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1. INTRODUCTI ON

Consider the standard linear model

y = Wa +

representing T observations on the dependent variable y and

the K explanatory variables W, where the random error term £

is assumed to be N(0,o21) conditional upon W. Partition W

into X and Z where X consists of K1 variables whose

coefficients are of particular interest to the researcher

and Z consists of K2 variables whose coefficients, in and of

themselves, are not necessarily of interest. The model can

.then be written

y = Xg + Zy + c

In addition to the estimation of S, the researcher is also

concerned with making predictions using the estimated model.

Although the ordinary least squares (OLS) regression of

y on X and Z produces minimum variance unbiased estimators

and predictors, there are conditions under which the mean

square error of estimation and prediction is reduced by

excluding Z from the regression in spite of y # (0) [null

vectors and matrices are denoted by (0)]. Specifically, let

a= [7 = (W'W) 1 W'y
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b (X') 1 x'y

(0) (0)

be the estimators of a corresponding to the inclusion and

exclusion of Z. Letting MSE denote matrix mean square

error, it can be shown that MSE(a) - MSE(a) is positive

semidefinite if and only if MSE(y) - yy' is positive

semidefinite, where MSE(y) = o (Z'M Z) and yy' is the MSE

of (0) as an estimator of y, and where Mx is defined as

I - X(X'X)~lX'.' Thus, whether the objective is to

estimate or to predict y conditional on X and Z, the key

issue is whether Y or (0) is the better estimator of y in

terms of MSE.

The problem, of course, is that the conditions under

which it is best to exclude Z depend upon the unknown

parameters y and a2. Therefore these conditions alone do

not constitute a practical decision rule for the inclusion

or exclusion of Z. One possible solution to this problem is

to replace the unknown parameters with the unbiased OLS

estimators of those parameters. Noting that

o2 (Z'M xZ)~ 1 - yy' is positive semidefinite if and only if

Y'Z'MxZY/(K 2 ) )-1/K 2 , (see Toro-Vizcarrondo and Wallace,

1968, page 561), this approach leads to excluding Z from the

'See Toro-Vizcarrondo and Wallace (1968), page 561, or
Judge and Bock (1978), page 29, for a derivation of this
result.
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regression when F 1/K 2 , where F is the usual F-statistic

used to test for y = (0) (Q2 is the usual unbiased estimator

of a2 using the residuals from the regression of y on W).

A 'Z'MXZYr
F = (1)A2

K20

The practice of including or excluding Z in the final

regression based upon whether or not F exceeds some critical

value d2 defines a "pre-test" estimator of a given by:

[2if f >-6

bi
-- if F <?6

where b = (X'X)X(y. The preceding analysis provides a

motivation for using pre-test estimators and also suggests a

critical value. However, studies of pre-test estimators

reveal that there is no single critical value that is "best"

in terms of commonly used MSE criteria. For example, see

Wallace and Ashar (1972), Feldstein (1973), Judge and Bock

(1978), Learner (1978), and Judge et al (1980) [Sawa and

Hiromatsu (1973), and Toyoda and Wallace (1976) derive

critical values that are "optimal" in terms of "minimax

regret"). The mean square error associated with various
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critical values depends upon the unknown parameters y and

02, and no critical value dominates over the entire

parameter space. Thus, it has been suggested that the

proper choice of a critical value depends upon prior

information regarding the unknown parameters. For example,

Wallace and Ashar (1972, page 177) suggest that "the

stronger the belief that y 0", the larger should be the

critical value, and the critical value should be smaller

"the stronger the prior doubts about the inclusion of 2".

