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The main purpose of this paper is to present a thorough and

systematic study of the necessary and the sufficient conditions

for a smooth non-linear mapping u: JR n a to have a vector

maximum (or Pareto optimum) on some (constraint) subset of Ra and

to apply this study to some of the basic problems in microeconomics.

The principal technique in this study will be to equate any given

constrained vector maximization problem with a system of constrained

scalar maximization problems, that is, problems of mathematical

programming. This approach seems much simpler and more rewarding than

the usual ad-hoc methods used in vector maximization problems.

(See Theorem 7.1 and the remarks in secton 7.A.)

Consequently, we' also need to present a thorough introducption to

the theory of mathematical programming. We begin this presentation in

chapter two by recalling the first and second order conditions

involved in unconstrained maximization problems. In chapter three,

we use these results to study constrained maximization problems

where the constraint set is a smooth manifold, i.e., the derivative

of the mapping which defines the constraints has maximal rank

near the proposed solution. We also derive very general second order

sufficient conditions for a constrained maximum in this chapter.

In chapter four, the strong non-degeneracy assumptions on the

constraint set are replaced by the more general " constraint

qualifications" of Kuhn-Tucker, Arrow-Hurwicz-Uzawa, and Slater.

An attempt is made to keep the presentation of these different

cases as unified, yet as simple as possible. The first order necessary
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conditions of chapter four are the basic ingredients of the general

theorems on vector maximization presented in chapter seven.

In charter five, we examine the situation where the first

order necessary conditions are also sufficient - the economically

important case of concave and almost concave objective and constraint

functions. This chapter also includes a brief introduction to saddle

point theorems and to duality.

Chapter six brings together the theory of the previous four

chapters by using programming theorems to introduce the basic

concepts and norms of the conomic theories of the consumer and of the

firm. We first derive the classical necessary (and often sufficient)

conditions that describe a consumer's choice of a most preferred

commodity vector from a set of feasible and affordable commodity vecto

We then turn to a similar study of a firm trying to choose the level

of production that will maximize profits or revenues. This

study includes an introduction to the activity analysis of production.

In chapter seven, all the theory developed for scalar maximizatio:

probelms is applied to vector maximization problems. This includyes

both necessary conditions and sufficient conditions, first order

and rather strong second order Conditions. We discuss both the

tproper" solutions of Kuhn-Tucker and Geoffrion and the saddle point

approach to vector maximization problems. We end this chapter

by reviewing some of the insights into vector maxima that Smale

and others have achieved by using techniques of differential topology.

Finally, the eighth chapter extends the applications of chapte

six to the case where a number of consumers interact in an economy.

Special properties of the utility mappings that arise in these
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situations are related to the hypotheses of theorems in chapter seven.

Then, results of chapters five and seven .are used to prove the

Fundamental Theorems of Welfare Economics, which relate the concepts

of Pareto optimum and competitive equilibrium. The chapter closes

with an application of vector maximization to the choice of an

efficient portfolio of securities.

The author hopes that after reading this paper the general

reader will develop an understanding of and an intuition for some of

the more basic concepts and techniques of mathematical economics

and, as a result, will be adequately prepared to examine the more

advanced topics in mathematical economics that are presented in

this book.

With the exception of a few references to elemen y' facto about

matrices, the only mathematical tools used are the basic theorems

of multi-dimensional calculus, e.g., the Chain Rule, Taylor's Theorem,

the Mean Value Theorem, and the Implicit Function Theorem. Conse-

quently, this paper should be accessible to any reader who has taken

the basic two-year sequence of differential calculus. To refresh the

reader' s familiarity with these theorems and to introduce the

convenient coordinate-freenotation which will be used throughout

this paer, the author presents a mini-course in advanced calculus -

without proofs - in the f irst section of chapter one. This

chapter also contains an introduction - with proofs - to the

properties of concave functions and their generalizations which are

imp'ortant in programm~ing problems.
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This paper contains no really new results in scalar and vector
4

maximization, although a number, of theorems in the last three

chapters are presented with weaker hypotheses or stronger

conclusions than the author has found in the literature. The emphas

has been on presenting a very thorough description of the theory

of non-linear vector maximization and as unified and as simple an

approach as possible to the problems of scalar and vector

maximization.

I am grateful for comments and suggestions by L. Blume, J. Tolle,

and H. Varian on an earlier draft of this paper.
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Sl. MATIMATICAL BACKGROUND

1.A Derivatives

In this section, we will summarize some of the important results

from differential calculus which will be needed in later chapters.

No proofs will be given. To facilitate later expositions, we will

try to stay with a coordinate-free notation. See Courant (1947) ,-

Fleming (1965) , and Edwards (1973), for example, for complete proofs

and further discussions.

Let Pn denote the usual linear space of n-vectors

{x = (x ,...,x) jx. is a real number}. Let l denote the positive
-1 n a. -+

orthant of Rnn, i.e., {x e JRnIx > 0 for i = 1,...,n}. If x

and v are in IREn, we will write x < y if x.< y for

i = 1,... ,n, and x < y if x. < y. for all i. We will denote
+ a.

the standard inner product between x and y as

n

i=1

and the norm or length of x as

Wx = /x-x

On BJ , write [a,b] for {t eEM a < t < b} and (a,b)

for {te6 Ra <t <b}, where a and b 6JR1

Let f : n mbe a continuous mapping. Then, f has a deri-

vative at x* #n (or f is differentiable at x*) if there is

a linear mapping L1: R + such that

lim f(x*+h) - f(x*) - L(h)
h0- - exists and is 0 .



6

In this case, L is called the first derivative of f at x* and

n
written as Df (x_) . Since Df (x*) is a linear map from n to

4

mm ,it has an (m x n) matrix representation in the standard basis

of Rn - the usual Jacobian matrix

af af 1

1n

(x*) ..... (x*)
axl n

where f , ... , fm are the components of f. More precisely, if the

linear map Df (x*) exists, then all the first order partial

derivatives Df./ax. of f exist at x* and the above Jacobian
2. 3

matrix represents Df (x_) . Conversely, if all the partial

derivatives 3f./x. exist and are continuous on a neighborhood
21 J

U of x° , then f is differentiable with derivative as above.

In this case, we say f is continuously differentiable or C

on U since its derivative changes continously as x varies in

U, i.e., the mapping

Df: U -L(# ,m M

is continuous where L (En , mmn) is the vector space of linear

maps from E n to mm (or equivalently, the m-n-dimnensional

vector space of mn x n matrices) .
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One can now go on to define the higher order derivatives of f

If f is C' , one can ask whether the continuous map Df: U + L (R Rm

, has a derivative at x* . If it does, one writes D(Df) (x*) or

D f(x*) for its derivative, a linear map- from :n to L ( n,tm) , or

equivalently a bilinear map from ]Rn X JRn to JRm. One usually

takes the latter point of view and writes D2f (x*) (v,w) instead of

(D(Df) (x*) (v)) (w) .

What is the bilinear map D xf(x*) in coordinates? If

f: n +:a is C , then Df: IRn + L(,R ) is the map -

(1) x i f x f of

1 2 n

Then, the matrix representation of D2f x*), the derivative of Df

is the Jacobian matrix of (1) , i.e. , the matrix (xo) .

This matrix is usually called the Hessian matrix of f at x*0 ,

If v and w are in ]n , one checks easily that

2 a2D fo(x 0 ) (,w) (x 0 ) v .w .

i j ax.ax. 1 J
1 J

32f 32
= (v . . . v ) 2 -*

1 n 2 (X ) ... ,. X 0 ) w

,2

2 2

S(x*)... .w; 2J
-nli nn
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Some authors write vt D2 ff° w for D2 f(x) (v,). If

f = (f ,...,fm ) n + -2Rmm , then

D2 f (x) (v,w) = (D2f 1 Cx) (v,w) ,....'D
2 f (a) (VW)>

Again, if the bilinear map D2f(x) , or equivalently all the

second order partial derivatives 32 f/ax..x.);) depend continuously
2. J -

on x 0  in Uthen f is called C2 on U.

One can continue this process and define the third derivative

of f at x* as the derivative of the map x t-> D2f(x) from Pn

to the space of bilinear maps on En . The third derivative is a

tni-linear mapping from an In X mnto mIm and is written

D3f(x)(u,v,w). If it is continuous in x* , i.e., if all the

partial derivatives of f of order 3 exist and are continuous,

we say f is C3 ; and so on to define Ck . A central fact about

these derivatives is that they are all symmetric multilinear maps.

In particular for the second derivative, this symmetry means that

D2f (x) (v,w) = D2f(x) (w,v) for all v and w . In coordinates,

this symmetry means that the Hessian is a symmetric matrix and

the the appropriate mixed partial derivatives are equal

(C f/ax.?x. = 22fx.ax
1 J ]J

In our coordinate-free notation, the Chain Rule and Taylor's

Theorem have particularly elegant formulations. The reader is

encouragied to write these formulae in coordinates. Theorem 1.2.b

is a form of the Mean Value Theorem.



9

Theorem 1.1 (Chain Rule for First and Seeonc3 Derivatives.)

,If f:Rn-+Rm - and g:IRmIRP are Cr maps, then gof:R Rp is-

Cr. If r > 1,

D(gof) (x*)h = Dg(f(x*))*Df(x*)h.

So, the Jacobian matrix of the composition gof is the matrix pro-

duct of the Jacobian matrix of g at f(x) and the Jacobian matrix

of f at x*. If r > 2 and y* = f (x*) in Im

2 2
-D (g*of) (x*) (h,k) = D g (y*) (Df (x*)h, Df (x) k)

+ Dg()(D2f(x).

Theorem 1.2 (Taylor's Theorem of order two) . Suppose that f.: nIR} +m

is a C2 mapping on a convex neighborhood U of x* e n

a) Then, there is a C2 map S: :Rn -+ii (depending continuously on x*)

such that for all he IRn with x* + hE U

1 2
f(x1+h) = f(x*) + Df(x*)h + D f(x) (h,h) + S (h)

S (h)
where ~2 2-- 0 as |hi -+ 0 .

h

b) Let m = 1 and let f,x* , and h be as in a). There are x'

x" on the line segment between x* and x* + h such that

f (x*+h) = f (x*) + Df (x')h and

f(x*+h) = f (x*) + Df (x*) h + -1 D2 f (x") (h, h).
- --- 2- - -
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As an illustration of the chain rule, let f~ll->J ana

1 " n 2 _ onS IR be C maps with a (0) = >:* and a' (0)= Da (0)1= v e E
One says that 2 is a C curve at x with tangent (or velocity)

vector v. The rate of change of f at xC along a is

(fo°a) (0) = D (foa) (0) (1)

= Df(a (0))-Da (0)1

= Df (x) v , which is called the directional deriva-

tive of f at x* in the direction v. Similarly, one computes that

d2  2d-2-(foa) (0) = D f (x*) (v,v) + Df(x) (a" (0))
dt



ll

where a"'(O) = D2 a (Q) (1,1).

Putting together the definition of Df (x*) and the above para-

graph, one notes that

Urn f(x*+tv) - f(x*)
Df(x*)v = --

t-0

Let U be a subset of rn with x e U . The set of all tan--

gent vectors at x to C1  curves which remain in U is called

the tangent space to U at x* and denoted by T xU. In other

words,

T XCU = {v=a' (0) e Rn a: [0,E) + Rn .s a C curve

with a(0) = x* and a(t) e U for all t)

. n -. -n
Thus, if U is an open subset of x .in Rr , T .0 U .is T 0 mx x

which is just irn with the origin pictured at xo.

There is one more interpretation of the derivative of a

o f : nIR . Instead of working with the lx n matrix

3f..(x.o.)J which represents DfE(x*°) as a linear map,
l n

one often thinks of the column vector

Vf (x*) = . IRn

of

ox (x*)

ax -

nn

as a vector in Te , i. e. , a geometric vector with its tail at

x . One notices easily that-0



12

Df(x*)v = Vf(x*)-v

and that Vf(x*), if non-zero, points into the direction in which

f increases most rapidly at xo and is perpendicular to the level

set of f at x*, {xlf(x) = f(x*)) = f 1 (f(x*)) -

As the linear approximation to a C function f:En-mm at x*,

the derivative not only tells us much about f at x* but can also

yield important information about the behavior of f in a whole

neighborhood of x*. The outstanding example of this phenomenon is

the implicit function theorem - a result which will play an important

role in later chapters of this paper.

Recall that an m x n matrix has maximal rank if either

all its rows or all its columns are linearly independent or equiva-

lently it contains a p x p non-singular square matrix where

p = min{m,n}.

Theorem 1.3 (Implicit Function Theorem). Suppose that

f: n m is a Cr mapping with r > 1 and that x_*oE n

Suppose that Df(x*) has maximal rank p = min m,n}.

a

a) Tf n < m,

f itself is 1-1

open neighborhood

the ecuation f(x)

p = n and Df (x) is a 1-1 linear map. Then,

on a neighborhood of x* , i.e., there is an

U of x* such that for each i in f(U)

= v has at most one solution x in U.

b) If m < n , p = m and Df(x*) is surjective. Then, there -

are neighborhoods U of x* in ' .and V of f(x*) in
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such that f maps U onto V , i. e. , for each r in V ,

there is at least one x in U such that f(x) = . In addition,

the (local) level set of f through x

f~(f(x*)) ( U = {x e UlIf (x) = f(x*)}

is a Cr (n-m)-dimensional submanifold of ]Rn. This means that it

sits in U like a smooth (non-linear) (n-ia)-dimensional slice

or graph; one can find coordinates y 1 ,... ,yn on U in which x*

corresponds to the origin and the level set through x* is the

ym+1' ''.,yn coordinate plane (y 1 =. . .yn=0) in the new coordinate

system. Furthermore, the set of tangent vectors to the level set

at x* , T [f~ l(f (x_) U] , is the nullspace of Df(x*),
-- x

{vIDf(x*)v = 0)

c) In particular, if m'= 1 in b) and if Df (x*) (or V f (x') )

is non-zero, say of(x) 0 , then the level set of f through

x* is the graph of a smooth function x1 = g(> 2 ,..Ixn) around x*

and the set of tangent vectors to the level set is precisely

{vIVf(xo)-v 0).

d) Furthermore, if in < n, if we write B" as mm x JRn

{(x 1 1x2 l E m ,xE 2 £ BJ }%, if ff(x°,4) = 0 and the square matrix

D f(x*,x*) has maximal rank m , then there is a neighborhood U

of 2 nm and a unique Cr map g U-+ R such that

g(x*2 l and f (g (x 2 ),'x 2 ) =0 f or all x 2  in U . (For each -

fixed x 2 near x*2' xl = g9 2 ) is the solution of f (x 1 ,x 2 ) = 0.

In other words, f (x 1 , x 2 ) = 0 defines xias an (implicit) function

ofrx2')



1. B Definite Symmetric Bilinear Maps

I "f f:PT' + is a C2 function, the second derivative of f

at x*, D2f(x*), is a symmetric bilinear map n X rn 1 as

indicated above, and can be represented by the n x n

2

(symmetric) Hessian matrix (x . In studying second
J

order tests for optimality, we will need to work with

symmetric maps which are definite.

Let L:Rn x JRn + 3 be a symmetric bilinear map. Then, L is

negative definite if L (v, v) < 0 for all v f 0 L is negative

semi-definite if L(v,v) _.0 for all v e ; L is positive

definite if L(v,v) > 0 for all v 0 ; L is positive semi-defi-

nite if L (v,v) > 0 for all .v e n

n
I f L is symmetric and bilinear and if e 1 , ... , e is a basis

of IRn then the matrix of L with respect to this basis is

((L(e ,e ) ) .. since

L(Ea.elE.b.e)) = E L(e ,e 3 )a.b. .

Conversely, if A is a symmetric matrix, then L (v , w) = vt A w is

its corresponding symmetric bilinear map. The most straightforward

test for the positive or negative definitness of L uses the lead-

ing pr incipal minors of A.

The k x k square submatrix of A obtained by deleting (n-k)

rows and the same (n-k) columns from A is called a kth order

principal submnatrix of A . If this k X k submaatrix is formed

by deleting the last (n-k) rows and columns from A , it is called

the kth leading orincipal submatrix of A . The determinant of a
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(leading) principal submatrix is called a (leading) principal minor.

The following important result relates the definiteness of L to

' the eigenvalues and principal minors of A

Theorem 1.4. Let L: n x rn +n } be a bilinear, symmetric

map with matrix A = ((L(e',e ))) . . Then, all the eigenvalues

of A are real and A has a complete set of eigenvectors, i.e.,

A is diagonalizable. Furthermore, the following three statements

are equivalent:

a) L is positive definite;

b) all the eigenvalues of A are positive;

c) the n leading principal minors of A are positive.

If one is testing for negative-definiteness, then the corresponding

three equivalent statements .are:

a') L is negative definite;

b') all the eigenvalues of A are negative;

c') the kth leading principal minor of A has the same

sign as (-l)k for k = 1,2,...,n.

There are corresponding results for semi-definiteness. For

example, L is negative semi-definite if and only if all the

cigenvalues of A are non-positive if and only if each of the

non-zero kth order principal minors of A has the same sign as

(-1) kf or k I , .. . , n. Note that to check f or def initeness , one

only checks the sign of n leading principal minors;- but to check

for semi-definiteness, one must check the sign of all 2nl
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principal minors. The proofs of these results can be found in

most linear algebra books and in Bellman (1960) and Debreu (1952).

In our necessary and sufficient conditions for constrained

optimization problems, we will need to check whether the restriction

of a symmetric bilinear map to some linear subspace of 3 is

definite or not. The following theorem provides a sufficient

condition for this phenomenon.

Theorem 1.5. Let L(v,w) = vt A w be a symmetric bilinear

map on En. Let B be an m x n submatrix with m linearly

independent rows, m< n . Let S be the (n-m)-dimensional

nullspace of B , {x e E Bx = 0} . Form the bordered (n+m) x (n+m)

0 B

matrix C = t A . If each of the last (n-m) leading principal

minors of C (i.e., the ones of order 2rn+l,...,m+n) has the same

sign as (-1)m, then L(x,x) > 0 for all non-zero x .such that

Bx = 0 . On the other hand, if the last (n-m) leading principal

minors of C alternate in sign with determinant of C having the

same sign as (-1) n , then L(x,x) < 0 for all non-zero x such

that Bx = 0 .

The proof of this theorem is fairly intricate. See Debreu (1952)

or Dellma. (1960).

1.0 Concave and Convex Functions

As we will see in chapters six and eight, concaive functions

arise naturally in problems of economics and concavity is a common

and useful hypothesis in many theorems of maximization. In this

section, we will survey some of the important properties of concave

and almost concave functions. For further reading and more complete

proofs, see Fenchel (1953) , Karlin (1959), Gale (1960) , and
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Mangasarian (1969). Many of the ideas and proofs of this section

are adopted from the excellent presentation of Mangasarian (1969).

Definitions. Let x and y lie in 32Rn. We will denote the

line segment from x to y by L (x,L) , i.e.,

£(x,y) = {ty+(1-t)x0 < t < 1)

A subset U of 3Rn is convex if whenever x,y e U , then

P(x,y) 0 U . Let f:U +Z ; be a function on the convex subset

U of aIR. Then, f is concave (convex) on U if for all

x,y e U and t e [0,1]

f(ty+(1-t)x) > tf(y) + (1-t)f(x)

(f(ty+ (1-t) x). tf (Y) + (1-t) f (x)).

If, for all x,y e U and for all t e (0,1), the above inequalities

can be written as strict inequalities, then we say.that f is

strictly concave (or strictly convex) on U. Note that linear maps

are concave and convex. Fleming (1965) gives a proof that any

function which is convex or concave on an open subset of 30 is

continuous.

