis by
using only three years of data--1983 to 1985.° Three years of time-series
data, though, leaves few degrees of freedom. I introduce the much needed
additional price quantity variation by using a cross section of (the same) 100
models of automobiles for each year. The data, then are a time-series cross
section, or panel, consisting of 300 observationms.*

While using panel dats instead of only time-series introduces additional
price-quantity variation, it also poses some problems. It may be wrong to
regress quantity on price since, across observations, the good is not the same.
I address these problems using results from the Characterxristics Approach to
product differentiation.

In the Lancasterian model of product differentiation, & good is
represented by its bundle of characteristics. Different models of the good
contain different bundles of these characteristics. VWith this view of product
differentiation, as tastes vary across consumers, demands for a model, given
its price, will vary with the model's characteristics bundle. Because products

are identified by their bundle of characteristics, it is appropriate to control

for the cross sectional variation in models by including in the demand function

10



those characteristics which differentiate mocels.?’
Lancaster hence posits that the quantity cemanded of a model depends on
its own price end characteristics and on the trice and cheracteristics of

competing models. In log-linear form, this i=plies:

InQ,, =«

D . 1
it 0 + alln Pit + azln Pjt + 65X, +T'X

it it

where: Q is the quentity demanded of model i in year t.

it
. Pit is the price of model i in year t.

ﬁjt is the vector of prices of substitutes to & model with sales Qit'

Xit is & characteristics vector of model i in year t.

th is & characteristics vector of mcdel j in year t.
I posit that the above model may be subject to country-of-origin specific
errors, and hence use a fixed effects model. Allowing also for time dependent
shifts of demand gives:

— D '
1n Qit g + alln Pit + azln Pjt + B Xit 4

1]
+ GSSWEDEi+ ag Tt (14)

+ r'xjt+ @, JAPAN, + a GERMAN_ +
where: JAPANi = 1 if model i is Japanese.

GERMANi = 1 if model i is Germean.

SWEDEi = 1 if model i is Swedish.

Tt is a time dummy for year t.
-Equation (1lA) is consistent with a Lancasterian approach to consumer demand for
autos.

Somewh;t surprisingly, Lancaster's work does not discuss the hedonic price

literature. This literature posits that the price of a good is a linear
combination of thte implicit prices of the attributes of the good. Thus in

equation (14), X,, would be highly collinear with P, . An analogous

it
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~ relationship holds for X . and P;z; According to the hedonic approach, the
price of a good already contains information ebout the qualities of the good.
Hence, estimating (14) merely introduces severe multicollinearity. Instead,
the hedonic hypothesis argues in favor of estimating the following demand

function.

= P : \ !
1n Qit @, + azln Pit + azln Pjt + aBJAPAI\i + cAGERMANi + aSSWEDEi + “6Tt (1B)

I econcmetrically consider equations (1A) ead (1B). In both, I assume the
consumer takes as given all independent variaSles.

The functional form of the demand function should follow from the density of
consumers over characteristics space. Formally, demand for a model is given by
integrating the density of consumers over the neighborhood of the model.

Making the link between distribution of consurers to functional form of demand
is a difficult quéstion that I do not address. Rather, I consider equations
(1A) and (1B) as convenient statistical approximations of demand.

In standard consumer theory, with 100 models, 99 models could serve as
subétitutes for model i, and thus 99 prices would appear in §jt. This would
imply 9900 cross price terms to be estimated in the standard demand system.
This is not feasible with only 3 years of data. Again, I rely on the theory of
product differentiation to, in effect, place many zero restrictions on the
vector az.

The earliest work on product differentiatiocn by Hotelling (1929) arranged

products along & line. In Figure 1, model B competes for customers with models

A and C, but not with any other models.

- Figure 1.
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Here, models A and C are termed "néighbors" of model B, whereas the other
models (D, E, etc.) were not. Were there 100 models arranged along the
spectrum, this set-up would imply 97 zeroc restrictions on the vector T, for
good B. Only the price of B and the prices of its neighbors, A and C, would
‘enter the demand function for B.

Lancaster extends the Hotelling model to allow products to differ across
more than one dimension. Lancaster posits the:t’each good is a bundle of
severel characteristics. In this case, if there are n products, each product
may have up to n-1 neighbors and all have at least one neighbor.® I rely on
the Lancasterian approach to product differentiation to endogenously determine
which products compete with each other for consumers. This, in turn, allows me
to place zero restrictions omn @, in & utility-consistent manner.

Step 2: Empirically determining the neighbors for each product is
complicated by the fact that while characteristics of the goods are observed,
individual consumer tastes over these characteristics are not. I adopt an
approach to this problem that is based in part on a methodology developed by
Feenstra (1986).°%,1°

The first task in eny Lancasterian model is to define the metric in
characteristics space that is to be used to determine how far apart any two
products are. To.this end, let x = (xl, Xps oo xn) >0 ge a vector of
physical characteristics which differ across models and X" be the
n-dimensional space in which products are differentiated. Let
6 = (el, 92, e en) represent the vector of taste parameters for a particular
individual.

I assume that all individuals have the same form of utility function,

namely CES, but that individuals differ in their vector of tastes ©. Then, an
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individual's utility is given by:21?

n 5
U(x,6) =iél eixi (2)

The parameter & is related to the elasticity cf substitution between

characteristics, o. i.e.

