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1. Introduction.

Theoretical microeconomics has relied heavily on the neo-

classical Arrow-Debreu model of general equilibrium theory., as

outlined in Debreu (1959). In this model, a commodity is a

carefully specified good or service delivered at a specific

location and at a specific time. Two related, but not identical,

varieties of the same good must be treated as separate, independent

commodities. Similarly, there are a finite number of consumers

in such an economy, each specified by his preference relation and

initial wealth. One cannot easily compare characteristics of

similar but different commodities or tastes of similar but different

consumers. Nor can one easily handle the addition or deletion of'

commodities- from the market.

There are many situations, such as housing markets (see

Sweeney (1974)) and labor markets (see Becker (1965) or Lewis

(1969)), where the distribution of the qualities and characteristics

of the studied goods and the spectrum of preferences of the con-

sumers are the important objects of study. As a result, economic..

models with differentiated products and consumers have been widely

developed and discussed over the past twenty-five years. Among

the important references in this area are louthakker (1952),

Lancaster (1966) , (1975), and Rosen (1974) . Commonly in such

models, an open subset of Euclidean space is used to parametrize

an n-dimensional set of product characteristics or qualities.

"The consumer is assumed to derive his actual utility or satis-

faction from these characteristics which cannot in general be

purchased directly, but are incorporated into goods. The consumer
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obtains his optimum bundle of characteristics by purchasing a

collection of goods so chosen as to possess in toto the desired

characteristics... Furthermore, one generally assumes that

the population consists of a very large number of consumers

with difference preference patterns, so that there is a continuous

spectrum of preferences." (Lancaster (1975)) Thus, the consumers'

preferences are assumed to be parametrized by another open set of

Euclidean space. Furthermore, both of these parametrizations are

assumed to be continuous, or even differentiable, so that nearby

parameters correspond to similar characteristics or similar pre-

ferences relations.

More concretely, if X in JR is the space of characteristics

and C in ]R represents the space of consumers, then for each

c e C there is a utility function u(x; c) which is smooth in

both variables, and probably concave in x. If, for some given

price system p(x) and distribution of initial incomes, x = E(c)
maximizes u(.,c) on its budget set, then E might be considered-

an individual demand function. The function E by matching -up

points in C with points in X casts the problem into a spacial

setting reminiscent of the spacial approach to economics of

Harold Hotelling. In fact, such models with differential com-

modities and consumers have historically been closely associated

with the theory of monopolistic competition.

.There is no reason that the individual demand function (

be surjective; in other words, some characteristics and commodities
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may not be purchased. As the price function varies, the image

of ( may change also; goods demanded at one price may be

ignored at another. One can perform a similar analysis from

the supply side with the cost and production functions of a

continuous spectrum of firms leading to a supply function T1-
One can then interpret changes in the image of r as entrance

and exit of firms from- the market--a phenomenon which is rather

difficult to model in the Arrow-Debreu model.

Besides providing an effective method of comparing qualities

of similar commodities and tastes of similar consumers, these

models often have other advantages over the traditional model in

some applications. For example, one can easily include uncer-

tainties about consumer behavior, as illustrated in Quandt (1956) .

One can also bring some extra mathematical tools into the analysis.

While the mathematics used in the Arrow-Debreu model consists

mainly of linear algebra, the implicit function theorem, non-

linear ;rogramming, and fixed-point theorems, the study.of models

with a continuum of commodities and traders often includes, in

addition to these, techniques from capital theory, .such as calculus

of variations, optimal control theory, and partial differential

equations.

-However, the mathematics of the Arrow-Debreu model is much

more straightforward, at least as it is used in most applications.

One assumes that each of the finite number of consumers has a

preference relation which is representable by a smooth, monotone
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non-singular, strictly concave utility function defined.on a

convex commodity space. In concrete applications, the utility

function will usually be quadratic, logarithmic, Cobb-Douglas,

or constant elasticity. Price functions are always linear. The

production function defined on the convex production set usually

has properties similar to those of the utility function on its

commodity space. As a result of these specifications, mathe-

matical analysis in the Arrow-Debreu model follows a carefully-

marked path where the effects of various economic assumptions in

the model are fairly well understood.

The picture is much more complicated and uncertain in models

with differentiated products- and consumers. Since prices on

goods can often be reinterpreted as prices on the corresponding

characteristics or attributes. (the so-called "hedonic prices"),

there is no reason to assume that such prices depend linearly on

the qualities being studied. Neither is it clear whether price

functions should be concave or, convex or a little- of both.

While it is reasonable that the above-mentioned utility

function u(x;c) be concave in x , there is no reason for u

to be convex or concave in ,c . Since p(x) may be neither

concave nor convex, we will be maximizing u ("-; c) on a (possibly)

non-convex budget set. As a result, the maximizer (c) can

behave rather wildly. Among the important questions one might*

ask are: i) what does ( look like in a practical economic model

with dif ferentiated commodities, and ii) how should we aggregate
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( over consumers to obtain a meaningful concept of aggregate

demand or aggregate excess demand?

To quote Lancaster (1975) again, "It is obvious that oppor-

tunities for ill behavior abound in a general model." Carefully

worked-out examples of reasonable economies with differentiated

commodities and consumers are badly needed to understand what.

forms u(x;c) , p(x) , and g(c) may take. These forms should

be clearly tied to the application in question and not some

ad-hoc formulae chosen as a mathematical convenience or curiosity.

The resulting study of such examples should lead to deeper

insights and a stronger intuition for exactly what kind of

behavior one can expect in concrete economies with differentiated

products and consumers.

The goal of this paper is to study in detail just such an

example. The concrete example we will study is a generalization

of one of the first economic treatises written in the United

States--Charles Ellet's treatise on the theory underlying the

determination of canal and railroad tariffs. Ellet (1810-1862)

was a civil engineer who studied in Paris after some initial

work on the Erie Canal. He returned to the United States with

many exciting engineering ideas and began to work on the James

River and Kanawha Canal Project. He built the first permanent

American suspension bridge in Philadelphia over the Skuylkill.

River; and he also built a bridge in Wheeling, Ohio, which was

at the time the world's longest suspension bridge. Not only is

he responsible for Virginia's canal network but he also proposed
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a system of reservoirs for western rivers to aid flood control

and shipping--proposals which were finally approved a century

after his death. He advocated and designed ram boats for the.

North in the Civil War, and he died fighting in one. For

further details on Ellet's life, see Calsoyas (1950), G. Lewis

(1968), or the archives at the University of Michigan Transpor-

tation Library.

In 1839, Ellet wrote An Essay on the Laws of Trade, in

Reference to the Works of internal improvement in the United States,

a work which led Viner (1928) to rank Ellet "with Cournot...as a

pioneer formulator of the pure theory of monopoly price in precise

terms." The goal of this paper was to describe the principles

by which the charges for the use of a new canal" should be regulated

so that it may be rendered most profitable to the stockholders,

and most beneficial to the community." (Ellet (1839)). He was

especially interested in maximizing the profits obtained from

transporting heavy, cheap materials, which will not be transported

if the freight charge is above some fixed lower limit, and in dis-

covering the optimal locations of roads which would feed into

the main canal. For more complete details, see Ellet (1839) and

Calsoyas (1950)

To model Ellet's problem mathematically, consider a canal

or railroad lying along the positive x-axis with a large number

of small farmers in the plane around the axis. Further, approx-

imnate this problem by assuming that the points in the right half
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plane parametrize the farmers and that each farmer wants to ship

a bundle of farm goods to a warehouse or cannery located at the

origin. There is a linear cost for shipping along land to the

railroad and a non-linear cost function p(x) which gives the

cost of transporting the freight along the railroad from (x,0)

to (0,0). Each farmer maximizes his utility by minimizing his

shipping costs, but no farmer will pay more than v dollars to

ship his bundle.

This is clearly a problem with differentiated commodities

and consumers which is best handled as a spatial problem--

matching farmers in the right half plane with their optimal

connection point with the canal or railroad. Since the railroad

may have steep grades in some places or the width and the depth

of the canal may vary widely, the price function p (x) may be

concave in some places and convex in'others.

In this paper, we will focus our attention on the individual

demand t'unction ( and the corresponding cumulative demand

function u,. We will illustrate that, while a broad class of

demand functions arise, the typical individual demand function

is smooth except on a set of measure zero while the generic

cumulative demand function is smooth except on a finite set S

of points. We .will then give conditions for S to be empty,

i.e., for iJ to be globally smooth.

In one respect, this paper can also be considered as an

extension..of the work of Sonderrmann (1975) , Araujo and Mas-Collel

(1978) , Mas-Collel and Neue feind (1977) , Neuefiend (1977) ,
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Dierker-Dierker-Trockel (1978) , and others--all of whom have

shown that for a generic economy with differentiated products

the mean excess demand correspondence is a smooth function.

This paper deals with a concept more closely related to the

usual aggregate demand function of the Arrow-Debreu model (at.-

least for the Ellet problem), the cumulative demand function.

Using no assumptions or techniques of convexity, we show that

the cumulative demand function in our model is generically smooth,

except perhaps on a finite set of points. We also indicate that

for an open set of economies in our model, this set of singu-

larities is.non-empty.

The fact that these demand functions are generically well-

behaved is an important step in the analysis of economic equilibria

and of the corresponding comparative statics. For example, if

one can show that a closed property like the existence of a

competitive equilibrium holds for an open dense subset of some

class of economies, then it is straightforward matter to show

that all the economies in the class have that property.- See,

for example, Mas-Collel and Neuefiend (1977) .

In a sequel to this paper, we will study the supply side

of this model--both in a competitive and monopolistic framework--

and will describe the equilibria which exist and how they are

af fected by changes in the price systems.

The author acknowledges his deep gratitude to Hugo Sonnen-

schein, who not only introduced him to the work of Charles Ellet

but also enkindled his interest in models of economics with

differentiated products and 'consumers.
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In this section, the mathematical model will be described

and the formulae and equations which are central to this investi-

gation will be calculated. Assume that there are fruit growers

evenly distributed throughout the right-half-plane. Each grower.

would like to ship a bushel of fruit to a cannery at the origin

(0, 0). Assume that there is a canal running along the positive

x-axis with shipping firms evenly distributed along the canal.

In addition, suppose that the cost of shipping the bushel along

land is one unit of currency (say, one dollar) and that there

is a function p: R+ + ]R+ such that the shipper at (x, 0) charges

p(x) dollars to ship a bushel of fruit to (0, 0) . It is

reasonable to make the following assumptions on p(x)

i) p(0) = 0

ii) p is a smooth (C) function, i.e., every derivative of

p exists and is continuous,

iii) 0 < p'(x) < 1 ; for, if p' were greater than one there

would be no advantage to using the canal. Finally, assume that

no farmer is willing to spend more that v dollars to ship his

fruit to (0; 0). .

