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PUBLIC ECONDMICS LECTURE I T. BERGS TRPN

A Primitive Publ ic Economy

Anne and Bruce are roormates. They are interested in only twAo thingg....

the temperature of their room and playing cribbage together. Each has a

favourite room temperature and a preferred number of games of cribbage per

week. The further the temperature rises above or falls below Anne's

favourite temperature the less happy she is. Similarly changes in the

direction away from her favourite amount of cribbage make her less happy.

Bruce's preferences have the same qualitative character as Anne's. But,

what makes our story economically interesting is that Anne and Bruce differ

in'their favourite temperatures and in their preferred number of games of

cribbage. Since they both must experience the same level of each,..they will

have to reach some kind of agreement in' the presence of conflicting interests.

We will begin our study of public economics with an analysis of efficient

conduct of .te Anne-Bruce household.

Our understanding of the case of Anne and Bruce will be aided by the

use of a diagram. In Figure 1, the points A (CA, TA) and B = (CB, TB)

represent Anne's and Bruce's favourite combinations of cribbage and

temperature. The closed curves encircling A are indifference loci for Anne.

She regards all points on such a curve as equally good, while she prefers

points on the inside of any such curve to points on the outside. In similar

fashion, the cl os ed curves encircl ing B are Bruce 's indi ff ere nce curves .

At this point it is useful to introduce a bit of vocabulary. Wie shall

speak of each combination of a room temperature and a number of games of

cribbage as a situationz. If everybody likes situation a as well as

situation 3 and someone likes a better, we say that a is Pareto superior to S.

A situation is said to be Pareto optimal if there are no possible situations

that are Pareto superior to it. Thus if a situation is not Pareto optimal ,

it should be possible to obtain unanimous consent for a beneficial change.
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If the existing situation is Pareto optimal , then there is pure conflict of

interest in the sense that any benefit to one person can come only at the

cost of harming another.
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Our task is now to find the set of Pareto optimal situations,

chez Are and Bruce . Consider a point like X in Figure 1. This point is

not Pareto optimal . Since each person prefers his inner indifference curve

to his outer ones, it should be clear that the situation Y is preferred by

both Anne and Bruce to X. Now if we take any 'point representing a possible

situation, the qualitative nature that we have assumed for preferences

requires that Anne and Bruce each have exactly one indifference curve passing

through that point. Either these two indifference curves cross or they are
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tangent (or the point is on the boundary of the diagram).. If they cross

at a point, then, by just the sort of reasoning used for the point X,

we can show that this point can not be Pareto optimal. Therefore the

Pareto optimal points must either be points at which Anne's indifference

curves are tangent to Bruce's or must be on the boundary of the diagram.

(For the time being we will confine our attention to "interior" Pareto

optima) . In Figure 1, all of the Pareto optimal points are points of

tangency between Anne's and Bruce's indifference curves. Thus the points

Z and W are Pareto optimal . In fact there are many more Pareto optima which

would- be found if we drew more indifference curves and found more tangencies

The set of such Pareto optima is depicted by the line BA in Figure 1. Notice

that there are some points of tangency such as V, which are not Pareto

optimal. It should be clear that; for example, the situation A is Pareto

superior to V.

Let us def ine a person' s mrg~rinal rate of sustitu~tion~ between

temperature and cribbage in a situation to be the slope of his indifference

curve as it passes through that situation..-From our

discussion above, it should be clear that at an interior Pareto optimum,

Anne's marginal rate of substitution bety n temperature and cribbage, must

be the same as Bruce's. If we compare a Pareto optimal tangency like Z with

a non-optimal tangency like V we notice a second necessary condition for an

interior Pareto optimum. At Z, Anne wants more cribbage and a lowe'r

temperature while Bruce wants less cribbage and a higher temperature. At V,

although their rnarginal rates of substitution are the same, both want more

cribbage and a lower temperature. Thus a more complete necessary condition

for a Pareto optimum is that their marginal rates of subs titution be equal

and their preferred directions of change be opposite.

