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Sequential Decision Problems
and Asymmetric Information

Jeffrey K. MacKie-Mason

1. Introduction

This paper presents a preliminary inquiry into a rather broad question: what are the costs

of information in a sequential decision-making problem? A rapidly growing economic liter-

ature emphasizes the benefits of sequential decision-making, but ignores the costs. Making

decisions incrementally allows parties to use newly-arriving information, but interested

parties are likely to have differential access to new information. Thus, spreading decisions

over time creates opportunities to exploit informational asymmetries. Dynamic asymmet-

ric information generates costs.

The study of sequential decision processes was largely initiated in the statistical decision

literature, by Wald [1947]. This field flourished during the 1950s and 1960s, including in

particular Bellman's work on dynamic programming (1957] and the extensive work on

optimal stopping rules (e.g., Chow et al. [1971]). Interest in sequential decision problems

has been growing in the economics literature, particularly for search theory and investment

modeling applications.'

The various literatures on sequential decision problems have uniformly ignored infor-

mational asymmetries between different interested parties.2 Since the essence of sequential

Thanks to Jim Dana, Rob Gertner, Bob Gibbons, Oliver Hart, Jerry Hausman, Stew Myers, Bob

Pindyck, Jim Poterba, Mark Prell, David Scharfstein, members of the MIT Theory Workshop, and espe-

cially Jean Tirole for helpful discussion and suggestions. Financial support was received from the National

Science Foundation and the Alfred P. Sloan Foundation.

I Sequential decision search theory papers typically model search for a good price, be it for a con-
sumer good or a labor contract (..g., Rothschild [1974]; Morgan and Manning (1985]; Morgan [1985]).
Sequential-decision investment applications emphasise high-risk projects, such as research and devel-
opment or large projects with long lead times (e&g., Weitsman [1979); Roberts and Weitsman [1981];
Weitsman, Newey and Rabin [1981]; Bernanke [1983]; Reinganum [1983]; MacDonald and Siegel [1983];
Majd and Pindyck (1985]).

2 One recent exception is Tirole [1986], who studies procurement contracts.
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decisionmaking problems is the value of information, the possibility of asymmetric infor-

mation costs is fundamental to a complete analysis.

In economic contexts, it seems as natural to presume that there will be informational

asymmetries as that there will not. For example, a typical investment project will involve

the interests of managers and investors. Wage contracting in a labor search model depends

on the differential information available to workers and firms. In general, any firm activity

which uses dynamically changing information will be affected by asymmetries between the

parties to the firm's "nexus of contracts": employees, managers, shareholders, creditors,

regulators, etc. Thus, the results below are applicable to such varied problems as the role

of the bankruptcy mechanism and the costs of external financing (such as debt or limited

partnerships); the design of optimal patent policy; and the decision to close a factory.

Our purpose is to investigate optimal decision rules in a sequential decision problem

when information is obtained asymmetrically. The effect of asynunetries on the value of

information is of special interest.

We model a prototypical investment problem, which captures the central characteristics

of much of the economics literature cited above. Following Roberts and Weitzman [19811,

the problem will be called a sequential development project (SDP). The project takes T

periods to develop before it produces any revenues, and requires investment of It during

period t of development. The value of the project is uncertain, but as each development

stage is completed, new information about project value is obtained. At each stage, the

decision-maker can choose to continue or abandon the project.

This framework is relatively general, yet simple enough to accommodate an intuitive

understanding of the optimal decision problem in a dynamic stochastic setting with asym-

metric information. Some generalizations and applications are discussed at the end.

Previous studies of SDPshave assumed that a project's investors and manager are the

same economic actor. In fact, often the financing and management of an SDPare separated.

When more than one actor has an interest in project outcomes, conflicts of interest can

arise. Such conflicts are common in reality.3 Analyses of SDPswhich ignore informational

* So common that limited partnership prospectuses are required by law to have a section detailing
possible conflicts. Much of the modern finance literature distinguishes between securities as contracts
which specify different asymmetries of information and control.
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asymmetries exaggerate the beneficial value of information. Existing and proposed policies

which subsidize or otherwise encourage decision schemes involving interest conflicts may

be costly and ineffective.

Two general conclusions are developed below. First, the agency problem in sequen-

tial decision problems may be quite severe, leading to high efficiency costs. This result

indicates the need to consider asymmetric information when evaluating SDPs. Second,

the characteristics of an SDP, when put into a dynamic principal-agent model, generate

theoretically optimal contracts which are simple, robust and realistic. An emerging view

in the principal-agent literature holds that theoretically optimal contracts are often unre-

alistically complex and nonrobust.' The optimal decision contract derived below bears a

striking resemblance to contracts actually observed for financing at least some SDPs. This

result follows from restricting the dynamic problem to one of incentives provision, without

insurance characteristics. The implications are wide-ranging. For instance, the analysis

suggests reasons for the existence of a bankruptcy mechanism, rather than more complex

schemes for the transfer of organizational control and resources.

The paper proceeds as follows. Section 2 presents a description of the SDP. Descrip-

tions of the full-information solution, and of a static (one-period) asymmetric information

solution are presented as benchmarks for comparison with the dynamic second-best con-

tract. The SDP contracting problem is formally treated in Section 3. The results are

summarized in Section 4, which then discusses implications and presents a numerical ex-

ample. Section 5 considers generalizations and other applications of the model; Section 6

concludes.

2. A Model of Sequential Decision Making

This section presents a formal model of the sequential development problem with asym-

metric information, and discusses the solution of the problem in two special cases: a

two-decision model with full information, and a one-decision model with asymmetric in-

formation. These two cases will be referred to as the first-best and static contracts. The

' See, e.g., Holmstrorm and Milgrom [1985]; Hart and Holmstrom [1095].
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Figure 1. Timing of the Sequential Development Project

next section derives the solution to the multiple-decision problem with asymmetric infor-

mation.

The problem will be specifically stated for a two-decision, three-period problem. Section

3 first solves the contract for the two-decision case. The model is then generalized to T

periods.

Timing

At time to, the investor and the firm meet to sign a contract, which specifies the terms

according to which the firm will undertake a risky development project requiring a to-

tal investment of I dollars (see Figure 1) .a No revenues arereceived until the project is

completed.6 The investor puts up Io dollars (Io < I) to fund the development effort during

the first period, t E [0,11. A contract's observable terms are legally enforceable at zero

cost for the duration of the game.

6 We will refer to the parties as a firm and an investor to lend concreteness to the discussion. However,
the model is generally applicable to any type of principal and agent relationship.

6 This assumption is made to emphasize the nature of development projects, consistent with the existing
literature, but is not necessary for the contract results below. See Section 5.
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At time t1 , the firm privately receives some information S1 . (The information structure

is detailed below.) The firm then decides whether to continue or stop project development

(D 1 = 1,0 respectively). If stopped, the project is abandoned forever.7 The investor

knows whether the firm abandons development. The firm can announce S1, a public

message concerning its private information. Contracted payments, P1 (S1 , D1), can be

made between the parties at t1. The courts can enforce contract terms which are functions

of common knowledge (the message and the continuation decision), but the courts have

no access to private information (such as the truthfulness of the message).

We can think of the newly-arriving information as being observable by both parties, but

not verifiable by the courts. The important thing is that contracts can only be contingent

on messages, or public claims about the information, not the information itself. Messages

are important because the problem is dynamic: future payments can be contingent on past

payments, which can deter the firm from making frivolous or empty announcements.

If the firm continues development, the investor now (t 1) puts up the remaining invest-

ment, I,. At time t2 , the project development is completed. The firm receives another

private signal, S2, and decides whether to complete or abandon (D 2 = 1,0). Another

message can be sent to the investor; both message and continuation are again common

knowledge. Time t 2 is the end of the sequential investment game, so the parties make the

final contracted payments (which can depend on all past and present common knowledge).

If the firm completes the project it receives the present (t2 ) value of the project.

Information

There is a one-dimensional signal generated by a stochastic process, St E [0, St].a The

cumulative distribution of St conditional on all prior realizatjqns (denoted by S.,) is given

by F(S, | S-.). Generalized density functions* are assumed to exist, dF(S, I S...) =

7 In a similar problem, but without asymmetric inforrnation, Majd and Pindyck [1985] evaluate a project
for which development can be both stopped and restarted. We leave this generalisation of our results
to further research.

' All of the results go through for any general lower bound, L, on the support of St. Working with
zero merely simplifies the description of the first-best project management.

*See DeGroot [1970].

5



f(St I S..)dSt. Higher values of St represent "good news" about the distribution of S+ 1 ,

in the sense of first-order stochastic dominance:

Assumption (FSD). f U(St)dF(S | ISt-1, St-2,...,So) > f U(St)dF(SI |S|-1,

St-2, ... , So)VS ,VSt-1 > Si-1,VS-(t_), for nondecreasing functions U(Q).