IMPORTANT REMARK. Note that f is convex if and only if -f

is concave. Since minimizing f is equivalent to maximizing -f,

all the results of this paper on maximization can be written as

results on minimization. In this case, one naturally changes hypo-

theses about concave functions to hypotheses about convex functions.

If f is C or C2, there are some powerful criteria from

calculus for concavity, as summarized in the following theorem.
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Theorem 1.6. Let f:U + JR1 be a C1 function on a convex

open subset U of Rn . Then, the following are equivalent:

a) f is concave on U,

b) f(y) - f (x) < Df(x) (y--x) for all x,y, e U,

c) [Df(y) - DfE(x)) (y-x) < 0 for all x,y_ e U.

If f is C2, a) , b) and c) are equivalent to

d) D2f(x) (v,v) < 0 for all x e U and all non-zero v e En

(i . e., D2f(x) is negative semi-definite on U).

Remark: Theorem 1.6 is true if one changes "concave" to "convex"

in a) and reverses the inequalities in b), c) and d). If one changes

"concave" to "strictly concave" in a) and make the inequalities strict

in L), c) and d), then

d) a) -- b) ** c) ,

4
with f (x) = - x a counterexample to a) 4d) in the strict case.

Proof: Throughout this proof, x and g will denote arbitrary

elements in U with t e [0,13.

a) b) : Since f is concave,

t f(v) + (1-t) f (x) < f (ty+-(1-t) x) ; or

) f (_.+t(v-x) )-f(x)

Taking the limit as t +0 and using the remarks under Theorem 1.2,

we see that f (v) - f(x_) <_ Df (x_) (y-x).

b) e c): Add the two inequalities:

f(y) -f(x_) - Df(x) (K-x) < 0' and

f (x) - f (v) - Df (r) (x-y) < 0 .
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c) - b) : By Theorem 1.2b (Mean Value Theorem),

f (y). - f (x) = Df (y+t 0 (x-y)) (y-x) for somec to e (0,1)

By C) , [Df (y+t 0 (x-y))- Df Cx)] (l-t 0 (y-x) ' < 0 , or

Thus, -f () - f (x) < Dfx)(-)

b) -4a) By b) ,

f (x) -f ((1-t) x+ty) <(-t Df ((l-t) x+ty) (y-x)

and f (y) -f((l-t) x+ty) < (l-t) Df((l--t) x+ty) (y-x)

Now, a) follows immediately after one multiplies the first inequality
by (l-t) and the second by t and then adds the two inequalities~

di) b) : By Theorem 1.2b,

f ) f x) = D f x)(-x)+ D f z)(-x y-x)

for some * z eQ(x, y) . Since the last term is non-positive,'

b) follows.

b) : dc) : Suppose there are x° e U and v eS1Z n such that

DLf(x°)VV > 0. Since f is C there is a convex neighborhood
Wof x .in U sctht fx) (v v) > 0 for all x E W. Also,

Df fx) tv tv) = t2D f (x) (v v) > 0 for all x e W and for all tD Choose t ° > 0 and small enough so that x°+ t v S w

By Theorem 1.2b,

121

> Df (x°) (t~v)

forsom t 1 [0,t 0 ] - a contradiction to b) .- Note that the last

two paragraphs, show that di) b) in the strict convexity case. Q
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In some problems that arise in economics, concavity is a little

too strong as an hypothesis. Since many important maximization

theorems hold with weaker forms of concavity, we will discuss some

of these modifications now. One important property of a concave

function is that its level sets bound a convex set, i.e., if f is

concave., {xJIf(x) > a) is convex. Since any monotone function from

1 to m1 (e.g., f(x) = x3) also has this property, it does not

characterize concave functions. So, if f:U +} is a function on

a convex U of I n, it is natural to call f quasi-concave on

U if {x e Ulf(x) > a) is convex for all a e 7R. Similarly, f

is quasi-convex on U if {x E Ulf(x) < a) is convex for all

a e IR. Fortunately, there is a useful calculus criterion for

quasi-concavity.

Theorem 1.7. Suppose that f:U + B is a C1 function on an

open convex subset U of En. Then, f is quasi-concave on U

if and only if f(y) > f(x) implies that Df(x) (y-x) > 0.

Proof: Suppose f is quasi-concave on U and that

f(y) > f(x) for some x,y, e U. Then, for all y e [0,13,

f(x+p(y-x)) > f(x).

Df(x) (v-x) > 0 , letting y - 0
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To prove the converse, choose x 0  and x_ e U with x 0  1 _

aria f (x) > f(x 0 ) . Let x=~ x0 + y (xl-x 0 ) . We will prove

that f (x') > f(x 0 ) for all y e [0,1].

To reach a contradiction, suppose there is a p* e (0,1) with

f (x_*) <<ex ) f(x ) . Let J = [pU,2] be a (connected) interval

in (0,1) with p* E J, f (x) <_ f(x0 ) for all p e J, and f (x ) =

f ( 2 = f(x 0 ) . We first claim that Df (xu) (x 1 -x 0 ) = 0 for all

y e J. If y e J, f (x_) <_ f(x0 )1)f(x'). By hypothesis,

Df (x ) (x0 yx) > 0 and Df(x) (x1-x1) > 0.

Since x 0  x0-x) and x 1 -x = (1- ) (x -x0 ), we have

-pDf(x_) (xx 0 ) > 0 and (1-p)Df(x) (x -x 0) > 0

Since p and 1-p are positive, Df (x ) (x1-x ) = 0

On the other hand,

0 < f(x 0  f *(xu = f(X. p*f(x*

=Df(x3 ) (x -x) , by Theorem 1.2b, p3 E

* 1 p3 10
(y-p )Df(xh1_)(x -x0) ,

since x -(* VI)(x0-x) - a contradiction to the last para-

graph. {

Remark. Of course, there is an analogous result for quasi--:

convexity. One can also define and work with strict quasi-concave

* functions and strict quasi-convex functions. -
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Quasi-concave functions share with concave functions the property

that local maxima are global maxima. However, there is an important

difference. Because a) +-+-b) in Theorem 1.6, a critical point of a

concave function is a local (and therefore) global maximum. But

f(x) = x3 shows that quasi-concave functions do not have this pro-

perty. To fill this gap, Mangasarian (1965) introduced the concept

of a pseudo-concave function.

Definition. A C1 function f: n 4n R is pseudoconcave at

x* e mn if whenever Df (x) (v-x) < 0 , f (v) < f(x*) . One defines

a pseudoconvex function similarly.

Theorem 1.8. Let f:U - }R be a C1 pseudoconcave function at

all x in the convex subset U of n Then,

a) x maximizes f on U if and only if Df (x) (x-x) < 0

for all x e U;

b) if U is open, x maximizes f on U if and only if

Df(x*) = 0 .

The, "only if" parts of a) and b) hold for all Cl functions f .

Proof: a) If x maximizes f on U, f(x*+t(x-x)) - f(x*) < 0

for all x e U and all t e [0,1). Dividing by t and letting t

tend to 0 yields Df(x) (x-x_ 0 ) < 0 . The converse is immediate

from the definition of a pseudoconcave function.

b): That a maximizer on an open set is a critical point is a'

classical result (see Theorem 2.1) and also follows from a) , since_

the openness of U implies that Df(x*)v < 0 for all v e TQe

The converse also follows from a).
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Pseudoconcavity is a less geometric concept than quasi-

concavity, although it is an important analytical one. But notice

that the definition of pseudoconcavity is a slight strengthening

of the contrapositive of the analytical characterization of

quasi-concavity in Theorem 1.7. Part b) of Theorem 1.9 describes

the mild conditions under which the two concepts are equivalent,

namely f is C2 and f is non-zero on a "solid convex" set.

Part a) of Theorem 1.9 summarizes the hierarchy of concavity for

C functions, while part c) summarizes the principal-minor conditions

which one can easily use to test a C2 function for concavity or

quasi-concavity.

n
Theorem 1.9. Let U be a convex of R . Let f U - R

be a C1  function. Then,R

a) f is strictly concave on U * f is concave on U

* f is pseudoconcave on U

* f is strictly quasi-concave on U

* f is quasi-concave on U

Furthermore, none of the implications can be reversed. (The C1

hypothesis is made only to include pseudoconcave functions.)

b) If U has a non-empty interior, if f is C2 on U

and if Vf is never 0 on U , then f is pseudoconcave if

and only if it is strictly quasi-concave if and only if it is

qxuas i-concave.-
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c) Let H(x) be the n x n Hessian matrix for D f(x)

Let B(x) be the (n+l) x (n+1) bordered matrix

0 Vf(x)t
B(x) =

Of (x) H(x)

If the kth leading principal minor of H(x) has the same sign

as (-1)k for k = 1,...,n and for all x in U , then f is

strictly concave on U . If every non-zero k.x k princpal minor

-_ 1 k
of H(x) has the same sign as (-1) for k = 1,...,n and for

all x in U , then f is concave on U . If the kth leading

k1
principal minor of B (x) has the same sign as (-1) for

k = 3,4,... ,n+l, then f is pseudoconcave (and hence quasiconcave) on U.

Proof: a) Most of these implications follow from the definition

or from Theorem 1.6. See Mangasarian (1969) for complete details.

We will sketch a proof of the third implication here.

Suppose f is pseudoconcave but not strictly quasi-concave.

0 1 0 1
Then, there are x ,x e U such that f(x ) > f(x ) but for some

1 0 10
y G (0,1) , f (xu) < f(x ) , where x = x + (x -x ) . Choose y

so that f (x ) < f(xu) for all G [0,13 . Since x minimizes

f on the line segment ((x0  l -x) > 0 for all

y G [0,13 by Theorem 1.8a. By the method of proof of the claim in

i 1 0 -1 0,
Theorem 1.7, Df (x ) (x -x ) =. 0 , since x -x =- y (x -x ) and

x1 (-i ( 1 -x 0 ) Similarly, Df (xi) (x1-x ) = 0. But now,

since f is pseudoconcave, f (x 1 ) < f (x ) . Since f (x ) <~ fx 2) ,

we have a contradiction to the minimizing property of x ..
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b): See Ferland (1972).

c) : The first two sentences follow from Theorem 1.4, 1.5, and

1. 6. Under the hypotheses of the -last statement, Theorem 1.5 tells

us that D2f (x) is .negative definite on the nullspace of Df (x)

By Theorem 3.4 below, each x in U maximizes f on the constraint

set {yjDf(x)y - Df (x) x > 0} = {yI Df (x) (x-y) < 0} . In other words,

if x, y G U and Df (x) (x-y) < 0 , then f (x) > f(y) . But this is

the definition of pseudoconcavity on U . [] .

There is one important result, as described in the following

theorem, which holds for concave functions but not for pseudocon-

cave or quasi-concave functions. This theorem is one reason why one

cannot weaken the concavity hypotheses in some of the theorems of

chapter seven.

Theorem 1.10. Let f 1 ,...,fa : U - be concave functions on a

convex subset U of Rn . Let , ... , a be non-negative numbers .

a
Then, E X.f. :U + R is a concave function. This result is not true

for pseudoconcave or quasi-concave functions.

Proof: Since each A. > 0 and each f. is concave.

f.(x*+ x'-x*))> Xf.(x*) + p[X.f(x') - X.f(x*)}].
l11 - i1- 1-1

The theorem follows by adding these inequalities. To see the last

- 3
sentence, note that f 1 (x) = - 2x and f 2 (x) = x + x are both

3
pseudoconcave, but (f 1 + f 2 ) (x) = x - x is rnot even quasi-con-

cave. []i
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2. UNCONSTRAINED MAXIMA

2.A. Nedessary Conditions

Let C be some subset of Mn" .For examplo, C may

be (x E n g1 (x) > 0,...,g (x) >O,h (x) = 0,...,h(x) = 0}1M- l-N -

where g11 ... ,M ,..,hN are functions from JRn to IR

Then, if f : Ian + } and if x* c C , f has a local maximum on C

at x* (or x* locally maximizes f on C) provided x* has

a neighborhood U in an with f (x) < f(xo) for all x c U n C.

If one can take U to be R , then f has a global

maximum on C at x* . In this paper, "maximum" will always

mean "local maximum" unless stated otherwise.

If one uses calculus techniques, then there are usually

two steps in a maximization problem. First, look at effective

necessary conditions for a point to be a maximum. This step

should quickly narrow down the number of candidates for a maxi-

mum point - possibly to a finite set of points. Secondly,

apply some effective method for checking out each of these

points. Such methods will usually involve the local convexity

of f or the negative-definiteness of some second derivative.

Let us first examine the simplest such problem, i.e., find

the maxima of a C f: - En+R with no other constraints .

(Equivalently, C is some open subset of IRn.) We first list

the classical necessary conditions.
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Theorem 2.1. If f: 1Rn + is C2  and if x* -

is a (local) maximum point of f, then a) DfE(x*) = 0, and

b) D2 f(x 0) (v,v) < 0 for all v

Proof: We will assume that the reader is familiar with

this theorem for the case n = 1. Let g (t) = f (x* + tv) for

some arbitrary v c T En .By hypothesis, t =0 is a local

maximum point of g . Therefore, by theorems of Calculus I,

g' (0) = 0 and g" (0) < 0 By the Chain Rule,

dg' (0) = f (x * + tv) = Df(x)v and

t=0

g"(0) = d f(x-+ tv) I = D2 f(xO)(v,V) .
cttjt=o

2.B. Sufficient Conditions

By Tnorem 2.1, in searching for maxima one need only check out the

critical points of f , i.e., {xJDf(x) = 0} . For most

smooth functions, the critical points arc isolated in mn

(See Section 11.6 of Golubitsky-Guillemin (1973).) The next

theorem gives the classical sufficient condition for a critical

point to be a local maximum. Its proof uses the basic fact that any

sequence on a compact set has a convergent subscquence.

Theorem 2.2. Suppose that x* is a critical point of

a C2 f. n + ER . If D fx x) is negative definite, then

x* is a strict local maximum point of f.
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Proof: Suppose x is not a strict local maximum point

of f . Then- there is a sequence of distinct xn approaching

x* with f (xn) > f (x) . By the compactness of {vv_ = l}

n °
nn n x - x

in R , we can choose {x} so that v = -n x, converges

to some v* with Iv°* = 1 . Using Taylor's Theorem,

(A) 0 < f (xn) - f(x*) = Df(x*) (xn-°x) +kD 2 f(x) (n-xx n-x)+R (xn)

R (i).
where Df(x*) (xn -x") = 0 for all n and + 0 as + x*.

2

Divide (A) by Ixn xoI2

(B) < f() -f() D2 f(x*) (vnvn) + R(x) , for all n
~ l xD-X*xnx 2

Now, if n + o in (B) , one finds 0 < D2 f (x*) (vo v*) contradicting

the negative definiteness of D2f(x).
For another proof, note that by Theorem 1.4.C, negative definite-

ness is an "open" property in En . In other words, if D2 f(xo) is

negative definite and f is 02 rD
2 f (x_) will also be negative

definite for all x in an open ball V around x*. if y G V and

11 2vr-x

(C) f(y)-.f(x*) = Df(x*) (y-x*) + 1 D2 fy)(-x,-*

for some y' in V . Since Df(x*) = 0 and y-x* # 0 and

D f (y') is negative definite, the right hand side of (C) is negative.

So, fQy) < f(x*) for all V in V.
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This proof even works in infinite-dimensional spaces provided

one replaces "D2f(x) negative-definite" by "D 2 ff(x) strictly'

negative definite" to~make sure the condition is valid for an open

set around x*. (One says that D2f(x) is strictly negative

definite if there is a positive number c that D2 f(x*) Cv,v) < -cjv 2

for all v , or equivalently such that the eigenvalues of D2f(x )

are strictly less than -c . This concept is the same as negative-

definiteness in the finite dimensional case.)

For concave functions, the first order necessary conditions are

also sufficient and yield global maxima. Theorem 2.3 is a restatement

of Theorem 1.8 and is included here for completeness.

Theorem 2.3. Suppose f IRn -+ ]1 is C and concave (or

even pseudoconcave) . Then f has a global maximum at x* .if and

only if Df(x*) = 0
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3. PROBLEMS WITH NON-DEGENEPATE CONSTRAINTS

3.A. The Non-Linear Programming Problem

In most maximization problems arising in economics and

engineering, there are constraints on the set of feasible states,

i. e. , the set C of Section 2.A is not an open subset of Kn

In the next sections, we will discuss the following problem, often

called "the classical problem of non-linear programming":

Maximize f IRn -+ IR on the set C , where

(D) C = {x s Rn g(x) > 0, i = 1,...,M; h.(x) = 0, j = 1,...,N}

and g.'s and h . ' s are smooth functions RP+ R .
J

If f(x) = c - x , g.(x) = A. x + a. , and h.(x) = B.x + b. for- _ 1 - -1 - 1 3J- -3- J

some vectors A ,...,AMBL,...,B , and c in IR , and scalars

ak ' '.. ,aM,b , ... , bN , the problem (D) is the usual Linear programming

problem. Since the constraint set C for the Linear problem is a

polyhedral set and f is linear, the solution of this problem, if it

exists, lies at a vertex of C (or sometimes at a complete bounding

face of C) . There are simple, but beautiful algorithms for solving

the linear problem, which we will not discuss here. See (for example)

Karlin (1959), Hadley (1962), Dantzig (1963), Intrilligator (1971), or

Varaiva (1972) for further details and examnples.

Returning to the non-linear probLem, in this section we will

first discuss conditions for maximization where the constraint set

C is a "manifold" or the smooth boundary of a manifold. Analytically,
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this means that the Jacobian matrix of the constraint functions

has maximal rank at the proposed solution. We'll call such

constraints "non-degenerate". In this situation, it is convenient

to consider first the case of equality constraints, i.e., M= 0

in (D) .

3.B. Non-degenerate Equality Constraints

The following theorem gives the classical necessary con-

ditions of Lagrange for x* to maximize a function on a sub-

manifold of JPn. We write h1 = 0,...,hN = 0 as h =(hl,...,hN) = 0.

Theorem 3.1. Suppose that x maximizes f: En I

on the set Mh = (x s E nh(x) = 0 where h: En + RN . N < n}

Sup ose further that f 'and h are C1 and that Dh(x*) has

maximal rank, a) Then, there exists a unique non-zero

N N
y,.. .,y*) such that Df(x*) ,+ Y y* Dh.(x*) = 0

2N1
b) If f and h are C , then

N
D If Y+/ph 1 )(x*) (v,v) < 0 , for all v

1

for which Dh (x*)V = 0, i.e., all v E TOMh

Proof : We will work with the function (f,h) : #n 1 RXIN

N+ 1 n N-ilB . We first claim that D (f ,h) (x*) : IR + 3P does not

have maximal rank. For, if it does, then by the implicit

f unction theorem (Theorem 1.3.b) (f ,h) is locally onto, i .e.,,
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teeis a neighborhood U of x° in IR'n adanihoho

N+l
V o (P (°)h~x)jin JR so that f maps 0 onto V

So, e cn chose _EsU with ( x)h xi))= (f(xo)+Eh(xo))

o e ca ch o e xf x 1  ( ) in V for some E > 0. Then f (x ) > f(x ) and h (x i) =

h (x °) = 0 , contradicting the fact that x ° maximizes f on

Mh.'

Since D (f ,h) (x°) is not of maximal rank, its rows are

lnal deeeni.e., there exists non-zero (X 0 , .. .,)X e MN+1

N
such that X 0 Df (X°) + X"Dh."(X°) 0 I fX = 0 , then

N
.A X Dh (x°) = 0 for some non-zero (al, ... ,XN) , contradicting

the maxima1 
rank of Dh (x°) . So, let = X./10X If there.