In order to generalize our theory to more people and more commodities, I
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we need more powerful tools . The tooltkit in which we find.them is the

calculus of functions of several variables. We will first analyze our

(by now) cosy little household with these tools. After that we will

demonstrate the great power of the tools we have acquired for analysis of

public problems of all kinds.

A Lagrangean Aporoach to Playing House

One way of describing .a Pareto optimum is to say that each Pareto

optimum solves a constrained maximization problem where we fix Bruce's

utility -at some level and then maximize Anne's utility subject to the

constraint that Bruce receives at least his fixed level of utility. We

should, in principle, be able to generate the entire set of Pareto optimal

situations by- repeating this operation fixing Bruce on different

indifference levels.

Suppose that Anne's utility- function is UA(C, T) and Bruce's utility

B Jfunction is U (C, T). To find one Pareto optimum, pick a level of util ity

UB for Bruce and find (C, T) to maximize UA(C, T) subject to the constraiit

that UB(C, T) jB. A convenient tool for the study of problems of

maximization subject to constraints is the "method of Lagrange mul tipl iers".

The fact that we need to know is the following:

Let f(-) and g(), ... , gk() be differentiable real valued functions

of n real variables. Then (subject to certain regularity conditions) a

necessary condition for x to yield an interior maximum of f(-) subject to

the constraints that g'(x) g 0 for all i is that thare exist real numbers

S 0, ... A 0, such that the "Lagrangean" experession

L(x,X 13, ... n) = f(x) + E. A5 g3 (x)

has each of its partial derivatives equal to zero at x.

Here we will not study the "certain regularity conditions" alluded to

above. In most applications they are satisfied. However we will present
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an alternative version of the Lagrangean condition which is cays true.

This is:

If f() arid g (), ... gk() are differentiable, a necessary

condition for an interior x to maximize f( -) subject to g3 : 0 for each j

is that the gradient vectors (the vectors of partial derivatives) at x for

f and the g3 's be linearly dependent.

Returning to Anne and Bruce, a Pareto optimum is found by finding

(C, T) and A such that the partial derivatives of

A B B -
&'(C, T) +A[U - U (C, B)]

with respect to C and T are both zero.

This tells us that:

(2) UA(C, T) -U(C, T)
(1) - A- 0

aC aC.

a (C, T)BU (CT)
(2) - A- 0

aT aC

Using (1) and (2) we can deduce

au(C, T) aU (C, T)

-(3) .. . = B - -
a UA(CT) ;U (C, T)

a T T.

Thus we see that Anne's marginal rate of substitution between cribbage

and temperature must be the same as Bruce's at any Pareto optimal point.

Notice that the term OB does not enter equation (3) . This condition

must hold regardless of the level, UB, at which we set Bruce's utility. In

general there will be many solutions of (3) corresponding to different points

on the locus of Pareto optimal points in Figure 1 or equivalently to different

levels of U
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Recall also that we must have X > 0. Therefore from (1) and (2)

we see that the narginal utilities of cribbage and temperature must have

opposite signs for Anne and Bruce at a Pareto optimal point.

We have now uncovered all of the optimality conditions that we saw

from the diagram, but using Lagrangeans. This may not seem like a big

gain. But what we will soon discover is that we now have a tool that will

enable us easily to analyze cases that are much too complicated for graphs.

Before we leave Anne and Bruce to their own devices, we will ask them

to introduce one more notion that we will find useful. This is the "utility

possibility frontier". In Figure 2 we put utilities for Anne and Bruce on

the axes. We shade in the set of utility combinations for Anne and Bruce

FIGURE 2
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that are achievable by means of possible situations. For example the

point B in Figure 2 represents the utilities achieved from Bruce's favourite

position (B in Figure 1). Likewise A represents the utilities achieved from

Anne's favourite situation. The line segment AB in Figure 2 which is the

northeast boundary of the utility possibility set is known as the "utility

possibility frontier". Points on this line represent utilities achievable

from Pareto optimal allocations. In general, a utility possibility frontier

might be either convex or concave but it must slope downhill. Otherwise it

would not represent the set of Pareto optimal distributions of utility.

