

The Quarterly Journal of
The Indian Economic Association

WHO DESTABILIZES PRIMARY PRODUCT PRICES?

R. C. Porter

Errata

Page	Paragraph	Line	For	Read
389	2	6	opposite is	opposite -- is
391	1	14	(i.e., Q_{t})	(i.e., $\overline{\mathrm{Q}}_{t}$)
391	2	17	component will	component that will
392	2	4	$d_{t}=\left(\ln Q_{t}-\ln \bar{Q}_{t}\right)$	$q_{t}=\left(\ln Q_{t}-\ln \bar{Q}_{t}\right)$
392	2	5	$P_{t}=\left(\ln P_{t}-\ln \bar{P}_{t}\right)$	$P_{t}=\left(\ln P_{t}-\ln \bar{P}_{t}\right)$
398	fnl 8	4	σ_{2}	σ^{2}
398	fnl8	7	$\text { (i.e., } R_{p q}^{2}$	(i.e., R_{pq}
398	fn18	7	If $\mathrm{R}_{\mathrm{Pq}}^{\mathbf{2}}$	If R_{pq}
401	Column 4	Median (All Comm.)	9.00\%	9.84\%
405	Column 8	Beef and Veal	4.23*	4.33*
407	Column 4	Synthetic Rubber	11.20	11.20*
409	2	5	$\left(\sigma_{P P}\right)$	$\left(\sigma_{P P}^{2}\right)$
412	fn36	5	approaches zero	approaches infinity

WHO DESTABILIZES PRIMARY PRODUCT PRICES?

Instability in the prices of primary product exports has long been considered a serious problem to the underdeveloped countries. hampering their efforts to plan efficiently for accelerated and selfsustained economic growth. ${ }^{1}$ The causes of this greater instability are seen as 1) the relative price inelasticity in the short run of both the supply and demand schedules, and 2) the relative instability of either or both of these supply and demand schedules. Whether the cause of resulting fluctuations of primary products is predominantly the demand fluctuations or the supply fluctuations is a question about which there is much opinion but little conclusion in the literature.

Those who place the blame largely upon the advanced countries (..e., upon fluctuations of the demand curve) rely upon the experience of the 1930's and upon numerous U.N. studies during the past decade and a half. Unfortunately, the U.N. method-of blaming demand when price and quantity move in the same direction, and blaming supply when in the opposite is not satisfactory as a method, ${ }^{2}$ and it is far from indisputable that prices and quantities of primary products have generally moved in the same direction, once trend is removed. ${ }^{3}$

Those who place the blame largely upon the primary-productexporting countries (i.e., upon fluctuations of the supply curve) rely upon the argument that the business cycle has become (or is becoming) a phenomenon of the past. Even if this optimistic view were true, however, fluctuations in the demand curves of particular primary products may still occur. Absence of recession is not the same thing as absence of variation in the "boominess" of booms; technological change affecting raw material use is generally discontinuous;

[^0]speculation can turn small demand changes into large price variations; commercial policies of advanced countries change sporadically; etc.

The debate is, in the end, in need of empirical evidence. Such evidence can come from two directions: detailed case studies of the price, quantity, demand, and supply fluctuations of particular commodities; and from cross-commodity studies where a single, simple approach is applied simultaneously to a variety and number of primary products. This paper attempts the latter. On the basis of explicit supply-and-demand assumptions (Section I), the actual fluctuations since World War II in the prices and quantities of 46 commodities (Section II) are converted into estimates of the implied fluctuations in the underlying supply and demand curves (Section III). Finally, how much price fluctuation would have occurred in the absence of the demend fluctuation or in the absence of the supply fluctuation is estimated (Sections IV and V).

The basic conclusion is that, for a great many commodities, it is incorrect to blame price fluctuations on either demand or supply unless very specific assumptions can be made about the short-run price elasticities of demand and/or supply. For broad ranges of these elasticities, however, two generalizations are suggested. One, if these short-run price elasticities are typically low, as current convention. claims, then the fluctuations of supply and demand are highly (positively) correlated for many commodities, with the result that removal of one or the other source of instability fails to reduce the price fluctuation much-and in fact often increases it. Under the circumstances, for over half the commodities studied, price instability has been caused by both supply and demand instability and in such a manner that the "blame" cannot be allocated between them. And two, if the correlation between demand and supply fluctuations is believed to be typically near zero, then either or both of the short-run price elasticities of supply and demand must be well above unity for many commodities. Under these circumstances, for about half-the commodities studied, supply fluctuations have been the dominant cause of price fluctuations, and for most of the remaining commodities neither supply nor demand is the clear dominant cause of instability.

I. Technique

The procedure used here to move from knowledge of price and quantity fluctuations to estimates of demand and supply fluctua-
tions is simple. ${ }^{4}$. It is based upon an assumption that the demand (or supply) function for a primary product can be separated into two components, one of which depends solely upon trend characteristics and the other solely upon deviations from trend characteristicsthis latter component including both the economically explicable and the residual (i.e., random or inexplicable) influences. The demand function of some primary product can then be expressed:

$$
\begin{align*}
\mathbf{Q}_{t} & \doteq\left\{\bar{Q}_{t}\right\}\left\{Q_{t} / \bar{Q}_{t}\right\} \tag{1}\\
& =\left\{f_{d}\left[\bar{P}_{t}, \bar{X}_{t}, \ldots\right]\right\} \quad\left\{g_{d}\left[P_{t} / \bar{P}_{t}\right] \cdot e^{d_{t}}\right\}
\end{align*}
$$

where P_{t} represents the price of product in time t, Y_{t} real income of those countries which demand the product, and the bars over the variables indicate trend values (somehow estimated) of the variables. The function, $f_{d}[\ldots]$, is the trend component, and it "explains" the trend levels of demand (i.e., Q_{t}); only the components in the second brackets-whose contents will be discussed shortly-are relevant for explaining a deviation of the quantity demanded from the trend (i.e., Q_{t} / \bar{Q}_{t}). It is this deviations-from-trend component will be analysed in this paper. The basic demand equation is:
(2) $\quad Q_{t} / \bar{Q}_{t}=g_{d}\left[P_{\imath} / \bar{P}_{t}\right] \cdot e^{d_{l}}$
where the function, $g_{d}[\ldots]$, captures the short-run influence of price changes upon demand, and where the second term, $e^{d_{t}}$ is the residual demand-curve-shift element which summarizes all causes of demandcurve deviations from trend other than own price deviations.

Thus, in the short run, all influences upon the demand curves other than short-run price elasticity reactions are relegated to the "residual" (i.e., $\mathrm{e}^{\mathrm{d}_{\mathrm{t}}}$. This is not simply a matter of convenience. It would be quite unfair to blame demanders for instigating instability in a primary product market if the quantity demanded changed as a reasonable response to a price change. The cause of instability must be a shift in the demand (or supply) curve and not merely a movement along it. Equation (2) captures this distinction: the function, $f_{d}[\ldots]$, treats short-run movements along a demand curve, while the other elements, $e^{d_{t}}$, comprises all the forces which bring about short-run shifts in the demand curve. The precise composition of these forces need not be studied since, however dissimilar they are

[^1]from some viewpoints, they are identical for present purposes in that all tend to "cause" price fluctuation by shifting the demand curve.

Taking the natural logs of equation (2) yields:
(3) $\mathrm{d}_{\mathrm{t}}=\mathrm{q}_{\mathrm{t}}+\eta \mathrm{p}_{\mathrm{t}}$
where:

$$
\begin{aligned}
& d_{t}=\left(\ln Q_{t}-\ln \bar{Q}_{t}\right) \\
& \mathrm{F}_{\mathrm{t}}=\left(\ln \mathrm{P}_{\mathrm{t}}-\ln \overline{\mathrm{P}}_{\mathrm{t}}\right) \\
& \eta=\text { short-run price elasticity of demand (defined positive). } \\
& \mathrm{d}_{\mathrm{t}}=\text { the residual short-run demand-shift element. }
\end{aligned}
$$

Similarly, it is possible to derive a short-run supply curve relation:
(4) $\mathrm{s}_{\mathrm{t}}=\mathrm{q}_{\mathrm{t}}-\varepsilon \mathrm{p}_{\mathrm{t}}$
where ϵ is the short-run price elasticity of supply, and s_{t} the residual short-run supply-shift element.

Equations (3) and (4) provide the basis of the paper. The procedure is as follows. In Section II, the deviations of (the natural logs of) quantity and price from their trends (q_{t} and p_{t}) are calculated for each product. In Section III, various values are assumed for the short-run price elasticities of demand (η) and supply (ε); with these values for q_{t}, p_{t}, η, and ϵ, estimates of the residual elements of the demand curve $\left(d_{t}\right)$ and the supply curve (i_{t}) are made. And in Sections IV and V, again for various values of the short-run price elasticities (η and ϵ), estimates are made of the extent to which price would have deviated from its trend value if various hypothetical (i.e., other than actual) demand or supply shifts had occurred. This last method is more clearly seen once equations (3) and (4) are solved explicitly for p_{t} :

$$
\begin{equation*}
p_{t}=\frac{d_{t}-s_{t}}{\eta+\varepsilon} \tag{5}
\end{equation*}
$$

Just as actual fluctuations in price (p_{t}) and quantity $\left(q_{t}\right)$ imply something about demand $\left(d_{t}\right)$ and supply $\left(s_{t}\right)$, given assumptions about price elasticities (η and ε), so also do hypothetical values for d_{t} and/ or s_{t} imply something about p_{t}, again given assumptions about η and ε.

It will be convenient to refer to p_{t}, q_{t}, d_{t} and s_{t} as " percentage deviations from trend," althongh this is not strictly accurate. For example, q_{t} 'can be expanded:
(0) $q_{t}=\ln Q_{t}-\ln \bar{Q}_{t}$

$$
=\left(\frac{\mathbf{Q}_{t}-\bar{Q}_{t}}{\bar{Q}_{t}}\right)-\frac{1}{2}\left(\frac{Q_{t}-\bar{Q}_{t}}{\bar{Q}_{t}}\right)^{2}+\frac{1}{3}\left(\frac{Q_{t}-\bar{Q}_{t}}{\bar{Q}_{t}}\right)^{2}-\cdots
$$

Since, for most commodities, the deviations from trends (of $q_{t}, p_{t}, d_{t} o r s_{t}$) are generally small, it introduces little more than semantic inaccuracy to refer to them as the "percentage deviations from trend" of quantity (q_{t}), price (p_{t}), demand curve intercept $\left(d_{t}\right)$, and supply-curve intercept $\left(s_{t}\right)$. The use of the word "intercept" in the preceding sentence (and hereafter) is also not strictly accurate, since constant-elasticity functions do not reach the axes. ${ }^{6}$ For small deviations, however, d_{t} (or s_{t}) does represent the percentage by which actual Q_{t} demanded (or supplied) will differ from what would have been demanded (or supplied) if d_{t} (or s_{t}) had been zero.