The twin constraints of utility increasing in x and concavity of utility in x
imply o g (0, -1). This range of ¢ is perhaps overly restrictive for the case
of substitutability of auto characteristics. In order to permit

o e (0, -=), I take & Box-Cox transformation of (2). This yields:

n

= ~ 6
U(x,8) —igleixi
~ 8 )
where X, = (xi - 1)/6 , 0 not equal to § < 1.
end  %,° = In x, if § = 0.
i i

As I will be working with the case of less then perfect substitutability
between characteristics, I will, for notational simplicity, henceforth use the

(still CES) utility function:

U(x,6) =i§19i (x2 - 1) /8 (3)
The price of a model depends upon its characteristics. I specify the
functional form for P(x). In particular,
P(x) = exp(a + B'x) (4)
where o« > 0 and B=(B1 s B2 s  ees Bn) > 0 are parameters.
Denoting the homogeneous numeraire good by N and exogenous income by Y,
the consumers problem is to:

Max U(x,6) + N
x,N (5)

subject to P(x) + N £ Y.

14



The additively separable form of tﬁe utility function in (5) and the lin;arity
“in N implies that the optimal choice of auto characteristics is independent of
income. The first order conditions for (5) imply:
6.x; = =B, exp(B'x + a) _ (6>
) *

at an optimum X .

Equation (6) can be solved for the unobservable taste paremeters in terms
of observables. As in Feenstra (1986), it proves to be very useful to do so.
I find:

6, = (xf)l-s

= G B, exp(B'x + @) 7

% *

I next define a surplus function S(x,x ) = U(x,x ) - p(x). This function
gives the surplus associated with a model having characteristics vector x if
the consumer's optimal choice is described by x*. Simple substitution gives:

B

* '* i *1'5 5 1‘
S(x,x ) = exp(B'x +4a) L [-g--] (xi) (xi -1) - exp(B'x + a)(8B)

It is easy to verify that S is maximized when x = x*. This surplus function
will serve as the metric for measuring distance in characteristics space.
Having defined the metric, I turn now to the task of using this metric to
determine which pfoducts compete with one another. (i.e. which are neighbors)
While there are many models of automobiles, and hence many available bundles of
characteristics, there is not a continuum of products available on the market.
Thus, a consumer may find that her optimal model, x*, does not exist in the
market. In this case, the consumer receives less surplus than she would if x*
had been availeble. In Figure 2, I illustrate an iso-surplus contour for a
typical consumer for the case of 2 characteristics. In the figure, S(x,x*) is

constant along any contour and S(x,x') decreases as one moves away from x*.

Thus, the consumer whose optimal characteristics bundle is x* is indifferent

15



between point A which entails slightly more horsepower and less weight and
point B which gives reletively much more horsepower and & heavier auto.

Two models A and B would be neighbors if there is any cocnsumer who is
indifferent between A and B who prefers these two to all other models.
Grephically, in Figure 2, A and B would not be neighbors-if there existed a
model such as C.

Different consumers may havé different idezl models. Because of this,

‘there are many iso-surplus contours that will pass through any two models.

*
In Figure 3, individual 1 hes an optimal choice of x., and A and B lie on the

1’

same iso-surplus contour--S.. Another consumer, individual 2, has an bptimal

1

*
choice of X, - For this consumer, A and B also lie on the same iso-surplus

contour (Sz). The analogous story applies to consumer 3 whose optimel choice
. .

is X3

An ideal elgorithm for determining neighbors would proceed in steps. For
every possible pair of models in the sample, one would conduct a detailed grid
search in characteristics space. At every point in the grid search, ome would
pose the following question. Is the consumer whose ideal model is this point
in characteristics space indifferent to the 2 potential neighbors. If the
answer is no, move on to the next point on the grid and repeat the question.
ff the answer is yes, ask if any of the other 98 models in the sample give
higher surplus than the pair being considered. If the answer here is no, the
pair of potential neighbors are indeed neighbors.

This algorithm will determine which multi-dimensionally differentiated
products are neighbors. Unfortunately, the algorithm is computationally

infeasible for the case of automobiles. This is because I find that at least 5

characteristics are necessary to adequately account for differentiation between
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autos. The algorithm described above, then, would require very many
S5-dimensicnal grid searches entailing many calculations at each point in each
search. This is too expensive on & mainframe copputer and too time consuming
on en advenced personal computer.

I refire the sbove definition of neighbors. (Two models were neighbors if
there existed a consumer indifferent between them end who preferred them to all
other available models.) Amending this definition allows me to derive a
‘computationally feasible method for determining neighbors to each model in my
sample. I teke the smallest iso-surplus contour containing the potential
neighbors as the basis for ccmparison. In Figure 3, this is §,-- the surplus
that consucmer 1 obtains. This is akin to saying that it is the preferences of
the consurer whose optimal bundle is most similar to the potential neighbors
that, on the margin, matter. In diagram 3, then, when I ask if A and B are
neighbors, I use the preferences of consumer 1 and then look for a point such
as C that lies within §,. If a point such as C exists, A and B are not
neighbors. This method is economically sound if it will always be the case
that if ccasumer 1 has & model preferred to A and B, so will all other
consumers. There exist examples in which this will not be true, and this issue
will be discussed in detail. First, though, it is convenient to state a

working definition of "neighbors."

Definition: Models A and B are considered neighbors if, for the smallest

iso-surplus contour containing both of them:

S(xa,x‘) [=S(xb,x')] > S(xc,x‘) for all models c.

17
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Figure 2

Figure 3.
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This is, I believe, an economically intuitive and computationally
straightforward definition of neighbors. It is not a perfect definition for at
least two reasons. I discuss each in turﬁ.