EXERCISES

1. Suppose that Anne's preferences are represented by the utility function

A2
Uj(C, T) -[ (C-20) + (T-25) 2 ] and Bruce's preferences are represented by

the utility function UB(C, T) = - (C-0)2 + (T-15) 2 1.

A. Sketch their indifference curves on a diagrm.

B.- Is the situation (10, 15) Pareto optimal?

C. Find the set of all Pareto optimal situations. (Hint: While Lagrangean

analysis solves this problem nicely, it could also be solved by plain

plane geometry) .

D. Find the set of situations that is Pareto superior to (9, 14).

E. Find a situation in which Anne's indifference curve is tangent to

Bruce's but which is not Pareto optimal. Explain what is going on.

F. If situation a is Pareto optimal and situation a is not Pareto optimal,

must az be Pareto superior to a? Explain.

G. Suppose that Charles moves in with Anne and Bruce. The three of them.

learn three-handed cribbage and lose all interest in two-handed cribbage.

Anne 's and Bruce's utilities are as before, while Charles' utility

function is:

UC(C, T) =-{C-20) 2 + (T-15) 2 }.

Find the new set of Pareto optimal situations.
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H. Forget Charles.

Suppose that Anne and Bruce lose interest in cribbage, but are still

concerned about two things. ... the room temperature and breakfast time.

In principle, breakfast could be served at any time on a 24 hour clock.

On the tube from the center of a roll of toilet paper, or some similar

material draw indifference curves for Anne and Bruce. (Use two colours

of ink). Show the locus Pareto optimal situations.

I. Suppose the only two issues of concern are breakfast time and dinner

time. Explain how you could use a doughnut to diagram indifference

curves and Pareto optimal points.~ What can you tell us about the set

of Pareto optimal points?

J. Find the utility possibility frontier for Anne and Bruce in problem A.

K. Explain why the- utility possibility frontier must in general slope down.

L. In Firire 2 the boundary of the utility possibility set slopes uphill to

the west of point B. Explain why this is so.
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PUBLIC ECONciDTCS LECITIRE 2 T, DERGSrac

Charles and Diana live on a. green island. They are interested in
only two things ... sherry and monuments. They both like sherry and
monuments, the more, the better. Neither Charles nor Diana is allowed

to work , but they do have a fixed- amount of money worth $W. They can
spend this money either- on sherry which costs p per litre or on
monuments which cost p ' each. Now sherry, once purchased,*can. be drunk
either by Charles or by Diana, while.a monument is enjoyed by both. A good
like sherry which. can be consumed by one person or the other but not by
both is known as a private good. A good ike monuments which is not
divided among the different consumers but which may affect the utility
of more than one person is known as a public.good.. In the tale of Anne
and Bruce, there were two public goods and no private goods. Here we
have one public good and one private good. To fully describe an

allocation of resources on the island.we need to know not only the total

output of private goods and of public goods, but also how the private

good is divided between Charles and Diana.

We. proceed to analyze conditions for efficient resource allocation

on the green island. Let XC and XD be the amounts of sherry

consumed by Charles and Diana respectively. Let Y be the number of

monuments that they obtain. Since sherry and monuments are purchased

at prices p and py, sugject to a budget of $W, the set of

possible resource allocations for Charles and Diana is described by the

set of triples:

(XC. XD. Y) 1PX(XC + XD) + PyY ,,w

In general , Charles' utility function might depend on Diana's sherry

consumption as well as on his own and on the number of monuments. He

might, for example, like her to consume sherry because he likes her to

be happy or he might not like her to overindulge and -embarrass him.

