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Sequential Provision of Public Goods

Hal R. Varian

Several authors have examined the private provision of public goods in the context of a

simultaneous move game. The Nash equilibria in these games turn out to have several

surprising and interesting properties. For details see Warr (1983), Comes and Sandler

(1986) and Bergstrom, Blume and Varian (1986).

As far as I know, no one has examined the Stackelberg equilibria in such games. For

example, suppose that agents decide on their contributions to a public good sequentially,

so that later agents know the contributions of earlier agents when they make their own

decisions. In this sort of game, the earlier agents are able to commit to their contributions;

such commitment is not possible in a simultaneous move game.

Admanti and Perry (1988) analyze a game in which agents alternate contributions to

joint project. However, in their game the project is either completed or not, and no benefits

are generated from a partially completed project. In this paper, by contrast, the focus is

on the amount of the public good-the project-that is generated by sequential game.

There is also a literature on sequential entry in oligopoly that contains some aspects of the

public good problem I examine here; see, for example, McLean and Riordan (1989).

It turns out that the ability to commit to a contribution exacerbates the free rider

problem. Our main theorem establishes that the total amount of the public good provided

in a sequential game is typically smaller than the amount provided in a simultaneous move

game. Along the way, we establish several other interesting results concerning equilibria

in sequential contribution games.

This work was supported by the National Science Foundation. I wish to thank Ted Bergstrom, Ig
Horstman, and the participants at the Michigan-Western Ontario economic theory workshop for their
comments and suggestions. I also wish to thank the Santa Fe Institute for their hospitality during the
period of this research.
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1. An Example with Quasilinear Utility

It is instructive to start with a simple example. Suppose that there are two agents. Agent i

is endowed with wealth wi. Each agent divides his wealth between private consumption,

x Q6, and a contribution to a public good, gi > 0. The total amount of the public good

is 1 = gi + 92.

Each agent's utility function is linear in his private consumption and increasing and

concave in G, so that the utility of agent i is given by

u (G) + xi = ui(91+92)+ wi- gi.

We will say that agent i likes the public good more than agent j if u';(G) > u'"(G) for

all G> 0. This says that agent i has a uniformly higher marginal-willingness-to-pay than

agent j for the public good.

Let g be the amount of the public good that maximizes agent i's utility function if the

other agent contributes zero. Note that if agent i likes the public good more than agent j,

it follows that gi > g.

We assume that w= > gi so that the wealth constraint is never binding. It is therefore

convenient to drop ws, since it is an inessential constant in each agent's utility function.

The Reactioz Function

Let us derive the reaction function for agent 2. The first-order condition if agent 2 con-

tributes a positive amount is

u'(gi +g2) = 1. -

Letting G2(g1) be agent 2's reaction function, we must have

u2(gi -G2(gi)) = 1.

It follows that

G2 (g1) = 12 - /1.

Recall that #2 is defined to be the amount that agent 2 contributes when gi = 0.

2



However, this derivation is correct only when agent 2 contributes a positive amount to

the public good. Since g2 2 0, we must have

G2 (g1 ) = max{92 -gi, 0}.

This "kink" in the reaction function is what makes the analysis interesting.

The Nash' Equilibrium

A Nash equilibrium is a point (gi, g2) such that

gi = G1(g2)

g2 = G2 (g1).

Given the simple forms of the reaction functions, we can illustrate the equilibrium in

Figure 1. In the case depicted, agent 1 likes the public good more than agent 2; here, the

unique Nash equilibrium is for agent 1 to contribute the entire amount of the public good.

Agent 2 is a complete free rider. If both agents have the same tastes for the public good,

the reaction functions coincide and there is a whole range of equilibrium contributions,

although there is still a unique equilibrium amount of the public good.

g2

sometime Stackelberg

g~ gG1(g 2
g2g always Nash

G2 (g1) sometime tackelberg

Figure 1. Nash equilibrium. The player who likes the public good the most contributes

everything and the other player contributes nothing.
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The Stackelberg Equilibrium

We assume that agent 1 moves first. In order to investigate the Stackelberg equilibrium,

it is useful to plot the utility of agent 1 as a function of his contribution:

V1(g1) = u1(g1 + G2 (gi))-9g

= u1(gi + max{ 2 - gi,0}) - gi.

It is easy to see that this function has the form

f U1(92) - gi
Vgi) - ui(i) - gi

for gi < 2

for g ;> g2.