The first problem with the definition of neighbors concerns identifying
the x* which defines the highest surplus associaked with indifference between
models A and B. Recall that x* is & consumer's optimal éhoice of ’
characteristics and as such is not observed. I posit that x* is the midpoint
pf a line drawn between two potential neighbors, A and B, where the surplus
function provides the metric. Since a model is represented by a vector of its
characteristics, I find x* by varying Q from O to 1 until x* = Qx, + (1-Q)x,
and S(x,,x") = S(x,,x"). If iso-surplus contours were proper ellipsoids, the
x* defined in the above linear fashion would indeed identify the smallest iso-
surplus contour containing A and B. Insofar as the iso-sﬁrplus contours
defined by (8) are not proper ellipses, defining x* as the mid-surplus point on
the line between points A and B may not 'yield the smallest contour containing A
and B.

There are two possible responses to this critique. First, the iso-surplus
contours defined by (8) are, in fact, not too different from ellipses for the
case of automobiles. Iso-surplus contours derived from data are drawn in
weight-horsepower space in figure 4., Due to the symmetry-of (8), contours are
similarly shaped in the space of any two characteristics. Second, if x*' was
poorly defined by drawing a line between A and B, one would expect the method
to yield nonsensical sets of neighbors. I show in the next section that this
is not the case.?

A second problem is that this definition of neighbors which uses the
smallest iso-surplus contour as the basis for comparison may falsely reject

potential neighbors. This is demonstrated in Figure 5.
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Figure 5

Suppose there are only 3 models, A, B, and C. My defimition of neighbors
rulesAout A end B as potential neighbors, since the iso-surplus contour drawn
is the smallest containing A and B and C is preferred to A and B. Yet for a
consumer whose optimum is x*', A and B are neighbors. My method for
determining neighbors, though, will never account for the preferences of a

consumer with an optimal choice of x*' in Figure 5. Because I find the optimum
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bundle by drawing a line between 2 models, and do so for all pairs in the
sample, I will never account for the preferences of & consumer whose optimum
bundle lies outside the outermost envelope of availeble models. The
preferences of these consumerg are ignored. In figure 5, this envelope is
defined by the triangle ABC-- an area which does not include q*'.

For the automobile market, this problem is not likely to be an empirically
importent one. This is because, in & market with as many models as the auto
‘market, it is unlikely that there are very many consumers whose ideal lies
outside this outer envelope. Were this the case, one would expect such
profitable.market niches to be readily filled.

The algorithm for finding neighbors, then, is as follows.

Step 1: Find x* such that S(x,,x*) = S(x,,x"') using the above described
linear method.

Step 2: See if there exists a model j not equel to 1,2 such that
S(x,,x") < 8(x;,x"). Models 1 and 2 are neighbors if no such j exists in the
sample.

Step 3: Repeat the gbove two steps for all possible pairs in the sample.
This elgorithm ensures that if 1 is & neighbor of 2, then 2 is a neighbor of 1.
If 3 is a neighbor to 2, though, it need not be a neighbor to (2's neighbor) 1.
The number of neighbors & model has depends on its characteristics and the
characteristics of the other models in the sample. The actual number of
. neighbors for each model is endogenous and will differ across models.

This procedure yields the neighbor(s) to every model in the sample. I use
these neighbors as the elements of 11’:,t in the demend equation (1). Conversely,

models which are not neighbors are assumed to have no cross price effect in

(1).
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This concludes the description of the methodology. In this section, I
have explaiAed how I use results from a Lancesterian model of product
differentiation to derive an estimzble demand function. The resulting demand
function circumvents many of the myriad problems that plagued earlier attempts

to estimate the demand for differentiated products--specifically automobiles.

1V. Data end Results.

The data set comprises almost all automobile models which were sold in
celender years 1983 - 1985. Specialty models with annual sales of under 4000
were excluded (e.g. Ferrari and Rolls Royce). Models which were not produced
for all of each of the three years were also deleted. This allows me to avoid
the problems that would be posed by a model which is introduced in October and
hence haes very low annual sales for the calender (as opposed to model) year. A .
similer, though less severe, problem would exist for models'withdrawn after
October. Models included in the sample are given in Table 1. Each model/year
cbservation consists of the following variables.

1) 'Sales by Nameplate

2) Suggested retail list price for the base model
3) Wheelbase of the base model
"

4) Length "

5) Width " "

6) Height " "

7) Weight " " :

8) Headroom " "

9) Legroom
10) Number of engine cylinders of the base model.
11) Engine displacement " "
12) Fuel injection or carburation
13) Manual or automatic transmission
14) Power or manual steering
15) Power or manual brakes " "
16) Air conditioning as standard on the base model.
17) Horsepower (HP) of the base model
18) Turning radius " "

19) Country of origin.

1" 11
" "
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All data were collected from issuaé of Autcootive News' annual Market Data Book
Issue.

Some variables of economic significance are absent from the above list.

In partiecular, I lack data on the'incoﬁes of consumers and on the actual
transaction price. I use the suggested list price of the base model for P, .13
This introduces systematic bias in so-far &s some models consistently sell for
more or less than list price. For scme Jepanese models, this may have been the
case in my sample.?*

I compute neighbors for the 1984 models. I assume that product
characteristics do not change so much that neighbors change over the sample
period. I will relax and test this assumption in future work. Indeed,
computing neighbors for each year provides an alternative test of Feenstra's
(1985) upgrading results. Here, differential upgrading would take the form of
changing neighborﬁoods over time.