We also make an assumption on the hazard rate for the conditional distribution:

Assumption (DHR). The hazard rate of St is decreasing; i.e,

-- (H_(Sa{S- )) a- 1-F(StIS )<0

aSt 88 f (St I St)

This assumption is common in the incentives literature, and is true for many distributions

(e.g., normal and lognormal). The condition needed below is actually weaker than (DHR);

the role of the assumption will be highlighted when it is used.

The last signal, S2 in the two-decision problem, is identically equal to the value of the

project if completed (e.g., net revenues). So is known before contracts are signed at to. So

and F(. jI-) are common knowledge.

The information structure can be thought of in the following way. At to, both par-

ties have equal access to what is known about the project, say through published patent

materials, or in the case of natural resource exploration, from public records of geological

surveys and production from adjacent fields.'0 However, after development is underway,

the firm obtains new information from its development work, such as updated estimates

of unit production cost. The investor can only learn of the development results through

messages (St) from the firm.

Given the timing and information structure above, the pi.yment notation in Figure 1

can be made clear. Stated in general for a many-period SDP, let $, = ($,, $,-1,..., S,
and likewise for D,, where D, represents the continue/abandon decision. The contract

can specify that at time T the firm will pay the investor an amount F,($,DT) which is a

function of the firm's messages, 57 E [0,S,] and the continuation decisions, D7 E {0, 1}.

'o The possibility of es anate asymmetries of information is discussed in Section 5, below.
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Preferences and Wealth

The firm is assumed to be risk neutral, to have limited liability, and to be able to lend

any wealth it accrues at its discount rate. The firm has zero wealth at time zero, and its

borrowing is observable (hence controllable) by the investor. Limited liability with risk

neutrality for the firm is often assumed as a tractable way of capturing managerial risk

aversion.I The investor has substantial wealth and no legal liability limit. The investor is

presumed to be risk neutral. Relaxation of the preferences is discussed in Section 5.

First-Best Solution

Suppose the investor has free access to the same information as the firm, and a free right

to undertake the project (i.e, the firm does not own the idea for the project). Then, the

investor could operate the project herself. (Alternatively, suppose the firm has sufficient

wealth to pay the development costs; no investor is needed.) At time t2 , all investment

costs are sunk; since S2 is bounded below by zero, the first-best decision is to complete any

project which reaches the t2 stage. Solving backwards for the ti decision, the choice is to

abandon for a zero return, or make the incremental investment I1 to continue development.

The optimal choice is to continue if and only if 6 E[S2 | Si] I,, where 6 is the discount

factor. That is, the project should be continued at t1 if the observed signal exceeds a

critical value, Si >S1B, where Sf1B satisfies the previous condition with equality. The

first-best decision rule is extremely simple for the two-decision SDP; for certain specifica-

tions, full-information rules can also be derived analytically in many-period problems.'2

To summarize, for a project which is commenced at time to, we have:'8

i" Limited liability is assumed to hold for each period; i.e, courts will not enforce contract terms which
make the agent's wealth go negative in some states of nature. Sappington [1983] has pointed out that
risk neutrality with limited liability is related to the more general model, in that limited liability will
be a necessary condition in equilibrium for optimal contracts if an agent is risk-neutral for outcomes
above the liability limit, L, but infinitely risk averse for outcomes below L.

L2 See, e.g., Roberts and Weitsman [1981]; Weitsman, Newey, and Rabin [1981]. See also the analytical
example in Section 4.

'5 We are suppressing the time to decision, which is to initiate the project if' So ;> Sjf E, where SfjP is
defined analogously to Sf B, and guarantees that the expected future discounted cash flows (conditional
on future optimal stopping) just cover the incremental investment I@.
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Full-Information Decision Rule for SDP. At t 1 , invest I1 and continue iff S1 > SfB,

where Sf B is a critical value, defined above. At t 2 , continue in all states.

Static Contract

Suppose that no new information is received until the end of the entire development period

(or that the investor acts as if the firm learns nothing until the end). After I dollars are

sunk, the firm observes the project value, 52; the investor observes only announcements

and whether or not the firm decides to abandon the developed project. Payments only

take place at the end of the project, after the continuation decision is observed.

In the next section we shall appeal to the Revelation Principle to justify restricting

contracts to those which induce the firm to truthfully report its private knowledge about

project value. Making that restriction here, it is clear that the payment from the firm to

the investor cannot depend in any way on the value of the project. Suppose payments

were contingent on the firm's announcement: then the firm would lie about S2 so as to

minimize its obligations to the investor. Since the game is over, and the investor never

directly observes 52, there is no way to detect or punish the firm for such a lie. Therefore,

the firm will only tell the truth as a matter of indifference; i.e, payments cannot depend

on the announced project value.

The optimal static contract specifies a fixed payment, X, which the firm makes if it

completes the project (and receives 52). Otherwise, the project is abandoned, and no

transfers occur (since the firm has limited liability, the investor cannot demand compen-

sation for her sunk investment costs). The firm's decision is to complete if S2 exceeds X,

or abandon otherwise. The firm's value at the final decision is max[S - X, 0]. An optimal

contract solves a constrained Pareto optimizing problem for X*.

The static contract distorts the final decision (in the first-best, the project is always

completed once all costs are sunk), and ignores any opportunity to make decisions incre-

mentally. That is, the static contract suffers from information asymmetries, but does not

capture the benefits of dynamic decision-making. The full-information dynamic contract

above benefits from incrementalism, but ignores the possibility of asymmetric information.

The remainder of this paper is concerned with problems which involve both sequential
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decision-making and asymmetric information. The next section undertakes the theoretical

analysis. The discussion resumes (with a summary of the theoretical results) in Section 4.

3. The Optimal Contract

In this section the optimal financing contract for a sequential investment project is formally

characterized. The optimal contracts literature typically solves static contract problems

in two stages: first characterizing the set of actions by the agent which a feasible contract

can implement, and then solving the principal's problem of optimizing over the set of

implementable actions." This approach will be generalized to the dynamic problem and

followed here.

We shall first analyze the problem when there are three periods: a contracting period,

and two development periods with one continuation decision and one completion decision.

Then the results are extended to a problem with any finite number of decisions."

The surprising result shown in the next section is the simplicity of the optimal financing

contract for this complicated dynamic problem. A feasible contract can both induce the

firm to truthfully report its private information and condition payments on all announce-

ments except the last one. However, an optimal contract will not use the firm's private

information. Rather, the optimal dynamic contract names a sequence of constant termi-

nation fees, P° (the investor pays the firm P° if the firm abandons the project at time r),

and a completion fee PT (paid by the firm to the investor if it completes the project at

time T). Whether the firm reports its information or not is a matter of indifference to the

investor.

Implementability

The solution of the game is considerably simplified by invoking a basic result from the

literature:

" See, e.g., Guesnerie and Laffont [1984]. A related two-stage approach is taken in the "hdden action"
literature; see, e.g., Grossman and Hart [1983]..

16 This approach is followed because there are few results on dynamic principal-agent contracts in the
literature; therefore, a clear presentation of the results requires a careful formail development. The
formal proofs are simpler and more intuitive in the two-decision problem than in the T-decision model.
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The Revelation Principle. Without loss of generality, the class of feasible contracts,

W ($, D) can be restricted to contracts in which the messages sent by a utility maximizing
firm are truthful reports of the signals observed (Si, S2)0.1

The revelation principle is exploiting the fact that everything is known by the investor/prin-
cipal except (Si, S2 ). A contract I is a game form mapping strategies to outcomes. Since

the firm/agent's objective is common knowledge, the agent's strategy mapping S(S) is
common knowledge for any game form. The truthtelling game merely relabels the strategies

from S to S.
Define:

D 1, if the project is continued at time t

0, otherwise.

We want to implement D1 (Si), D 2 (S1, S2).17 Without loss of generality, we restrict the

analysis to deterministic incentive schemes."s Denote the agent's utility from time t2 on

by

= -P 2  D +S2D2 ($1$2)

where carets (^) indicate announcements, and variables without carets indicate true values.

At time t 2 , the past is history, and past utility cannot directly affect time t2 decisions (i.e,

we shall solve the finite game by backwards recursion). To implement a time t 2 decision

which involves time t2 truthtelling (regardless of the time t1 message, $1) requires:

S2D2($1,S2 ) - P2 (D 2 ($ 1,s 2), 1, 2) > S2 D 2 ($ 1 , S) - p2 (D 2($ 1 , s),& 1 ,s) (1)

16 Informal Proof. The firm observes (S1 , S2 ) = S and reports (S1 (Si), $2 (S2)) = S to maximise utility.

Suppose a contract 19(A) is feasible. Offer a contract *($--(s)); i.e, if the particular message

$(S') = $', let the payoffs 9*(S') be identical to t($'). Then, if when the true state is (Si, SI) the

optimal choice for the firm under ' is to get the outcomes associated with (S&, .1), it follows that
given choice over the same array of outcomes, the same outcome will be optimal under V*, and that

outcome is available by reporting $1 = S', the true state. See Dasgupta, Hammond and Maskin

[19791 for a more formal statement of the theorem and proof.