1 1 with Df x°-' + N
his anothernon zero (Z 1 ... 4} Di~Dh~

2. -

we can sub tract one equation from the other to obtain (u 4 -P°Dh.x

0 . Again, the non-degeneracy of Dh (x°) implies that

To see part b), let v E ker Dh (x °) = Tx oIh Again , by the

i plicit function Theorem (l.3.b) , there is a C2 curve a: [0, ) -
t ( ) = x , a 0 , a d h ~ ) o L
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2 d2

S 2 (ffoa)I = 2 [foa + y (hi * a)]j (hia =
dtt0 dt t=0

d
tDf(a(t))a' (t) + p* Dh (a(t))a'(t) (chain rule)

t=4

D2 f(a(0))(a'(0),a'(0)) + Df(a(0)) (a"(0))

u+ p* D2h (a (0))(a (0),a(0)) + y Dhh(a(0))a" (0)

= D2 f (x*) (v,v) + y D2h (x*) (Vv) ,

since Df (x) + p*Dh(x*) = 0. .

The geometric interpretation of Theorem 3.1 is simple

since the maximal rank of Dh (x) implies that Mh h ()

is a submanifold around x* . Recall that Dg(x*)v = v * _g(xo)

where Vg (x*) is the gradient (column) vector of g at x*

Then, 3.l. a says that Vf (x) is a linear combination of

h1(x*) , .. . , Vh N(*) . Since each Vh (x) is perpendicular to

T x h 0so is Vf (x*) . This means that the projection of

Vf (x*) on TxMh is zero, i.e., that fEMh has a critical

point. If one now use's coordinates that give 11h as a hyperplano

of Rnaround x* , then Theorem 2.1..b becomes Theorem 3.l..b

in these coordinates.

However, one does not need non-degenerate constraint

equations to derive second-order sufficient conditions, i.e.,

the analogue of Theorem 2.2. We will even use the more general

first order condition of Section 4.
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Theorem 3.2. (Second Order Sufficient Condition) Suppose

that f,h 1 ,o. .. ,hN are C functions on 2Rn . Suppose h (x°)2

(hl(xo),...,hN(xo)) = 0 . Suppose there is a non-zero (u,..,U

such that > 0 ,. D(vi f + Zv.h.) (x°) = 0 , and

D2 + SJ.) (xG) (v,v)< 0 for all v with Dh (x°)v = 0 1 VC'.
0 ii -

Then,x 0 ia strict local maximum point of f on h-I(0)

P r o o f : s e t M.= _ (0)1a d l e t F 2 . I f + i .h -: n -+hrof _etM h 0 a iiu ±1

Now, just imitate the proof of Theorem 2.2, using F . That

is suppose there is xn - x° such that xn x° for all n ,

h(xn) 0, f(x > > (x~) and v - n . - . Since

U- > 0 , 0 < F (xn ) - F (x) for all n. As in the proof of
Theorem 2.2, one finds that D2F(x 0 )(v 0 ,v°) > 0 using Taylor's

series . Si~nce lye! = 1. 0 , we need only show that

Dh (x°) v° 0 to find a contradiction. But, for each i = 1, ... ,

and for each n,

h 1,(x ) -h .(xn

0 = - 1 -__ = Dh.,( 1 
v

0 1 _n

for some xn' 2 on the line between xn and xe . As n

n1 -

anguliy ontrins , gjx) > 0 , i = 1,. .44, as a



35

statement (D) . We will still focus on the situation where

the "effective" constraints are non-degenerate

Let x* ° )Rr with h(x*) = 0 and g(x*) = (g 1 ,..:.,g)(x*) >O.

Let EE {ilg(x*) = 01 and I E {jlg (xo) >.0). Reparaaeterize -

so that E = {l, ... ,K) and I = {K+1r..., M} for some K and A

g =(gEg 1 ) : Mn +3 x = MR. The mapping (ggh):

n1 E Nrt-o
n + £p x m represents the effective constraints at x*

The next theorem states the necessary first and second order

conditions for a maximum under non-degenerate constraints. The

first such theorems were proved by Karush (1939) and Pennisi (1953).

Theorem 3.3. Suppose that x* is a local maximum of f

on Cgh ( Ie n g (x) > 0, h(x) = 0) . Suppose that f,g, and

h are C2 and that D(g E'h) (x*) has maximal rank. Then, there

is a unique non-zero (A1 ,..., M'l1',''IN) such-that

M N
i ) D [ f + 1g . + y .h . ) ( x * ) E D L ( x * ) = 0 ,

ii) k. > 0 for j = 1,...,M , and

iii) X g.(x*) = 0 for j = 1,...,M , (i.e., X g (x*) = 0).

Furthermore, iv) D2L (x*) (vrv) < 0 for all v such that

DgE(x*)v = 0 and Dh (x*)v = 0
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Proof: If I is non-empty, let U denote the open set

{x e i g 1Rng(x) > 0} . If I is empty, let U denote IRrn . Then,

i) , iii) , and iv) follow immediately if one notices that x* maximizes

f on the set {x e UIgE(x) = 0,h(x) = 01 and then applies Theorem 3.2

setting A = 0 for j g E , i.e., when gj(x_) / 0 . To prove the

important statement ii) , let j E E . Without loss of generality,

we will take j to be 1 . Since' (DgE(x 0)'Dh (x)) has maximal

rank, there is a vector v with

(E) Dg (x*)v > 0, Dg 2 (x*)v = ... = Dg (x*)v = 0, and Dh(x*)v = 0

By the implicit function theorem (Theorem 1.3b) applied to (g2' ' .'.',g

0 , there is a smooth curve c:[0 ,) -+ 3R n such that c (0) = x

c'(0) =v , g(c(t)) ... =g (c(t)) = 0 and h(c(t)) = 0 for all
- 2 K

t . Since Dg;(x*)v > 0 , g1 .(c(t)) > 0 for t e (0, 1E) for some

> 0 , i.e., c (t) E Cg h for t E [0,C 1 ). Since c(Q) =x*

riaximizes f on Cg,h ',f (c (t)) <_ f(x*) for t small and

Df(xo)v = (foc)'(0) < 0

By i) and (E) , DfE(x) v + X1Dg (x*) v = 0 . Since Df (x*) < 0 and

S> 0 , > 0 . One argues similarly for ,..., .

Finally, we consider second order sufficient conditions for a

constrained maximum. Hestenes (1966), McCormick (1967) ,and

Fiacco-McCormick (1968) seem to be the first ones to prove a strong~
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second order sufficiency result for inequalit y-equality constraints

without any non-degeneracy assumptions on the constraint set. Their

proofs are basically similar to the one described below.

2
- Theorem 3.4. Suppose f,g1,...,gM,hl,...,hN are C functions

on IR n . Suppose g (x*) > 0 and h (x_) = 0 Suppose there exist

AO' l''''' M'El'''''"N so that

i) A. > 0 for i = 0,...,M,

ii) A.gi(x*) = 0 for i = 1,...,M,
i1-

M N
iii) DI[X0f + E X.g. + E yU.h.](x*) = 0 , and

1 1 JJ

2M N -

iv) D2[ f + E a.g. + E yu.h.](x*) (v,v) < 0
0 1 1 1 3 -

for all non-zero v satisfying X0 Df (x*)v =0 , .Dg. (x*)v = 0

i = 1,...,M, and Dh(x*)v = 0

Then, there is a neighborhood U of x such that f(x) < f(x 0 ) for

all x#x 0  in U f'1Cg.h

Remark. One can further restrict v in iv) to those for which

Dg.(x )v > 0 for i such that X. > 0 and Df(x0)v > 0
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Proof: First, choose a neighborhood V of x* so that

g (x) > 0 for i E I and x e V . Working within V , our constraints

are now g > 0 and h = 0 and our Lagrangian is

N M N
L'E 0f + X.g. + E p.h. - 0f + E X.g. + E p.h.= L

ieE 1 0 1 1 3

Arguing by contradiction as in Theorem 3.2, suppose there exist xn x

such that xn e C , f (xn > f (x*) , and xn # x* for each n
g,h -(n -_

n n_ xn . xo
As before, choose x so that v = - - converges to some

I . o

unit vector v*

Next, we show that v* satisfies the conditions of hypothesis

iv) . Arguing as in Theorem 3.2, one proves easily via the Mean

Value Theorem that

(F) Df(x*)v* > 0 , Dh(x*)v* = 0 , and Dg.(x*)v* > 0 for each i e E

Furthermore, k.Dg (x*)v* = 0 for each i . Otherwise, there exists

a j such that X.Dg(x*)v* > 0 and then by (F) and i)

DL(x*)v o X 10Df(x*)v* + X X.Dg.(x*)v* > 0

which contradicts hypothesis iii) . Similarly, 0 Df(x*)v = 0,

2F inally , by T aylor 's Theorem ( Theorem 1. 2a) , there exist C

f unctions R, S, and T such that f or -each n
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o < f (xn) - f x0 )

Df x°) xfl-xo)+ --- Df x x°}-x°,x -x°) + R(xn

(F1) 0 < g1 "(xn) - gl 1(X°)

1 ~21

D.(x°) (xflxo) + -D 2gh(x°) (x-x° ,xn-x° + S. (x'),

n S. (Xn) T .(x 11

whrere 1, R() -and ----- all tend to zero
< °2x n -x°1

2  fI nx° ~O2

as -} iid°ec expression in (F') by 1x' -X°1
2

, multipl

through by the corresponding Lagrange multiplier, and add the expressin

to obtain

DL (x°) (Xn -x°) 12nnn
0 <+ D2 L(x 0 )(v l,v l) 0+

-- In °x2  2.1 Ixi-~ 2

where the last term tends to zero as x + x° Using DL (x°) = 0

anid then le tting Xn - x , one finds that 0 <CD 2L(x° ) (v° Iv°)

Since v° sat.isfies the conditions of iv) , we have a contradiction

to iv; and x° must be a strict local maximum of f on Cgh

Remark. Condition iv) , the second order condition,
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iv)': Let H be the bordered matrix

0 0 A

0 0 B

At Bt C

ag. (x)
where A = ((Aa. )x ) for k = 1,...,n and for i such that 1. /O,

k

3h. (x*)
B = (( 3±~-)) for k = 1,...,n and j = 1,...,N

k

2
C = ((ax.ax.(x*))) for i,j = 1,...,n .

2. J

We require H to satisfy the conditions of -Theorem 1.5, namely

determinant H has the same sign as (-1)n and the last (n-m)

leading principal minors of H alternate in sign, where

m = number of rows of A + number of rows of B =

#{ilX. > 0, i = 1,...,M} + N

Some authors, e.g., McShane (1942), Weinberger (1974) and

Ben-tal (1980), have noticed that one can find an even stronger

sufficiency test than that of Theorems 3.2 and 3.4. For, in the

proofs of these results, one can easily allow the Lagrange

Iultipliers to depend on the vector v being tested and thus prove

the following result.
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. . . . . . . .2

Theorem 3.5. Suppose that f,g,.,,h1...,h , hN are C.

functions on 3Rn . Suppose that g (x*) > 0 and h (x) = 0

Suppose that for each non-zero v such that Df (x*) v > 0

Dg"(x*)v > 0 , and Dh(x*)v = 0 , there exists X0C'I Xl ' ''l''

so that i),ii), and iii) of Theorem 3.4 are satisfied and

2 M N

D2 [ f + Z X.g. + Z p.h.]1(x*)(vv) < 0 .
1 1 -

Then, there exists a neighborhood U of x* such that

f (x) < f (x*) for all x x* in U satisfying g (x) > 0 ,

h(x) = 0

As we will see later, an important variant of problem (D)

is the following:

(G) Maximize f: En - R-. on the set {x[ G(x) > 0 i~= 1,.. . ,

x. > 0 , j = 1,...,n}.

We state without proof the application of Theorems"3.3 and 3.4 to

this special problem.

Corollary 3.6. Suppose f,G 1 ,...,G are C2 functions

non 1R.

B
a) If x* is a solution of (G) and if E(x*) has

maximal rank where EB {il Gi(xo) =0} and B = {-jjx? > 0} , then

there exists unique non-zero A* = (X1 ,.. . , A) such that

(i) * > 0 for all i ,

. rN
(ii) if L fx,X7) =f (x) + -jX? G . ()) , then

1
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-- (x,,A*) < 0 and x*0 --- (x*,*) = 0

S(x*,x*) = G(x*) > 0 and ?* -.- (x, 1 *X) = 0

(iii) D2 L (x*,p) (vv) < 0 for all non-zero v with DG(x*)v = 0
x - - - - -- -

and v. = 0 for i B

b) Conversely, suppose that G(x*) > 0 and x* > 0 . Suppose

further that there is A* = ([,. .. ,Ak) > 0 such that L satisfies

(ii) and (iii) at (x*,X 0 ) with "<" replacing "<" in (iii) , then

x* is a strict local maximum of f on {xIG(x) > 0, x > 0}
Conditions i), ii), and iii) of Theorem 3.3 are usually called the

Kuhn-Tucker conditions for problem (D) . Conditions (i) and (ii) of

Corollary 3.6 are called the Kuhn-Tucker conditions for problem (G) .

El-Eodiri (1971) and Killeron (1972) both have complete, yet

concise, discussions of the non-linear programming problem with

non-degenerate constraints. El-Hodiri also adds some interesting

historical comments.

3.D Lagrange Multipliers as Sensitivity Indicators

Consider the problem of maximizing f : n subject to

the equality constraint h(x) = b r where h :- + " and b

is viewed as a parameter. A natural and important question is:

how does the op timal value of f change as b is allowed
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to vary. The following theorem shows that the Lagrange multipliers

themselves measure the sensitivity of the optimal value of f to

changes in the constraint b . We will see a number -of economic

applications of this fact in Chapter six.

n 2"
Theorem 3.7 Let f,hl, ... ,hN: ' R + R be C functions

with x c n and h(x) = b* . Suppose that the following

sufficient conditions for a maximum of f on h~ (b*) are satisfied

at x*

i) There exist X, ... , A * such that DL (x*) = 0 , where
NN

N
L(x_) = f (x) + { AX (b - h. (x) ).

ii) D2L(x*) (v,v) < 0 for all non-zero v in the kernel

of Dh(x*) ;

iii) Dh (x*) has maximal rank .

Then, there is a neighborhood W of b* in RN and C1  functions

mW +3n : W JN

such thaL ((b°) = x* , a)(b) = * , and for all b c W (b)

maximizes f on h 1 (b) with Lagrange multipliers A (b) , ... , AN (b)

Fur thermore , A~ (b ) = (b)
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Defne = n xN XIN n NProof: Define M = (M1 ,M 2 ): R X ]R x 1 + x by

M(x,X,b) = (Vf (x) - A - Vh(x), b - h(x)) . Then N(x*, X*,b*) = (0,0)

and

D2L (x*) -Dh (x *°) T

D X M(x*,A*,b*) =

-Dh(x*) 0

Here , D2L(x*) denotes the Hessian matrix of L at x . To

solve N = 0 for x and X as functions of b , we will use

the implicit function theorem, of course. We need only show

that the above (n+N) x (n + N) matrix is one-to-one and

therefore non-singular by Theorem 1.3. d.

Suppose Dx) M(x*,a*,b*) (v,w) = (0,0) . Then

(+) D2 L(x)v - Dh (x) Tw = 0 and

(++) -Dh(x*)v = 0 .

Take the inner product of equation (+) with v . Since v - Dh(x*) = o

by (++), (+) becomes v D2L(x)v = D2L (x) (v,v) = 0 . By

hypothesis ii), v must be zero and (+) becomes -Dh(x*) s = 0

By hypothesis iii) , Dh (x *) T is in jective and wv is zero also.

Since our partial derivative is non-singular, the mplicit

Function Theorem (Theorem 1.3.d) tells us that there is a neighborhood

N lN N -
W of b* in 3R and C1 functions (: W- +lm , X: W + 2
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such that M(C(b) , A (b) ,b) (0,0) for all b E W with ((b*)

and A (b*) = _* . Choose W small enough so that hypotheses

ii) and iii) hold for all b E W and x e M(W) . (Conditions

- 'ii) and iii) define open sets since they can be expressed by the

non-vanishing of certain determinants.) By Theorem 3.4, each

( (b) maximi zes f on h-b .-

To see that A.(b) = -b (fO() (b) , note that

N
f ( (b)) = f( (b)) + YA (b)(b. - h"( (b)) since h(C (b)) = b

1 131 1 -

SL (((b) ,XA(b) ,b) .

Thus, Db(f o ).(b) v = D f ( (b)°~ o D (b) v + J(D;. (b)v)(b.-h" (((b) )

+ X(b) (I - Dh(U(b))-DE(b))v, by Theorem 11,

- X(b) + [Dxf (E(b))-A(b) -*Dh(((b))]DE(b) v , since b. - h.( (b)) = 01 1

= XA(b) , since M1 (E(b),A(b),b) = 0 .

Remark 1. Note that hypotheses ii) and iii) hold for most

functions f and for most constraint values b c JRN . The

latter part follows from Sard's Lemma and the former from the

f act that most functions on a manifold are "Morse functions ",

functions with only non-degenerate critical points . See Golubitsky-

Guillemin (1974) for proofs of these results and Dierker (1974)
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for further applications of these results to economics. The word "most"

is used in the sense of an open-dense subset or second-category subset

of the set of all constraint-values and of the set of all objective

functions.

Remark 2. Lagrange multipliers yield the same sensitivity

analysis when the constraints involve inequalities such as

g(x) > a, h(x) = b . Let I = {ilg.(x*) > a*} . For i s I

the Lagrange multiplier A* must be zero. On the other hand,

since these g. give ineffective constraints, the optimal value

of f does not change as one varies a. for i e I . Thus,

for i & I

o = A.= ~(o)(a,b)i a. - -

One is then led to the problem of maximizing f subject to

g (x) = aE , h(x) = b ; and one can argue as in Theorem 3.7.

Remark 3. Condition (iii) can be relaxed, though at some cost.

See Gauvin and Tole (1977) for results in this direction.

Remark 4. Theorem 3.7 is a special case of the "envelope theorem",

a theorem which has begun to play a large role in comparative statics.

In Theorem 3.S8, we state the unconstrained and constrained versions

of the envelope theorem. Their proof s are essentially the same as that.

of Theorem 3.7. Note that 3.8.a. states that the change in the

objective function adjusting x optimally is equal to the change in

the objective functior. when one does not adjust x.
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Theorem 3.8. a) Let f : n 1 +

f(x 1 ,...,xn;a) with parameter a . Let

value of x and let M (a) = f((a)). (M

objective function.) If C(a) is a C1

2D2 fC( (a) ,a) is non-degenerate, then

R be a Cl function

x = (a) be the maximizing

is called the indirect

function, e.g., if

dM af
d a) = (E (a),a

b) Let f,h 1 ,...,hN be C1

last variable is a parameter b .

of f(x;b) on the constraint set

functions on nX 1 where the

Let x = ((b) be the maximizer

Cb = {xIhi(R;b) = 0, i1,...,N}

Let M(b) = f(((b),b). Suppose (b) is a C function of b

e.g., (f,h) satisfies hypotheses similar to those of Theorem 3.7.

Then

(b)4 L(((b),b),M(b) = a

N
where L(x,b) = f(x;b) + E X h.(x;b)

i=1
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4. CONSTRAINT QUALIFICATIONS

4.A. Fritz John's First Order Necessary Conditions

In the last section, we discussed necessary and sufficient

conditions for constrained maxima under the condition that the

Jacobian matrix of the effective constraint functions be of maximal

rank. However, such a condition is too stringent for, some appli-

cations and too difficult to check for others. In this section,

we will examine much weaker and more geometric hypotheses on the

constraint set. Since we will impose conditions only on the con-

straint set and not on the function to be maximized, such condi-

tions are called "constraint qualifications". The most famous

early paper on constraint qualifications is that of Kuhn and

Tucker(1951). One can also find excellent surveys in

Arrow-Hurwicz-Uzawa (1961) and Mangasarian (1969).

