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Abstract. Under, the usual convexity assumptions concerning
technology the tendency to diversify to reduce risk and the
tendency to diversify to achieve technological efficiency
reinforce each other. In nonclassical environments, where
technology may be nonconvex, these two goals may be in conflict.
We present several examples of this phenomenon and show how risk
sharing arrangements can eliminate this conflict. We also con-
sider the effects of introducing nonconcavities into the objective
function of certain resource allocation problems.
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One of the most fundamental lessons economists have learned in

their study of markets for sharing risk has concerned the benefits

of diversification. Indeed, diversification is the major route

through which risk sharing arrangements work to improve the overall

allocation of risk bearing. In the absence of an insurance market

each member of society may bear the risk of his house burning down;

when an insurance market is available, each member of society can

exchange this "concentrated" portfolio for one that offers a share

of everyone's risk of a fire. This "diversification" can lower each

individual's risk and thereby bring about a Pareto improvement in

social welfare.

Any phenomenon this general and far reaching deserves to

have some exceptions. In this paper we shall describe two interest-

ing classes of exceptions to the diversification principle. Each

involves, of course, a variation on the classical postulates. But

the variations seem to us to be quite plausible; and the circum-

stances where diversification is harful may be more common than

hitherto assumed.

1. Economies of Scale

In the usual analysis of the benefits of markets f or sharing

risk, the primary benefit of the risk sharing arrangements is a

utility benefit. The chief benefi: of an insurance market., for
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example, is usually taken to be the peace of mind it affords.

Similarly with a stock market: an entrepreneur is viewed as desiring

diversification of ownership due to the ricrement of expected utility

resulting from the reduction of the risk he has to bear.

Little attention has been paid to the productive benefits of

risk sharing arrangements. It isour thesis that in many cases -there

can be considerable increases in technological efficiency, resulting

from markets for risk sharing; these concrete benefits may be the

essential motivation behind many existing arrangements.

For example consider the rise of the stock market and the

corporation as economic entities. According to most accounts these

economic arrangements arose not as a way of diversifying existing

risk, but as a way of reducing the risk of new investments to

tolerable levels. The profitability of the East India trade was

apparent to all; but the risks were equally apparent. Only by

spreading these risks via stock markets and insurance markets could

the massive investments needed to launch such trade expeditions be

financed.

The case of ocean voyages brings out an essential feature of the

productive benefits of risk sharing arrangements we wish to discuss;

namely, the importance of economies of scale. The technology of

ocean trade involved a very definite element of increasing returns

to scale: a voyage halfway across the Atlantic was worth nothing; a

voyage across and back could be worth an immnense amount. But in

order to exploit these economies of scale some method of reducing

risk was needed.

Let us try to formalize this argument by means of a simple example,
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Let us use x to denote the amount of some input and w its price.

In the example given above we might think of x as the size of the ship

constructed as outfitted by some entrepreneur. The value of -the out-

put of this enterprise is given by

f (x)& + 6 (1)

where c and 6 are random variables with EE = 1 and E6 = 0. Hence f (x)

measures the expected value realized by a ship of size x.

Let us suppose that f(x) exhibits increasing returns to scale as

illustrated in Figure 1. What will be the efficient pattern of

production for this technology? What size voyages should be undertaken?

If we ignore the uncertainty aspect of the problem, it is clear

that the optimal size voyage is at x* as illustrated in Figure 2, that

is the point where average product equals marginal product. But will

this level of output be achieved by the functioning of a private market?

In the absence of markets for spreading or diversifying risk the

optimal scale may well not be attained. Suppose for example that a

single entrepreneur is determines output so as to maximize expected

utility of profit. Let u(W) be the entrepreneur's expected utility

function of wealth; we assume it has the conventional properties of

monotonicity and risk aversion (u'(W) > 0, u''(W) < 0 for all V). Then

the maximization problem becomes:

max Eu [f (x) - + 6 - wx] (2)

The first and second order conditions for this problem are:

Eu' (W) Ef' (x)c - w] = 0 (3)

Eu' (W) f"(xke + Eu'' (W) Ef' (x)c - w 9 Q (4)

Note that the second order condition is composed of two parts: the first

term is the technological effect - its sign depends on the sign of ft'(x)
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at the optimal scale of production. The second term is the utility

effect; under the assumption of risk aversion it is unabiguously

negative.

It can easily happen that the second term dominates the sign of

the expression so that the preferred operating position occurs where

f''(x) is positive - that is, in the inefficientregion of the production

function. This is illustrated in Figure 3.

Here the riskiness of the investment has induced the entrepreneur

to choose an inefficient scale of operation. He deliberately keeps

expected output low so as to reduce the level of risk he bears.

This type of inefficiency can be eliminated by various sorts of

risk sharing and risk pooling arrangements; indeed, it is this

opportunity for profit that stimulates the development of such institutions

for minimizing risk.