Consequently, if the farmer at (a, b) ships his goods by

land to (x, 0) and then by canal to (0, 0) , his shipping

cost will be

(2.1) C(a, b, x) -= a,b (x) = p(x)+(a-x +b .
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He wants to choose x to minimize Cab (x) . Define ,(a, b)

and i(x) by

((a, b) = {xjx is a global minimizer of Ca'b} and

y (x) = measure{ (a, b) 10 < F(a, b) < x}

The goal of this paper is to describe how the choice function

and the cumulative demand function p behave for a large class

of price functions p .

Of course, the first and second derivatives of Ca'b will

play a central role in our analysis:

(a,bxC)'=)(a - x)
x ) ax /7)

(2.2)

a b32Ca,b b2Ca(k) a 2 -(x)= "( + -2  2 3/2
XXx [(a-cx) 2 +bl3

Note that a subscript x will often be used to denote the partial

derivative with respect to x . If x* > 0 is a minimizer of-

Ca,b then Ca'b (x*) = 0 , i.e.,
x

p' (x*) = a - x

/(a -x*)2 +b

Since p' (x*) > 0 , * ~< a . Note also that Ca b(a) > 0 . Con-

sequently, one need only consider Ca bas a function on the

interval [0, a)



2.3

Clearly, the x-axis is an axis of symmetry for the problem

under study. To simplify matters, we will only consider (a, b)

in the positive quadrant, i.e. a > 0 and b > 0 .

Let R(x) denote the ray from (x, 0) into the first quad-

rant which makes an angle 6(x) with :he positive x-axis, where

(2.3) tan 6(x) = 2 >0p (x

It. follows from (2.2) that Ca' b(x*) = 0 if and only if

2 4 b = 1 - ' (x*)
(2.4) =b,,,

a - x*

i.e., if and only if (a, b) E R(x*) . Thus, a necessary condi-

tion that ((a, b) = x > 0 is that (a, b) E R(x) . Note that

by equation (2.2), (a, b) E R(x) if and only if

cos 0(x) = p'(x)

An intuitive way to study Ca,b(x) .for a given p(x) is to

note that x* is a critical point of Ca,b if and only if the

graphs of p'(x) and

Bb a- x

(a -x)2 + b

intersect above the point x* . Figures 2.1 a, b, and c illus-

trate three of the possible configurations for the graphs of p'
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and Ba,b . Figures 2.2 a, b, and c present the corresponding

graphs of Ca,b

a2,b2 a3,b3

Bp

1

x a1  x2 x 2  a2  a3

Figure 2.1 a Figure 2.1 b Figure 2.1 c

a ,b Ca2'b2 Ca3'b3

XXxx xx

S2 2

Figure 2.2 a Figure 2.2 b Figure 2.2 c

alb a b
In Figure 2.1 a, C -1< 0 for x < x1 , and CX > 0 for

x > xl ; thus the graph is as in Figure 2.2 a and ((a 1 , b 1 ) = x 1 .

By Figure 2.1 b, C 2 f 2  has two critical points: a local max at

x and a local mmi at x. However, one cannot tell from Fig-.

ure 2.1 b whether 0 or x' is the global minimizer of Ca2 ,b2

Finally, C 3 3 > 0 for all x in Figure 2.1 c; thus, the

Ca3b3is an increasing .function with ((a 3 ' b 3 ) =0.
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Although one cannot tell from Figure 2.1 b whether or not

Ca 2 ,b 2  has a global minimum at 0 or at some interior x* , one

can calculate a formula for the curve Z of (a, b) such that

C(ab) has a minimum both at zero and at an interior point z

In many cases, on one side of Z , E(a, b) = 0 ; while for (a, b)

on the other side of Z , C(ab) has an interior global minimum.

The equations for Z are given by:

Cab(x) = 0 or b = (a- x)

(2.5)

Cab(x)=Cb(0) or p(x) + Ca-x)2 + b2= a2 + b2

We can solve these explicitly for a and b as functions of

x by substituting the first equation into the second to obtain:

2 2
2 p(x) - p(x)x

(2.6)

b-)=2 2 2x
b (x)= -p'(x) x-P(x)

2 p(x)-pt(x)x

Now, let us bring the constraint Ca,b < v into the picture.

For those (a, b) with ((a, b) > 0 , the curve 4 of (a, b)

such that (a, b) e R(x) and Ca,b(x) = v is an important

curve. Using (2.4) instead of (2.2), one notes that the equations

of + are:

p'(Cx)

(2.7)<

p(x) + (a - x)2 = v
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Substituting from the first equation into the second, one finds

the curve (P parameterized by

a(x) = x + (v - p(x))p'(x)

(2.8)

b(x) = (v - p(x)) 1 -p'()

The curve 4) meets the x-axis at (x*, 0) where p(x*) = v

Finally, since u(x) is defined as the area swept out by

the ray R(x) from (x, 0) to the curve (a(x), b(x)) , the

following lemma will be an important tool for studying .

Lemma 2.1 Let (a(x), b(x)) parameterize a continuous

curve in the positive quadrant of the plane. Assume that a(x)

is non-decreasing. Let R(x) be the ray from (x, 0) to

(a(x), b(x)) , forming an angle 6(x) with the positive x-axis.

Suppose that x 1  x 2  and

0 <6(x) < Tr for all x E ( , x 2 )

Then, the area A of the region bounded by R(x 0 )

{(a(x), b(x))|x E [x 0 , x 1 ]} , R(x1 ) , and the x-axis is given by

'A = (+[b(s) +b2 (cot (s))]ds .
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Proof: Partition [x 0 , x] into n equal intervals, each

of length Ax , with endpoints

x0 0 1 < < 2 <'''yn =1 '

Approximate the

T. , where T.

(y Fi), (yi+1,

See Figure 2.3.

area A by the sum of the - areas of the trapezoids

has vertices:

0) , (a (yz) , b (y)) , ( (yi.+1 + b (y )cot 6(yi+1),b(y))

We are using the formula: a(y) - y=b(y) cot 6(y)

Figure 2.3

The area of T. is
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b(y.)
2L ( +l+-. (y. ++b (yi) cot O(yi+1 ) - (y + b (y.) cot 0(yi)) ]

b y a
2 a (cot 0) C .)k]Ox , for some (y, ci+C

Summrring over i and taking the Limit as Ax - 0 yields the

theorem. 3

Proposition 2.2. rf, in Lemma 2.1, cot 06()PxCx
/ix2

for some smooth function p (x) , then the corresponding area

xl 2 *

(y 1equals y)+2fL p 5(y) / Iy(
2[1-p()

0 < p' < 1 on [ 0 x ]cL and if b is- k-times continuously

differentiable (i. e., C) then A as a function of x IS'

(k+JJl)-timnes differentiable. If b is continuous, then A(x 1 )

is C3-.
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§3. Some Concrete Examples.

In this section, we present three concrete examples in order

to assist the reader's understanding of and intuition for the

concepts invovied and to preview some of the difficulties which

arise.

A. Linear price functions. The simplest price function to

investigate is the linear one

p(x) = Px

In such functions, one can

y to see how well behaved

means that the constant P

(2.2) become in this case:

actually compute the corresponding ( and

they are. The assumption that 0 < p'< 1

is in (0,1) . Formulae (2.1) , and

(3.1)

(3.2)

(3.3)

Ca,bCx) = Px + -(a -x) 2 +

3Cab a -x

(a - x)2 + b 2

32Ca ,b b 2
(X) =

3x2 [a - 2 +23/2

Since the graph of p' is a horizontal straight line, the situation

in figure 2.1.b cannot occur and the graph of Ca,b(x) is either

as in figure 2.2.a or as in figure 2.2.c. The former occurs if
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P < a ; the latter occurs if P > a (and therefore
/a 2 + b 2 -a+b2

Ca'b 0) . Consequently, f(a,b) is a well-def ined (sinagle-

valued) function.

Since p' is constant, the angles e(x) described in section

two are also constant and the rays R (x) of constant demand

are all parallel. In fact, it is easy to solve for (a,b)

explicitly. If (a,b) e R(x) , then by (2.3)

l -P2 N a = b

___ = tanO= a-x *

Consequently, x = a - bP and
/l - P2

(3.4) ((ab) = max{O,a - bP
- P2

Clearly, ( is a smooth (in fact, linear) function of (a,b) for

a> P

b /1 - P2

Next, the value constraint needs to be considered,i.e., the

assumption that no farmer wants to spend more than. v dollars to

transport his goods to (0,0) . Using equations (2.8), one finds

that the set of (ab) such that (ab) G R(x) and C (ab)

is the parameterized line:

ra= Pv + (1 - 2)
(3.5)jb=VT( P)
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Eliminating x from equations (3.5) yields the equation of

the line

(3.6) Pa + b/l -P = v

which runs from (0, v _yto (-,0)

Putting the above calculations together yields the information

described in figure 2.1. Line segment a in this figure in part

of the ray R(0) . Line segment S is part of the line described

by equation (3.6). Curve y is an arc of the circle of radius

v about the origin. Farmers who are shipping from region A

will ship to the x-axis along the appropriate line R(x) parallel

to a . Farmers starting in region B will ship their fruit along

a straight line which ends directly at the origin. Farmers in

region C wil decide not to ship since their shipping costs will

exceed v..

C

Figure 3.1
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The cumulative demand function

ii(x) mneasuire {(a,b)fO < E(a,b) < x}

can now be explicitly computed for points in region A in figure

3.1. Since line m feets line a at the point (Pv,/T T~v) and

it meets the x-axcis at the point (v,O0) , the area of triangle
A is

v)=1v -PV l2lP2

pr( f- v f x 
(O,~ ) , the ray R (x) meets S at th~e point

p(Pv + (1 = 2 ) xl - ?(v - Px)) . Consequently, the area of the

triangle bordered by SR (x) , and the x-axis is

1 -P2 vr-P-xl = -_PZ v Px)2
- P2(v- XJP

The difference between these two areas is 4i(x) , i .e. ,

fLP 2  2 - P2
ii~)= 2P (v- )x)

(2vx - ) l

a smooth (in fact, quadratic) fanction of x 0
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Alternatively, we could have calculated u directly by

applying Proposition 2.2 to the line (3.5). Thus, for linear

price functions, both C(a,b) and p (x) are smooth functions

whose explicit form is easy to calculate.