There are almost as many ways of measuring the trend implicit in a collection of time-series data as there are economists to attempt the measurement. Without pretense that the techniques are in some way better than possible alternatives, two measurements of trend (i.e., of \bar{Q}_{t} and \bar{P}_{t}) will be used throughout this paper. One, the least-squares regression of the natural logs of Q_{t} or P_{t} on t, and two, the three-year moving average of Q_{t} or $P_{t} .{ }^{7}$ Both procedures have the basic advantage that they prevent the attribution of secular rises and falls to instability of schedules. One reason for considering two fairly different kinds of trend-removal is simply to gain reassurance that the results of the paper are not completely dependent upon the form chosen for the trend. ${ }^{8}$ The other reason is more concerned with economics. The simple least-squares trend must relegate to the residuals any short-term cyclical variation in price or quantity, while the three-year moving average will label as trend at least some of such cyclical movements.

The concern of this paper is with the allocation of blame for price fluctuations. To many people, the real villain is revenue fluctuations, and these latter are a compound of price and quantity fluctuations. Blame for revenue fluctuations falls quite heavily upon demandalmost inevitably-since demand fluctuations move ${ }_{\text {price }}$ and quantity in the same direction while supply fluctuations cause partially offsetting movements of price and quantity.
s The true percentage deviation will always be somewhat higher because of the neglected terms; for example, if q_{t} were $0.200,\left[\left(Q_{t} \cdot \bar{Q}_{t}\right) / \bar{Q}_{t}\right]$ would actually be 0.221 .

- Except under special circumstances.
? This latter procedure enuses the loss of two observations. Since there are never more than 17 annual observations, the possible use of a longer moving average was rejected.
s There is also the danger that the results are highly dependent upon the choice of years. Sufficient cases of dropping the initial and/or terminal year, ot years, were examined to indicate that this is not so.

In summary, it is important to keep in mind throughout the paper what is being implicitly included in these residual demand-shift and supply-shift elements (d_{t} and s_{t}): for demand, all erratic (i,e., nontrend) changes owing to business conditions, technology (as concerns raw material use), consumer taste, inventory policies, import restrictions, speculation, erroneous price forecasts, etc.; and for supply, all erratic changes owing to weather, supplier irrationality, government policies (including any distortion of the relation between internal and world prices), lagged or unsystematic supply responses, unjustified price expectations, etc. Also, it must be realized that many of the ingredients of these residuals are susceptible to neither private nor public remedy, nor are they necessarily the result of error or design, so even a successful allocation (between the demand residuals and the supply residuals) of the "blame" for price instability does not necessarily imply anything about the best way to reduce this instability. Finally, it must be remembered that the measurement of these residuals depends upon the accuracy of the two basic assumptions, of separability and of the constancy of short-run price elasticities. The measured residuals will be rendered incorrect by the failure of either, ${ }^{9}$ and the results of the paper must be accordingly discounted-though by how much cannot be known.

II. The Price and Quantity Fluctuations

The fluctuations of 46 commodities were studied over the postWorld War II years. ${ }^{10}$ After two trends (i.e., least-squares regression and three-year moving average) and the deviations of price and quantity from them were calculated, the average absolute deviation (hereafter AAD) of price and quantity from each trend was derived, along with the correlation between these price and quantity deviations. This information is presented in Table $1 .{ }^{11}$

For over half (i.e., 25) of the 46 commodities, the price fluctuations $\left(A A D_{p}\right)$ exceed the quantity fluctuations $\left(A A D_{q}\right)$, but this outcome is very dependent upon the data for minerals. Typically, both $\mathrm{AAD}_{\mathrm{p}}$ and $\mathrm{AAD}_{\mathbf{q}}$ are around 10% when deviations from the least-

[^2]squares trend are considered and around 5% when deviations from the moving average are considered. This result is plausible since cyclical movements are more fully captured in the deviations from a least-square trend. ${ }^{12}$ The size of the fluctuations seems generally less, even for the least-squares trend, than is commonly thought, although for some commodities either or both of $\mathrm{AAD}_{\mathrm{p}}$ and $\Lambda A D_{q}$ are quite large.

The coefficients of correlation between the deviations of price and quantity (R_{pq}) have been calculated because they are believed by the U.N. to indicate whether demanders or suppliers are primarily responsible for the fluctuations. ${ }^{13}$ Although the U.N. technique is correct only under special conditions, ${ }^{14}$ it should be noted that, for over two-thirds of the primary products, R_{pq} is negative, suggesting that supply-curve fluctuations are the dominant cause of instability. In fact, as will be seen in the next section, when supplycurve fluctuations "clearly" exceed demand-curve fluctuations, $R_{p q}$ will be negative, but the converse is not generally true.

The commodities in Table 1 are listed, for each of the three groups, in increasing order by the fraction of the total world exports made by Western Europe and North America (over 1959-61). There is little tendency for either $A A D_{p}$ or $A A D_{q}$ to change systematically as one moves down the commodities of Table 1 (within each group) from the primary products largely exported by the less advanced countries to those largely exported by the more advanced countries. There is, however, a strong tendency for $A A D_{p}$ to exceed $A A D_{q}$ among the products chiefly exported by the less advanced countries, and vice versa among those of the more advanced. For 22 of the 32 commodities principally exported by countries other than those of North America and Western Europe, ${ }^{15} \mathrm{AAD}_{\mathrm{p}}$ exceeds $\mathrm{AAD}_{\mathrm{q}}$, while for 11 of the other 14 commodities, the reverse is true. A complete explanation of this phenomenon is beyond the scope of this paper, but it suggests either greater short-run price elasticity of supply (and possibly demand) of the primary products of advanced countries or that the Prebisch center-periphery dichotomy-whereby it is mainly the periphery's primary product prices and the center's manufac-

[^3]
Table 1

Price and Quantity Fluctuations
AAD $=$ Average Absolute Deviation
$\mathbf{R}=$ Correlation Coefficient
(\mathbf{p}, \mathbf{q} subscripts refer to price and quantity deviations, respectively)

Commodity	Years of Data Coverage	Least-Squares Trend			3-Year Moving Average		
		$\mathrm{AAD}_{\mathbf{q}}$	$\mathrm{AAD}_{\mathbf{p}}$	$\mathbf{R p q}$	$\mathrm{AAD}_{\mathbf{q}}$	$\mathrm{AAD}_{\mathbf{p}}$	$\mathbf{R p q}^{\text {q }}$
(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)

I. Food, Beverages, and Tobacco

Coffee	1947-63	5.23\%	27.80\%	-. 67		4.25\%	5.01\%	$-.83$
Cocoa	1047-63	$7 \cdot 46$	$20 \cdot 29$	-.62		4.63	$11 \cdot 18$	$-.75$
Tea	1947-62	$5 \cdot 29$	$7 \cdot 80$	-.02		$5 \cdot 46$	$4 \cdot 29$	-08
Bananas	1947-63	$4 \cdot 80$	$4 \cdot 42$	-29		1.53	$1 \cdot 10$	-. 08
Mutton \& Lamb	1947-62	$8 \cdot 84$	$12 \cdot 42$	-. 07		$8 \cdot 28$	$4 \cdot 54$	-. 31
Sugar	1947-62	4.22	$5 \cdot 88$	-. 18		$4 \cdot 32$	$3 \cdot 83$. 08
Rice	1947-62	$0 \cdot 92$	$8 \cdot 53$	-.14		$4 \cdot 10$	$4 \cdot 16$	-. 06
Beef \& Veal	1047-62	17.78	$7 \cdot 33$	-.79		$3 \cdot 70$	$4 \cdot 29$	-. 51
Tobacco	1947-02	$4 \cdot 04$	$3 \cdot 08$	-. 32		$3 \cdot 60$	1.60	. 45
Oranges \& Tang.	1948-62	$8 \cdot 19$	$8 \cdot 07$	-. 83		$4 \cdot 20$	$4 \cdot 22$	-.71
Maize	1947-63	$20 \cdot 35$	$8 \cdot 57$	-. 14		$5 \cdot 88$	$5 \cdot 84$	-. 54
Wheat	1947-62	$9 \cdot 89$	$7 \cdot 08$	-36		$6 \cdot 87$	$3 \cdot 31$	- 52
Barley	1947-33	$20 \cdot 39$	$12 \cdot 39$	-.33		6.59	0.25	- 36
Pork	1050-61	14.52	$6 \cdot 34$. 02		13.03	3.48	-42
Median (Group I)		8.26\%	7.94\%	- 10		4.48\%	4.26\%	$-.0 \pi$

Scsame Secd	1950-61	16.53\%	9.74\%	-. 08	12.72\%	4.6.4\%	-.78
Palm Oil	1947-6\%	6.81	$10 \cdot 50$. 05	$2 \cdot 75$	6.88	-. 14
Copra, Coconut Oil	1947-62	8.67	11-98	-. 48	$4 \cdot 47$	9. 19	-. 16