Let us distinguish two logically separate roles for risk minimizing

institutions. The first is that of risk sharing. This is simply the

fact that coalitions of entrepreneurs can form to share the risk of some single

investment activity. The second is that of risk pooling. This refers

to the fact that when several investment activities are available that

are not perfectly correlated one can reduce overall risk by invsting

in each of the projects; that is, part of the risk involved is eliminated

by portfolio diversification.

In actual economies both effects are present of course, and the

literature on risk bearing often treats the two phenomiena interchangeably.

However they are quite distinct concepts.

Let us first consider risk sharing. We will first

discuss the special case ~where 6 = 0, and later examine the more

general case. We suppose that entrepreneurs can pool their
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resources and each oncpurchase ash e of the invest ent being considered.

That is, each entrepreneur i can provide s w of the costs involved and

then reap sif(x)s of the output produced.

Hence the maximisation problem facing such a shareholder is simply

to determine how much of the risky investment to purchase.

mnaxFEu s.f(x) C- s.wx] (5)
L 1.

Si

Note that we are not considering any diversification behaviour on the

part of the shareholder; we are only concerned with the risk sharing

aspect of the problem of this stage.

Of course the stockholder cannot determine the optimal level of

share investment in the activity until he knows at what level the activity

itself is going to operate. This decision has to be made

jointly by all of the shareholders involved, but we can at least ask

what level any given shareholder would prefer if he had the dictatorial

power to arrange this decision.

Accordingly we differentiate shareholder i's expected utility

function with respect to si - his share of the profits - and x - the

scale of operation. We find the first order conditions:

Eu'(W) [f(x* s - t-7] = 0 (6)

Eu'(W) Ef'(x c - w] s" = 0(7

* *
Multiply the second equality by x Is . and subtract it from

the first to get:

Eu'(W)e[f(x ) - f'(x)/x*] = 0 (8)

Or,

f'(x) =f(x )/x (9)

Note that this result is independent of the utility function involved;

unanimously
hence all shareholders will/agree that the investment should be operated

at the technologically efficient level where marginal product equals



-6-

average product.

Note further that this result has nothing to do with diversification;

it is purely concerned with risk sharing arrangements. Unfortunately

once we leave the world of multiplicative uncertainty this simple feature

vanishes. Suppose for example that we return to the case where output

can be written as f(x) +- In this case the first order conditions

take the form:

Eu'(W) E[f(s) e + 6 - wx J = 0 (10)

Eu'(W) Cf'() E - wj 3s. = 0 (11)

These conditions can be combined to give:

Eu'(W) [E f(i) - if'(x) + 61 = 0 (12)

or

Eu'(W) C f( ) - Xf'(K)] = - Eu'(W)6 (13)

Since E6 = 0, the term or. the right is simply, the (negative of the)

covariance between marginal utility and 6. The concavity of u(W)

implies that this term is therefore positive, which in turn implies:

< f'() (14)

Or marginal product exceeds average product at the optimal level of

operation for individual i. Thus each investor will prefer that the

investment be undertaken at a scale tha: is too small from a technological

viewpoint. Of course investors will typically disagree about what

exactly the 'optimal" scale should be, since this will generally depend

on their expected utility functions. However they all agree that the

technologically efficient scale is too large'

Let us turn now to a description of the risk spreading effect.
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Now we suppose that there are several'ex ante identical investment

activities described by production functions of the form

f (x) c. + 6. i = 1, ... ,,m. We further assume that all of the random
1 1

variables e. and 6. are independently distributed across projects.
1 1

In this case it will pay each individual investor to diversity his

portfolio across the m firms. A typical individual's portfolio would

satisfy the maximization problem:

M

max EU (Es_ [f(x.) . - 6. - wx.J) (15)
1 L 1 1 1

i = 1
m

E si = 1 (16)
i=1

The first order conditions for this problem are just (10) and (11)

with X. = X and s. = A. The analog of (13) is:

Eu' (f (Xi) - i f' (ii) ) = -Eu'(W)0i (17)
1o 1 t 1h nd vTi s 'i.4 T T '

Now if the individual's optimal portfolio is highly diversified, and

all of the risks (e, 6.) are independent, 'then wealth will be nearly

certain. Hence

Eu' (W)6. u'(W)E 5 . = 0 (18)

Thus we find that the optimal level of investment is again

technologically efficient: average product equals marginal product.

This time the fact that diversification is possible plays an essential

role in the argument.

Note also that this result is independent of the form of the utility

functions. Each shareholder agrees about the scale operation of each of

the investments.

