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1. Introduction.

Theoretical microeconomics has relied heavily on the neo-
classical Arrow-Debreu model of general eguilibrium theory, as
outlined in Debreu (1959). 1In this model, a commodity is a
carefully specified good or service delivered at a specific
location and at a specific time. Two related, but not identical,
varieties of the same good must be treated as separate, independent
commodities. Similarly, there are a finite number of consumers
in such an economy, each specified by his preference relation and
initial wealth. One cannot easily compare characteristics of
similar but different commodities or tastes of similar but different
consumers. Nor can one easily handle the addition or deletion of ’
commodities' from the market.

There are many situations, such as housing markets (see
Sweeney (1974)) and labor markets (see Becker (1965) or Lewis
(1969)), where the distribution of the gualities and characteristics
of the studied goods and the spectrum of preferences of the con-
sumers are the important objects of study. As a result, economic. .
models with differentiated products and consumers have been widely
developed and discussed over the past twenty-five years. Among
_the important references in this area are Houthgkker (1952),
Lancaster (1966), (1975), and Rosen (1974). Commonly in such
ﬁodels, an open subset of Euclidean space is used to parametrize
an n-dimensional set of product characteristics or qualities.

"The consumer is assﬁmed to derive his actual utility or satis-
faction from these characteristics which cannot in general be

purchasedvdirectly, but are incorporated into goods. The consumer
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obtains his optimum bundle of characteristics by purchasing a
collection of goods so chosen as to possess in toto the desired
characteristics... . Furthermore, one generally assumes that

the population consists of a very large number of consumers

with difference preference patterns, so that there is a continuous
spectrum of preferences.” (Lancaster.(1975)) Thus, the consumers'
preferences are assumed to be parametrized by another open set of
Euclidean space. Furthermore, both of these parametrizations are
assumed to be continuous, or even differentiable, so that nearby
parameters correspond to similar characteristics or similar pre-
ferences relationms.

More concretely, if X in =Y

is the space of characteristics
and C in Ef, represents the space of consumers, then for each

c € C there is a utility function u(x; c) which is smooth in
both variables, and probably concave in x. If, for some g;ven
price system p(x) and distribution of initial incomes, x = £(c)
maximizes wu(e,c) on its budget set, then £ might be considered:
an individual demand function. The function § by matching up
points in C with points in X casts the problem into a spacial
setting reminiscent of the spacial approach to economics of

Harold Hotelling. In fact, such models with differential com-
modities and consumers have historically been closely associated
with the theory of mopopolistié competition.

There is no reason that the individual demand function ¢

be surjective; in other words, some characteristics and commodities
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may not be‘purchased. As the price funetion varies, the image
of £ may change also; goods demanded at onevprice may be
ignored at another. One can.perform‘a similar analysis from
the supply side with the cost and pfoduction functions of a
continuous spectrum of firms leading to a supply function rf;
One can then interpret changes in the image of n as ehtrance
and exit of firms frpm'the'market—fa phenomenon which is rather
difficult to model in the ArroQ-Debreu model.

Besides providing an effective.method of comparing gqualities
of similar commodities and tastes of similar consumers, these
Amodels often have other advantages over the traditional model in
some applications. For example, one can easily include uncer-.
tainties about consumer behavior, as illustrated in Quandt (1956).
One can also bring some extra mathematical fools into the analysis.
While the mathematics used in the Arrow-Debreu model consists
mainly of linear algebra, the implicit function theorem, non-
linear j;rogramming, and fixed-point theorems, the study of models
with a continuum of eommoéities aﬁd traders often includes, in
-addition to these,;techniques from capital theory, such as calcﬁlus
of variations, optimal ceﬁtrol theofy, and partial differential
equations._

| However, the mathematics of the Arrow-Debreu model is much
more straightforward, at least as it is used in most applicatione.
One assumes that each of the finite number of consuﬁers has a .

preference relation which is representable by a smooth, monotone
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non-singular; strictly concave utility function defined.on a
convex cémmodity space. In concrete applications, the utility
" function will usually be gquadratic, logarithmic, Cobb-Douglas,
or constant elasticity.. Price’functiqhs are always linear. The
productioh function defined on.the convex production set usually
has properties similar to those of the utility function on its
commodity épace. As a result of these specifications, mathe-'
A matical analysis in the Arrow4De§reu'model follows a carefully-
marked path where theeffects‘of.various economic assumptions in
the model are fairly well understood.

The picture is much more complicated and uncertain in models
with differentiated products and consumers. Since pfices on
goods can often be reinﬁerpreted as prices on the correspondihg
characteristics or.attribu;es-(the so-called "hedonic priées"),
there is no reason to assume that such'prices depend linearly on
the qualities being studied. ©Neither is it clear whether price
functions should be concave or convex or a little of both.

Whii; it is reasonable that the above-mentioned utility
_ function u(x;c) be. concave in x, thé;e is no reason for u
to'be convex or éonééve in ,c . Since p(x) may be-neither
concave nor convex; we will be maximizinq u(e;c) .on a (possibiy)
non-convex budget set; As a result, the maximizer &(c) can
behave rather wiidly. A2mong the important questions one might
ask até: i) what does £ lLook like in a practical economic model

with differentiated,commodities, and 1ii) how should we aggregaﬁev
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§ over consumers to obtain a meaningful concept of aggregate
demand or aggregate excess demand?

To quote Lancaster (l1975) again, "It is obvious that oppor-
tunities for ill behavior abound in a general model." Carefully
worked-out examples of reasonable economieé with differentiated
commodities and consumers are badly needed to understand what .
forms wu(x;c), p(x), and &(c) may take. These forms should
be clearly tied to the application in question and not some
ad-hoc formulae chosen as a mathematical convenience or curiosity.
The resulting study of such examples should lead to deeper
insights and a stronger intuition for exactly what kind of
behavior one can expect in concrete economies with differentiated
products and consumers.

The goal of this paper is to stﬁdy in detail just such an
example. The concrete example we will study is a generalization
of one of the first economic treatises written in the United
States--Charles Ellet's treatise on the theory underlying the
determination of canal and railroad tariffs. Ellet (1810-1862)
was a civil engineer who studied in Paris after some initial
work on the Erie Canal. He returned to the United States with
‘many exciting engineering ideas and began to work on the James
River and Kanawha Canal Project. He built the firsf permanent
American suspensibn bridge in Philadelphia over the Skuylkill
River; and he also built a bridge in Wheeling, Ohio, which was
at the time the world's longest suspension bridgg. Not only is’

he responsible for Virgihia's canal network but he also proéosed
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a system of reservoirs for western rivers to aid flood control
and shipping--proposals which were finally approved a century
after his death. He advocated and designed ram boats for the.
North in the Civil War, and he died fighting in one. For
further details on Ellet's life, see Calsoyas (1950), G. Lewis
(1968) , or the archives at the University of Michigan Transpor-
tation Library.

In 1839, Ellet wrote An Essay on the Laws of Trade, in

Reference to the Works of Internal Improvement in the United States,

a work which led Viner (1928) to rank Ellet "with Cournot...as a
pioneer formulator of the pure theory of monopoly price in precise
terms." The goal of this paper was to describe the principles
by which the charges for the use of a new canal" should be regulated
so that it may be rendered most profitable to the stockholders,
and most beneficial to the community." (Ellet (1839)). He was
especially interested in maximizing the profits obtained from
transporting heavy, cheap materials, which will not be transported
if the freight charge is above some fixed lower limit, and in dis-
covering the optimal locations of roads which would feed into
the main canal. For more complete details, seelEllet (1839) and
Calsoyas (1950).

To model Ellet's problem mathematically, consider a canal
or railroad 1lying along the positive x-axis with a large number
of small farmers in the plane around the axis. Further, approx-

imate this problem by assuming that the points in the right half
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plane parametrize the farmers and that éach farmer wants tq ship
a bundle of farm goods to a warehouse or cannery located at the
origin. There is a linear cost for shipping along land to the
railroad and a non-linear cost function p(x) which gives the
cost of transporting tﬁe freight along the railroad from (#,o)
to (0,0). Eaéh farmer maximizes his utility by minimizing his
shipping costs, buf_no farmer Will_pay more than v dollars to
shib his bundle. |

This is clearly a problem with differentiated commodities
and consumers which is best handled as a spatial problem--
'matching farmers in the right half plane with their optimal
connection point with the canal or railroad. Since the railroad
may have steep grades in some places or the width and the depth
of the canal may vary widely, the price funétion p(x) may be
concave in some places and convex in others.

In this paper, we will focus our attention on thg individual
demand <'unction £ and the éorresponding cumulative demand
function u. We will illustrate ﬁhat, while a bfoad ciass of
"demand functions'afise, the typical individual demand function
is smooth except on a setrof measuré zero while the generic
cumulative demand function is smooth except on a finite set S
ofkpoints. We will then give conditions for S’ to be empty,
i.e., for u to be globally smooth.

In one respect, this paper can also be considered as an
extension, of £he work of Sondermann (1975), Araujo and Mas-Collel

(1978) , Mas-Collel and Neuefeind (1977), Neuefiend (1977),
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Dierker-Dierker-Trockel (1978), and others--all of whom have
shown that for a generic economy with differentiated products

the mean excess demand correspondence is a smooth function.

This paper deals with a conceét more closely related to the

usual aggregate demand function of the Arrow-Debreu model (at -
least forlthe Eliet problem), the cumulatiye demand function.‘
.Using no assumptionslor ;echniqges of convexity, we show that.

the cumulative demand functidn in our model is generically smooth,
except perhaps on a finite set‘of points. We also indicate that
for an open set of economies in our model, this set of singu-
larities is non-empty.

The fact that these demand functions are generically well-
behaved is an importanﬁ step in the analysis of economic equilibria
and of‘the correséonding comparative statics. For éxampie, if
one can show that a closed property like the egiétence of a
competitive equilibrium holds for an open dense subset of some
class of economies, then it is straightforward matter to show
that all the economies in the class have that property.d'See,
for example, Mas-Collel and Neuefiend (}977).

In a sequel to this paper, we will study the.supply side
of this model-eboih in a competitiﬁe and monopoliétic framewqu--.
and will describe the equilibria which exist and how they are
affected by chahges in the price systems.

| The author acknowledges his deep gratitudé to Hugo Sonnen-
schein, who nét only introduced him to the work of Charles Ellét
but also eﬁkindled his interest in models of economics withA

differentiated products and consumers.



§2. PRELIMINARY ANALYSIS

In this section, the mathematical model will be described
and the formulae and equations which are central to this investi-
gation will be calculated. Assume that there are fruit growers
evenly distributed throughout the right-half-plane. Each grower.
would like to ship a bushel of fruit to a cannery at the origin
(0, 0). Assume that there is a canal running along the positive
x-axis with shipping firms evenly distributed along the canal.