Groundnuts, Oil	1947-62	11.08	8.58	. 0.4	$4 \cdot 12$	6.22	- $\cdot .40$
Palm Kernels, Oil	1947-63	$9 \cdot 60$	$12 \cdot 24$	-14	$2 \cdot 86$	6.65	$-.43$
Butter	1950-62	$6 \cdot 37$	$10 \cdot 24$	-. 08	$3 \cdot 92$	$4 \cdot 62$	- 18
Linseed, Oil	1947-62	$19 \cdot 18$	17.77	-.64	- $15 \cdot 13$	$8 \cdot 92$	-60
Cotton Seed, Oil	1950-62	$31 \cdot 27$	$8 \cdot 56$	$-\cdot 58$	14.94	7.01	-. 37
Oliver Oil	1947-63	$21 \cdot 88$	$14 \cdot 81$	-.61	21.28	$7 \cdot 13$	-. 51
Rapesced, Oil	1950-61	$21 \cdot 66$	$8 \cdot 03$	-30	11-40	6.68	-. 27
Soya Beans, Oil	1947-62	$29 \cdot 94$	$10 \cdot 35$	$-.54$	$17 \cdot 99$	$8 \cdot 01$	-. 23
Tallow	1950-60	11.90	$14 \cdot 77$	-. 70	$6 \cdot 58$	$10 \cdot 37$	-.72
Lard	1950-62	$10 \cdot 49$	$12 \cdot 41$	- 24	$7 \cdot 11$	10.98	-30
Mcdian (Group II)		11.99\%	10.56\%	-. 08	7.11\%	7.01%	-.37
III. Industrial Materials							
Natural Rubber	1947-62	5.47\%	21.37%	- 79	3.76\%	12.60\%	-31
Tin Concentrates	1950-62	8.42	9.97	-. 20	$5 \cdot 30$	4.32	$-.07$
Abaca	1950-62	$7 \cdot 77$	$16 \cdot 76$	-. 13	$5 \cdot 80$	$6 \cdot 89$. 71
Jute	1947-62	15.29	14.29	- 08	7.78	$7 \cdot 96$	-36
Crude Petroleuns	1950-62	$3 \cdot 08$	2.70	- 03	1.48	1-34	-. 09
Sisal, Other Agaves	1950-61	$5 \cdot 33$	24.20	-. 13	3.08	$8 \cdot 39$	- 00
Bauxite	1950-61	$5 \cdot 48$	$1 \cdot 72$	-. 01	$2 \cdot 80$	1-13	-. 28
Wool	1950-63	$5 \cdot 90$	$12 \cdot 05$	-.73	3.46	10.54	-.65
Tungsten Ore, Cone.	1950-61	$22 \cdot 29$	$33 \cdot 25$	-71	$7 \cdot 25$	11.98	-.81
Lead Ore	1950-62	$10 \cdot 19$	$12 \cdot 69$	- 25	$3 \cdot 05$	$6 \cdot 77$	-. 51
Tin Metal	1050-62	5.82	$10 \cdot 85$	$-.56$	$4 \cdot 30$	$4 \cdot 48$	-. 48
Lead Metal	1950-62	$5 \cdot 39$	$11 \cdot 58$	-. 62	$3 \cdot 73$	$6 \cdot 34$	$-.63$
Copper Metal	1950-62	4.33	12.55	-. 44	3.79	$6 \cdot 43$	--. 28
Zinc Ore	1950-62	$5 \cdot 73$	$11 \cdot 73$	- 48	2.66	7-16	- 75
Cotton	194,7-63	9-14	11.64	-23	$5 \cdot 18$	10.02	$\therefore .82$
Solid Fuels	1950-62	$7 \cdot 74$	$5 \cdot 52$	-18	3.57	$2 \cdot 06$	--52
Zirc Metal	1950-62	$5 \cdot 40$	15.64	-. 42	$3 \cdot 41$	$7 \cdot 98$. 07
Aluminum	1950-62	6.64	$5 \cdot 61$	-. 37	$5 \cdot 64$	$2 \cdot 07$	-15
Synthetic Rubber	1950-62	15.75	6.64	-. 83	8.06	$2 \cdot 29$	-. 72
Median (Group III)		5.99\%	11.73\%	$-\cdot 13$	3.79\%	6.77\%	-. 28
Median (All Commodities)		8.91\%	$10 \cdot 71 \%$	-14	4.52%	6.30\%	-.28

tured quantities that fluctuate cyclically ${ }^{16}$-rests on something more basic than the difference between industrial and primary production.

Most studies of primary product prices either stop at this point or analyse further these or similar statistics about the fluctuations of prices and quantities. Such studies have value for many purposes, but nothing really interesting can be said about the sources of price fluctuations until the price and quantity (or earnings) fluctuations are linked-as they will be in the next section-to underlying demand and supply movements.

III. The Implied Demand and Supply Fluctuations

The deviations of price and quantity from trend, together with an assumption about short-run demand (supply) price elasticity, permit an estimate of the deviation from trend of the demand (supply) curve intercept. These intercept-deviation estimates are, however, extremely sensitive to the demand elasticity (η) or supply elasticity (ε) assumed. When zero elasticities are assumed, the estimated average absolute deviation of the demand curve intercept $\left(\mathrm{AAD}_{\mathbf{d}}\right)$ or of the supply curve intercept $\left(\mathrm{AAD}_{s}\right)$ is simply the average absolute deviation of quantity $\left(\mathrm{AAD}_{\mathrm{q}}\right){ }^{17}$ as given in Table l. As the assumed values of η and ε are raised, generally the estimate of either $A A D_{d}$ or $A A D_{s}$ declines initially and later rises, while the other rises continually. ${ }^{18}$ Almost any large value of $\mathrm{AAD}_{\mathrm{d}}$ (or $\mathrm{AAD}_{\mathrm{s}}$) can be estimated if a sufficiently large η (or 6) is assumed.

16 For example, "The prices of primary products rise more rapidly than industrial prices in the upswing, but also they fall more in the downswing..." [0], p. 6.

17 As inspection of cquations (3) and (4) shows.
18 This phenomenon is more easily explained in terms of variance. From equation (3), the variance of d_{t} can be derived:
(7) $\sigma_{\mathrm{dd}}^{2}=\sigma_{\mathrm{qq}}^{2}+2 \eta \sigma_{\mathrm{qp}}^{2}+\eta^{2} \sigma_{\mathrm{pp}}^{2}$

Where σ_{2} represents variance (or covariance) of the subscript variables.
When $\eta=0, \sigma_{d d}^{2}=\sigma_{\mathbf{q q}}^{2}$. As η rises from zero, $\sigma_{d d}^{2}$ rises or falls depen-
ding on whether $\sigma_{\mathbf{q p}}^{2}<0$, or in other words, depending on whether the correlation between p and q (i.c., $\mathbf{R}_{\mathrm{pq}}^{2}$ in Table 1) is positive on negative. If $\mathbf{R}_{\mathrm{pq}}^{\mathbf{2}}$ ia negative, $\sigma_{d d}^{2}$ will fall until :
(8) $\eta=-\mathrm{kR}_{\mathrm{pq}}$
where $\mathrm{k}^{2}=\sigma_{q q}^{2} / \sigma_{\mathrm{pp}}^{2}$ Thereafter (i.e., for futher increases in η), σ_{dd}^{2} will rise. The same holds for the supply curve, mutatis mutandis, with the relevant sign of $R_{p q}$ reversed. The $A A D$ behaves in the same fachion as the standard deviation.

As a result, if one cannot specify the plausible range of the short-run price clasticities of supply and demand beyond ""zero to infinity," almost nothing can be said about the implied values of $\mathrm{AAD}_{\mathrm{d}}$ and $\mathrm{AAD}_{\mathrm{s}}$. The more narrowly the ranges of η and ε can be specified, the more narrow the implied range of $A A D_{d}$ and $A A D_{a}$: The analyst's problem is to choose (for η and ϵ) a sufficiently small range to permit meaningful conclusions about $\mathrm{AAD}_{\mathrm{d}}$ and AAD_{s} but a sufficiently large range that the true values of η and ε are contained. Since detailed analysis of the demand and supply conditions of each of the 46 primary products is beyond the scope of this paper, we will consider the same (and hopefully, to the reader a plausible) range for all products. Basically, both the short-run price elasticities of demand and of supply are assumed to be between 0.2 and 1.0 for each product. A narrower range, between 0.2 and 0.6 , is also considered (parenthetically in columns (10) and (11) of Table 2).

The range of implied values of $A A D_{d}$ and $A A D_{s}$ (for η and ϵ between 0.2 and 1.0) are given in Table 2, in columns (2) through (5) for deviations from the least-squares trend and in columns (6) through. (9) for deviations from the three-year moving average. In columns (10) and (11), a dash (-) indicates that no definite statement can be made about the relative magnitudes of $A A D_{d}$ and $A A D$; $a>$ or $<\operatorname{sign}$ indicates, for any values of η and ε within the assumed range, that the $\mathrm{AAD}_{\mathrm{d}}$ is definitely greater than or definitely less than $\mathrm{AAD}_{\text {s }}$ respectively. ${ }^{10}$

The range of implied values of $A A D_{d}$ and $A A D_{s}$ is, not unexpectedly, much lower for deviations from the moving average than for deviations from the least-squares trend. Moreover, the implied valucs of $A A D_{s}$ are typically larger than the implied values of $A A D_{d}$. Thus the fluctuations in supply curves, from either trend, have generally been larger than fluctuations in demand curves. But not by very much. The range of implied values of $\mathrm{AAD}_{\mathrm{s}}$ typically begins and ends about 1% higher than that of $\backslash \mathrm{AD}_{\mathrm{d}}$, but there is usually a great deal of overlap.

In fact, for the larger range (i.e., $0.2<\eta, \epsilon<1.0$), there are only 12 products (for the least-squares trend) and 18 products (for the three-year moving average) for which it can be established that AAD_{s} is definitely either larger or smaller than AAD_{8}, If the narrower range (i.e., $0.2<\eta, \varepsilon<0.6$) is acceptable then it can be established for about two-thirds of the commodities that demand

[^4]Table 2

Implied AAD of Demand and Supply

(d, s subscripts refer to demand and supply, respectively)