I begin by estimating the hedonic price equation P(x). Like most
researchers before me?5, I find that the functional form of P(x) which best
fits the data is:1¢

P(x) = exp (a + B'x) (4)
I find that a linear combination of the following five characteristics accounts
for almost 90 percent of the variation of P(x)--weight, horsepower,and dummies
for power steering, air conditioning, and foreign. Dummy variables take the
value of 2 if & car is foreign, and if air and power steering are standard and

a value of 1 otherwise. This differs from the usual 1-0 convention because

23



Table 1

Models Used in the Searcple

Toyota Tercel American Motors Aliiance Chevrolet Camaro

Corolla Eagle . Celebrity
Celica Plymoth Horizon Corvette
Camry Turismo MonteCearlo
Cressida Reliant Chevrolet
Supra Plymoth GF Oldsmobile Firenza
Nissan Sentra LeBaron Cutlass/Cie
Maxima NewYorker/3thA Cutless/Sup
300zx Dodge Omni 01ds88
2008X Charger ) 0l1ds98
Stanza Aries Toxronado
Pulsar Dodge600 Pontiac 1000
Honde Accord Diplomat Sunbird
Civiecl.5S Ford EXP Firebird
Mazda 626 Escort 6000
RX-7 Mustang Bonneville
GLC T-bird GrandPrix
Suburu DL/GL LTD Volkswagon Rabbit
Chry/Ply Colt CrownVict. .
Volvo DL Mercury Lynx
760 GLE Cougar/XR7
VW Jetta Capri
Quantum Marquis
BMW 320/318 GrandMarqui
530/528 Continental
733 MarkVii
Mercedes 300D Lincoln
300SD Buick Skyhawk
190E Skylark
Audi 5000 Century
4000 Regal
Mitsubishi Tredia LeSabre :
Cordia Electra
Starion Riviera
Saab 900 S Cadillac Cimarron
900 Turbo Seville
Porsche 944 Cadillac DV
911 ElDorado
Isuzu I-mark Chevrolet Chevette
Impulse Cavalier
Peugeot 505 Citation
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some dummies are raised to negative powers. The only effect of this change is
to alter the constant term in the hedonic regression. Numerical experiments
show that this has no effect on the determinetion of neighbors. I estimate the

log of equation (4) to give:

In P = .215 + .209 Weight + .0045 HP + .1261 PS + .4703 Air + .161 Foreign (9)
(.123) (.056) (.0009) (.0525 (.050) (.044)

stendard errors are in parentheses.
100 cbservations. R? = ,885

It is useful to view dummy variebles here &s proxies for various degrees of
luxury and/or quality. Hence an optimal choice of characteristics, x*, may
invelve .5 units of air conditioning. This jtst means that the consumer would
prefer less luxury than is imposed by the all or nothing c¢hoice of air
conditioning but more than is afforded by a no-air model. The coefficients in
(9) are used to parameterize the surplus function of equation (8). VWhile the
coefficients are subject to measurement error, their very small standard errors
argue that neglecting this error is unlikely to be an empirically relevant
omission.

The only remaining unknown in the surplus function is the parameter & which
is related to the degree of concavity of the utility function. Recall that the
elasticity of substitution, o = 1/ (§-1). This parameter is not identifiable
with the data available. TFollowing Feenstra (1986), I posit many different

.values for 6§ and replicate the entire methodology from the beginning for each
of these. I find that the choice of § over & wide range of plausible values
does not affect the qualitative results. I consider values of

6 = .5, -1, -3, -6, and -8. Only at values of -8 and below do results change

substantially. That is, the choice of neighbors is mostly unaffected until
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6= -8. At -8, neighbors become much more numerous and, to & degree, counter-
intuitive.

Once & has been specified, I compute neighbors for every model using the
1984 deta.!? The results for 6= -3 are given.in Table ?. Teble 2, for
example, tells us that the neighbors of the Honda Accord, model 13, are the
Toyota Camry, Nissan Stanza, Mazda 626; Mitsubishi Tredia and Cordia, Chevrolet
Cavalier, and Pontiac Sunbird. An intuitive way of interpreting Table 2 is to
ﬁote that it answers the question: What other autos did the consumer consider
before she decided to purchase the one actuelly selected?

In addition to varying &, another type of sensitivity test was conducted in
calculating neighbors. Because iso-surplus contours are not perfect ellipses,
the linear method of finding the optimal model x* is, as noted above, only an
approximation. I wused another approximation and re;tested for neighbors. This
other approximation was based on finding x* such that consumers whose ideal
models were A and B were equally dissatisfied with x*. This approximation
yielded the same qualitative results as the linear approximation of x*.

The next step in the methodology is to estimate the demand functions given in
(1A) and (1B). Models have, on average, about 6 neighbors. With 100 models,
this implies 600 cross price terms to be estimated. While this is certainly an
improvement over the previous 9900 terms, the demand funcégons are still not
accurately estimable with only 300 observatioms. I take the mean price of
neighbors as the observation for P,‘. Similarly, I take the mean
characteristics of neighbors as the observation for X; . Because the demand
functions use the log of P,., it matters that the average of the logs is not

the log of the averages. Numerical experiments show that this approximation

does not affect results. There are other specifications for P,,. Recall that
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Table 2

Neighbors when &

Model Name

Toyvota Tercel
Corclla
Celicea
Camry
Cressida
Supra

Nissan Sentra

Maxima
300zx
200X
Stanza
Pulsar

Honda Accord
Civicl.5S

Mazda 626
RX-7
GLC

Suburu DL/GL

Chry/Ply Colt

Volvo DL
760 GLE

VW Jette

Quantum

BMW 320/318

530/528
733
Mercedes 300D
300SD
190E

Audi 5000

4000

Mitsub Tredia

Cordia
Starion
Saab 900 S
900 Turbo
Porsche 944
911

Isuzu I-mark
Impulse

Peugeot 505

Alliance

Eagle

Horizon

Turismo

Number
of
Neighbors

FPULOUTNDNYIUNEPELELVLEATLULMOADLNNUVOULIFEAUUARFROWLOIYFHFVHRHULOULICoOWWHRWEOEDNDO

—
o
MONMDMYWPORYIRPFOWLO

[y

o N NN s
ANWWOOOLOAKWVWOOONDN

20

-3.