17 We will not be stuck with noncontingent payments as in the static contract described in Section 2. It
will become clear that because the problem is dynamic, it will be possible to construct an intertemporal
scheme which alternately punishes and rewards the firm in a way which makes truthtelling optimal.

18 That is, we do not contemplate schemes in which the agent announces 'N and the principal gives a

probability of continuing the project. Usually, if both parties are risk-neutral with respect to income,
random schemes are not optimal (see, e.g., Moore 1985). It can be shown in the present case that if
Dt E [0,1), an optimal contract will always specify either D, = 1 or De = 0. Jean Tirole pointed out
the possibility of random schemes to me.
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S'D 2(S1, S -) -P2 (D 2 ($1 ,SI),$ 1 ,Si) 2 SD 2 ($ 1 ,S2 ) - P2 (D 2 ($1,s2 ),$ 1 ,s2) (2)

for almost all S2 , S2 and almost all S1 such that D 1 (S1 ) = 1. Adding (1) and (2) yields

(52 - SZ) [D2($1, 52 ) D2 ($1, S')] 0

so D2 (S 1S2 ) must be nondecreasing in S2. This implies that an optimal contract can name

a critical value of S2 (which may be a function of $i), S ($ 1), such that if S2 is greater,

the project is completed, and is abandoned otherwise:

Proposition 1. A truthtelling second-period action, D 2 (S1, S2), is implementable only if

3 S($1) such that D2($1,$ 2) = 1 i 52  S.

Therefore, payments at time t2 (P2 ) must be independent of S2; otherwise, at t2 , given

D2 (S1, S2) = D2 (S1 , 52) (i.e, within the region of $2 Sz, for S2> Sz respectively), the

agent will lie about S2 so as to minimize its payments to the principal.

Now fold the game back to time t1, The agent's expected utility is

wi = -Pi (Di($ 1 ),$i) + 6Di(S1) E [W2 ( 1 ,s 2 ) I s1

where 6 is the one-period discount factor, and the expectation of w2 incorporates the

implementation of D 2(S1 , 52) and P2(D 2 , $1). To simplify notation, define

W (Si,$1) = E [w2 ($ 1 ,S 2 ) Si] = J[s2D2 ($1,s2 ) - P2 (D 2 (S1, s2 ),) 1f(S2| IS 1)dS2

(3)

Applying Proposition 1, it is clear that the integrand in (3) i& nondecreasing in S2 ; there-

fore, by first-order stochastic dominance (FSD), W(S1, $1) is strictly increasing in St.

To implement D1 (S1) we require

-P1 (D2 (S1 ),5Si) ± 6Di(Si)W(S1 , S1 ) -P1 (D1 (S), SI) + 5D1(SI)W(S1 , SI) (4)

-P1 (D1 (SI), SI) + 6D1 (SI)W(SI, SI) -- P1(D1(S1),5S))+ 6D1(SiW(Si, S) (5)

11



for almost all Si, S(. Adding (4) and (5) yields

Di(Si)[W(Si,Si) -W(s,Si) - Di(Si) W(S 1 ,Si) - W(SiSi) > 0 VS1 , Si (6)

Suppose S1 > S1; since W(-,.-) is increasing in its first argument, and D1 E {0,1}, imple-

mentability of D1 (Si) will require that D1 ($1) be nondecreasing. Thus, analogously to

Proposition 1, we obtain a critical value result for Si:

Proposition 2. A truthtelling first-period action, D1(S1), is implementable only if 3 Si

such that D1 (S 1 ) = 1 4 Si > Sj*.

To complete the characterization of implementability, it is necessary to consider the

choice of $1 to implement S; (Si) in a truthtelling equilibrium. Consider all Si, Si such

that D1(S1) = D1(Si) = 1. Then from (6) we require

[w(si,s1) - W(S, S)] -[w(s 1,si) - W(Si, S] > 0 (7)

Condition (7) states that to ensure truthtelling, the gain in expected time t2 utility

from telling the truth must be at least as great when the truth is good news as when

the truth is bad news (i.e, Si > Si). To investigate (7) first consider the definition of

SS($1) in Proposition 1: the project is continued at time t2 (i.e, D2 = 1) if S2 > S2. Let

P2 '($ 1 ) denote the payment P 2 (D 2($ 1,s2),&) when D 2 = 1; similarly define PO ($ 1 ).

That is, P' is the completion payment, and P2 the payment if the project is abandoned

at t2 . Then, an optimizing agent will continue at time t2 (i.e, choose D 2 = 1) if and

only if S2 - P2 > Ps, or S2 Pz - P2. Together with Proposition 1, this implies that

S($1) = P' - P°. Writing out time t2 utility gives

E[w2 | Si] = -P ($ 1)F (S(S1) | Si) +] [s2 - Ps(1S)J /(f2 |S 1 )dS2

s(si)

sa (8)
= -Pf($1) + j 3[2 - 5;*($1)] f(S2 I S1)dS2 (8

Then (7) can be rewritten as:

12



(s2 - s(s1)] [f(s 2 I 51) - f(S 2 I sids 2
s;(si)

I-:(S[52 - s2(S) [f(s2 i1) -(S2 s ds 2 i) 0 (9)
1s;(si)1 

s>0()

Now, integrate (9) by parts to get

{ [s 2 I 51) - F(52 I S ] [s2 - s;(s1)o]
s;{Is)

s2  

,s g

J (S)[F(52 |1) -F(S 2 | Si)]dS2-{[F(S2I S 1 )-F(S2 | Si)J S2-S(SI) 

J F(S2 |S) -F(S 2 | Si)dS2 >0 (10)

But [F(52 I Si) - F(S2 I Si)] evaluated at the upper limit of S2's support, S2, equals zero,

as does [52 - S (S)] evaluated at S2 = S($1) for any S. Thus the first and third terms

of (10) are identically zero. If we then suppose Si > Si, [F(S2 I Si) - F(S 2 I Si)] < 0 by

(FSD), so implementability of S (Si) requires S2(S'1) nonincreasing in $1:

Proposition 3. Given the condition in Proposition 1, D2 (S1, S2 ) is implementable (equiv-

alently, S (S1) is implementable) only if S2($1) is nonincreasing.

The intuition for Proposition 3 is important for understanding the optimal sequential

investment contract: since news is monotonically better as S1 increases, the agent knows

the project is more likely to go through to completion the higher is S1. The agent thus has

a greater interest in lower net completion payments S if Sl is higher; truthful reporting

of Si will only occur if the contract reflects the agent's interest in decreasing S .

Propositions 1-3 establish the necessary conditions for a sequential investment financing

contract to be incentive-compatible. In general, it is feasible to induce truthful revelation

of the time t1 private information, S1, and to condition contract terms on the value of S1.

However, the next result will demonstrate that it is not optimal to do so; i.e, that Sj'(si) =
0 in an optimal contract (where "dots" over variables indicate time differentiation).

13



The Principal's Optimization

Consider the principal's optimization problem:

max -Io + E {6P1(Di[S1],S 1 ) - 6I 1D 1 (S1 ) +6 2Di(Si)P2 (D 2 [S 1 ,S 2], S1 )} (11)
St,s-(SI) si,s2

i(1, if Si >Si
sot. D 1 =

10, otherwise

D 1, ifS 2 SZ

0, otherwise

S 0 almost everywhere (a.e.)

(The agent's individual rationality constraint is never binding because the agent always

chooses De to obtain the expected maximum of something and zero; therefore the agent's

expected utility must always be nonnegative.) Following the discussion leading to equation

(8), E[P 2 (D2 ,S1) | S1] can be written as P20(S1 ) + S (Si)[1 - F( Sill Thus, the

optimizing choice of the function S (Si) must maximize

E62Di(S1)S2*(Si) 1 - F(S(S1 ) I } s.t. 2 ; 0 a.e.

Defining the control variable y(S 1 ) = $ (Si), and the constraint p(Si) < 0, we can

write the Hamiltonian for this subsidiary problem

H = 62Di(Si)S;(Si){1 - F[S2(Si) j Sij}f(Si) -A(S)s(Si)

The necessary and sufficient conditions for an optimal y(S1) are:

-H=i(Si) =62Di(Si){1-F(S |Si)] - SF(S Si)}f(S1)

8H 0, ify>0

By= 0, ifsy < 0 (strictly)

(S)= A(0) = 0 (transversality)
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where sufficiency follows from the concavity (i.e, linearity) of H* in y.