Commodity(1)	Least-Squares Trend				3-Year Moving Azerage				$\begin{aligned} & \text { Definitely } \\ & A . A D>A A D \\ & d<A \end{aligned}$	
	Inıplied AADd		Implied $\mathrm{AAD}_{\text {s }}$		Implicd $\mathrm{AAD}_{\text {d }}$		Implied $\mathrm{AAD}_{\text {s }}$		L-Sq. Trend (10)	3-Yr. M.A. (11)
	From (2)	To (3)	From (4)	To (5)	From (6)	To (7)	From (S)	To (9)		
I. Food, Beverages, and Tobacco										
Coffee	4.29\%	56.44\%	10.03\%	22.34\%	2. 2.5%	3.47\%	5.11\%	8.57\%	-	$<$
Cocoa	6.34	15.03	10.47	26.22	$2 \cdot 99$	$8 \cdot 96$	6.87	15.81	(<)	(大)
Tea	$5 \cdot 41$	$9 \cdot 24$	5.18	9.27	$5 \cdot 51$	$6 \cdot 47$	$5 \cdot 42$	$5 \cdot 81$		$(>)$
Bananas	$4 \cdot 57$	6.43	$4 \cdot 11$	$5 \cdot 43$	1.53	1.86	1.53	$2 \cdot 00$	$(>)$	
Mutton and Lamb	$7 \cdot 84$	$13 \cdot 59$	$3 \cdot 72$	16.94	7.02	$7 \cdot 96$	$8 \cdot 70$	$11 \cdot 67$	(<)	$<$
Sugar	$4 \cdot 50$	$6 \cdot 61$	$4 \cdot 82$	8.84	$4 \cdot 62$	6-33	$4 \cdot 14$	6.05	-	-
Rice	$8 \cdot 81$	$11 \cdot 16$	$10 \cdot 75$	14.84	4.29	$5 \cdot 80$	$4 \cdot 27$	$5 \cdot 97$	$(<)$	-
Beef and Veal	13.49	16.82	18.74,	$23 \cdot 12$	$3 \cdot 36$	$3 \cdot 60$	4.05	6.68	<	$<$
Tobacco	$8 \cdot 70$	$4 \cdot 27$	4.27	$6 \cdot 15$	$3 \cdot 90$	$5 \cdot 09$	$3 \cdot 17$	$3 \cdot 41$	(<)	$>$
Oranges and Tang	$4 \cdot 31$	$6 \cdot 63$	9•74,	15.97	$2 \cdot 92$	3-60	$4 \cdot 80$	$7 \cdot 83$	$<$	$<$
Mnize	20.43	$20 \cdot 76$	20.22	C3.03	$4 \cdot 73$	$5 \cdot 29$	${ }^{6} \cdot 52$	9.7\%	-	$<$
Wheat	$9 \cdot 82$	$13 \cdot 83$	8.83	6. 82	$7 \cdot 49$	$9 \cdot 95$	$6 \cdot 18$	6.43	$(>)$	$>$
Barley	18.07	$19 \cdot 52$	$21 \cdot 27$	25.53	$7 \cdot 04$	10.64	6.02	$7 \cdot 27$	$<$	$(>)$
Pork	14.45	15.34	14.96	$17 \cdot 02$	13.38	$15 \cdot 18$	12.59	$12 \cdot 81$	-	$>$
Median (Group I)	7-09\%	13.46\%	8.88\%	16.46\%	4.46\%	6.05%	5.26\%	6.98\%		
II. Oils and Oilseeds										
Sesame Scod	16.32\%	19.40\%	17.16\%	20.67\%	10.40\%	12.20\%	13.25\%	15.50\%	-	$<$
$\xrightarrow{\text { Palm Oil }}$ Copra, Coconut Oil	9.80 3.4.5	$12 \cdot 17$ 9.15	$10 \cdot 28$ $10 \cdot 03$	14.54 16.20	3.16 4.48	$7 \cdot 19$ $\mathbf{9 . 0 8}$	3.85 5.37	$8 \cdot 30$ 10.56	$1<$	-

Groundnats, Oil	$12 \cdot 30$	14.66	11.97	13.73	$3 \cdot 34$	$5 \cdot 32$	4.72	8.23	-	(<)
Palm Kernels, Oil	10.08	16.09	$9 \cdot 93$	14.10	$2 \cdot 65$	$7 \cdot 04$	$3 \cdot 50$	8. 16	-	(
Butter	6.59	$10 \cdot 85$	6.84	11.38	$4 \cdot 29$	6.29	$3 \cdot 87$	$5 \cdot 98$	-	-
Linseed, Oil	$13 \cdot 84$	17.01	21.71	34.33	$10 \cdot 18$	13.96	16.31	21-17	$<$	$<$
Cottonseed, Oil	26.04	$30 \cdot 22$.	32.31	$37 \cdot 40$	14.03	14.64	15.48	$18 \cdot 89$	$<$	$<$
Olive Oil	$19 \cdot 26$	21.05	$22 \cdot 97$	31.18	$17 \cdot 93$	$20 \cdot 31$	22.31	28.48	$<$	$<$
Rapeseed, Oil	$22 \cdot 41$	25.72	$2.0 \cdot 34$	21.08	11.15	$12 \cdot 53$	$12 \cdot 40$	16.38	>	(<)
Soya Beans, Oil	24.44	28.71	$31 \cdot 16$	36.07	$16 \cdot 93$	17.78	18.05	$19 \cdot 78$	$<$	$<$
Tallow	8.82	13.66	$13 \cdot 36$	22.64	4.38	$8 \cdot 67$	$7 \cdot 92$	$15 \cdot 60$	$(<)$	(<)
Lard	$11 \cdot 65$	17-15	$10 \cdot 10$	14.12	7.48	$12 \cdot 47$	$6 \cdot 85$	11.45	$(>)$	(
Median (Group II)	12.30\%	17.01\%	13.26\%	20.67\%	7.48%	$12 \cdot 60 \%$	7.9\%\%	1.5.50\%		
III. Industrial Materials										
Natural Rubber	8.08\%	25.74\%	3.24\%	17.01\%	5.64\%	15.04\%	3.44\% $\%$	10.72\%	$(>)$	-
Tin Concentrates	$8 \cdot 51$	11.62	$10 \cdot 73$	$18 \cdot 00$	$5 \cdot 10$	$7 \cdot 33$	$5 \cdot 85$	$8 \cdot 31$	(<)	-
Abaca	8.89	$15 \cdot 56$	$8 \cdot 34$	$19 \cdot 27$	6.96	12.21	4.05	$5 \cdot 23$	-	$>$
Jute	16.46	24.91	$14 \cdot 92$	$22 \cdot 34$	$6 \cdot 89$	9.07	8.34	13.76	-	(<)
Crude Petrolcum	3-17	$4 \cdot 43$	$2 \cdot 97$	$4 \cdot 37$	1.42	$2 \cdot 02$	1-54	$2 \cdot 12$	\cdots	,
Sisal, Other Agaves	$5 \cdot 45$	$23 \cdot 83$	$7 \cdot 45$	25.27	$3 \cdot 49$	$8 \cdot 91$	$3 \cdot 32$	$0 \cdot 40$	-	-
Basxite	$5 \cdot 51$	$6 \cdot 20$	5-59	6.22	$2 \cdot 30$	$2 \cdot 76$	$2 \cdot 8.4$	$3 \cdot 09$	-	$<$
Wool	4.24	10.24	$7 \cdot 44$	$18 \cdot 26$	$4 \cdot 26$	$9 \cdot 09$	$6 \cdot 86$	$13 \cdot 73$	$(<)$	(<)
Tungsten Ore, Con.	27-70	$50 \cdot 68$	$12 \cdot 80$	$19 \cdot 39$	$7 \cdot 33$	14.20	$7 \cdot 91$	14.79	$>$	-
Lead Ore	10.74	16.17	9.54	11.88	2.82	$6 \cdot 80$	2.89	$8 \cdot 81$	$(>)$	\square
Tin Metal	4.50	$8 \cdot 70$	$7 \cdot 40$	14.90	$3 \cdot 73$	$5 \cdot 35$	$4 \cdot 70$	$7 \cdot 05$	$(<)$	$(<)$
Lead Metal	4.88	$9 \cdot 81$	$7 \cdot 01$	$15 \cdot 22$	$3 \cdot 09$	$5 \cdot 11$	4.50	$8 \cdot 65$	(<)	(<)
Copper Metal	0.04	$12 \cdot 42$	$5 \cdot 51$	$13 \cdot 35$	$3 \cdot 69$	6.14	$4 \cdot 60$	8.7.4		$(<)$
Zinc Ore	$6 \cdot 85$	14.24	4.93	$9 \cdot 96$	3-62	$8 \cdot 29$	1.71	. 6.13	$\cdot(>)$	$(>)$
Cotton	8.00	12.84	9-6"	$15 \cdot 72$	$2 \cdot 91$	$6 \cdot 89$	6.72	$14 \cdot 47$	-	(<)
Solid Fuels	$7 \cdot 64$	$9 \cdot 49$	$7 \cdot 80$	$8 \cdot 98$	3.22	3.47	3.77	$5 \cdot 12$	\square	$<$
Kinc Metal	4.74	14.53	6.43	$17 \cdot 47$	4.11	$9 \cdot 11$	$3 \cdot 36$	$7 \cdot 49$	-	
Aluminum	$5 \cdot 81$	6.92	$7 \cdot 03$	10.34	$5 \cdot 44$	$5 \cdot 60$	$5 \cdot 68$	$\mathfrak{6} \cdot 13$	$<$	$<$
Synthetic Rubber	10.01	14.42	17.08	$22 \cdot 33$	6.0.4	$7 \cdot 66$	8.46	$10 \cdot 07$	$<$	$<$
Median (Group III)	6.85\%	12.84\%	7.44%	15.72\%	3.73\%	7.33%	4.50%	8.6.5\%		
Median (All Comm.)	8.66\%	14.33\%	9.00\%	16.10\%	4.39\%	7.50\%	5.24\%	8.61\%		

or supply definitely fluctuated more. ${ }^{20}$ Whenever this analysis establishes that the $\mathrm{AAD}_{\mathrm{d}}$ of a commodity is definitely larger than the $A A D_{s}$, it is also always true that the $R_{p q}$ (in Table l) is positive; and for the $A A D_{d}$ definitely smaller than the $A A D_{8}$, the $R_{p q}$ is always negative. Nevertheless, a very narrow (and possibly quite implausible) range of values of η and c may be implied if the sign of $R_{p q}$ is to be always interpreted as saying something definte about relative sizes of $A A D_{d}$ and $A A D_{s}$. For more- than a dozen commodities, even the narrower $\eta-\varepsilon$ range is insufficiently small to permit such conclusions.

For purposes of assessing blame, however, magnitudes must be known as well as signs. Even when the narrow i_{i} - range is assumed, there is not a single product for which one can say that $\mathrm{AAD}_{\mathrm{d}}$ is at least twice or less than half $\mathrm{AAD}_{\mathrm{s}}$ If any simple generalization comes out of Table 2, it is that large supply fluctuations and large demand fluctuations go together-differences between $\mathrm{AAD}_{\mathrm{d}}$ and $\mathrm{AAD}_{\mathrm{s}}$ are difficult to ascertain.

On a methodological level, the moral of the exercise so far is that it is not easy to assess accurately the "blame" for primary product price fluctuations. It requires a very specific set of assumptions (whether implicit or explicit) about the trend around which fluctuations are to be measured and about short-run price elasticities. On an economic level, the conclusion is that even after these specific assumptions are made, there are few commodities for which either demand or suply has clearly fluctuated more than the other.