This paper is concerned with the relationship between

prior information and the appropriate critical value for

pre-test estimation. It proceeds by deriving critical

regions that minimize the Bayes risk of the pre-test

estimator under particular prior distributions on the

unknown regression coefficients. It is important to note

that even when these "optimal" critical regions are used,

the resulting pre-test estimator is only optimal within the

class of all pre-test estimators. Compared with other

estimators it may be far from optimal. Frequentists can

complain that it is admissible, and Bayesians can point out

that the posterior mean will have lower Bayes risk under a

quadratic loss function. While this estimator is thus

guaranteed to displease purists of either persuasion, it

should prove interesting to those who are not in the habit

of using Bayesian procedures in applied work, but who are

willing to accept the basic correctness of the Bayesian

viewpoint. The incorporation of prior information is much
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simpler than in the full Bayes treatment (it turns out that

only prior information regarding the Z variable must be

specified) and the results can be presented in a familiar

non-Bayesian fashion. It is hoped that even pure Bayesians

might view these results as a nudge in the right direction

to those who find the full Bayesian treatment to be too much

trouble.

The paper is organized as follows. Section 2 develops

the relationship between the mean square error of the pre-

test estimator of the complete coefficient vector a, and the

mean square error of the pre-test estimator of y, the subset

of a associated with the variables to be included or

excluded. It shows that the "best" pre-test estimator of y

is also the "best" pre-test estimator of a in a mean square

error sense, so that attention can be restricted to y.

- Section 3 derives a similar result for the Bayes risk of the

pre-test estimator and develops a decision rule that defines

the minimum Bayes risk pre-test estimator when Z is a single

variable. In section 4 this rule is applied using conjugate

priors. Section 5 provides a summary and conclusions.

2. SOME BASIC MEAN SQUARE ERROR RESULTS

The pre-test estimator to be analyzed here is less

restrictive than that def ined in (2) in terms of the form of

the critical region. It is defined here as:

-6
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--Jif Y eA(c2W)

Y

(3)
b

-- otherwise
(0)

where A(02,W) is a critical region that depends upon the OLS

estimator of c2 and the explanatory variables W. The reason

for this more general representation of a critical region

will become apparent in a later section covering the

analysis of priors in which there is information regarding

the sign of y.

The following theorem relates MSE() to MSE().

Theorem 1:

M 2(XX-1 + cMSE(y)c' -cMSE(y)
MSE(o) = _ _ _ _ _ _ _ _ _ _ _ _ _

-MSE()c' MSE(y)

where c = (X'X) 1 X'Z. The proof of this theorem is given in

the appendix.

Next, let byand byybe pre-test estimators as def ined

in (3) corresponding to critical regions Ay (32 ,W) and

A1 1 ( y ,w) , r espec tively . Then:

- Theorem 2: MSE(oy ) - MSE(&1 1 ) is positive semi-definite

(p.s.d.) if and only if MSE(y1 ) - MSE(9y1 ) is p.s.d..
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Proof:

Let D = MSE(Y9) - MSE (- ). Then, by theorem 1,

cDc' -cD
MSE (c ) - MSE(a ) =

-Dc' D

Let a1 and a2 be arbitrary vectors with K1 and K2 elements

respectively and let a' = (a 1 ,a2). Then

cDc' -cD,

a' a = (a c - a2 )D(a 1 c - a2 )'
-Dc' D

which is non-negative for all (a 1 ,a 2 ) if and only if D is

p.s.d.

Theorem 2 shows that if one critical region is better

than another in terms of the MSE of the resulting estimator

of y, it is also better in terms of the MSE of the resulting

estimator of the full coefficient vector a. Thus under the

MSE criterion it is possible to restrict attention to y.

This result simplifies the problem of deriving the

optimal critical value but a number of difficulties remain.

First, if Z consists of more than one variable, MSE(y) will

not be a scalar, and choosing between competing critical

values requires the determination as to whether the
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difference between the associated MSE matrices is p.s.d.. 2

Second, even if Z is a single variable, MSE(y) depends upon

2the unknown parameters y and a and no single critical

' f 2
region is optimal for all y and a 2

As a simple illustration of this last point, suppose

that Z is a single variable and a 2 is known so that V(y)

(the variance of the OLS estimator of y) is also known.