In addition, suppose that the cost of shipping the bushel along
land is one unit of currency (say, one dollar) and that there

is a function p: R, * R such that the shipper at (x, 0) charges

+
p(x) dollars to ship a bushel of fruit to (0, 0) . It is
reasonqble to make the following assumptions on p(x)
i) p(0) =0,
ii) p 1is a smooth (Cm) function, i.e., every derivative of
P exists and is continuous,

iii) 0 < p'(x) <1 ; for, if p' were greater than one there
would be no advantage to using the canal. Finally, assume that
no farmer is willing to spend more thanh v dollars to ship his
fruit to (0; 0). . ‘

Consequently, if the farmer at (a, b) ships his‘goods by
land to (x, 0) and then by canal to (0, 0) , his shipping

cost will be

(2.1) C(a, b, x) = Ca’b(x) = p(x) +/(a - X)2 + bf .



a,b

He wants to choose x to minimize C (x) . Define &(a, b)

and u(x) by
!

£(a, b) = {x|x is a global minimizer of c?2’ and

u(x) = measure{(a, b)|[0 < E(a, b) < x} .

The goal of this paper is to describe how the choice function E.
and the cumulative demand function u behave for a large class
of price functions p .

b

Of course, the first and second derivatives of Ca’ will

play a central role in our analysis:

a,b -
Cz'b(X) =X — () =prx) - (2 - x)
2 2
Ja-x?%+b
(2.2) ,
2 a,b 2
a,b,. 9 Cc’ b
C_.I7 (k) 2 ———— (x) = p"(x) + =5
XX ax2 [(§ _ x)z + b2]3/2

Note that a subscript x will often be used to denote the partial

derivative with respect to x . If x* > 0 1is a minimizer of-

carb . then Ci'b(x*) =0, i.e.,
- *
p'(x*) = —
Ja-x0? +p°
Since p'(x*) > 0 , x* < a . Note also that C;'b(a) >0 . Con-

seqﬁently, one need only consider Ca’b as a function on the

interval [0, a)
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Clearlj, the x-axis is an axis of symmetry for the problem
under study. To simplify matters, we will only consider (a, b)
in the positive quadrant, i.e. a >0 and b > 0 .

Let R(x) denote the ray from (x, 0) 1into the first quad-

rant which makes an angle ©6(x) with :-he positive x-axis, where

- /& - p'(x)2
p'(x)

(2.3) tan 6 (x) >0 .

It. follows from (2.2) that Ci’b(x*) = 0 if and only if

b _/1-prxn?

(2.4) i

a - x*

i.e., if and only if (a, b) € R(x*) . Thus, a necessary condi-
tion that £(a, b) = x > 0 1is that (a, b) € R(x) . Note that

by equation (2.2), (a, b) € R(x) if and only if

cos 6(x) = p'(x) .

An intuitive way to study Ca'b(x) . for a given p(x) 1is to
a,b

note that x* 1is a critical point of C if and only if the

graphs of p'(x) and

Ba’b(x) = a - x
J(a - x)% + b*

intersect above the point x* . Figures 2.1 a, b, and ¢ illus-

trate three of the possible configurations for the graphs of p'
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and Ba’b .

graphs of Ca'b .

Figures 2.2 a, b, and c present the corresponding

p' p' //’——-‘\\\~._,///’-P
a,,b
a.2,b2 B 3"73
al,bl B
B
*1 4 *2 ', 23
Figure 2.1 a Figure 2.1 b Figure 2.1 c
a.,b a.,b a,.,b
c 1’71 c 272 c 3'"73
»> X 4 v X X
X, X, X5
Figure 2.2 a Figure 2.2 b Figure 2.2 ¢
albl albl -
In Figure 2.1 a, Cx < 0 for x < g and Cx >0 for.
X > X, ; thus the graph is as in Figure 2.2 a and g(al, bl) = X -

az,b2

By Figure 2.1 b, C has

X and a local min at x!

two critical points: a local max at

. However, one cannot tell from Fig-

2 2
- . az,b2
ure 2.1 b whether 0 or xé is the global minimizer of C
a3,b3
Finally, Cx > 0 for all x in Figure 2.1 c; thus, the
a3,b3
C is an increasing function with E(a3, b3) =0 .



Although one cannot tell from Figure 2.1 b whether or not

a.,b

c 2

2 has a global minimum at 0 or at some interior x* -, one

can calculate a formula for the curve 2 of (a, b) such that

C(a’b) has a minimum both at zero and at an interior point =z

In many cases, on one side of Z , &(a, b) = 0 ; while for (a, D)

, C(a,b)

on the other side of 12 has an interior global minimum.

The equations for 2 are given by:

/& - p'(x)2
p'(x) !

Ci’b(x) =0 or b= (a - x)
(2.5)

Ca’b(x) =Ca'b(0) or p(x) -!-»/(a-x)2 + bz = /a2 + b2

We can solve these explicitly for a and b as functions of

X by substituting the first equation into the second to obtain:

a(x) = x + 28X, x - p’(x)
2 p(x) - p'(x)x

(2.6)

/1 - p'(x)2 . x2 - p2(x)

b(x) = 2 p(x) — p'(X)X

Now, let us bring the constraint Ca’b

< v into the picture.
" For those (a, b) with &(a, b) > 0 , the curve 4@ of (a, b)
such that (a, b) & R(x) and Ca’b(x) = v 1is an impoftant

curve. Using (2.4) instead of (2.2), one notes that the equations

of ¢ are:

. 2
b=(a_x)/l"p(X) ,

p' (%)

1 ‘P(X)+/(a—x)2+bz=v.

(2.7)




Substituting from the first equation into the second, one finds

*he curve ¢ parameterized by

a(x) = x + (v - p(x))p'(x) ,
(2.8)
b(x) = (v - p(x)) /l - p'(x)2
Thé curve ¢ meets the x-axis at (x*, 0) where p(x*) =v .

Finally, since u(x) 1is defined as the area swept out by
the ray R(x) from (x, 0) to the curve (a(x), b(x)) , the

following lemma will be an important tool for studying u .

Lemma 2.1 Let (a(x), b(x)) parameterize a continuous
curve in the positive quadrant of the plane. Assume that a(x)
is non-decreasing. Let R(x) be the ray from (x, 0) ¢to
(a(x), b(x)) , forming an angle 6(x) with the positive x-axis.

Suppose that Xq < %Xy and
0 < 8(x) <7 for all x & (xl, X~2)

Then, the area A of the region bounded by R(xo) '

{(a(x), b(x))|x € (xq. Xl]} , R(x,) , and the x-axis is given by

1

bz(s)

2

é%(cot 8(s))lds .



Proof: Partition [xo, xl] into n equal intervals, each

of length Ax , with endpoints
Xg = Y < Y3 < ¥y <eee ¥y = Fp o

Approximate the area A by the sum of the areas of the trapezoids

'Ti , Where Ti has vertices:

(v;r 04 (5,10 0, (aly),bly)), (ly;, + bly;) cot ely; ) /b(y;))

Sée Figure 2.3. We are using the formula: a(y) - y=Db(y) cot 8(y)

) Y;i Yi41 X1

- Figure 2.3

The area of Ti is



b(Yj_) ’
— [(yi+l - Yi) + (Yi-l-l +b(yi) cot 8(yi+1) - (Yi+ b(yi) cot e(yi) )]
bz(yi) a
= [b(yi) t— i (cot 6) (Ei)]Ax , for some g, € (Yi’ yi+l)

Summing over i1 and taking the limit as Ax + 0 yields the

theoremn. 3

p'(x)

Proposition 2.2. If, in Lemma 2.1, cot 6(x) =
. / ' 2
1 -p'(x)
for some smooth function p(x) , then the corresponding area

Xy

b2 (y) p"(y) o
equals f [b(y) + y) P iz’ 377 &y . If p is C  and
2[L - p'(p°~]

o)

0 <p' <1 on [xo, xl] and if b 1is - k-times continuously
differentiable (i.e., Ck) , then A as a function of Xy is
(k+1) -times differentiable. If Db is continuous, then A(x

is Cl.

1)



§3. Some Concrete Examples.

In this section, we present three concrete examples in order
to assist the reader's understanding of and intuition for the
concepts invovled and to preview some of the difficulties which
arise.

A. Linear price functions. The simplest price function to

investigate is the linear one

p(x) = Px .

In such functions, one can actually compute the corresponding £ and
U to see how well behaved they are. The assumption that 0 < p'< 1
means that the constant P is in (0,1) . Formulae (2.1), and

(2.2) become in this case:

(3.1) Ca'b(x) = Px + V(a - x)2 + b? ,
a,b
(3.2) L (x) =P - a - X ,
Y(a - x)2 + Db?
(3.3) 32Ca,b(x) _ b2 .
9x 2 [(a - x)2 + p2]37/2

Since the graph of p' is a horizontal straight line, the situation
in figure 2.1.b cannot occur and the graph of Ca’b(x) is either

as in figure 2.2.a or as in figure 2.2.c. The former occurs if



P<—2— ; the latter occurs if P > —=2 _ (and therefore
va? + b? vaZ + b? -
Ca': > 0) . Consequently, £&(a,b) 1is a well-defined (single-

valued) function.

Since p' is constant, the angles ©60(x) described in section
two are also constant and the rays R(x) of constant demand
are all parallel. 1In fact, it is easy to solve for £ (a,b)

explicitly. If (a,b) € R(x) , then by (2.3) ,

Y1 -P?_ tang = 2
P T a - x )
Consequently X =a - bP and
, = o
Y1l - pZ
(3.4) £(a,b) = max{0,a - —22 1} ,
vl - P2

Clearly, & is a smooth (in flact, linear) function of (a,b) for

. _ B __ .

Yl - P2

ol

Next, the value constraint needs to be considered,i.e., the
assumption that no farmer wants to spend more than. v dollars to
transport his goods to (0,0) . Using equations (2.8), one finds
that the set of (a,b) such that (a,b) € R(x) and C(a’b)(x) = v

is the parameterized line:

a=">pPv + (1 - P2)x R

b=/1 -P2(v - Px) .

(3.5)
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Eliminating x from equations (3.5) yields the equation of

the line

(3.6) Pa + b/Y1 - PZ = v ,

which runs from (0, A ) to (%,0) .

/157

Putting the above calculations together yields the information
descriﬁed in figure 2.1. Line segment « in this figure in part
of the ray R(0) . Line segment B 1is part of thé line described
by equation (3.6). Curve Yy 1is an arc of the circle of radius
v about the origin. Farmers who are shipping from region A
will ship to the x-axis along the appropriate line R(x) parallel
to o . Farmers starting in region B will ship their fruit along
a straight line which ends directly at the origin. Farmers in
region C wil decide not to ship since their shipping costs will

exceed v,_.

Figure 3.1
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The cumulative demand function
u(x) = measure {(a,b)]0 < g(a,b) < x}

can now be explicitly computed for points in region A in figure
3.1. Since line B meets line a at the point (Pv,/l - P2v) and
it meets the x-axis at the point %,0) » the area of triangle
A is
v, _ lL,v _ 1 2/1 - P2
g = 5(5) (Y1 - P2v) = 5v — .
If x e (0,%0 r the ray R(x) meets B at the point

(Pv + (1 - Pz)x,JI - P2(v - Px)) . Consequently, the area of the

triangle bordered by B8 , R(x) , and the x-axis is

.

T =F(v - ex) I g - x] = 22w - ey 2 .

-

The difference between these two areas is yu(x) , i.e.,

YL = P2 2

nix) = I (vE - (v - P

Y - 2

a smooth (in fact, gquadratic) function of x .
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Alternatively, we could have calculated u directly by
applying Proposition 2.2 to the line (3.5). Thus, for linear
price functions, both £&(a,b) and wu(x) are smooth functions

whose explicit form is easy to calculate.