In contrast to the approach for nondegenerate constraints,

one usually proves theorems about ineauality constraints first,

when working with constraint qualifications. Then, one can often

handle equality constraints,

like h (x) = 0, by writing them as the set of inequality con-

straints: h(x) > 0, -h(x) > 0

The following result of Fritz John (1948), is the broadest

first order necessary conditions. Condition (H) is usually

called the Fritz John Condition.

Theorem 4.1. Let f,g,,.. .,gM'hh'''''hN be C1 functions

onB and let x* be a local maximum of f on the set C =
g,h

(x £1 (x) > 0, h(x) = 0). Then, there exists non-zero
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(0110' l''' 'O ''' N) such that X.> 0, Ag. (x*) = 0

for all i < M, and

M N-
(H) XODf (x*) + E X. Dg.(x*) + E y. Dh. (x*). = 0.

Proof : We will first assume there are no equality con-

straints, i.e., that N = 0. We'11 need the following. important

lemm a, usually attributed to Gordan (1873) .

Lemma. The following statements are equivalent for

1 m . nn
vectors a ,...,a in : a) There exists no y e such

that a - v > 0 for all i; b) There exists non-zero
m.

(X1 , ... ,X ) > 0, in m such that E X. a = 0.
1 m -- 1 1- -

Proof of Lemma: b) == a) : Suppose b) with X > 0
k,i 4

and suppose there exists v > 0 with a - v > 0 for all i.

Then,

k -ia - v = -A ( E X. a. v) < 0, a contradiction.
-- ki. 2. -3

irk

m 1m
a) ==> b): Let X:RC_ m be the linear subspace {(a -b,.. .,a .b)

c Rm [jb & Rn }. By a) , Xf0lP = # , where P = {x c3R x . > 0

for all i}. So, there is a non-zero (X ,. .. , X) E P so that
m.

(X , ) is perpendicular to X. But then, E X. a1- b = 0
1 m I --

n

is no y C K so that Df (x*)v > 0 and Dg.(x*)v > 0 for all

i E~ {j ig.(x*) = Q). For, if there were such a v, f and

each g . for i E E would be increasing on the curve t +~ x* + tv

for small enough t. Since gw(x + tv) would still be positive

for i -Y E and t smallt x* would not m aximize f or. g > 0.-
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We can now apply Gordan's Lemma with ao = Vf (x*) and

ia = g. (x*) for i s E. So, there is a non-zero (Ai,..., )
10M

with A. = 0 for i ? E, A. > 0 for all j, and h 0Vf(x 0 ) +
10

M
SA. g. (x*) = 0.

11

If one now includes the equality constraints : h =. .. =hN = 0 ,

proof becomes a bit more complicated. We will outline the basic ide

- and leave the details to the reader. If Vh (x*),...,VhN(x*) are

linearly dependent, there is a non-zero (p1 ,...,yN,) such that

N
y *) = 0 . In this case, take = = 0

1 4 M 0 X =

On the other hand, if Dh (x*) has maximal rank N , h(0)

is an (n-N) -dimensional submanifold around x .In particular, by

,he implicit function theorem, there are coordinates

y, ... , yN,z , .. .. , zn-N on a neighborhood U of x such that in U:

i) h=0 if and only if y=O,

ii) z, ... , zn-N coordinatize Ufl h (0)

3h.
iii) - z (x) = 0 for all i and j , and3z .

J
h.

iv) -v (x) is I if i = j and 0 if i j

Work first on h(0_) fl U and apply the above argments to find

a non-zero (XO,...,AM) such that X.>0 and X.a. (x") = 0 for

each i anid

A0 3z~- (x) + 1 i- (x 0 ) = 0 , for k =1,.n-.
k i=1 Zk
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M
Let = - y X0 f + g.)(x*) for k = 1,4...,N. By iii) and

ak 1

iv)

M N
z Of + X Ug + y i'h.](x*) = 0 , k

. k1 21

M N
. [X0f + Ag + p p h.(x*) = 0 , h = 1,...,N .

1l 1 -

Therefore, the gradient of this Lagrangean is zero at x* in any

smooth coordinate system (Theorem 1.3) .

John's statement of this result dealt only with inequality

constraints. See Mangasarian and Fromowitz (1967) for the first

proof involving both inequality and equality constraints.

4.B. Constraint Qualifications

The following simple example illustrates the di fference

between Theorem 3.l.a and Theorem 4.1. Let f (x,y) = x and let

g(x,y) = y 2 + x 3 . Then, g (0) is the standard "cusp" in the

left half-plane of E2 ; and (0,0) is a global maximum of f

on g = 0 and on (-g) > 0. Since Df(0,0) = (1,0) and Dg(OrO)
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=(0,0), A 0 Df(0) 6- XDag(0) =O0'implies that X -- 0 and X
010 31

i s arbitrary.

In situations like this where AX = 0 , the Frit z John0.

Necessary Condition (=-) says nothing about the maxiization problem

since it does not involve the function f at all. Thus, it is

very i'tpor ant to introduce some conditions on g and h that

will acuara ntee the existence of a non-zero a in (H) . These

are the abov:e-mentioned "constraint qualifications". Roughly

sosakin;, we need to eliminate the case where the constraint set

C has a cusp at the point in question, i.e., we want C to

satisfy some weak convexity assumption.

Let us write C for our constraint set Cx s M 1g~(x) >
g

S= 1,.. .,M.0. As before, if x° s C , E(x°)E . {jig(xo) =0p}

and1 = (j Ig (x°) > 0} A constrained path from x° in direction

v is a smooth arc a :[0,c) I so that a (0) = x°, a' (0) = v

and a (t) C for all t . For such v , i t follows immediately
tlat D; %)V > 0.

Definition. The mapping g satisfies the Karush-Kuhn-Tuck

constraint c'sza ification ( KKT ) at °rG if for each

w~nDgE(x') > 0 (czons trained direction"t ) there is a con-

st= = ' o athifrom x ;in direction v. See KrLh (1939), K u=
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Definition. The mapping g satisfies the Kuhn-Tucker

weak constraint qualification (w - K - T) at x* c C if every
- - g

constrained direction at x0 lies in the smallest closed convex

cone containing {a' (0) a is a constrained path frdm x*}, i.e.

if Dg..,(x*)v > 0 implies that there are non-negative X1 ,.. .,1h

and smooth a.: [0,c) + C for i = l,...,k with a. (0) = xo.
g -1-

and v= Z LX. a!(0).
1 1

It is easy to see that g= x 1 , g2 = x2 'g 3 = ~12satisfies

(w-K-T) at (0, 0) but not (K K T) . See Arrow-Hurwicz-Uzawa (1961).

The following algebraic lemma is the key step in many

optimization theorems where the constraints may be degenerate.

Farkas ' Lemma: Let A be an (n x m) matrix and let

b be a fixed vector inE-R . If bv > 0 for all- v in

n m such that Av > 0, then there exist X1,.. ., ) all > 0I'l n -

such that

n
AT =b, i.e., I X. a. = b

i1l-1 -

n

where the a. are the columns of A.

Proof : We first recall some simple properties of convex

cones from Fenchel (1953) or Gale (1960). If B is a set of

vectors, let B' = {u I u - x > 0 for x £ Bl. Then, B' is a

closed, convex cone, called the polar cone of B.. If BC B2 '

then B' C B' ; and if B is a closed convex cone, B= (B' ).

Let L = {v I Av > 0}. Let B ={EX. a. X . >_ O}, a closed

convex cone . To see that B' C. L, le t v .B ', i.e .,

E.. a. v> 0 for all . > 0.i -i- -
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'Thus, Av > 0 (taking; . =_(O, ... ,O,1,0,...) ); and v c L.

Finally, B' C L imp~lies that L' C B" = B.,fl
The fiudamiental r esult on constraint qualifications is the

following theore..

T A^eor-I4.. Suppose that g: IRn IRS satisfies

(: T) or ( w-s"- T) at x° and that x° maximizes f on C.doom

T hen, there exist non- negativ X such that

D. (: + LA . Dg. (x°) = 0 and ?.g. (x°) = 0 for all i.

Proof [Arrow-Htricz-IJzawa (1961)]: Since (KRT) implies

(w-^-T), we will assume (w-K-T) at x° and apply Farkas' Lemma

wi.th A = Da (x) and b = - Vf (x°) . To see that -Vf (x°) c '
Cho~ose v ~L , . e ., Dg (x°) v > 0. By (w-K-T), there are con-

tr a in ed paths a1 , ... ,a., from x° and non-negative .,

1 - k

Thnen,

v *=-DL (x°)v

_ s o -incr(as° along ach(0 a..
- 1

.. ,., = n .=0d for i E£,such that
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We are now in a position to describe some other successful.

constraint qualifications--all of which guarantee some sort of

convexity or concavity for the constraint set. Condition d) below

is the non-degeneracy condition of Section 3. Here, we see how

it implies the weaker constraint qualifications of this section

Theorem 4.3 . Let f, g1 1 ... ,gM be C functions on ]Rn.

Suppose that x* maximizes f on C . Suppose g satisfies
g

one of the following constraint qualifications at x*:

a) [Arrow-Eurwicz-Uzawa(1961)} There is a vector v with

Dg.. (x*)v > 0 and DgE (x*)v > 0, with E = {i E Eig. is
E 2

pseudo-convex around x*} andE = E -

b) [Slater(1950)] There is a convex neighborhood U of x*

such that g is concave -on U and g (x') > 0 for some x' c U;

c) g is convex (e.g., linear);

d) DgE-(x*) has maximal rank.

Then, there exist X ,...,X > 0 with XAg (x") = 0 for all i and
1 N-1

D[f +EX.g.1(x*) = 0.

Proof : Following Arrow-Hurwicz--Uzawa(1961) , one shows that

a) im.plies condition (w-K-T) and that b) , c) , and d) each imply

a) . To see that a) implies (w-K-T) , let w be a constrained

direction. For e > 0, let $ (t) =x* + t (w + Ev), where v

is as in qualification a).

We first show that $ (t) is a constrained path. For

i .E,-&* (t) = Dg.(x*) ( + Ev) > 0 + EDg.(x*)v > 0.
t=o
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If isE d g 5(0 > 0 and so 0 = x°) =_ (OE (0) )<

g. C? t)) for t stall. If i e E1 , g io E is pseudo-convex;
and so 'd )((0)> 0implies a =c)() 0that 0l=g.1( (0) )_C g"( t))
for t s.a_ 1. If i E, then g z (0 (t) ) will be positive for

t small. So E is a constrained path. Thus,

w = (°~) '(0) = lip(s) '(0)

lies in the closure of {a' (0) ja (t) is a constrained path from x };

and constrain t qualification (w-K-T) is satisfied.

b) a) : Since g7. is concave, Dg . (x°) (x' -x°)> _.x')-g1(

C x') > 0 for any j sE. (See Theorem 1.6). Take v = x' -x°

in a).

c) a) : HereE is empty, So , take v = 0 .

a)== a) : Let b be a positive vector in ZE Since

D ( ):Mn ~- R has maximal rank, i t is onto and there

i s a v T 2n with D;5(x°) v= b > 0.U

once can now add equality constraints h 1jx) =..=h(x) = 0

to the inequality constraints g (x) > 0. In this case, the

standard device to replace the equality h. (x) = 0 by the two

ieualities h.(x) > 0~ -h .(x) > 0 . Parts i), ii), and iii)

C fcioso.M~ Suppose x° maximi~zes f on {x{;. x)> 0,

~_ ,.;.(x})=0,r j=,...rN} .Suppose any one o f the followincg

Cons trai n: ua=ifications hold:
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i) If Dg (x*) v > 0 and Dh(x*)v = 0, then there is a

C1 path a: [0,] - JRn with a(O) = x*, a' (0) = v, g(a(t) ) >0,

and h(a(t) ) = 0;

ii) h is pseudo-concave and pseudo-convex (e.g., linear)

and there is a v T Mn such that Dg (x*)v > 0, Dg (x*)v > 0,
-.. 2

and Dh(")v = 0, with E and E as in Theorem 4.3a;
- - -1I

iii) g is convex and h is linear;

iv) D :(x*) has maximal rank and DE (x*)v > 0, Dh(x*) = 0

n
_or sve v TOcR

For a more complete discussion of constraint qualifications

and their intrinsic geometry, see Mangasarian (1969) and Gould-

Tolle (1972) .

4.C. Second Order Conditions

Since Theorems 3.2 and 3.5 do not make non-degeneracy

assumptions on {x | g(x) > 0, h (x) = 0}1, they are just about

the most effective second order sufficient conditions around.

(However, stronger sufficient conditions using constraint quali-

fications are required for theoretical convergence of many

algorithms for solving non-linear problems.) We now stop for a

second to consider second order necessary conditions. Since one

would think that some second derivative would have to be negative

semi-definite at a maximum, it is surprising that the non-degeneracy

of the constraint set is not an easy hypothesis to remove in looking

for second order necessary conditions. Consider the following

example of McCormick (1967) :
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Maximize f x~y = -~y subject to g1 (x,y) = -x9 + y > 0

g2 (x,y) y3(,y + 3 > 0, and g3 x y x2 + (y+1) 2  1 > 0

It is easy to see that (0,0) is such a maximum and that constraint

:uali fication (KKT) is satisfied at (0, 0). The Lagrangian is

1L1+92 2

where A and ? are arbitrary. But D2L(Q,0) is

11

K l
a dos itive definite matrix.

McCoraick (1967) also proves the following second order

necessary condition.

Theorem 4.5. Suppose f ,g , ... g , hlr.../h are C2

functions on I~ and x ° maximizes f subject to g (x) > 0

and h (x) = 0. Suppose further that (g, h) satisfies (KKT) and

the following constraint qualification : for any v e z
2

such that Dg (x°) v = 0 and Dh x°)v = 0 there is a C2 arc

a: [0,21) ~ such that a(0) =x°, a (0) = v, g(a(t) )E 0

D2 (1f X g;. +v"h "1(x 0 )7(V,v) '0 for all v

D _~ C arid Dh (x° })v = 0 .
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The proof of this theorem is very similar to that of

Theorem 3.1.b and will be omitted. McCormick (1967) also shows

that the above second order cons-:raint qualification holds if

(DgE (x*) , Dh (x)) has maximal rank.

See Kuhn (1976) for an interesting historical survey of the

theorems of this chapter. He describes the various applied problems

which motivated the papers of Karush (1939), John (1948) and Kuhn-

Tucker (1951).
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_ 5. CO ;C.=AE PROGAMM ING

5A. Firszt Order necessary Conditions

In r n optLi.aization problems, one finds conditions that lead

naturally to concave constraint and objective functions. Fortunatelyr

for these situations one never has to use second order tests since,

as in Thecre~ 2.3, the first order necessary conditions are also

sufficient. -While discussing these results, we will first assumte that

there are only inequality constraints.

Theorem 5.1. Suppose that f rg1 1 *.. , gm are differentiable

concave functions on R n and that x° E C fx eR n[g (x) > 01}
g -

I .' there exi st non-negative X]i1... rXa such that

Df (x°) + Z X Dg .(x°) = 0 and lX. (x°) = 0 for all i

then x° Txi izes f (globally) on C. Furthermorer the set of
g

all such rax:iz ers is convex.

?roof : Note that L (x) = f {x) +±Z, , a. (x) is a norn negative

linear co w mation of concave functions and thus is concave. Since

the g are concave, C is convex. By Theorem 2.3, x ° is a globa

g. g

a co::tr-adi cl;ion%. So, x° maxim iz es v on C
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T=x'anax2 ximi.ze f in C~ then tx't+ (et 6C.

2 2

Sc, tx' (1-t) x is also a maximizer.

The converse of Theorem 5.2. is true provided there is an x'

with;(a > 0 by Theorem 4. 3.b. One can add equality constraints

{r. ... h = = 01 to the hypothesis of Theorem 5.1 proviaed the ha

are a:fine functi ons, i.e. , h.(x) = A.x + b. For then, -h anda

:. are concave and, as in section 4, one replaces the N equality

constrainlts h = 0 by the 2N inequality constraints ha > 0

-i> 0

Theorem 5.1 appears in Kuhn-Tucker (1951). Arrow-Enthoven (19621)

a- no: gsaia (1969) prove the fo llowing generalizations of

Theorem 3.1, relaxing the concavity hypotlises.

Theor en 5.2. Suppose that f,g 1 1 ... ., are C1 functions

on M , that f is pseudoconcave, and that the gz are quasi-

concave. Suppose that g (x°) > 0 and that there are non-negative

t.,..,.Mwith ?,.g. x°) = 0 for all i

(_ and DAL + i Xg.] (x 0 )(x - x°) < 0 for all xe C

(For examrple, D [f + E X z.gJ(x°) = 0.) Then, x° maximizes f

(gloally on
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Proof: Let x G C . Then, g(x) > 0 = gE(x*) . Since
g E

gE is quasiconcave, DgE(x°)-(x- x -) > 0 . Since AX = 0 and

AE > 0 , E A.Dq.(x*) (x - x*) > 0 . By (I) , Df(x*) (x - x*) < 0 .

Since f is pseudoconcave , f (x) < f (x 0 )

Note that we really only needed gE to be quasiconcave.

Finally, we note that for concave problems, not only is the

solution set convex but the optimal value function is a convex

function of the parameters.

Theorem 5.3 a) Suppose that f , g 1, ... , gm are concave functions

on Rn x Rp , where the last p variables are treated as parameters .

Let C = { x ER!g(x,b) > 0) and let ((b) be the set of maximizers

of f(-,b) on Cb Finally, Let v(b) = f(((b),b) . Then, v(b)

is a concave function of b_.

b) Now drop the dependence of g on the parameter b and

the concavity assumption on g . Suppose only that f (x,b) is

convex as a function of b . Then, v(b) , the maximum value of

f(xb) subject to the constraint g(x) > 0 , is also a convex

functi on.

Proof: a) Let b and b be two parameter values. Let1--2

x = (b) , i = 1, 2; so g(x.,b.) > 0 for i=1,2. Consider the

convex combination b3 = Xb + (1-)b for some A in [0,1). Since

g is concave in (x,b),

g (xg(1X)E2 > La2x 1 ,b9)+(1-A gi- 2 'b 2 ) - 0.

Therefore, Am (1-0)x2 is in 0C . Now by the definition of

v and the concavity of f
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v(Xb 1 +(1-X)b 2 ) > f(Xx 1 +(1-))x 2 , Xb 1+(1-X)b)

> Xf(x 1 ,b 1 ) + (1-X)f(x 2 ,b2 )

= Av(bi) + (1-X)v(b 2)

b) : Using the same notation as in a) , let x3 denote ((b 3 )

where 3 b1 +(1-X)b 2 . Note that g (x.) > 0 for i=1,2,3; in

particular x 3  is in the constraint set when and x2 were

chosen. This implies

f (x 3 1bl) < f( 1 1) E=v~b 1 ) and

f(x3,b2) < f(x2,b2) v(b2-(3'-2 -2'-2 .2

Therefore, v(Xb 1 + (1- X) b 2) = f(x 3 Xb+(1- ) b 2)

< Xf (x 3 ,b 1 ) + (1-X)f (x 3 ,b 2 ) by the cunvexity

of f in b

< Xv(b 1 ) + (1-X)v(b 2 )

and v is convex in b . []

Let v (b) denote the maximum value function for the problem

of maximizing f (x_) subject to the constraints g~x) > b , where

f, g 1 , .. . g are concave functions. Le t X (b) denote the

corresponding multiplier. Theorem 3.7 showed that in the smooth,
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non-degenerate case ( (b) = -bb) One can use Theorem 5.3
1 ab 1

and some basic theory about concave functions to show that when

one replaces "smooth, non-degenerate" by "concave":

v (b+he.) -v(b) v (b+he.) -v(b)
Lim < X.(b) < lim -
h+h ~ h+0- h

See Dixit (1976) for-further discussion.