IV. Effect of Removing Demand or Supply Fluctuations

While rough knowledge of the relative magnitudes of the fluctuations of supply and demand is not easily acquired, even precise knowledge of $\mathrm{AAD}_{\mathrm{d}}$ and $\mathrm{AAD}_{\mathrm{s}}$ would be insufficient to allocate the blame for price fluctuations. To do that requires the answer to the question: How large would the price fluctuations have been if either the demand or the supply fluctuations could have been removed? The answer to this depend not only upon the $A A D$, and $A A D_{s}$ but also upon the extent to which demand and supply fluctuate directly or inversely.

[^5]This relationship is more readily seen in terms of variance rather than AAD. The variance of prices can be derived from equation (5):

$$
\begin{equation*}
\sigma_{\mathrm{pp}}^{2}=\frac{\sigma_{\mathrm{dd}}^{2}-2 \mathrm{R}_{\mathrm{d},} \sigma_{\mathrm{dd}} \sigma_{\mathrm{ss}}+\sigma_{\mathrm{ss}}^{2}}{(\eta+\varepsilon)^{2}} \tag{9}
\end{equation*}
$$

where σ^{2} refers to the variance of the subscript variables (and σ to the standard deviation), and R_{ds} is the correlation between the demand-intercept and supply-intercept fluctuations. Inspection of equation (9) shows that, if R_{ds} is negative, removal of either demand or supply fluctuations (i.e., setting $\sigma_{c d}^{2}$ or σ_{s}^{2} equal to zero) wih definitely reduce the variance of prices (i.e., $\sigma_{p \mathrm{p}}^{2}$. If R_{ds} is positive on the other hand, it is possible that the removal of either demand variance or supply variance would not reduce the variance of prices. Thus, upon the value of R_{ds} depends greatly the extent to which demand (or supply) fluctuations cause price fluctuations which would not have occurred had the demand (or supply) fluctuations not occurred.

Because of the visual convenience, we now return to the AAD from of reporting data. ${ }^{21}$ From equation (5), it is clear that:
(10) $\mathrm{AAD}_{\mathrm{p}}\left(\right.$ when $\left.\mathrm{AAD}_{\mathbf{d}}=0\right)=\frac{\mathrm{AAI})_{s}}{\eta+\varepsilon}$
and
(11) $A \Delta D_{\mathrm{p}}\left(\right.$ when $\left.A \Delta \mathrm{D}_{\mathrm{s}}=0\right)=\frac{\mathrm{AAD}_{\mathrm{d}}{ }^{\circ}}{\eta+\varepsilon}$.

These hypothetical values of $\mathrm{AAD}_{\mathbf{p}}$ will clearly be different for every different assumed value of η or ϵ. In Table 3, the hypothetical values of $A A D_{p}$ are reported, for each of the two trends and for each of two sets of values of η and $\epsilon: \eta=\epsilon=0.6$ and $\eta=\epsilon \doteq 1.0$. In almost all cases, the hypothetical $\mathrm{AAD}_{\mathrm{p}}$ rises as either lower values of η and/or lower values of ε are considered. ${ }^{22}$ Thus, the hypothetical values of $\mathrm{AAD}_{\mathrm{p}}$ given in Table 3 essentially represent the lowest values $A_{p} D_{p}$ could reach if demand (or supply) fiuctuations were entirely removed and if the short-run price elasticities were each no greater than 0.6 (or 1.0). ${ }^{23}$

[^6]The most basic conclusion to be drawn from Table 3 is that-as expected-the fluctuations in price $\left(\mathrm{AAD}_{\mathrm{p}}\right)$ would have typically been reduced at least somewhat had either demand fluctuations $\left(A A D_{1_{d}}\right)$ or supply fluctuations $\left(\mathrm{AAD}_{\mathrm{s}}\right)$ been removed. Nevertheless, two less expected results also appear. One, for relatively few commodities would the removal of either demand or supply fluctuations reduce the price fluctuation by as much as one-half. At most (where the least-squares trend and the $\eta=\epsilon=1.0$ assumption were used), for only 17 of the 46 commodities would a complete removal of demand or supply fluctuations have reduced $\mathrm{AAD}_{\mathrm{p}}$ by one-half of the actual level. ${ }^{24}$ And two, for a great many commodities, by either trend assumption and especially if price elasticities less than 0.6 are considered, price fiuctuations are increased by removal of the demand fluctuation and also by removal of the supply fluctuations. In other words, removal of either source of price fluctuations would have increased the price fluctuations for 17 (by the least-squares trend) or 19 (by the three-year moving average) commodities, provided price elasticities were less than 0.6 . All this implies that, for a large number of products, the correlation between demand and supply shifts must be significantly positive in the ranges studied.

For the primary products largely exported by advanced countries, there is a possible explanation of this phenomenon along the lines that the same factors which increase advanced countries' demands for products in general simultaneously increase supplies of products in general. And indeed there is some tendency in Table 3, especially in Groups I and II, for the products largely exported by North America and Western Europe (i.e., farther down the list ${ }^{25}$) to be the ones with asterisks. But one cannot easily make such an argument for exports going predominantly from other regions to North America and Western Europe. ${ }^{26}$ Higher assumed values of the price elasticities will lower these observed positive correlations between demand and supply fluctuations. ${ }^{27}$ It is hard to resist wondering

[^7]Table 3
AAD of Price If Demand or Supply Fluctuations Were Removed

Commodity	For Least-Squares Trend					For 3-Year Momving Average				
		$\mathrm{AAD}_{\mathrm{p}}$ If Demand Fluctuations Were Removed		$\mathrm{AAD}_{\mathrm{p}}$ If Supply Fluctuations Were Removed		$\begin{aligned} & \text { Actual } \\ & \text { AAD }_{p} \end{aligned}$	$\mathrm{AAD}_{\mathrm{p}}$ If Demand Fluctuations Were Removed		AAD $_{p}$ If Supply Fluctuations Were Removed	
	$\begin{aligned} & \text { Actual }_{\mathbf{A A D}_{\mathbf{p}}} \end{aligned}$	$0 \cdot 6$	$\begin{aligned} & \text { When } \eta \\ & 1 \cdot 0 \end{aligned}$	$\begin{aligned} & \varepsilon= \\ & 0 \cdot 6 \end{aligned}$	$1 \cdot 0$		$0 \cdot 6$	When $1 \cdot 0$	$\begin{aligned} & \varepsilon= \\ & 0 \cdot 6 \end{aligned}$	$1 \cdot 0$
(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)	(9)	(10)	(11)
				1. Food,	Beverages	s and To	cco			
Coffee	27-89\%	17.65\%	16.17\%	10.41% \#	$11.72 \% \#$	5.01\%	5.69\%*	4.28\%	1.89\% \#	1.62\%H
Cocoa	$20 \cdot 29$	15.27	13.11	7.08 \#	7.52\#	11.18	$9 \cdot 45$	7.90	3.58\#\#	$4.18 \#$
Tea	$7 \cdot 80$	$5 \cdot 63$	4.63	$5 \cdot 82$	4.62	4.29	- 4.57*	$2 \cdot 90$	4.94**	$3 \cdot 24$
Bananas	4.42	3.72	$2 \cdot 71$	4.46*	$3 \cdot 21$	$1 \cdot 16$	1-45*	1.00	1-35*	0.93
Mutton and Lamb	$12 \cdot 42$	10.96	$8 \cdot 47$	$7 \cdot 70$	$6 \cdot 79$	4. 54	8.31*	5•83*	6.11*	3.69
Sugar	$5 \cdot 88$	$5 \cdot 57$	4.42	4.47	3-31	$3 \cdot 83$	4.07*	3.03	4.47*	3.17
Rice	8.53	10.35*	$7 \cdot 47$	$7 \cdot 85$	5.58	$4 \cdot 16$	4.14	$2 \cdot 99$	$3 \cdot 93$	$2 \cdot 90$
Beef and Veal	$7 \cdot 33$	17.44*	11.56*	12.42*	6.74	$4 \cdot 20$	4.23*	2.34	2.84	1.78 \#
Tobacco	3.08	4.24**	$3 \cdot 07$	3.11*	$2 \cdot 13$	$1 \cdot 60$	2.64*	1.64*	3.75*	2.55*
Oranges and Tang.	$8 \cdot 07$	10.71*	$7 \cdot 98$	$3.96 \nRightarrow$	2.19 \#	4.22	5-12*	3.92	2.50	$1.56 \nRightarrow$
Maize	8.57	17.76*	11.51*	17.16*	10.38*	$5 \cdot 34$	6.49*	$4 \cdot 89$	3.95 ${ }^{-}$	2.02 \#
Wheat	$7 \cdot 08$	7-49*	4.96	9•36*	$6 \cdot 66$	$3 \cdot 31$	5.25*	$3 \cdot 09$	7.27*	4.98*
Barley	$12 \cdot 39$	19.18*	12.76*	15.06*	9.08	$6 \cdot 25$	$5 \cdot 21$	3.64.	7-20*	$5 \cdot 32$
Pork	6.34	13.21*	8.51*	12.54*	7.82*	3.48	10.49*	6.4,1*	11.85*	7-50*
Median (Group I)	7.94\%	$10.84 \% *$	8.22\%*	7.78\%	6.70\%	4.26%	5.16\%*	3.49\%	3.94\% 悹	3.04\%