‘B)Quadratic price functions. As we will see later, price

functions whose second derivative is everywhere non-negative are
almost as easy towork with as linear price functions. Therefore,
it makes sense to consider as a second exampie a quadratic price
function with a negative second derivative, i.e., p(xX) = Px - ex2
where 0 <P <1 and 0 < g << 1 .

Let 6(x) be the angle described in section two, (see (2.3))
and let R(x) again be the ray from (x,0) which makes an

angle 06(x) with the positive x-axis. Since
cosB(x) = p'(x) and p"(x) = - < 0 ,

- 8(x) increases as X 1increases. It follows that for Xq # Xy
R(xl) meéts R(xz) in a point. Should the farmer located at
this special point ship to Xy Or to x, or to the origin?
Another way of looking at this problem is to note that the
phenomenon pictured in figures 2.1.b and 2.2.b can occur for these
quadratic price functions. As a result, the necessary condition

(2.2) for optimization is no longer sufficient. Note, however,
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that because the graph of p' is a negatively-sloped straight line,
the graph of p' can meet the graph of some Ba’b(x) in at
most two points as in figure 2.1.b and figure 3.2. If the

graphs do meet in two points, the first intersection point must

a,b

be a local maximum of C and the second must be a local mimi-

a,b

mum (as a quick examination of the derivatives of C indicates);

a,b

and the graph of C is similar to that in figure 2.2.b. 1In

a,b

this case, the major question is whether C has its global

minimum at X = 0 or at the interior local minimizer. The

.curve 2Z of (a,b) such that Ca'b

has two global minimizers
(one at 0 and one at an interior min) now becomes important.

The choice function & 1is single-valued at (a,b) if and only if
(a,b) € 2 . For (a,b) above Z , E(a,b) = 0 ; for. (a,b) below

Z , £E(a,b) > 0 . The equations for 2 are given by (2.6) along

a,b
XX

with the condition that C > 0 . Substituting the quadratic

P 1into (2.6) yields:

2

a=x + %; [1L - P° + zPex - ezle[P - 2ex] ,

(3.7)

2 4 2Pex - ezle[l - (P - ZEX)zll/z

=L 1 -
Finally, the curve of ¢ of (a,b) such that £(a,b) = x
and _Ca'b(x) = v must be determined. This time, after substituting

the formulae for the quadratic p into equations (2.8), one finds

that ¢ can be parametrized by:



Pv + (1 - P2 - 2ev)x + 3ePx? - 2e2x°

W
[

(3.8)

b= (v - Px + exz)[l - (P - 2£x)2]]'/2

Let us fix some values for ¢ , P , and v:
(3.9) e=.,1,P=.9, and v = 1.4
Using a HP-25 hand calculator, the author has computed the

curves Z and ¢ for this special gquadratic price function.

The curves are plotted in figure 3.2.

C

B (q“s bl)

(a,,b,) C -

o

Figure 3.2




The regions A,B, and C in figure 3.2 have the same

‘properties as the corresponding regions in figure 3.1:

E(a,b) = 0 for (a,b) =B , £(a,b) > 0 for (a,b) € A,

and Ca’b(a(a,b)) > v for (a,b) € C. The curve y 1is once"
again an arc of the circle of radius v . The line « 1is an
interval on the ray R(0) .

The curves Z and C meet at the point (al’bl) =
(1.2452,.6219) . The curves a and 2 meet at the point
(az,bz) = (.855,.414) . The interval between these points on
Z . is a locus of discontinuities for § with' £ = 0 above this
curve in B and jumping to positive values as one cf§sses
this curve. The interior minimizer for Ca“bl occurs at
x;  .2554 . For (a,b) in the interior of the region A ,

C(a'b) has a unique global minimizer which is also a non-degenerate

critical point of C(a'b) . By the implicit function theorem,
g(a,b) is an analytic function for such (a,b) .

Finai&y, it should be noted that the cumulative demand
function u(x) 1s a Cl {(but not CZ) function. Let B(x)
be the following continuouslfunction, defined from equations
(3.7) and (3.8) with the numerical values of (3.9) substituted

for ¢€,P, and v:



(.95°+ .9 - .05x%) (.19 + .36x - .04x%)>/?
B(x) = 0 < x < X, = _,2554
(1.4 - .9% + .1x2) (.19 + .36x - .04x2)%/2 ,
X, £x< 2
Then, by Proposition 2.2,
X 2 2, -3/2
u(x) = [B(y) = (.05)B" (y). (.19 + .36y - .04y") ldy .
0
Since B is continuous,u is Cl for 0 < x < 2.
As a final example, consider
p{x) =1 - e® with v = 1.5 .
Once again, p"(x) = -e ¥ is always negative. The only significant
difference between this example and the previous one is that
p(x) never reaches v . The regions and curves in figqure 3.3

below correspond to the regions and curves in figure 3.2 above.



In this case, the curve ¢ tends asymptotically to the the line
b= .5 . The point (al,bl) is approximately (1.3,.84) with
Xy £ .9 . Once again, u(x) 1is a Cl function which is analytic
except at the point Xy -

C z

44

(e, b') C‘

Figure 3.3




4.1

§4. GENERIC CURVES

In section two, we defined the curves Z2Z(p) and ¢(p) .,
which bound the range of § for any price function p . 1In
section three, we constructed some examples of such curves.
In this section, we will characterize 2 (p) and ¢(p) for a
generic set of price functions p ; and we will introduce two
other important curves, IL(p) and T (p) .

In the Appendix, we describe a natural topology for the vector

space
C={p:[(0,°) + R|p(0) =0 and p is C } .

In this section, we will be working with the following open subset

C of C:

1

. ¢ =1{pe Cjo < p'(x) < 1 for all x} .

Since C1 is open in C , if 0 1is open (or dense) in C ,
then 0 O C, will be open (or dense) in ¢, -

Throughout this section, we will be working with a fixed

i , say the intersection of the closed

ball of radius r about (0,0) , Br(0,0) . Wwith Eti . r >> 0 .

bounded region B _ in R

Let (a(t),b(t)) be a smooth parameterized curve Yy in B .

Call (a(to),b(to)) a regular point of Y if a'(to) # 0 or
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b'(to) #0 , i.e., if y has a well-defined tangent vector

at (a(to),b(to)) . If a'(to) = b'(to) = 0 , then (a(to),b(to))

will be called a singular point of ¥y . If Yy contains only

regular points, we will call ¥y a regular arc.

We first work with the curve Z(p) , where

z(p) = {(a,b) € B]c'®Pl(o) = c@P)(y) for some ¥

for which C(a’z) (y) = 0} .

See equations (2.5). Equations (2.6) show that equations (2.5)
can be solved for (a,b) in terms of y . 1In Proposition 4,1
below, we prove that for a generic price function p € C1 '

Z(p) crosses itself only finitely often, each crossing is trans-
verse; and except for these crossing points and another finite set
of cusps, Z(p) 1is a finite, disjoint union of smooth reqular arcs.

~

Proposition 4.1l. There is a residual set Al of p's in

C, so that for any- p € A; , there exists a finite subset S, (p)
in B with the property thaF Sl(p) contains all the points
where Z(p) crosses itself and all the singular points of Z(p) .
So, Z(p)‘*Sl(p) is a finite, disjoint union of smooth, regular
arcs. Furthermoré, for p € Al 3. Z(p) has no triple crossings.

Proof: We will use the transversaltiy theorems discussed
in the appendix. Step one is to show that the set of (a,b,y)

- in I23 such that C(a'b)(O) = C(a'b)(y) and Cx(a'b)(y) =0
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is generically (in p) a one-manifold in Ezi , i.e., that

(0,0) 1is generically a regular value of

F La,b,y) = (ply) + VAT FB7 - vaZ T BT, p'iy) - —2 Y )
p) Y(a-y)2 + b2

By the Thom Transversality Theorem, we need only show that (0,0)

is always a regular value of

FZ:C X ]Ri > ]R2

defined by Fz(p,a,b,y) = (a,n,y) . Since C 1is a vector

1
F(p)
space, the partial derivative of F2 with respect to p at

(p°,a°,b°,y°) maps C to Elz by

DPFZ(P°,a°,b°,y°)q = (q(y®).q'(y°)) , for g€ C

For any fixed y° > 0 , there exists a g € C such that (q(y°).q'(y®))

takes on any prespecified value, i.e., Dsz(p°,a°,b°,y°) is

surjective. Thus, DF2(p°,a°,b°,y°) is surjective and (0,0)
is a regular value of F2 . By the Thom Transvefsality Theorem,
(0,0) is a regular value of F%p) for all p 1in some residual
subset Al,l of C

Secondly, we need to show that (F%p))—l(0,0) in Ii3

projects nicely into the (a,b)-plane for a generic p , i.e.,

that the set of (a,b,y) which lie on (F%p))_l(0,0) and fo}



which the tangent vector is parallel to the y-axis (i.e., has

no a- or b-component) is a finite set. The defining equations for

1
this set are Fl = (0,0) and %%— = (0,0) . Consequently,
we need to show that (0,0,0) 1is generically a regular value of
the map
3 a-y b2
Fp) (arbey) = (p(y)+/(a-y)%+bZ,p' (y) - -, p"(y) + 5 23/3
P /Ta=y) 7457 [(a-y) *+b%]

By the Thom Transversality Theorem, we need only show that

(0,0,0) 4is always a regular value of
F¥(p,ab,y) = P, (a,b,y)

However, the partial derivative of F4 with respect to p is
DPF4(p°,a°.b°.y°)q = (q(y®).q'(y°).,q"(¥®)) . 'For any y° > 0

and any pre-assigned (cl,cz,c3) € E{3 . one can always find a

g € ¢ with q(y°®) = cp » ' (¥°) =cy q"(yy) = ¢35 . Since

-DPE‘4 and, a fortiori, DF4 are surjective, (0,0,0) is a reguiar
value of F%p) for all p in some residual subset A112<= Al,l‘= Cl .
For such p , (F%p))_l(0,0,0) is a zero-dimensional manifold,

i.e., a discrete subset of Ili and its projection Si(p) on

the (a,b)-plane is a discrete subset of B .

To prove that the points in Sl(p) are generically non-

degenerate cusps, we use Tnom's Catastrophé Theorem, as described
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in the Appendix. We must show that where F%p) = (0,0) and
1 2.1
5§(p) = (0,0) , then 3 FZ(P) # (0,0) for a generic set of
3y
p's in C . The proof is similar to the other parts of the proof

of this proposition and will bé omitted.

To complete the proof of Proposition 4.1, we show that double
points of 2Z(p) , i.e., points where Z(p) crosses itself once,
form a discrete subset of B for generic p and that for such
p . there are no triple points. Consider the map F%p):n{i X (IIZ\A),
where A = {(yl,yz) € Izifyl = yz} , defined by F?p)(a,b,yl,yz)
(p}(a,b.yz)) . If F?p)(a,b,yi,yz) = (0,0,0,0)

and Y1 # Yy » then 2Z(p) crosses itself at (a,b) . 1If

1 :
(F(p) (a,b,%),F

(0,0,0,0) 1is a regular value of F?p) , then (F?p))-l(0,0,0,0)

is a zero-dimensional manifold, i.e., a discrete subset of

Eii x (Ili ~A) . 1Its projection on B in the (a,b)-plane will

be a finite set.