*B)Quadratic price functions. As we will see later, price

functions whose second derivative is everywhere non-negative are

almost as easy towo-rk with as linear price functions. Therefore,

it makes sense to consider as a second example a quadratic price

function with a negative second derivative, i.e., p(x) = Px - ex2

where 0 < P < 1 and 0 < E << 1.

Let 0(x) be the angle described in section two, (see (2.3))

and let R(x) again be the ray from (x,0) which makes an

angle 0(x) with the positive x-axis. Since

cos0(x) = p'(x) and p" (x) = -c < 0

-O (x) increases as x increases. It follows that for x1 x 2

R(x 1 ) meets R(x 2 ) in a point. Should the farmer located at

this special point ship to x or to x2 or to the origin?

Another way of looking at this problem is to note that the

phenomenon pictured in figures 2.1.b and 2.2.b can occur for these

quadratic price functions. As a result, the necessary condition

(2.2) for optimization is no longer sufficient. Note, however,
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that because the graph of p' is a negatively-sloped straight line,

the graph of p' can meet the graph of some Ba b(x) in at

most two points as in figure 2.1.b and figure 3.2. If the

graphs do meet in two points, the first intersection point must

be a local maximum of Ca'b and the second must be a local mimi-

mum (as a quick examination of the derivatives of Ca,b indicates);

and the grapn of Ca,b is similar to that in figure 2.2.b. In

this case, the major question is whether Ca'b has its global

minimum at x = 0 or at the interior local minimizer. The

curve Z of (ab) such that Ca,b has two global minimizers

(one at 0 and one at an interior min) now becomes important.

The choice function ( is single-valued at (a,b) if and only if

(a,b) 0 Z . For (a,b) above Z , (a,b) = 0 ; for. (a,b) below

Z , (a,b) > 0 . The equations for Z are given by (2.6) along

with the condition that Ca,b > 0 . Substituting the quadratic

p into (2.6) yields:

1 2 2 2a=x+P[l-P + 2Px-ex][P - 2ExJ

(3.7)

b = A [1-P +2PEx- xE22][l- (P-2Ex) 2l .

Finally, the curve of 4 of (a,b) such that ((a,b)=x

and .Ca~b(x) = v must be determined. This time, after substituting

the formulae .for the quadratic p into equations (2.8), one finds

that 5 can be parametrized by:
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2 2 2 3
a = Pv + (1 - P - 2Ev)x + 3EPx - 2s x,

(3.8)

b = (v - Px + ex2) [1 - ,(P - 2sx) } .

Let us fix some values for e , P , and v:

(3.9) = .1 , P = .9 , and v = 1.4 .

Using a HP-25 hand calculator, the author has computed the

curves Z and ' for this special quadratic price function.

The curves are plotted in figure 3.2.

C
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The regions AB, and C in figure 3.2 have the same

properties as the corresponding regions in figure 3.1:

E(a,b) = 0 for (a,b) = B , (a,b) > 0 for (a,b) G A ,

and Ca'b(((a,b)) > v for (a,b) 6 C . The curve y is once

again an arc of the circle of radius v . The line a is an

interval on the ray R(0)

The curves Z and C meet at the point (a 1 ,b 1 )

(1.2452,.6219) . The curves a and Z meet at the point

(a 2 ,b 2 ) = (.855,.414) . The interval between these points on

Z is a locus of discontinuities for E with- E = 0 above this

curve in B and jumping to positive values as one crosses

this curve. The interior minimizer for CA,b1 occurs at

x = .2554 . For (a,b) in the interior of the region A ,

C(a,b) has a unique global minimizer which is also a non-degenerate

critical point of C(ab) . By the implicit function theorem,

E(a,b) is an analytic function for such (a,b)

Finally, it should be noted that the cumulative demand

function p4x) is a C (but not C2) function. Let S(x)

be the following continuous function, defined from equations

(3.7) and (3.8) with the numerical values of (3.9) substituted

for E,P, and v:
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(*95+ .9 - .05x 2 ) (.19 + .36x - .04x 2 )1/2

8(x) = 0 < x < x = .2554

(1.4 - .9x + .1x 2 ) (.19 + .36x - .04x 2 )1/2

xi < x < 21- -x<

Then, by Proposition 2.2,

XJ )2 2 -3 / 2
y (x) = [S (y) - (.05)6 (y). (.19 + .36y - .04y) ]dy .

0

Since S is continuousy is C1  for 0 < x < 2

As a final example, consider

p(x) = 1 -e with v = 1.5

Once again, p" (x) = -e~x is always negative. The only significant

difference between this example and the previous one is that

p(x) never reaches v . The regions and curves in figure 3.3

below correspond to the regions and curves in figure 3.2 above.
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In this case, the curve < tends asymptotically to the the line

b = .5 . The point (a 1 ,b 1 ) is approximately (1.3,.84) with

.9 . Once again, yu(x) is a C function which is analytic

except at the point x 1

C.

.5

A

.5

Figure 3.3
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§4. GENERIC CURVES

In section two, we defined the curves Z(p) and 4 (p)

which bound the range of ( for any price function p . In

section three, we constructed some examples of such curves.

In this section, we will characterize Z (p) and (p) for a

generic set of price functions p ; and we will introduce two

other important curves, E(p) and r'(p) .

In the Appendix, we describe a natural topology for the vector

space

C = {p:[O,o) -+ )RIp(0) = 0 and p is C°}

In this section, we will be working with the following open subset

C1 of C:

C =1 {p e CjO < p' (x) < 1 for all x}

Since C1  is open in C , if P is open'(or dense) in C ,

then P ( C1 will be open (or dense) in C1 .

Throughout this section, we will be working with a fixed

bounded region B in R 2 , say the intersection of the closed

2
ball of radius r about (0,0) , Br(0,0) , with R+ , r >> 0

Let (a (t) , b(t)) be a smooth parameterized curve " Y in B

Call (a'(t0 ),b (t 0 )) a regular point of Y if a' (t 0) 0 or
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b' (t 0 ) / 0 , i.e., if y has a well-defined tangent vector

at (a(t 0 ),b(t 0 )) . If a'(t 0 ) = b'(t 0 ) = 0 , then (a(t 0 ),b(t 0 ))

will be called a singular point of y . If y contains only

regular points, we will call y a regular arc.

We first work with the curve Z (p) , where

Z(p) = {(a,b) G BIC(a b)(0) = C(ab)(y) for some y

for which C(a,b) (y = }x-

See equations (2.5). Equations (2.6) show that equations (2.5)

can be solved for (a,b) in terms of y . In Proposition 4.1

below, we prove that for a generic price function p e C1

Z(p) crosses itself only finitely often, each crossing is trans-

verse; and except for these crossing points and another finite set

of cusps, Z(p) is a finite, disjoint union of smooth regular arcs.

Proposition 4.1. There is a residual set A 1 of p's in

C so that for any. p e A1 , there exists a finite subset S1 (p)

in B with the property that S1 (p) contains all the points

where Z(p) crosses itself and all the singular points of Z(p)

So, Z(p)'S 1 (p) is a finite, disjoint union of smooth, regular

arcs. Furthermore, for p e A1 P. Z(p) has no triple crossings.

Proof: We will use the transversaltiy theorems discussed

in the appendix. Step one is to show that the set of (a,b,y)

in JR 3such that ~Ca,b) (0) = Ca,b) (y) and C, (a,b) (y = 0
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3
is generically (in p) a one-manifold in M+ i.e., that

(0,0) is generically a regular value of

F (a b y) = (p(y) + /(a-y) 2 + b - /a + b2 , p'(y) - a y
(p) /(a-y) 2 + b2

By the Thom Transversality Theorem, we need only show that (0,0)

is always a regular value of

2 :Cx 3 22F2:CxJR + R

defined by F2 p,a,b,y) = F 1 (a,b,y) Since C is a vector

space, the partial derivative of F with respect to p at

(p*,ao,b*,y*) maps C to JR by

DF (p*,a,b*,y*)q = (q(y*),q' (y*)) for q G C

For any fixed y* > 0 , there exists a q 6 C such that (q(y*),q'(y*))

2
takes on any prespecified value, i.e., D F (p*,a*,b*,y*) is

p

2surjective. Thus, DF (p*, a*,b*,y*) is surjective and (0,0)

is a regular value of F . By the Thom Transversality Theorem,

(0,0) is a regular value of F for all p in some residual
(p)

subset A of C

Secondly , we need to show that (F ))(0I,0 ) in R

pro ject s nicely into the (a, b) -plane f or a gener ic p , i. e .,

that the set of Ca,b,y) which lie on (F ))(0,0) and for



4-4

which the tangent vector is parallel to the y-axis (i.e., has

no a- or b-component) is a finite set. The defining equations for

1
this set are F = (0,0) and = (0,0) . Consequently,

3y

we need to show that (0,0,0) is generically a regular value of

the map

F (a~b,y) = (p (y)+/(a-y) 2 +b 2 ,p,(y) P" _ a(y) + b 2  23/2
(a____y)2+b 2(a-y) +b ]

By the Thom Transversality Theorem, we need only show that

(0,0,0) is always a regular value of

4 3
F (p,a,b,y) = F (a,b,y)

(p)

However, the partial derivative of F4 with respect to p is

4
D F (p 0 ,a*,b*,y*)q = (q(y*),q' (y*),q"(y*)) . For any y* > 0

p

and any pre-assigned (c 1 ,c 2 ,c 3 3E 1 , one can always find a

q e C with q(y*) = c 1 , q' (y*) = c 2 , q"(y 0) = c 3 . Since

4 4
- D F and, a fortiori, DF are surjective, (0,0,0) is a regular

p
3

value of F for all p in some residual subset A 2  A1 1  C
(p)1

For such p , (F ))(0,0) is a zero-dimensional manifold,

i.e., a discrete subset of R + and its projection S (p) on

the (a,b)-plane is a discrete subset of B

To prove that the points in S1 (p) are generically non-

dege'nerate cusps, we use Tnom's Catastrophd Theorem, as described
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in the Appendix. We must show that where F = (0,0) and
?(p)(p = (0,0) , then 2F(P) $ (0,0) for a generic set of
ay2

p's in C . The proof is similar to the other parts of the proof

of this proposition and will be omitted.