Now we shall demonstrate that the optimal critical value of S (S1 ) is independent of

Si:"

Proposition 4. $S(S1) = 0 for all Si > S* (wlog for all Si).

Proof. Suppose S < 0 strictly for some interval Si E [a, b]. Then, by the complementary

slackness condition, A(S1) = 0 for S1 E [a, b], which implies A = 0 for S1 E [a, b]. If A = 0

then by the costate equation

f [S;(Si) I Si1]

Implicitly differentiating:

V Si E [a, b]

- a [ L[H(S*,1 S1)] 1 - F [S 2 S1
$2* =-- e where H (S2 , S, )

- H (S2, S1)] 1152|1 Si]

Since the hazard rate H(S2, S) is assumed to be decreasing in S2,

(12)

sgn(S) = sgn{ [I((2, Sl] }
The (FSD) condition implies

f(52 | Si) , f(52 | S')

f( 2 |IS1) f( 2ISD
(see Milgrom [1981]), so

Vs2 > S2, Si > S1

f3,>s, f(S 2  S1)dF(S2 I S1 ) f3,>s, f(S 2 I Si)dF(S2 I Si)

f(52|I si) f(32 SI)

which implies

1 - F(S 2I1S1) 1 - F(S2 I S1)
f(12 S1) f(S2 St)

so H(S 2 , Si) is increasing in S1, and A = 0 implies Si > 0. This result contradicts the

incentive-compatibility constraint however, so we conclude that i # 0 for any interval

Si E [a, b], which means A(S9) 6 0 on any interval, so y = $ = 0 for almost all S ;> Si

15



by complementary slackness. For S1 < S1, Di(Si) = 0, so we can take S (Si) = Si = 0

for Si < S1 wlog.'* I

The intuition behind this result is straightforward. The higher is the truthful report

of S1 , the better is the posterior distribution of project value, S2 . Therefore, the in-

vestor/principal wishes to extract more rents when S1 is higher, requiring a higher S2 (the

net completion payment). This is similar to the monopoly pricing problem with unknown

reservation prices, or to the Ramsey pricing problem. To see the latter analogy, note that

in a first-best situation, the cutoff value of S2 would be zero (all investment costs are sunk).

Therefore, setting a net completion payment S; > 0 creates a distortion. However, the

higher is Si, the higher is S2 likely to be, so the principal wishes to minimize distortions

by extracting higher rents in those states of the world where the distortion is less likely to

be binding.

It is important to emphasize this result: it is feasible for a contract to exploit the firm's

private first-period information, and that information is valuable. The conflict between

what the investor wants to do with the information and what she can do with it yields a

severe inefficiency in SDPs with conflicts of interest.20

Implementation

If we do not assume that the agent has limited liability and begins with zero wealth, it

would be simple to show that the first-best allocation described in Section 2 could be

implemented. For example, the principal/investor could sell the project to the firm for its

time to expected value, and let the firm make all of the investments and decisions.2 '

19 Note that the (DHR) assumption was stronger than we need for thJ result; the proposition follows if
1 (8/8;) [H(S;, Si)] > 0, which is true if the hasard rate rises less rapidly than at rate unity. But
this condition to obtain a positive denominator in (12) is identical to the second-order condition for
an optimal S;(S,) for the problem in which 5; is unconstrained. Therefore, (DHR) is not a restrictive
condition.

20 It is not a general result in dynamic problems that contract payments cannot depend on messages
about new information. Allen [1985] presents a dynamic model with no actions--just information--in
which it is optimal to condition second-period payments on first-period messages. See the discussion
below, in Section 4.

21 Alternatively, with a different distribution of bargaining power at to, a contract could specify that
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With limited liability the first-best outcome is not implementable. However, the propo-

sitions above imply that the structure of the optimal contract is simple indeed. A second-

best contract which implements D1 = 1 a Si Si and D2 = 1 S2  S (given

Di = 1), is equivalent to a contract which specifies just two constant payments: a ter-

mination fee paid by the investor to the firm if the project is abandoned at t1 , and a

completion payment from the firm to the investor if the project is completed at t2 .

Proposition 5. The optimal contract can be implemented by naming two constant pay-

ments, P° < 0 and P2 > 0, where P is paid if D1 = 0, and P2 is paid if D2 = 1.

Proof. By Proposition 1, implementation of D2 requires that the firm have incentives to

complete the project if S2  Si. At time t2 , the firm in fact chooses to complete iff

S2 > P2 - P2. Set P2 = Sz and P2 = 0. If the firm reaches time t2 with nonnegative

wealth, these payments cannot violate limited liability in any state of the world.

By Proposition 2, an optimal implementation of D, requires that the firm continue the

project iff S > S*. At time t1, the firm continues if E[D2 (S2 - Sf) | S1J P1 - P0. By

(FSD), the left-hand side of the inequality is monotonically increasing in S1. Therefore,

set -PO = E[D2(S2 - SS) I Si] and P1 = 0. D2 (S2 - Si) is nonnegative everywhere, so

P° < 0. Therefore the firm has nonnegative wealth in all states of the world at ti.1

Finally, certain straightforward welfare comparisons can be made between the optimal

second-best dynamic contract, the first-best, and a static contract as described earlier.

Most of these results are simple and intuitive; formal proofs are omitted for brevity. Recall

that a static contract is one that ignores intermediate decisions and information, writing

terms only for the completion of the project.

Proposition 6. (Comparison of a dynamic contract to a static contract.)

(a) The value of a dynamic contract weakly dominates a static contract.

the principal would make the investments. The contract would then set S; = 0 by letting time ts
payments be sero. Recall that at time ti, the first-best decision is to continue if S1 > Sf Shr3f
is defined implicitly by E [52 |'~ S-] It. Thus, the firm would pay E [52 | Ss) to the investor
at it if the project were continued. The investor gets her expected reservation utility (sero) and the
firm collects all of the project rents. In either solution to the first-best, the agent/firm is the residual
claimant on the project.
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(b) A long-term (2-period) static contract is equivalent to repeated short-term con-

tracting (i.e, recontracting at the beginning of each period).

(c) If I1 > 0, there will be underinvestment under static contracts relative to dynamic

contracts; i.e, some projects for which dynamic contracting is feasible will not be com-

menced with static contracting.

Proposition 6(a) is true because a dynamic contract can duplicate a static contract by

setting S* = 0 and SZ appropriately; but Si $ 0 in general. The repeated short-term

contracts in part (b) work as follows: at time to, the parties write a contract specifying

time t1 payments. After the contract terms are fulfilled at t1 , a new contract is written

specifying time t2 payments. Since the agent has no wealth, he can't pay the principal

anything at ti. Since the agent has limited liability, he will always sign any new contract

offered at t1, so the principal need not pay the agent anything at ti. Then, at t 1 , since

there have been no payments or observable actions, the principal has no new information;

she will offer the agent the same t2 terms that she would have offered at to. The result is

identical to writing a contract at to for t2 which ignores the t, continuation decision (the

firm goes ahead in all states at t, under either static contract scheme).

Proposition 6(c) follows from showing that the dominance in part (a) is in fact strict

for projects with Ii > 0; projects with an expected value of zero to the principal under

dynamic contracting must have a negative value under static contracting, which violates

the investor's rationality constraint.

Similar arguments establish analogous comparisons between the asymmetric and full-

information dynamic contracts. We prove one further characteristic to highlight the inferi-

ority of second-best contracts: for projects that are commenged at to under either first or

second-best contracting, abandonment is inefficiently high under the second-best at both

ti and t2-

Proposition 7. (Comparison of a constrained dynamic contract to the first-best.)

(a) The value of a first-best dynamic contract strictly dominates a constrained dynamic

contract if I4 > 0; therefore some projects feasible in the first-best are infeasible in the

second-best (underinvestment).
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(b) Both continuation cutoffs are higher under the constrained dynamic contract (Si*>

SfD, Si > S2FB) so abandonment is inefficiently high at both decision points.

Proof. (Proposition 7(b)) See Appendix 1.E

Thus, with a second-best contract, some projects are abandoned at t, which would be

continued if financing were first-best; likewise at t2 .

Extending the Results to T Periods

The results on an optimal contract for financing sequential investment projects were de-

veloped above for a three-period problem (to, ti, t2 ); they can be extended to a general

T-period problem.22 We need only add an assumption that the signal process is Markov:

Markov Signal Assumption (MS). F(St I St-i, St-2, ..So) = F(St j St.. 1 ).

The reason the result goes through is quite simple. Incentive-compatible payments can

now be contingent on everything the firm has learned over several past decision periods

(not just Si), which provides more flexibility in designing reward-punishment schemes to

induce truthtelling. However, because signals are Markovian, the period t = r -1 signal is

a sufficient statistic for the expected value of the current t = r signal. In static principal-

agent problems it is well-known that incentive schemes based on sufficient statistics weakly

dominate those based on the underlying information.2 3 We generalize the sufficient statistic

result to a dynamic problem below, with the result that we can restrict consideration to

payment schemes which are based on only current and one-period-prior announcements.