This function is depicted in Figure 2.

utility

utl( g2
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........ ----.---------------
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Figure 2. This is the utility function of the first contributor as a function of his gift. In

the case illustrated, agent l's optimal action is to contribute zero, but if the "hump" were

higher, he would want to contribute j1.
It is clear by inspection that there are two possible optima: either the first agent

contributes zero or g1. In order to determine which one of these possibilities is appropriate

consider two cases.

Case 1. The agent who likes the good least is the first contributor. In this case, the

optimal contribution by the first agent is zero. This is true since

Ui(92) > U1(91) > u1(91) - ?1-

4



Case 2. The agent who likes the public good the most is the first contributor. In this

case, either outcome can occur. The easiest way to see this is by example. Suppose

that agent i's utility for the public good is ut(G) = ai ln G. If only agent i contributes

he will contribute aj. Normalize a1 = 1. If agent 1 contributes the entire amount of

the public good, he gets a utility of ln 1 - 1. If he free-rides on agent 2's contribution,

he gets In a2 . Agent 1 will prefer to contribute when

l - 1 > Ina 2,

which implies that a2 < 1/e ~ .37. I

In general if the agents have tastes that are very similar, then the first agent will free

ride on the second's contribution. However, if the first agent likes the public good much

more than the second, then the first agent may prefer to contribute the entire amount of

the public good himself.

Referring to Figure 1 we see that there are two possible Stackelberg equilibria: one is

the Nash equilibrium, in which the agent who likes the good most contributes everything.

The other Stackelberg equilibrium is where the agent who likes the good least contributes

everything. This equilibrium cannot arise as a Nash equilibrium since the threat to con-

tribute nothing is not credible in the simultaneous move game.

Note that it is always advantageous to move first. This is true since there are only two

possible outcomes, q1 and Y2 and the first mover gets to pick the one he prefers. That is,

he gets to compare u1 (y 1) - gi to u 1 (/ 2 ).

Also note that the sum of the utilities is higher at the higher level of the public good.

If you want to ensure that the higher level of the public good is provided, then you should

make sure that the person who likes the good least moves first. Of course, if you want

to minimize the level of the public good provided, you should ensure that the person who

likes the good most moves first.
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2. Bidding for the Right to Move First

Sinc the first mover always has an advantage in this game, we might consider auctioning

off the right to move first. If the first mover likes the public good much more than the

second, then he will provide the entire amount of the public good anyway, so it is no

advantage to him to be first mover. The advantage to the first mover only arises when the

players have similar tastes for the public good. In this case, each player would prefer to

move first and free ride on the others contribution.

Consider, then, the case where agent 1 likes the public good a bit more than agent 2,

so that si > 92, but not too much more. That is agent 1 prefers to free ride than to

contribute the good himself, so that

ui(92) > Ui (91) - si.

Agent 1 can get ui(#2) by moving first and free riding. If he moves second, he must

contribute and he gets u1(# 1 ) - g1. The amount that he would be willing to bid to be first,

bi, thus solves the equation

uI1(j 2 ) - b1 = Ui(g1) - si,

or

bl = u1 (92 ) - ui(i) + 9i.

Similarly, the second agent's bid would be

b2 := U2(91)-U 2 (§2) + i 2.

The difference between these two bids is

51 - b2 = [U1(92) - Ui(gi)] + [U2(#2) - u2(91)] - [g2 - 91]. (1)

It seems plausible to suppose that the agent who values the public good more would be

willing to pay more to move first. However, this is exactly wrong! Under our assumptions,

the agent who values the public good least is willing to pay more for the first-mover

position.
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To see this, note that concavity of the utility functions gives us the following inequali-

ties:
U1(g2) - ui(91) _U'1(91)[92 - 91]

U2(92) - U2(1) U'(91)[9 2 -

Substituting these into (1) we have

b1 - b2  [u'1(#1)+ u2 (g2) - 1](g2 - g1).

Since u'(92 ) = u'(91) = 1, this simplifies to

b1 -b 2  g92-1 <0,

where the last inequality follows since i > #2.
It follows that b1 < b 2 . That is, the agent who likes the public good least will be willing

to pay more in order to move first. As we've seen, this will ensure that the largest amount

of the public good will be provided.

Essentially each agent is paying for the right to free ride on the other agent. The agent

who likes the public good the most gets less of the public good than he would contribute

on his own, while the agent who likes the public good the least gets more than he would

contribute on his own. Hence the agent who likes the public good the least is willing to

pay more for the right to move first than the agent who likes the public good the most.