5.B. Saddle Point Conditions

In order to compute maxima of f under constraints, one often

considers the corresponding "saddle point problem", especially when

the functions involved are concave.

Definition. Let f , g 1 ,... ,gM be continuous functions on En

Consider the Lagrangian L(x,XA, ... ,A) = f(x) + E AXg (x) as a

function of x and A . Then, (x ,A ) is a (non-negative) saddle

point of L if

(J) L(x,A*) < L(x,X*) < L(x*,X)

for all A > O in and all x E Rn (and all x>0 in Rn

where x* > 0.)

Theorem 5.4. If (x*, 1 *) is a (non-negative) saddle point

for L as above, then x* maximizes f subject to g > 0 (and

x > 0).

Proof: First, show g (x*) > 0 . The right side of (3) means

that I(X- - p*g2(x) > 0 for all A.i> 0 . For any fixed K,
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plu inX = X +1>O0 and X.=' for j XK. Then,K 3 3

_ x° > 0 and '.1 cg ,(x°) > 0=

S ettin;: X = 0 in (J) yields, °g.(x < 0 .So

2 a.(fx 0 ) = 0 and thus each X~g. (x°) = 0 . f -g (X) > .o0(and

Y.> 0,f lx)< f (x) + 2 X g. (x) r since each X~g.-(x) > 0
11- L .

< rf(x') + E X'g .(x°) , by (3)

=fix°) 0

In con cave progralrning, solutions to the saddle point- problem

are mrore or less equivalent to solutions of the programming problem,

as Kuhn and Tucker (19 51) pointed out:

Theoreya . 5. Suppose that f .g,.. are C1ocv ucin

a n.d that x° nmaximrizes f subj ect tog>0(adx>)

S opose further that g (x t) > 0 for some x' (constraint qua Ii fication

4. 3 .b) or that g is linear-. Then, there exists X° > 0 such that

(x0 , °) is a (non-negative) saddle point- of

L(x,X) -= f(x) + X 0* _

Proof: By Theorem -4.3 , the Kuhn-Tucker conditions are satis-

fid i.e. , there exists X° > 0 with A° g (xa) = 0 and

r16
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On the other hand, for any X > 0 in ]R

L(x*,A*) = f(x*) + X* . j(x*) (since a* -g(x) = 0)

= f(x*) < f(x*) + a "X x*)

= L(x*,X)

We will see in chapter six that the saddle point approach has

certain advantages in economic problems. Furthermore, as we mentioned

earlier, one can use this approach to compute solutions of concave

programming problems and their corresponding multipliers.

5.C Duality in Linear Programming

An important special case of concave programming is linear

programming; and one of the most powerful tools in the theory of

linear programming is the existence of a dual problem to every linear

problem. If the original (or primal) problem arises from an economics

question, the -dual problem usually is filled with economic significance.

An illustration of this fact will be discussed in section 6.C.

Consider the linear problem of maximizing

f(x) =c . x , subject to the constraints
(L)

Ax ib in RM and x 2O in En

Then, the dual problem is that of minimizing
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F (v) = b , subject to the constraints

A > c in R n and > 0 in &

If the j''' inequality in the constraint Ax < b in (L) becomes

an equality constraint, then the constraint Y.> 0 is dropped

in (M)S.

We will use the above saddle point theorems to give simple

proofs of the basic facts on duality.

Theorem 5.6. Let c e Rn , b GR , and let A: . n +M

be a linear map. Let (L) denote the above primal problem and let

(M) denote its dual. Then,

i) x E M.n solves (L) if and only if there is a e R

such that (x,v) is a saddle point of L(x,) =f (x) + -(b -Ax)

ii) if x e B. n solves (L) , then there exists a y 6

which solves (M) , and conversely. Furthermore, c *_x = y_ - b .

iii) if the constraint sets of (L) and of (M) are nor-empty,

then both problems have solutions.

iv) if x' is in the constraint set of (L) and y' is in the

constraint set of (M) such that c_ -x' = b -' , then x'

solves (L) and v' solves (M)

Proof: Part i) foLlows directly from Theorems S. 4 and 5.5.

The Lagrangian for (M4) is M (y,x) =-b - + (vA c) -x -Note

that M (y, x) = -L(x, y) . By i ), if x solve s CL) , there is a

x such that (x,y) is a saddle point of L , i.e., (y,x) is a saddle

point for -M . By i) again, y solves (M) - Since y - (b -Ax) = 0
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and (ZA - c) - x = 0 for the optimal x and y by Theorem 4.3,

S-b = v-(Ax) = (yA) - x = c - :r , and ii) follows.

To prove iii) , let Z* lie in the constraint set of ~(M) and

x* in the constraint set of (L) . Then ,

(N) c -x_*<_ 0 A -x_*=Z* Ax _y[ * b

Thus, the linear function f is bounded on the closed constraint

set of Problem (L) . Consequently, f achieves its maximum on this

set. One argues similarly for CM).

To prove iv) , let x' and y' be as in the hypothesis and

let'- x* be any vector in the constraint set of (L) . By (N) ,

c - x*0 <j *'-b-=c-x'

i.e., x' maximizes c - x on the constraint set for (L) . I

Note that by Theorem 5. 3, the maximum value function v (c,b) of

problem (L) is a concave function of (c,b).

Karlin (1959), Mangasarian (1969) , and Intriigator (1971)

have excellent discussions of duality theory . Mangasarian (1969)

also gives an introduction to the study of non-Linear duality.

Kuhn (1976) discusses the origins of duality in mathematical

programming.
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§6. APPLICATIONS OF MATHEMATICAL PROGRAMMING TO ECONOMICS

Since one of the basic problems of economics is the allocation

of scarce resources among competing groups, it is natural that much

of mathematical economics deals with constrained maximization prob-

lems. In this chapter, we will examine some of the important pro-

gramming problems that arise in economics, and we will try to use

the theory of the last four chapters to gain some insights into these

problems. Most theoretical books on mathematical economics study

these and related problems. The reader should refer to Debreu (1959),

Karlin (1959), Baumol (1961), Kuhn (1968), Intrilligator (1971),

Malinvaud (1972), Silberberg (1978), and Varian (1978), for further

discussion of such problems. Kuhn (1968) and Intrilligator (1971)

base their entire presentations on programming methods.

6A Theory of the Consumer of Household

We first examine an individual consumer's (or family's)

consumption decision. We suppose that there are n commodities

with 1 < n < = and with x. e R denoting the amount of the ith

commodity. A consumption vector or commodity vector is an

x = (x 1 ,...,xn) in Rn , listing the amount of each commodity to

be consumed. To develop our theory, we make the following assump-

tions about our consumer and the set of available commodity vectors.

We assume that each commodity is perfectly divisible so that

any non-negative quantity can be purchased. Thus, the commodity space,

or space of all feasible commodity vectors, is

C = {x E Rn x 1 > O}
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We need not assume a bound on the availability of any commodity

since budget restrictions will give us natural bounds.

We further assume that the tastes or preferences of the

consumer are summarized by a complete pre-ordering-( on C . The

consumer prefers commodity vector y to commodity vector x (or

finds them equally preferable) if and only if x y . We assume

that this pre-ordering is continuous in that, for each x e C ,

{y E C x<y} and {y e C I y <(x} are both closed sets. By a

theorem of Debreu (1959), there is a continuous function u : C -+ R

such that x-Z y if and only if u(x) < u(y) . The function u is

called a utility function. (Note that infinitely many utility

functions can represent the same preference ordering.)

We assume a fixed price vector p = (p ,...,p) ) R with each

a positive number giving the unit price of the ith commodity.

The consumer has an initial wealth w in R+ . In some problems,

he has an initial commodity vector x0 6 C , in which case his initial

wealth is w = p - x* .

Finally, the consumer's goal is to select the commodity vector

x 6 C which is affordable yet maximizes his preference ordering among

all affordable vectors in C Mathematically, his problem is to find

x 6 Rn such that x maximizes u subject to the constraints

(Q) 0 < x., for i = 1,... ,n ; p -x < w.

Note that since the constraint set is closed and bounded and u is

continuous, problem (Q) has a solution for each a and w.

Our first application of programming theory to this problem is

to derive the norm that an interior optimal allocazion the marginal
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rate of substitution of good i with respect to good j equals

p./p. . At commodity vector x° E C , the marginal rate of substi-
1 J

tution (MRS) of good j with respect to good i is

au o Bu
(xa) Cx ) . It measures (at the infinitestimal level) the

1x J
additional quantity of good j which would compensate the consumer

for a one-unit loss of good i while keeping the consumer's utility

constant. To see this, fix xk for k # i,j and write

u(x ,...,xi,xi+1 ' X' ' . x. ),..,x)- = u(x )

to indicate how a change in x. brings about a change in x. at
2. J

the same utility level. Taking the derivatives with respect to xi

and evaluating x° yields

udx.
2u X)+-Bu 1o x o) = 0 or

dxj Bu o u o

i 1 J

The MRS is the slope of the consumer's indifference set,

{yiu(y) = u(x 0 )}, at x° in the i-j direction and measures the

consumer's relative internal valuation of goods i and j . The

optimality condition states that this internal valuation should equal

the market 's valuation, p/
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Theorem 6 .1 Suppose that u C + R is a C utility

function with the property that for each x e C there is an i

such that (x) > 0 . Suppose that p is a positive price

vector and that x e C is a solution to problem (0) above. Then,

there is a n > 0 in R such that

i) - (x) < p for i = 1,...,n with equality
p. ax.-

1 1

for those i with x. ° 0 ,1

ii) thus, if x° lies in the interior of C , ux 0) > 0

.for all i and Vu(x 0 ) = p

iii) if x° and x. are non-zero, then (x°) > 0
13 ax.

J

l au o 1 3u o au o au o i
-- (x ) -(x ), and --- (x ) - (x ) - ,

J J J J

iv) p.- x 0 = w (all income is spent) .

Conversely, if u is C1 and pseudoconcave (e.g., u is C2 and quasi-concav

and some ! is positive at each x) and if x0  satisfies i) and
Qx.

iv) for some n > 0 , then x° is a global solution of problem (0).

Figure 1 below illustrates Theorem 6.1 for an interior solution

_ of problem (0) when n = 2 . The straight line through (-i- , 0).

and (0, -i) is the price line p x~ + p2 2 , which is perpendicular

to the (dotted) price vector (p1 , p2 The curved lines are the

level se ts of u with u increasing as x1 and x 2 go to +=

S0 0
Note that at the maximizer x ,Du~x) is perpendicular to the pr-ice
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line and therefore parallel to (p 1 , p2) as ii) indicates.

p 2

Vu(x )

w

P2

xx

Figure 1

Proof: One merely applies the Kuhn-Tucker conditions of Theorem

4.3 to problem (0). Since the constraints are defined by linear func-

tions, constraint qualifications KKT and (4.3.c) hold automat-

ically. By Theorem 4.3, there are non-negative Lagrange multipliers

X .. , An, ra such that for each i

Cux ) + X. - n p. = 0Bx. - 1.



74

0 1. au o 2.
where A.x. = I(w - -"x ) = 0 . Since 1 au (x ) - 71 = -- < 0

1 P. x -p. -

and 1X.x. = 0 , i), ii) and iii) follow. Since -- Cx ) > 0 for

some i and p.> 0 , r > 0 by i). Since n(w - P*- x") = 0 ,

w = - x° as in iv).

The converse follows from Theorem 5.2. 1

The correspondence which sends each price vector g and each

initial wealth w to the corresponding optimal commodity vector or

vectors (i.e., solutions of problem (0)) is called the demand cor-

respondence and will be written as

(2, w) ((p, w) i C

If u is strictly concave, then ( is a single valued function.

Furthermore, if one makes the slightly stronger assumptions that u

is C and that D2u(x) is negative definite on C , then ( is

a C function when it takes on values in the interior of C . One

can use the Kuhn-Tucker equations (i) in Theorem 6.1 to compute the

derivatives of " .

Theorem 6.2 Suppose that ua is a C2 utility function on-

C with ( the corresponding demand correspondence. Suppose that

for some x 0 in the interior of C , some pri.ce vector p0 and

some wealth w' = *0 x0 , x' - ~( ,3) . Suppose that u o)> 0-- 3x -
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for some i and D2u(x ) (v,v) < 0 for all non-zero v such that

.p - v = 0 . (For example, D2 uo(x) may be negative definite).

Then, there are neighborhoods U of x° , V of p° , and

W of w such that : V x W +3 U is a C1 mapping. Furthermore,

the multiplier n in Theorem 6.1 also equals au( (p , w)) and therefore
aw

measures the sensitivity of the optimal value of u to change in

the initial wealth w . (It is often called the marginal utility of

money).

Proof: Choose a neighborhood U of x° such that for all

x eU ,x.> 0 for all i and au (x) > 0 for some j . Now
- 1 

1 

ax.i -

J

apply Theorem 3.7 to theproblem of maximizing u under the constraints

xeu 1  and x p=w. I

One can use some further optimization theory to derive more 4

properties of ( and its derivatives. Consider first the related

problem of choosing the commodity bundle which achieves a fixed level

of utility at minimum expenditure, i.e.,

(0') Minimize p'x subject to u(x) > u and x > 0

Let z(p,u) be the minimizer of (o') ; z is called the compensated (or

Hicksion) demand function since in its construction, income changes

compensate for price changes to keep the consumer at a fixed Level of

utility.

In addition, consider the optimal value functions for problems

(cD) and (c') . The function v(p,w) = u(((p,w)) is called the

,consumer' s indirect utility function and M4(p,u) = p- z(p,u) is

called the consumer' s expenditure function. Note that M is a
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concave function of p by Theorem 5.3.b. These functions play a

central role in modern consumer theory. We first list some elementary -

facts about them. The nonlinear programming problems (CD) and

(0') are dual to each other in a natural way. Statements 4) and

5) in Theorem 6.3 are non-linear analogues of Theorem 5.5.

Theorem 6.3. Let E,z,v, and M be as in the above paragraph.

Then

1)

2)

3)

4)

5)

((Ap,Aw) = ((p,w) for all X > 0 (homogeneity)

z(p,u) = ((p,M(p,u))

C(p,w) = Z(P,v(P,W))

u = v(p,M(p,u))

w = M(p,v(p,w))

Proof. 1) follows from the fact that P-x = w and

(Xp)-"x = (lw) are- equivalent constraints. To prove 3), we show that

if x* solves (0) , then it solves (a') with u = u(x*) . By the

Saddle Point Theorem 5.5,

(*) u(x) + X*(w--x) < u(x*)+X*(w-p.x*)

for all x > 0 where X* is the multiplier in (M) corresponding

to x* . Let x' be an arbitrary bundle in the constraint set of

(CD' ), i.e.,

(**) u(x') > u(x*) and x' > 0

Then, <u(x')+A*(w-p-x'

<u (x*)+-A* (w-p -x*)
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by (**) and (*) . These imply that p-x' > p-x* , and so x* is

a solution of (cD')

The proof of 2) is similar; 4) and 5) follow directly from 2)

and 3) by evaluation. [3

We can now compute some properties of ( and its derivatives.

Theorem 6.4. Assume that Ezv, and M are C1 functions .

(See, for example, the hypotheses of Theorem 6.2.) Then,

1) E. (p,w) = av(p,w) av(p,w) ( ,
1) ( ,W - . - - (Roy's Identity)

dpi

2) az J (p, v(p,w) ) (p, W)

p p(p,w) - a . ~ Ew i

(Slutsky Equation)

3z. (p,u)
3) The matrix of "substitution terms" (( )).

api

= ( ( (p,w) + = (p,w))) is a symmetric, negative semi-
ap. aw

definite matrix.

az. 3 E
4) In particular, az (p,u) < 0 and + < 0

Proof: 1) follows from differentiating 4) in the statement

of Theorem 6.3 with respect to p

p 3

dpi aP1
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But (p,u) = (- , since by the Envelope Theorem 3.8.b,
3pi

***) M(p,u) _-= [x-p + y(u(x) -u(x*))] = x= z.(p,u) =

ap. p. - - - - -
2. i

Conclusion 2) follows front differentiating equation 2) in Theorem

6.3 with respect to p.

3Z (p, u) (pa
(p,w)+-4 (p,w)"-- ( .

aP.(P.-i ow - P

Then, apply (***) and rearrange terms. To prove the symmetry in 3),

recall from (***) that --- (p,u) = z.(p,u) . So,
ap. -1 -

3z. 2M 32M z.
_ 4-- . Since M is concave by Theorem 5.3.b,

J J 1 21 J l

its Hessian is negative-semi-definite. Finally 4) follows from

the fact that the lxL principal minors of a negative semi-definite

matrix must be non-postive. []

The Slutsky~fequation in 2) of Theorem 6.4 is an important

relationship between the two demand function ( and z . If we

write this equation as

35. 3az.3.
Ax ~ Ap = -i(p,u) - Ap. - - x. - Ap ,

we see that the change in demand Ax. due to a change in price op~

decomposes into two separate effects: the substitution effect
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Bz.
J (pu) - Api ,- during which utility is held constant, and the

income effect - x. -Ap , in which x.Ap" represents the

change in income.

It turns out that conclusion 3) in Theorem 6.4 provides a

necessary and sufficient condition for an observed demand function

((p,w) to arise from utility maximization. See Samelson (1950) and

Hurwicz and Uzawa (1971).

6B. Theory of the Firm or Producer.

We turn now to an analysis of the economic behavior of a firm.

A firm uses inputs such as materials, labor, and land to produce out-

puts which it sells to households or other firms. Given the price

and supply of each input, the price and demand of each output, an!I

the technological relations between input and output, the firm must

decide how much to produce and how much input to use in this production

in order to meet its economic objectives.

Suppose that the firm in question produces a single commodity

from n inputs. Let xi denote the quantity of ith input,

x = (x 1 ,... ,xn) the resulting input vector, and y e R the amount

of output produced. We assume that there is a production function

f : n + R , where f(x) denotes the maximum output for each input

vector x.

In order to examine the most general situations, let p1 (y)

and p2 (x) denote the inverse demand functions for output and input,

respectively, i.e., p1 (y) is the unit price a firm can charge if

its level of output is y and p2(x e is the input price vector

which the firm will pay if it needs input vector x . For a firm in
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perfect competition, p and p2 are constant; for a monopolist

firm, p2 is constant but p is not and the firm can control the

price of its product by varying production amounts; for a monopson-

istic firm, p1  is constant but p2  is not and the firm can influence

the price of an input by varying its purchases of the input.

Let us assume first that our firm wants to maximize its profit,

II = p y- p2(x) x , where y = f (x) We can use the results

of chapter two to find a necessary condition for such a maximum,

namely that the marginal revenue product equals the marginal cost

of each input. The marginal cost of input k is, of course,

Lx 2  X The inal revenue product of input k is the

dp (y) y
marginal revenue, , times the marginal product

y y = f (x)I
3ff(x)

of input k , .f X To derive this norm, one merely sets

the first derivative of II with respect to xk equal to zero.

If one considers the case of a firm in perfect competition

where p1 = p and p 2 = w are constant, the above norm becomes

(P) p Lf(x ) = w4.

If one assuimes further that the production function is concave, then

one learns from Theorem 2. 3 that C?) is also a sufficient condition

for x" to be an input which maximizes profit. In this case, the

firm is operating at the optimal input level if an additional unit

of output will bring in as much revenue as it costs to produce.
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Furthermore, as in section 6.A, one can define X(p,w) = x 0  to

be the solution of (P) for a fixed p and w . This correspondence

is called the input demand correspondence. If f is strictly

concave, X is a single-valued function, which is homogeneous of

degree zero. If f is C2  and D2 f (x) is negative definite for

all x , then X is C1 . The function F (p,w) = f (X (p,w) ) is

called the output supply function, a component in the usual demand/supply
analysis.