Model Numbers of
Neighbors

18
39
10
11
21

17
29
26
11
10
11
15

13
10
12
12
17
16
25
18
15
20
21
28
25
27
35
35
11
15
32
20
24
34

26
22
24
20
80
59
50

15
1¢
12
37
37
19
36
38
16
12
17
32

23
20

1
17

1
24
27
39
31
31
27
38
28
74

40
12
33
39
36
29
37
21
85
33
30
40

76
94
46

42

45
15
67

100

20
31
18
33

32
34
18

1

30
37
55
40
35
92
68
74
77

23
81

54
30

36
55
41
43
87

53

L4

45

24
53
22
81

57

19
22

34
61
76
40
85

75
78

24

95

60

76
59

99

80

52

31
23
69

56
51

35
100

76

79

76

62

83

81

41

31

81

100
61

41

92

98

82

53

100

82

94

54

93

88

62 98



L6 Reliant

47 Plymoth GF

48 LeBaron

49 NewYorker/5thA

20 34 49 54 73 91 92
10 53 70 76 84
47 60 73 75 92

50 Omni 44 1 51
51 Charger 18 50
2 Aries 4 46 53 82

53 Dodge600
54 Diplomat

10 11 45 48 52 70
20 34 47 58 73 91 92

55 EXP 222 3% 61 95

56 Escort 17 18 22 61 80

57 Mustang 15 ‘63 70 71 82

58 T-bird 20 34 54 62 92 98
59 LTD 41 43 64

60 CrownVict. 34 49 65 67 75 92
61 Lynx 17 18 22 55 56 80 94
62 Cougar/XR7 20 34 58 92

63 Capri 3 57 71

64 Marquis 59 76 83

65 GrandMarqui 60 67 75

66 Continental
67 MarkVii
68 Lincoln
69 Skyhawk
70 Skylark

26 66 78 85
15 32 81 88 -95
48 53 57 71 82 B84

71 Century 57 63 70 84 89

72 Regal 41 76 86 98

73 LeSabre 47 49 91

74 Electra 27 28 77 79 93

75 Riviera 27 49 65 92 93

76 Cimarron 1 23 24 31 40 43 48 83 92 96 97 98

28 66 74 78 79

28 68 77

27 28 66 67 74 77 93
42 56 61 1 94

77 Seville

78 Cadillac DV
79 ElDorado

80 Chevette

81 Cavalier 4 13 15 32 69 82
82 Citation 4 15 52 57 70 81
83 . Camaro 41 64 76 96 98 .

48 70 71 76 89
26 38 68

20 41 72 76 90
43 91 92 99

15 69 70 ©°5

71 84 97

41 43 76 86 99

84 Celebrity
85 Corvette

86 MonteCarlo
87 Chevrolet
88 Firenza

89 Cutlass/Cie
90 Cutlass/Sup

91 01ds88 54 73 87 92

92 01ds98 25 27 49 54 58 60 75 76
93 Toronado 27 74 75 79

94 1000 18 44 61 80 1

95 Sunbird

96 Firebird
97 6000

98 Bonneville
99 © GrandPrix
100 Rabbit

15 32 55 69 88

76 83 97

76 89 96

20 41 58 72 76 83
41 43 87 90

nHpPooLVLLLULLLLPOOOPPULLLAEUVMVNLULLUUGOOOULINLULUFLK ULLULWLAPAEULAAULIEAEPRFPFLLLOEIYIOLOAULIMEYTAAPRFDDLLULLULLYW

28



the estimated demand equation is just a convezient statistical representation.
Perheps P,, should be the averege price of neighbors weighted by their sales.

This representation of P,  yields the same quzlitative results, but standard

errors on the parameters in the demand functizn are larger.

I estimate (1A) and (1B) using OLS. Beczuse (1B) is nested within (14), a
straightforward F-test is used to tesg which specification should be used.
That is, I test to see if own and neighbor's cean characteristics are jointly
gtatistically significant.®,1® For all velues of § tested, the data cannot
reject the hypothesis that own and neighbors' characteristics are jointly
insignificant.

The existence of multicollinearity in (14) is confirmed by collinearity
diagnostics following the approach of Belsley, Kuh, and Welsch (1980).
Singular Value Decomposition analysis indicates multicollingarity. The SVD
analysis does not indicate that the data matrix jis so ill-conditioned as to
suggest numerical error in the estimates. Due to the multicollinearily in
(1A), estimated standard errors are inflated. This biases the F-test toward
rejecting joint statistical significance of own and neighbors' mean
characteristics. I nonetheless accept the results of the F-tests and use (1B)
as the demand function in the analysis that follows. Table 7 in the Appendix
presents the results of instead using (1A). As the collinearity diagnostics
indicated, results are very similar to those obteained using (1B) (and given in
Table 4), except that standard errors are inflated. ‘

OLS estimates of (1B) are presented in Table 3. In Table 3, equation 3.1
presents estimates of the demand function excluding any cross price effects.
This equation is roughly a panel data version of the older time-series studies
which neglected cross-price effects. Equation 3.1 gives a highly significant

total market elasticity of demand of -.794. This estimate is in line with
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existing, older estimates. Equation 3.1, though, is misspecified, as cross-
price effects are omitted. ‘ L _

Equations 3.2 to 3.6 in Table 3 give estimetes when the demand function
includes the price of neighbors, hence allowing for the possibility of
substitution. Varying 6§ from .5 to -6 affects the significance of the
rerameters on own and neighbor's price.but the point estimates are fairly
constant. (Recall thet the choice of § only eaters the demand function via its
eéffect on the determination of the set of neighbors.) For 6 = .5, -1, -3 eand
-6, the coefficient on neighbor's price is highly significant. For these
velues of &, the coefficient o% own price is somewhat stagble across equations
and is highly significant.