To complete the proof of Proposition 4.1, we show that double

points of Z(p) , i.e., points where Z(p) crosses itself once,

form a discrete subset of B for generic p and that for such

p , there are no triple points. Consider the map 2F : x (R 2

where A ((y,y 2) e I1  = defined by F (a,b,yy 2)=

115
(F (arb,y),F (a,b,y2 )) . If F 5 (a,b,yry 2 ) = '(0,0,0,0)

and y1  y 2 , then Z (p) crosses itself at (a,b) . If

(0,0,0,0) is a regular value of F5,)then (F )'(0,0,0,0)

is a zero-dimensional manifold, i.e., a discrete subset of

+ 2+q*A) . Its projection on B in the (a,b)-plane will

be a finite set.

5
To show that (0,0,0,0) is a regular value of F for

(p)

generic p , we need only show that it is always a regular value

of Fy(ab)b,. The partial derivative

of F with respect to p at (p*,a*,b*,y 1 *,y 2 *) is

D F6 (p*a*b*,y,y2) (q(h 1
0),q'(TO),q(y 2

0
1 ) ,g' (y 2

0 ))

Once again, for any given y 1 *,y 2 * > 0 , y1 * y , and any assigned

(c 1 , c 2 ,c 3 , c ) , there is a qge C with
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q(y1 *) = c 1 , *'(y1
0 ) = c 2 q(y 2 ) = c 3 , q'(y 2

0) =C 4

Since D F and DF are surjective, (0,0,0,0) is a regular

value of F6  and for a residual set of p's A 1 3 C Al 2 c A C. C

a regular value of F5

To see that there are generically no triple self-intersections

of Z (p) , one applies the method of the preceeding paragraphs to

771233 
6

defined by F7  (ab = F (aby F (a,b,y 2 )

F Ca,b,y 3 )) , where y 1 ,y 2 , and y3are pairwise distinct.

As a result, there will be a residual subset A CA c c1,4 1,3

suchi that (0,0,0,0,0,0) is a regular value of F7  for(p)
p E A . Since the domain of F is 5-dimensional and its4(P)

range is 6-dimensional, (0,0,0,0,0,0) a regular value of F7 means tha

7 -1'(p)(F (0, 0, 0 , 0 , 0,0) is empty. Since this set corresponds to the triple

crossings of Z(p) -,-it follows that for p e A 4 , Z (p) has

no triple points (and consequently, no quadruple points, etc.) .

This completes the proof of Proposition 4.1. 3

We now want to demonstrate that the curves (p) are

generically as well-behaved as the curves Z (p) are. Recall

th at (a ,b, y) e <b(p) if and only if (a, b) e R (y) and C(a~b) (y) = V

i.e., if and only if
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p'(y) - a -y = 0 and
(a - y)2 + b2

(2.7)'

p(y) + /(a - y) 2 + b2 = v.

PROPOSITION 4.2. There is a residual subset A2  of C1

such that for any p e A2 , there exists a finite subset S2 of

B in the (a,b)-plane which contains all the singular points of

c(p) and all the self-crossings of f(p) . Thus, @(p) ' S2 (p)

is a finite union of disjoint, smooth, regular arcs in B . Further-

more, for p e A2 , @(p) has no triple crossings.

The proof of Proposition 4.2 is virtually identical to that

of Proposition 4.1 and so will be omitted. Actually,the set

@(p) has more structure as Proposition 4.3 below indicates.

PROPOSITION 4.3. For any p e C and any v e E+ , the

tangent line to 0(p) at any regular point of this curve has

negative slope. Furthermore, for any p e C1 , there is a

residual set of v's in JR + such that the corresponding ((p)
is a regular curve except for a finite number of cusp points.

See figures 3.1,3.2, and 3.3 for examples of well-behaved

S(p) -curves.

Proof: Let Ca,b) = (a(x*),b(x*)) be a regular point of

f(p) , in the parameterization given by equations (2.8). We want
b'(x)

to show that , ( <0 . We will use the implicit formula (2.7)

for j.(p) rather than the more explicit (2.8). Define
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F8 Ca~b~x)- (F 8 11 F 8 ' 2 ) ((x) +~(-9 2
-v 'x -

(F) (a-x) 2 +b2

Then, o (p) is defined implicitly by F$ )(a b ,x) =(00

the Implicit Function Theoremv

By

Fy

aya' (x°) = det

bI x°)= det

ab

D

aa ay

aF 8 " a_ F8 'l
3a ay

D

3F8 ,2

ab

F82
ah

where D = det

and all partial derivatives are evalutated at (a,b,x°)

OF8 'F1  8,2
Since -Ya - (a,b, x°) = F (a,b,x°) = 0 , one calculates quickly that

as (x°) _ -b(x°)
b' (x°) -a (x°) -x°
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To prove the second statement in Proposition 4.3, let

F (a,b,x,v) be F8(a,b,x) with v allowed to vary also. Then,

evaluating at (a*,b 0 ,x*,v*) e (F9) 1(0,0)

DF9 (a 0 b 0 x*,v) = a2 /1 2  0 l
a 2 d1/

b2 (a-y)b F 9 ' 2  0
3/2 d 3 / 2  y

where d = [(a - y)2 + b 2 Since d > 0 , DF9 (a*,b*,x*,v*) has

maximal rank, i.e., rank two. Since (0,0) is a regular value of

F9 , (F 8) l(o,0) is a smooth curve in (ab,x)-sphere for generic

V . To show that this curve is vertical at only finitely many points

for a generic v , we need to show that (0,0,0) is a regular

10 9 @ ,
value of F (a,b,x,v) = (F (a,b,x,v), "F 2;(a,b,x,v)) , following

the argument in Proposition 4.1. One checks readily that DF1 0 (ab,y,v)

a--'a-bd-1/2
1/2 0 -l

d

-d 2  b(a-y)d
3 / 2  0 0

2 - 2b3 -5/2 2 F9 ' 2

- 3b2 a-y)d 5 2 (2b(a-y) 2 -b)d-0

evaluated at (a,b,y,v) e (F) (0,0,a) . Since the determinant

of the lower left-hand 2 x 2 sub-matrix is b g3 $ 0 , DF1 is
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surjective and (0,0,0) is a regular value of F1 . Consequently,

for any p e C1 , <D(p) is a smooth regular curve, sloping downward

in the (a , b) -plane , except possibly for a finite number of cusp

points.

The Z(p)-curves have a similar structure, as Proposition 4.4

demonstrates.

Proposition 4.4. For any p E C , the tangent line to Z (p)

at any regular point of this curve has a positive slope.

Proof: The proof of this proposition is similar to that of

the previous proposition and will only be sketched. Let

(a (x*) , b (x*)) be a regular point of Z (p) , in the parameterization
b' (x 0 )

given by equations (2.5) . We want to show that a' Cx > 0

Use the F Ia,b,x) of Proposition 4.1,
(p)

a' (x*) = det 3x a

1 1

a a

det 13F2 _F2
-__a 2x
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-aF1 '

ab

aa1

b

1a
2 + -b 2

11
,since ax - F=O

b

/(ax) 2 + b2

a -x

/(a-x) 2 +. b2

a

-a- +'b
2

sink .sine (x )

cosO (x) - cos4

0 , since 0 < < e {x)

where 60(x) is

that the vector

the angle defined in section 2 and p is the angle

(a, b) makes with the positive a-axis. See figure 4.1.
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The curves Z(p) and (p) bound the domain of ( , the

choice function. We next study curves which affect the continuity

of w within this domain, beginning with the curve Pr(p) ,

across which the number of critical points of C (a'b) changes.

More precisely, for p e C- , let r (p) be the set (a,b) in

B C. JR for which C (ab) has adegenerate critical point, i.e.,

iep) E {Ca,b) e Bjfor some y > 0 , C ab)(y) = 0 and C(a,b y)=C}.
)bXxx

If (a*, b*) ° ) r(p) , then for all (a , b) in some neighborhood of

(a ,b*) , each C (aib) will have the same number of critical

points and the same number of local minima. Proposition 4.5 below

is the analogue of Propositions 4.1 and 4.2 for the curve P(p).

Proposition 4. 5. There is a residual set A3 of p' s in

C so that for any p E A3 , there is a finite subset S3 (p) of
I2

(a, b) ' s in BC. 1R which contains all the self-crossings and

all the singular poi nts of rI(p) . Furthermore, r (p) is a cusp

at these singular points and r(p) has no triple crossings for

peA 3 *

11 a
Proof: Let F Ia, b, y) = (p'(y) - -a, p"(y) +

(p) /(a-y) 2 +b 2

2 2 3/2 ).Then (a,b) C t (p) if and only ifF (aby=
[((a-y) +b]

(0,0) for some y . Furthermore, one easily checks that P(p)- has
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the parameterization

a~y) = y 2-
[1-p' (y) 22

(4.1)

b(y) = - 2 3/2
[1-p'(y) 2 J]'

The proof of Proposition 4.5 is similar to that of Proposition

4.1 and will only be sketched here. Let F (p,a,b,y) F (a,b,y)

Since

12D F (p*,a*,b*,y)q = (qI' (y*) ,q" (y*))
p

12 12
DF is surjective and (0,0) is a regular point of Fl. By

the Thom Transversality Theorem, (0,0) is a regular value of

F" for a residual set A of p's C . For these p's ,

11 -l3P
(F 1 ) (0, 0) is a smooth regular curve in (a,b,y) -space. One

next shows that for such p's , the set of points where (F ) 0

has a vertical tangent is a discrete set in (a,b,y) space

(by showing that (0,0,0) is a regular value of (p,a,b,y) v+

(C(ab)(y),C(ab)(y),C(ab)(y))) . Such p's will be the singular
yx 

xx xxx

points of r(p) , and one can show that generically they are non-

degenerate cusps. Similarly, one shows by using the techniques of

the proof of Proposition 4.1 that P~p) has a discrete set of

double points and no triple points for a residual subset

3A2 cA3,1
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In any component of B \ I'(p), each C(a, b) has the same

number of local minima - all non-degenerate, of course. However,

'(a,b) , the global minimizer of C (ab), ,may be discontinuous

within this component if one local minimizer replaces another as

global minimizer. To keep track of this phenomenon, we need

to look at the set of all (ab) such that C (ab) does not have

a unique (interior) global minimizer. More generally, let E (p)

be the set of all (ab) such that C (a, b) has at least two

critical points which take on the same critical value. Formally,

E (p) = { (a,b) e Bj there exist y1 ; y 2  in R+ such that

x 1 ~'(y 1) - a-y 1

C(a,b) 1 =_0_,

x 1 >/(a-y) 2+ b

(a, b) _,a-y2_
C (y 2 ) =p ' (y 2 ) - ay= 0 , and

1(a-y2) 2+bZ

C(ab) () = C(ab) i.e.