Thus we would want him to have a utility function of the form:

UC(XC, XD' Y

For our first pass at the problem, however, let us simplify matters by

. assuming that both Charles and Diana are totally selfish about sherry.
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That is, neither cares how much or little the other consumes. If this

is the case, then their utility functions would have the form:

UC(XC, Y) and UD(XDY

The allocation problem of Charles and Diana is' mathematically a

bit more ccnplicated than that of Anne and Bruce. There are three

decision variables instead of two and there is a feasibility constraint

as well as the two utility functions. Therefore it is more difficult to

represent the whole story on a graph. In fact, at least at first, doing

this is so complicated as to obscure rather than clarify matters. It

is, however, quite easy to find interesting conditions for Pareto

optimality using Lagrangean methods. In fact, as we will show, these

conditions can also be decuded by a bit of careful "literary" reasoning.

We begin with the Lagrangean approach. At a Pareto optimum it

should be, inpossible to find a feasible allocation that makes Charles

'better off without making Diana worse off. Therefore, Pareto optimal

allocations can be found by setting Diana at an arbitrary (but possible)

level of utility, UD and maximizing Charles' utility subject to the

constraint that UD(XD, Y) >1D and the feasibility constraint.
D D) D

Formally then we seek a solution to the constrained maximization

problem:

Choose XC, XD and Y to maximize:

UC(Xc,)

subject to:

UD(XDY UD.) and

px (XC + .XD) + pyY <W.

The Lagrangean for this problem is:

L(XC, XD~ Y l'1 A2 ) =UC(XC1'

+ A (U P(X c y(D

+ 1 ~ (xC + XDI p~ y)-



11 .

Setting the partial derivatives of L(.) equal to zero ve have:

BU
C

C 2 = x 0  (2)

aD
1 A2 px = 0-(3)

ax
D

-- +C-2y= 0 (4)
3Y aYy(4

From (2) it follows that:

1 _C-

2 -(5)
P aXc

From (3) and (5) it follows that:

A1  - (6)

aX X D

Use (5) and (6) to eliminate 1 and 2 fron (4). Divide the
aUC

resulting 'expression by c and you will obtain:

aXc

, UC aY
Y + -L-(7)

UC Da 0  x,

aXC D

This is the fundamental "Samnuelson condition" for efficient provision of

public goods. Stated in words, (7) requires that the szm of Charles'

and Diana' s mar ginal ra te s of subs ti tutio n be tween mo numen ts and s herry

must equal the cost of an extra unit of rnonument relative to an extra

unit of sherry.

Let us now try to deduce this condition by literary methods. The

rate at which either person is 'willing to exchange a marginal bit of



12.

sherry for a marginal bit of monument is just his marginal rate of

substitution. Thus the left side of equation (7) represents the amount

of sherry that Charles would be willing to give up in return for an extra

bit of monument plus the amount that Diana is willing to forego for an

extra bit of monument. If the left side of (7) were greater than
p
-- then they could both be made better off, since the total amount of
px

sherry that they are willing to give up for an extra bit of monument is
p

greater than the total amount, v , of sherry that they would have to give
px

up in order to be able to afford an extra bit of monument. Similarly if
py

the left hand side of (7) were less than , it would be possible
px

to make both better off by purchasing fewer monuments and giving each

person more sherry. Therefore an allocation can be Pareto optimal only

if (7) holds.

A Family of Special Cases - Transferable Utility

Suppose that Charles and Diana have utility functions that have the

special functional form:

UC(xC, Y)= XC + fC(Y) and

UD(XD, Y) = XD + fD(Y) where

the functions fC and fD have positive first derivatives and negative

second derivatives. Then the indifference curves of each person will be

qualitatively like Figure 1.

Figure 1 X
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The assumptions about the derivatives of fC and fD ensure that the
curves slope down and are convex toward the origin. The assumption that
U(XC, Y) is linear in X C implies that each indifference curve is

simply a vertical translation of any other and that indifference curves

are parallel in the sense that for given Y, the slope of the indifference

curve at (X, Y) is the same for all X.

Since = 1, it is easy to see that Charles' mar'ginal rate oF

substitution between monuments and sherry is simply C= fCY

Likewise Diana's marginal rate of substitution is just fD'(Y). Therefore

the necessary condition stated in equation (7) takes the special form

P
f 'N + fD'(Y) = (10)

px

Since we have assumed that fC" and fD" are both negative, the left

side of - (8) is a decreasing function- of Y. Therefore, given
P

- , there can be at most one value of Y that satisfies (8). The
px
following '4iagram may be helpful.