For values of § between -1 and -6, the totel market elasticity (a, + «,)
varies from -.81 to -.83 --all of which are statistically significant at the
90% level. As theory would lead one to expect, allowing for substitutability
leads to a more elastic own price elasticity. This is evidenced by own price
elasticities (a,) greater in absolute value then the coefficient of -.794 in
equation 3.1,

In sum, the "neighbors" approach to restricting the dimensionality of the
demand function in conjunction with a short penel of data seems to fit the data
remarkably well. I have completed some sensitivity analyéés in the spirit of
Leamer (1985). These ad hoc specification tests include using other hedonic
characteristics to control for cross sectional variation. The results have

been exceptionally robust to such tests.

30



Table 3

Estimated Demand Fuactions
tandard Errors in Perentheses

Variable Definitions:

LOGSALE -
LOGLIST --
LOGPN --
D84 --
D85 --
SWEDE --
JAPAN --
GERMAN --
Dependent Veriable
Eqn. (3.1)
CONSTANT 6.085
(.278)
LOGLIST -.7942
(.119)
LOGPN
D84 .114
(.116)
D85 .1672
(.117)
SWEDE -1.321
(.253)
JAPAN -.554
(.117)
GERMAN -1.01
(.117)
R2 .3954

Log of sales in 1000's.

Log of the list price in $1000's .
Log‘cof the average price of the neighbors in $000.

1 if the
if the
if the
if the
if the

e

is LOGSALE

(3.2)
§=.5

5.814
(.276)

-1.814
(.254)

1.112
(.246)

.111
(.113)

.161 -
(.113)

-1.350
(.245)

.607
.113)

~

.615
.183)

)

.4349

year is 1985 ,
car is Swedish, 0 otherwise.
car is Japanese, 0 otherwise.
car is German, O ctherwise.

(3.3)
§= -1.0

6.087
(.277)

-1.333
(.319)

.522
(.287)

.118
(.116)

.173
(.116)

-1.316
(.252)

-.570
(.116)

-.843
(.189)

.4022

31

vear is 1984 , 0 ctherwise.

0 ctheruise.

(3.4)
&= =3.0

6.041
(.270)

-2.076
(.313)

1.250
(.284)

.122
(.113)

.178
(.113)

-1.228
(.246)

-.578
(.113)

-.537
(.193)

.4330

(3.5)
6= -6.0

6.004
© (.267)

-2.271
(.311)

1.444
(.282)

.120
(.112)

.179
(.112)

-1.181
(.244)

-.594
.112)

~~

- 424
(.196)

4450

(3.6)
é= -8.0

5.772
(.411)

-.912
(.165)

.237
(.229)

.108
(.116)

. 155
(.117)

-1.302
(.254)

-.529
(.119)

-.928
(.183)

.3976



VY. On the Empirics of Taxation Schemes for Differentisted Products.

The methodology by which the demand functicas in Table 3 were derived was

bzsed on Lencasterian consumer theory. That theéry tells us that not all
differentieted products need bé substitutes. It also tells us to group
products according to their characteristics and not only; as the Armington
Assuzmption implies, according to their country of origin.2°® The elasticities
thet are estimated in the equations of Table 3, then, are the relevant ones
from the vantage point of consumer theory.

Trade policy, though, typically taxes a good based on its country of origin.
The analysis of trade policy issues requires trade elasticities. 1I derive
these elasticities from the estimates of the demand system provided in Sections
ITI and . IV. This is accomplished by perturbing the systeé on whatever margin
trade policy operétes to simulate the elasticity relevant té the study of trade
texes. This approach is more likely to give valid elasticities than direct
estimetion of import demend equations (see, for exezple Leamer and Stern),
because it is based on a utility-consistent framework for demand.

Suppose, for example, that policy makers wish to know how the demand for
domestic autos changes when a tariff is applied to gll auto imports.

To derive this elasticity, I increase the price of ell foreign cars by one
percent--my proxy for a small change. This increase; the demand for models of
domestic autos which have as neighbors some foreign model. Summing the new
demand for all domestic autos gives the information needed to construct the
relevant elasticity.

This approach requires a caveat. I have nothing to say about the effect of

large taxes. This is because the estimated demand system is only a local

representation of demand. The system may behave quite differently at a point
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far from the initial situetion. This is a stendard warning in the empirical
tax enelysis literature. Also, here, large texes may change the neighbors of a
model. I assume that the taxes I consider are smell enough that neighbors do
not change. Preliminery numgrical experiments indicate that this is indeed the
case for the one percent price changes I consider.

In Teble 4, I give a wide variety gf elasticities corresponding to various
policy scenarios. For each elasticity, I also give its standard error. This
étatistic is computabie given the variance-covariance matrix of the estimates
of the initial demand equation. These elasticities all are simulated using the
demand equation (3.4). That is, & from the utility function is set to -3. I
take this as a central case for expositional purposes. Appendix A presents the
same elasticities when the entire methodology is conducted using other values
of 6. That appendix shows that results remain qualitatively similar for a
range of &'s.