3. Subsidizing the Other Agent

Suppose that a subsidy is offered to one of the agents in a simultaneous-move public goods

contribution game. Roberts (1987) and Bergstrom (1989) have shown that typically each

agent would prefer that the other agent receives the subsidy. In the Roberts-Bergstrom

framework, the subsidy is paid for by a lump-sum tax on both agents.

The application of this observation in our framework is rather nice. The general idea

is easiest to see in the case where the agents have identical utility functions for the public

good, u(G).

Consider, first, what happens in without any subsidies. In this case, the Nash equilib-

rium amount of the public good is determined by the condition

n'(G") = 1.
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Any set of contributions (gy, g2) such that gj + g G' constitute a Nash equilibrium.

Suppose now that agent 1 offers to subsidize agent 2 with a subsidy 82. This means

that the cost to agent 2 if he contributes 92 is (1 - 2)92, while agent 1 must pay the

subsidy amount of s292.

Suppose that agent 1 offers a tiny subsidy to agent 2. Then in the unique Nash

equilibrium agent 2 will contribute the entire amount of the public good himself. Let this

amount be denoted by G(s2 ); it is defined by the equation

'2(G(s 2)),= 1 - .s2.

Agent l's utility from offering this subsidy is

u1 (G(s 2 )) - 82G(s2).

Originally agent 1 had utility u1(G") - g1 = u1(G(0))-- g1. Hence the increase in

utility from offering the subsidy is

u1(G(s2)) - 1(G(O)) + g1 - s2 G(s 2).

As s2 approaches zero, this expression converges to gi. Hence as long as agent 2 is not

contributing the entire amount originally, so that gi > 0, it follows that there is a small

enough subsidy s2 such that agent l's utility strictly increases if he offers it to agent 2.

The intuition is the following: if agent 1 offers a very tiny subsidy to agent 2, agent 2 will

end up contributing the entire amount of the public good in the resulting Nash equilibrium.

But a tiny subsidy hardly costs agent 1 anything. Hence he is always better off offering

the subsidy.

Note that this is a stronger result that proved by Roberts (1987) and Bergstrom (1989).

He showed that each agent preferred that the other agent be subsidized if the subsidy was

paid by an equal lump sum tax. We have shown that each agent prefers to subsidize the

other agent even if he must pay the entdire amount of the subsidy himself. However, they

were concerned with more general form of preferences than those examined here.
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4. Equilibrium Subsidies

We have seen that each agent will prefer to subsidize the other agent in our contribution

game. It is natural to ask for the equilibrium level of subsidization. Suppose that each

agent simultaneously names a rate at which he is willing to subsidize the other agent.

Then, given these subsidy rates, the agents play a simultaneous contribution game. What

are the equilibrium value of the subsidies?

In order to investigate this question, let us first examine the Pareto efficient level of

provision of the public good. This is the level of the public good, G = gi + g2, that solves

the problem

max u1(g1 + g2) + u 2 (gi + g2) - 91 - 92.
91,92

Hence the Pareto efficient amount of the public good satisfies

u'(Ge) + z4(Ge) = 1. (2)

This is just the familiar condition that the sum of the marginal willingnesses-to-pay must

equal marginal cost.

Returning to the contribution game, suppose that agent i has his contributions subsi-

dized by the amount si. Then if the subsidies are chosen to satisfy the conditions

u'(Ge)= 1 -se

u2(Ge) = 1 - s, (3)

the Pareto efficient level of the public good will be provided. The subsidy rates here are

effectively playing the role of Lindahl prices; exploiting this analogy, we will refer to the

subsidies defined in equation (3) as the Lindahfl subsidies.

Note that (2) and (3) together imply

s* + si = 1. (4)

Now suppose that the subsidy rates are chosen independently by the agents, each agent

recognizing that once the subsidy rates are chosen they will play a Nash contribution game.

What subsidy rates will be chosen in equilibrium?.
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Theorem I. The unique subgame perfect equilibrium of the subsidy setting game involves

setting the subsidy rates to be the Lindahl subsidies.

Proof. Here we show that the efficient subsidies are equilibrium subsidies. The proof that

the equilibrium is unique involves investigating several cases and is given in the appendix.

Suppose that the subsidies are the Lindahl subsidies. Then there is a whole range of

Nash equilibria, namely any pair (g , g2) such that g + g2 = G*. This is because any

such pair will satisfy the appropriate first-order conditions given in (3). Suppose we have

settled on some such equilibrium (gg, g2). We need to show that neither agent would want

to increase or decrease the subsidy that they offer to the other agent.