The curves fC'(Y) and fD(Y represent Charles' and Diana's

marginal rates of substitution between monuments and sherry. (In the.

special case treated here marginal rates of substitution are independent

of the other variables XC and XD.) The curve fC1 Y + fD'(Y) is

obtained by summing the individual m-r.s. curves vert-icethy (rather than

summing horizontally as one does with demand curves for private goods).
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The only value of Y that satisfies condition (8) is Y*, where the
P

summed m.r. s. curie crosses the level --
px

As we will show later, the result that the optimality condition (8)

uniquely determines the amount of public goods is special to models of

the kind discussed in this section. In fact this class of models is so

special and so convenient that it has earned itself a special name.

Models in which there is some commodity consumed by everyone in which each

consumer' s utility function is linear are said to have tryansferable

utility. If there is transferable utility, the utility possibility

frontier will be a straight line at all points on the frontier achievable

with positive consumptiors of the good in which utility is linear.

An Example Without Transferable Utility

Suppose that Charles and Diana both have Cobb-Douglas utility

functions. In particular:

UCC,( ) Y = X

UD(XD, Y) = XDY

Suppose that px = p = 1.

We calculate the marginal rates of substitution to find that conditiorr-

(7) in this special case reduces to

2+= 1 (9)
Y Y

or equivalently:

2XC + XD(0

We see that (10) does not yield a unique solution for Y as did (3).

How much public good is to be provided depends on how we choose to divide

the private good. Equivalently the amount of publ ic good selected

depends upon which point on the utility possibility frontier we choose.
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Since pX = py = 1, the feasibility constraint for our example

reduces to:

XC + XD + y = W (11).

Equations (10) and (11), together give us two linear equations in the-

three unknowns XC, XD and Y. Thus there is in general a one

dimensional family of solutions to these two equations. If we specify in

advance, say-, the ratio of XC to XD, then Y is completely

determined. For example if =X D, then (10) implies that Y = 3XC

and (11) implies that 5XC = W so that Y = W. If , instead,

X = 2X then Y = 5XC and frcm (11), BXg = W so that Y = (W.

On Social Welfare Functions

In the last example we saw that the Pareto efficient amount of public

good depends in general on how the private goods are divided. Different

points on the utility possibility frontier correspond to different

distributions of private goods and in general to different amounts of

public goods.

Suppose that a benevolent dictator were placed in charge of choosing

an allocation of resources between Charles and Diana. The dictator's

income, we will assume, is constitutionally fixed so that he cannot

take sherry or monuments away from Charles and Diana. His utility

depends on the allocation of resources, ait it has the special property

that the happier Charles and Diana are, the happier he is. Thus the

dictator's utility function takes the special form

U*(xc XC'D CCY (U-(X, Y), UC(XD) 'Y

where >0 and 2--> 0 for all U and UD. The dictator

will choose XC X and Y so as to maximize W(UC(XC, Y), UD(c C')

subject to the constraint , p(Xc + XD) y-pY = W. Since w(.) is

an increasing function of UC and U0, it follows that the dictator will

choose a Pareto optimal allecation. In fact, if we wish we can
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separate his choice problem into three parts.

(i) Construct the utility possibility frontier.

(ii) Find the point (C UD) on the utility possibility frontier

that maximizes W(UC, UD.

(iii) Find the allocation of resources that yields the utility

combination (IC' D

The theory we have just outlined is a pretty good theory of

benevolent dictatorships. One difficulty with the theory is that many

of the organizations and governments that we want to study are not

dictatorships. One point of view which could be taken is that there is

a "social welfare function", formally the same as the function, W,

but representing not the will of a dictator but rather a "social ethic"
or a "justice" or the "will of God".