To show that (0,0,0,0) is a regular value of FE(>p) for

~

generic p , we need only show that it is always a regular value
6 _ 5 . . .
of F (p,a,b,yl,yz) = F(p)(a,b,yl,yz) . The partial derivative

of F6 with respect to p at (p°,a°,b°,yl°,y2°) is

6
DPF (p°.a°,b°fyl°,y2°)q = (q(hl°),q'(yl°),q(y2°,),q'(y2°)) .

Once again, for any given y1°,y2° >0, yl° # y2° , and any assigned

(c;rc,,c ,c4) , there is a g € C with

2773
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q(yl°) =Cq q'(yl°) =Cy q(yz") = C3 q'(y2°) =Cy -

Since DPE‘6 and DF6 are surjective, (0,0,0,0) is a regular

6 .
value of F~ and for a residual set of p's A13C A, < A, C ¢,

a regular value of FS .

To see that there are generically no triple self-intersections

of Z(p) , one applies the method of the preceeding paragraphs to

7 2 3

. 6
F(p).JR+ x (R

\A3) + R ’

. 7 1 1
djflned by F(P) (a,brylryzlY3) = (F (p) (albryl) IF(p) (albIY2) ’
(p)
As a result, there will be a residual subset A, 4 S A, cC
. r 1

such that (0,0,0,0,0,0) is a regular value of F-(Ip) for

F (a,b,y3)) s wWhere Yqr¥ye and yy are pairwise distinct.

P EA . Since the domain of E'7 is 5-dimensional and its
14 (p)

range is 6-dimensional, (0,0,0,0,0,0) a regqular value of sz)means tha

«

(F‘Zog (0,0,0,0,9,0) is empty. Since this set corresponds to the triple
crossings of Z(p) -, ‘it follows that for p €Ay 4 . Z(p) has
no triple points (and conseguently, no quadruple points, etc.).
This completes the proof of Proposi;tion 4.1, &
We now want to demonstrate that the curves ¢(p) are
generically as wéll—behaved as the curves Z(p) are. Recall
that (a,b,y) € #(p) if and only if (a,b) € R(y) and c‘P(y) = ¢

i.e., if and only if



p'(y) - a - X =0 and
Y(a - y)2 + b*?

(2.7)"

ply) + Y(a - y)2 + b2 =v .

PROPOSITION 4.2. There is a residual subset A2 of Cl

such that for any p € Ay there exists a finite subset S, of

B in the (a,b)-plane which contains all the singular points of
¢ (p) and all the self-crossings of ¢(p) . Thus, ®(p) “ Sz(p)
is a finite union of disjoint, smooth, regular arcs in B . Further-

more, for p € A2  $(p) has no triple crossings.
The proof of Proposition 4.2 is virtually identical to that
of Proposition 4.1 and so will be omitted. Actually, the set

¢ (p) has more structure as Proposition 4.3 below indicates.

PROPOSITION 4.3. For any p € C and any v € R, the

tangent line to ¢(p) at any regular point of this curve has
negative slope. Furthermore, for any p € Cl , there is a
residual set of v's in nz+ such that the corresponding ¢ (p)
is a regular curve except for a finite number of cusp pqints.

See figures 3.1,3.2, and 3.3 for examples of well-behaved

$(p) —curves.

Proof: Let (a,b) = (a(x°),b(x°)) be a regular point of
$(p) , in the parameterization given by equations (2.8). We want
b'(x)
o . . . .
to show that <0 . We will use the implicit formula (2.7)
a'(x05 -

‘for $(p) rather than the more explicit (2.8). Define
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E‘S( J(abux) = @ r%%) = (o) + VBT F BT - v, p'(x) - a-x
P VY(a-x)2 +b2
Then, ¢ (p) 1is defined implicitly by F?p)(a,b,x) = (0,0) . By .

the Implicit Function Theorem,

R Y
oy b
a'(x?®) = det 3F8'2 aF8,2
T T oy ob
D
ardrt 8.l
sa oy
b' (x°) = det
sr8rl gp8il
Ja 9y
r
D
sp8r1 opdrl
sa 9b
where D = det
_3?8,2 aF8,2
“da 9ab

and all partial derivatives are evalutated at (a,b,x°) .
8,1
8,2

iy

Since (a,b,x°) = F (a,b,x°) = 0 , one calculates quickly that

a'(x°) _ -b (x°)
b'(x°) ~ a(x°) - x°

<0
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To prove the second statement in Proposition 4.3, let
Fg(a,b,x,v) be Fa(a,b,x) with v allowed to vary also. Then,

evaluating at (a°,b°,x°,v°) € (F9)-1(O,0) '

9 oy _ a-y b -
DF (a°’b°,x°,V ) - _1/2 1/2 0 l
a a
_ b2 (a-y)b 2E°'% |
3372 3372 oY

where 4 = [(a -~ y)2 + b2] . 8Since 4 > 0, DF91a°,b°,x°,v°) has

maximal rank, i.e., rank two. Since (0,0) is a regular value of

9 8

F , (F )_1(0,0) is a smooth curve in (a,b,x)-sphere for generic

v . To show that this curve is vertical at only finitely many points
for a generic v , we need to show that (0,0,0) is a regular

10 9 9.2
value of F (a,b,x,v) = (F'(a,b,x,v), - %

(a,b,x,v)) , following

the argument in Proposition 4.1. One checks readily that DFlo(a,b,y,v)

-

a-y -1/2
4172 bd 0 -1
_ b b(a-y)d 37?2 0 0
1372 Y
) ) 2.9,2
- 3b2 (a-y)a~/2 (2b(a-y)2-b3)a=>/2 3E 0
. X
evaluated at (a,b,y,v) € (7% "1(0,0,0) . since the determinant

of the lower left-hand 2 x 2 sub-matrix is bsdﬁ3 #0 , DF10 is
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surjective and (0,0,0) is a regular value of Flo . Consequently,
for any p € C1 , ®(p) 1is a smooth regular curve, sloping downward
in the (a,b)-plane, except possibly for a finite number of cusp
points. &
The 2 (p)-curves have a similar structure, as Proposition 4.4

demonstrates.

Proposition 4.4. For any p € C , the tangent line to Z(p)

at any regular point of this curve has a positive slope.

Proof: The proof of this proposition is similar to that of
the previous proposition and will only be sketched. Let

(a{x®°) ,b(x°)) Dbe a fegular point of 2Z(p) , in the parameterization
‘ b'(xo)

1
a (xo)

given by equations (2.5). We want to show that >0 .

Use the F%P)Ia,b,x) of Proposition 4.1,

-«

1 1
_ 9F, aF;"
99X 3b
1 1
b' (x°) - 3, 3F,
a'(x°) = det oX b
- 1 1
BFl _ aFl
sa X
det 1 1
8F2 _ 8F2
rda 9xX
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aF, 1
- l 1
b aFl 1
= — , Ssince —— = F, =0
5F 1 oxX 2
1
9a
b - b
- Ja?z + b2 Y(a-x)? + b?
a-x _ a
Y(a-x)2 + b2 YaZ + b2
sin¢ - sin® (x)
cosf (x) - cosé
> 0 , since 0 < ¢ < B8(x) ,

where 6(x) is the angle defined in section 2 and ¢ 1is the angle

_

that the vector (a,b) makes with the positive a-axis. See figure 4.1.
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The curves 2(p) and ¢(p) bound the domain of £ , the
choice function. We next study curveswhich affect the contiﬁuity

of ¢ within this domain, beginning with the curve T (p) ,

(a,b)

across which the number of critical points of C changes.

More precisely, for p € Cl , let T(p) be the set (a,b) in

2 (a,b)

B < ]R+ for which C has a.degenerate critical point, i.e.,

F(p) = {(a,b) € B|for some y > 0 , Cx(a'b)(y) = 0 and cé:'b%y)=0}.

If (a°,b°) € I'(p) , then for all (a,b) in some neighborhood of

(a°,b®) , each C(a’b)

will have the same number of critical
points and the same number of local minima. Proposition 4.5 below

is the analogue of Propositions 4.1 and 4.2 for the curve T (p) .

Proposition 4.5. There is a residual set A3 of p's in

Cl so that for any p € A5 , there is a finite subset S3(p) of

(a,b)'s in B C:E{i which contains all the self-crossings and
all the singular points of T (p) . Furthermore, TI(p) 1is a cuép

at these singular points and T (p) has no triple crossings for

P € A,
ll — (] a-y "
Proof: Let F )Ia,b.y) = (p'(y) - P (y) +
—_— (p Y(a-y) 2+b?
2

77 ) - Then (a,b) € I'(p) if and only if E‘J('l)(a.,b,y) -
[ (a-y) “+b 3

(0,0) for some y . Furthermore, one easily checks that T (p)-has
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the parameterization

p'(y)p" (y)

a(y) =y -
[1-p' (y) 212
(4.1)
_ n (y)
b(y) = - P
[1-p' (y) %1372 -

The proof of Proposition 4.5 is similar to that of Proposition

4.1 and will only be sketched here. Let Flz(p,a,b,y) = F%;)(a,b,y) .
Since
12 o o (] (-] - ] o ” (-]
DpF (p°,a°,b%,y°)a = (q' (¥°).q" (¥°®)) .
12, — . . 12
DF is surjective and (0,0) is a regular point of F . By

the Thom Transversality Theorem, (0,0) is a regular value of

11
(p) . |
(F%;))'l(G,O) is a smooth regular curve in (a,b,y)-space. One

F for a residual set A3 1 of p's C . For these p's ,
-2

pext shows that for such P's ., the set of points whgre (F%;))‘l(o,O)
has a vertical tangent is a discrete set in (a,b,y) space
(by showing that (0,0,0) is a regular value of (p,a,b,y) -
(C(a’b)(y),c(a’b)(y),C(a'b)(y))) . Such p's will be the singular

X x=x ) XXX
points of T (p) , and one can show that generically they are non-
degenerate cusps. Similarly, one shows by using the techniques of
the proof of Proposition 4.1 that T (p) has a discrete set of
double points and no triple points for a residual subset

A c A cc .

3,2 3,1
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(a,b)

In any component of B N\ T(p), each C has the same

number of local minima - all non-degenerate, of course. However,

(a,b)

£(a,b) , the global minimizer of C , may be discontinuous

within this component if one local minimizer replaces another as

global minimizer. To keep track of this phenomenon, we need

" ~(a,b)

to look at the set of all (a,b) such that C does not have

a unique (interior) global minimizer. More generally, let Z(p)

(a,b)

be the set of all (a,b) such that C has at least two

critical points which take on the same critical value. Formally,

t(p) = {(a,b) € B there exist y; # ¥, in R such that

. a-y
claPly ) = prayy) - 2 — -0,
: Y(a-y) 2+ b2
a-y
Cia'b)<y2) = p'(y,) - 2 =0 , and
//(a—y2)2+b2

c(afb)(yl) = c(a'b)(yz) , i.e.,

i
i

p(yl) + /(a-yiT¢+b2 = p(yz) + /(a-y2)2+b2 .