Commodity	For Least-Squares Trend					For 3-Year Moving Average				
	Actual $\mathbf{A A D}_{\mathbf{p}}$	$A A D_{p}$ If Demand Fluctuations Were Removed		$\mathrm{AAD}_{\mathrm{p}}$ If Supply Fluctuations Were Removed		Actual $\mathrm{SAD}_{\mathrm{p}}$	$\mathrm{AAD}_{\mathrm{p}}$ If Demand Fluctuations Were Removed		$\mathrm{AAD}_{\mathrm{p}}$ If Supply Fluctuations Were Removed	
		$0 \cdot 6$	When η $1 \cdot 0$	$\begin{array}{r} =\varepsilon= \\ 0 \cdot 8 \end{array}$	1.0		$0 \cdot 6$	When η $1 \cdot 0$	$\begin{array}{r} =\varepsilon= \\ 0.6 \end{array}$	1.0
(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)	(0)	(10)	(11)
	II. Oils and Oilseeds									
Sesame Seed	9.74\%	15.64\%*	10.34\%*	14.50\%*	9.70\%	4.64\%	11.92\%*	7.75\%*	9.31\%*	5.20\%*
Palm Oil	10.56	10.30	7.27	8.22	6.09	6.88	5.05	4.15	$4 \cdot 16$	$3 \cdot 60$
Copra, Coconut Oil	11.98	$10 \cdot 76$	$8 \cdot 10$	5.51 \#	4.58 \#F	$0 \cdot 19$	$6 \cdot 37$	$5 \cdot 48$	$5 \cdot 03$	4.54.\#\#
Groundnuts, Oil	$8 \cdot 58$	16.27*	$6 \cdot 86$	11.03*	$7 \cdot 33$	6.22	$5 \cdot 24$	$4 \cdot 12$	$3 \cdot 15$	$2 \cdot 66$
Palm Kernels, Oil	12.24	9.53	7.05	$10 \cdot 30$	8.05	6.65	$4 \cdot 72$	4.08	3.74	$3 \cdot 52$
Butter	10.24,	6.81	$5 \cdot 69$	6.90	$5 \cdot 43$	$4 \cdot 62$	3•79	$2 \cdot 99$	$4 \cdot 21$	$3 \cdot 14$
Linsecd, Oil	17.77	22.86*	17.16	11.88	7.50 \#	8.92	15.55*	10.50*	9.67*	$5 \cdot 09$
Cottonseed, Oil	$8 \cdot 50$	28.86*	18.70*	23.44*	13.02*	7.01	14.28*	9-4.1*	11-84*	7-32*
Olive Oil	14.81	22.29*	15.60*	16.86*	9.82	$7 \cdot 13$	20.81*	13•22*	$15 \cdot 52$	8.97*
Rapeseed, Oi]	$8 \cdot 03$	17.04*	10.45*	20.05*	12.86*	6.68	11.99*	8•19*	9-43*	$6 \cdot 27$
Soya Beans, Oil	10.35	28.01*	18.03*	21-94*	12.22*	8.01	15.82*	9-89*	14.46*	8.40*
Tallow	14.77	14.20	11.32	7.78	6.68 \#	$10 \cdot 37$	9-80	$7 \cdot 80$	4.59 \#	4.34\#
Lard	12.41	$8 \cdot 27$	$7 \cdot 06$	11.73	8.57	10.98	©. 68	5.72	7.97	6.23
Median (Group II)	10.56\%	14.20\%*	10.34\%	11.73\%*	8.05\%	7.01\%	9.80\%*	7•75\%*	7.97\%*	5•09\%

III. Industrial Materials

Natural Rubber	21.37\%	7.06\%\#	8.50\%\#	14.33\%	12.87\%	12.60\%	5.24\%\#	5.36\%\#	8.34\%	7-32\%
Tin Concentratés	$9 \cdot 97$	11-14*	$8 \cdot 00$	$7 \cdot 88$	$5 \cdot 81$	$4 \cdot 82$	5-90*	$4 \cdot 15$	4.96*	$3 \cdot 66$
Abaca	16.78	10.81	$9 \cdot 68$	$9 \cdot 29$	7.78\#	$6 \cdot 89$	$3 \cdot 52$	2.6.5\#	7-98*	6.10
Jute	14.29	14.43*	$11 \cdot 17$	16.91*	12.46	$7 \cdot 96$	9.07*	6.88	$5 \cdot 95$	4.54
Crude Petroleum	2.70	2.86*	$2 \cdot 10$	3•14*	$2 \cdot 21$	$1 \cdot 34$	1-50*	1.06	1-39*	1. 01
Sisal, Other Agav.	24.29	13.34	$12 \cdot 63$	11.76\#	11.91\#	$8 \cdot 39$	$5 \cdot 07$	4.70	4.72	4.46
Bauxite	1.72	4.88*	3.11*	4.87*	3.10*	$1 \cdot 13$	2.43*	1.54*	2.23*	1-30*
Wool	12.05	9.65	$8 \cdot 13$	4.90\#	5.12\#	10.54	$8 \cdot 58$	6.86	4.88\#	4.55\#
Tungsten Ore, Con.	33.25	10.71\#	9.69 \#	$32 \cdot 66$	25.34	$11 \cdot 98$	8.95	$7 \cdot 40$	8.39	7-10
Lead Ore	12.69	$8 \cdot 11$	5.94\#	9.96	8.08	$6 \cdot 77$	$5 \cdot 28$	$4 \cdot 41$	3.51	$3 \cdot 40$
Tin Metal	$10 \cdot 85$	$9 \cdot 29$	7.45	4.43\#1	4.35 \#	$4 \cdot 48$	4.83*	$3 \cdot 53$	3.11	2.68
Lead Metal	11.58	$8 \cdot 86$	$7 \cdot 61$	5.10\#	4.91 \#	$6 \cdot 34$	$5 \cdot 40$	$4 \cdot 33$	3.08\#	2.56 \#
Copper Metal	$12 \cdot 55$	7.88	6.97	6.29	6.21 \#	$6 \cdot 43$	$5 \cdot 56$	$4 \cdot 37$	3.52	8.07\#
Zinc Ore	11.73	5.48 \#	4.98\#	$8 \cdot 42$	$7 \cdot 12$	$7 \cdot 16$	2.72\#	3.06\#	4.71	4.14
Cotton	11.64	9.78	$7 \cdot 86$	$8 \cdot 23$	6.42	$10 \cdot 02$	8.83	7.24	3.01\#	3.44\#
Solid Fuels	5.52	6.86*	$4 \cdot 49$	6.76*	4.75	$2 \cdot 06$	3.62*	2.56*	2.74*	$1 \cdot 67$
Zinc Metal	15.64	9.75	8.74	$7 \cdot 26 \#$	7.27 \#	$7 \cdot 98$	3.80 \#f	3.75 \#	$5 \cdot 12$	4.55
Aluminum	5.61	7-17*	$5 \cdot 17$	$5 \cdot 19$	$3 \cdot 46$	$2 \cdot 07$	4.83*	3.06*	4.60*	2.72*
Synthetic Rubber	C.64	16.44*	11.20	9-98*	$5 \cdot 01$	$2 \cdot 29$	7-72*	5•04*	5•71*	8.02*
Median (Group III)	11.73\%	9.29\%	7.86\%	7-88\%	6.21%	6.77\%	5.24\%	4.33\%	4.71\%	3.4.4\%
Median (All Comm.)	10.70\%	10.32\%	8.05\%	8.32\%	6.76\%	6.30\%	5.26\%	4.30\%	4.66\%	3.63\%

Meaning of Symbols in Colunins (3) - (6) and (8) - (11):

* Means the hypothetical $\mathrm{AAD}_{\mathrm{p}}$ is larger than the relevant actual $\mathrm{AAD}_{\mathrm{p}}$ (in column (2) or (7)).
\# Means the hypothetical $\mathrm{AAD}_{\mathrm{p}}$ is less than holf the relevant actual $\mathrm{AAD}_{\mathrm{p}}$ (in column (2) or (7)).
whether the assumption of 0.6 or 1.0 for the short-run price elasticities of many of these products is on the low side. It is to an investigation of this possibility that the next section is devoted.

If, on the other hand, consideration of short-run price elasticities higher than traditional wisdom allows is rejected, then one conclusion seems inescapable: neither supply nor demand fluctuations can be justly blamed as principal causes of price fluctuations for most commodities. Only for a few commodities would complete removal of supply fluctuations or complete removal of demand fluctuations have reduced the fluctuations of price around trend $\left(A A D D_{p}\right)$ by as much as one-half of the actual. For neither trend and for neither elasticity assumption ($\eta=\epsilon=0.6$ or 1.0) is the number of such products ever above 17. For the other 29 of the 46 commodities studied, the interdependency of the fluctuations of demand and supply is the basic cause of price fluctuation. Under the circumstances, efforts to blame demanders or suppliers for causing price fluctuation are to a great extent misdirected from the beginning ; and more importantly, efforts to cure the price fluctuations by attempting to remove either supply fluctuations or demand fluctuations alone would have met with mild success at best during the post-War period.

V. Uncorrelated Demand and Supply. Fluctuations

While there are many economic links between the different countries of the world, it is difficult to explain the frequently large positive implied correlations (found in Section IV) between demandshifts and supply-shifts for primary products. In this section, we will begin by assuming that the demand and supply fluctuations for each product are completely uncorrelated; we can then find out something about the price elasticities (η and ϵ) that this assumption implies and finally, we can again attempt to allocate the blame for price destabilization.

This procedure will, the reader should be warned, force frequent consideration of short-run price elasticities of supply and demand greater than unity-and often much greater. Those who find this absurd are stuck with the findings of Section IV. But the situation is not clearly so absurd as it may at first seem. It must be remembered that we are dealing here with traded quantities, and to the extent that exported products are partly self-consumed and imported products parcly self-produced, the demand and supply schedules refer to excess demand (above own production and excess supply (above own consumption). Even where short-run total production elasticities
and total demand elasticities are low, excess supply and excess demand elasticities may be high. ${ }^{28}$

From equations (3) and (4), it is possible to derive an expression for the covariance of demand-shifts $\left(d_{t}\right)$ and supply-shifts $\left(s_{t}\right)$:
(I2) $\sigma_{\mathrm{ds}}^{2}=\sigma_{\mathrm{qq}}^{2}+(\eta-\varepsilon) R_{\mathrm{pq}} \sigma_{\mathrm{qq}} \sigma_{\mathrm{pp}}-\eta \varepsilon \sigma_{\mathrm{pp}}^{2}$.
Since the variance of quantity fluctuations (σ_{qq}^{2}), the variance of price fluctuations (σ_{pp}), and their correlation (R_{pq}) are known from the data, the assumption of a zero correlation between demand-shifts and supply-shifts (i.e., $R_{d s}=\sigma_{d s}^{2}=0$) implies a relationship between η and ε :

$$
\begin{equation*}
\dot{r}_{i}=\frac{k^{2}-k \varepsilon R_{p q}}{\varepsilon-k R_{p q}} \tag{13}
\end{equation*}
$$

where k is, as earlier, $\sigma_{\mathrm{qq}} / \sigma_{\mathrm{pp}}$. These implied values of η, for two values of ε (i.e., 0.6 and 1.4) and for each of the two trend elimination schemes, are given in Table 4, in columns (2), (4), (6), and (8). Asterisks in those columns-there are 13-indicate that the implied η is negative. ${ }^{29}$ Inspection of equation 13 shows that this can only happen if R_{pq} is positive, ${ }^{30}$ and if $\mathrm{k} \mathrm{R}_{\mathrm{pq}}>0.6$ (which would cause $\dot{\mathrm{a}}$ negative η at $\epsilon=0.6$) or if $\mathrm{k} / \mathrm{R}_{\mathrm{pq}}<1.4$ (which would cause a negative η at $\varepsilon=1.4$). Such results, if frequent, would suggest the error of either the zero $R_{d s}$ assumption or the $0.6-1.4$ range of ϵ. Since the asterisks are, however, few, they are considered aberrations and ignored throughout the remainder of this section.