One can derive conditions on the derivatives of these functions

by using techniques similar to those in Theorems 6.3 and 6.4 of the

previous section. Let r*(p,w) = r(X(p,w)) be the optimal profit

function. By the Envelope Theorem 3.8.a,

(§) * (p,w) = y = and - -

() = y = F(p,w) and = -xi = -X(p,w)

The latter leads to the reciprocity condition:

3~X "2T.* 2n* BXi
(p,w) = - - - (p,w) , i.e.,

1 J J i J

the effect of a change in the wage of the ith input on the demand

for the jth input is the same as the effect of a change in the wage

th .thof the j input on the demand for the i input. The first

equation in (§) leads to:

so an increase in the output price raises the demand for input i if

and only if an increase in the wage of input i reduces the optimal
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output. Finally, by Theorem 5.3.b, w*(p,w) is a convex function,

and so its Hessian is positive semi-definite. In particular,

aXi 327r
this means that a--= -- 2 must be negative for all i ; an

l.w

increase in the wage of an input always leads to a reduction in its

demand. See Varian (1978) and Silberberg (1978) for further

discussion.

Let us now change the problem a little. Suppose that the firm

in question has its policy determined by a manager whose objective is

to maximize sales, i.e., revenue, without letting the profit drop

below some fixed level. (See Baumol (1961) for a complete discussion

of such firms and Kuhn (1968) for the following mathematical analysis).

To make things even more interesting, let us add an advertising cost

a e + to this problem. Let R(y,a) denote the firm's revenue

when the level of production is y E B, and the advertising cost is

a E R, . Let C(y) denote the cost of manufacturing y units of

output. We will assume not only that C and R are C1 functions

but also that C'(y) > 0 (increased production implies increased

costs) and > 0 (increased advertising brings in increased reve-

nues). Our programming problem is to maximize R(y,a) subject to

the constraints y > 0 , a > 0 , and

ET 2 R(y,a) - C(y) - a > mn
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Assume that (y , a ) is an optimal solution with y > 0 . In

addition, assume that some constraint qualification is valid at

(y°, a°) , e.g., R may be concave and C convex. Then, there are

o o
non-negative multipliers y and v- such that the Lagrangian

o 0
L(y, a) = R(y, a) + j a + v- [R(y, a) - C(y) - a - m}

has a critical point at (y°, a ) . In other words,

BL 0 0 0 0 0 o BR o (y )o 0 n
(Q) -- (y , a , X , y0, v-) = (1 + v- )--R-V-(y°) = 0 and

ay ay

a L 0oao o o o = +,o 9R+ o=0(R) - (y 0 , a 0 , A 0 , y 0 , v-) = (1 + v-) -- + yU - =

0R 0 0 . - o
Since > 0 and v- >-0 , y - v°-< 0 in (R). Since y > 0 ,

o 0 0
v- must be strictly positive. Therefore, II(y , a ) = r ; the

profit realized is the minimal profit allowed. Since v- > 0 and

C' (y ) > 0 in (Q), R(y0 a0 ) > 0 and marginal revenue is positive

ay

at the optimum level. On the other hand, the marginal profit,

-- ,is negative at (y , a ) since
a y

o o o 11,0 0 L 0 0 - 0
(1 + v-) (y , a ) - (y , a ) - C (y)

= 0- C(y0) < 0

Consequently, output y' is greater than the output in the profit-

maximizing situation.
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Finally, by Theorem 3.7, the multiplier v9 can be interpreted

as the marginal loss in maximal revenue with respect to the limit

on profit.

Just as we added advertising cost to our study of a sales maxi-

mizing firm, so the economist can use programming principles to de-

termine the effect of such items as sales taxes and.regulatory con-

straints on the optimal behavior of a firm. For example, see Averch

and Johnson (1962) for an analysis of how a "fair rate of return"

regulatory-constraint could alter the behavior of a monopolist firm.

§6.C Activity Analysis

In this section, we will apply the linear duality theory, dis-

cussed at the end of chapter five, to the important problem of the

activity analysis of production. In this model, a firm in a compet-

itive economy produces k different outputs from rn different re-

sources or inputs. Furthermore, different combinations of inputs

can be used to produce the same combination of outputs,-_ but these

transformations are organized into n processes or activities, where
1 < n < . The 'th cit fo

1 < n < . The j activity, for example, combines the k inputs

in fixed proportions into the m outputs in fixed proportions at

some non-negative level or intensity, z. > 0
J -

The firm's technology is then described by an m x n matrix
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A = ((a..)) and a k x n matrix B = ((b..)) , where a.. > 0IJ 13 1
th- this the amount of the j input used in operating the j activity

th th t vt
at unit intensity and b.. > 0 is the amount of the ith output

produced when process j runs at unit intensity. If the firm con-

ducts all its activities at the same time with the th activity at

level z. > 0 for j = 1, ... , n , then it transforms the input

vector x = Az E m into the output vector = BzE 3R.
Let pD >0 denote the fixed market price for the ith output,

i = 1, ... , k: and let q > 0 denote the fixed market price for

th.
the i input, i = 1, .. , m . Thus, p = (p, ... , p}) and

1 k

S= ( , ... , ) are the corresponding price vectors in an economy

of perfect competition. Let b. denote the available stock of the
1

.th
it resource or input, with b= (b1 , ... , b )

1 k

If the firm's director wants to maximize profits, he must solve

the following linear programming problem:

Find an activity vector z in3" such that z maximizes

v - q_ x subject to

x = Az , = Bz , x < b r z > 0 .

If we substitute the equality constraints into the profit function,

the problem becomes:

Find z G 3Rn such that z maximizes

pBz Q Az
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subject to Az <b . and z> O.

t t n
Finally, if we let r = Bp-ACC in ,Dr . denotes the

J
value or profit of the output achieved by operating the jth activity

at unit level. We then want to choose z to

(S) maximize rz subject to AzC<b and z>0.

One can, of course, use the simplex algorithm to solve this

linear programming problem; but let us see what we can learn about

the problem and its solution from our programnming theory. The La-

grangian is

L (z, x) = r - z + A - (b - Az)

The Kuhn-Tucker necessary and sufficient conditions for a solution

are that we find a A > 0 in Rm and a z>O in En such that

AtAt<=0,z r (b Az)f=0

S< , z (r A)(b-Az)

If we have such a X , then by Theorem 3.9, X. can be regarded as
2.h

the inntesimal change in maximal profit as the amount of the ith

resource that is available increases. It can therefore be interpreted

as the firm' s .internal valuation of the ith resource and is usually

called the firm's imputed or shadow prc of this input.

This naturally leads us to consider the dual problem, as dis-

cussed in section 5. The dual problem to (S) is to
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(S') find A > 0 in .JR1  such that A minimizes A- b subject

to the constraints AA > r

If A is the shadow price vector described above, X - b is the

total value which the firm sets on its resources in stock (in its

internal price system) . Examining the constraint in (S') , one no-

tices that the jth component of AA = AtA is the total value of the

output as a result of operating activity j at unit intensity in

the internal price system A and that r. is the actual value of
J

this output (in the external price system). Therefore, in solving

(S') , the firm tries to determine a valuation or internal price

system on its resources so that the value of its resources will be

minimized under the constraint that when the firm operates any ac-

tivity at unit level the total value of the resulting output in the

internal valuation must be at least as large as its total value in

the market's price system. Karlin (19 59) summarizes this constraint

by stating that "internal prices cannot be set to get more value

from a product than you put into it".

Let z* 6: Rn be the activity vector which solves (S) and

let A* be the shadow price vector which solves (S') . By Theorem

5.5, z* - r = _*- b , i.e., the optimal total profit in the activity

analysis problem equals the minimal total (internal) value of the

resources in stock. This equation is closely related to the macro-

economic norm that at an equilibrium the value of the final goods

produced (national product) must equal the cost of the primary factors

of production (national income).
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An alternative but related interpretation of the dual problem

is the viewpoint of a competitor who wants to buy the resources

of the producer (possibly believing that he can use them more

efficiently). He offers to pay the producer the amount Ai for

each unit of resource i . The constraint AA > r assures the

original producer that "the amount offered is at least as much as

he could obtain from any production schedule". (Gale (1960).) The

competitor tries to minimize the total cost of his purchase subject

to the above assurance to the producer. By (N) , the producer has

nothing to lose and may even gain if his competitor misses the

optimal buy-out price.

Finally, in prograrming problems where the primal problem describes

the iearch for the best joint strategy in a decentralized economic

system, the dual problem often can be interpreted as a central

planner's viewpoint of the same system.
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Finally, we can use the activity analysis model to gain further

insight into the economists' enthusiasm for the saddle point approach

to concave programming. Generalizing (S), consider the problem of

maximizing f(x) subject to x > 0 and g(x) < b . Assume that

x > 0 represents the activity level of a firm's operations, f is

a C concave function representing the value of the firm's output

for any given activity level, b is a constant vector which measures

the amount of primary resources that are available, and g(x) is a

measure of the amount of these resources used when the activity

vector is x .

The Lagrangian function for this problem is

L(x, A) = f(x) + X[b - g(x)] , and, as mentioned above, A can be

viewed as the vector of shadow prices for the primary resources.

Thus, L is the combined value of the firm's outputs and the unused

balance of primary resources. Suppose there is an x' > 0 with

g(x') < b , and that x maximizes f subject to g(x) < b and

x > 0 . Then, by Theorem 5.5, there is a A° > 0 such that L has a

saddle point at (x 0 , X0 ) , i.e.,

L(x, A°) < L(x , XA) < L(x , X) for all x > 0, A > 0

(By Theorem 5.4, x° solves problem (S) if (x°, )A) is a saddle point

of L .) The existence of (x°, X0 ) expresses an equilibrium

between the value of the output and the prices of the available re-

sources and is a basic step in the theory of equilibria for produc-

tion economics.

For further discussion on the activity analysis problem the

reader is referred to Koopmans (1951), Karlin (1959), Charnes-Cooper

(1961), Varaiya (1972), and Silverberg, (1978)
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§7. VECTOR MAXIMIZATION

7.A Preliminaries

In the applications of chapter six, we studied an individual

consumer trying to maximize his utility function under budgetary

constraints and a single firm striving to maximize its profits or

sales while producing a single output from a stock of available

resources. The next step is to examine economies where a number of

consumers compete among themselves for goods and services and where

firms producing a number of products decide on optimal output vectors.

To treat such problems as a large number of independent maximization

problems would be to ignore not only the boundedness of the stock of

available goods and resources but also the interactions between the

various components of the economy. More importantly, such a treatment

will usually lead to a mathematical problem with an empty solution set.

We therefore introduce the more natural notion of a vector maximum

or Pareto optimum for situations where a number of different parti-

cipants are trying to meet their independent objectives.

Definition. Let C be a subset of n. Let u , ... ,ua

bereal-valuedfunctions on C . Then, u = (u,...,ua) has a

vector maximum or Pareto optimum at x* e C if there is no-

x 6 C such that u. (x*) i u. (x) for all i and u. (x*) < u. (x)

for some j, i.e. , such that u(x*) u(x) but u(x*) / u(x) in

the usual partial ordering on P. a

A number of recent papers have proven necessary conditions and

sufficient conditions for vector maximization on constrained sets
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without using any of the non-linear programming results surveyed

in chapters 3,4, and 5. In this chapter, we will show how many

of these vector maximization theorems do indeed follow easily

from the scalar maximization theorems we have studied. The

following theorem is the key step in this process.

Theorem 7.1. Let C be a subset of JR n . A necessary and

sufficient condition that u: iR n-+ JR a have a Pareto optimum at

x* on C is that x* maximizes each u. on the constraint set

C. {x 6 Clu.(x) - u..(x*) > O;j = 1,... ,aij # i}

x(Proof: Suppose that u has a Pareto optimum on C at x*

If x does :not maximize uk on Ck ,then there is an x 6 C suc

that u.(x) > u.(x*) for all j $ k and uk(x) > uk(x*) , contradicti;

the Pareto optimality of x*.

Conversely, suppose that x* maximizes each uk on Ck

If x* is not a Pareto optimum on C , there is an x 6 C and a k

such that u.(x) .>iu.(x*) for all i and uk(x) > uk(x*) , contra-
i- - k-

dicting the maximality of x* for uk on Ck.*

Although this result is probably well known to many who work in

this area, I have not found an explicit statement of it in the literatur

Some authors, such as EI-Hodiri (1971) and Wan (1975) , have noted

and used parts of this theorem in their work.
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7.B Necessary Conditions for optimality

In this section, we'll use the results of chapters 3 and 4 to

derive necessary conditions for x° e3R to be a Pareto optimum.

Throghot ths sctio, Cg ,h will denote the constraint set

{x 3 iinjg "(x) >o, i = if ... M; h i(x) = O, j = 1, ... N }

Theorem 7.2. Suppose that u1  "ra~1"'g'1 "'Nare

C1 functions on 3R . Suppose that x° 6 Cgh is a Pareto

optimtum for u = (u 1 1 .. . jua) on C gh. Then, there exist scalars

al .. ,a a ,a rl 'M" 1 l'* .. 11N such that

cY.> 0 ,1l,...,a; k.>0,j =l,...,14;

j , 7 ( ° = 0 , j = 1 , . M;aMN

Z a . Du.,(x°) + Z a Dg.(x°) + Z ViDk(x°) = 0
2. 1 > 1__

Proof . Since x° is a Pareto optimum of u onC

maximizes u1  on the set {x* 6 Cg (uj.(x) - u .(x°) > 0 , j =2,.. shD

By F.John Is result (Theorem 4 .1) , there exist a c; ... a
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a
a Du (x*) + E a.D[u. u. (x*) ](x*)

1121 1 1-

M N
+ E A.Dg.(x*) + E ykDhk*(x)=0

1 - l1

But D[u. u.(x*)](x*) = Du.(x*) .
1 1--- 1-r

Another proof of Theorem 7.2 may be found in DaCunha and Polak

(1967). As before, Theorem 7.2 says very little unless one can

guarantee that all of the a. are non-zero. Thus, we need to make
1

some assumptions on u,g, and h so that we can apply our theorems

on constraint qualifications.

Theorem 7.3. Suppose 'that u 1 , ... ,ua'gl' ... 'gMhJ ... ,

"n

are C functions on R . Suppose that x* e C and that u
g,h

has a Pareto optimum on Cgh at x* . Suppose that u,g, and h

satisfy one of the following hypotheses, where u ()E (u,...,u. 1 ,

1n 

a-l
ui+1 '' .. a n+ma1

a) D(u gEh)(x) has maximal rank for each i =1,...,a

b) Let A = {ilu is pseudo-convex in some neighborhood of x*}
1-

A2 {l' ''''a} - A1 , E1 = { je Elg. is pseudo-convex in some neighbor-A2 =J1

hood of x*} and E2= E - E1 . Suppose that h is linear and

there is a v6ET eIn such that Du (x*)v > 0 , DuA (x*)v > 0 ,

Dg~ (x*)v > 0 , DgE (x*)v > 0 , and Dh~x*)v = 0.

c) u and g are pseudo-convex and h is linear,

d) h is af fine; u and g are concave on some convex neigh-

borhood U of x*; and for each i E {l,... ,a} there is an
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x e m such that u (x ) > u (x*) and g (x) > 0 , h(x ) = 0

e) Suppose whenever Du (x*)v > 0 , DgE-(x)v > 0 , and

Dh (x*) v = 0 for some i and some v e T ,R , there is a C

path a: [0,E) + mn with a(O) = x , a'(0) = v , u (a(t)) > u Cx*)

g(a(t)) > 0 , and h(a(t))~ = 0

f) (Kuhn-Tucker (1951)) : For each i = 1,2,... , a , there is no

vector v such that

Du.(x*)v > 0

Du.(x*) v > 0 , for all j i

DgE(x)v > 0

Dh(x*)v = 0

g) (Geoffrion (1968)): There exists a scalar M such that,

for each i , we have

u. (x) - u.(x*)
:3.- C <M

u.(x*) - u.(x) -

for some j such that u.(x) < u.(x*°) whenever x e C and3 -- - g,h

u.(x) > u.(x*).

Then, there are scalars al .... ,aaA l' ''AM' l'' '''FN such

that CT) of Theorem 7.2 holds, where the a.are all strictly

positive.

Proof: For hypotheses a) through e) , fix i 6 {l,... ,a}.

By Theorems 3.3, 4.3, and 4.4, there are 3 ,..., ,1,.,

p,...,-N such that
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. > 0 for all j = 1,...,a; = 1 ;

z > 0 and X °g(x*) = 0 for all j = 1,...,M. and

a .M . N ik
a S.Du. (x*) + E XDg (xo) + 0 Dhk (x 0 ) = 0

a a a

Let =>l m = . >0 ,and Pk=.
i=1 i=1 m=

For hypothesis f) , apply Farkas' Lemma (see section 4.B)

for each i with A (Du (x*),DgE(x*) ,Dh(x), - Dh(x_) )

By hypothesis f), whenever Av > 0 , -Du.(x*)v > 0 . So, there exist

,...,,.. ... as in the preceding paragraph.

For hypothesis g) , see Geoffrion (1968) .

Kuhn and Tucker call a vector maximum which satisfies hypothesis

f) in Theorem 7.3 a proper solution of the vector maximum problem.

Geoffrion (1968) calls a vector maximum which satisfies hypothesis

g) a properly efficient solution of the vector maximum problem. Both

of these papers indicate that at a Pareto optimum which is not proper

one can find paths which allow first-order gains for some of the

u.'s and only second-order losses for the other u 's. See also

Klinger (1967)

We will use some of the hypotheses of Theorem -7.3 when we study

some more economics applications in Chapter 8.
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7.C Second Order Sufficient Conditions

One can now easily combine Theorem 7.1 and the results of section

3 to prove the following strong second order sufficiency condition

for Pareto optimization. Weinberger (1974), Smale (1975b), Wan (1975b),

and deMelo (1975) have proven similar results using other methods.

Theorem 7.4. Let u 2 ,...,ua' l'''''Mh,...h,h: I n + IIbe

functions. Suppose that x* E Cg - {x 6 n ng(x) > O,h(x) = O}
g ,h - - .-0-M

Suppose there exist multipliers a > 0in a > a >0in M

Nand y 6 IR such that X.g (x*) = 0 for all i
t 1-

a M N
and if L E Z a.u. + E X.g. + E y h

1 1 I I 1 kk

then DL (x*°) = 0 and

D2 L (x*) (v,v) < 0 for all non-zero v such that

caDu.(x 0)v = 0 and Du. (x°)v > 0 for i = 1,...,M ; A Dg.(x )v = 0
1 1 -_ 1 _-i- -

and Dg. (x 0 )v > 0 for each i E E ; and Dh(x 0 )v = 0.