1. Would agent Iiant to increase his subsidy to agent 2?

If agent 1 increases his subsidy to s2 from se, agent 2 will end up contributing the

entire amount of the public good. Let G(s2 ) be the amount that results as a function of

the subsidy rate. Of course G(s2) = Ge.

By concavity of the utility function

u1(G(s2 )) - u1(Ge) u'(G*)[G(s2) - Ge].

Using the fact that u'(Ge) = 1 - si = s2, and that Ge = gi + g2 we can write this

inequality as
u1(G(s2)) - sG(s 2 ) < 1(G*) - (1 - s1)G*

(5)
ui 1G*)-(1 - silg-sag2.(5

Using the fact that S2 > s2, we have

u1(G(s2)) - s2 G(s2 ) C u1(G(s2)) - sG(s2). (6)

Combining (5) and (6), we have

u1(G(s2 )) - s2G(s2 ) u1(G*) - (1 - s*)gr - sig'-

The left-hand side of this inequality is the utility that agent 1 gets if he chooses 32 > si.

The right-hand side is the utility he gets at the original Nash equilibrium. Hence, agent 1

will not wish to increase the subsidy rate that he offers to agent 2.
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2. Would agent 1 want to decrease his subsidy to agent 2?

If agent 1 decreases his subsidy to agent 2, agent 1 will end up contributing the entire

amount of the public good. Indeed, he will contribute the same amount that agent 2 was

contributing. This will give him a utility of ui(Ge) - (1 - s')Ge and we need to compare

this to his original utility, u1(Ge) - (1 - se)gi - sg.

Note that

(1- s*)G* = (1 -s)(gi + g) = (1- )g+sg.

Hence

u1(Ge) - (1 - si)Ge = u1(Ge) - (1 - ,)g - s29'.

Hence agent l's utility does not increase if he decreases his subsidy to agent 2.

The arguments for agent 2 are parallel. Hence neither agent would want to change

their subsidy rates to the other agent, and the pair (s e, s2) is a Nash equilibrium. I

The remarkable thing about this game is that it yields the Lindahl equilibrium as

a Nash equilibrium. Hurwicz (1979) investigates the problem implementing the Lindahl

equilibrium as a Nash equilibrium for general preferences, but he requires a much more

complicated "penalty" for deviating from the equilibrium choice. Also, the Hurwicz out-

come function is not feasible away from equilibrium.

These difficulties do not arise in our framework. In the context of quasilinear utility,

the penalty for deviation from the Lindahl prices is "automatic" in that deviations from

the Lindahl prices immediately imply that one agent free rides on the other.

Clarke (1971) and Groves (1976), (1979) describe a demand revealing process that yields

the Pareto optimal amount of the public good. However the Clarke-Groves mechanisms

are not generally Pareto efficient in that they may require some payment of the private

good. The mechanism that we propose is fully efficient.

In Varian (1989) I describe a related mechanism that works for n agents with general

utility functions; i.e., preferences are not restricted to the quasilinear form. The related

mechanism also has two stages. In the first stage each agent announces a "price" for each

other agent. In the second stage, each agent contributes to the public good, and the cost of

his contribution depends on the price determined in the first stage. Each agent also bears
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an additional cost which depends on the other agents' contributions and on the dispersion

of the prices. I show that the only subgame perfect equilibria of this game are Lindahl

allocations.

5. General Utility Functions

The quasilinear case is very special. Suppose that we now consider a general utility function

ui(G, x=) where G is the level of the public good and xi is the private consumption of agent i.

As before, we assume that utility is a differentiable, concave function.

We first derive the form of the reaction function. Agent 2's maximization problem is

max u2(91 + 92, x2)
T2 ,g2

such that g2 + X2 =w2

g2 > 0.

We can add g1 to each side of the constraints in this problem and use the definition

G = g1 +g2 to rewrite this problem as

max u 2 (G, x 2)
r2,G

such that G +X2 = w2 +gi

G>g1 .

In this interpretation, agent 2 is in effect choosing the level of the public good, subject

to the constraint that the level that he chooses is at least as large as that contributed by

agent 1.

Following Bergstrom, Blume and Varian (1986) we note that this problem is simply

a standard consumer demand problem except for the inequality constraint. Let f 2(w) be

agent 2's Engel function for the public good as a function of his wealth. This is the function

that gives the optimal level of C for agent 2, holding prices fixed at (1,1) and letting wealth

vary. It follows that

C = gi + g2 = max{f2 (w2 +g1), i1}.