PROPOSITION 4.6. There is a residual subset A, of Cl

such that for p € A, , there is a finite set S4(p) in the
(2,b) -plane which contains all the self-crossings and all the

singular points of I(p) . At the singular points, Z(p) inter-
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_sects T(p) . Furthermore, for p € A, Z(p) has no triple

crossings.

Proof: The proof of Proposition 4.6, although analogous
to that of previous propositions in this section, is slightly

. complicated by the fact that ZI(p) is defined by a map from

2 3 13 2 2

R% x (RN 4%) into RS> . Define F x (R2<2%) > r3

:C xR
by
a-yl a-y2

/P’ (yz)
Y (a-y) 2+b2 /(a-y,) 7+b?

Fl3 (P,a,bfyer2)=(p' (Yl) IP(Yl)"'V (a-Ylj 2+

- P(Yz) - /(a_yZ)z- b2) -

To see that (0,0,0) is a regular value of Fl3 , note that

l -4
DF 3(p°,a°,b°,ul°,y2°)q = (@' (y1°).q" (¥5°),a(y,°) = aly,°)) o

which is clearly a sujectivg map from C onto Il3 since
yl° # ¥,° - Letting F%g) (a,b,yl,yz) = Fl3(p,a,b,yl,y2) ¢ it
follows from the Thom Transversality Theorem that, for a residual
subset of p's A4,l in C , (F;4;%0,0,0) is a regular curve in
RZ x (]22')A2) .

We next show that this curve generically projects to a nice

curve in the (a,b)-plane, with only a finite number of singularities.



By the Implicit Function Theorem, at the points where this

projection is singular, the vectors

oF 1> 0Fy> ARy’ (8Fi3 ar )’ 3F§3)
—_ ’ and | —=—— , ’ are linearly
5Yq ayl Byl 3y2 ayz ay2
dependent, where Fi3 ' F%3 , and F%3 are the three components
13 oF]> or 3> 13, -1
of F . However, —/— = —/——— =0 ; and on (F77) (0,0,9) ,
3y2 ayl
rg? g - org’ 13
—§§I = Fl = 0 and —3§; = F2 = 0 . Consequently, the
. . 13, -1 . . ,
projections of (F77) (0,0,0) is singular at points where
Sl 3F3°
where the vectors ( —— ,0,0) and (0, ——,0) are 1linearly
ayl ayz
independent, i.e., where
13 13
oF oF
1 2 (a,b) (a,b)
. = C « C = 0 .
Sy, 8y, | Cyy (1)t Gyl (2
Now, the usual argument shows that (0,0,0,0,0) 1is a regular
value of -
14 _ (a,b) (a,b) (a,b) _ ~(a,b)

(p)

@)y ) e, (3D (g

Yy Yy
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for a residual set A of p's in C . Since the range of F%g)

4,2
is 5-dimensional, while its domain is 4-dimensional, (0,0,0,0,0)

a regular value of Fig) means that (F%;))-I(O,O,O,O,O) is

empty.

13

To £inish the proof that (F )-1(0,0,0) generically

projects nicely into (a,b)-space, we must show that (0,0,0,0)

15 2

4
is a regular value of F 7:C x R~ x (JRZ\Az) + R

b
Fls(PrarbrerYZ) = (FB(P'a'b'Yl'Yz)'C(a'b) RS c}({;' )

oy (v,)) -

15

The derivative of F with respect to p at (p°,a°.b°,yl°,y2°)

. 15 _ °y - o
is DPF (p°,a°,b°.y1°.y2°,)q = (q'(yl°).q'(y2°),q(yl ) q(y2 )

(a,b) (a,b)

¢ Yy

vy (ylo)qn (yzo) + C

(y2°)q"(yl°))

If p° € A4 2 and F13(a°,b°,yl°,y2°,) = (0,0,0) , exactly only
’ 0
(a,b) (a,b) ; 15
£ ! ° d C ° on-zero; and D_F
o ny (yl ) an vy (y2 ) 1is non-ze p
is easily seen to be surjective. So, (0,0,0,0) is a regular value
of Fls for p° €A ; and there is a residual set A, 3¢ A4 5 < C

4,2
of p's for which ZI(p) has only finitely many singular points.

Furthermore, the above argument indicates that ZZ(p) and T (p)
intersect at these points.
To show that crossings points of I(p) generically form a

discrete subset of Z(p) and that triple crossings do not occur,



we must show that (0,0,0,0,0) is a regular value of

3 5

F1%¢c x B2 x (R3\23) » R® defined by

Flb (p,a,b,yl'yz IY3)

(a,b)

(a,b) (a,b)
(Cy (yl) ,CY (yz) ,Cy

(vy) <@ P (gyclar® (g y,

c(a'b)(yl)-c(a’b)(y3))

and that (0,0,0,0,0,0,0) is a regular value of Fl7:C X ]R2 X

4 7

(R3\ 2% > R7 , defined by

Fl7(p,a,b,yl,y2,y3,y4) = (Cy(a'b)(yl),CY(a'b)(yz),Cy(a’b)(y3).
(a,b) (a,b) _c(a,b) (a,b) _cla,b)
C y (¥q) -C (yq)-C (y,).C (y)-C (y3)«
clarP)(yy-cl@Pliy ).

The proofs of both of these facts are analogous to previous
¥

computations and will be omitted. ™ -

To conclude our.a;gument that 2Z(p) ,@fp) ,T(p) , and Z(p)
divide B into a finite numbgr of well-behaved regions, we
now show that for a generic p € Cl these 4 curves cross

each other at only finitely many points in B

PROPOSITION 4.7. There is a residual subset A5 of ¢

1
such that for p € Ag the curves 12(p),¢(p),l(p) and I(p)

cross each other at only finitely many points in B in the

(a,b)-plane. For p € A5 » there are no triple crossings.



Proof: The proof is a straightforward application of
transversality theory. To show that the intersection of 2Z(p)
and T (p) 4is generically a finite set, one must show that

(0,0,0) is generically a regular value of

1

Tip

- (a,b) (a,b) _ ~(a,b) (a,b)
)(a.b,y) = (Cy (y).C (y) C (0),ny (y)) .

To prove that 2 and <L intersect generically in a finite set,

one must show that (0,0,0,0) is generically a regular value of

2 _ (a,b) (a,b) (a,b) _~l(a,b)
H(p)(a,b,yl.yz) = (Cy (yl),Cy (yz).c (yl) C (0),

c(alb) (yz)_c (alb‘) (0)) ,

where ¥ # Yy o and that (0,0,0,0,0) is generically a regular

value of «

H{gy (/0¥ 1Y, 073) = éy(aﬁb’(yl),cy‘a'bg(yz),cy(a'b)(y3),
C(a’b)(yl) - C(a'b)(yz) ,
‘ claP gy - clarPlgy
3 3

where (yl,yz,y3) € R NA" . To show that ¢ and I intersect
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in a finite set for generic p , one must show that (0,0,0)
is generically a regular value of

4

H (p) (a,b,y) = (c{@P)(y) - v,cy‘a'b’ (y),CYy(a’b) ()

and that (0,0,0,0) is generically a regular value of

5 _ (~(a,b) _, ~(a,b) (a,b)
‘H (p) (a,b,y;.¥,) = (C (y,)-v,C v (yz),ny (¥,))
2 2 2 . ,
on the set IR, x (]R+\A ) . The mappings to be considered
6 .2 2.2 4 7 .
for ¢ N £ are H(p).]R+x (Ry\A") » R and H(p).
B2 x (R2\4%) » R’ defined by
6 , _ (a,b) (a,b) (a,b) _~(a,b)
H(p) (a,b,y,/7,) = (Cy (yl),CY (y,).C (Y )=C """ (y,),

C(a’b) (yl)-v ) and

7 (a,b)

= (a,b)
- H(p) (alblylly21Y3) "(Cy

Y

(a,b)

(v5),C

cla/b) (Y3)‘_ v) .

7 2

The mappings to be considered for I N T are H(p):]R+ x (]Rf_ \Az) + R

8 2 3 3,
and .H(p)IR_‘_ X (IR_._\A ) > IR

> defined by

(¥3) ,C(a’b) (yi)-c(a’b)(yg,

4 .
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7 - (a,b) (a,b) (a,Db) _~l(a,b)
H(p)(a,b,yluyz) = (CY (Yl)rcy (YZ)IC (Yl) C (Yz)l

(a,b)
) ny (yl)) and

H(p)(albrylryzlY3) =

(a,b)

(Cy

(yl)'céa,b)(yz),c;a,b)(Y3)’C(a,b)(yl)_c(a,b)(yz)’céi,b)(YB))
The proofs for all these mappings is a straightforward application
of transversality theory as illustrated in the earlier proofs
in this section.

The only situation which offers any complication is the
intersection of 2 and ¢ , which can be written as (Hip))-l(0,0,0)

and (H]('g))-l(0,0,0,0) , where

H9(p) (a,b,y) = (c;a'b’ (y),c@P) (y)—v,c(@P) ()@ P (0)) | ana
10 - (a,b) (a,b) (a,b) _ (a,b) _a)

where Yy # Yy - While H%g) can be treated in the usual way,

CL . . 9 ~9 2 .

it is simpler to replace H(p) by H(p)’Tv xR, + R defined by
~9 - (a,b) (a,b) -
H(p)((a,b),y) = (Cy (y).C (y) = v) ,

where T = {(a,b) € ﬂiflc(a’b)(O) -v=0, i.e., Yaz + b2 = v}
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One uses the usual technique to show that (0,0) is a regular

value of ﬁ%p) for generic p . Since the range and domain of
~9

e
a finite set for generic p .

are two-dimensional, it féllows that 2Z(p) N ¢(p) is

The demonstration that there are no triple crossings for a
generic p follows along the usual lines and will be omitted.i
| For a fixed price function p € Cl , one can always
guarantee that ¢ (p) intersects the Z(p) and TI(p) curves

only finitely often by proper choice of the value number v .

PROPOSITION 4.8. For any fixed p € Cl , there is an open
and dense set values v in IR _ such that the corresponding

¢,(p) curve intersects zZ(p) and T(p) only finitely often.

Proof: We will prove this proposition for 2Z(p) since the
proof for T (p) is similar (and, in fact, can also be deduced
from Propégition 4.3). Recall the parameterization (a(x),b(x))
of 2(p) as given by equations (2.6). We need oniy show that

v 1is a regular value of

clalx),bix)) oy - clax),/b(x)) gy =

= [((x + B, x%-0% (x) )2+ (/I—p'(xiz x%-p? (x)

- 2 p(x)-p'(x)x 2 p(x)-p!(x)x

)Z]l/Z
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By Sard's Theorem, the set of finite regular values of this map is

open and dense for any p € Cl .
Finally, we summarize the results of this section by letting
A be the intersection of the residual subsets described in

Proposition 4.1, 4.2, 4.5,4.6, and 4.7.