Then, x* is a strict local Pareto opimum for u in Cgh

Proof: By Theorem 7.1, we need only show that x maximizes

each u. on u - u *) >,g0,h=0_ . We will work with i = 1 for

simplicity of notation and use Theorem 3.4. Of course, we choose the

al , 2 .:..)a ' ' - of our hypothesis for the multipliers in our scalar

maximization problem.
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a M N
Letting L' = a u + E a.(u. - u.(x)) + E Xg . + Eykhl,

1 2 1 1 -1> 1 k

we see that DL' (x*) = DL (x*) = 0 . Now, choose non-zero v so

that Du (x )v > 0 , so that a.D(u.-u. (x ))(x )v = 0 and
1 1 1 1-

D (u. -u. (x ))(x )v> 0 for i = 2,...,a , so that X.Dg.(x )v = 0
1 1 - - - i -

and~ Dg.(x°) v > 0 for each i GLE , and so that Dh(x) v = 0 . Since

DL(x°) = 0
a M

-- ayDu (x*)v = E a.Du.(x*)v + E A.Dg.(xo)v
2 1 -1 -

N
+ E ykDhk(x*)v = 0

1

By hypothesis, D2 L' (x) (v,v) = D2 L(x*) (v,v) < 0 . By Theorem 3.4,

u restricted to {u > u '(x*) ,g > 0,h = 0) has a strict local

.maximum at x . Since this is clearly true for all i > 1 also,

u restricted to g > 0,h = 0 has a strict local Pareto optimum at

x* by Theorem 7.1.2

As before, one can strengthen the sufficiency test of Theorem

7.4 by allowing the multipliers to depend on the vector v to be

tested. See Ben-tal (1980) and Weinberger (1974).

See example 1 after Theorem 7.6 below for a calculation of a

Pareto optimum based on Theorem 7.4.

7.D First Order Sufficient Conditions

In many applic ations in economics , the u. 's , g.'s , and hk'

which arise naturally are concave or convex. For example, let

u(x 1 ,x 2 ) denote a consumer's utility function in an economy with
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two commodities. If commodities one and two are desirable ones and

about equally so, then the natural assumption that the consumer would

prefer to have some of each commodity rather than lots of one commodity

and little or none of the other leads to the usual hypothesis that

the u.'s are concave or at least quasi-concave functions. In
J

fact, the desire of consumers to achieve balanced distributions of the

goods in question - hopefully, by trading with other consumers -

is a concept at the core of the theory of microeconomics.

In this section, we use Theorem 7.1 and the results of section

5 to describe sufficient conditions for optimality when the functions

involved are concave or almost concave.

Theorem 7.5. Suppose u1 ,.P..,ua', l'''' ', h 1 ,... ,hN: n

are C1  functions with g(x*) > 0, h(x*)=0 . Suppose that

i) the u ' s are pseudoconcave at x* , e.g . , Tu "(x 0 ) # 0

guasiconcave at xo .
ii) the g.'s are quasi-concave at x* , and

iii) the hk's are quasi-concave and quasi-convex at x*

(e.g . , linear) .

If there exist multipliers a > 0 in Z a > 0 in ' e

such that a. > 0 for i = 1,...,a,

and u
1

NRLt

g. (x*)= 0 for j = 1,...,M, and

a M N
D[ a.u. + L X.g. + E yukhk( ') = 0

1 .1k ~

then u restricted to Cgh has a global Pareto optimum at x*
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Proof: The proof of Theorem 7.5 is similar to that of Theorem

7.4. By Theorem 7.1, we need only show that each u. attains its

(i) (i)maximum at x* when the constraint set is u - u (x*) > 0,

g > O,h = 0 To demonstrate this, one applies Theorem 5.2.

In using Theorem 7.5, one should keep in mind the hierarchies

of concavity as described in Theorem 1.9. One is tempted to try to

generalize Theorem 7.5 to the case where the u 's are quasi-concave.

However, if u( x,x 2 ) = land u 2 (xx) = x 2  , u and u 2 are

quasi-concave and

1 .Du 1 (0,0) + 1 Du2 (0,O) = 0

But (0,0) is not a Pareto optimum for (u 1 ,u 2 )

Nor can one generalize Theorem 7.5 to the case where some of the

a 's are zero. For, let -,x2=1,u2 l',2) 1 , ad

u3 (x,x2) = 2 . The u 's are all linear and therefore concave.

If one chooses multipliers a 1 = a2 = 1 and m3 = 0 , then the origin

(in fact, any point) is a critical point of the corresponding

Lagrangian. However, if x > x 2 , then (x ,x ) is superior

to (x 1 ,x 2 ) for all x.

Thus, Theorem 7.5 is just about the strongest first order

sufficient condition possible. It is a bit stronger than some

similar results in the literature, e.g., Kuhn and Tucker(1951),

Karlin (1959) , Geoffrion (1968) , and Smnale (1976).

There are two other aspects of concave Pareto optimization

that should be mentioned because of their important place in

the past and present theory of microeconomics. The first involves
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the classical treatment of Pareto optimization problems (e.g. , see

section 8.C and Samuelson (1947)) whereby one tried to reduce such

a problem to a single maximization problem by working with a

weighted sum of the u. 's.

T h e o r e m 7 . 6 . S u p p o s e t h a t u1, . . . , u a ' L ' ' ' ' .' M , h1 , . . . ,h

Rn+3r1 are C functions and that x* E C , i.e.,
- g,h

g(x*) > 0 , h(x*) = 0 . Suppose that the u. 's are concave, the

g.' s are quasi-concave, and the hk's are Linear. If u restricted
3k

to Cgh has a local Pareto optimum at x* , then there existg,h

multipliers a 1 , ... ,'a > 0 , not all ero, such that x maximizes

aja.u. (globally) on C gh. If, in addition, u,g, and h satisfy
1'h

one of hypothese a) to g) of Theorem 7.3 at x*, then one can choose

all the a.'s to be strictly positive.

Proof: Since u restricted to C has a local Pareto

optimum at x , there exists non-zero (a,X_,_y_) e JR a x R x N

such that a. > 0 for all i ,A. >0 for all j , and

a M N
(U) D[E ca.u. + A.g. + ykhk) (x*) = 0

1 11 1 7 1

Bu:t Z a .u. is concave. Applying Theorem 5.2, one sees that
.a

I a.u.mus hae aglobal maximum in Cg atx*h

- If one of the hypotheses of Theorem 7.3 hol.ds,then we can

choose all the ~As to be positive in (U) and therefore in the

theorem. However, we still need to find a non-zero a in the general

case in order to give this theorem some content.
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To do this, we must use the fact that disjoint convex sets can be

separated by a hyperplane. See Chapter- 3 in Mangasarian (1969)

or Appendix B in Karlin (1959).

Suppose that for all non-zero choices of (ct,X,i) as above,

a 0 . It follows that 1) D (E X.g. + E yuhk) (x°) = 0 for all such

(_, 1),2) there is no non-zero a > 0 with E a.Du.(x) = 0 ,

and 3) Du. (x*) / 0 for all i . Let U = {x e .Rn u. (x) > u. (x*)

for all i} and let Cg,h denote the constraint set as usual. By

Gordan' s Lemma (see section 4.A) , 2) implies that there is a

non-zero vector v G T 1R n with Du. (x) v > 0 for all i.x 0  1-

TEhus, U is non-empty and x* is in its closure. Also, since

x* is a Pareto optimum, x_ + tv_ Cgh for all t > 0 and C

does not contain an open neighborhood of x*

Since u restricted to Cgh has a Pareto optimum at x* ,

U and Cgh are disjoint convex sets. By the above mentioned
gIh

separation theorems, there exists a hyperplane H that separates

U and Cg,h *

Suppose that f:n +Rfl is a C pseudoconcave function

with Vf (x*) perpendicular to H and lying in the half -space of

U We claim that f restricted to Cgh has a global maximum
g b

at x. For, let x' S C . Since Df (xo) (x' - x*) =
-Lg,h -c rr)(x, - 0 )

V f(r* ).(' - x* ) & 0, and since f is pseudoconcave , f (x' ) < f (x*)

and our claim is verified.

If Wu. (x") were normal to H for some i , then u. restricted

to gC would have a maximum at x* anid we would be done. Thus,

we can assume that each Vu. (x*) is non-zero and is not perpendicular

to H . Let P: T .n + H be the standard projection along the perpen-
0c
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dicular to H . We know that P (Vu.(x*)) is not zero for all i
1-

If there were a non-zero vector w G T 03R Cn (H such that

P(Vu.(x*)) * w > 0 for all i , then Vu.(x*) w > 0 , for all

a contradiction to the fact that U lies on one side of H . Gordan' s

Lemma now implies that there exists a non-zero (a1,...,aa) with

a
a.>0 for all i and Z a.P(Vu.(x0 )) = 0

11-11-1-

The linearity of P

is perpendicular to
a
E a. u. restricted
1 1 1

a a
gives P (Z a.Vu.(x*)) = 0 , i.e., Z a. Vu. (x*)

H . By the claim of the proceeding paragraph,

to Cg,h has a maximum at x* .1

Example 1. Smale (1975a) gives an example to show that Theorem

7.6 is not true if the u. are not concave. Let

2
u 1(xry) = y - X + y , u 2 (XY) 2

x + 1
*

Since Du1(0,0) = (0,1)

0 if and only if =

and

A2 =

2

-2[

0

Du 2 (0,0) = (0,-1) , D[Xu 1 + 22 u 2 ] (0,0)

I Since D2 [ Xu 1 + 2] (0 ,0) =

0

0,

which is negative definite on the kernel of D (u 1 ,u 2 ) (0,0) , Theorem

7.4 tells us that (0,0) is a local Pareto optimum of (u 1 ,u 2 )

(Keep in mind that n must be positive.) However,
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X(u 1 + u2  
2 ( )+3

x + 1

is a strictly increasing function on the line x = 0 , and

certainly does not have a maximum at (0,0)

Example2. The following simple example shows that one cannot.

always expect to find all positive a. 's in Theorem 7.6. Let

2 2
u1 (x,x 2) = 1  2 and u2 ('x 2) 1 . Since u1  has a

global maximum at (0,0), (u 1 ,u 2 ) has a Pareto optimum at (0,0)

But,

a1 DuZ (0,0) + a 2 Du2 (0,0) = (a2,0)

equals zero if and only if a2 = 0

The converse to Theorem 7.6 is a classical result, whose simple

proof we will leave to the reader. Note that no continuity or

convexity assumptions are needed.

Theorem 7.7. Let U1 ,.. . 
, ua:R + IR be functions and let

X be a subset of IR"n . If x* £ X and if there exist a 1 ,. .r.,a

all strictly positive such that E a. restricted to X has a

local (g lobal) maximum at x* , then (u 1 1,. .., ua r estricted to

X has a local (global) Pareto optimum at x* . If x* e x and'

if there exist a non-zero (al ,...a) , with a.>0 for all i,
a

such that E ax.u. res-tricted to X has a strict (Local) maximum

at x* , then (u13,. .. , ua) has a s trict ( local) Pareto optimum at

x*
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7.E Saddle Point Formulations

The other important approach to concave Pareto optimization is

the saddle point formulation. In trying to optimize Cui 1 ... ua

In}M a over the constraint set C g (x e 6 n 1._x > O ,i = 1,...,

economists of ten go right to the Lagrangian L: n. x Rax RM}Z

Where

a N
L~~~i)= E ayu. + E X.g.

-- - 1 1 2 1

A saddle point for L is an (x° ,) X) such that a°~ > 0,

a0 r 0, X° > 0, and for all x and all A >0

LX~ca°, °) _ L(x 0 ,c°,Xa) < L(x 0 ,cx°,X)

If (x 0 ,a 0 ,X 0 ) is a saddle point with ajj > 0 for i = l,.. a

then it is called a strong saddle point.

The following theorem summarizes the relationship between

strong saddle points and Pareto optimra.

Theorem 7.8. Let U 1 . .. u alg 1 r... 'g: MRn - be C 1
functions. Let L: Li x IR x PR be

a N
L(x,ajk) = a u. (x) +-E )2.C. (x)

A)} I .f( 0 is a strong saddle point for L , then u restricte

to Cg has a Pareto optimu~ta t x °

B) If the u . 's and g]. ts are concave, if x° e Cc, and if any of
13
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hypotheses a) to g) .of Theorem 7.3 hold, then u restricted to

C has a Pareto opt.mumi-at -x~ if anid .only if there is an
g

(a*0,Xl) E - a x. -" uc that (x° ra ° X°) is a strong saddle point

for L .-

Proofs,*By Theorem 5.4, hypothesi~s A) iiaplies that x° e c
a _ g

and that x ° maximze E ° U. on C .< By Theoremr 7.7, u

1 g
restricted to Cg has. a Pareto optimuwn at x° To prove B) ,

one combines Theorem 7. 6 and Theorem 5.5.

Of course, one -Mo ..rld like to replace the phrase " strong saddle

point" by: the. phrase ".saddle point" in) Theorem 7.8. .- t_ is easy to

see thaths is -impossibl~e for part X) H owever,- followin;4 Bergstroc

(notes) , one can make the followiig xmodificationi to part B).

Theorem 7.9. Let U,. ru.rg r g Z~ Jr I be Cl

concave func tions. -- Let L (x,ca, ) ) = a "u + X si/ be the corres-

ponding Lagrarigian. -Suppose that x° E c , that there is arn
x* with g (x*) >_ 0 and that there is a conflict ofQo2 s at

xi. e. , -for -each. proper subset K of { 1,.... ,a}t there is an

x e c such that u.(x) > u . x°) for all L6e K and u .(x) > u 1x)
g -n i ~ . .. .i 2 .r A 4 0% e"wt-Z T -.v - J4 w w



106

Proof: . One shows that when there is a conflict of goals, a

saddle point is a strong saddle point. Suppose (x*,_A. ) is a

saddle point, but not a strong one. Let K = {i .0 > 0} , a

proper subset of {l,...,a} . But there is an x' 6 C such that
g

u. (x') > u.(x*) for all i e K and u. (x') > u.(x*) for some
1 -- 1 -)

j e K . Then, L (x ' , a* 1 *X) > L (x* , a*°, 1 *X) , a contradiction which

implies that (x*,a*,X*) is a strong saddle point.

Part A) of Theorem 7.8 now yields half of Theorem 7.9. To

prove the other half, suppose that u restricted to C has a

Pareto optimum at x* . By Theorem 7.6, there is a non-zero c* > 0
a

such that x* maximizes Z a.*u . on C . By Theorem 5. 5, there

is a X* > 0 such that (x*, a* 1X) is a saddle point, and therefore

a strong saddle point, for L

The basic references for saddle points in concave vector maxi-

aization problems are Kuhn-Tucker (1951) in the finite-dimensional

case and Hurwicz (1958) in the infinite-dimensional case.

7.F Pareto Op.ima Via Differential Topology

The field of differential topology has made important contribution;

to the qualitative, global study of critical points and

maxima of scalar-valued functions under non-degenerate constraints,

ieon manifolds. For example, see Milnor (1963). Smale (1973)

in a series of papers entitled Global Analysis and Economics

applied the techniques of dif ferential topology and of singularity

theory (e. g. , Golubitsky and Guillemin (19 73)) to the study of



107

vector maxima. Corresponding to the usual critical set of a real valued

function, Smale (1973, 1974b) defined the critical Pareto set 0

to be the set of feasible points which satisfy the first order

necessary conditions for optimality, i.e.,

0= { x CgC there exists non-zero (a ,X,y) e a x JRM x N
-g,h

such that a >0 , A > 0,X - g(x) = 0 and

a M N
E a.Du.(x) + E X.Dg.(x) + E y Dh (k) = 0}

k1 3 1 k - -

Working with constraint sets which are compact manifolds, i.e.,

bc anded sets described by non-degenerate equality constraints in the

sense of chapter 3, Smale (1973) argued that, for an open dense subsec.

of the set C(M, a) of all smooth mappings from an m-dimensional

a
manifold M into P , 6 - 30 is an (a-1)-dimensional manifold

and 30 , the boundary of 0 , is a finite union of lower dimensional

manifolds. (There are some dimensional requirements on the magnitude

of m relative to a -- requirements that are always met in the

economic applications.) The proof of this result was completed and

extended by deMelo (1975). Wan (1976) has shown that for most

mappings the set of local Pareto optima sit in M in a similar way.

Let us see why it is natural for the set of Pareto optima of a

mapping u :' En a~ to be an (a-1)--dimensional. subset. We are

assuming that our usual constraint space Cg,h is (locally) Rn

Suppose x is a non-degenerate Pareto optiwun for u , i.e.,

I a. Du. (x ) = 0 for some positive o.,,...,caa' aDu(x)i
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negative definite on the nullspace of Du(x 0 ) , Dui (x 0 ) 3 0
for all i , and the rank of Du(x°) is (a-i) . Choose a neigh-

borhood U of x 0  in Rn and a neighborhood V of ao in

Ra such that for all (x,a) e V i) rank Du(x) > a-1 ,

a 2
ii) each Dui(x) # 0 , and E a.D u.(x) is negative definite

on the nullspace of Du(x) . By Theorem 7.4, x' e U will be a

local Pareto optimum for u if and only if rank Du(x') = a-1 ,

i.e., if all the axa minors of Du(x') have zero determinant.

(It follows from i) and ii) that if x'e U and rank Du(x') = a-l,

0~ 0
there exists positive ... a' near a°,...,aa so that1' a 1 a

Z a' Dui(x') = 0) . Since there are (r - a + 1) independent (a x a)

minors in Du(x) , x' e V must be a zero of a system of (r - a + 1)

equations to be a local Pareto optimum. If these equations are

independent at x 0  (as they usually are), then the local Pareto set

in V will have dimension r - (r - a + 1) = a - 1 .

Under the classical monotonicity and strict concavity

assumptions of welfare economics, the set of Pareto optima is homeo-

morphic to the standard (a-l)-dimensional simplex. See Arrow-Hahn

(1971) or Smale (1976a). However, even with all these concavity

assumptions, the set of optima need not be conves if a>l

as the example at the end of the next chapter shows. (See Figure 2).

Of course, this set is af fine in the linear vector maximization

problem. See Koopmans (1951) and Charnes-Cooper (1961).

Simon and Titus (1975), also using tools of differential topology

and working with non-degeneracy hypotheses that occur in economics

problems, showed how to reduce a vector maximization problem to a

single scalar maximization problem (in contrast to Theorem 7.1) where
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the functions involved are non-linear but are not concave so that

Theorem 7.5 cannot be applied. The following theorem summarizes

their results in this direction.

Theorem 7.10. Let u,...,ua h,...,h: IR +n I be C

functions with h (x) = 0_. Suppose that i) Dh (x*) has maximal

rank N < a , ii) for each i , D (u.,h) (X*) has maximal rank,

and iii) rank D (u,h) (x) > N + a I . Then the followring are

equivalent:

a) u restricted to h~ (0) has a local Pareto optimum at
0

1

b) x* e 0 , the critical Pareto set; and for some x e {l,...,a}

x maximizes u. on the constraint set

U =E ~ {x e 2RNIu.(x) = u.(x*) , i , and h(x ) = 0}

an (n+l-a-N)-dimensional submanif old of h ()

We omit the proof of Theorem 7.10 since it involves techniques

of differential topology. In the hypotheses, condition i) implies

that h ~ (0) is a manifold around x* , conditiorn ii) means that no

u jh~'(0) has a critical point at x* , and condition iii) asserts

-- 1

a = 2 , condition iii) holds for all x* e h 1 (0) for an open aense

set of mappings frm m n to IR 2 .(See Golubitsky-Guillemin

(1973)). Saari and Simon (1977) have shown that, if one searches for -

Pareto optima using Theorem 7.10, one finds large open subsets of

mappings u for which degenerate maxima of u arise naturally.

More specifically, when a . 3 , there are open sets of mappings U:
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Sn R a which have Pareto optima that do not pass the second order

sufficiency test of .Theorem 7.4. This contrasts with - the situation

for scalar maximization where most mappings from ZRn to I 1 have

only.non-degenerate critical points (see Golubitsky-Guillemin (1973))

and with the situation for a = 2 where, for most mappings from

I n to . R 2 all the Pareto optima fulfill the second order condition

of Theorem 7.4 (see Wan (1975a) and Saari-Simnon (1977)).

O.Lange (1942) carried out one of the earliE ;t systematic

studies of Pareto optima in econorics using tec> s.::ues of calculus.