Subtracting g1 from each side of this equation, we have the reaction function

G2 (g1) = max{f2 (w2 + g1) - gi, 01.
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The reaction function for agent 1 has the simple interpretation that agent 1 will con-

tribute the amount of the public good that he would demand if his wealth were w1 + g2

minus the amount contributed by the other agent, or zero, whichever is larger.

This expression for the reaction function is useful since we know quite a bit about

the behavior of Engel functions. For example, it is quite natural to make the following

assumption:

Assumption. Both the public and the private good are strictly normal goods at all levels

of wealth. It follows that 1 > f(w) > 0.

Given this assumption it is easy to see the general shape of the reaction function.

Consider the reaction function for agent 2. When g1 = 0, agent 2 will contribute f 2 (w 2 ).

As gi increases, the contribution of agent 2 will decrease, less than one-for-one. If f2(w)
is bounded away from zero, then there will be some contribution by agent 1, g', at which

f 2(w 2 + gi) -gi = 0 and agent 1 will contribute nothing. This amount, gi, is the amount

where agent l's contribution just crowds out agent 2's contribution.

We summarize some properties of the reaction function in the following fact, the proof

of which follows immediately from the assumption.

Fact 1. The reaction function G2(g1) is a nonincreasing function. It will be strictly

decreasing when it is not equal to zero. The function H(g1) = g1 + G2 (g1) is a strictly

increasing function.

As before, we can use this reaction function to calculate the Nash equilibria and the

Stackelberg equilibrium. A Nash equilibrium is a solution (gl, g2) to the following equa-

tions
g9 = max{fi(wi + g2) - g2,, 01

g2 = max{f 2 (w 2 + gi) - gi, 01.

A Stackelberg equilibrium is a pair (g j, G2 (gi9)) in which gi solves

max ui(g1 +max{f 2 (w 2 +g1) -gi,O0},w1 - gi).
91

Our main interest is in comparing the solutions of these two sets of equations. This

comparison is made simpler by noting that Bergstrom, Blume, and Varian (1986) have
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p er l ' tht "iider "the normality 'assumption we have rnade there is a uniqe Nash equi-

libilemn. Thee Willalso bei ore Stkchelberg equilibrium for each ordering of'the agents.

6. A Cobb-Douglas Example

A useful -example to fix ideas is the Cobb-Douglas case:

ui(G, xi) = a2 ln(gi + 92)+(1 - ai) ln(w - gi),

where 0 <a= <1. In this case the agent spends a constant fraction ai of his wealth on the

public good so that the reaction function for agent i takes the form

G (gy) = max{ai(w + g) - gj,0}.

Here the slope of the reaction function is ai - 1 up to the point g, = a w /(1 - ai), the

point where agent j's contribution just crowds out agent i's contribution. After this point,

agent i contributes zero. It is worth noting that the reaction function will have this form

for any homothetic utility function.

Nash equilibria are the solutions to

91 =max{a1(w1 + g2) -Y92,0}

92 = max{a2 (w2 +gi) - 91,0}.
The Stackelberg equilibrium is the solution to

max a1ln(gi + max{a 2(w2 +g91) -1gi, 0}) + (1 - a1)ln(wi - g1 ).
91

Straightforward computations show that the interior solutions to these equations imply

equilibrium levels of the public good of

G- =a 1a2(w1 + w2)
ai + a2 - a1a2

G' = ai a2 (wi + zv2).

Note that in this example, G" > G' since ai < 1.
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7. Results for General Utility Functions

We have three sets of results. The first set of results concerns who contributes and who

free rides. The second set of results concerns the effect of redistributions of wealth. The

third set of results concerns how the amount of the public good provided in the Stackelberg

equilibrium compares to the amount provided in the Nash equilibrium.

Recall that g; denotes the optimal contribution of agent i if the other person contributes

nothing and that gi is defined by f2(w2+g1) = g1; this is the level of g1 at which agent 1's

contribution just crowds out agent 2's contribution.

Free Riding

Fact 2. If g1 < gi then both agents must contribute in the Stackelberg equilibrium.

Proof. Evaluate the right derivative of agent 1's utility function at g1. We have

Bui(g[, w1 - gi) _0a1(gW, 2wi - gC) <0
8G 8x1'

The inequality follows since the derivative equals zero at g1, and gi > g1. (Recall that

u1 (gi, w1 - gi) is a concave function.) It follows that agent l's utility will increase if he

contributes less than gi, even if he is the only one to contribute. The fact that the other

agent will also contribute can only increase the first agent's utility. Hence the Stackelberg
equilibrium must involve contributions by both agents. I

Fact 3. If there is a Nash equilibrium with g1 = 0, then this is also a Stackelberg equi-

librium.