Then, since the project life is finite, the game can be solved by backwards recursion.

At each stage of the recursion, because of the sufficient statistic result, the structure

of the problem is identical to the two-decision problem considered above. After defining

somewhat more general notation and establishing the sufficient statistic result, the optimal

22 Our notational convention specifies that problems have one more period (period 0) than abandonment
decision. However, we will casually refer to the general problem as having T periods or T decisions.

2s This is not what drives the result in Proposition 4. There is information useful at time t2 in signal Si;
the conflict between how the principal would use it and when the agent will truthfully reveal it makes
actual use of the information nonoptimal.
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contract results follow precisely as before. Proofs are somewhat tedious, however, and are

relegated to Appendix 1.

To facilitate symmetry of notation, assume that the final project value, if the project is

completed at time T, is ST+1 rather that ST.2 4 Then, denoting the agent's utility at time

t = r for the remainder of the game by w,., we can write the final period utility as

WT = -PT Dr( $. , + ($rDT(ST,$-) E [T+1($T,$T,ST+1) | ST

where wT+1 ST+1, and S..T {ST....1,T$S-2,-..., $1}. Applying Bellman's Optimality

Principle for dynamic programming, we can write period t = r utility as

w, = -P, (D,[$,, $...,], $r, $-...)+ 6D ,, $..,)E [wf+1($rT,.$-r,,+1) |Sr (13)

Proceeding recursively, it is possible to show that implementable abandonment/conti-

nuation decisions require critical values, St($-), as before:

Proposition 8. D (St, S..) is implementable only if B St ($-t) such that D ($,, $_,) =

1 * St St(-t).

The next step is to obtain conditions for the implementability of St (S-t). To do this, it

is helpful to establish the sufficiency of {St, St..} as a basis for payments Pt. Generalizing

Milgrom [1981J, define a sufficient statistic for the dynamic contracting problem as follows:

Definition. The function r (St, S-t) is called sufficient for {St, S-t} with respect to the

agent's decision Dt, if there exist functions ',(-) > 0, ht(-) > 0 such that

fA(S ,St...1l,...S1 | IDeD..) = 7t (r[s,s-Jj D) x h(S..I D...t)

for all S and D in the support of f (-).

Then, because St is Markovian, the following is true:

24 We could without loss of generality assurne that E [ST+L j Srl' =. ST and the problems would be
identical.
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Proposition 9. rt(St, S-e) {St, St. 1} is a sufficient statistic for {St, S-t} with respect

to the agent's decision Dt.

The notion of a sufficient statistic is that for any prior distribution on the agent's action

Dt, the posterior distribution of De given {St, S-.t} depends on the observed (truthfully

reported) values of {St, S-t} only through rt(S, S-.). Therefore, the principal gains

no additional control over the agent's action De by basing payments Pt on information

other than rt, or the current and prior value of the signal. This allows us to show that

without loss of generality we can restrict the contract to schemes in which payments Pt

are contingent only on St and St-.
Proposition 10. For the T-period SDP contract, 3 an appropriately chosen scheme

Pt (1T) which weakly dominates any scheme Pt(St, S-.), for t 1 ,... ,T.

The intuition behind Proposition 10 is that all of the statistical information about

current and future signals at time r is contained in T, = {Si, S,-}; conditioning time r

payments on anything other than r, adds extraneous noise. Using the (weak) risk aversion

of the agent, we can maintain the agent's expected utility while (weakly) increasing the

principal's expected utility by reducing the extraneous noise in the incentives scheme.

Now, to implement St S.. (e-1l, note that the continuation decision is given

by Dt = 1 iff 6DtE[wt+1 | S1J > Pt. Therefore, since S* is equivalent to implementable

Dt, we can consider only St($S..1). Proceeding as before, the necessary condition for

implementability of St(St-1) is

Proposition 11. St(St...1) is implementable only if St is nonincreasing in St..1.

The conditions for implementability of a given action vector D have now been extended

from the two-decision to the T-decision SDP. It is a straightforward matter to show, as

before, that the optimal scheme under limited liability can be implemented by a contract

which names a vector of constants:

Proposition 12. The optimal contract for the-T-period SDP is equivalent to one which

names a vector of constants (-Pf',...,-P%.._1; P#). The first T -1 values are the termi-

nation fees P9 for each period r = 1,... ,T - 1 respectively which the investor pays the
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agent if the project is abandoned at time r. The last value is the completion payment P j
from the firm to the investor if the project is completed at time T.

By generalizing to a T-decision SDP, a sequence of termination fees has been intro-

duced, rather than just one. As before, these fees should not be interpreted as payoffs

to the firm, but as incentives to ensure that the firm doesn't go ahead and spend the

investor's money if conditions have turned sour. In effect, the value of making a sequence

of incremental investment decisions rather than just a once-and-for-all investment comes

from the value of the option to abandon the project early. In the present case, when the

investor's and project manager's interests diverge, the investor offers the project manager

a share of the abandonment option value in an attempt to align their interests.

The abandonment option intuition is borne out neatly in two results we can prove

which characterize the termination fee sequence {P°} First, we know that because of

limited liability, the abandonment payments must be nonpositive, P° ; 0. In fact, if we

assume that St = 0 is an absorbing state of the Markov process (i.e, Pr[S, = 0 | St = 0] =

1 V r > t), then, when a period's investment is nonzero, the terminationfee is strictly

negative:

Proposition 13. If It > 0 and St = 0 is an absorbing state of the Markov sequence {St},

then P <0 Vt <T.

The simple intuition for Proposition 13 is that as long as 1, > 0, there is some abandonment

option value at time r, and the investor is better off sharing that value with the firm than

not (if P,9 = 0, the investor would go ahead at time r in all states of the world).

Even more importantly, we can establish that the termination fee sequence is nonin-

creasing. Formally,

Proposition 14. -Pf > -P9f 1 V t = 1, ... , T.

This result also accords with the abandonment option value notion: the greater the re-

maining number of stages in the project, the greater the remaining investment. Therefore,

the opportunity cost of continuing a bad project at time r is greater than at time r + 1;

the investor accordingly wants to give the firm a largerincentive to abandon at time T.

22



4. Discussion and Example

In this section we summarize the results characterizing the optimal principal-agent con-

tracts for sequential investment projects. Then, following a brief discussion of the results,

we shall present a numerical example for a three-period problem. The example suggests

the relative importance of agency costs in evaluating SDPs, and is useful for discussing the

comparative statics of the problem.

Summaryi

We have examined a prototypical SDP: a development project which will take T periods

to develop before it produces any revenues, and which requires development expenditures

of It each period before completion. The theoretical analysis of the previous section yields

the following description of the optimal contract between investor and firm for an SDP:

Optimal SDP Contract. The investor pays Io, the development investment for the

period between to and t1. At t1, after obtaining information from the first development

stage, the firm decides whether or not to continue the project. If the firm abandons, the

investor pays a fixed termination fee to the firm, P10. If the firm continues, the investor

pays I1, the development cost for the next stage. The sequence is repeated at each t, with

the firm facing the choice to abandon and take P0 or to continue. If the project passes the

final development stage, at time T, the firm can abandon and receive nothing; or continue,

receiving the (certain) project value and paying the investor a flat completion fee,Pj.

Therefore, given the investment sequence {It}, the optimal contract is completely spec-

ified by the payment sequence {-P,; P } (for t = 1,..., T -1). From the firm's point of

view, after the contract is signed the SDP proceeds precisely as it does in models which

ignore agency problems; the opportunity cost of each development stage, however, is the

foregone termination fee. It is straightforward to analyze the behavior of the firm, and to

perform comparative statics on that behavior, after the contract is signed.26

In our simple model, the conflicts of interest change not the qualitative description of

project management, but rather the efficiency of the investment decisions in such projects.

2&5Se, e.g., Roberts and Weitsman [1981] for such an exercise.
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It was shown in the previous section that the firm will abandon a project in more states of

the world at any development stage under a dynamic contract than it would if financing

were first-best. Since the identical project is less likely to be completed under a dynamic

contract than in the first-best, it is clear that some projects will not even be started with

external financing which should be initiated according to a social efficiency criterion. It

was also shown that for a project which is initiated, expected abandonment at each stage

is inefficiently high. Thus, a world with external financing will have inefficiently low levels

of investment in risky development projects.