There is a smooth (hyperbolic) relation between η and ε in equation (13) ; thus, moving from lower to higher values of ε.implies steadily decreasing values of $\eta .^{31}$ The technique cannot tell us which point on the hyperbola represents the "true" set of price elasticities ; ${ }^{32}$ the range, $0.6<\epsilon<1.4$, is chosen partly arbitrarily, partly because it seems plausible, and partly because it tends typically to yield values of η in the same range. (This choice will be discussed again later.) Table 4 presents the implied range of values of η when ε is between 0.6 and 1.4.

28 Consider for example the elasticity of expolt supply (i.e., excess supply) of a prodact whicb a country produces and partly self-consumes. If the shortrun price elasticity of production is 0.4 , that of domestic demand is 1.0 and half of total production is exported, the shortrun price elasticity of export supply is 1.8 . See [10], pp. 43-45, for a derivation of the intrrelation of these clasticities.
${ }^{29}$ Recall that η is defined positive, so a negative η imples an upwardsloped short-run demand sche lule.
${ }^{30}$ True for less than half the products. See Table 1, columns (5) and (8).
31 Provided the asymptote is not crossed.
38 "True," provided the assumption of a zero correlcation betwcen demand and supply is correct.

Table 4
Percent of Price Variance Due to Demand (DBP) If \mathbf{R}_{ds} is Zero

Commodity	Least-Squares Trend				3-Year Moving Average			
	If $\varepsilon=0.6$		If $\varepsilon=1.4$		If $\varepsilon=0.6$		If $\varepsilon=1 \cdot 4$	
(1)	Implied η^{*} (2)	DBP (3)	Implied η (4)	DBP (5)	Implied η (6)	DBP (7)	Implied η (8)	DBP (9)
I. Food, Beverages, and Tobacco								
Coffee	0.18	4.62\%	$0 \cdot 17$	1-12\%	0.78	10.90\%	$0 \cdot 72$	4.29\%
Cocoa	0.35	11.62	$0 \cdot 30$	$\xrightarrow{3 \cdot 33}$	0.37	$7 \cdot 73$ 85.58	0.33	
Tea	0.56 2.61	47.07 90.35	0.25 0.52	$14 \cdot 34$ $42 \cdot 20$	$2 \cdot 87$ $2 \cdot 61$	$85 \cdot 58$ 77	1.04 1.29	$46 \cdot 78$ $43 \cdot 76$
Mutton and Lamb	1.12	$61 \cdot 80$	$0 \cdot 53$	24.71	$2 \cdot 57$	$65 \cdot 36$	1.69	$38 \cdot 69$
Sugar	0.71	$45 \cdot 36$	$0 \cdot 40$	$15 \cdot 67$	$1 \cdot 60$	75-9.5	$0 \cdot 59$	$53 \cdot 31$
Rice	$1 \cdot 75$	$68 \cdot 04$	0.93	$33 \cdot 34$	$1 \cdot 51$	$68 \cdot 67$	$0 \cdot 72$	$30 \cdot 99$
Beef and Veal	$2 \cdot 73$	$25 \cdot 33$	$2 \cdot 52$	16.25	1.18	37.38	$0 \cdot 90$	$16 \cdot 83$
Tobacco	$1 \cdot 78$	$58 \cdot 07$	1.17	29.91	*	*	$10 \cdot 67$	$97 \cdot 00$
Oranges and Tang.	1.01	$13 \cdot 16$	0.93	$5 \cdot 78$	1.06	$22 \cdot 20$	0.92	9.80
Maize	5.44	$85 \cdot 14$	$3 \cdot 01$	61.55	$1 \cdot 17$	$35 \cdot 12$	$0 \cdot 91$	$15 \cdot 81$
Wheat	$5 \cdot 26$	9e.64	$0 \cdot 72$	$52 \cdot 90$	*	*	$3 \cdot 76$	$90 \cdot 74$
Barley	$2 \cdot 73$	65.55	$1 \cdot 83$	39•76	$2 \cdot 88$	$92 \cdot 68$	$0 \cdot 43$	42.49
Pork	$13 \cdot 35$	$96 \cdot 15$	$5 \cdot 33$	$80 \cdot 12$	*	*	*	*
Median (Group I)	$1 \cdot 76$	53.94\%	0.82	27.31\%	1.51	65-36\%	0.91	$83 \cdot 31 \%$
II. Oils and Oilseeds								
Scsame Secd	$5 \cdot 02$	$86 \cdot 67$	$2 \cdot 50$	$60 \cdot 32$	3-67	34.63	. 3.34,	$24 \cdot 24$
Palm Oil	1.57	74.60	$0 \cdot 61$	$32 \cdot 87$	$0 \cdot 23$	21.57	-0.13	$5 \cdot 23$
Copra, Coconut Oil	$0 \cdot 75$	$30 \cdot 21$	$0 \cdot 56$	$11 \cdot 22$	$0 \cdot 33$	$28 \cdot 19$	$0 \cdot 19$	$7 \cdot 53$
Groundnuts, Oil	$3 \cdot 77$	$87 \cdot 68$	1.48	$53 \cdot 51$	$0 \cdot 76$	35.02	0.54	12.95
Palm Kernels, Oil	1.45	$76 \cdot 60$	0.47	$31 \cdot 55$	$0 \cdot 31$	$16 \cdot 11$	$0 \cdot 23$	$4 \cdot 36$
Butter	$0 \cdot 70$	$50 \cdot 13$	$0 \cdot 34$	$16 \cdot 79$	0. 82	66.34	$0 \cdot 23$	$21 \cdot 67$

Linseed, Oil	$1 \cdot 16$	$28 \cdot 29$	0.97	$12 \cdot 89$	$1 \cdot 84$	30.87	1.60	17-04
Cotton Seed, Oil	$4 \cdot 32$	52.41	$3 \cdot 66$	37.94	$3 \cdot 66$	67.52	$2 \cdot 61$	$45 \cdot 49$
Olive Oil	$2 \cdot 27$	$41 \cdot 43$	$1 \cdot 89$	24.51	$4 \cdot 47$	59.14	$3 \cdot 64$	$42 \cdot 97$
Rapeseed, Oil	*	*	$9 \cdot 55$	9.4.40	$4 \cdot 19$	75-32	2.73	52.05
Soya Beans, Oil	$4 \cdot 19$	$55 \cdot 50$	$3 \cdot 46$	$39 \cdot 73$	$5 \cdot 40$	$80 \cdot 45$	$3 \cdot 45$	59.27
Tallow	$0 \cdot 68$	16.75	$0 \cdot 59$	$6 \cdot 18$	$0 \cdot 50$	$11 \cdot 75$	$0 \cdot 44$	3-84
Lard	1.51	81.23	$0 \cdot 36$	$32 \cdot 16$	$0 \cdot 90$	$73 \cdot 86$	$0 \cdot 16$	23.29
Median (Group II)	$1 \cdot 54$	53.96\%	$0 \cdot 97$	32-16\%	$0 \cdot 90$	35.02\%	0.54	21.67\%
Natural Rubber	*	* III.	Industr	Material	$0 \cdot 01$	$28 \cdot 46$	*	*
Tin Concentrates	$1 \cdot 33$	$58 \cdot 62$	0.76	26.09	$2 \cdot 91$	$80 \cdot 23$	1.40	$46 \cdot 68$
Abaca	$0 \cdot 39$	$33 \cdot 29$	$0 \cdot 21$	$9 \cdot 30$	$10 \cdot 87$	$99 \cdot 76$	*	,
Jute	$3 \cdot 36$	$87 \cdot 62$	1.21	$50 \cdot 56$	1.20	$47 \cdot 37$	0. 81	20.88
Crude Petroleum	$1 \cdot 60$	74.09	$0 \cdot 65$	$33 \cdot 13$	$1 \cdot 45$	66.38	$0 \cdot 72$	$29 \cdot 73$
Sisal, Oth. Agaves	$0 \cdot 11$	$11 \cdot 13$	0.07	$2 \cdot 38$	$0 \cdot 20$	28.93	$0 \cdot 06$	$6 \cdot 55$
Bauxite	18.36	96.63	$8 \cdot 18$	$84 \cdot 97$	$4 \cdot 58$	$76 \cdot 00$	$3 \cdot 04$	53.98
Wool	$0 \cdot 43$	$9 \cdot 88$	$0 \cdot 38$	$3 \cdot 06$	$0 \cdot 40$	12.10	$0 \cdot 34$	$3 \cdot 64$
Tung. Ore, Conc.	0.51	$83 \cdot 75$	*	*	$0 \cdot 45$	$28 \cdot 34$	0. 30	$8 \cdot 49$
Lead Ore	$1 \cdot 12$	$76 \cdot 08$	$0 \cdot 26$	$26 \cdot 86$	$0 \cdot 35$	15.43	$0 \cdot 28$	$4 \cdot 40$
Tin Metal	$0 \cdot 57$	21.38	0.45	$7 \cdot 22$	1. 01	$36 \cdot 14$	$0 \cdot 75$	$15 \cdot 17$
Lead Metal	$0 \cdot 50$	$16 \cdot 32$	$0 \cdot 41$	$5 \cdot 28$	$0 \cdot 78$	$22 \cdot 75$	$0 \cdot 64$	$8 \cdot 75$
Copper Metal	$0 \cdot 22$	11-34	$0 \cdot 17$	$2 \cdot 81$	0.59	35.76	$0 \cdot 37$	$11 \cdot 75$
Zinc Ore	$0 \cdot 22$	54.33.	*	*	*	*	*	+
Cotton	$0 \cdot 86$	47.21	$0 \cdot 51$	17.70	$0 \cdot 45$	6.79	0.42	$2 \cdot 10$
Solid Fuels	6.22	$95 \cdot 19$	$1 \cdot 62$	$62 \cdot 61$	$2 \cdot 14$	$48 \cdot 02$	$1 \cdot 67$	27-47 -
Zinc Metal	$0 \cdot 26$	13.88	$0 \cdot 20$	$3 \cdot 58$	$0 \cdot 36$	$40 \cdot 96$	0.13	10.70
Aluminum	$1 \cdot 60$	53.08	1.09	$26 \cdot 42$	$8 \cdot 22$	$88 \cdot 46$	$4 \cdot 79$	$70 \cdot 62$
Synthetic Rubber	$2 \cdot 53$	$20 \cdot 62$	2.38	$12 \cdot 95$	3.73	35.82	$3 \cdot 38$	25.18
Median (Group III)	$0 \cdot 72$	50.14\%	0.48	15.32\%	$0 \cdot 00$	35.98\%	0:68	13.46\%
Median (All Comm.)	$1 \cdot 39$	$53 \cdot 70 \%$	$0 \cdot 65$	26.09\%	$1 \cdot 18$	36.76\%	0.74	$21 \cdot 38 \%$

Meaning of Symbols in Columns (2)-(9) :

* indicates that the implied value of r is
* indicates that the implied value of γ_{γ} is negative. Such estimates are ommitted in the calculations of the medians.

