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Abstract
Forthcoming in Behavioral Ecology

Deducing Implications of Fitness Maximization When a
Tradeoff Exists Among Alternative Currencies

While the theory of natural selection posits that those behaviors maximizing reproductive
success ("fitness") tend to survive, behavioral ecologists frequently explain observed
behaviors as maximizing some "currency" on which fitness depends. A weakness of the
approach is that reproductive success often depends on more than one currency and
behaviors which augment one currency may reduce another. We explain how to deduce
from the hypothesis of fitness maximization testable predictions. We expound the
approach entirely in terms of two biological examples---a preliminary example involving
flower replacement perennial and a more elaborate on involving over-winter hoarding by
a female mammals.
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In the last two decades, behavioral ecologists have developed a variety of models

to explain foraging and other "behaviors" of plants and animals from an optimization

perspective. Although the theory of natural selection posits that behaviors maximiz-

ing reproductive success or fitness tend to survive, most modellers in fact modify this

hypothesis and assume instead that some other proxy or "currency" is maximized.

For example, in the case of optimal foraging theory the long-term rate of energy in-

take is almost invariably used as a proxy for fitness. In their valuable survey of this

literature, however, Stephens and Krebs (1986) point out that reproductive success

often depends on more than this single currency. Since behaviors which promote

energy gain may at the same time impede other factors contributing to reproductive

success, tradeoffs inevitably exist. As Stephens and Krebs put it: "The best feeding

site may be the most dangerous, the worst place to find a mate, or the least suitable

for building a nest." Our purpose in this paper is to describe a methodology for

characterizing optimal behavior when reproductive success depends on multiple cur-

rencies over which tradeoffs exist. As we show, this approach is especially useful when

comparatively little is known about the form of the fitness function. We illustrate the

approach in subsequent sections by means of two examples.

In our first example, we consider a perennial which produces flowers during part of

the year and then lies dormant until the next flowering season. Energy is required to

generate each flower; moreover, energy is needed to maintain it. Each flower produces

seeds. The longer a given flower remains on the plant, the more seeds are produced

but the production occurs at a decreasing rate. In principle, the plant might generate

any number of flowers (including zero) over the course of the season. Moreover, it

might replace each flower after the same length of time or it might replace some after

different lengths of time.

These behaviors are hypothesized to maximize fitness. Fitness depends on two

currencies. It presumably strictly increases with the number of seeds produced during

the season; but, for any given number of seeds produced, fitness may also depend on

the energy reserves of the plant at the end of the flowering season. Since increas-

ing seed production ultimately means that the plant has less energy reserves at the

season's end, a tradeoff inevitably exists between these two determinants of fitness.

Unfortunately, relatively little is known about the "fitness function" compared to the

detailed knowledge of the energy costs of producing and maintaining flowers and the

details of seed production. What if anything can be said in these circumstances about

the implications of the hypothesis of fitness maximization?

In our second example, we consider a female mammal such as a squirrel. Through-

out the year, the squirrel finds food and either consumes or stores it. A fraction of

the stored food decays, is stolen or cannot be re-located. However, the remainder

may be either retrieved and consumed by the female or may be saved for her next

offspring. The activities of finding, storing and retrieving food each period require

energy. Moreover, finding a given amount of food after winter arrives requires more

energy than before the onset of winter. The weight gain of the female in a given pe-

riod depends on her food consumption and energy expenditure then. In principle, the

female squirrel might exhibit any of a variety of behavioral patterns over the course

of the year for finding, storing, retrieving, and consuming food.

How the squirrel behaves is hypothesized to maximize fitness. Fitness depends on

two currencies. It presumably strictly increases with the food stored for the offspring

when the next litter arrives; but, for any given amount of food in storage, fitness may

also depend on the female's body weight then. Since increasing the food in storage

for the next litter ultimately means that the female has less body weight when the

litter arrives, a tradeoff inevitably exists between these two determinants of fitness.

Unfortunately, little is known about the "fitness function" compared to the detailed

knowledge of the energy costs of finding, storing, and retrieving food, and the weight

gain and loss associated respectively with consumption and energy expenditure. What

if anything can be said in these circumstances about the implications of the hypothesis

of fitness maximization?

Quite a lot. In the case of the perennial, for example, we can conclude as a

qualitative matter that each flower will be maintained for the same length of time.

In the case of the female squirrel, predictions will depend in part on the pattern

of food availability before and after the onset of winter. In the stylized case where
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food is uniformly available prior to the onset of winter and uniformly scarce there-

after, for example, the female's storage and overall activity will increase as winter

approaches. After the onset of winter, retrieval replaces storage, foraging may be

suspended entirely (although this stage will be skipped under circumstances we de-

lineate in the Appendix), and overall activity drops. As time passes, retrieval declines

and-possibly after decreasing for a while-overall activity begins to increase until

the next litter arrives. Finally, females with larger body weights are predicted to have

higher reproductive success.

In addition to these qualitative deductions from the hypothesis of fitness maxi-

mization, quantitative deductions are possible if some additional information is sup-

plied about the observed behavior. In the case of the perennial, for example, we could

deduce both the number of flowers the plant would produce and also the length of

time each flower would be maintained if we observed the energy reserves of the plant

at the end of the flowering season. In the case of the squirrel, we could predict the

amount of consumption, storage, retrieval, and foraging the squirrel would undertake

throughout the year if we observed the weight gain of the squirrel between the be-

ginning and end of the year. Our formulation of this second example permits both

qualitative and quantitative analysis even when food availability exhibits systematic

seasonal variation prior to the onset of winter.

How can such qualitative and quantitative deductions be made from the hypoth-

esis of fitness maximization when so little is known about the fitness function itself?

The remainder of this paper explains the approach in the context of these two ex-

amples. Our methodology lies at the core of modern economics. There, tradeoffs

are represented by the celebrated "transformation curve" and the maximand is re-

ferred to as the "social welfare function." Although the form of this function is rarely

specified, economists nonetheless deduce many propositions (referred to as "efficiency

conditions") about the underlying behaviors which maximize it. Our purpose here is

to clarify the logical steps leading to such deductions by applying the approach to our

two biological examples. Readers interested in seeing the method we describe applied

to economic problems can consult the first few pages of the prominent graduate text

in microeconomics by Layard and Walters (1978) or, for a more detailed treatment

concentrating on dynamic problems like those we discuss, sections on "intertemporal

efficiency conditions" in Dorfman, Samuelson, and Solow (1987).