Theorem 4.9. There exists a residual subset A of price

functions p in C1 with the property that for any p € A
there is a finite set of points S(p) in B 1in the (a,b)-plane
which contains:
i) all the singular points of 2Z(p),%(p).T(p), and ZI(p) ,
ii) all the self-crossings of Z(p);é(p),r(p), ana Z(p)
iii) all the crossings of 2,¢,I',/, and L with each other.
If ii) or iii) holds at (a,b) € S(p) , only two of the above
curves pass through (a,b) . If (a,b) 1is a singular point of
Z(p) , ¢(p) , or T(p) , it is a non-degenerate cusp. Singular
points of I (p) lie_oﬁ '(p) . In partjicular, the complement of
Z(p) v @(p) V I(p)V Z(p) v R(0) is a finite union of
{Bi(p)}?ig) of open sets, each homeomorphic to a two-dimensional

disk.



§5. GENERIC CHOICE AND DEMAND FUNCTIONS

The goal of this section is to prove our main results:
i) for every p e:Cl . I+ 1s continuous; ii) for a residual set
of p in Cl , & 1is c” except on a set of measure zero
(in fact, except on a finite union of smooth curves); and iii) for
this same residual set, u is c” except at a finite number of
x=-values. In Section 7, we will discuss hypotheses on p which

guarantee that the corresponding u is Cl (or even Cm)

everywhere.

Theorem 5.1. For every p € C1 ; the corresponding cumula-

tive demand function up(x) is continuous.

Proof: Since continuity is a local property, we need only
work with an interval about some x* on R_ . Recall that
R(x*) is the ray from (x*, 0) into the positive quadrant which

meets the positive x-axis in an acute angle 6 (x*) where

2
_ /1 - p'(x*)
tan 6(x*) = 57 (%" '

and that £&(a, b) = x* implies that (a, b) GER(x;) . Since p'
is smooth and lies between 0 and 1 , 6(x) 1is a smooth function
of x . Let (a(x), b(x)) be the continuous curve ¢(p) as
described by equations-(2.8). For x # x* , |u(x) - u(x*)|

is bounded above by the area between the rays R(x) and R(x¥*)

and under the curve ¢(p) . Since 8(x) is continous, this area
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goes to zero as X approaches x* . Consequently,
lu(x) - u(x*)| 0 as |x - x*| -0, i.e., u is continuous

at x* . B

What we would really like to know is how frequently can

and & be Cl . We first work with £

Theorem 5.2. Let A be the residual subset of price func-

tions p in Cl described in Theorem 4.9, For p €A , let
gp(a,b) be the usual choice function:

(a,b)}

Ep(a, b) = {x|x is a global minimizer of C

Then, there exists a set A(p) of measure zero in IRi , such
that & 1is a ¢® function on ]Ri\\ A(p) . In fact, A(p) 1is

a finite union of smooth curves.

Proof: Consider one of the cells Bj(p) defined in the

statement of Theorem 4.9. Let A(p) = 2Z(p) U &(p) U I'(p) U £(p)

U R(0) . sSo, Bj(p) is a component of B - A(p) . We claim that
each C(a’b) has qualitatively the same graph for each (a, b)
in Bj(p) . Since £(p) does not cross Bj(p) , each C(a'b)

has a unique global minimizer £g(a, b) for (a, b) E Bj(p) ,
which varies continuouély with (a, b) . Since 2Z(p) does not
cross Bj(p) , either E&(a, b) = 0 for all (a, b) & Bj(p) or

£(a, b) > 0 for all (a, b) in Bj(p) . Since A(p) does nst
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~

Cross Bj(p) , each £(a, b) 1is a non-degenerate'critical point
of each C(a'b) . By the Implicit Function Theorem, £(a, b) is
‘a ¢ function of (a, b) on Bj(p) . Since A(p) 1is a finite

. . . 2
union of smooth curves, it has measure zero 1n JR+ .32

Before stating the corresponding result for u , we prove a
proposition which formalizes some (fairly obvious) structure on
£ and ]

PROPOSITION 5.3. Let p e ( let (a, b) EIRi with

l ;
£(a, b) = x . If (a', b') 1lies on R(x) between (x, 0) and

(a, b) ,then &(a', b') = x .

] ’ L} '
Proof: One needs to show that cla'sp )(y) > c(a’sp )(x)

for all vy € R, . Suppose first that y > x . Of course, we
can assume that y < a' . Let o be the (acute) angle that the
ray from (y, 0) to (a, b) makes with the positive a-axis.

~

Let o' be the angle that the ray from (y, 0) to (a', b')

makes with the a-axis. See Figure 5.1.

/ - » (a,b)

. (a3b)

X Y
Figure 5.1




Since (a', b') 1lies between (x, 0) and (a, b) on R(x) ,
0 <a <a' <mT and cos a' < cos o . In other words,
a' -y a -y 4
< an
/?a' - y)2 + b'2 /Qa - y)2 + 52
' - - .
p'(y) - a M - > p'(y) - a Y , iL.e.,
/%a' - y)2 + b 2 /Qa - y)2 + b2
/ .
1
c}ia"b Y(y) > c}‘{a'b) (y) for all y € (x, a') .

Y

Y
' ' f
Consequently, J Cia +b )(s)ds > J Cia'b)(s)ds and
pe X

(5.1) C(a',b')(y) _ c(a',b')(x) N C(a,b) (y) - C(a,b) (x) .

, the right-hand term in non-negative

. v oL, a,b
Since x minimizes C( 1b)

in (5.1). One can therefore conclude that
] ] ] 1)
C(a 'b )(y) > C(a 'b )(x) for all y € (x, a') .
A similar argument shows that

c(a'sb") (g 2 c@®) () for all y e (0, x) .

and the Proposition follows. ®
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The proof of Proposition 5.3 also demonstrates the following

result.

PROPOSITION 5.4. For any p &€ C1 , the set of

{(a,‘b)eEJRilg(a, b) = 0} 4is star-like with respect to the
origin. In other words, if &(a, b) = 0 , then ¢&(a', b') =0
for all (a', b') on the line segment between (a, b) . and (0; 0) .

(The set 5-1(0) is probably even convex.)

Before proceeding to our main theorem, we need one more

technical result.

PROPOSITION 5.5. There is a residual set A in Cl such

that for any p & X , there is no (a, b, x) such that

claP )y =0, cl2P ) =0, cl2P e =0, cl2P =0,

(a,b)

In particular, for pe€ A , each C has only finitely many

critical points.

Proof: To prove the first statement, we must show that
(0, 0, 0, 0) 1is a reqular value of the map

(o, a, b, (@) (x), cl2P (), clarP) (), cl2:B) ().

However, this follows by the methods of Section 4. Now, if

p~e;i and if x 1is a critical point of the corresponding C(a’b)

for some (a, b) , then the second, third, or fourth derivative
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(a,b) is non-zero at x . This implies that the critical

(a,b)

of C
points of C are isolated. W@

We now state and prove the main theorem.

THEOREM 5.6. Let A and A be the residual subsets of Ci

defined in Theorem 4.9 and Proposition 5.5. Let p be a price
function in the residual set AN A , and let 1yu(x) be the

cumulative demand function for p . Then, not oniy is y con-
- tinuous (Theorem 5.1), but except for a finite (possibly empty)

set of points in R, wu is a ¢° function.

Proof: Let R(x) = {(a, b) € R(x)|E(a, b) = x} . By
Proposition 5.3, each R(x) is connected and the union of the
R(x)'s fill wup the set on which £ is positive. Off ZI(p) ,
R(x) N R(y) is empty for x #y . Let A(x) , B(x) be the
upper endpoint of R(x) . Then, (A(x), B(x)) must lie on

Alp) = 2(p) U &(p) U T'(p) UZI(p) , i.e., cannot lie in the in-

terior of some Bj(p) . For, if it did lie in the interior of
Bj(p) r the smoothness of £ there (see Theorem 5.1) would enable
us to extend the endpoint of R(x) beyond (A(x), B(x)) . Let

S denote the finite (by Theqrem 4.9) set of points which are
singular boints or crossing points for A(p) . If (A(x), B(x))
&S , then (A(x), B(x)) is a smooth, regular curve in a
neighborhood, say (Xl' xz) , of x . It follows from Proposition

‘2.2 that



Q(?c; x,) = area{(a, b)|x; < &(a, b) < x}

is a ¢ Ffunction on (xl, xz)

Thus, the only possible values of X at which pu is not
¢” are those x such that (A(x), B(x)) €S . By Proposition
5.5, only finitgly many R(x)'s meet at any point in the (a,b)—.
plane; since ©p EA . Letting Xyr eoer X be the points on
the x-axis at which (A(xi), B(x]._)) & S , it follows that p is

c” except possibly on {xl, ey xr} .2

Theorem 5.7. The conclusion of Theorem 5.2 and 5.6 hold

for any p & C]. which is real analytic.

Proof: If p ec]_ is real analytic, then 2Z(p) , ¢(p) ,
'(p) , and I(p) will be real analytic curves in B . Since
any two real analytic curves in the plane meet each other in a
discrete set or coincide (see Simon-Titus (1978)), and since
any real vialytic curve has a discrete set of singular points,
the set S of crossings, self-crossings, and singular po?i.nts of
the 2 , ¢ , T , ;nd I curves will still be constant. Since

(a,Db)

each C is real analytic, each will either be constant or

have a discrete set of critical points. The case where some
C(a’b) is constant is worked out in the example following this
proof. So, we can assume that a finite number of R(x)'s meet

at any (a, b) €JR2 . The rest of the proof is identical to that

of the previous theorem. a



* *
C(a %)

Example. What happens if some is constant? Then,

there exists a constant w > 0 such that

p(x) =w-/(a* --x)2 +-b*2 .

" To keep p' > 0 , we must restrict to (a, b) with a < a* . To
have p(0) =0 , w must equal Ya*" + b*2 . One now computes
easily that the curves of constant choice § are line segments

joining (a*, b*) to the a-axis, as in Figure 5.2. Furthermore,

. a a*
0 , if ——m—— <

+ * + *
£(a, b) a b a b

- *
a* - b*(%—:—%;) , otherwise;

% b*x , for 0 <x < a* .

and p(x)

b

Figure 5.2
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Example:. If p 1is continuous but not Cl , then the corres-
ponding: ¢ may not be continuous, as the following example indi-

cates. Let p(x) be the following piecewise linear price

function:
P X r 02 x < x* ;
p(x) =
P2X+(P1'P2)X*,X*ix<m,
where 0 < P, < PZ <1. So, p'(x) has the graph indicated in

figure 5.3.

»

Figure 5.3

Use the analysis of figures 2.1 and 2.2 to describe the choice
function § . No Ba'b(x) will have a graph intersecting both
segments in figure 5.3. If (a,b) 1is such that the.graph of
Ba’b(x) crosses the first segment (0 < x < x* , y = Pl) , say
at. x° , then ¢£&(a,b) = x° and E_l(x°) is a ray R(x°) with
cose(xo) =P, . If (a,b) 1is such that the graph of Ba’b(x)

crosses the second segment (x* < x , y = P2) , say at xl , then
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1

£(a,b) = x and g-l(xl

]
o

) 1is a ray R(xl) with cose(xl)
If (a,b) dis such that P; < B3P (x*) < P, , then E(a,b) = x*
since

<0 for x < x* ,

p' (x) - B3P (x)
>0 for x > x* .

Accordingly, the level sets of Ef are as pictured in Figure 5.4.