As inspection of Table 4 shows, rarely is the sum of the shortrun price elasticity of supply and the short-run price elasticity of demand as low as unity, and the medians suggest that the sum of η and ϵ is around 2.0 for the typical primary product. ${ }^{33}$ Even when ϵ is as high as 1.4 , barely one-half of the implied values of η are less than unity ${ }^{34}$ and almost one-fourth exceed two. ${ }^{35}$ A belief in near independence of demand and supply fluctuations forces one to consider short-run price elasticities of demand and supply of primary products in the neighbourhood of unity.

When the correlation between demand and supply fluctuations is assumed zero, it is possible to allocate the full blame for price fluctuations without the possibility that interdependence will prove important. At $\mathrm{R}_{\mathrm{ds}}=0$, equation (9) becomes:

$$
\begin{equation*}
\sigma_{\mathrm{pp}}^{2}=\frac{\sigma_{\mathrm{dd}}^{2}+\sigma_{\mathrm{ss}}^{2}}{(\eta+\varepsilon)^{2}} \tag{14}
\end{equation*}
$$

The percentage of the price variance which is attributable to demand fluctuations (i.e., the " demand blame percentage "; hereafter DBP) is then:

$$
\mathrm{DBP}=\frac{\sigma_{\mathrm{dd}}^{2}}{\sigma_{\mathrm{dd}}^{2}+\sigma_{\mathrm{ss}}^{2}}
$$

where $\sigma_{s \mathrm{~s}}^{2}$ is estimated for some arbitrary value of ϵ, and $\sigma_{\text {dd }}^{2}$ is then evaluated at the implied value of η (from equation (13)). The DBP's are presented in Table 4, in columns (3), (5), (7), and (9), for two values of ϵ (i.e., 0.6 and 1.4) and for each trend-removal schema. This DBP may also be interpreted as the ratio of hypothetical price variance, if supply fluctuations were removed, to actual price variance.

Even under the assumption that $\mathrm{R}_{\mathrm{ds}}=0$, it is impossible to place this blame for price instability without an assumption about the short-term price elasticities (i.e., explicitly about one of ϵ or η, and implicitly about the other). Although again the selection of this assumption is arbitrary, let us consider the DBP's over the range of values of ϵ from 0.6 to 1.4. ${ }^{36}$ Consideration of values of ϵ lower than 0.6 would raise DBP's and of values of ϵ higher than 1.4 would lower DBP's (although of course differently for different products).

[^8]There are several aspects of these DBP's in Table 4 worth noting. One, for about half the products, by either trend, supply is definitely the dominant cause of price fluctuations. ${ }^{37}$ Two, for very few commodities is demand definitely the dominant cause of price instability. ${ }^{38}$ Three, for the rest (i.e., about one-third) of the products, a narrower range of assumed ϵ (and hence η) values is needed in order to know definitely the dominant cause of price instability. And four, demand is typically less to blame for price deviations from the three-year moving average than for price deviations from the leastsquares trend. This is not unexpected, since the moving average removes at least some of the cyclical elements which are more likely to have increased demand fluctuations than supply fluctuations.

Although one must keep in mind all the assumption upon which the work of this section is founded, the essence of the results is that supply, more often than demand, has been the dominant cause of the price fluctuations of primary products in the post-War years. The more relevant lessons are, however, two. One, for many commodities clear attribution of blame cannot be made without very specific knowledge of the short-run price elasticities of demand and supply. And two, in order to place confidence in the blame-allocations of this section, one must first accept the sizeable short-run price elasticities that are implied.

University of Michigan. R. C. Porter

Bibliography

(1) F.A.O., State of Food and Agriculture, Rome, various years.
(2) F.A.O., Trale Yearlook, Rome, various years.
(3) Mac Bean, A.I., Export Fluctuations, Growoth and Policy, Marvard University Press, 1967.
(4) Porter, R.C., "On Placing the Blame for Primary Product Instability," International Economic Reviev, forthroming.
(5) Prais, S. J., "The Exports of Primary Producing Countries : Shifts in Their Demand and Supply," I.M.F., Oct. 31, 1960 (mimeo).
(6) Prebisch, R., "The Economic Development of Latin America and Its Prinicipal Problems," Economic Bulletin for Latin America, Feb. 1962.
(7) U.N., Commodity Survey, 1962, New York, 1963.
(8) U.N., Instability in Export Markets of Underdeveloped Countries, New York, 1952.
(9) U.N., World Economic Survey, 1963 (Volume I), New York, 1964.
(10) Yntema, T.O., A Mathematical Reformulation of the General Theory of International Trade, University of Chicago Press, 1932.

37 I.e., for 19 of 42 products by the least-squares trend and for 34 of 40 products by the threc-ycar moving average. "Dominant cause"'means that DBP is Jess than 50% for all values of ε between 0.6 and 1.4.

28 I.e., for 8 products by the least-squares trend and for 4 products by the three-year moving average. The numbers would be somewhat greater if one considered the asterisked commodities of Table, 1 (in those regions of values of ε where a positive γ_{γ} is implied).

[^0]: 1 For a critical review of this literature, see [3], especially Chaps. 1-4.
 2 Scc [4].
 3 As will be noted in Table 1 below, a negative correlation between the price and quantity deviotions from trend was found for 81 or 33 (depending upon which of two definitions of trend was used) of the 46 commodities studied in this paper over the post-World war II period.

[^1]: 4 The procedure is not so original as I once thought. It was developed, for somewhat different purposes and in a somewhat different way, in an unpublished paper by S. J. Prais [5].

[^2]: - Only the separability assumption is critical if we are willing to consider the effects of a fluctuating short-run price elasticity as properly belonging in the residual.

 10 The 46 commodities are those for which price and quantity data were given in [7]. The data were supplemented at both ends of the series whenever additional comparable data could be located in [2] or [1]. The "quantity" is world export volume and the "price" is unit value of world exports.

 11 Throughout, the dispersion of variables is usually summarized by means of the AAD rather than by variance or standard deviation. The analytical virtues of these latter two (of which occasional use will be made) are more than offset by the ease with which one can draw meaning from the AAD.

[^3]: 13 Of course either $\mathrm{AAD}_{\mathbf{p}}$ or $\mathrm{AAD}_{\mathrm{q}}$ may be smaller for the least-squares trend than for the moving avcrage. In fact, however, only for the AADq of sugar and of tea is this so.
 18. See, for example, [8], p. 58 or [9], p. 147.

 14 These conditions are spelled out in [4].
 is In Group I, the products down through oranges and tangerines; in Group II, through linseed; and in Group III, through cotion; source : [7], p. 11. "Principally exported by" means over half the total world exports.

[^4]: 19 When the $>$ or $<$ sign is enclosed in parentheses, it is definite only for the narrower range (i.e., $0.2<\eta, \varepsilon<0.6$). The range of implied values of $\mathrm{AAD}_{\mathrm{f}}$ and $\mathrm{AAD}_{\mathrm{s}}$ for this narrower range of η and ε is not shown in Table 2.

[^5]: 20 It is reassuring that for only 3 of the 46 produets do the detinite results about one trend's deviations flatly contradict those of the other (i.e., tobacco. barley, and rapeseed). This may result from (1) statistical aberration, (2) an assumed range of η and ε that fails to contain the true values, and /or (mest likely), (3) the fact that different meanings should be given to deviations from different trends.

[^6]: ${ }^{21}$ All compatations were actually done for both AAl) and σ. None of the conclusions of this section would be minch altered were the finding reported in terms of σ.

 22 And the exceptions rarely differ by more than one percentage point. For price variances (i.e., $\sigma_{p p}^{2}$) it can be proven that lower values of ε necessarilyraise the hypothetical $\sigma_{p p}$ when $\sigma_{\text {ss }}$ is assumed zero (and that lower values of r_{0} necessarily raise it when $\sigma_{d d}$ is zero).
 ${ }^{23}$ No figures are given for price clasticity assumptions luwer than $n=$ $\varepsilon=0.6$ because, with very few exceptions, the resulting. hypothetical values of $\mathrm{AAD}_{\mathrm{p}}$ are above, and frequently greatly above, the actual values of $\mathrm{AAD}_{\mathrm{p}}$.

[^7]: si 13 by removal of supply fluctuations, 4 by demand.
 ${ }^{2}$. Recall that the products are listed (in Tables 1, 2, and 8), within each group, in increasing order by the fraction of total world experts made by North America and Western Europe.

 26 The argument would require an assimption of price-stabilizing speculative activities in these markets. However, in a simple model such as that used here, where stocks are not explicitly considered, consistent speculative responses to price changes are more correctly handled in higher price clasticities than in shifts of the curves.

 27 This fact can be seen intuitively by examination of equations (3) and (4). When η and ε are assumed zero, Rds is plus one, and as η and ε tend to infinity, Rds approaches minus one. There always exist values of η and ε for wrich Rds is zero.

[^8]: as In the ranges being considered here (i.c., $0.6<\varepsilon<1.4$).
 3427 of 43 (by least-squares trend) or 26 of 42 (by 3-year moving average), neglecting commodities with negative implied values of η.
 ss 0 by least-squares trend and 10 by 3 -year moving average (though not always the same commodities).

 36 And the implied range of η values shown in Table 4. For all products considered, the DBP declines steadily as the assumed value of ε rises (and hence the assumed value of η falls). When $R_{p q}>0$, DRP fills from 1.00 (when $\varepsilon=k R_{p q}$) to $R^{s}{ }_{p q}$ (when $\varepsilon=k / R_{p q}$); when $R_{p q}<0$, DBP falls from ($1-\mathbf{R}^{\mathbf{2}} \mathbf{p q}$) (when $\varepsilon=0$) to zero (as ε approaches zero).