Tradeoff between Seed Production and Energy Re-

serves

Schoen and Ashman (in press) have modelled the evolution of optimal flower longevity

in cases where the resources available for flower production in a single year can be

allocated either to maintenance of existing flowers or to the construction of additional

flowers. Here we consider the case of a perennial plant. In such a plant, resources

allocated to flower production and maintenance in one year influence those available

in future years.

During the flowering season, a perennial plant creates n flowers. Let a, (i =

1,... , n) denote the age of flower i in days when it is replaced. Let s(a,) denote the

cumulative number of seeds produced (either directly or, if its pollen is spread to

other plants, indirectly) by a flower replaced at age a,. We assume that the longer

a flower is maintained, the more seeds are produced but at a decreasing rate. That

is, s(-) is strictly increasing and strictly concave; for simplicity, assume also that it is

differentiable. During the season the perennial will generate E s(a;) seeds.

Let E denote the energy reserves the perennial would have at the end of the season

if it created no flowers. Assume that each flower costs e units of energy to create and

m units of energy per day (net) to maintain. Then the energy reserves of the plant

at the season's end, denoted E 0, will satisfy:

E= 5 - nc - m

where n is a nonnegative integer and a, > 0 for i = 1,... ,n.

Each "behavior" (number of flowers, n, and their respective replacement times,

{a,}) yields an "outcome": a quantity of seeds produced (S) and an energy reserve

at the season's end (E). The set of possible outcomes lies either (a) on the boundary
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of Figure 1 or (b) in the interior area between this boundary and the axes. Assuming

that the perennial's reproductive success is a strictly increasing function of the number

of seeds produced during the season and may depend on end-of-season energy reserves

as well, fitness maximization will entail behaviors which lie on-rather than-inside

the boundary of Figure 1. For, suppose the contrary. Suppose a point inside the

boundary maximized fitness. Then, alternative behaviors exist which would yield an

outcome with the same end-of-season energy reserves but greater production of seeds.

But such behaviors would entail greater reproductive success. Hence, the supposition

must be false.

Consider any point on the boundary in Figure 1 with vertical component S and

horizontal component E. This outcome and the behaviors that underly it can be

defined analytically in two alternative ways: by maximizing the horizontal distance

given a vertical height S or by maximizing the vertical height given horizontal distance

E. To illustrate, we formulate the latter problem:

max,..,} L) El s(ai)

P1
subject to a; > 0, n an integer

E = E - nc - mE" a,.

Notice that P1 itself does not involve the fitness function. Nonetheless, any behavior

maximizing the fitness function must solve this underlying subproblem. Denote the

maximized value as S.

It turns out that for each $ the behavior solving the resulting subproblem has a

common qualitative feature: each flower is replaced after an equal interval of time.

For, suppose it were optimal to create np flowers and maintain flower i longer than

flower j (ap > a ). Denote the resulting outcome as E_, s(a ), E. Then it is

straightforward to display an alternative behavior which would result in the same

end-of-season energy reserves but larger production of seeds, and hence greater repro-

ductive success. Suppose the longer replacement time was shortened and the shorter

replacement time was lengthened by the same amount. If no other changes occurred,

the end-of-season energy reserves would be unaffected since the same number of flow-

ers would be created and the sum of their maintenance times would be unchanged.

But strict concavity of s(-) insures that, for sufficiently small perturbations, a larger

number of seeds will be produced. In particular, since the sum of the replacement

times of flowers i and j is unchanged, dal/da; = -1. Since a? > aP, strict concavity

of s(.) implies that s'(a?) < s'(a'). The total number of seeds produced by the plant

will then change at the rate: d[E i s(ap)]/da; = s'(a?) - s'(a5) < 0. Hence, the pro-

posed perturbation would increase seed production. It follows that each outcome on

the boundary of Figure 1 must be generated by behaviors where flowers are replaced

after equal lengths of time. This implication of the hypothesis of fitness maximization

has been deduced without a detailed specification of the fitness function.

It is important to recognize the generality of this formulation. While the repro-

ductive success of the perennial depends on the number of seeds it produces during

the current season, its overall reproductive success also depends on its own future seed

production as well as the future seed production of each of its descendants ... Redefine

E, n, and {a;} so that they pertain either to the original perennial or to any specified

successor alive in any specified future season. Then, if overall reproductive success is

maximized, the designated plant-for whatever energy reserve it starts the designated

season-presumably could not during that flowering season both produce more seeds

and nonetheless end the season with more energy reserves by maintaining a different

number of flowers or replacing them at different time intervals. Hence its "behaviors"

also solve P1. For this reason, the problem formalized above is fundamental.

There is one other qualitative implication of fitness maximization which can be

deduced. We introduce it here although its relevance will become clearer in the animal

hoarding example of the next section. Suppose there are regions in which fitness is

nonincreasing in end-of-season energy reserves. We can predict that fitness will never

be maximized in such a region (except in circumstances which can be disregarded,

where end-of-season energy reserves are zero). That is, increases in end-of-season

energy reserves must strictly increase fitness in the neighborhood of an optimum.

To establish this, first note that the boundary of Figure 1 slopes downwards.

For, if end-of season energy reserves were reduced, seed production could always be
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increased by using the energy saved to maintain the same number of flowers for longer.

Recall that the energy-seed combination where fitness is maximized lies somewhere

on this downward-sloping boundary. Now suppose in the neighborhood of the point

where fitness is maximized that an increase in end-of-season energy reserves would

result in unchanged or reduced fitness. Then alternative behaviors exist which would

result in more seeds and less energy reserves at the end of the season. But these

alternative behaviors would, by hypothesis, enjoy greater reproductive success. The

larger number of seeds would strictly increase fitness while the reduced energy reserves

would, by hypothesis, not diminish fitness. We conclude that whenever fitness is

maximized a local increase in end-of-season energy reserves must strictly increase

reproductive success.

While we can deduce from the hypothesis of fitness maximization these qualitative

conclusions, we cannot quantify them without additional information. For example,

we can predict that all flowers will last equal lengths of time but we cannot determine

the magnitude of the common length nor can we determine the number of flowers

that will be produced. To make such quantitative predictions, additional information

is necessary.