Define the pre-test estimator of y as

anY yi f r/V

(0) otherwise

and define the "true t" (as in Feldstein, 1973) as

I (Yj. It has been shown (e.g., Feldstein 1973) that

when the true t is less then one, the optimal critical value

is infinite, while the optimal critical value is zero if the

true t is greater than one. No critical value dominates

over the entire range of the true t and therefore prior

information regarding the true t is crucial to the

determination of an appropriate critical value. A sensible

approach is to specify a prior density for the true t, and

2 The pre-test estimation literature typically deals
with this problem by defining an alternative MSE criterion
that is a scalar regardless of the number of variables
represented in Z. Two such criteria areE(-a'W)(-)
and E((c5-c)'(c5-a)), where the objective is to find a
critical value that minimizes the given expectation. Judge
and Bock (1978) and Judge et al (1980) provide analyses of
pre-test estimators under various MSE criteria including
those mentioned above.
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then evaluate the Bayes risk associated with various

critical values. The optimal critical value is defined as

that which has the smallest Bayes risk among all possible

critical values. The next section implements a somewhat more

general version of this approach.

3. THE BAYES RISK OF PRE-TEST ESTIMATORS

Let the prior density for S, y, and a2 be denoted by

h*(,y,2). Then the Bayes risk matrix for the pre-test

estimator & defined in (3) is R(') = Eh*(MSE(&)) where Eh*

is the expectation with respect to the density-h*. The

objective is to determine the critical region that

"minimizes" R(c) given the prior density h*.

As an initial simplification, note from Theorem 1 that

MSE(a~) depends only upon a2 , W, and MSE(Y). But MSE(Y) is

determined completely by the joint distribution of ^ andwe

which does not depend upon S. Therefore

Eh*(MSE()) = Eh(MSE(&)) where h is the marginal prior

density for y and a2 found by integrating h* with respect to

6. This means that in evaluating the Bayes risk of pre-test

estimators, only the marginal prior density for y and o2

needs to be specified.

Now let Zand b p be two pre-test estimators

corresponding to critical regions A1 (a2,W) and A y(a 2)

respectively. Then it can be shown that:
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Theorem 3: R(oy ) - R(a'II) is p.s.d. if and only if

R(YI) - R(y 1 1 ) is p.s.d., where R(Y) = Eh(MSE(y)). The

proof is given in the appendix.

This theorem is equivalent to theorem 2 except that

Bayes risk is substituted for MSE. It is important because

it implies that the critical region with the smallest

associated Bayes risk in terms of y also has the smallest

Bayes risk in terms of o. Thus consideration can be limited

to evaluating the Bayes risk of Y.

To simplify the problem of deriving the minimum Bayes

risk critical region (i.e., the critical region with the

smallest Bayes risk of all critical regions) only the case

where Z is a single variable will be considered. The

minimum Bayes risk critical region in this case is simply

that region that minimizes R(y). The pre-test estimator

associated with this critical region will be the minimum

Bayes risk estimator and predictor, among all possible pre-

test estimators defined in (3), by virtue of Theorem 3.

While it is difficult to actually evaluate the Bayes

risk associated with a given prior and a given critical

region, there is a rather simple method for determining the

critical region that minimizes the Bayes pre-test estimator

risk R(y). This method is based on the following theorem.
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Theorem 4: The minimum Bayes risk pre-test estimator

critical region A*(a2,W) includes Y if and only if

2 - -2 2AA 2
E((y - y) ; y,o ,W) < E((y) ;y, ,W). The proof is given in

the appendix.

This theorem states that to minimize Bayes risk within the

class of pre-test estimators, Z should be included or

excluded according to which-decision minimizes the posterior

expected loss. It is a special case of a standard theorem

in Bayesian analysis (see Berger, 1980, p. 109).