The argument is depicted in Figure 3. Since the risks are all

independent by assumption, the per capita production set society faces

is simply f(x). To operate most efficiently given this technology it
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pays to operate each investment at the optimal level x and simply

vary the number of investments to achieve any point along the indicated

straight line. If the returns to scale are sufficiently great the

increase in technological efficiency from the improved institutions

for risk bearing could be quite large.

2. Economies of Specialization

Our next example of the productive benefits of risk sharing can

be cast in an agricultural framework. Suppose that we have a large

number of identical farmers who can devote their resources to farming

corn or wheat. Let us suppose that there are some sort of economies

of scale (or other economies of specialization) so that the individual

production possibilities sets are concave, as in Figure 4, rather than

convex as is usually assumed. In the case illustrated, the farmer can

specialize in wheat and produce 100 bushels of wheat, or
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specialize in corn and produce 100 bushels of corn. But if he

produces 'both wheat and corn he ends up with only 40 bushels of each.

Thus the individual production possibility sets exhibit diseconomies

of scope or economies of specialization.

Society's (per capita) production possibilities set is quite

different: it is the convex hull of the individual's production set.

If we want to produce an average of 50 bushels of wheat and 50

bushels of corn per farm we simply have half the farms produce wheat

and half produce corn. If we want 75 bushels of wheat and 25 bushels

of corn per farm, we have three fourths of the farms produce wheat

and one fourth produce corn, and so on. For society as a whole any

combination along the indicated straight line is feasible. Where

society chooses to operate is of course determined by the tastes for

wheat and corn; one example is given in Figure 4.

But will the private market induce producers to operate in this

efficient manner? In the absence of uncertainty - or when markets

exist which can eliminate uncertainty - the answer is yes. If the

relative prices of wheat and corn are 1:1 specializing in wheat

or in corn is equally profitable and either option is-more profitable

than diversification. The market induces the optimal technological

choices even in the presence of nonconvexities.

When uncertainty is present the situation is considerably

different. Suppose for example that the price of cornp

and the price of wheat, p , are random variables. Let c be the

amount of corn produced by an individual farmer and w(c) the

corresponding maximal amount of wheat; i.e. w(c) is the boundary

of the production possibilities set.
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If a farmer behaves as an expected utility maximizer his problem

is:

mn.: Eu[pcc + pw(c)]

This has first and second order conditions given by:

Eu'(W){p + p w'(c)] = 0

ec w

Eu' (W)p w"(c) + Eu" (w)[p +p w' (c)] 2 = 0

w c w

Just as before the second order condition has two terms. Even if

economies of specialization are present (so that w"(c) > 0) the

risk averse behavior indicated by the second term may lead to an

interior optimum. The farmer is led to diversify in order to hedge

against fluctuations in income even though this leads to technological

inefficiency. (Figure 5.)

This tendency to diversify is quite strong, even in the face of

the adverse technological repercussions. In the Appendix we extend

Samuelson's (1967) argument that shows diversification generally pays

for an individual expected utility maximizer.

At the social level of course things may be rather different.

If the risk to the farmers can be eliminated or shifted to other

agents, an improved pattern of production can be brought about . In

the case described above, futures markets can be used to eliminate

the uncertainty about price fluctuations and thereby induce the

technologically advantageous specialization.
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3. The Desirability of Diversification

The previous example has indicated that specialization may be

desirable at the social level even though private interests indicate

diversification. This phenomena arises because of nonconvexities in

production.

Presumably a convex production set and a nonconcave objective

function would give the same result. Consider far example the case in which

production possibilities set is linear as in Figure 6 - i.e. constant

returns to scale prevails. Suppose however that the social objective

function is not of the proper shape: For example suppose it is

max [x 1 ,x 2 ]. In such a case the optimal policy involves specializa-

tion in x or x2'

When might such an objective function arise? One connon

circumstance is that of a race: where coming in first is all that

matters. Suppose for example that a firm is allocating resources to

several research projects in an attempt to'develop a new product

before its competitors. Then of course only the project that develops

the product first is relevant; only the winner matters.

Let us formalize this statement in the following way. Suppose

a firm is allocating funds to various projects; let x. be the

firm as Ex. = B. Each project produces output f (x ) and the

11

objective function of the firm is given by W(f(xt),...,fn(n)). The

resource allocation problem is then:

max W(f 1 (x ),. .. ,fn (n)

s.t. Ex.=B



When will the optimal solution involve specialization?

THEOREM 1. Suppose that W(y 1,... ,yn) is increasing and convex

as a function of (y 1 ,...,y ) and that each f . (x.) is a

convex function of x.. Then there is an optimal solution that involves
A.

* *
specialization: for some i, x. = B, x. = 0 for j # i.