Suppose we observed as additional information the particular energy reserve of the

perennial at the season's end (denoted E*). Given this additional information, we

could also deduce quantitative implications of the maximization hypothesis. For, if

fitness was maximized, the perennial's behavior must have achieved the point on the

boundary of Figure 1 with horizontal component E. Since a unique set of behaviors

can be shown to underly virtually any point on the boundary of Figure 1, we could

deduce quantitative predictions about the number of flowers the plant will produce,

the replacement times of each flower, and the number of seeds produced. These

quantitative predictions require no additional information about the fitness function.

Tradeoff between Female's Body Weight and Ex-
ternal Storage

In the prior example, we identified as "behaviors" to be predicted the number of

flowers (n) and their respective durations ({ai}), and we required that those behaviors

be nonnegative and not overexhaust the energy reserves of the plant. Each collection

of feasible behaviors yields an outcome-a combination of seed production and end-

of-season energy reserves-which by hypothesis affects fitness. We represented the set

of such outcomes in Figure 1. If the fitness function is strictly increasing in at least

one of these "currencies," then fitness maximization requires that the behaviors result

in a point on the boundary. Behaviors resulting in any interior point never maximize

fitness. Each boundary point and the behaviors underlying it can be characterized

analytically by maximizing the vertical distance above each point on the horizontal

axis of Figure 1 (or, alternatively, by maximizing the horizontal distance to the right

of each point on the vertical axis).

In the animal hoarding example, we proceed in exactly the same way. How the

animal conducts the following five activities over time affects fitness: the amount of

food harvested, newly stored, retrieved and consumed as well as the energy expended

on these food-related activities. We refer to these as behavioral variables:

Behavioral Variables

Ht = units of food harvested (foraged) in period t;

N = units of food newly-stored in period t;

R: = units of food retrieved from storage in period t;

C1 = units of food consumed in period t;

At = energy expended in period tin food-related activities.

Since these behavioral variables are interrelated and none can be negative, we

impose the following feasibility restrictions:

C, = H+Re- N, fort = 1,...,T
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A, = Q(o)Ht + a,(t)R1 + a.(t)Ni, for t = 1,..., T

At, N,C,, H,, R >0 ,

where T is the period when the first post-winter litter arrives.

The first of these equations requires that the two uses of food (consumption and

new storage) equal the two sources of food (food retrieved from storage and food just

foraged). The second equation indicates that the total energy expended in period t

on food-related activities is a linear function of the food stored, retrieved, or currently

harvested then. Since it requires more energy to pursue these activities at different

times of the year, the coefficients of the linear function may vary over time.

Next, we clarify how feasible behaviors result in outcomes on which fitness de-

pends. We assume that initially the female's body weight and the stockpile size are

given. Denote them by W and S, respectively. By choosing five feasible behaviors

in each period, the animal alters her body weight and stockpile size over time. We

define the state variables S, and W, as follows:

State Variables

S, = food in storage at the beginning of period t;

W, = weight of mother at the beginning of period t.

Fitness is assumed to depend both on the female's body weight when her first post-

winter litter arrives (WT+) and on food in storage then (ST+i). We refer to these

variables as "currencies." The size of the stockpile at i +1 equals a fixed proportion

(0) of its size at t after adjustment for deposits or withdrawals in that period. The

complementary proportion (1 -60) is assumed to be irretrievable afterwards; it either

rots, is stolen or cannot be relocated. The female's body weight at t+-1 equals the sum

of her body weight at the beginning of period i and her weight gain (G(C,, A,, W, t))

during that period. Her weight gain in turn depends on her consumption, energy

expenditure, and mass as well as on the temperature at that time of year. When the

gain function is negative, we interpret it as a loss in weight:

Wt+i = W, + G(C,, A,, W,, t) , for I = 1,..., T

S,< S,W, =W,

and S1 ,W >0.

Any feasible 5T behaviors (five behaviors in each of T periods) generates a pair of

outcomes on or inside the boundary in Figure 2. Many behaviors result in outcomes

inside the boundary. If the fitness function is strictly increasing in at least one of these

currencies, however, then fitness maximization requires that the behaviors result in

a point on the boundary. Behaviors resulting in an interior point never maximize

fitness.

To determine if a set of behaviors results in a boundary point, no information

about the fitness function is required. The information required is summarized below:

9 10



Inputs to Model

5= initial stock of food in storage;

WV = initial body weight of mother;

ah(t) = energy required to forage one unit of food in period t;

ar(t) = energy required to retrieve one unit of food from storage in period t;

a,, t = energy required to store one unit of food in period t;

e = the fraction of food retrievable after being stored for one period;

T =the period when the first offspring after winter are born;

G(C,, A,, W,, t) = the weight gain (or loss, if negative) of the mother in period t.

We analyze the problem by maximizing the vertical distance above an arbitrary point

(S > 0) on the horizontal axis of Figure 2:

Maximize WT+1 = W + Ei1 G(C,, At, Wt, t)
P2

subject to S,+1 <(S + N - R)9 , for t = 1,..., T
W+ 1 = Wt + G(C1 , At,,W,,i) , fort= 1,...,T
Ct =Ht+R1 -N, fort= 1,...,T
At = ah)Ht + a, (1)R, + £YnQ)N, , for It= 1, ...,T
Si :3, W =W

ST-i-i>- S,
and A, NC, H1, R1, S> 0 .

It is important to recognize the generality of this formulation. While members of

the litter born at T clearly benefit from food in storage then and from the mother's

body weight, the subsequent offspring of the mother also contribute to her overall

reproductive success as do their offspring... Consider the first litter after the onset

of any winter born either to the original mother or to any of her female descendants.

Redefine T as the number of periods between that litter and her previous one and

reindex the time periods between the two litters from 1 to T, with T denoting the

period when the later litter arrives. If fitness (in the comprehensive sense) is maxi-

mized, it cannot be possible to alter the behavior of any such designated mother in

periods 1 through T in such a way that, without affecting her body weight when her

litter arrives at T, more food remains in storage then. For this reason, the problem

formalized above is fundamental.

In our first example, we deduced two types of qualitative predictions from the

hypothesis of fitness maximization. First, it was pointed out that behaviors which

underlie boundary points in Figure 1 differ qualitatively from behaviors which underlie

interior points. In particular, if flowers are replaced after different lengths of time, we

proved that the outcome would be an interior point in Figure 1; hence, fitness cannot

be maximized. In our animal hoarding example, the description of the qualitative

characteristics of paths achieving the boundary of Figure 2 will occupy all of the next

section and the Appendix.