Let Eand (y2E be the posterior expectations of y and

y , respectively. Then Theorem 4 states that Z should be

included if and only if y - 2E + (Y) (2 )E.Adding

(YE)2 _ ( 2)E to both sides of this inequality shows that

- 2 2
this condition is equivalent to ( - ) < ) or

l - YEI < E. Thus, this decision rule chooses y or zero

as an estimator of y depending upon which is closer to. TE

This is a sensible result because yE minimizes Bayes risk

(of course Y would be preferable, in terms of, Bayes risk,

to either Y or zero, but it is not one of the choices

associated with pre-test estimators). The implications of

this decision rule are developed in the next section.

4. AN APPLICATION USING CONJUGATE PRIORS

*2
Conditional upon W, y, and o , y has the normal

-11
disribut=I wit m'(X'n . Asumae V)ormal-gam prorfoxx

is
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y and V(A) such that the prior distribution on y,

2
conditional upon W and a , is normal with meany and

variance V(y)/n*. Then the posterior expectation of y is

YE = 1Yp + X2y

where a = n*/(n*+1) and X2 = 1/(n*+1) (see Learner, 1978,

page 60).

The decision rule derived from Theorem 4 states that Z

should be included if and only if (Y - E2 2

Y 0, this condition is equivalent to: 3

> (n* - 1)/(2n*) (6)

If y = 0, the include-exclude decision is irrelevant.

4.1 Case 1:Y = 0

Consider first the case of yp = 0 which implies that

prior information is neutral with respect to the sign of y

(positive and negative values are equally likely). Then

E = 9/(n*+1) and by the decision rule presented in (6), the

minimum Bayes risk pre-test estimator includes Z if and only

if n* < 1. This result is noteworthy because n* is a

parameter of the normal-gamma prior. The include-exclude

decision is therefore unrelated to and 2A as it is based

3Thanks to Ron Mittelhammer for suggesting this simple
representation of the basic decision rule. The derivation
is in the appendix.
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completely on prior information. The optimal critical region

A(o ,W) is either (-ox,+a2) or null depending upon whether or

not n* < 1.

This result has an intuitively plausible

interpretation. The include-exclude decision can be viewed

as choosing between two sources of information regarding y.

Prior information centers y on zero with precision n*/V(y)

conditional upon o2 and W. Sample information centers y on

Y with precision 1/V(Q), also conditional upon o and W.

The decision rule developed above requires that the more

precise information be.used, because if n* < 1 the sample

information is more precise than the prior information.

The neatness of this result is due to the normal-gamma

prior in which the precision of the prior information

2
regarding y is dependent upon o . This dependency means

that the precision of both the prior and the sample

information are subject to uncertainty (due to uncertainty

about a2). But it also means that the precision of one

relative to the other is known with certainty because the

uncertain parameter a2 cancels out.

Learner (1978, page 80) expresses some reservations

2
regarding this dependency of prior precision on a although

he does point out a possible supporting argument. The

position taken here is that Learner's reservations are well

founded. It seems unlikely that the relative precision of

prior and sample information regarding y would be part of

prior knowledge when a2 is unknown. The problem is that if
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the prior precision is assumed to be independent of a2, the

relative precision then depends upon a2 and this

complicates the analysis of decision rules unless.c 2 is

known.

2
If a is assumed known, and the prior distribution for

y is normal with mean zero and variance V (y), it is easy to

show that =Y p/((v()/v (Y)) + 1) which implies a decision

rule that includes Z if and only if V(9) < VD(y). Thus when

a2 is known, the decision is again based on the relative

precision of the prior and sample information. This

relative precision is known, conditional upon W, and

therefore there is no pre-testing involved in .the include-

exclude decision.

4.2 Case 2: Y P# 0

Now consider the case of py 0. In this case prior

information suggests that one sign is more likely than the

other. Before examining the include-exclude decision in

this case, it is interesting to consider a modification of

the pre-test estimator that chooses between j and y rather

than between Y and zero. In other words, the alternative to

including Z in the regression is to constrain its

coefficient to be equal to the prior expectation of y. It

is easy to show that the minimum Bayes risk pre-test

estimator decision rule is identical to that derived in the

previous section. If n* < 1, Z is included in the

regression. If n* > 1, the Z coefficient is set equal to y

(see appendix). The plausibility of this result is obvious
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in view of the preceding analysis. One chooses prior

information or sample information according to which is more

precise.