Proof. By definition of Nash equilibrium, agent 2 is on his reaction curve, so we only need

to show that agent 1 is optimized. If agent 1 contributes 0, then agent 2 must contribute

T2 . Let gi > 0 be any other possible contribution by agent 1. Then we have:

ui(# 2 , wi) > ui(g1 + #2, wi - gi) > u1 (g1 + G2(g1), wi - gi).

The first inequality follows from the Nash assumption. The second inequality follows since

G2(0) = go and C2 (g1) is a nonincreasing function. I
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Wealth Redirbioiin

Fact 4. Suppose that we have a Stackelberg equilibrium (gj', g2). Let (Awi, AW2) be a

redistribution of wealth such that gj > lwi for i = 1,2. Then the Stackelberg equilibrium

after this redistribution is (g1 + Awi, g2 + Aw 2) and the total amount of the public good

remains unchanged.

Proof. Note that the requirement that gi > Aw implies that the assumptions can only be

satisfied when each person is contributing a positive amount. The first-order condition for

an optimum is

Bui(gi_+_2,i_--_ gi)8u 1 (gi + g2 , 1 -9 1)-o
v9G Ox1

Now suppose that each agent changes his contribution by the amount of his wealth change

so that Agg = Aw; for i = 1, 2. Note that since Awl +Aw 2 = 0 we must have A91+A92 =

0.

Under this rule none of the arguments of any of the functions in the first-order condition

change. The conclusion follows immediately. I

Warr (1983) and Bergstrom, Blume, and Varian (1986) show that essentially the same

result holds in an (interior) Nash equilibrium. Bergstrom, Blume, and Varian (1986) also

investigate the boundary cases in some detail. In the two-agent context we are investigating

here the analysis of the boundary cases are quite straightforward.

Fact 5. Suppose that person 1 is contributing and person 2 is not. Then a redistribution

from 2 to I will increase the amount of the public good, while a redistribution from 1 to

2 can decrease or increase the amount of the public good.

Proof. A distribution from 2 to 1 increases the amount of the public good since fi(w 1)

is an increasing function. Since g2 is equal to zero it will remain zero at lower levels of

wealth.

A redistribution from 1 to 2 will decrease the level of the public good for small redis-

tributions by the monotonicity of fi (wi). But when wi gets small enough relative to w2,
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it can easily happen that person 2 starts to contribute, thereby increasing the amount of

the public good. I

Fact 6. Suppose that person 2 is contributing and person 1 is not. Then a transfer from

1 to 2 will increase the level of the public good, while a transfer from 2 to 1 can increase

or decrease the level of the public good.

Proof. A transfer from 1 to 2 will increase the level of the public good by the monotonic-

ity of f 2 (w 2), and a larger contribution by person 2 will never induce agent 1 to begin

contributing.

A small transfer of wealth from 2 to 1 will decrease the level of the public good, but a

larger transfer may induce 1 to start contributing. I

Comparison to the Nash Equilibrium

Our main result has to do with the comparison of the Nash and Stackelberg equilibria.

Theorem 2. The amount of the public good contributed by agent 1 in the Stackelberg

equilibrium is never larger than the amount provided by agent 1 in the Nash equilibrium.

That is, gi gi .

Proof. The proof is by contradiction. Assume the theorem is not true so that gi > gj'.

We consider two cases, first when agent 2 contributes zero in the Nash equilibrium, and

second, where agent 2 makes a positive contribution in the Nash equilibrium.

Case 1. g =0.

Since G2 (gi) = 0 and G2 (g 1 ) is a nonincreasing function, we also have G2(gi) = 0.

Now, by the Nash assumption,

ui(gj',wi - gjy) > u1(gj',w1 -g') = ui(gi + G2 (gj'),wi -g)

It follows that agent l's utility must decrease when moving from gy to gj which means

that gi cannot be a Stackelberg equilibrium.

Case 2. G2 (gj') > 0.
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First, we observe that since G2 (g1) is strictly decreasing in this case, the assumption

that gf > gi implies

G2 (g1) < G2(gi") = g2.

Rearranging this inequality,

e=g2 -'G2( 1) >0. (7)

Second, we know that agent 1 must get at least as large a utility at the Stackelberg

equilibrium as at the Nash equilibrium so:

u1(g"9 + g, wi -- g") = u1(g"+ G2(g"),w1 -g") < ui(gi + G2 (gI),1wi -g). (8)

The fact that utility is increasing in the amount of the public good and that e > 0

implies:

ui(gj + G2 (9"), wi - g1) < ui(g + G2 (g) + e, wi - gi). (9)

Combining (8) and (9), and using (7) for the definition of e,

u1(g"+ g2", W1 - gi") < ui(gi + g2, W1 - gi).