Second, it was pointed out in our plant example that if fitness is strictly increasing

in one currency but is nonincreasing in another currency in certain regions, then an

optimum will never occur in those regions where fitness is nonincreasing. This quali-

tative proposition also has its counterpart in our animal hoarding example. Suppose

fitness is a strictly increasing function of the food in storage when the litter is born.

For any given stockpile size, however, suppose that increases in the mother's body

weight will strictly increase her fitness if her weight then is below some threshold

but will reduce her fitness if her weight then exceeds this threshold (due to obesity).

Then, from the hypothesis of fitness maximization we can deduce the prediction that

in the neighborhood of the body weight achieved by the animal at the time of her

first post-winter litter, a local increase in weight would strictly increase reproductive

success. The argument is the same as before. Since fitness is strictly increasing in one

currency, fitness maximization must result in a point on the boundary of Figure 2.

Since this boundary is downward-sloping, an optimum cannot occur (with WT+, > 0)

in a region where fitness is nonincreasing in body weight since slightly different be-

haviors would then exist which would result in more food in storage and less body

weight and hence would result in increased fitness.

Finally, it was pointed out that even quantitative predictions can be deduced with-
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out knowing more about the form of the fitness function if additional information is

observed. In our animal hoarding example, an observation of either the animal's

weight gain or its stockpile when the litter is born would permit us to predict quan-

titatively all 5T behavioral variables! Recall the argument. Under the hypothesis of

fitness maximization, some point on the boundary of Figure 2 will be achieved. Since

the additional information specifies one coordinate of this point and there are assumed

to exist only two currencies, the second coordinate can easily be determined. The

5T behaviors underlying this boundary point can then be predicted quantitatively

because the concave constrained optimization problem has a unique solution.

Further Qualitative Analysis of the Animal Hoard-
ing Example

Simplifying Assumptions

To predict behavior using the foregoing methodology, one does not need to know

the form of the fitness function. One does need to know, however, the weight-gain

consequences of food intake on the one hand and energy expenditure (G(Ct, At, W, t))

on the other, as well as the energy cost of the alternative food-related activities

(&ta), Q.(t), a,(t). The assumptions we make below facilitate our analysis and seem

to us a reasonable starting point.

. Weight-gain

Abstracting from the dependence of weight gain in period t on the animal's own

body weight and on the outside temperature (which varies with t), we write

weight gain as a separable function of the first two variables: G(Ct, At, Wt, t) =

U(C,) - F(A,). Furthermore, we assume the first and second derivatives of U(.)

and F(-) exist and are continuous. Finally, we assume the following:

Bi: U'(C) > 0, U"(C) < 0; F'(A) > 0, F"(A) > 0.
B2: F'(0) is finite and limc..o U'(C) = co.

The former assumption insures that the optimum is unique while the latter

reduces somewhat the number of cases which can arise as will be clarified below.

" Energy costs

Next, we assume that each of the food-related activities consumes energy:

B3: ar~t) > 0, anyf) > 0, ahtt) > 0.

Denote the last period before the onset of winter as t,,. Assumptions we will

make about the reduced availability of food during the winter will insure that

no retrieval occurs in the model until t,, +1. Retrieval will occur afterwards only

if it costs less in terms of energy than forAging for the same amount of food:

B4: ahtQ) > ar(t) for t = t,.,+ 1,... ,T.

We assume that the energy required to store (or to retrieve) food is the same

over the T-period horizon:

B5: art() = a, and CYR(t) = O.

As we will see, if all stored food could be retrieved without loss from rot, theft,

or misplacement and if, in addition, food were both uniformly available before

the onset of winter and uniformly unavailable thereafter, fitness maximization

would require that the behavior of the animal in every pre-winter period be

identical; and a different but unchanging behavior would be required in each

period after the onset of winter. This recurrent behavior is reminiscent of our

first example where each flower is replaced after the same length of time no

matter when in the season it initially forms.

However, two forces independently create a rich dynamics in the hoarding ex-

ample. The first, which is hardly surprising, is that the availability of food

systematically varies before the onset of winter. For example, squirrels store

mast which becomes more available as winter approaches.

The second force, which is more surprising, results from the fact that some

stored food is irretrievable: since 0 < 1, the stockpile can be thought of as a

sieve. Even if food were uniformly available before the onset of winter and uni-

formly unavailable thereafter (until the arrival of the next litter), a complicated

pattern of behavior over time would result simply from optimal responses to
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leakage from storage (6 E (0,1)). We refer to such induced behaviors as "sieve

effects." When we wish to isolate these effects, we will find it useful to invoke

the following assumption:

B6: amt) =r if t = 1,2,... ,
h(t) = > g otherwise

Henceforth, each mention of an assumption is set in boldface to facilitate identifying

where each assumption is used.

Conditions Defining Each Optimum

To analyze the constrained maximization problem (P2) posed in the previous section,

it is convenient first to substitute out the variable C,. Then, forming the Lagrangean

we obtain:

L = {U(H, + A - N,) - F(A,) + A[6,(S, + N, - Rt) -St,
t=1

+7,[A, - (ah(,)H, + a,7R + anNt)]}

+A 00(3 - S)+ 9AT+1(ST+1 - S) .

The following Kuhn-Tucker conditions must hold if a program is optimal.

Fort=1,2,..., T,

1. H, > 0; -- = U'(H, + R, N,) - 7yta (:) 0; with complementary
-'8H,

slackness;

2. R, > 0; a- = U'(H, + R, - N,) - At9 - ya, 0; with complementary

slackness;

DL
3. N, > 0; 2- = -U'(H, + R, - N,) + A,6 - 7:ca,, < 0; with complementary

slackness;

DL
4. S, > 0; - = A - A. < 0; with complementary slackness;

5. ST+I ? 0;-L = OAT+1 - AT < 0; with complementary slackness;
8ST+1

DL
6. A, >0; -A= 6(S, + N,- R,) - St+ 1 2 0; with complementary slackness;

ot

DL
7. Ao 0; = 6(3- S,) > 0; with complementary slackness;

DL
8. -- = A, - (ah(t)H, + aA + anN,) = 0;

9. A A T 0;DL = 9(ST+, -'S) 2 0; with complementary slackness; and

D L
10. A, 0, a = -F'(A,) +7 y, 0; with complementary slackness.

As explained in Baumol (1977) "complementary slackness" is a shorthand term

meaning that at least one of the two weak inequalities in the list must equal zero.