The emphasis on the value of sequential decision-making in the existing literature is

exaggerated if asymmetric access to information is present, because much of the informa-

tion made available by sequential decision-making is not used efficiently in optimal project

management. In principle, the contract can induce the firm's manager to truthfully reveal

his private information, and to condition payments on that information. A fundamental

conflict prevents this, however. The better is the first-period signal, the more likely is

the firm to ultimately complete the project. Thus, to induce the manager to truthfully

reveal S1 , he must be offered a lower payment schedule for t2 ; since he knows he's more

likely to complete, he has a greater interest in lower payments. On the other hand, the

investor/principal wants to extract maximal rents from the project, by minimizing dis-

tortions in the final decision. In the first-best, a project which reaches the final decision

is always completed. Like a Ramsey-price setter, the principal wants to extract higher

completion payments when S2 is likely to be high, because that is less likely to distort the

completion decision. S2 is likely to be higher when Si is higher, so the principal wants

higher payments when Si is high. These two interests directly conflict; the result is that

payments (and actions) are conditioned on the wrong cutoff signal.

Implications~ for Contract ComplezityJ

It has been considered a general result in the literature that optimal contracts use all of the

information available. In contrast, we have developed a general model in which contracting

parties can do better by essentially ignoring some information; the outcome is a simple
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and intuitive contract.26

The crucial assumption is that of the agent's risk neutrality.27 With risk-neutral agents,

the problem between principal and agent is one of providing only incentives, rather than

both incentives and insurance, or risk-sharing. By contrast, Allen [1985] presents a model

of pure risk-sharing (there are no actions whatsoever, and hence, no incentives problems),

which yields dynamic contracts which are complex and difficult to implement (i.e, second-

period payments are a continuous function of truthful announcements of the first-period

signal).

When the contracting problem is one of dynamic incentives provision, the complex-

ity of the contract is determined not by the complexity of the stochastic state space (a

continuously-distributed signal process in this case) and the associated message game, but

by the specification of the verifiable action space. In the present model, the action space

is quite simple - a stop-go decision is made at each juncture - and the optimal contract

is correspondingly simple (a single decision payment at each node).

The implications of these results for more general dynamic agency problems depend

on what we think is important about individual contracting relationships - insurance

or incentives - and what we think the complexity of the verifiable action space is. If we

think principal-agent contracts are a setting for behavioral incentives, and that insurance is

obtained elsewhere (e.g., in futures markets), then the first condition for simple contracts

is met. If we believe that full contingency specification in contracts is expensive, and

that the unwillingness of courts to second-guess "reasonable business judgment" reduces

the verifiability of more than a few, clearly-defined actions, then the second condition

might be met, and our theoretical model might appropriately be interpreted as a general

statement about the relative simplicity of actual contracts.

Numerical Example

We have constructed a numerical example of a three-period SDP managed under an optimal

contract. The example illustrates several of the points discussed above. First, the contract

26 Guesnerie and Laffont [1984] obtain a similar simplification in their example of a labor-managed firm,
but their result follows from an unusual objective function.

27 As mentioned earlier, the principal's risk aversion is inessential to the results.
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specification is simple. As a result, the value of the contract to each party has a intuitive

interpretation in terms of familiar notions from financial options theory. Second, the

efficiency costs of external financing are illustrated, and prove to be quite dramatic. It

turns out that in the example below, investment will not take place for projects which, in

a first-best setting, yield a 60% expected excess rate of return. Third, comparative statics

exercises are straightforward, and indicate the sensitivity of the efficiency costs to different

parameters of the problem.

Suppose that the signal St is generated by a Wiener diffusion process, dSt = aSdt +

a2Sdz; a and a constant imply St is distributed lognormally.2 8 Denoting the termination

fee by X 1, the completion fee by X 2 , and the rate of time preference by r, it can be shown

that the ex ante expected value of the contract to the firm is given bye

W2(-) = Soe-" 2$ 2 (h 2 , k2 ; p) - X 2 e-nr2a 2 (hIi,ki;p) + Xie-rr [1 - 4t(h 1)J (14)

where; is the length of time from contract signing until the completion of stage i (r1 = 1,

r2 = 2 in the theoretical presentation earlier); 02(-, -; p) is the bivariate standard normal

c.d.f. with correlation coefficient p; and t(-) is the univariate normal c.d.f., with

28 See, e.g., Merton (1973], or Chow [1981].

29 The derivation was presented in the earlier version of this paper, but involves the evaluation of double
integrals, and is now ornitted for brevity. Details available from the author on request.
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Alternatively, we can write equation (14) as

W2(-) = C2 (So,T1,T2, X1 ,X 2) + Xie-a (15)

where C2 (.) is a function known in finance theory which gives the value of a compound call

option. That is, C2 (-) represents the value of an option held at to to buy another option

at t 1 for price X1. The second option is the right to pay X 2 at t2 to obtain an asset worth

Sz-3°

Equation (15) is a convenient way to view the firm's problem. At To, the firm is

guaranteed X 1 exp[-rri] (it can costlessly quit at ri and receive the termination payment).

At a price of X4 (giving up the termination fee) it can exercise its option to "stay in the

game" at rl. If the firm continues the project, then, at a price of X2 (the payment to the

investor), it can obtain the value of the project at r2 (52) .

30 See Geske [1979] on the theory of conipound options. The function C2 (-) i.s "mispriced" because it is
not valued "as if' the expected return on S. were r instead of a. The mispricing occurs here because S.
cannot be freely traded-the current value of S. is private information--so arbitrage cannot force the
contingent daim price to reflect a risk-free equilibrium rate of return. This discussion is not essential
for what follows in the paper. For more on the theory of contingent claim pricing and "mispriced"
claims, see Merton [1973], Cax and Ross (1976], and Constantinids [1978].
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The value of the project to the investor is also easy to interpret. Let 3 be the fraction

of the total investment I which is spent during the second stage (131 = pi). Then the value

to the investor is given by:

V2 (-)= e~" 2 X 2 ' 2 (hi, ki; p) - e~"T IXi [1 - 4(h1 )] - r{1 - 3 -[ - e~" T'(hi)]} (16)

V(.) is the present value of the completion payment, X 2 , discounted by the probability

that the project won't be completed; less the present value of the termination fee discounted

by the probability that the project won't be abandoned at ri; less the present value of the

investment costs discounted for the probability that the project is abandoned before 131 is

spent.

The total value of the project in the first-best is given by

V* = Soe@T I(m 2 ) -1 {1 - [1 - errl(mi)]}

where:

In(So/B) +r -gy - zT-

m2 =m1 + /jfi~

The solution to the optimal contract problem can be obtained numerically given values for

the exogenous parameters (So, I,13, r, 1 , r2, a, a). For the examples below and in Appendix

2, we let So = 100, and varied the other parameters.A Suppose the total undiscounted

investment cost is I = 60, and that 50% must be paid at both t = 0 and r1 . Let r1 = 1,

r2 = 2. Let the real risk-free rate of return be r = 0.02, and the expected rate of gross

capital gain on the project be a = 0.03.

For these values, an optimal contract will specify that the investor pay the firm a

termination fee of XC1 = 3.98 if the firm abandons the project at t1 . This fee is 13% of the

31 For these examples, we made the arbitrary assumption that the capital market conditions and own-
ership rights to develop the project are such that the firm maximizes its project value, subject to the
investor receiving a reservation expected utility of V0 = 0 (i e, there is an infinitely elastic supply of
risk-neutral capital).
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second-period investment cost, which the investor would save if the firm terminated the

project. The firm agrees to pay the investor X2 = 65.7 at r2 if the project is completed.

We define the efficiency cost of asymmetric information as the loss in total surplus, or

V* - (W2 + V2). In this example, the value of the project (W2 - V2) is 39.3. Under full

information, the project is worth V* = 42.6, so the efficiency cost of the agency problem

is 3.3, which is nearly 8% of the first best project value. An efficiency cost of 8% might be

significant, and as is shown in Appendix 2, the efficiency loss increases rapidly under only

slightly less favorable project conditions. Projects with first-best excess returns of 60%

may not even be feasible in the second-best.

We have also evaluated the described project with asymmetric and full information

under the assumption that there is no sequential decisionmaking opportunity; 1.e, the

investment costs are still spread over time, but once undertaken, a project continues until

the final decision at time r2. (Under asymmetric information, this yields the static contract

discussed in Section 2.) With no sequential decision making, the second-best project value

falls to 36.4; however, the first-best value is still 42.6.32

Recent papers have argued that the opportunity to spread operating decisions over

the life of a project can substantially increase the value of the project.8 8 In the SDP, the

increase in project value is due to the opportunity to stop a project if the environment

turns sour before all of the investment funds are committed. However, the increase in full-

information project value due to the benefits of sequential decision making is essentially

nil in this example. The project is very attractive in a full-information world: for a present

value investment of about 59, the firm can undertake a project with an expected present

value of about 101 (recall that a > r). The SDP will almost surely be completed even

with an early abandonment option.