P (y 1 ) + /(a-y 1) 2 +b2 -p (y 2 ) 4+ v(a-y 2 )2 +b2

PROPOSITION 4.6. There is a residual subset AA of C,

such that for p G A 4 , there is a finite set S4 (p) in the

(a,b) -planie which contains all the self-crossings and all the

singular points of E (p) .- At the singular points, EZ(p) inter-
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sects r (p) . Furthermore, for p 6 A 4 , E (p) has no triple

crossings.

Proof: The proof of Proposition 4.6, although analogous

to that of previous propositions in this section, is slightly

complicated by the fact that Z (p) is defined by a map from

m 2 X 2 2)into m 3 Define F13 2C x ]R2 2 x (iR 3A IR

by

F3 a-y 1  a-y 2
Fl (p, a, b, y ,'y2)=( 1y) p(2) 2 , p (y ) + (a-y )2+

(a-y)2+b2 /ay)2+b2

- p(y 2 ) - /(a-y 2 ) 2- b2)

To see that (0,0,0) is a regular value of F3 , note that

13b
D F (p*,a*,b*,u*,y 2 1)q = (q'(y 1 °),q' (y 2 °),g(y 1

0
) 1 - q(y 2 °))

which is clearly a sujective map from C onto 3R since

~ 2  Ltig 14 13
Y* ° Y2* . Letting F14 (a,b,y 1 1 y 2 ) = F (p,a,b,y 1 ,y 2 ) , it

follows from the Thom Transversality Theorem that, for a residual

subset of p's 4,1 in C,(Fp ) (0,0,0) is a regular curve in

iR 2 ,,M2 2

We next show that this curve generically projects to a nice

curve in the (a,b)-plane, with only a finite number of singularities.
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By the Implicit Function Theorem, at the points where this

projection is singular, the vectors

3Fl 3

Qy1

3Fl3

y,

aF13 / F1 3
3Fl3

and y

3Fl3

2

3F13

3

aY2

are linearly

13
dependent, where F1

13 13
3F2  and F3 are the three components3e oet

of F1 3 However,
aFy 3

1
aF13

2 = 0
yl

; and on F13 -1(0,0

3F 1
3 _ 13

a1 1 1 F
=0

13

and 32 13= F = 0 Consequently, the2

projections of (Fl ) (0, 0,0) is singular at points where

where the vectors 3Fl30 and

13

(0 , 0)
3 y2

are linearly

independent, i.e., where

13 13

1 2 - C(a,b)(y 1 ) - C(a,b).(y 2)=0

Now, the usual argument shows that (0,0,0,0,0) is a regular

value of

F14 (aby,y2 (yC(a,b) C(a,b) 2C (a,b)y - C(a,b)

C (ab) (y) C (a,b)
(y (Yyy

I
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for a residual set A of p's in C . Since the range of F14
frarsdase A4,2 o p Fn n(P)

is 5-dimensional, while its domain is 4-dimensional, (0,0,0,0,0)

14 14 -l
a regular value of F means that (FCP)) (0,0,0,0,0) is

(p)(P

empty.

To finish the proof that (F 3 )C(0,0,0) generically

projects nicely into (a,b)-space, we must show that (0,0,0,0)

is a regular value of F1 5 : C x J 2 x (R2  2) + 24

15 13 (a,b) (a,b)
F (p, a,b, y ,y2) (F (p, a,b, y , y2 l ()- C (y2))'

The derivative of F15 with respect to p at (p*,a*,b* ,y 1 *°,y 2
0)

is D°pl5(p*,a* ,b*,y*,'y 2 1,)q 2 (2 (y')q'(Y 2 °),q(Y 1 ) - q(Y 2 °)

Cy(a b) + (a bC '(yl*) q (2*) +C '(y20 q l

If p0 e A4, and Fl3(a*,b 0 ,y 1 *,y 2 *,) = (0,0,0) , exactly only

of Cy (a, b) (y *) and C (a,b) (y* is non-zero; and DF15

is easily seen to be surjective. So, (0,0,0,0) is a regular value

of Fl5 for p* e A4,2 ; and there is a residual set A4 43 A42 c.C

of p's for which I(p) has only finitely many singular points.

Furthermore, the above argument indicates that E (p) and I'(p)

intersect at these points.

To show that crossings points of yip) generically form a

discrete subset of Z(p) and that triple crossings do not occur,
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we must show that (0,0,0,0,0) is a regular value of

F :C x R 2x 3\3 R5 defined by

(p,a,b,y 1 1 y 2 ,y 3 ) 

( (a,b) ( ),Ca,b) 2'C(a,b) 3 C(ab) (y)-Ca,b)2'

CC ICy , Y ( ) C (y) C ( Cb y )-C (ayb)3

and that (0,0,0,0,0,0,0) is a regular value of F :C x R 2x

(4 4 ) +R 7 , defined by

F 7 (p, ab,yy,y2y 4 y(CCa, b) ( C (a,b) (y 2 ) ,y(a,b)3

(a, b) ( ),C ( a , b) - (a, b) 2 C (a, b) -C(a, b) 3 '

(y4). {C) (a} , b)(y1)-C (Y )

y(y1

The proofs of both of these facts are analogous to previous

computations and will be omitted.

To conclude our -argument that Z (p) , ( (p) , P (p) , and E (p)

divide B into a finite number of well-behaved regions, we

now show that for a generic p e C these 4 curves cross

each other at only finitely many points in B

PROPOSITION 4.7. There is a residual subset A5 of C1

such that for p 6 A5 the curves Z(p),@(p),P(p) and E(p)

cross each other at only finitely many points in B in the

(a,b)-plane. For 'p G A 5 , there are no triple crossings.
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Proof: The proof is a straightforward application of

transversality theory. To show that the intersection of Z (p)

and r (p) is generically a finite set, one must show that

(0,0,0) is generically a regular value of

H(1 (a,b,y) = (C(a'b) (y),C(aib) (y) - C(a,b) (0),C(a,b)

To prove that Z and E intersect generically in a finite set,

one must show that (0,0,0,0) is generically a regular value of

2 =)(C (ab) (ab) C(a'b) C(a'b)
Hp (, y2yl(2),b

(a,b) 2 )-C a,b) (0))

where y 1  y2 , and that (0,0,0,0,0) is generically a regular

value of

3_ (a,b) (a,b.)C (a, b)

H (a, b,y ,y2'y3) = Cy 1(y ) ,Cy ( y2 )' yy3)'

C( (a ,Cb) (y ) -C (a,b) (y2 ('

C(a,b) ) - C(a,b) (0)),

where (y 1 , y 2 'y 3 ) e JR A . To show that (> and p intersect
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in a finite set for generic p , one must show that (0, 0,0 )

is generically a regular value of

H (p) (a,b,y) = (C (~)(y)- v,C (ab (y) ,C (aY b (y) )

and that (0,0,0,0) is generically a regular value of

as5 (p) ( a , by 1 1 y 2 ) (5aC (y 1 ) -v,C (,b (y 2 ) , Ca )(Y2))

on the set 3R x (]R 2\a?) The mappings to be considered

for 41 are H6 :JR2 x (1R \)2 JR4 and H7
(p) +(p)*

M2 x ) #3+ R5defined by

H 6  
ab-(a~b )Y C abC(a - (ab Y, 2 y) (y 2 ) r()C(

(p) (y y:Ly2  1 2~)~ ~Ca

C(a,b) (yl)-v ) and

(pH~) (a, y 1 , y 2 ,y 3 ) (Y$a)(y1) ,0 (a (Yb) C y )C lb)(y 3 ),C1 b)(y)Cab) 2

The mappings to be considered for Z AP are H7 :I 2 x (I2 2
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H7 (a,b,y 1 ,y 2 ) = (C(ab) ( (a,b)( 2 ) ,(a ,b)_(y) -C (a,b)

(a,b) ) and

H (a,b,y 2,y 3 )

(C a, b) ( i (a, b) 2 'C (a, b) 3), (a, b)(y ) - (a, b) 2 ' (a, b) 3

The proofs for all these mappings is a straightforward application

of transversality theory as illustrated in the earlier proofs

in this section.

The only situation which offers any complication is the

intersection of Z and @ , which can be written as (H )) 1 (0,0,0)

and (H ) l(0,0,0,0) , where

H (a,b,y) = (C(ab) y),C((ab) y)-v,C(ab) (y) -C (ab) (0)) , and

) (a,b,y y 2 ) - ((a b) y) 2 '(ab) (y )V,C(ab) 2

where y / y 2 . While H can be treated in the usual way,

(pp)it is simpler to replace H9 b y 5 :Tvx +I + m 2 defined b
(p) ()b

H ((a,b) ,y) - (C (a,b) (y),C (a,b) (y) - v)

where Tv = {(a,b) G IR$|Ca~b) (Q) - v = 0 , i.e., s/a2 + b2 = v}



4-22

One uses the usual technique to show that (0,0) is a regular

value of 59 for generic p . Since the range and domain of

H are two-dimensional, it follows that Z(p) CA (p) is
(p)

a finite set for generic p

The demonstration that there are no triple crossings for a

generic p follows along the usual lines and will be omitted.1

For a fixed price function p 6 C1 , one can always

guarantee that 4(p) intersects the Z(p) and P(p) curves

only finitely often by proper choice of the value number v

PROPOSITION 4.8. For any fixed p 6 C1 , there is an open

and dense set values v in R + such that the corresponding

(p) curve intersects Z(p) and P(p) only finitely often.

Proof: We will prove this proposition for Z(p) since the

proof for r(p) is similar (and, in fact, can also be deduced

from Proposition 4.3). Recall the parameterization (a(x),b(x))

of Z(p) as given by equations (2.6). We need only show that

v is a regular value of

C(aCx),b(x))x - C(a(x),b(x))(0)

= (x~ p'(x) x2_2) + ~/1-p'(x)2 x2 2p(x) 2 1/2
=[x+ 2 *p(x)-p'(x)x )2+ 2 p~x)-p'(x)x 0
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By Sard's Theorem, the set of finite regular values of this map is

open and dense for any p e C1 .5

Finally, we summarize the results of this section by letting

A be the intersection of the residual subsets described in

Proposition 4.1, 4.2, 4.5,4.6, and 4.7.

Theorem 4.9. There exists a residual subset A of price

functions p in C1 with the property that for any p e A

there is a finite set of points S(p) in B in the (a,b)-plane

which contains:

i) all the singular points of Z(p), 0 (p),T(p), and Z(p) ,

ii) all the self-crossings of Z(p), (p),T(p), and X(p) ,

iii) all the crossings of Z,1,P, and E with each other.