Thus, for example, Condition 1 indicates not merely that H, > 0 and --- < 0 but
OH,

that whenever H, > 0, a = 0 and whenever a < 0, H, = 0. The Kuhn-Tucker

conditions are a systematic if somewhat mechanical way of taking into account all

the equality and inequality constraints in an optimization problem. A more intuitive

and equivalent way of proceeding would be to show that whenever a feasible program

violates one or more Kuhn-Tucker conditions, there exists a different feasible program

yielding a larger bodyweight but the same size stockpile. While the use of the Kuhn-

Tucker conditions saves journal space, some readers may prefer a derivation of our

results which does not rely on these conditions; they should consult Section 3 of

our working paper (Salant et al., 1993). Henceforth, we use the term "Condition"

(followed by its number) when referring to a complementary slackness condition in

its entirety and "Equation" (followed by its number) when referring to either of the

equalities which this condition may imply. Given our assumptions that the maximand

is jointly concave (Bi) and that storage and retrieval require energy (B3), the Kuhn-

Tucker conditions uniquely define the global optimum associated with each specified

level of terminal storage (S> 0). For a formal proof, see (Salant et al., 1993, working

paper).

" The Four Possible Types of Optimal Behavior

At the outset of our analysis, we verify formally that it is never optimal both

to store new food and to retrieve from storage in the same period. Suppose to
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the contrary R, > 0 and N, > 0. Then Conditions 2 and 3 imply 10'. A, > 0 and F'(A,) = y,.

U'(H,+R, - N,) - A O- yea, = 0

and - U'(H, + R, - N,) + AO--yea,=0.

Summing, we get

- 7,(an + a,) = 0. (11)

The role of B2 is to simplify the analysis by eliminating from consideration

cases where A, = 0.

Since the other three behavioral variables (H,, R, and N,) must each be either

zero or strictly positive there are in principle 23 cases to consider. But two of

these eight cases involve R, > 0 and N, > 0 simultaneously and, as proved

above, this cannot be optimal. A third case has Ht = 0, R, = 0 but N, > 0.

Since C, = H, + R& - N,, such a program would violate the constraint that

consumption be nonnegative. A fourth case has Ht = N, = R, = 0, which

cannot be optimal since it implies that A, = 0.

There remain 4 cases to consider:

But by (B3), the second factor is not zero; moreover, since (B1), (B3) and

Condition 1 imply that the first factor (--y,) is nonzero, Equation 11 cannot

hold. Hence, in an optimal program either R, or N, (or both) must be zero.

Intuitively, if the animal both stored and retrieved at the same time, it could

reduce both activities marginally by the same amount, use the energy saved to

forage for more food, and consume all of it. Even if the animal changed her

behavior in no other way, her reproductive success would increase because the

proposed perturbation increases her body weight without reducing the stock-

pile available when the litter arrives. Hence, programs where new storage and

retrieval occur simultaneously never maximize fitness.

Next, we establish that it is always optimal to engage in some food-related

activity (A, > 0). Suppose to the contrary that A, = 0 for some t. As a result,

H, = 0, R, = 0 and C, = 0. Then Conditions 1 and 10 reduce to:

Case 1 (retrieval only)

Case 2 (harvesting and retrieval)

Case 3 (harvesting only)

H, R, N,

0 + 0

+ + 0

+ 0 0

U'(O)

Case 4 (harvesting and new storage) + 0 +

If fitness is maximized, behaviors must always fall within one of these four

"regions" although transitions between them may occur as time passes.

Pure Sieve Effects

It turns out that if food is uniformly available before the onset of winter and uniformly

unavailable thereafter (until the next litter arrives) as specified in B6, how each of
the 5 behavioral variables changes in each of the four regions can, with a single ex-

ception, be predicted. That is, nineteen predictions summarized below in Table 1 are

unambiguous while the twentieth, whether foraging (H) is increasing or decreasing in

region 4, is ambiguous. If food availability varies in some region, then the predictions

But these inequalities are jointly inconsistent with B2. Therefore, it is optimal

to expend some energy on food-related activities (A, > 0) in every period.

Simplifying Condition 10, we obtain:
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listed for that region in Table 1 would have to be modified as described more fully

below for region 4.

How each behavioral variable can be determined in each region is described in

detail in the Appendix. For the sake of generality, the analysis there permits food

availability to vary systematically over time. Each prediction in Table 1 is verified in

the Appendix by specializing the analysis to the case of uniform availability of food

before the onset of winter and uniform scarcity thereafter (B6). Assuming the animal

has nothing in storage initially (. = 0) and that the terminal stock S is not set so

high as to preclude even the slightest retrieval, the Appendix also shows the order in

which the regions will be encountered: initially the animal will forage without storing

(region 3), then she will forage and store as winter approaches (region 4), then she

will possibly cease foraging altogether and live off of her stockpile (region 1) before

resuming foraging while continuing to retrieve (region 2). The Appendix presents a

condition sufficient for region 1 to be skipped in this sequence.

How Food Availability Effects and Sieve Effects Interact

In the remainder of this section, we focus on the predictions in region 4, which cor-

responds to hoarding behavior prior to the onset of winter. We first derive the pure

sieve effect and then show how our predictions would be changed if food availability

increased during the fall. While space considerations prevent us from considering in

the text the other three cases, the interested reader is referred to the Appendix, which

contains a parallel and complete treatment of them.

Throughout region 4, H, .> 0, N, > 0, A, > 0 and R, = 0. Therefore, the

Kuhn-Tucker conditions imply that the following equations hold in region 4:

Adding Equations 1 and 3, we obtain:

y, = - (12)
0h(t) + an

Inverting the function defined in Equation 10' and substituting, we obtain:

A, =F'~(-,). (13)

Noting that C, = Ht - N, in region 4, and inverting the function defined in

Equation 1 we obtain:

C, = U'-'(a(t:)7,). (14)

Finally, using Equation 8 we conclude:

H-A,+l-s.C, (5

Et (16)

N, = At - aste)Ct. (16)

ah(t) + an

Equations 12-16 define five variables-7y, At, C, H, and N, as continuous functions

of A and ah() in region 4. Since storage is positive throughout this region, Condition

4 implies that {A) is strictly increasing when the stockpile is leaky (8 < 1) and

constant in the extreme case where all storage can be retrieved.