Table 4 is easily interpreted. The table shows, for example, that the
elasticity of demand for domestically produced automobiles with respect to the
price of Japanese autos is .187. That is, a one percent increase in the price
of all Japanese cars (via a tariff perhaps) yields a .187 percent increase in
demand for domestically produced autos. Were such a price increase applied to
all imported autos, demand for domestically produced autos would rise instead
by .367 percent. This example illustrates an error present in earlier studies
-of U.S. - Japanese auto trade policy. These studies used an imputed elasticity
of demand for domestic autos with respect to a foreign price change. This is
because there were no estimates available of elasticities of domestic demand

with respect to a change in only the Japanese price. Table &4 tells us
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Table &4

Elesticities of Demand uvsing Eq. 1B
. 8 =-3

tandard errors in parentheses.

QUANTITY CHANGE

) Domeséic All Jepanese German
Autos Imports Izports Imports
All Domestic =-1.187 .225 .213 : .258
(.146) (.051) (.048) (.058)
All Foreign .367 -1.045 -1.030 -1.078
(.084) (.129) (.128) (.132)
Japanese .187 -.663 -1.43 .393
(.042) (.081) (.187) (.089)
German .112 -.279 .317 -1.717
(.025) (.036) (.072) (.240)
Swedish .024 -.064 .071 .247
(.005) (.011) (.016) (.056)
All Foreign .096 -.376 -.550 -.199
weighing (.021) (.046) (.067) (.025)
< 2300 1bs.
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Swedish
Imports

.076

(.017)

-.897
(.118)

.300
(.068)

.745
(.169)

-1.971
(.292)
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that this error leads one to believe that derznd for domestic autos is twice as
responsive to & small tariff on Japanese cers than is actually the case. The
difference arises due to substitution by American consumers zway ffom Jepanese
cers toward other foreign cars not affected by the trade policy.

Suppose that the purpose of trade or industrial policy in the U.S.
eutomobile industry is to increase deéand for domestically produced autos.
Table 4 shows that a tax cn all imports has less that half the effect on
aomestic demand than an egual subsidy on domestic models would have (.367 v.
-1.187). (Consequences for government revenue are, of comrse, quite'
different.) An increase in a tariff on Swedish autos has wvery little effect on
domestic demand. The relevant elasticity is .034. This is because mocst of the
neighbors to Swedish autos are also foreign.

Suppose that the purpose of trade taxes is to re&uce impgrts from a specific
country. Then Table &4 shows that a tax on only Swedish cars reduces Swedish
imports by relatively less than the same tariff on German autos. Swedish cars
are the most elastically demanded import, followed by Gexman models, then
Japanese models (-1.97 v. -1.71 v. -1.43). This is beczuse Japanese models
have many Japanese neighbors), while this is not the case for Swedish models.
Indeed, most neighbors to Swedish models are German. This is evidenced by the
relatively high cross price elasticities between German amd Swedish autos.

Perhaps contrary to prior beliefs, a tax on all imports would have rcughly
- the same relative impact on Japanese, German, and Swedish producers.

Scme economists have argued for a tax on &ll small foreign cars instead of a
tax on Japanese autos. Such a tax does not discriminate on the basis of
country of origin and is viewed more kindly by GATT. I arbitrarily define
small cars to be those weighing under 2300 pounds. (For purposes of

comparison, a Toyota Tercel weighs 1985 lbs., a Honda Accord 2187 lbs., and a
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Seab 900 2612 1bs.) While such a broadly based tax might meke a Trade
Representative's job more easy, the policy is only half (.096 v. .187) as
effective as is a direct tax on imports at increasing demand for domestically
produced gutos. 'Swedish producers are totally uneffected by such a tax since
no Swedish export to the U.S. weighs less than 2300 1lbs. (there is a reason
Volvos are so safe), and no Swedish ca; has & neighbor weighing less than 2300
1bs.

It is possible to investigate the effects of various other trade and
industrial policies using Table 4. The above scenarios provide only a
»beginning.

VI. Summary

This paper has developed a new methodology for investigating empirically the
effects of taxes on differentiated products. The abproach adopted a
Lancasterien, utility-consistent view of product differentiétion. Using this
approach, I calculated which multidimensionally differentiated products were
neighbors. This informaticn proved a useful basis for decreasing‘the
dimensionality of the demand estimation probleﬁ. Using a panel of 100
automobile models over 3 years, & demand function was estimated. This yielded
quite reasonable and statistically significant demand elasticities.

Recognizing that tax policy often acts on a different ﬁﬁrgin than consumer
theory, the demand elasticities necessary for tax policy analyses were
simulated. This provided the first estimated set of such elasticities. These
elasticities provide some insight into a number of possible policy scenarios.

The methodolggy developed in this paper provides ample opportunities for
Leamer-type ad-hoc specification tests. Many of these are presented in the
Appendiﬁ. Results appear robust.

The elasticities estimated and given in Table & are well suited to
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simulation analyses of strategic trade and industrial policies concerning the

U.S. automobile industry. This is the subject of ongoing research.
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APPENDIX A
Table 5

Elasticities of Demand using Eq. 1B
§ = -1

Standard errors in parentheses.

QUANTITY CHANGE

Domestic All Japanese German
Autos Imports Imports Imports
All Domestic =-.967 .112 <122 .100
(.154) (.062) (.067) (.055)
All Foreign  .162 -.918 -928 -.906
(.089) (.137) (.140) (.134)
Japanese .086 -.559 -1.080 .147
(.047) (.089) (.198) (.081)
German .042 -.259 ) .120 -1.173
(.023) (.037) (.066) (.241)
Swedish .015 -.078 ' .026 .101
(.008) (.011) (.014) (.056)
All Foreign .051 -.338 -.491 -.188
weighing (.028) (.052) (.076) (.028)

< 2300 1bs. .
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Swedish
Imports

.053

(.029)

-.859
(.124)

.108
(.059)

. 343
(.189)

-1.326
(.318)

0.0
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Table 6

Elasticities of Demand using Eq. 1B
8§ = -6

Standard errors in parentheses.