But this contradicts the assumption that (gr, g') is a Nash equilibrium. I

Corollary. The total amount of the public good in the Stackelberg equilibrium is less

than or equal to the total amount provided in the Nash equilibrium.

Proof. According to Fact 1, the function H(gi) = gi + G2(gi) is an increasing function.

Therefore,

H(gj") = gi" + G2 (g1") = g"~ + gi - gj'+ G2(g9) = H(gj').

The corollary follows. I
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8. Incomplete Information

Our analysis has concerned the case where each agent knows the preferences and wealth

of the other agent. One could also consider a model with incomplete information in which

one or both of the agents does not know these things for certain.

The second agent reacts passively, making his optimal choice given the first agent's

contribution. Hence it is irrelevant whether or not he knows anything about the first

agent. The only interesting uncertainty concerns the first agent's knowledge of the second

agent's type.

Consider the quasilinear model examined earlier. In this case all that is relevant from

agent l's point of view is the value of 92. Regard g2 as a random variable with some

probability density function f(g2) and suppose that agent 1 seeks to maximize expected

utility.'

Suppose that 92 is distributed between 0 and oo. The expected utility of agent 1 is

given by

v1(91) = +[u(gi +max{j 2 - g, 0}) - g1]f(92) d 2,

which can be written as

/91 
o

V(91) = j [u(gi) - g]f(j 2 )dj 2 + j [u(# 2) -J1]f( 2) d92.
O g

Letting F(g) be the cumulative distribution function for f, we can write this as

v(91) = [u(gi) - gi]F(gi) + f [u(2) - 21]f(2) da2

Differentiating this expression with respect to g1 we have

vi(91) = [u1(g1) - gi]f(gi) + [['1(gi) - 1]F(gi) - [u1(gi) - gi]f(gi) - f(#2)d§2.
91

Simplifying gives us

v'(gi) = n'i(gi)F(gi) - 1.

1 We assume that the von Neumann-Morgenstern utility function takes the quasilinear form. This is
restrictive, but seems necessary for a simple analysis.
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Note that when gi = 0, the probability that 92 is less than this is zero, so that v'(0) = -1.

If 91 is large enough so that agent 1 is certain that g2 is less than gi, then vi (g1) = t'(gi)-1.

Hence, agent l's utility as a function of his gift is similar to the shape depicted in Figure 2.

Depending on the beliefs of agent 1 about agent 2's maximum contribution, agent 1 will

either choose to free ride, or to contribute an amount gi that satisfies the condition

vi'(g*) = u'(g1)F(g*) - 1 = 0.

This marginal condition is quite intuitive. If agent 1 decides to contribute a bit more of

the public good, he will get u'1(g1), but only if agent 2 has g2 <g *. Otherwise, agent 1 will

get no incremental utility from his contribution-since his contribution would just crowd

out some of the public good that agent 2 would have given anyway. Hence the expected

marginal utility of agent l's contribution is u (gi) times the probability that 92 < gi,

which is just u (g*)F(g1*). The optimal contribution is determined by the condition that

this expected marginal utility must equal the (certain) marginal cost of the contribution.

How does this amount compare to J1, which is what agent 1 would contribute under

certainty? Note that vi(g1) = u' 1(gi)F(g1 ) - 1 = F(K1 ) - 1. As long as there is some

possibility that agent 2 will have 92 > ?ii, we will have F(g 1 ) < 1 and v'(§,) will be

negative. Hence, agent l's utility increases if he contributes less than qi. Assuming a

concave shape for vi(gi) this implies that the equilibrium contribution in the presence of

uncertainty is less than the contribution under certainty.

Intuitively, the possibility that agent 2 may value the good more than agent 1 leads

agent 1 to reduce his contribution to the public good, hoping to free ride on agent 2's

contribution.

9. Summary

We have examined some sequential games involving contributions to a public good. If

preferences are quasilinear, then:

1. The sequential equilibrium of the contribution game will provide the same or less of

the public good than the simultaneous move game. This is also true for general utility

functions.
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2. The player who likes the public good least will bid the most to move first.

3. Each player would like to subsidize the other player's contributions. If both players

choose subsidy rates and then play the voluntary contribution game, a Lindahl equi-

librium is the unique subgane perfect equilibrium of this two-stage game.