It is instructive first to assume that (a) all storage is retrievable (0 = 1) and (b)

food is uniformly available before the onset of winter (Be). Then, since both {At} and

{alh(t)} are constant sequences, the five equations indicate that {}y,}, {At}, {Cg}, {N,)

and {H,} are constant sequences throughout region 4. This constancy is reminiscent

of the equal replacement-time result in our first example.

Next we maintain the assumption that food is uniformly available but drop the

assumption of a perfect stockpile. This permits us to isolate pure sieve effects. Since

Condition 4 implies that {A) strictly increases, Equation 12 implies that { y,} strictly

U'(H, - N,) - -Y'aMt) = 0

-U'(H-N,)+A,9-can, =0

A, - act()H, - a.N, = 0

P'(At) =-f,.

(1)

(3)

(8)

(10')
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increases. But since the function F'-'(-) is strictly increasing and the function U'- 1(.)

is strictly decreasing (B), Equations 13 and 14 in turn imply that {A,} strictly

increases and {C,} strictly decreases. {N,} must strictly increase since, as Equation 16

reflects, it is the difference between an increasing and a decreasing sequence. Nothing

can be said about the foraging sequence {Ht} since, as Equation 15 reflects, it is the

sum of a decreasing and an increasing sequence. These pure sieve effects are what

we recorded in Table 1. The predictions in Table 1 for the other three regions reflect

conclusions derived in the same manner in the Appendix.

Finally, we show how the analysis can be modified in the case where food becomes

more available before the onset of winter. Changes in the availability of food reinforce

some sieve effects but offset others. For example, if {Cr,(t)} is a decreasing sequence

a re-analysis of Equations 12 and 13 confirms that both {-,} and {At} increase over

time as before since {At } strictly increases throughout this region. On the other hand,

the sieve effect and food-availability effect have conflicting influences on consumption.

To see this, note that from Equation 12:

consumption strictly increases or not depends on the magnitudes of four exogenous

variables: aht), ahs(t+), a., and 9.

If the sieve effect dominates, then {C,} will decrease as before. In addition,

since the numerator on the right of Equation 16 will increase over time while the

denominator will decrease, {N,} will increase as before.

If, on the other hand, the food-availability effect dominates, then {C,} will increase

over time. In this case, the previous ambiguity about foraging disappears: {H,}

strictly increases since the numerator on the right of Equation 15 increases over time

while the denominator decreases. In this circumstance, however, the direction of

change of {Nt) becomes ambiguous.

The reader can easily modify the pure sieve effects in the other three rows of

Table 1 to account for variations in food availability by analyzing the equations in

the Appendix which correspond to each of the other regions.

DISCUSSION

In this paper, we explained a methodology which permits the deduction of many

qualitative implications of the hypothesis of fitness maximization without a detailed

knowledge of the form of the fitness function. As a first step, we identified an op-

timization subproblem which must be solved if fitness is maximized but which does

not itself involve the fitness function. As a second step, we showed that solutions

to this subproblem must have certain qualitative characteristics; these characteris-

tics are, therefore, implications of fitness maximization. In addition, we showed how

sometimes elaborate quantitative predictions can be made from the analysis of this

subproblem when a limited amount of additional information can be observed.

We developed these ideas, which are fundamental to economics, in terms of two

biological examples. These examples were deliberately simplified to permit the clear-

est exposition of a novel methodology. Thus, our assumptions about the weight gain

function (G(C,, A,, W, t)) were intended to facilitate analysis rather than to reflect

the details of what is now known about the effects of food intake and activity on the

a&k(tfyt =1-

+ .0.m

(17)

Hence

acggy, 6 1+
(18)

h(t+ +1 1 + ak+s+ )

Since C, is a strictly decreasing function of the product, ahel)yt, Equations 1 and

18 imply:

C1Cil ae1 + -- =6 B1 +=-" .
< ah)a< \ a(+1)

These inequalities imply that, if storage were perfect, consumption would increase

with food availability. If, on the other hand, food were uniformly available, consump-

tion would decrease due to the sieve effect. Hence, if food becomes more available

over time in region 4, the two effects would work in opposite directions. Whether
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weight of mammals in different climates. Similarly, we excluded from consideration an

aspect of hoarding behavior which is unquestionably important: animals can adopt

any of a wide variety of different hoarding techniques for preparing, transporting,

placing, and concealing stored food as catalogued in Vander Wall (1991).

The validity of our methodology in no way depends on these simplifications. Now

that the methodology has been clarified, it is both feasible and appropriate to add

greater detail and realism to our two examples. For instance, to predict which of a

finite number of hoarding strategies an animal would adopt, each alternative strategy

mentioned by Vander Wall could be characterized by its three stockpiling parameters

(9, a,,, and a, ). The choice of hoarding strategy (regarded as a discretized rather

than a continuous decision variable) could be predicted in the same manner as the

other behavioral variables in the model. Geometrically, there would be a different

"transformation curve" like that in Figure 2 associated with each hoarding strategy.

.Fitness maximization would then require using whatever transformation curve had

the highest vertical component for each given horizontal component. That is, the

analog of Figures 1 and 2 could be constructed from the outer envelope of this finite

set of transformation curves.

In a paper about tradeoffs and fitness, it is of course fitting that we note the

fundamental tradeoff in modelling: the more realistic and detailed the assumptions,

the more complicated and unwieldy the resulting model. If, however, quantitative

predictions alone are desired, even relatively complicated variations on our hoard-

ing example can be incorporated into simple spreadsheet simulations. We find such

spreadsheet simulations are also useful in suggesting qualitative properties of such

models which can then be investigated analytically. A spreadsheet of our hoarding

example is available upon request.

To reiterate, we simplified our two examples so that we could explain an unfamiliar

methodology in the clearest fashion. It would be entirely mistaken for readers to

conclude from these simplifications that our methodology only applies to models

which lack biological realism.

We also chose to analyze the optimization problem in each example using calculus

rather than dynamic programming (Mangel and Clark 1988, p.233). Either technique

could have been used: our paper concerns the structure of optimization problems, not

the mere mathematical technique by which they are solved. We chose calculus because

it seemed better suited to the derivation of analytical results. When the research focus

changes to model estimation and hypothesis testing, however, dynamic programming

may well be the more appropriate technique.
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APPENDIX:

Characterization of the Optimal Time Paths Before and After the Onset

of Winter

In this Appendix, we determine how each behavioral variable changes within each

of the four regions by analyzing the first-order conditions given in Conditions 1-10

of the text. Numbers below refer to those conditions. We verify the sieve effects

reported in Table 1 for each region for the special case where BO holds. Readers

wishing to explore cases where food availability varies in arbitrary ways for regions

1,2,or 3 may want first to review the analysis in the text of how pure sieve effects and

food availability effects interact in region 4.