Proof. Clearly all that we need show is that

VWx ,... ,x) = W(f 1 (x 1 ),....,f (x ))

is a convex function of (x 1 ,...,x ). But this follows directly from

the hypotheses:

V(tx + (1 t)x') = W[f (tx 1 + (1 - t)x'),...,f (tx + (1 - t)x'))
1 ''1 'n n n

= W[tf 1 (x1) + (1 - t)f 1 (x'),...,tz (x )
I 11 1n n

+ (1 - t)f (x')]n n

= tW[f (x ),...,f (x)]
t 1 n n

+ (1 - t)W[f1 (x'),...,f (x')]-

= tV(x 1 ) + (1 - t)V(x') D

The above (trivial) argument establishes the .desired result:

when the objective function is convex and the production functions are

convex, specialization is optimal. Note that only wieak convexity

is needed: a linear welfare function and linear production functions

are perfectly compatible with the above result.
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Now let us ask how this result might be modified in the presence

of uncertainty. There is an intuition that suggests that if

uncertainty is present, it might pay to diversify: to hedge one's

bets so that complete specialization is not desirable.

Let us model this in a rather general way by writing production

functions as dependent on n random variables (E,... ,c) with

joint probability density g(c ,...,E ). The social objective

function now becomes:

EW~f1 (x 1 ,E),...,f (x ,E)) = fW[f(X ,E),...,f (x ,E )]g(c ,...,c )de,.de
11 nn n l l

We now have the main result of this section:

THEOREM 2. Suppose that the hypotheses of Theorem 1 hold for each

realization of (E,...,En). Then there is an optimal solution x*

that involves specialization.

Proof. Simply note that for each realization of (c ,

V(x ,...,x ) is a convex function by Theorem 1. But a weighted

average of convex functions is stillconvex. Hence the result.D

The proof of Theorems I and 2 are mathematically trivial but

surprisingly nonintuitive. Let us illustrate this result in one

simple case. (This case was originally examined in Nalebuf f (1980)

who proved th at in this situation specialization was desirable.

Theorem 2 resulted from our attempt to generalize this result.)

i ixi+i
Suppose that output of project i is given by y = a x + b
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i j
where a and b are random variables. Suppose that only the

winner matters so that the social objective function is

W(y ,---,yn) = max [y 1 ,...,y ). Then the hypotheses of Theorem 2

are satisfied and the optimal policy involves specialization. In

fact in this case the policy is especially simple: we just compute

the overall unconditional expected values of output resulting from

specialization:

y= aB + b.

and then choose to specialize in that activity with the highest

expected output. In general we will not want to "hedge our bets" and

diversify.

It seems noniitnitive that we will never want to diversify but

on reflection it becomes clear: diversification is implied by the

convexity of the constraints or the concavity of the objective

function. If these conditions are not met, diversification is not

necessarily optimal.

This simple point can have some interesting consequences for

resource allocation. In the absence of a social planner who

omisciently chooses optimal behavior, decisions must be made by

individuals - who may or may not have the same objective function as

society. It seems that there can be errors of two sorts: society has

a convex objective while the individual's objective function is

concave, or vice versa.

As an example of the first case, 'consider research. Society does

not really care whether there is a second firm to discover a new piece

of technology: only the winner matters. Yet individual rewards to
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research directors may be such as to encourage diversification. The

opposite kind of distortion may occur with political decisions: since

winning is much more highly rewarded than coming in second, overly

extreme social policies may be promulgated. Even though social

welfare may be concave in the relevant variables the convex nature of

the individual rewards could lead to inappropriate decisions.
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The farmer's maximization problemis given by :

max Eu[p cc + pWw)

s.t. w = f(c)

We want to find conditions under which the optimal solution has

* *
c > 0, w > 0, that is under which some diversification is deemed

desirable. Let us suppose then that we are currently operating at the boundary

c = 1, w = f(c) = 0 and that we contemplate a feasible change

Ac < 0, Aw > 0. The change in utility will be:

Au = Eu' (P c)pcAc + Eu' (pec)p Av

Define:

m

Pc

p w

= Eu (pcc)

E~c

= Ep

anc = coy (u' (p c),pcGmc c c

T = coy (u'(p c),p )mw c -w

Tnen using the standard covariance identity that

EXY = cov (X,Y) + (EX) (EY) we can rewrite the expression for Au

as:

mc c cc w
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Consider the sign of each of these three terms. First c

mc

move in opposite directions; since oc < 0, cT cAc is positive. The

sign of the second term depends on the covariance between pw and

pc. If they are nonpositively correlated, we will have CS = 0.

Thus 0 v will also be positive.

The sign of the last term depends on the expected profitability

of the change. As long as p/P exceeds the marginal rate of

substitution - Au/dc the last term will also be positive.

Hence the sign of AU will be sure to be positive when the

expected profitability is positive, but even if the expected profits

are negative the gain from the reduction in risk nmay induce some

amount of diversification.
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1. This result is of course closely related to DiamondTs result that

a competitive stock market is pareto efficient under multiplicative

uncertainty.
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