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Sequential Provision of Public Goods

Hal R. Varian

Several authors have examined the private provision of public goods in the context of a

simultaneous move game. The Nash equilibria in these games turn out to have several

surprising and interesting properties. For details see Warr (1983), Cornes and Sandler

(1986) and Bergstrom, Blume and Varian (1986).

As far as I know, no one has examined the Stackelberg equilibria in such games. For

example, suppose that agents decide on their contributions to a public good sequentially,

so that later agents know the contributions of earlier agents when they make their own

decisions. In this sort of game, the earlier agents are able to commit to their contributions;

such commitment is not possible in a simultaneous move game.

It turns out that this ability to commit to a contribution exacerbates the free rider

problem. Our main theorem establishes that the total amount of the public good provided

in a sequential game is typically smaller than the amount provided in a simultaneous move

game. Along the way, we establish several other interesting results concerning equilibria

in sequential games.

1. An Example with Quasilinear Utility

It is instructive to start with a simple example. Suppose that there are two agents. Agent i

is endowed with wealth wi. Each agent divides his wealth between private consumption,

xi > 0, and a contribution to a public good, gi 0. The total amount of the public good

is G = gi + g2.

Each agent's utility function is linear in his private consumption and increasing and

concave in G, so that the utility of agent i is given by

ag(G) +xi = uj(g1 +g2)+ wi-yi.

This work was supported by the National Science Foundation. I also wish to thank the Santa Fe
Institute for their hospitality during the period of this research.
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We will say that agent i likes the public good more than agent j if un'(G) > u '(G) for all

G > 0. Let gi be the amount of the public good that maximizes agent i's utility function

if the other agent contributes zero. Note that if agent i likes the public good more than

agent j, it follows that gi > g,.

We assume that wi > gi so that the wealth constraint is never binding. It is therefore

convenient to drop wi as it is an inessential constant in each agent's utility function.

The Reaction Function

Let us derive the reaction function for agent 1. The first-order condition if agent 1 con-

tributes a positive amount is

ui(g1 +92) = 1.

Letting G1(g 2) be agent 1's reaction function, we must have

u1(G1(g 2 ) + g 2 ) = 1.

It follows that

G1 (g 2 ) = 9i - g2 -
Recall the 9i is defined to be the amount that 1 contributes when g2 = 0.

However, this derivation is correct only when agent 1 contributes a positive amount to

the public good. Since gi > 0, we must have

G 1 (g 2 ) = max{s g- 2, 0}.

This "kink" in the reaction function is what makes the analysis interesting.

The Nash Equilibrium

A Nash equilibrium is a point (g1, g2) such that

gi = G1 (g2)

g2= G2 (gi).

Given the simple forms of the reaction functions, we can illustrate the equilibrium in Figure

1. In this case the unique Nash equilibrium is for the person who likes the public good

more to contribute the entire amount of the public good. The other agent is a complete

free rider.
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2 always Nash
G2(g1) sometime Stackelberg

Figure 1. Nash equilibrium. The player who likes the public good the most contributes

everything and the other player contributes nothing.

The Stackelberg Equilibrium

In order to investigate the Stackelberg equilibrium, it is useful to plot the utility of

agent 1 as a function of his contribution:

V1(g 1 ) = u1(g1 + G2 (g 1 )) -9g

- ui(g1 + max{g2 - gi,0}) - gi.

It is easy to see that this function has the form

V1(gi) f( 1(92 ) - 91 for g1  _2

V ui(gi) - gi for g1 ;> #2.

This function is depicted in Figure 2.

It is clear by inspection that there are two possible optima: either the first agent

contributes zero or y1. In order to determine which one of these possibilities is appropriate

consider two cases..
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u1 ( g2 }

u 1 (g 1 )- g1
-------- --------------------

g g, 91

Figure 2. Indirect utility. This is the utility function of the first contributor as a function

of his gift.

Case 1. The agent who likes the good least is the first contributor. In this case, the

optimal contribution by the first agent is zero. This is true since

u 1(92 ) > u1 (9 1 ) > u1(91) - g1-

Case 2. The agent who likes the public good the most is the first contributor. In this

case, either outcome can occur. The easiest way to see this is by example. Suppose that

ui(G) = ai ln G. If only agent i contributes he will contribute ai. Normalize a1 = 1.