If ii) or iii) holds at (a,b) G S(p) , only two of the above

curves pass through (a,b) . If (a,b) is a singular point of

Z(p) , 4(p) , or P(p) , it is a non-degenerate cusp. Singular

points of E(p) lie on r'(p) . In particular, the complement of

Z(p) y 4(p) U r(p) V Z(p) U'R(0) is a finite union of

{B ()}i of open sets, each homeomorphic to a two-dimensional

disk.
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The goal of this section is to prove our main results:

i) for every p & C1 , i, is continuous; ii) for a residual set

of p in C1 , ( is C except on a set of measure zero

(in fact, except on a finite union of smooth curves); and iii) for

this same residual set, p is C except at a finite number of

x-values. In Section 7, we will discuss hypotheses on p which

guarantee that the corresponding p is C (or even C )

everywhere.

Theorem 5.1. For every p G C 1 , the corresponding cumula-

tive demand function p (x) is continuous.

Proof: Since continuity is a local property, we need only

work with an interval about some x* on 3+ . Recall that

R(x*) is the ray from (x*, 0) into the positive quadrant which

meets the positive x-axis in an acute angle 0(x*) where

1 - p'x*)tan 0(x*) = p(x*)

and that (a, b) = x* implies that (a, b) E R(x*) . Since p'

is smooth and lies between 0 and 1 , 0(x) is a smooth function

of x . Let (a(x), b(x)) be the continuous curve 4((p) as

described by equations (2.8). For x / x* , Ip(x) - 4x)

is bounded above by the area between the rays R(x) and R(x*)

and under the curve @(p) . Since 0(x) is continous, this area
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goes to zero as x approaches x* . Consequently,

I p(x) - p(x*)|+ 0 as Ix - x*I + 0 , i.e., u is continuous

at x* . a

What we would really like to know is how frequently can y

and ( be C1 . We first work with .

Theorem 5.2. Let A be the residual subset of price func-

tions p in C1  described in Theorem 4.9. For p E.A , let

P (a,b) be the usual choice function:

(a, b) = (xjx is a global minimizer of C(aib)

2
Then, there exists a set t (p) of measure zero in )R+ , such

that ( is a C" function on R '\ Mp) . In fact, Mp) is

a finite union of smooth curves.

Proof: Consider one of the cells B.(p) defined in the
]

statement of Theorem 4.9. Let L (p) = Z (p) U) g(p) U Pr(p) U E (p)

U R(0) . So, B. (p) is a component of B - A(p) . We claim that
J

each C(a,b) has qualitatively the same graph for each (a, b)

in B. (p) . Since E (p) does not cross B .(p) , each C (a,b)
J J

has a unique global minimizer ((a, b) for (a, b) El B. (p),

which varies continuously with (a, b) . Since Z (p) does not

cross B. (p) , either ((a, b) = 0 for all (a, b) e B. (p) or
J ~ )

((a, b) > 0 for all (a, b) in B.(p) Since L(p) does not
J
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cross B.(p) , each (a, b) is a non-degenerate critical point
J

of each C(ab). By the Implicit Function Theorem, (a, b) is

a C function of (a, b) on B.(p) . Since A(p) is a finite

union of smooth curves, it has measure zero in]R.

Before stating the corresponding result for y , we prove a

proposition which formalizes some (fairly obvious) structure on

( and yu.

2

PROPOSITION 5.3. Let p e C 1 ; let (a, b) G m+ with

4(a, b) = x . If (a', b') lies on R(x) between (x, 0) and

(a, b) ,then 4(a', b') = x .

Proof: One needs to show that C(a',b') (y) > C(a',b')()

for all y6+ . Suppose first that y > x . Of course, we

can assume that y < a' . Let a be the (acute) angle that the

ray from (y, 0) to (a, b) makes with the positive a-axis.

Let a' be the angle that the ray from (y, 0) to (a',. b')

makes with the a-axis. See Figure 5.1.

(a,b)

(ao I

Figure 5.1
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Since (a' , b') lies between (x, 0) and (a, b) on R (x) ,

0Q<a <a' < 7 and cosa' < cos a. In other words,

a' y a -y

(a' -y) +b' 2 C/a y) 2 b
and

P (CY) - a' -y2+
C y) '

> PU(Y) - a 
, e.

21

(a ',b) > ~(a~b
CCy)>Cy ) for all yG (x, a' )

Y

Consequently, Ca 'b') (s ds >

x

Y

J C~~b)(s) ds and
x

(51) C (a' ,b') (y) -C (a' ,b')Cx > ab) y) - (a )C)

Since x minimizes (a'b) the right-hand term in non-negative

in (5. 1) . One can therefore conclude that

(a' (y) C for all y e (x, a').

A similar argument shows that

C(a',b')(Y (a'l)(x) for all y 0(Ox)

and the Proposition follows. 2
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The proof of Proposition 5.3 also demonstrates the following

result.

PROPOSITION 5.4. For any p E C1 , the set of

{(a, b) dII|((Ca, b) = 0} is star-like with respect to the

origin. In other words, if (a, b) = 0 , then ((a', b') = 0

for all (a', b') on the line segment between (a, b) and (0, 0)

(The set C~1(0) is probably even convex.)

Before proceeding to our main theorem, we need one more

technical result.

PROPOSITION 5.5. There is a residual set A in C such

that for any p ei , there is no (a, b, x) such that

C(a'b)(X) = 0 , C(ab)(x) = 0 , C(a'b)(x) = 0 , C(a'b)(x) = 0x) ()cxcxxxx

In particular, for p d i , each C(a,b) has only finitely many

critical points.

Proof: To prove the first statement, we must show that~

(0, 0, 0, 0) is a regular value of the map

(p, a, b, x)-(~~)() Cxxb (xxC~~) a,x))

However, this follows by the methods of Section 4. Now, if

p,61 and if x is a critical point of the corresponding C(a,b)

for some (a, b) , then the second, third, or fourth derivative
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of C (ab) is non-zero at x . This implies that the critical

points of C(a,b) are isolated. U

We now state and prove the main theorem.

THEOREM 5.6. Let A and A be the residual subsets of C1

defined in Theorem 4.9 and Proposition 5.5. Let p be a price

function in the residual set A (1\ A , and let u(x) be the

cumulative demand function for p . Then, not only is y con-

- tinuous (Theorem 5.1), but except for a finite (possibly empty)

set of points in + y is a C" function.

Proof: Let $(x) = {(a, b) G R(x)|1(a, b) = x} . By

Proposition 5.3, each $(x) is connected and the union of the

(x) 's fill up the set on which ( is positive. Off E(p),
$(x) () R(y) is empty for x / y . Let A(x) , B(x) be the

upper endpoint of f(x) . Then, (A(x), B(x)) must lie on

A(p) Z(p) U U(p) U r(p) U E(p) , i.e., cannot lie ,in the in-

terior of some B.(p) . For, if it did lie in the interior of
J

B .(p) , the smoothness of ( there (see Theorem 5.1) would enable

us to extend the endpoint of R(x) beyond (A(x), B(x)) . Let

S denote the finite (by Theorem 4.9) set of points which are

singular points or crossing points for A(p) . If (A(x), B(x))

SS, then (A(x), B(x)) is a smooth, regular curve in a

neighborhood, say (x 1 , x2 ) , of x . It follows from Proposition

2.2 that
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p(x;x) = area((a, b)lx < C(a, b) < x}

is a C function on (xi, x2 )

Thus, the only possible values of x at which y is not

C" are those x such that (A(x), B (x)) GS . By Proposition

5.5, only finitely many R(x) 's meet at any point in the (a,b)-

plane, since p E A . Letting xc, ... , x r be the points on

the x-axis at which (A(x), B (x)) . S , it follows that y is

C except possibly on {x 1 , .*.. , xr

Theorem 5.7. The conclusion of Theorem 5.2 and 5.6 hold

for any p . C1 which is real analytic.

Proof: If p Ei C is real analytic, then Z(p) , <b(p) ,

r (p) , and E (p) will be real analytic curves in B . Since

any two real analytic curves in the plane meet each other in a

discrete set or coincide (see Simon-Titus (1978)), and since

any real ' ialytic curve has a discrete set of singular points,

the set S of crossings, self-crossings, and singular points of

the z , 4 , P , and I curves will still be constant. Since

each C(a,b) is real analytic, each will either be constant or

have a discrete set of critical points. The case where some

C (a, b) is constant is worked out in the example following this

proof. So, we can assume that a finite number of R(x) is meet

2
at any (a, b) £.]R . The rest of the proof is identical to that

of the previous theorem. U
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Example. What happens if some Ca*,b*) is constant? Then,

there exists a constant w > 0 such that

p(x) = w -

To keep p' > 0 , we must restrict to (a, b) with a < a* . To

have p(0) = 0 , w must equal a* + b* One now computes

easily that the curves of constant choice ( are line segments

joining (a*, b*) to the a-axis, as in Figure 5.2. Furthermore,

,ia a*
0, if

((a, b) /T=2 b+

a* - b*( b~b) , otherwise;

and y (x) = b*x ,for 0 < x < a*

b

(a*, b*)

a

Figure 5.2



Example.' If p is continuous but not C1 , then the corres-

ponding: y may not be continuous, as the following example indi-

cates. Let p(x) be the following piecewise linear price

function:

(P x , O< x < x* ;

p(x) =

2x + (P 1 - P2)x* , x* < x

where 0 < P1 < P2 < 1 . So , p' (x) has the graph indicated in

figure 5.3.

P2

P1

x

x

Fiure5.3

Use the analysis of figures 2.1 and 2.2 to describe the choice

function E . No Ba,b (x) will have a graph intersecting both

segments in figure 5.3. If (a,b) is such that the-graph of

Ba,b x) crosses the f.irst segment (0 < x < x* , y =P 1 ) , say

at - x* , then ((a,b) = x* and (~ (x*) is a ray R(x*) with

cosG (x 0) 1 . If (a,b) is such that the graph of Ba~b~x

crosses the second segment (x*~ < x , y = P2 ) ' say at x , then
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Fa b) =x and x1) is a ray R x) with cosO8x 1 ) P 2

If (ab) is such that P 1< Ba ,b(X*) < P then (a,b) = x

since

p'<) -0~ for x < x

L > 0 for x > x

Accordingly, the level sets of are as pictured in Figure 5.4.

Since 1 (x*) has positie area, u~~ is not continuous at x*

b

/1 //a
x

Fig ure 5.4-: Level sets of



§64 A CLOSER LOOK AT THE SMOOTHNESS OF u AND E .