4. The equilibrium of the sequential move game is independent of small redistributions of

wealth.

5. If the first agent is uncertain about the type of the second agent, he will tend to

contribute less to the public good.
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Appendix. Proof of uniqueness of equilibrium

Consider any subsidies (si, s*) other than the efficient subsidies. We need to show that

there is some action by one of the agents that will increase his utility. Given (s*, ;), there

will be some amount G* = g1*+ g2 of the public good provided, and agent 1 will get utility

u1(G*) - (1 - s*)g* - s*g*. (10)

There are several cases to consider.

Case 1. The equilibrium amount of the public good is less than the efficient amount:

G* < Ge and both agents are contributing.

Since G* provides less than the efficient amount of the public good,

u'1(G*) + u'2(G*) > 1,

which means that

1 - s* + 1 - s8 > 1,

or

1 - s*- *> 0. (11)

Suppose that agent 1 increases his subsidy on agent 2 to some amount s2 > s2. Then in

the contribution stage of the game, agent 2 will contribute the entire amount of the public

good, which we denote by G(s2).

Agent 1 will then get utility u1 (G(s 2 )) - s2 G($2 ). The difference between this utility

and the utility at (s*, s2) given in equation (10) is:

u1(G(s2)) - s2G(s2 ) - ui(G*) + (1 - *)g* + sg. (12)

Let s2 approach s2. Since G(s 2 ) is a continuous function of s2, expression (12) converges

to

Substituting C* = gc* + gi and simplifying, we have

(1 - s* -s)g*.

22 .



Using equation (11) and the fact that gi > 0, we have

(1 -S* - s*)g1* >0.

Hence, a subsidy level s2 that is slightly larger than s* will increase the utility of agent 1.

Case 2. The equilibrium amount of the public good is less than the efficient amount and

one agent contributes zero.

Suppose that agent 1 is contributing a positive amount and agent 2 is contributing

zero. This means that u'2(G*) < 1 - s2. Let agent 1 increase his subsidy of agent 2 up to

the point where agent 2 is just willing to contribute. That is, agent 1 increases agent 2's

subsidy to s2*, where s;* satisfies

u2 (G*) = 1 - s**.

In doing this, agent 1's utility doesn't change. Now let agent 1 increase the subsidy to

some amount s2 slightly beyond s2*, and let s2 approach s2*. According to equation (13),

the limit of the change in utility is given by

-s2*G* + (1 - .s)g1 + sig2. (14)

Since g2 = 0, and g* = G*, this expression becomes

(1- s*- s*)G* >0.

The last inequality follows since we have an inefficiently small amount of the public good,

so that u1'(G*) + u2 (G*) < 1.

Case 3. The equilibrium amount of the public good is more than the efficient amount:

G* > G* and both agents are contributing.

In this case, the argument we used to derive equation (11) implies that

1 -sr* - s* < 0. (15)

Suppose that agent 1 considers cutting the subsidy to agent 2 to some 42 slightly smaller

than si. If this is done, agent 2 will contribute zero. Since agent 1's subsidy hasn't
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changed, he will contribute the entire amount of the public good G*, giving him utility

u(G*) - (1 - si)G*. The increase in agent l's utility is given by

u1(G*) - (1 - us)Gi* - 1(G*) + (1 - s*)g* + sg.

Using the fact that G* = gi + g2, we can simplify this expression to

(s*+ s*-1)g*> 0,

where the inequality follows from equation (15).

Case 4. The equilibrium amount of the public good is more than the eflicient amount:

G* > G* and one agent contributes zero.

Suppose that agent 1 contributes zero. Then agent 1 has utility

u1(G(s*)) - s*G(s*)= u1(G*) - s*G*. (16)

Since we have an inefficiently large amount of the public good being provided,

u1(G*)+ '2(G*) < 1.

Since agent 2 is contributing, we can write

ui(G*) + 1 - s* < 1,

or,

n'1(G*) - s* < 0. (17)

Differentiate equation (16) with respect to S2 and evaluate the derivative at si:

[u'4(G*) - s4]G'(si) - G(s*).

The bracketed term is negative by equation (17). The derivative G'(s) is positive since

increasing the subsidy on an agent who is contributing must increase his contribution.

Hence the sign of the entire expression is negative.

This means that agent 1's utility must decrease if he increases his subsidy of agent 2

by a small amount. Conversely, agent l's utility will increase if he decreases his subsidy of

agent 2 by a small amount, which is what we wanted to show. I
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