Since g'l(x*) has pesitive area, p 1is not continuous at x¥* .

Figure'574b Level sets of § .




§6. A CLOSER LOOK AT THE SMOOTHNESS OF yu AND £ .

From the analysis of the previous sections, it follows that
there are four ways in which § can become discontinous and u
non-smooth; i) across 2 , with ¢&(a, b) = 0 on one side of 2
and jumping to non-zero values on the other side; ii) across ¢ ,

with C(a’b)

((§(a, b))<v on one side of ¢ and >v on the other
side; iii) across I , where 6ne (degenerate) global minimum
can bifurcate into two local minima; and iv) across I , where
the global minimizer jumps from one local minimizer to another.

In this section, we will analyze more carefully how each of
these curves affects £ and u and will conclude that it is
the self-crossings of LI(p) which leads to the stable continuities
of £ and non-smooth points of u . We begin by éhowinq that
if I(p) = ¢ , then §£ is continuous and u 1is Cl everywhere.

v

PROPOSITION 6.1. For p € Cl , if IL(p) is empty, then g

is cont:ijuous away from 5—1(0) and u is Cl everywhere.

Proof Sketch: For each x > 0 , let (a(x), B(x)) be the

point in R(x) with the property that £(a, b) = x if and only

if (a, b) € R(x) and a < al(x) , b < g(x) . By arguments of

Section 5, each -(a(x), B(x)) must lie on 2L e(PYUT(PU I(p) .
Since L(p) = f , we can disregard it. Suppose

c(a,b)

(a(x), B(xX)) € T'(p) \[2(p) VU ®(p)] . Since is a contin-~-

uous family of functions, its minimizer £(a, b) is lower semi-
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continuous.' (See p.19 of Debreu (1959.)) Since X(p) =8 , ¢

_ is single-valued off Z(p) and therefore continuous in a neigh-
borhood of (a(x), B(x)) . Now i-l(x) lies on R(x) by argu-
ments of Section 2. If E_l(x) does not extend beyond

(a(x), B(x)) on R(x) , then the level curves of & are as
sketched in Figure 6.1 and (a(x), B(x)) must be a local extremum
of &£ . However, this would contradict E—l(y) C R(y) for all

y . Therefore, E-l(x) does extend beyond (a(x), B(x)) on R(x) .

This contradiction to the definition of (a(x), B(x)) means that

we can ignore points of T \[Z2 U ¢] in computing ¢ and u

‘ Efn. -

Figure 6.1: Level sets of ¢

Therefore, each (a(x), B(x)) 1lieson 12z(p) U ¢(p) . By
Proposition 2.2, we need only show that (a(x), B(x)) 1is a
continuous curve in x . If (o(x), B(x)) ison Z\ 9% or
®\ 2 , then o and B8 are continuous in a neighborhood of x
by equations (2.6) and (2.8). So, we need only consider a neigh-

borhood of (a(x*), B(x*)) € ¢(p) () 2*(p) , where 2Z* 1is a branch
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of 27 across which ¢ actually changes from zero to non-zero
values.
Recall from Propositions 4.3 and 4.4 that ¢ slopes down-~
wards while I* slopes upwards. If (a(x), §(x)) moves from

® to 2Z* at x* as X increases, then, as in Figure 6.2, Z*

‘separates part of 5-1(0) from E—l(x*) and the origin. This
contradicts the fact that 5-1(0) is starlike with respect to
the origin (Proposition 5.4). Thus, (a(x), B(x)) moves from 2Z*
to ¢ at x = x* . It follows that Z* and ¢ can cross each
other only once, i.e., (a(x), B(x)) €2 for x < x* and
(a(x), B(x)) & for x > x* . See Figures 3.2 and 3.3 for
Z:
(«x*, Bx*)
£
R x
Figure 6.2

examples. Again, by egquations (2.6) and (2.8) and Proposition
2.2, it follows that (a(x), B(x)) 1is continuous, and that u

.

is C everywhere and c” except at one value of x .

" Consequently, it is the existence of the [-curves which

causes non-smoothness of u . There are two phenomena associated



with I(p) : i) the intersection of [ (p) and I(p) curves
where one minimum splits into two (and a I (p)-curve begins);
and ii) self-crossing of I(p) at a point (a, b) where c‘3sP)
has three distinct global minimizers. We now indicate that, for

generic p , case i) does not hurt the smoothness of up , while

case ii) does.

PROPOSITION 6.2. There is a residual subset A' of Cl

such that if p € A' and if (a, b) is a point of T(p) N\ I(p)

with &(a, b) = x , then up is ¢ at x .

Proof: The proof is an application of Thom's Catastrophe
Theorem. However, although most of Zeeman's applications of this
Theorem (see Zeeman (1977)) use the "delay rule" to choose which
of several local minima plays the major role, our model uses
"Maxwell's Convention" which singles out the global minimizer.

By the argument of Proposition 5.5 (or the argument of Section 4),

one easily proves that there is a residual set A' of p's . in

Cl such that for p in A' whenever Cy v Cux =0,
(a,b) _ (a,b) (a,b) (a,b) -
and CXxx = 0 , then Cxxxx ’ Cxxa , and be are non-zero.

Let p&A' and let (a', b') &€&T(p) N IL(p) . Unless

L 1
(a',b") which

X' = Ep(a', b') is a degenerate minimum of C
splits into two local minima, £ and u will not be affected.
So, we will assume this situation. By Thom's Theorem (see Martinet

(l§74) or the Zeeman-Trotman notes in Zeeman (1977)), there are

neighborhoods U1 of (x'; a', b') and U2 of (0; 0, 0) and
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a C change of coordinates (diffeomorphism) h: Ul > U2 of the

form:
o = hz(x; a, b) ’
dh oh
?—g = 3 = 0 on U, , and
b d 9x 1

h(x', a', b') = (0, 0, 0)

In these new coordinates, C has the equation:

2 -1 Poen?
(6.2) &(m a, B) 2Coh (n; a, B) = - L+ ay

Since h2 and h3 are independent of x , and since the
smoothness of &£ and of u is independent of choice of coordin-
ates of ths type described in (é.l), the smoothness of p at 0
in the new coordinates will be equivalent to the smoothness of
It at x' in our ofiginal coordinates.

P
Examining (6.2), note that

~ 2~
€ - -8n+a ana &= 3n2 - B .
an 3 2
n
In these coordinates, the set T , defined by én = énﬁ= 0 , is

the curve 433 = 270.2 as described in Figure 6.3; while I 1is
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the positive B-axis. /5
T
A
Figure 6.3
Now, %% = 0 for each fixed n° along the line
-] 03 -
(6.3) a - Bn® + n = (

in the (a,B)-plane. Therefore, the curves of constant choice
£ 1lie on these lines and, in fact, are the segments as pictured

in Figure 6.4.

. 3

Figure 6.4: Level sets of g

Since we are only interested in the smoothness of p at 0 ,

we can let n vary along the a-axis between -1 and +1 , without



loss of generality. Let #(n) be the line segment as described
by equation (6.3) or as pictured in Figure 6.4 between (u, 0)
and the positive B-axis. Let {i(n) = measure{(a, B)|B > O ‘and
(o, B) lies between E(—l) and £(n) . Thus, since £(n) runs
from (n3, 0) to (0, n2) , fi(=1) =0, {i{0) = % , and §i(l) =1.
One checks easily that filn) = 3(1 + n°) for n € (-1, 1)
Since § 1is c® at 0 , the original 1y 1is c” at x'
Therefore, for generic price function p , lack of smoothness
of the corresponding u arises not at the points where I (p)
is created but at the crossings of Z(p) . In particular, when
two branches of [ cross each other, ¢ may jump abruptly and
¥ may lose smoothness. This phenomenbn occurs for an open sub-
set of Cl , i.e., cannot be removed by perturbing p . To illus-
trate that such crossings do cause u to lose smoothness, we
describe the analogous phenomenon in one less dimension where
it is simpler to understand.
Consider the problem of minimizing

4

J(a, x) = % X - 2

X + ax

N

for each a . Since %% = x3 - x + a , the graph of a(x)==x-x3

is the set of all (x, a) such that x 1is a critical point of
J(a, =) . Further analysis yields that the subset
{(x, a)|a = x - x3, Ix| > 1} 1is the graph of x = £(a) , the

global minimizers. See Figures 6.5 and 6.6.
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\ ,

Figure 6.5: a = x - X Figure 6.6: x = E(a)

Furthermore, for all x > -2 ,

p(x) = measuref{a < 6[-2 < £(a) < x}
3
6 + X~ - x , for -2 <X < -1,
= 6 , for -1 < x < 1,
6 + x3 -x, for 1 <x .
Since p(-1) = pu(+l) = 6 , u is continuous. However, yu is not

Cl at x = -1 or x = +1



7. CONDITIONS WHICH GUARANTEE SMOOTHNESS

Theorem 5.6 asserts that the cumulative demand function
p(x) 1is C® except on a finite (possibly empty) set of
x-values for a generic price function p . In this section,

we give conditions on p(x) which guarantee that the corresponding

g and 1y are everywhere smooth. Some conditions have already
been discussed in Section 3, namely that p be linear or guadratic.
The conditions described in this section are natural generalizations

of the cases studied in Section 3.

THEOREM 7.1. If p € Cl and p"(x) > 0 for all x , then

the corresponding § and u are everywhere C® and can

easily be computed. (See equation (7.1) below.)

Proof: Since p"(x) > 0 for all x , Céz'b)(x) is strictly

positive {fr all a,b, and x . (See eguation (2.2).) Therefore,
Cia’b)(x) is strictly increasing for each (a,b) . If .
Cia'b)(O) < 0 , then C;a'b) will have a_unique interior zero
which will be the global minimizer £ (a,b) of C(a'b) . Since
C(a’b) is never zero, ¢£(a,b) will be a non-degenerate minimizer

XX
and (by the Implicit Function Theorem) will be a C® function of

(a,b) .

12 ¢ P 0) > 0, then c(@P

will be a strictly increasing
function of x and £(a,b) must be zero. It follows that the

curve 2Z(p) coincides with the ray
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R(0) = {(a,b)|c, @) (0) = 0

Since p and p' are increasing functions of x , b(x) in
equation (2.8) is strictly decreasing and the curve ¢(p) has
no cusps. Both T (p) and I(p) are empty. Therefore, u(x)
can be explicitly calculated by substituting equations (2.8)

in the formula of Proposition 2.2. The result is

1/2

% :
(7.1) ux) = L) [((v = p(y)) (L - P'(Y)2] +

%(v - p(y))zp"(y) (1 - p' (}[)21'1/2

ldy ., .

a C® function of x for 0 < x < Pt .

THEORMM 7.2. If p € Cl and p"™ > 0 (e.g., p" < 0 - but

increasing) , then the corresbonding £ 1is continuous and WH 1is

-

everywhere Cl .