From the analysis of the previous sections, it follows that

there are four ways in which ( can become discontinous and y

non-smooth; i) across Z , with (a, b) = 0 on one side of Z

and jumping to non-zero values on the other side; ii) across ,

with C(a,b) (((a, b))<v on one side of 0 and >v on the other

side; iii) across r , where one (degenerate) global minimum

can bifurcate into two local minima; and iv) across E , where

the gLobal minimizer jumps from one Local minimizer to another.

In this section, we will analyze more carefully how each of

these curves affects ( and u and wiLL conclude that it is

the self-crossings of E (p) which leads to the stable continuities

of E and non-smooth points of y . ~ We begin by showing that

if E(p) = 4 , then is continuous and p is C 1  everywhere.

PROPOSITION 6.1. For p i C1 , if Z(p) is empty, then (

is cont_;uous away from ~ (0) and y is C everywhere.

Proof Sketch: For each x > 0 , Let (a(x), (x)) be the

point in R(x) with the property that C(a, b) = x if and only

if (a, b) . R (x) and a < a (x) , b < (x) . By arguments of

Section 5, each - (c(x) , B(x)) must lie on Z(p)U(p)UP(p)() IV(p) .

Since E p) = 0 , we can disregard it. Suppose

(cd~x), B(x)) Ei P(p) \[(p) U 0(p)] .Since C~ab is a contin-

uous family of functions, its minimizer ((a, b) is lower semi-
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continuous. (See p.1 9 of Debreu (1959.)) Since Ip) = $ ,

is single-valued off Z(p) and therefore continuous in a neigh-

borhood of (a(x) , Sa(x)) . Now ( Cx) lies on R (x) by argu-

ments of Section 2. If C(~(x) does not extend beyond

(a(x), 8(x)) on R(x) , then the level curves of ( are as

sketched in Figure 6.1 and (a(x), $(x)) must be a local extremum

of ( . However, this would contradict , (y) C R(y) for all

y . Therefore, ( (x) does extend beyond (ac(x) , (x)) on R(x)

This contradiction to the definition of (a(x), 8(x)) means that

we can ignore points of rP'N[ Z U ] in computing ( and yu

Figure 6.1: Level sets of {

Therefore, each (az(x) , 8 (x) ) lies on Z (p) U) N p) . By

Proposition 2.2,we need only show that (aix), 8(x)) is a

continuous curve in x . I f (a (x) , S (x) ) is on ZN'\ or

@\ Z , then at and 8 are continuous in a neighborh'ood of x

by equations (2.6) and (2.8) . So, we need only consider a neigh-

borhood of (a(x*) , 8 (x*) ) G 4)(p) ( Z* (p) , where Z* is a branch
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of Z across which ( actually changes from zero to non-zero

values.

Recall from Propositions 4.3 and 4.4 that 4 slopes down-

wards while Z* slopes upwards. If (a(x), 6(x)) moves from

4 to Z* at x* as x increases, then, as in Figure 6.2, Z*

separates part of ( (0) from ~ (x*) and the origin. This

contradicts the fact that ~ (0) is starlike with respect to

the origin (Proposition 5.4). Thus, (a (x) , 6a(x)) moves from Z*

to ' at x = x* . It follows that Z* and 0 can cross each

other only once, i.e. , (a(x) , a(x)) E Z for x < x* and

(a(x), a(x)) 0 for x > x* . See Figures 3.2 and 3.3 for

Cx

Figure 6.2

examples. Again, by equations (2.6) and (2.8) and' Proposition

2.2, it follows that (a(x), (x)) is continuous, and that y

is C everywhere and C except at one value of x.

Consequently, it is the existence of the E-.curves which

causes non-smoothness of p . There are two phenomena associited
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with E(p) i) the intersection of f(p) and "(p) curves

where one minimum splits into two (and a E(p)-curve begins);

and ii) self-crossing of E(p) at a point (a, b) where C(ab)

has three distinct global minimizers. We now indicate that, for

generic p , case i) does not hurt the smoothness of yp , while

case ii) does.

PROPOSITION 6.2. There is a residual subset A' of C1

such that if p 6aA' and if (a, b) is a point of P(p) (1 E(p)
with ((a, b) = x ,' then pp is C0 at x .

Proof: The proof is an application of Thorn's Catastrophe

Theorem. However, although most of Zeeman's applications of this

Theorem (see Zeeman (1977)) use the "delay rule" to choose which

of several local minima plays the major role, our model uses

"Maxwell's Convention" which singles out the global minimizer.

By the argument of Proposition 5.5 (or the argument of Section 4),

one easily proves that there is a residual set A' of p's .in

' ~(a' b) =0C(a'b)
C such that for p in A' whenever C b - , C = - ,

and C(a,b) 0 , then (a,b) C(ab) , and C(ab) are non-zero.
C x xxxx Cxxa 'xb

Let p EA' and let (a', b') E r(p) n E(p) . Unless

x' = (a', b') is a degenerate minimum of c('b) which
p

splits into two local minima, E and p will not be affected.

So, we will assume this situation. By Thorn's Theorem (see Martinet

(1974) or the Zeeman-Trotrnan notes in Zeemnan (1977)), there are

neighborhoods U1 of (x'; a', b') and U2 of (0; 0, 0) and
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a C change .of coordinates (diffeomorphism) h: U1 -+ U2  of the

form:

a = h (x ; a, b) ,

a = h 2 (x; a, b)

(6.1) 8 = h 3 (x; a, b)

32 3

2 x = on U1 ,and

h(x', a', b') = (0, 0, 0)

In these new coordinates, C has the equation:

4 2-ln 8n(6.2) C(nT; a, 8) C o h (n; , 8) T= - 2 +

Since h2 and h3  are independent of x , and since the

smoothness of ( and of u is independent of choice of coordin-

ates of th b type described in (6.1), the smoothness of p at 0

in the new coordinates will be equivalent to the smoothness of

1P at x' in our original coordinates.

Examining (6 .2) , note that

33

In these coordinates, the set F , defined by C = C = 0 , is

the curve 483 = 27c2 as described in Figure 6. 3; while I is
I
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the positive s-axis.

Er

Figure 6.3

Now, - 0 for each fixed r* along the line

(6.3) a - Sn* + n3 = 0

in the (a,a)-plane. Therefore, the curves of constant choice

( lie on these lines and, in fact, are the segments as pictured

in Figure 6.4.

Figure 6.4: Level sets of (

Since we are only interested in the smoothness of p at 0 ,

we can let n vary along the a-axis between -l and +1 , without
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Loss of generality. Let (i) be the Line segment as described

by equation (6.3) or as pictured in Figure 6.4 between (a, 0)

and the positive a-axis. Let U (n) = measure((a, S) B > 0 ~and

(a, B) lies between t(-1) and j(r) . Thus, since (n) runs

3 2
from Cn , 0) to (C, n ) , u(-1) = 0 , u (0) = , and ji(1) = 1 .

1 5
One checks easily that 9i(-) = (l + r ) for n 6 (-1, 1)

Since D is C0 at 0 , the original y is C at x'

Therefore, for generic price function p , lack of smoothness

of the corresponding u arises not at the points where X(p)

is created but at the crossings of E(p) . In particular, when

two branches of E cross each other, m may jump abruptly and

y may lose smoothness. This phenomenon occurs for an open sub-

set of C1 , i.e., cannot be removed by perturbing p . To illus-

trate that such crossings do cause 4ito lose smoothness, we

describe the analogous phenomenon in one less dimension where

it is simpler to understand.

Consider the problem of minimizing

1.4 1 2
J(a, x) = - x x + ax

4J 3

for each a . Since = x- - x 4-a , the graph of a (x) = - x'

is the set of all (x, a) such that x is a critical point of

J (a, -n) .Further analysis yields that the subset

3
{(xc, a)ja = x - xc , lxi > 1l} is the graph of x = ((a) , th~e

global minimizers. See Figures 6.5 and 6.6.
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a
a

x3

Figure 6.5: a = x - x

X

Figure 6.6: x = C(a)

Furthermore, for all x > -2,

u~)= measurela < 61-2 < &(a) < x}

f6 + x3 : x for= 6 , for

6 + x xfor

-2 <~ x < -1

-l1 x <1

1 < X.

Since p (-l) = p (+l) = 6 , u~~ is continuous. However, u4

C1 at x =-1 or x =+1.

is riot
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7. CONDITIONS WHICH GUARANTEE SMOOTHNESS

Theorem 5.6 asserts that the cumulative demand function

yi(x) is C" except on a finite (possibly empty) set of

x-values for a generic price function p . In this section,

we give conditions on p(x) which guarantee that the corresponding

( and y are everywhere smooth. Some conditions have already

been discussed in Section 3, namely that p be linear or quadratic.

The conditions described in this section are natural generalizations

of the cases studied in Section 3.

THEOREM 7.1. If p e C1  and p" (x) > 0 for all x , then

the corresponding ( and y are everywhere C" and can

easily be computed. (See equation (7.1) below.)

Proof: Since p" (x) > 0 for all x , C'(ab)(x) is strictly

positive for all a,b, and x . (See equation (2.2).) Therefore,

C(ab) Cx) is strictly increasing for each (a,b) . If

C(alb) (0) < 0 , then C-(a,b) will have a unique interior zero
x x

which will be the global minimizer (ab) of C (a, b) Since

C(a,b) is never zero, (a,b) will be a non-degenerate minimizer

and (by the Implicit Function Theorem) w ill be a C" function o f

(a,b).

If C (ab (0) > 0 , then C '~b will be a strictly increasing

function of x and ( (a, b) must be zero. It follows that the

curve Z(p) coincides with the ray
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R(O) ={(a,b)|C (ab)(0) = 01

Since p and p' are increasing functions of x , b(x) in

equation (2.8) is strictly decreasing and the curve c?(p) has

no cusps. Both rI(p) and EZ(p) are empty. Therefore, y (x)

can be explicitly calculated by substituting equations (2.8)

in the formula of Proposition 2.2. The result is

x 2 1/2
(7.1) y(x) = [(v - p(y))[1 - p'I(y) ] +

0

1 _ 2 2 -1/2(v -p y)) p"(y)[1- p'(y)] d

a C** function of x for 0 < x < p~(v)

THEOR.24 7.2. If p e C and p"' > 0 (e.g., p" < 0- but

increasing),. then the corresponding ( is continuous and u is

1 --
everywhere C

Proof: One computes easily that

(x) p"' (x) + 2b 3/

ax3  [ (a-x) 2+b2 /

so, p"' > 0 implies that C (a,b) > 0 and that each cC a,b) i

strictly increasing. If c (a,b) (x) > 0 for all x or
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(a, b) (x) < 0 for all x, then C (a, b) can have only one interior

critical point. If 0 (a..b) (xc) < 0 for x [ 0,x*) and > 0xx

for x > x , then C(Xb is decreasing on. (O,x*) an

increasing on (x*, ) .S uch a C a'b) can have at most two

critical points - one local max and one local min. rt follows

that XZ(p) is empty; and therefore, by Proposition 6.1, is

continuous on the set > 0 , u± is everywhere C L , and

1± is C°° except possibly at one pant
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§8. Characterization of Cumulative Demand Functions

We have described how the cumulative demand function yp(x)

behaves for a generic price function p E . A natural question

to ask is: what functions y (x) can arise as cumulative demand func-

tions from price functions in G? Clearly, both y (x) and u'(x)

must be positive. We will indicate in this section that these are

the only constraints on possible cumulative demand functions.