Then agent 1 will prefer to contribute only if

lnai < lnl -1 = -1,

which implies that ai < 1/e ~ .37. 1

In general if the agents have tastes that are very similar, then the first agent will free

ride on the second's contribution. However, if the first agent likes the public good much
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more than the second, then the first agent may prefer to contribute the entire amount of

the public good himself.

Referring to Figure 1 we see that there are two possible Stackelberg equilibria: one is

the Nash equilibrium, in which the agent who likes the good most contributes everything.

The other Stackelberg equilibrium is where the agent who likes the good least contributes

everything. This equilibrium cannot arise as a Nash equilibrium since the threat to con-

tribute nothing is not credible in a simultaneous move game.

Note that the sum of the utilities is higher at the higher level of the public good. If

you want to ensure that the higher level of the public good is provided, then you should

make sure that the person who likes the good least moves first.

2. The General Case

The quasilinear case is very special and it is worthwhile examining how far the results

generalize. Suppose that we now consider a general utility function ut(G, xi) where G is

the level of the public good and xi is the private consumption of person i. We assume that

utility is a differentiable, concave function.

Person l's maximization problem is

max u 1 (g 1 + g2, x1)x1 91

such that gi + x1 = wi

g1 > 0.

We can add g2 to each side of the constraints in this problem and use the definition

G = gi + g2 to rewrite this problem as

max u1 (G, x1)
x 1 ,G

such that G + 1 = wi + g2

G >g2 .

In this interpretation, agent 1 is in effect choosing the level of the public good, subject

to the constraint that the level that he chooses is at least as large as that contributed by

agent 2.
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Following Bergstrom, Blume and Varian (1986) we note that this problem is simply

a standard consumer demand problem except for the inequality constraint. Let fi(w) be

agent l's Engel function for the public good as a function of his wealth. This is simply

the function that gives the optimal level of G for agent 1, holding prices fixed at (1,1) and

letting wealth vary. It follows that

G = gi + g2 = max{fi(w + g2), g2}.

Subtracting g2 from each side of this equation, we have the reaction function

G1 (g2 ) = max{f 1 (wi + g2) - g2,0}.

The reaction function for agent 1 has the simple interpretation that agent 1 will con-

tribute the amount of the public good that he would demand if his wealth were w1 + g2

minus the amount contributed by the other agent, or zero, whichever is larger.

This expression for the reaction function is useful since we know quite a bit about Engel

curves. For example, it is quite natural to make the following assumption:.

Assumption. Both the public and the private good are strictly normal goods at all levels

of wealth. It follows that 1 > f(w) > 0.

Given this assumption it is easy to see the general shape of the reaction function. When

92 = 0, agent 1 will contribute f 1 (w 1). As Y2 increases, the contribution of agent 1 will

decrease but at less than one-for-one. If f1(w) is bounded away from zero, then there will

be some g2 at which fi(w1 + g2) - g2= 0 and agent 1 will contribute nothing.

The notable feature of this reaction curve as compared to the one in the quasilinear

case is that it is 1) generally nonlinear, and 2) has a slope that is flatter than -1.

As before, we can use this reaction function to calculate the Nash equilibria and the

Stackelberg equilibrium. A Nash equilibrium is a solution (g1, g2) to the following equa-

tions

gi= max{fi(wi +±g2) - g2, 0}

92= max{f 2(w 2 + gi) - gi,O0}.

A Stackelberg equilibrium is a pair (gj', G2(g15)) in which gi solves

max V1(gi) = ui(gi1 +max{f 2(w2 +g 1 ) -gi,O0}, wi-g91).
g1
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Our main interest is in comparing the solutions of these two sets of equations. This

comparison is made simpler by noting that Bergstrom, Blume, and Varian (1986) have

proved that under the normality assumption we have made there is a unique Nash equi-

librium. There will also be one Stackelberg equilibrium for each ordering of the agents.