In addition, this Appendix indicates the order in which the regions will be reached

in the case where food is uniformly available before winter and uniformly scarce

thereafter. Finally, we present a condition on the exogenous parameters sufficient for

region 1 to be skipped in any optimal program.

We show below that A, C, H, N, and R can be written as a continuous function

of the multiplier A. There are two sets of these five functions-one set holds prior to

the onset of winter and the other set holds subsequent to its onset.

Prior to the onset of winter, optimal behavior on a given period depends on A in

that period. A must lie in one of the disjoint regions which correspond to the cases

above. If A is in region 1, 2, 3, or 4 then case 1, 2, 3 or 4 (respectively) arises. The

boundary between region i and j at date t is denoted A;.

Below, we show how the variables At, H,, R,, N,, and C, can be deduced as

functions of At for At in any of four possible regions.

Region 1 (retrieval only): In region 1, N, = Ht = 0, A, > 0 and i > 0. The

following equations must hold (the numbers refer to the corresponding Kuhn-Tucker

conditions);

F'(At) = 7:. (10)

Combining Equations 2, 8, and 10 we obtain:

U'( R,) - a6 - F'(a,,jia, = 0.

This uniquely defines RA (implicitly) as a strictly decreasing function of A,.
In addition, Equation 8 implies;

A, = a,.,R.

Hence At is a strictly increasing function of R, and, therefore, a strictly decreasing

function of A,. Since Nt = Ht = 0, Ct = R,. Hence every behavioral variable depends

in region 1 on A,. As A, increases in region 1, R, At, and C1 strictly decrease.

Region 2 (harvesting and retrieval);

In region 2, N, = 0, H, > 0, A, > 0, and R > 0. The following equations must

hold:

U'(H. + R) - Y~aagt= = 0

U'(H,+R,)- A6-yga, = 0

At - ah(t)Ht - crR, = 0

F'(A,) = ,.

(1)

(2)

(8)

(10)

After subtracting Equation 2 from Equation 1 and simplifying, we obtain:

7:= -7 1 4Ot) - Cki.

Inverting the function defined in Equation 10, we find:

A, = F'~'(y,) = F'' (Ate
aste) - a,.

Hence At is a strictly increasing function of A in region 2. Since C, = Ht + H,,

Equation 1 implies

C, = U'~'y(ac(t)) = U'~1 a a,
U'(Rt)-At9-ycs= 0

A, - a,.R, = 0

(2)

(8)
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Hence in region 2, C, is a strictly decreasing function of A.

Finally, from Equation 8, we obtain:

H - A, -aC'

ah()C, - A,
Rt = -htCtA

ah(t) - or

Since A, and C, are uniquely determined by A so are Ht and R. In region 2, as A

increases over time H, strictly increases while R, strictly decreases.

Region 3 (harvesting only):

In region 3, R, = N, = 0, A, > 0, and H, > 0. The following equations must

hold:

-U'(H,-N,)+Ae-a'y, = 0

A, - aEh()H, - aN, =0

F'(A,) = 7t.

(3)

(8)

(10)

U'(H,) - 7,ah(= 0

A, - ah(t)H, = 0

F'(At) = 7t,.

(1)

(8)

(10)

Adding Equations 1 and 3, we obtain:

Ate
aS(t) + a,,

Hence V, is a strictly increasing function of A. Inverting the function defined in

Equation 10 and substituting, we obtain:

A, =F'~'(y,).

Since A, is a strictly increasing function of 'y,, A, is a strictly increasing function of At

in region 4. Noting that C, = Ht - N, in region 4, and inverting the function defined

in Equation 1 we obtain:

C, = U'~1(aaggy,).

Hence C, is a strictly decreasing function of 7, and thus a strictly decreasing function

of A, in region 4. Finally using Equation 8 we conclude:

H =Atc '
&(t,) + CS,,

and
A, -aiC

N, =A.
ah(t) + a.

Hence N, is a strictly increasing function of A, in region 4. H, is the sum of a

decreasing function and an increasing function of A,. As A, increases in region 4, A,

and N, strictly increase, C, strictly decreases, and H, may either increase or decrease.

Defining the Boundaries of Each Region

In region 1, H, = 0; in region 2, H, > 0 and strictly increases. Equations 2, 8, and

10 hold in- both regions, but Equation 1 which must hold with equality when H, > 0,

Combining Equations 1, 8, and 10 we conclude:

U'(A - F'(Ag)ah(,) = 0.

Hence A, in region 3 is independent of A, and is constant if ahtt is constant. From

Equation 8

Ht= --.

Moreover, since C, = Ht+ R, - N,, C, = H,. Note that in region 3, N, = R, = 0 and

A,, H,, C, remain constant provided alp) is constant.

Region 4 (harvesting and new storage)

Throughout region 4, H, > 0, N, > 0, A, > 0 and R, = 0. The following equations

hold in region 4:

U'(H, - N,) - 7,aae(t) = 0 (1)
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need not hold in region 1. To determine the boundary between region 1 and 2, we

find that value for A, denoted A1,2, such that H, = 0 in region 2. Since

H=A, - aC,
*ahste)-- o,

H=0 == arC, =A,

or arU'-1 A,2cah() -F' (A 1 ,2 ).
\ah(t) - or ah(t) -- a,

This equation uniquely defines A1,2. The boundary, A1,2, changes over time only if

ah(t) changes.

In region 2, R, > 0 and strictly decreases; in region 3, R, = 0. Equations 1, 8, and

10 hold in both regions but Equation 2, which must hold with equality when R, > 0,

need not hold in region 3. To determine the boundary between regions 2 and 3, we

find that value for A,, denoted A2.3, such that R, = 0 in region 2. Since in region 2

R, - C - A,
ah(,) -- a,

R,=0 = ah(t)C-A=0

or ah(e)U (1 20a& ~)- -F(A2, )
\ah(t) - ar ah(t9 - a'

This equation uniquely determines A2,3. The boundary, A2,3, changes over time only

if a'h() changes.