Sonnenschein (1973) and Debreu (1974) have demonstrated the

corresponding result for neo-classical exchange economies with

strictly concave preferences. They proved that continuity, Wairas'

identity, and some natural boundary conditions are both necessary and

sufficient for a function to be an aggregate excess demand for some

economy.

First, we demonstrate a partial result in this direction,

showing that there are no other necessary conditions on the signs of

the derivatives of a given y (except, of course,y > 0 and y' > 0)

for y to be a cumulative demand function y in the Ellet transpor-

tation problem. For, let y be an arbitrary C2  function on [0, 6)

with y and y' both positive, p'(0) > 0, and V (O) = 0. Let v be

a positive constant. One can rewrite equation (7.1) as the second

order differential equation
1

(8.1) p!7 (-7 ( 12)7.

2(v-p)22vp

Choose p c (0,1) so that
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(8.2) (0) > v 1 - p2

By the fundamental existence theorem of differential equations,

there is a unique, smooth solution p [0,62) + + to equation

(8 . 1) which satisfies the initial conditions p (O) = 0 and p' (0) = p .

By (8.2) , this solution will have p" (0) > 0. Since p is smooth,

there is a a with 0 < 6 < -min{6, } such that for all x e (0,6),

0 < p(x) < V, 0 < p' (x) < 1,

and 0 < p" (x) .

By (7.1) and the uniqueness of the solution to (8.1) with the above

initial values, the corresponding cumulative demand function
P

for our solution p agrees with the original yi, at least on the

interval [0, 6).

As H. Sonnenschein has pointed out, there is another way to

show that any w with u > 0 and v' > 0 can be a cumulative demand

function the Ellet problem. First, add an extra degree of freedom

to this problem by allowing the density of the farmers filling up the

right half plane to be non-uniform. Let n :R2 +R be the cor-

responding density function. (Thus ~ far, we have assumed = 1.

With ra non-constant, the formula analogous to (7.1) will be much

more complicated than (7.1).)

To be more specific , consider exarnple one of section '2 with

linear p (x) = Px and value v. As shown in section two, the rays

R (x) of constant individual demand all have slope P 1  lP

Choose a density function a which is also constant on any such ray

R(K), i.e.,
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(8.3) r(a,b) = (Pb - al-P)

for some positive function ~ on R. An analysis similar to that of

section two shows that the corresponding cumulative demand function

is

Py(x) = f 1-P (v - Py)rn(y)dy, i.e.,
0

(8.4) yu'(x) = P2 (v - Px) n(x) .

Conversely, let y (x) be a candidate for a cumulative demand

function with y > 0 and ii' > 0 on (0,a). Suppose further that

u' (a) = 0, i.e., cumulative demand chokes off (stops accumulating)

at x = a. Choose v and P so that 0 < P < 1 and } = a.

Using (8.4), define n : [0,a) -+ (0,) by

y p' (x)

T(x) =
1-P2 (v-Px)

(Since '(-) = 0, on is differentiable at x = v_= a.) If one now
P P

chooses price function p(x) = Px and constructs density function

n (a,b) from n using- formula (8.3), the above analysis shows that

the corresponding cumulative demand function for this model will be

the original yu.
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Appendix

In this appendix, the reader is reminded of some of the basic

definitions and theorems of differential calculus and topology

which are used throughout this paper. For further mathematical de-

tails, see Martinet (1974), Golubitsky-Guillemin (1973), or Zeeman

(1977). For discussions of these concepts in economics settings,

see Dierker (1974), Simon-Titus (1975), Saari-Simon (1977), and

the five papers of Smale on "Global Analysis and Economics" in

the Journal of Mathematical Economics.

To begin, recall that a function f: E + is k-times con-

tinuously differentiable (writen C ) if for each j = 0 , 1, ... , k

d f
--- : R
dxJ

0
is defined and continuous. (By usual convention, -c.fis just f

dx

itself.) If f is Ck for every k , 1 < k < , then we say

f is C . If for each xGR , the Taylor Series of f at x

exists and has a positive radius of convergence, then f is real

analytic (written CE) . Note that C =C ==>Ck =Ck-Cl O

continuous. If f is a function on Rn , then f is Ckif

every partial derivative of f of order < k exists and is con-

tinuous on n .I A is a closed subset of Kn , then we'll

say that if is ck on -A if f has a Ck extension to an open

neighborhood of A.

Let C denote the following vector space of functions:
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C = {p: [0, *) +.jIp(0) = 0 and p is C } .

Topologize C as follows. Let p 0 6 C , let qi: [0, c) -+ I+ be

a continuous, positive function, and let k be an integer. Define

i di
N (p*) = {p f-C:) T(x) - 0(x) < n(x) for i=0, ... , k

' dx dx

The sets Nink (p*) form a neighborhood basis for a topology on

C , i.e., a subset M of C is open if for any p* 6 M , there

is an n(x) and a k as above such that p* N,kP) C M .

For more details on this, the Whitney CC-topology, see Golubitsky-

Guillemin (1973) .

A subset D of C is dense if D has a non-empty intersec-

tion with every open subset of C . A subset R of C is resid-

ual if R is the intersection of a countable set of open and

dense subsets of C . Residual subsets of C are dense in C

(see Golubitsky-Guillemin (1973)) and are roughly analogous to

sets of full measure. Furthermore, the countable intersection of

residual subsets of C is itself residual. Let P be a property

that holds for some functions in C . Then, P is called a generic

property if a residual subset of maps in C have property P

We now introduce some "transversality theory". Let f be a

C" mapping from 2R +1R ,i.e.,each component f- of f is a

C" function from n to R . A point x* 6 JRn is called a

regular point of f if the Jacobian derivative of f at x*0
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1 OX - _ I
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-o1 - -

Oherwisen,e, iss a ric ve. Otherbasic heoemsuroled-

iange theseconcptsd aregard's aTheem andft e Ipici Fncio

There. Se olueachxtskyf-GYt)Lei is973 freg discusitofan

SahrwisTheorema Leti:al vlue. Thebeasic theapping. Thend

ith s reglancl~es ofr ifSfrms aheresiadlsubetImloft uncio

SarpliciThFuctine Teom:et f: fl -mbe be' appCn maping

and let 1° be a regular value of if with if (Y0) non-emjpty.
Then, if m < rn, f-(MO) is a C subranifoid of ]n of dL'i--

ension n -nm (codinension mn) . (In other words, for each

A: U\ {}xmn-h]I+--£mlipx (O}l
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such that f~l(y*) ( U is the smooth graph of A .) If m = n ,

f (y*) is a discrete set of points. Note that m > n is ruled

out by hypothesis.

In sections 4, 5, and 6 of this paper, we show that, for cer-

tain p in C , a curve A(p) is well-behaved by characterizing

it as the inverse image of the regular value 0 of a C0 map

A n n-1
F : +i R . We also show that a set S (p) is discrete by

characterizing it as the inverse image of the regular value 0

of a C map F): Jl -+ Rn .In fact, our goal is to prove that

A Sfor a residual set of p's , F and F have 0 as a regu-
(p) (p)

lar value. The following theorem provides the machinery for just

such a proof.

Thom Transversality Theorem. Let ~ C be a normed vector

space of mappings. Let F: C x In m be a C0 mapping. If

0 is a regular value of F , then 0 is a regular value of the

map F(p): n m , defined by F (x) = F (p, x) , for a residual

subset of p's in C .

To show that . DF (p*, x*) is surjective, it often suffices

to show that the partial derivative of F with respect to p

D F(p*, x*) , is surjective. The latter is the derivative of

p +-+ F (p, x*) at p0 , with x fixed at x* and is best viewed

as the linear map from C + Im which best approximates the map

p .- + F(p , x*) at p0 . Thus, if G: C + Jm is smooth, then

its derivative at p0 , DG(p*) , is the (unique) linear map from

C +* JR which satisfies'
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. C( 0
4 + n) -G(p*) - DG(p*)h =

1.1.m --- =- 0

h-0O h||

for h G C . For example, let G(p) = p(x*) for some fixed x*

Then, since G is linear in p , its derivative is itself, i.e.,

DG(p°) (h) = h(x*)

Finally, we will need a version of Thom's Catastrophe Theorem,

which gives especially nice local forms of some mappings around

degenerate critical points.

Theorem. Let C (a, b; x) be a C map from R2 xR -R+JR
2

Suppose that C(a*, b*; x*) , -(a*, b*; x0) , - 2 (a*, b*; x*)
3 ax

(a*, b*; x) are all zero and that the matrix
ax

32Cac
aaax

33Ca 3c
2

aaa x

34C
a~c

asa3x 3

32
3b 3x
a 3c

abax2
33C

a4C
abax3

4bx

0

0

34c

ax

is non-singular at (a*, b*; x*) . Then, there exists a neigh-

borhood U about (a*, b*; x*) , a neighborhood V about

(0, 0; 0) in R3 , and a C0 change of variables



H = (H1, H , H ): U V (local diffeornorphism) which preserves

3H 3 H2vertical lines (-- a 0) and which sends (0, 0; 0) to

(a*, b*; xo) , so that in the new coordinates C has the form

C * H(a, 8; n) = --- n

Under the above hypotheses, the curve in the (a,b)-place

near (a*, b*) defined by

3C 32C
{(a, b) a-(a, b; x) = - 2 .(a, b; x) = 0 for some x}

ax ax

is called a non-degenerate cusp. For the proof of this theorem,

see Martinet (1974) or Trotman's notes in Zeenan (1977). This

particular result was originally proved in Whitney (1955) and

generalized by Morin (1965).
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