On the other hand, while sequential decision-making is rather unimportant in a full-

information world for the example project, the introduction of asymmetric information is

quite significant. The efficiency cost of asymmetric information is 8% of first-best value

32 To three significant digits. In fact, the no-sequential-decision first-best is slightly less than V*.

sa See Majd and Pindyck [1985], Roberts and Weitaman [1981].
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in the sequential decision case, and 14.5% in the no-sequence case. Previous papers which

ignore asymmetric information report the benefits of sequential decision making without

considering the costs.

The comparative statics of asymmetric information costs in this example are discussed

in Appendix 2.

5. Extensions

Some generalizations of the model have been considered in MacKie-Mason [1986]. For

example, all of the results go through if the firm has some wealth to invest in the project,

as long as that wealth is less than the total investment cost. Whatever wealth is available

will be invested." Also, the results hold if revenues are received before completion of

the decision sequence. The only difference is that the contract also specifies a sequence of

continuation payments, in order to transfer part of the revenues to the investor. In another

direction, adding ex ante asymmetric information leads to a standard "lemons" problem:

some "bad" firms will offer fraudulent projects, which leads to an equilibrium with even

great investment inefficiency.

Other Applications

The SDP is similar to other long-term dynamic economic problems which may involve

divergent interests. Long-term debt and patent policy were mentioned at the beginning

of the paper. The former is essentially the SDP with revenues flowing in during the

investment period as discussed above. It might be interesting to generalize even further

for the long-term debt problem. Suppose the lender could observe the private firm's

information directly, but at substantial cost (say, by writing into the contract a provision

allowing the bank to place representatives inside the firm). Suppose further that if the

lender forecloses on the debt, the project/firm is not worthless; i.e, it has salvage value

(though less than if the present management had been allowed to continue).A5

" This has been called "maxirnurn equity participation" in the one-period bankruptcy model of Gale

and Heliwig [1985].

* What we are describing is essentially the same as the model in Gale and Heliwig [1985] but extended
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In the situation described, the lender may not want to set a stream of fixed payments

which the firm must pay or face automatic liquidation. Instead, the lender may be willing

to let the firm default, but let the firm continue in operation with the lender observing

full information. Then, if conditions improve, the firm can buy its way back into an

arm's-length debt contract, but only on terms less favorable for the remaining periods

than the original contract. The foregoing is a rough description of long-term loans with

restrictive covenants and bank intervention of the sort observed in reality, and intuition

suggests that such a contract might emerge as optimal from the model in this present

paper. Alternatively, the model could be interpreted as a theory of bankruptcy which

allows for both liquidation and reorganization.

In the case of patent policy, there is a striking resemblance between the contracts em-

bodied in European patent policies and the model developed in this paper. Consider the

European patent with renewal fees. The firm is developing a project with a sequential

option to abandon. Each year it must pay the renewal fee to stay in the game. The

government receives a series of payments, unless the firm lets the patent lapse. In some

countries, there are no renewal fees, but a firm must "work" a patent to retain exclusive

rights. "Working" may require a sequence of investments. The government wants to opti-

mize some objective function by choosing renewal fees or minimum "working" expenditures

subject to self-interested behavior by the firm.

The model is directly applicable to analysis of a firm's decision on when to close a

factory, or to exit an industry altogether.s" The firm's manager faces a sequence of decisions

of when to optimally close the factory or the firm, based on newly-arriving information. 7

Interests are likely to diverge between manager and owners, especially when managers

have substantial human capital invested in the firm, the rents on which are not residually

beyond a single-period, static contract problem to consider the dynamics of inforrnation and decision-
making. Aghion and Bolton [1986] have presented a model of long-term debt which is one example of
the general problem developed in this paper.

3* Schary [1986] studies the role of abandonment option value without infbrmational asymmetries in
declining industries with application to the cotton spinning industry.

av Recall that the model generalises to the case where revenues are received in every period; see MacKie-
Mason [1986].
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claimed by the shareholders. Severance payments (or, eg., relocation assistance) are a

natural prediction in this case.

The results also address the capital structure puzzle (i.e, what determines the choice of

financing instruments?). The opportunity to exploit asymmetric learning makes external

capital more costly to firms than internal capital. In general, internal finance should be

preferred to external. In many instances, however, external capital is subsidized, such as

through tax code provisions for limited partnerships, interest payment deductibility, and

loan guarantees. When subsidies are substantial, there may be a preference for external

finance, if asymmetric information costs are not too severe. However, when information

that emerges during the life of the project is especially valuable, and one party has better

access to that information than the other, internal financing may predominate, despite

subsidies to external capital. This notion is consistent with the observation that most

high-tech start-ups are financed with venture (equity) capital, while limited partnerships

are often used for more predictable, less volatile development projects, or natural resource

exploration projects sponsored by established firms.as

6. Conclusion

Some answers to the questions motivating this paper have now been suggested. Asym-

metric learning in a sequential decision problem may substantially reduce the benefits

of incremental decisionmaking. We have derived an optimal sequential decision contract

which demonstrates the nature of the resulting inefficiencies. However, the rather stark

conflict of interest which can be so costly also leads to simple and realistic contract terms.

The emphasis on the value of sequential decision-making in the existing literature is ex-

aggerated if asymmetric access to information is present, because much of the insider

information made available by sequential decision-making is not used efficiently in optimal

project management.

In a more general model, in which other elements of project design can be specified in

the contract, information asymmetries are likely to also affect project management. For

as Another, related argument is that the reputation which established firms can dernonstrate helps over-
come agency costs; start-up ventures have more limited access to reputation.
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instance, in an R&D or oil exploration project, the number of tests to run in a given

period may be chosen differently with information asymmetries. The differences between

fixed-sample-size and sequential strategies is examined in Morgan and Manning [1985].

Perhaps the two most important problems absent from the analysis are the two which

have been most studied in the literature: hidden effort and ez ante hidden information.30

Some advances into the area of dynamic contracting have been made for these problems,

especially the former.4 0

This paper has presented a model of optimal stopping when there are conflicting inter-

ests in the outcome of the optimal stopping problem. Agency costs have been ignored in

the economic literature\on sequential decision-making. Many economic problems, including

bankruptcy and patent or R&D policy, contain elements of an optimal stopping problem."

The results and approach of this paper can be profitably applied to such problems.

" Often referred to as "moral hasard" and "adverse selection." Arrow's [1985] "hidden" terminology is
more expressive, general, and accurate.

40 See, e.g., Laffont and Tirole [1985], Holmstrom and Milgrom [1985], Baron and Besanko [1984], Tirole
(1985], Myerson [1985], and Allen [1985].

* See, for yet another example, Bollier (1985], who considers the problem of optimal default by third-
world debtor nations which can also control the rate of national investment, and thus of return on
national debt.
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Appendix 1

Proof of Proposition 7(B). Under the first-best, the cutoff is Sf 3 = 0; S* > 0 strictly

because the investor gets a return on I only through Sz = P2
1.

At ti, the agent continues the project if

J S2f (S2 I S1 )dS2 - 6s2* 1 - F(s; IS1) > -P° (A1.1)
s;

Therefore, equation (A1.1) is satisfied with equality at Si = S*. However, the principal's

problem is to choose Si to maximize

P°?+6 L {-P°' -1+ 6 2*1-F(S2|S1)] }f(S1)dSi/Si
with the necessary condition that

-PP+6S4*1- F(Si |IS*)] =I1 (A1.2)

The first-best decision at ti is to continue if 6 E [S2 | S] > I1, so the cutoff S1PB is the

solution to

6 S2 f(S 2 I S1 B)dS2 -It = 0
0

or, substituting from (A1.2),

6 S2f(S2 I Sir3 )dS 2 -6S2* 1 - F(s; S1) + P1 = 0 (A1.3)

Comparison of (A1.2) evaluated at Si = Sj1 with (A1.3), applying FSD, establishes that

Si > SF B.J

Proof of Proposition 8. Define We = Wt ,S, E E w s].t+1($t,t, St+1)| St)

(Recall that this convention was used in the two decision problem.) Starting with the last

period, WT = f ST+1f(ST+1 I Si')dSr+1, so WT [ST,I$T,$-T] is increasing in Sr by

FSD. Implementability of DT(ST, $-.) requires
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'PT [DT(ST, ST), St, &T] + 6DT(ST ,S-T) WT (ST, ST, S-T)

> -PT [DT(S',&LZ), S;, S-_r]+ 6DT(S' ASTW( SS )T, T 4 ST)

-PT [DT(S., S..T), St, S..T] + CDT(ST, ST) WT(ST, T S-T)

> -PTr[DT(ST, LT),ST , ST] + 6DT(ST! STWT,S , S-.T)

for almost all ST, ST4 and almost all L-T such that DTjST = 1, for j = 1, ... , T - 1.
Adding yields

DT(ST, S-.T) [WT(ST,ST,ALT) - WT(S"T STS&T)]

(A1.4)

Since WT is increasing in ST, implementability requires DT(STST)nnece'igi

ST.