When the allowable decisions are either to include or

exclude Z, and the prior expectation of y is not zero, the

.choice is no longer between prior and sample information

because the prior expectation is not one of the choices. In

this case the decision rule associated with the normal-gamma

prior is given in (6). The resulting conditions for the

inclusion of Z are given in figure 1.

Figure 1: Conditions for the Inclusion of Zt

n* > 1 (k>O) n* < 1 (k<O)
(strong prior) (weak prior)

include Z if include Z if

- Yp/Y > 0 I < kiyI II| > kIy I

(expected sign) (always include)

include Z if include Z if

Yp/Y < 0 lyI < -kIYpI YI > -kYlP|

(unexpected sign) (never include)

t k = 2n*/(n*-1); "strong prior" means prior
information has greater precision than sample
information; "weak prior" means the reverse.

Recall that this decision rule chooses 9- or zero as an

estimator of y depending upon which is closest to the

minimum Bayes risk estimator E.With this in mind, the
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details of the decision rule have a logical interpretation.

Each of four possible all-inclusive outcomes will be

discussed.

i) expected sign, strong prior

If j has the expected sign (i.e., it has the same sign

as the prior meanTp and the prior information is more

precise than the sample information (n*>1), Z is included

for lIl small. This result is striking because, viewed

conditional upon a2, it is equivalent to including Z only

when the t-statistic is smaller (in absolute value) than

some cricital value. This is or course directly opposed to

the usual rule of including Z for a large value of the t-

statistic, but the common sense of this rule is easily

demonstrated. First, consider Y between zero and yp as in

Figure 2(a).

(a) (b)

ItI II I I

0 YE Yp 0 p EY

Figure 2: Expected Sign, Strong Prior

Because T E is always between y and yp, will be a "better"

estimator than zero, when the criterion is closeness to E

Next, consider lij large relative to |y|as in Figure

2(b). When prior precision is greater than sample

precision, T E is between ypand y but closer to yp. As |9|
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increases there is a point at which 1i - E exceeds |NE t

and zero becomes a better estimator than '. Thus, for large

enough |Y| it is best to exclude Z.

ii) expected sign, weak prior

When Y has the expected sign, and prior information is

less precise than sample information, the decision rule is

to always include Z. For lxi < 1jy, it is obvious that E

is always farther from zero than it is from y. For

^j'j > jy |, and for relatively imprecise prior information,

E is always closer to y than it is to zero. Hence, Z is

always included.

iii) unexpected sign, strong prior

When y has the "wrong" sign, and prior information is

relatively precise, the rule is to never include Z. For

^YI < jy|, as in Figure 3(a), YE will lie between zero and

yp when the prior is relatively precise, and will

necessarily be closer to zero than to Y. When Y>j > lY

as in Figure 3(b), YE can have the opposite sign of yp but

will be closer to y than to Y. Therefore it will be closer

to zero than to y. Z is therefore excluded for all Y.

(a) (b)

Figure 3: Unexpected Sign, Strong Prior
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iv) unexpected sign, weak prior

When Y has the wrong sign and the prior is relatively

imprecise, the rule is to include Z only for Yj large.

Figure 4 illustrates the two possible outcomes. For "small"

l| [figure 4(a)] yE can have the opposite sign from j and

therefore will be closer to zero than to j. For "large" Iii
[figure 4(b)], the relative precision of the sample

information can pull YE closer to Y than to zero, in which

case the appropriate decision is to include Z.