3. A Cobb-Douglas Example

A useful example to fix ideas is the Cobb-Douglas case:

ui(G, xi) = ai ln(g1 i+.g2) + (1 - a i)ln(w - gi),

where 0 < ai < 1. In this case the agent spends a constant fraction ai of his wealth on the

public good so that the reaction function for agent i takes the form

Gi(g,) = max{ai(w; + gj) - gj, 0}.

Here the slope of the reaction function is ai - 1 up to the point gj = aiwi/(1 - ai), and

zero thereafter. It is worth noting that the reaction function will have this form for any

homothetic utility function.

Nash equilibria are the solutions to

gi = max{a1 (wi + g2) - 92, 0}

g2 = max{a2(w 2 + gi) - 91, 0}.

The Stackelberg equilibrium is the solution to

max a1 ln(gi + max{a 2 (w 2 +g 1 ) - gi,0}) + (1 - a)ln(wi - gi).
91

Straightforward computations show that the interior solutions to these equations imply

equilibrium levels of the public good of

G"= aia2(wi +1 w2)
ai + a2 - aia2

GS = aia2 (wi + w2 ).

Note that in this example, G > G" since a < 1.
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4. Results

We have three sets of results. The first set of results concerns who contributes and who

free rides. The second set of results concerns the effect of redistributions of wealth. The

third set of results concerns how the amount of the public good'provided in the Stackelberg

equilibrium compares to the amount provided in the Nash equilibrium.

Recall that gi denotes the optimal contribution of agent i if the other person contributes

nothing and that gi is defined by f 2(w2 + g1) = gi; this is the level of g1 at which agent

l's contribution just crowds out agent 2's contribution.

Free Riding

Fact 1. If y 1 <gi then person 2 must contribute.

Proof. Evaluate the right derivative of agent 1's utility function at g1. We have

~ui(gi, 1i-- g1) _ ui(gi, w1 - g1i

0G ax1

The inequality follows since the derivative equals zero at y1, and g1 > gi. It follows that

agent l's utility will increase if he contributes less than gl, even if he is the only one to

contribute. The fact that the other agent will contribute can only increase the first agent's

utility.1

Fact 2. If there is a Nash equilibrium with g1 = 0, then this is also a Stackelberg equi-

librium.

Proof. By definition of Nash equilibrium, agent 2 is on his reaction curve, so we only need

to show that agent 1 is optimized. This follows from the following string of inequalities:

ui(g2 , wi) > ui(gi + #2 ,w1i - gi) > ni(gi + G2(gi),w31 - g1).

The first inequality follows from the Nash assumption. The second inequality follows since

G2(0) = #2 and G2(gi) is a nonincreasing function. I
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Wealth Redistribution

Fact 3. Suppose that we have a Stackelberg equilibrium (g1, g2). Let (Awi, Aw2 ) be a

redistribution of wealth such that gi > Awi for i = 1,2. Then the Stackelberg equilibrium

after this redistribution is (gj + Aw 1, g- + w2) and the total amount of the public good

remains unchanged.

Proof. Note that the requirement that gi > Aw; implies that the assumptions can only be

satisfied when each person is contributing a positive amount. The first-order condition for

an optimum is

Bu1 (g 1 +g 2 ,w1 - g 1) &u 1 (g1+ 2 ,wi- gi)
f2(w 2 +gi)- = 0.

BG Ozi

Now suppose that each agent changes his contribution by the amount of his wealth change

so that Agi = Aw; for i = 1, 2. Note that since Awi + zw 2 = 0 we must have Ag 1 +Ag 2 =

0.

Under this rule none of the arguments of any of the functions in the first-order condition

change. The conclusion follows immediately. I

Warr (1983) and Bergstrom, Blume, and Varian (1986) show that essentially the same

result holds in an (interior) Nash equilibrium. Bergstrom, Blume, and Varian (1986) also

investigate the boundary cases in some detail. In the two-agent context we are investigating

here the results are quite straightforward.

Fact 4. Suppose that person 1 is contributing and person 2 is not. Then a redistribution

from 2 to 1 will increase the amount of the public good, while a redistribution from 1 to

2 can decrease or increase the amount of the public good.