He defined a "maximum of total welfare" of a utility mapping

n a n
u : In + maas an x E n that maximizes each u subject to the

(a-l) equality constraint u. = u.(x*) for j # i . By taking
J J-

all the -u 's to be equal, it is apparer: that, in general, Lange'

notion is different from that of the vector maxims in this chapter.

However, in the next section, we will use Theorem 7.10 to show that

Lange's notion is equivalent to the usual one in an economic setting

with the classical monotonicity and concavity assumptions.
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§8. VECTOR MAXIMIZATION IN ECONOMICS

8.A Pareto Optima in Welfare Economics

In section 6.A, we formalized the theory behind a consumer's

desire to select a most preferred commodity vector from the set of

all feasible and affordable commodity vectors. We now examine the

situation where there are A consumers in an economy with n goods,

1 < A , n < . Assume that the kth consumer has a smooth utility

k kfunction u: C -+ 1R and an initial commodity vector z £ C

{x e- n x > 01 . There is still a fixed positive price vector

n th
E E R+ ; and the initial wealth of the k consumer is

kk
W = - z k (Note that superscripts are being used to index con-

sumers, while subscripts are used to label commodities.)

k k th
Let (E, z ) denote the k consumer's demand correspondence,

i.e., the solution set for the problem of maximizing u (x) sub-

ject to 0 < x in Rn and - _ < zk . For simplicity of no-

tation, we will assume that each k is a single-valued function.

However, much of the theory of this section holds for demand corres-

pondences as well as for demand functions, provided the reader sub-

stitutes set inclusion for equality in the relevant equations below.

Assume now that we are dealing with a closed economy in that the

total amount of each commodity remains fixed during the consumer' s

A k
interactions. Thus, if b = 2 , our state space is

An AIk Ak b
SE{X = (x1,,)xA) e. (RnA k x> 0 for each k and 1 x = b}-
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an (nA - n)-dimensional affine subspace of 3Th). We will call

an element of Q a commodity bundle. The A utility functions can

be considered as functions on 0 by writing

1 A k k
uk(x, x ) = u (x ) , for k =1,..., A .

Finally, these A utility functions can be combined to form the

utility mapping

U = (U1, ... , UA) :2 - R

In this simple setting, an economy is an initial commodity bundle

l A
(z , ... , z ) , a utility mapping U , and a price system .

There are a couple of natural ways of expressing an optimum or

equilibrium in such an economy. There is, of course, the notion of

a Pareto optimum (Po) or Pareto-optimal bundle X in 2 for the

utility mapping U , i.e., X is a P0 for U if there is no

Y E £ such that U(Y) > U(X) and U(Y) 7 U(X) in A . There is

the similar concept of a local Pareto optimum (LPO).

Our first goal is to use the theorems of chapter 7 to write

necessary conditions and sufficient conditions for a commodity bundle

to be an LPO. We would also like to know whether or not we can find

strictly positive Lagrange multipliers and whether we can use Theorem

7.10 to find LPO's. Theorem 8.1 below collects the necessary con-

ditions for an LPO, while Theorem 8.2 deals with the sufficient con-

ditions.
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Theorem 8.1 Let b be a positive vector in IRm and let

1 A n A k A k
n = {X= (x , ... _, x) E () I each x >0 and x = b .

1
1 A n 1

Let u , ... , u :++ be C utility functions. Suppose that

for each k G.{l, ... , A) and for each x with 0< x < b ,

k k
Bu (x) > 0 for some i , and that whenever x . = 0, u (x) > 0

_x J ax. -

a) Suppose that YA= i( A,.., ) a LPO for

A ~1 AU :2 + . Then, there exist non-negative multipliers a ,...,a

not all zero, and a non-zero vector y E6JRn such that

acVu (k) <Y ,for k=1, ... , A
(V)

S kauk k k
with a ( ) = -y. , whenever y$0 .

b) Let Y be as in a) with the added hypothesis that no
kk

(vector) component y of Y is zero. Suppose (x) > 0 for

all k and j and for all x with 0 < x < b . Then, there exist

1 A
a1, ... ,aA , , ... , Y, all positive, such that (V) holds.

c) If Y is an LPO in the interior of £, then there are posi-

1 A
~tive multiplier s ax , . .. , cx and a non- zero vector ' in rm such

that

kk ki) a u = Y ,for k=1, ... , A,
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ii *k aDUk(Y)V = 0 , for all V = (v_, . , A) £ n)A

1

such that
Ak

v = 0 , i.e., V T

1-

iii) at Y , the marginal rate of substitution of good i for

good j is the same for all consumers, i.e., if

kkaul 1 B u k

J

uktk
/d2. ( )

Jx

m
= um m

Bumm
xam

J

for all k, m . {l, ... , A} and all i, j E {l, ... , n} ;

iv) if a is set equal to 1 , the other a 's are uniquely

determined.

Proof: This theorem is a reasonably straightforward application

of the results of chapter seven to our economic model. One simple

method of handling U : 0 +-]RA is to remove the equality constraint

- 1 A-1that defines £G by letting (x , ... , x ) be independent coordi-

nates for 2 with xA = b -
A-1

x x This is the approach taken
1

by Simon-Titus (1975). -We will use an approach more in line with the

techniques of earlier chapters of this paper. See Smale (1974b,

1976) for a similar approach.

The Lagrangian for this optimization problem is
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1 A l A 1 A
L(x , ... , x , a , ... , a , y , ... , y , Y) =

A _U(X + k xk + y -Y(b - x_ )
1 1 1

Setting the derivatives of L with respect to x equal to zero

and evaluating at Y yields

(W)kk k kn

(W) ak Vu () +y - =O in 3Rn

If Y is an LPO, Theorem 7.2 states that there exists a non-zero

1 A l A
(a , .. , a , y , ... , _ , y) that solves (W) for k = 1, ... , A ,

k k k kwhere each x andy is non-negative and each i.y is 0 . Now,

(V) follows from (W) since each k >0.

Suppose every ak is zero. For any i d {l, ... , n} , there

is a j .{l, ... , A} such that y7 / 0 and, consequently, q

0= aa (x$) = y.3x.Y-- 
i

1 A

So, a = ... = a = 0 implies y 1 = ... = Y = 0 , which in turn
1 n

implies that each pk is 0 in (W) . This contradiction to the

fact that ( a, y , . yA0, y) $ 0 shows that some is positive.

k
To prove b), let Y be an LPO with each y / 0 - By part

a) , some ax is non-zero, say ax . Since

1 Bu 1 Bu 1
ax~ (y ) < Y and (y ) > 0 for all 5

Y. > 0 for j = 1, ... , n . Let k 6{L, ... , A . By hypothesis,
J
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k 0 adteeoe ak auk k
soe y1 ndteeoe~ ax. 1 =Y1 .Since Y. and

auk kk
a (k ) are positive, so is a.

2.

To prove c), note that i) follows from (W) since each k

is 0 fran interior LPO. If any a were i 0 , then y would

be 0 Snc o uk }k s 0_,Y = 0 implies that each

a= 0 -a contradiction.

Suppose
au I
ax.

7
is pstv. if one sets a .,te

kY Vu1 ( ad- kauk k
x.3.

au k

k .am1CL is uniquely determined. Ifax
ax.

for any j l i.e., each

z ) r 0 also,

k
a

auk k

T m

J

auk k
1: m

2.au t

ax.
and part iii ) in c)}

follows.

To prove ii) let V = (v, ... , VA) n)A with _ 0
2.

Then,

A k k
DJ. DU(Y)V =

1

A k k k k
Sa Du (v)v 

1

Ak
-J -

=~ . A
2.

=0.
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REMARK: The hypotheses that for each feasible x some

kak
(x) > 0 and that ---- (x) > 0 whenever x = 0 are basic econ-

ax..a3.

orics assumptions. They state that each consumer would always like

to consume more of some commodity and that he would like to have at

least a little of each commodity. Without some such mild desirabil-

ity assumptions on the commodities in our economy, interaction among

the consumers might not take place.

Theorem 8.2 (Sufficient Conditions). Let b , 0 , and

A
U : +3RA be as in Theorem 8.1. Assume again for each X E and

k
for each k i {l, ... , A} that some au k (x ) 0ax.i

a) If Y is in the interior of Q , then Y is an LPO if and

. 1 A
only if i) there exists positive a , ... , a and non-zero

such that akVuk (yk) =y for k=1, ... ,A, and

. . kii) Y maximizes some U on the submanifold

(X E Q IU (X) = U (Y) , j = 1, ... , A , j k} .

1 A
b) Let YS , and suppose u , ... , U are

quasi-concave. If there exist positive a.,.a such that (V)

holds (or if Y is in the interior of £ , such that i) , ii), or

iii) of Theorem 8.l.c holds), then Y is a PO for U

1 A
c) Let Y & . If there exist non-negative a , . .. , a sucha

that (V) holds and such that

A k 2k A k 2k k' k ~k
Sa D) U (Y) (V, V) = ca D u ('<) (v , v ) Cz 0
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1 A-n
_or allon-zero V= (v ,..., ) EOR

A k
such that v = 0

1

and Duk (v~) = 0 , k= 1, ... , A , then Y is a strict L O for

Proof: Part a) follows directly from Theorem 7.10, part b)

from Theorem 7.5, and part c) from Theorem 7.4. One computes easily

that the hypotheses of Theorem 7.10 are satisfied with h(X) =

A k
- x and
1

Du (x

0

0.

-I n

o

Di2Dux)

D(U, h) (X)

. .0

A A~
Du Cx)

~n

06

n3

8. PARETO OPTIMA AND PRICE EQUILIBRIA

The notion of a Pareto optimum, while natural in our economic

zodel, ignores the economy's price system and the consumer' s demand

funcrions. A natural notion of equilibrium which includes these is

the competitive eauilibrium. Let Y be an initial commodity bundle

in :, and let P be the prevailing price system. With these

initial conditions, the kth consumer will. demand commodity vector

"p, ' ) . The total demand of the A consumers is the vector
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k=l +

and the co. ~odity bundle demanded is

b1 1A A nA

If ~ (p, Y) is in ? i. e. , if the total demand vector eqalsth

total supply vector,

A, k A k

1" 1

then we say that 2 is an equilibrium price for Y and that *

S(D, Y)) is a comDeti tive equilibrium (with respect to Y).

Of ten, one defines the excess demand vector

Z(D, Y) =AY k( k A
1 1

and notes that p is an equilibrium price for Y if and on y iI

Z (D, Y) = 0 in Rn By Theorem 6.1. iv,
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If ( , ) is a competitive equilibrium, then , represents

a solution to A independent maximization problems - but a solution

with economic relevance since e . A natural question is

how does ' relate to the vector maximization problems we discussed

in the previous section? Theore-:s 8.3 and 8.4 below, often called

the Fundamental Theorems of Welf a Economics, answer this question

by stating that a competitive equilibrium is always a Pareto opti-

mum and that a Pareto optimum can always be realized as a competi-

tive equilibrium for some price vector E .

The latter statement solves a major dilemma. If Y

there is usually a multi-dimensional set of LPO's which are Pareto-

superior to Y . The economist, who would like to have some natural

way of choosing a meaningful LPO from this set, can proceed as fol-

lows. He first finds a price system * which is an equilibrium

price for Y . To prove the existence of such a g* and also to

compute it, economists use Walras' Law and the Brouwer or Kakutani

fixed point theorem to find a zero of p e Z (p, Y) (See Debreu

(1959) , Dierker (1974), and Malinvaud (1972), for example, for

proofs of the existence of 2 * . See Scarf (1973) and Smale (l976b)

for methods of computing E*.) Theorem 8.3 then assures the econ-

omist that the corresponding competitive equilibrium (E, E-+

with respect to Y lies in the set of P0's.

Theorem 8. 3 Let b be a positive vector in ]R and let

A A
1 A n k k

£2 = {X = (x , . . ., x ) G R each x > 0 and x = b}i Let
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U' ... uA Rn- 1R be C1 utility mappings such that

9u ) > 0 for all k, 5andal x

Let be a positive price vector in In anda let

If Y E. c? , i.e. (n, Y) is a competitive eqiuilibrium for Y

then Y is a P0 for U, that is P ar eto-superior to Y

Proof: Suppose that Y is not a P0 for U , i.e., that there

exists Z £G2 anda non-empty subset S~ of {1, ... r Al such

that

k

kkkk
UollZwstnat U (Y) fork Sk=foreach ,kAn) S

2 k

S cn y m x . ) , i
;D~spto afor some> ra £ for ethen zalso z >maxolo .r(yizes) up

nCI
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A k k
Consequently, z >or

A A
k k

1 1

A k Ak
which contradicts Y = k = b .

l 1

The above proof of Theorem 8.3 is adapted from Malinvaud (1972)

Smale (1974b) proves this result by using Theorems 6.1 and 7.3 to

show that when (p, Y) is a competitive equilibriur, Y is a criti-

cal Pareto point (as in section 7.F) . Then, concavity assurptions

are needed to show that Y is a P0. Theorem 8.4 states the con-

verse of Theorem 8.3.

Theorem 8.4 Let b, £, , and u, .... , uA be as in the

hypothesis of Theorem 8.3. Suppose further that each uk is quasi-

concave and that Y is a PO for U Then, there is a positive

price vector in JR such that (2, Y) is a competitive equil-

ibrium on .

Proof: By Theorem 8.1.a, b, there is a positive vector

n 1 A
Y GE R and non-negative a , . . ., ct with

kkk

o Vua (v ) _ y , for k = 1, ... , A .
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Let P be the positive vector T . For each k such that

y' 0 , we have

k k I
and

k
_u k =1. k

ax.-z ) = r - yf / 0 .

k k
For such k , y maximizes the pseudoconcave function u on

n k{x + I - x < - v } by Theorem 6.1. But this statement holds

trivially for those k for with = since in this case, the

constraint set {x i+ I E - x<E ' Z }contains only the zero

vector. Therefore, (p, Y) is a competitive equilibrium. 

The model we have been describing in cha.pter eight is a simple

one since it does not include firms, production, shares, etc.

However, it is a straightforward matter to bring a.l these concepts

into our model and to define Pareto optimum and competitive equili-

brium in this more general framework. One then proves the same

fundamental theorems relating these two types of optima, using the

same techniques but keeping track of a few more constraints and

multipliers. See the excellent presentations in Debrea (1959) ,

Karlin (_959), Intriligator (1971), Malinvaud (1972), and Smale

(1976).

There is another setting where theorems comparing Pareto opti-

mal situations with price equilibria are important -the activity

analysis model introduced in section E.C. In this case, an output
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vector v = (y , ... , ym) is called efficient (instead of Pareto-
1m

opti.al) if there is no feasible output vector z such that

z > v and z T . The feasible output vectors are those which

can be produced by some activity vector, i.e., { ]R I Z = Bx

for some x R} - Using linear analysis similar to the marginal

analysis of Theorems 8.3 and 8.4, one shows that the equilibrium

outputs for the activity analysis problem of section 6.C are effi-

cient and that every efficient, feasible output vector is an equil-

ib:ium solution for some price vector p . For further readings

itis area, see Koopmans (1951) , Karlin (1959), and Charnes-

Cooper (1961).

8.C SOCIAL WELFARE FUNCTIONS

As we discussed earlier, Theorem 8.3 provides an effective

e thod for selecting an economically important element from the set

c PO's that are Pareto superior to a given Y . . Another

rethod that has classically been used for this selection process

involves a social welfare or social utility function, i.e. , a real

valued function S on JA in an economy with A consumers) with

he zroperty that S(a1 ) > S~ whenever a~ > a2 .The function

- : . +] defined by I(X) = S(U (_X), ... , U (X)) gives a complete

ordering to the states in D in contrast to the partial ordering

ratr U + A bestows on £ . In principle, by maximizing Z

one can now make a choice among the Pareto optimal bundles.
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For example, one can give the kth consumer a weight (or measure

of importance) c > 0 and let

A
S(a , ... , aA) =_ cI kak

By Theorem 7.7, a maximizer of Z is a Pareto optimal element of

Q . By Theorem 7.6, one can find all the PO's this way by proper

choice of c, ... ,cA if the uk's are concave - but not if the

Sk's are not concave, as Example 2 after Theorem 7.6 shows.

Thus, social welfare functions were often used to reduce con-

cave vector maximization problems to more comfortable scalar maxi--

mization problems. Because they attach importance to the actual val-

ues of the utility functions and judge among the various consumer's

gains in utility, social welfare functions are used less enthusias-

tically than they were thirty years ago. For further readings on

social welfare functions, see Samuelson (1947) Arrow (1951), and

Malinvaud (1972).

S.D EFFICIENT PORTFOLIOS

We close with a different but very interesting application of

the theory of vector maximization in economics - an investor's sel-

ection of an optimal portfolio of securities. This problem is dis-

cussed in detail in Markowitz (1952; 1959) arnd sumimarized in Karlin

(1959).

Assume that an investor desires to select a portfolio of sec-

urities. If there are n different securities involved, let x > 0
1 -
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denote the percentage of the investor's assets that will be invested

in security i . The state space is S = {x = (x, ... , x ) R I

n
x. > 0 for all i and x. =l} .

The investor's first task is to c: praise the future performances

of the n securities. If he computes that r is the anticipated
it

return at time t for each dollar inv -sted in security i and d.
it

is the rate of return on security i at time t discounted back

to the present, then he computes the discounted return of one unit of

security i as

R. = r.td.t
1 t t itt

In this case, the discounted anticipated return from security vector

n
x E S is R(x) = R.x.

- -1 1

If the investor decided to maximize R on S , he would clear-

ly select only the security (or securities) for which R. is max-

imal. However, such a choice goes against the axiom that a wise in-

vestor should diversify his holdings to take into consideration the

inaccuracies in his expectations and the fluctuations in the various

sectors of the market.

To get around this dilemma, let us :-egard the R. ' as normal

random variables and suppose that the L~vestor computes some fixed
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probability beliefs {p ,..., n' Q11, 1 2 , . , a nn} concerning

the expected returns. here, p. is the mean return on the

security and a.. is the covariance between R. and R. , i.e. ,
13- .

the expected value of (R. - 1'.) (R. -1) . Now, the mean return

E(x) for x E S is

n

E(x) = i.x. ,
1 i'

and its variance is V (x) = a . .x .x . . Since E (x) is a measure
_ 1] 1 3

of the "return" of security vector x and V(x) is a measure of

the "risk" involved in choosing x , The investor will want to max-

imize both E and -V on S . It makes sense to define an effi-

cient portfolio vector x as a PO of (E, -V) S +}]R.

If one assumes that V is positive def inite, then there are

a number of ways to compute efficient portfolios. Since E and

-V are both concave, the investor can give a positive weight a

to E and another positive weight b to -V and then maximize

au - bV S + 'IR . By Theorem 7.7, such maximizers in S will be

efficient, and by Theorem 7.6 all efficient portfolios can be found

this way. Alternatively, the investor can use Theorem 7.1-0 and

maximize E on any level set of V or minimize V on the constant

hyperplanes of E , provided that the gradient of E and the grad-

ient of V point in the same direction at such solutions. By using

this type of analysis, one can easily check that the set of efficient

portfolio vectors is a (possibly broken) line segment on S which
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runs from the minimizer of V|S to the boundary of S and which

can be parameterized by values of E

(0, 1, 0)

(1, 0, 0) (0, -, 1)

Figure 2

In figure 2, we have diagrammed an example for n = 3 The

concentric ellipses are the level sets of VIS and the dotted lines

are the level sets of EIS The vector x 0  is a minimizer of VIS

and (0, 0, 1) is a maximizer of EIS The heavy solid line from

x to (0, 0, 1) is the set of efficient portfolios. For more

details, we refer the reader to Markowitz (1952, 1959)
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