QUANTITY CHANGE

Domestic All Jagzanese German
Autos Imports Izports Imports
All Domestic =-1.247 .239 .231 .267
(.083) (.046) (.045) (.052)
All Foreign  .426 -1.060 -1.052 ©-1.088
’ (.145) (.125) (.125) (.128)
Japanese .226 -.709 -1.568 466
(.044) (.082) (.190) (.091)
German .124 -.243 .427 -1.849
(.024) (.035) (.083) (.236)
Swedish .026 -.074 .071 .269
(.005) (.010) (.014) (.052)
All Foreign . 119 -.390 -.581 -.189
weighing (.023) (.045) (.067) (.024)
< 2300 1bs.
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Swedish
Izports

. 100

(.019)

-.922
(.117)

.361
(.070)

.821
(.160)

~-2.144
(.288)

0.0
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Table 7

Elesticities of Demand using Eq. 14

Domestic
Autos

All Domestic ~-1.412

(.533)

All Foreign  .328
(.168)

‘Japanese .167

(.085)

German .100
(.056)

Swedish .021
(.011)

All Foreign .086
weighing (.044)
< 2300 1bs.

6§ = -3

Stendard errors in perentheses.

QUANTITY CHANGE

All
Imports

.201

(.103)

-1.285
(.580)

-.793
(-309)

-.358
(.195)

-.091
(.068)

-.462
(.206)

Japanese German
Ioports Imports
.191 .230
(.584) (.118)
-1.275 -1.314
(.098) (.569)
-1.636 .352
(.046) (.180)
. 284 -1.886
(.145) (.405)
. 064 .221
(.033) (.113)
-.672 -.250
(.293) (.124)
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Swedish
Imports

.067

(.034)

-1.152
(.633)

.268
(.137)

.666
(.342)

=2.113
(.385)

0.0



"Endnotes

1. See Dixit (1986) who &argues this point.
2. See, for example, Deaton and Muellbauer (2980).

3. ther simpler examples of this type of methodology are Johnson (1978) and
Cragg and Uhler (1970).

4. Demand for automobiles is the most prevelent example of modelling the
demand differentiaeted products. I am unawere of eny modelling approach for
other differentiated products that is not mentioned in this section of the paper.

[}

5. This is the most recent data available until April 1987.

6. Note that this differs from the usual panel in which goods are the same,
but demand is across consumers and over time. Here, the consumers are assumed
the same, but goods differ across models, and these models are tracked over
time.

7. Actually, it is sufficient to include in the regression those
characteristics of which a linear combination account for the product
differentiation.

8. This differs from the Dixit-Stiglitz approach to product differentiation.
There, all products are neighbors.

9. The approach I use to find neighbors when products are multidimensionally
differentiated benefitted greatly from discussions with Rob Feenstra. 1 am
very grateful for his many helpful suggestioms.

10. Recent theoretical work by Caplin and Nalebuff (1986) has also addressed
the issue of determining neighbors to a good when products are
multidimensionally differentiated. They show that if preferences can be
represented by a utility function that is Cobb-Douglas in product
characteristics and income, then there exists & straightforward way of finding
neighbors. Using the unit simplex in Cobb-Douglas parameter space, they show

. that a hyperplane divides all consumers who prefer good x to good y form those
who prefer y to x. Because set of consumers who prefer one model to enother
(i.e. the model's neighborhood) are defined by hyperplanes, finding neighbors
is a tractable problem. The tractability comes from the functional form of the
utility function. While this is an elegant result, it is not applicable to the
automobile market. This is because the utility function that permits the
tractability of the problem also implies that all consumers purchase the same
value of the most preferred model but differ in quantities purchased. For big-
ticket items such as automobiles, this is just not the case.

11. This function over characteristics is sometimes referred to in the
literature as a sub-utility function.
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12. While I realize this line of reasoning has strong Bayesian overtones, I do
not know another way of getting & feel for the validity of & new methodology.
This is another reeson why the auto industry is a good candidate to which to
epply & new methodology. If my methodology were first epplied to lumber and I
found Clear Pine-2 to be a neighbor to grade 3 Birch, few economists would have
any idea of how well neighbors are defined.

13. This is also the prectice adopted by Feenstra (1985). In that paper,
Feenstra puts forth the argument that for netional welfare considerations,
dealer mark-ups represent an intra-country transfer.

14. Implicit discounts due to selectively applied low financing rates have
elso been ignored due to lack of data.

15. The most recent examples are Feenstra (1985) and (1986). Griliches is a
much earlier example.

16. I also estimate this function without logarithms. This functional form
yielded a loss of about .20 in the R2.

17. This procedure is programmed in IBM Profortren for implementation on IBM-
compatible personal computers. The program is available to researchers on
request.

18. Throughout this paper, '"statistically significant" means statistically
significent from zero at the 90% confidence level unless stated otherwise.

19. Because FOREIGN is & near linear combination of SWEDE, JAPAN, and GERMAN--
the fixed effects, I do not include FOREIGN in equation (1A) as an own
characteristic.

20. Indeed, demand estimation according to the Armington Assumption, using my

data set, yields statistically insignificant and nonsensical demand
elasticities.
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