(a) (b)

_I I 1 I I I "

Y 0 YE Yp YEp

Figure 4: Unexpected Sign, Weak Prior

The results of this section have been derived under the

assumption that the prior density for y can be precisely

specified. Given the difficulty in perfectly specifying

one's prior information (see Hill, 1975), it would be

interesting to examine the robustness of this pre-test.

estimator with respect to errors in the specification of the

prior. Berger (1982) demonstrates that Bayesian robustness

is generally improved through the use of more fat-tailed

priors such as the Cauchy, rather than the commonly used

normal priors. The advantage of the fat-tailed prior is

that when prior and sample information come into conflict,

the fat-tailed prior leads to relatively more weight being
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given to the sample information. This in turn provides

robustness with respect to misspecification of the prior. A

complete analysis of this issue is beyond the scope of this

paper. However, to achieve a degree of robustness in

practice, it is only necessary to be aware of situations in

which prior and sample information are in conflict, and to

reexamine both prior and sample information in such

situations.

5. SUMMARY AND CONCLUSIONS

This paper has been concerned with the normal linear

regression model y = Wa + s = XS + Zy + c where the

inclusion of Z in the final regression depends upon whether

or not the OLS estimator y falls in some critical region

A2
defined in terms of c and W. The objective was to

determine what critical regions minimize Bayes risk under

normal-gamma priors for ( ,y,o2), where the Bayes risk is

R(o) Eh*((&-a)(&-a)'), a is the pre-test estimator of a,

and h* is the normal-gamma prior for (S,y,ci 2 ). The key

results are the following:

1) R(a) depends only upon the marginal prior for

(y,o2). Thus to evaluate R(&) it is not necessary

to specify the prior for .

2) When Z is a single variable, the critical region

that minimizes R(y) also minimizes R(a) in the sense

that for any other critical region, R(&) exceeds the

"minimum" by a positive semi-def inite matrix.
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3) The critical region that minimizes R(Y) is defined

to include y if and only if Ii-y<E EwhereyE

is the posterior expectation of j.

4) When prior information regarding the sign of y is

neutral, the critical region that minimizes R(y) is

- either null or (-cx,+cx) depending upon whether the

prior information or the sample information is more

precise. Under the normal-gamma prior, this

relative precision is part of prior information so

that the optimal decision rule involves no pre-

testing. The include-exclude decision is based

entirely on prior information.

5) When there is prior information regarding the sign

of y, the optimal critical region depends upon the

prior expectation of y, and the relative precision

of prior and sample information regarding y. When

prior information is relatively precise, the rule is

to exclude Z if y has the "wrong" sign or for

"large" |y| if it has the "correct" sign. When

prior information is relatively imprecise, Z is

always included when y has the "correct" sign and is

excluded for "small" jyj when the sign is

"incorrect".

Perhaps the most informative result is that when there

is no prior information regarding the sign of y, the

include-exclude decision is based entirely on prior

information (and knowledge of W) and therefore pre-testing
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is inappropriate. In effect, the "optimal" pre-test

estimator involves no pre-testing because the critical

region is always at one extreme or the other. When there is

prior information regarding the sign of y, pre-testing is

appropriate but the critical region is quite different from

that implicit in the common rule of including Z when the t-

statistic exceeds some critical value.

A central parameter in the determination of these

optimal critical regions is the relative precision of the

prior and sample information. Under a normal-gamma prior

for (y02), the precision of the prior information is

n*/V(j). The precision of the sample information is simply

1/V(A). Thus the relative precision is n*. For those who

are not happy with a prior whose precision depends upon

V(9), it is useful to consider a normal prior with

expectation yp and precision 1/Vp. If o 2 is known, the

relative precision is also known, and is simply

V(y)/VP /(=2(Z'MZ)-Vp). If there is relatively little

2
prior information regarding a , it seems sensible to use

Y(YA)/Vp = a /((Z'MxZ)-V ) as an approximation to the

relative precision. Then, for example, if there is no prior

information regarding the sign of y, one would regress y on

X and Z, for purposes of observing Q~?(j), and then include Z

in the final regression only if 9T(j) < vp.
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APPENDIX

Proof of Theorem 1:

Note that

MSE( J) E(-)YY
MSE(~) = ( )(A.1)

E( (y--y)(- )')MSE(y)