Proof. A distribution from 2 to 1 increases the amount of the public good since fi(wi)

is an increasing function. Since 92 is equal to zero it will remain zero at lower levels of

wealth.

A redistribution from 1 to 2 will decrease the level of the public good for small redis-

tributions by the monotonicity of fi(wi). But when wi gets small enough relative to w2,
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it can easily happen that person 2 starts to contribute, thereby increasing the amount of

the public good. I

Fact 5. Suppose that person 2 is contributing and person 1 is not. Then a transfer from

1 to 2 will increase the level of the public good, while a transfer from 2 to 1 can increase

or decrease the level of the public good.

Proof. A transfer from 1 to 2 will increase the level of the public good by the monotonic-

ity of f 2(w 2), and a larger contribution by person 2 will never induce agent 1 to begin

contributing.

A small transfer of wealth from 2 to 1 will decrease the level of the public good, but a

larger transfer may induce 1 to start contributing. I

Comparison to the Nash Equilibrium

Our main result has to do with the comparison of the Nash and Stackelberg equilibria.

Theorem. The amount of the public good contributed by agent 1 in the Stackelberg

equilibrium is never larger than the amount provided by agent 1 in the Nash equilibrium.

That is, gi g1.

Proof. Evaluate agent l's utility function at the Nash equilibrium:

v 1(g1) = ui(max{f 2 (w 2 + g1), g},wi - g,).

Consider two cases.

Case 1. gi >f 2(w2+gy)

Note that if we increase gi the inequality continues to be satisfied, since f2 has a slope

of less than 1. This means that once agent 2 has stopped contributing, any increase in gi

will not induce him to contribute more. This means that gi = g ,so that any increase in

agent l's contribution must reduce his utility. It follows that gi gg'.

Case 2. g < f 2(w 2 + gi)
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Now take the right derivative of vi(g1) and evaluate it at the Nash equilibrium. We

have

Sui(g 1 + g2, wi - g1 ) &ui(g + g ,wi - g1)
f 2 (w2 + g 1 ) - < 0.

DG ax1

The inequality is due to the fact that

aui(g + g2, wi - gi) _ &Ui(gi + gn, wi -g")
- = 0

3G Ox1

at the Nash equilibrium and fh(w2 + gi) < 1.

It follows that either gi must be smaller than gi or g1 = K1 and g = 0. We will

establish that the second case cannot occur.

Let gy be the value of gi that maximizes agent 1's utility on the region {gi : f2 (w 2 +

gi) Y1}. If g " is not a global optimum, then

ui(91 + g2, w1 - ?1) >1 u 1 (g1, wi - 91)
>2 u 1 (gi + G2((9'), w1 - g)

>3 u1(g" + gi,wmi - g?).

Inequality 1 follows from the fact that utility is increasing in G. Inequality 2 follows from

the assumption that g17 is not a global optimum. Inequality 3 follows from the fact that

g[7 optimizes utility over a region that contains g1.

Inspecting the first and last terms we see that we contradict the assumption that we

have a Nash equilibrium. It follows that this case cannot occur and we are left with

gj g".

Corollary. The total amount of the public good in the Stackelberg equilibrium is less

than or equal to the total amount provided in the Nash equilibrium.

Proof. The function G2(gi) has a slope of less than 1. Since gj9  gg,

gi + g = gi+ G2 (gf) g + G2 (gi') =g'+g92.
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5. Incomplete Information

The above analysis has concerned the case where each agent knows the preferences and

wealth of the other agent. One could also consider a model with incomplete information

in which one or both of the agents does not know these things for certain.

The second agent reacts passively, making his optimal choice given the first agent's

contribution. Hence it is irrelevant whether or not he knows anything about the first

agent. The only interesting uncertainty concerns the first agent's knowledge of the second

agent's type.

Consider the quasilinear model examined earlier. In this case the Stackelberg equilib-

rium was either (g1,0) or (0, p2). Hence all that is relevant from agent 1's point of view

is the distribution of 92. Regard g2 as a random variable with some distribution in the

population and suppose that agent 1 seeks to maximize expected utility. Then agent 1 will

choose to contribute zero if

Eui(# 2 ) < u1(91) - #1

and otherwise agent 1 will contribute g1.
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