In region 3, N, = 0; in region 4, N, > 0. Equations 1, 8, and 10 hold in both

regions but Equation 3, which must hold with equality when N, > 0 need not hold

in region 3. To determine the boundary between regions 3 and 4, we find that value

for A,, denoted A3,4, such that N, = 0 in region 4. Since in region 4

N - A, -ahtC

aOh() + an

N, = 0 = Ac = ah(t)Cc

or F'~ (A 30 ) = ah(1)U'~ (ah()A 3 40)
ah(t) ± an ah(t) + an

This equation uniquely determines A3,4. The boundary, A3,4, changes over time only

if ah(t) changes.

How the Regions Fit Together

Next we verify that

A1,2 < A2,3 < A3,4.

Reconsider the equation defining A1,2. Geometrically it can be regarded as the

intersection of a downward-sloping function of A and an upward-sloping function of

A.

Reconsider the equation defining A2,3. Notice that it too can be regarded as defined

by the intersection of an upward and a downward-sloping functions of A. Indeed, the

upward-sloping function in each case is identical:

(ah(0) - a,

However, the downward-sloping function defining A2,3 lies uniformly above the downward-

sloping function defining A1,2. That is:

ah(t) 1 (Aah(t) >,.U-1 (Aah(t)
a (?) - a, ah(,) - a,

since ah(t) > a? by B4. This implies that A2,3 > A1,2.

Next, reconsider the equation defining A4 . It can be regarded as the intersection

of an upward-sloping function of A and a downward-sloping function of A. Note that,

given B3, the upward-sloping function defining A3,4 is uniformly smaller than the

upward-sloping function defining A2,3:

F' A <F / A .
ah~t + n Cfk )- aYO

B3 also implies that the downward-sloping function defining A3,4 is uniformly larger

than the downward-sloping function defining A2,3:

U'~1 ah(t) > U'~1 "h(*)ae

as() + an,,J ah(,) - a,

This implies that A3,4 > A2,3.

Figure 3 illustrates how the intervals fit together:

These boundaries are ordered in this way regardless of the value of ah(,).
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For simplicity, consider the case where ah() is constant until the onset of winter

and then jumps up to a new constant level. Consider the equations defining A1,2.
When age jumps up, the upward-sloping function shifts down while the downward-

sloping function shifts up. Consequently, the boundary, A1,2 jumps up. For the same

reason, the boundary A2,3 must jump up. As a result At can increase by 1/0 at the

onset of winter and nonetheless transit from region 4 to region 1 or 2 as discussed in

the text.

A Condition Sufficient for No Hibernation

To conclude this appendix, we present a condition sufficient for region 1 not to

occur in an optimal program.

If ah(,+1) < *-o'+ (a, + oy), the transition will be to region 2. By hypothesis

arU'-1 a=2 aht ()A1.2
'h(t+1) -

Suppose A+' -A'. Then

a,.U,-I +6t+
aht+1) - a,, ahgt+) - a,

or

aih(t) + aIn ah(t+1) - a,

But since F'-1(.) is increasing and 9 < this inequality cannot hold.

Therefore, A+ + > As
A necessary condition for a transition to region 1 is therefore that a'Agt+,) >

at+ a,

'I&Q=+1) - Or
Hence

A 1  ah(+t) + + oR

't+1 'IA(t+i) - a,.
Therefore,

Ch(a) + C \a g. - a,/

Recall that since A> A3,4

C~h \)U ah(t)At ) \F' ' () An)/

Hence

y,- t+10*h(*+1) < p. ate

\ag:+i) - a,. ~ aht) + an

But the boundary A)z' implicitly solves
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FIGURE LEGENDS

Figure 1-Given the initial energy reserves of a perennial, the number of flowers

it forms during the season and the length of time each is maintained determines

the number of seeds produced and the energy remaining at the season's end. Each

point in the diagram represents one resulting combination of seeds produced and

energy remaining. Combinations on the downward-sloping boundary of Figure 1 or

between that boundary and the axes can be achieved while combinations outside the

downward-sloping boundary are infeasible. Provided fitness is a strictly increasing

function of one of the currencies on the axes, fitness maximization must result in

an outcome somewhere on the downward-sloping boundary. The boundary can be

achieved only if each flower is maintained for an equal length of time. Determining

that length and the number of flowers which will form requires more information. If

the end-of-season energy reserves were observed to be E, then the number of flowers

produced and the common time each is replaced could be predicted as the determi-

nants of the boundary point directly above $.

Figure 2-Given her initial body weight, the foraging and hoarding behavior of a

female mammal between the prior summer and the arrival of her first post-winter litter

determines the size of her external stockpile as well as her own body weight following

the birth of that litter. Each point in the diagram represents one resulting combina-

tion of body weight and stockpile size. As in Figure 1, combinations either on the

downward-sloping boundary or between that boundary and the axes can be achieved

while combinations outside the downward-sloping boundary are infeasible. If fitness

is maximized, the resulting combination of body weight and stockpile size must lie

somewhere on the downward-sloping boundary. Such combinations have distinctive

characteristics (see Table 1). These qualitative implications of fitness maximization

can be supplemented by quantitative predictions if, for example, the animal's body

weight is measured following the birth of her litter.

35

Figure 3-The Kuhn-Tucker conditions (1-10) require that the multiplier (A) be

nonnegative and that it grow between periods by the factor 60'(> 1) once stockpiling

begins. The diagram divides the nonnegative real line into four disjoint regions (R1-

R4) with aid denoting the boundary between region i and j. Increases in the energy

cost of foraging (aht()) cause the boundaries of the regions to shift up while decreases

in the cost of foraging cause them to shift down; the boundaries do not change when

this cost is constant. As Table 1 summarizes, the qualitative behavior of the animal

in a particular period depends on which region contains A during that period. On the

period before the onset of winter, A is contained in Region 4 . When winter arrives,

the cost of foraging increases and the boundaries of the regions shift up; consequently

A-which continues to increase geometrically-may fall into Region I or 2.
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Table 1
Pure Sieve Effects: How Behavioral Variables Change Within a Region

as Time Elapses

Variable

Region

Region 1 (retrieval only)

Region 2 (harvesting and retrieval)

Region 3 (harvesting only)

H R N C A

0 1 0 ± 1

t l 0 l T

-. 0 0---.

Region 4 (harvesting and new storage) ? 0 T ± T

Key: T means a positive variable strictly increases over time.
± means a positive variable strictly decreases over time.
-+ means a positive variable is constant over time.
? means a positive variable could increase or decrease over time.
0 means a variable remains zero over time.

m

CC

CD
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0 xE 2  x 3 x3

Weight
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