Now consider WT-..1:

j { -PT (DT(STi&LT),~T,LT)

f n +8 DT(ST, S T W S T9S T S I S T+) dS T1
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Dr..1(ST..., $_(T_1)) [WT-1(Sr..1,ST-1, $(T_1)) - WT..1(ST'_1,ST_1,$_ g _1,))A r A

-Dr..1(ST_1, $-(T-1)) wT-1(sT---1, -'---(-1)) - WT-1(S-1 i, S, -(Ti))] > 0

(A1.5)

which requires DT..1 nondecreasing in ST.-1. This last recursive step is perfectly general for

the T-decision problem; solving recursively by first demonstrating that Wt+1 is increasing

in Ste+, then checking the implementability conditions for Dt completes the proof.)

Proof of Proposition 9. The definition of a sufficient statistic with respect to an action

is that the joint density of S conditional on the action vector D be separable as follows:

f (St, St..*.... , Si; Dt, D-t) = rt rt (St, S..t); Dt x h(S-t; D-t)

where rt and h are nonnegative (see Holmstrom [1982]). The statistical notion is that

for any prior distribution on D, the Bayesian posterior depends on S only through the

statistic r. By Proposition 5, De is equivalent to a critical value St, such that Dt = 1 +

St > St*. Therefore, f(St,S..t;Dt,D...t) = f(St I St.1; Dt) x f(St.-i,St-2 ,.. ., S1; D-t)

by the Markovian assumption, and rt = {St, St-1} is sufficient for Dt.I

Proof of Proposition 10. Define Pt (rt) by (where S denotes {St, S-t}):

Wt (A(T)) = JrW(s)=r, Wt (P(st, S.t) [f(S, S-; Dt, Dt) / rit (St, St-l; Dt) dS

=WPM wt P ( St, S_t ) h( S-e; D...)jd S
Jr,(s)=Tt

(A1.6)

Now, Eswt (A(rt)) = Eswt(Pt(StS.t)),sowt (Es At(rt) = Eswt(Pt(St, S-t))

WT Es P(S1, S--) by Jensen's Inequality (in fact, in the present case, the weak inequality

is an equality because w is linear in P). Therefore, from this fact and (A1.6),

J ft(Tre)h(se ; D..)dS ;>J Pt(St, S-.t)h( St; D....t)dS (A A1.7 )
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By construction, the agent chooses the same action at each tine t, and receives the same

expected utility. However, the principal is weakly better off by (A1.7) .1

Proof of Proposition 11. Proceeding as before, we can implement SS (St..-1 ) if and only

if (from equation (A1.4))

[Wt S(sS -t) - w (S', St,S- - [w(st9 St, S'_..) - Wt(St', S, St > 0 (A1.8)

for almost all St,St such that DtSS_1 = Dt (S1, St _1) = 1, and almost all St _..1 such

that Dt....1 = 1, given Dt_ = 1 for all j~ = 1, ... , t - 1. As before, we can write Wt as

+ I[w+1(st+,st+1,St) - St+iGSt)] f(St+i I jd~~

where, by backwards recursion, St+.1 = St+1 is presumed. It now becomes evident that,

because of Proposition 9, Wt(St, St, St..1) reduces to Wt (St, St). Equation (A1.8) can be

rewritten as

S4(t) w+ 1(st+ 1, St+ 1) - St".+1(St)] f (St+1 I St) -if(St+i I S)J dS''+ 1

- Is41(94)St r)- S41(St)] (f(St+i I St) - f(St+1 I St)J dS,+1  0
Q artBecause W(,,) is monotonic in its first argument, we know that it is differentiable almost

everywhere. Therefore, integration by parts, with cancellation of terms which evaluate to

zero, yields
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For St > St, [F (S1+1 I St) - F (St+i | St)1 is negative by FSD. The partials in each inte-

grand are identical (by virtue of the independence of W+ 1l from &S), so implernentability

of S* 1 ( S) = S+1 (St) requires St 1 nonincreasing in St.I

Proof of Proposition 12. Available from author upon request.

Proof of Proposition 1. (Sketch) Using Proposition 12, and the necessary conditions

of the principal's optimization, we can solve for the optimal termination fee, P:

P1t= E ( '~* [P,(i - D,*]) - ID,*] + 6TtPD* |St = St] - It
r=t+1

where Dt* =DtD -1. By the agent's optimal stopping rule, P° = 0 +-+ S, = 0. Since

St = Ois absorbing, Pr{[D = 1j1St = 0 = 1 Y t < t < T, and Pr [DT=0 I St = 0]1= 1.

So

T-1

Pt= 6 S'~P,*-- It < 0 for It < 0.
r=t+1

Proof of Proposition 14. (Sketch) By the agent's optimal stopping decision, -P° =

5 E [wt+1(St+i, S*) I S*]. We can prove (see Shiryayev [1978]) that the solution w to the

agent's optimal stopping functional equation

wt+1 = max(-P°+,, 6E wt.+1(St+ 2 , St+1) I St+1]

exists, is unique, and is the least 6-excessive majorant of' the -P&+1. In particular, since

P +1 <; 0 almost everywhere (by limited liability), we know that wt+1 -P +.1 2 0 a.e.

Therefore, -PP ;> -6P4+1 -E
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Appendix 2

Comparative Statics for Numerical Erample in Section 4

For the following examples, the parameters reported in the text are used as the "base

case"; one parameter at a time is varied.

The results of varying the total undiscounted investment cost (1) are shown in Figure

2.42 For an investment only slightly larger than 60, the efficiency cost increases rapidly.

At about I = 63.5, contracting becomes infeasible altogether, and the project is never

undertaken; yet the full information present value of such a project is about 39. Thus, it

turns out that Proposition 7, which states that some socially desirable projects will not be

undertaken if financing is external, is not a close question. The cost of the agency problem

is so high that, in this example, contracting is infeasible for a project which has a full

information excess rate of return of 66%.

Agency costs increase with the investment level because the value to the investor of

abandoning the project increases. Therefore, the investor wants to increase the termination

fee; i.e, as the abandonment option value increases, offer more to the firm to encourage

the firm's interest in abandonment. However, at the same time, a larger total investment

requires a larger promised completion payment from the firm to the investor (X 2 ), to

cover both the total investment and the expected value of the termination fee (which is an

investment in incentive alignment). Since the likelihood of project completion falls as the

completion payment increases, it eventually becomes impossible to increase the expected

value of the completion payment. Hence, a contract becomes infeasible.

The pressure on the completion payment to cover both total investment and the ter-

mination fee investment is evident in Figure 3. As the investment cost increases, the

termination fee initially follows, reflecting the increasing abandonment option value. How-

ever, at about I = 61, the termination fee begins to decline again, to ease the pressure on

the completion payment X2 to cover the investment cost, I.

42 The figures below show the effects of project parameters on efficiency cost as a percentage of the
first-best project value, to remove scale effects.
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The effect of the length of the project development period is shown in Figure 4. For this

figure, we varied the final date, r2 , while holding the relative length of the first period con-

stant (r 2/ri = 2). As r 2 increases, the efficiency cost increases, because the abandonment

option becomes more valuable.

The role of project riskiness is illustrated in Figure 5, which plots the efficiency cost

against the volatility parameter, a." It is not surprising that agency costs increase rather

rapidly with riskiness. For higher a, the likelihood of completion falls, increasing the

abandonment option value to the investor. In the example shown, contracting becomes

infeasible at rather mild values for a (about 0.23); the full information value of such a

second-best infeasible project is 42.6, which provides a 72% excess economic rate of return

on investment.

Other comparative statics are presented in Figures 6-9. As the date of the second

period investment, r1, is delayed (Figure 6), agency costs fall because the abandonment

option falls as its life shortens. The effects of the risk-free interest rate, r, and the expected

growth rate in St, a, have opposite signs (Figures 7, 8). Increasing the discount rate, r,

reduces the present value of the completion payrnent, X 2 , making it more difficult to

cover the project investment and termination fee, so the parties are less able to align their

incentives through the termination fee. Increasing a has precisely the opposite effect, as

well as making it relatively more likely that S2 will be high enough for the project to be

completed.

Somewhat surprisingly, the efficiency costs fall as the fraction invested in the second

period (#) increases (Figure 9). What is happening here is that the net present value of

total investment is declining as more is delayed until r1; thus, although the abandonment

option value is increasing, the investor is able to invest substantially more in the termina-

tion fee because there is more slack in the completion payment, X 2 . This is indicated in

Figure 10, which shows the termination fee increasing as a percentage of the present value

of the r1 investment.

48 An increase in e, is equivalent to an increase in riskiness in the Rothschild-Stiglits [1970] sense. See
Merton [1973].
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