It will prove useful to note that N=b-cy, where b=(X'X) X'y

and c=(X'X)~ 1X'Z. Therefore:

- =(b- -cy) - c(y-y) (A.2)

The expectation and variance of b are:

E(b; W) = + cy

V(b;W) = a2  , 7-1

which comine with (A.2) to yield:

MSE( ) = E((S-S)( - )

= a2 (X'X)~1 + cMSE(y)c'

- E((b- -cy)(~-)'c';W)

- cE((y-y)(b-S-cy)';W) (A.3)

and

E(( - )(y-y)' ;W)= E((b- -cy)(y-y)';W)

-cE((y-y)(y-y)';W) (A.4)

The following lemmas help simplify (A.3) and (A.4):

Lemma A.1: b, y, and a2 are mutually independent.

Proof: Note that Z = Xc + M Z so that y = XS+ Zy + e =

X(g+cy) + MZy + e = X*+ Z*y + s. The OLS estimators of

S* and y using this form of the equation are b and y

respectively and therefore b and ^j are independent of 52 by
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a well-known theorem. Furthermore, b and y are themselves

independent because they are normally distributed and

uncorrelated (by virtue of the orthogonality of X and Z*).

Lemma A.2: E((b-5-cy)(Y-y)*;W) = (0)

Proof: Note that y is fixed'[at either Y or (0)1

conditional upon W, Y, and o2. Therefore:

E((b-g-cy)(-y)';W,, 2 ) = EAE(b--C ;W,,2 = (0) by

Lemma A.1.

Combining (A.1), (A.3), (A.4), and lemma A.2 yields:

MSE(c) = a (X'X) - + cMSE()c' -cMSE(Y)

- MSE(Y)c' MSE(Y)

which proves theorem 1.

U

Proof of Theorem 3:

In the proof of theorem 2 it was shown that

cDc ' -cD
MSE(&)-MSE(o 1 1 ) =

I I I -Dc ' D

where D = MSE(91 )-MSE(9 1 ).

Therefore:
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R(cy )-R(aII ) = Eh(MSE(oI))-Eh(MSE( II))

cR(D)c' -cR(D)

-R(D)c' R(D) I
where R(D)=Eh(YI )-Eh(YII ) = R(yt )-R(Yr ). Following the

steps found in the proof of theorem 2 it is easily

demonstrated that R(&I)-R(y I) is p.s.d. if and only if R(D)

is p.s.d. and the theorem is proved.

Proof of Theorem 4:

Define:
S2W = joint density of and

g 1 (Yra ,;W,Y~a ]ya

conditional upon W, y, and a2

2 2 2
g2 (y,a ,y,a ;W) = joint density of y,A 2 ,y, and a

conditional upon W

g3 (y a ;W) = marginal joint density of j and 52

conditional upon W

and

g4 (y,a 2y,a ,W - g2 /g 3 = joint posterior density of y

and a2 conditional upon y, a2, and W.

Then

R(y) = E92(_) 2 = E 2()

-Note that in E (-y)2, y is fixed and is either y or (0)

depending upon whether or not y E A(c62,W). Therefore R(y)

will be minimized by choosing A(a2,w) such that it includes

if E~ (T-2 < Eg(yp-7) 2 and the theorem is proved.
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Decision Rule For Modified Pre-Test Estimator

Suppose the pre-test estimator is defined as y = y if

y c A(o2,W) and otherwise y = Y . In this case the minimum

Bayes risk pre-test estimator critical region A*(c2,W)

includes ^j if and only if

A 2A- 2 ~ 2A-A2
E((y-y) ;y, ,W) < E ((i-x) ;y,A ,W) (this is derivable as

P

in theorem 4). Note that (y-y) 2=(Y)Y +(Y-Y) 2 +2(Y)(y

Y) so that the above condition is equivalent to

(-)2-2(^-)(T9-E) < 0.. Substituting for and
- 2E

simplifying yields the condition (n*-1)(i-1) 2 < 0. Thus

A*(02,W) includes y if and only if n* < 1.

j.
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