Proof: One computes easily that

3-~(a,b)
9°C 2
___3(_}{_)_ = pm (x) + 12) 5 3/2 ;
ox [ (a-x) “+b“]
so, p™ > 0 implies that 'Cxéi'b) > 0 and that each cxéa'b) is

strictly increasing. If Cxiafb)(x) >0 for all x or
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cmﬁa'b’ (x) < 0 for all x , them c‘@sb)

can have only one interior
critical point. If C;:’b)(x) < 0 for x € [0,x*) and > 0

(a,b)

for x > x* , then Cx

is decreasing on [0,x*) and

(a,b) can have at most two

increasing on (x*,*) . Such a C
critical points =~ one lbcal max and one local min. It follows
that Z(p) 1is empty; and therefore, by Proposition 6.1, § is
continuous on the set &v; 0, u 1is everywhere_ Cl , and

p is €% except possibly at one point.H®
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§8. Characterization of Cumulative Demand Functions

We have described how the cumulative demand function up(x)
behaves for a generic price function p ¢ ﬁl. A natural guestion
to ask is:what functions p(X) can arise as cumulative demand func-
tions from price functions in 51? Clearly, both u(x) and u'(x)
must be positive. We will indicate in this section that these are
the only constraints on possible cumulative demand functions.

Sonnenschein (1973) and Debreu (1974) have demonstrated the
corresponding result for neo-classical exchange economies with
strictly concave preferences. They proved that continuity, Walras'
identity, and some natural boundary conditions are both necessary and
sufficient for a function to be an aggregate excess demand for some
economy .

First, we demonstrate a partial result in this direction,
showing that there are no other necessary conditions on the signs of
the derivatives of a given u (except, of course,y > 0 and u' > 0)
for u to be a cumulative demand function “p in the Ellet transpor-
tation problem. For, let u be an arbitrary C2 function on [0, Gl)
with p and u' both positive, u'(0) > 0, and u(0) = 0. Let v be
a positive constant. One can rewrite equation (7;1) as the second

order differential equation
1
2 12

72
v _ v (Q-p “) (1-p )
(8.1) T T e

Choose p ¢ (0,1) so that



(8.2) | W(0) > v V1 -2 .

By the fundamental existence theorem of differential equations,

there is a unique, smooth solution p : [0,62) + R to equation

(8.1) which satisfies the initial conditions p(0) = 0 and p‘(O) = p.
By (8.2), this solution will have p"(0) > 0. Since p is smooth,

there is a § with 0 < <-min'{61, 52} such that for all x ¢ (0,6),

0 < p(x) < #,' ‘ 0 < p'(x) <1,

and 0 < p"(x).

By (7.1) and the uniqueness of the solution to (8.l) with the aboye
initial values, the corresponding cumulative demand function p
for our solution p agrees with the original Y at least-on the
interval ([0, §).

As H. Sonnenschein has poiﬁted out, there is another way to
show that any u with u > 0 and ¥' > 0 can be a cumulative demand
function :¥. the Ellet problem. ’Firs;, add an extra degree of freedom
to this problem by allowing-the density of the farmérs fiiling up the

right half plane to be non-uniform. Let n : R®

+ R, be the cor-
responding density function. (Thus far, we have assumed n = 1.
With'n non-constént, the formula analogous to (7.1) will be much
more complicated. than (7.1).)

To be more specific, consider example one of gection’z with
linear p(x) = Ex and value v. As shown in section éwo, the rays
R(x) of constant individual demand all have slope p~t /1-p2,
;Choose a density function;n which is also constant on any such ray

R(x), i.e.,
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(8.3) n(a,b) = n(Pb - a¥1-p?)

for some positive function n on R. An analysis similar to that of

section two shows that the corresponding cumulative demand function

is
X
uix) = [ v1-p° (v - Py)n(y)dy, i.e.,
0
(8.4) wt(x) = V1i-p? (v - Px)n(x).

Conversely, let p(x) be a candidate for a cumulative demand

function with u > 0 and u°' >0 on (0,a). Suppose further that

ﬁ'(a) = 0, i.e., cumulative demand chokes off (stops accumulating)
at x = a. Choose v and P so that 0 < P <1 and % = a.
Using (8.4), define n : [0,a) =+ (0,=) by

- ol

n(x) = u’ (x) .

v’l-P2 (v=-Px)

(Since ﬂ;(%) = 0, n is differentiable at x = % = a.) If one now
chooses price function p(x) = Px and constructs density function

n(a,b) from ﬁ usihg-formula (8.3), the above analysis shows that
the corresponding cumulative demand function for this model will be

the original .



Appendix

In this appendix, the reader is reminded of some of the basic
definitions and theorems of differential calculus and topology
which are used throughout this paper. For further mathematical de-
tails, see Martinet (1974), Golubitsky-Guillemin (1973), or Zeeman
(1977). For discussions of these concepts in economics settings,'
see Dierker (1974), Simon-Titus (1975), Saari-Simon (1977), and
the five papers of Smale on "Global Analysis and Economics" in

the Journal of Mathematical Economics.

To begin, recall that a function £: R + R is k-times con-~

tinuously differentiable (writen gi)' if for each 3j=0,1, ..., k

]
df rRoR
dax?
. a%s . .
is defined and continuous. (By usual convention, —g is just £
A dx
itself.) If £ is Ck for every kX , 1 <k < » , then we say

£ is c” . If for each x & R , the Taylor Series of £ at x

exists and has a positive radius of convergence, then f is real

analytic (written Cw) . Note that c¢%—=¢c” = Ck=-—> Ck-l = CO =

continuous. If £ 1is a function on R™ , then f is Ck if
every partial derivative of f of order < k exists and is con;
ﬁinuous on R" . If A is a closed subset of R® , then we'll
say that £ is Ck on . A if f has a Ck extension to an open
. neighborhood pf A .

Let C denote the following vector space of functions:




=]

¢ = {p: [0, ») >R|p(0) =0 and p 1is C }

Topologize C as follows. Let poec , let n: [0, «) -+ IR+ be

a continuous, positive function, and let k be an integer. Define

a* d'p,
N_ . (p°) = {p €C:{ZB(x) - —=(x)| < n(x) for i=0, ..., k} .
n,k 1 i
, dx dx
The sets N (p°) form a neighborhood basis for a topology on

n,k
C, i.e., a subset M of (C is open if for any p°&€ M , there

is an n(x) and a k as above such that p°e&e Nn’k(p°) cCM .
For more details on this, the Whitney Cw-topology, see Golubitsky-
Guillemin (1973).

A subset D of ( is dense if D has a non-empty intersec-
tion with every open subset of C . A subset R of C is resid-
ual if R 1is the intersection of a countable set of open and
dense subsets of C . Residual subsets of ( are dense in C
(see Golubitsky-Guillemin (1973)) and are roughly analogous to
sets of full measure. Furthermore, the countable intersection of
residual subsets of (C is itself residual. Let P be a property
that holds for some functions in € . Then, P is called a generic
property if a residual subset of maps in ( have property P

We now introduce some "transversality theorfy". Let £ be a
c” mapping from R® > R",i.e.,each component fj of‘ £ is a
¢” function from R® to R . A point x° e]Rn is called a

regular point of f 1if the Jacobian derivative of £ at x°




: }
DE(x°) =; ) |
. |

‘ .l m /‘

\ 5—£—(x°) .« o E_(XO)

\ ox_ = ' IX_ =

n n /

has rank m , i.e., is surjective. Otherwise x° is called a
'singular point or critical point of £ . A point y° in the

range R® is called a reqgular value of £f 1if either

f-l(y_°) = § or each x° & f-l(;f) is a reqular point of f
Otherwise, y® is a critical value. The basic theorems surround-
ing these concepts are Sard's Theorem and the Implicit Function
Theorem. See Golubitsky-Guillemin (1973) for discussion and

proofs.

Sard's Theorem: Let f£: R® - R" be a C~ mapping. Then,

the reqular values of £ form a residual subset of Rr" .

L)

Implicit Function Theorem: Let f£: R+ R" be a C mapping

and let i° be a regular value of f with £t (yo) non-empty.
Then, if m < n , f_l(z°) is a C submanifold of ]Rn cf din-
ension n - m (éodimension m) . (In other words, for each

x° < £ 1(y°) , there is a neighborhood U of x° in R , a

n-m

decomposition of R into R™ xR , and a c” function

e U O [{0} x BT > (BT x {0}]



such that f-l(z°)f1 U 1is the smooth graph of X .) If m=n ,
f-l(x°) is a discrete set of points. Note that m > n is ruled
" out by hypothesis.

In sections 4, 5, and 6 of this paper, we show that, for cer-
tain p in € , a curve A(p) 1is well-behaved by characterizing

it as the inverse image of the regular value 0 of a c” map
N .

F(p)'
characterizing it as the inverse image of the regular value 0

of a C map F?p):l¥1-*lfx. In fact, our goal is to prove that

A
Fip)

lar value. The following theorem provides the machinery for just

R® » R*1 . wWe also show that a set S(p) is discrete by

for a residual set of p's , and F?p) have 0 as a regu-

such a proof.

Thom Transversality Theorem. Let C be a normed vector

space of mappings. Let F:(Cx R" +R" bea c” mapping. If
0 is a regular value of F , then 0 1is a regular value of the

n

map F(p): R » R™ , defined by F (x) = F(p, x) , for a residual

(p)
subset of p's in C . . -

To show that .DF(p°, x°) is surjective, it often suffices
to show that the partial de;ivative of F with respect to p ,
DpF(p°, x°) , is surjective. The latter is the derivative of
p — F(p, x°) at p° , with x fixed at x° and is best viewed
as the linear ma§ from C + R which best approximates the map
p+~—F(p , x°) at p° . Thus, if G: C > R" is smooth, then

its derivative at p° , DG(p°) , is the (unique) linear map from

C > R™ which satisfies
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1im G(2° + n) .U(p ) = DG(p®)h _ 4
h~0 indl
for h €C . For example, let G(p) = p(x°) for some fixed x°.

Then, since G 1is linear in p , its derivative is itseli, i.e.,

DG (h) = h(x°)

(p°)
Finally, we will need a version of Thom's Catastrophé Theorem,
which gives especially nice local forms of some mappings around

degenerate critical points.

Theorem. Let C(a, b; x) be a C° map from :!R2 ><]R:L +]Rl .
2
Suppose that C(a°, b°; x°) , 39(a°, b°; x°) , 3 c(a°, be; x°) ,
X ax§
3
i-—%(a°, b®; x°) are all zero and that the matrix
ox
e »2¢ 0
9aadx dbax
53¢ 53¢
> 3 0
a9 X abax
s4c 34c e
3a9x°> 3bax> 3%

is non-singular at (a°, b°; x°) . Then, there exists a neigh-
borhood U about (a°, b°; x°) , a neighborhood V about

(0, 0; 0) in 2R3 , and a c” change of variables



H = (Hl, Hz, H3): U * V (local diffeomorphism) which preserves

sutl _ om?

ax  ox

(a®°, b°; x°) , so that in the new coordinates C has the form‘

vertical lines = 0) and which sends (0, O; Q) to

4
C o H(a, B8; n) =3;4—--g-n2+an-

Under the above hypotheses, the curve in the (a,b)-place
near (a°, b°) defined by

2
{(a, b) %%(a, b; x) = %;%(a, b; x) = 0 for some x}

is called a non-degenerate cusp. For the prdof of this theorenm,
see Martinet (1974) or Trotman's notes in Zeeman (1977). This
particular result was originally proved in Whitney (1955) and

generalized by Morin (1965)..
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