Implicit in many discussions of social choice is the follcwing kind

of reasoning. (i) It has been shown that the optimal amount of public

goods cannot be determined without knowing the distribution of income.

(ii) In order to decide on the best distribution of income we need a

social welfare function. (iii) Therefore economists must either find a

social welfare function or despair of giving'intelligent advice to

policy-makers. Some economists have been led by this reasoning to press

the search for a social welfare function, no matter how unpromising the

search may see. Others have concluded that since there is no likelihood

of a social welfare function ever being found, there can be no respectable

intellectual foundation for economics as a "policy sicence". Perhaps the

majority of economists muddle ahead, advising anyone who will listen to

them. Among these, the intellectually sensitive may occasionally express

discomfort about the logic of what they do.

Much of this concern is, I believe, misplaced. Although premise (i)
of the argument is true as we have shown and premise (ii) is approximately

true (though somewhat overstated) , the conclusion (iii) does not follow

from (i) and (ii). There is much useful advice that economics can give

even if it is unable to determine a "best" allocation of resources. To

see this point , let us consider a styl ized exampl e. An economis t

discovers that a certain public project would cost one million dollars
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and that the su~m'of everyone's willingness to pay for the project,
given their current incomes is ten million dollars. If he knew everybody's
preferences it would not be difficul t in principle for him to devise a
tax scheme that would pay for the project and leave everyone better off.
(Even if he had only estimates of individual preferences he could
probably devise a scheme that makes almost everybody better off.)' The
only difficulty is that he has an embarrassment of possible solutions.
There are many different ways to collect one million dollars from a
population willing to pay ten million dollars so that everyone benefits
more from the project than he is taxed. Even without a social welfare
function, the economist can recommend that the project is justified
by the Pareto criterion if it is paid for by any one of a family of
tax schemes that he suggests. This is important and useful advice. What
the economist cannot do without something like a social welfare function
is specify which of these alternative tax schemes is "best". For to do
so he would have to decide on the "best" way to divide the surplus
obtained frcn the project. Of course the economist may have his own

ideas about the best way to divide the spoils. He could suggest what
he would do if he were dictator. (I am aware of no historical instances
in which an economist was allowed to be dictator.)

The appropriate lesson to be drawn frcm this discussion is that

economics could use the Pareto criterion in important and useful ways

even if it offered little or nothing in the way of guidance about choice

among Pareto optimal points. In later lectures we will argue that,

while there is no hope for finding "the social welfare function", economic

reasoning can provide some useful guidance about choosing among alternative

Pareto optimal points.

PROBLEMS

I. Generalize the analysis of this lecture by using Lagrangean analysis
to extend the resul ts to the .case of several people, and several

goods of each kind.

2. Prove the assertions made in the two sentences following Figure 1.
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3. Suppose that U(XC, Y) = XC +2/Y and UC(XD, ) = X

Suppose that p = p = 1. Detemine, if possible, the amount of
Y to be produced if the output is 'to be.Pareto optimal and both

persons are to have positive consumption of private goods.

4. In problem 3, find the Pareto optimal allocations (if any) in which

one or the other persons consumes no private good. Hint: At

"boundary solutions" of this type the summed.marginal rate of

substitution conditions need not apply. The problem can still be

solved without any advanced mathemnatics. Careful thinking will do

the trick.

5. For problem 3, find the set of possible utility combinations and

the utility possibility frontier.

6. Show that if there is transferable utility as discussed in the

text of the lecture, then the utility possibility frontier is linear

at utility combinations achieved with positive consumption of sherry

by both persons.

7. Diagrams for Charles and Diana

Reduce the dimensionality of the problem and eliminate explicit

use of the feasibility constraint by using the feasibility constraint

to eliminate Y. Since

p(X C + XD) + pyY = W, we can write

p
Y = W - (XC + XD)

y

p
Define UC(C XD) E UC(Xc, W - p. (XC + X0)) and.

y

UD*(XC, XD) =UD(XD.' ~ p (X + ,XD))
y

Notcetha U*(. ad U*() depend both on XC and XD
The problea has thus been transfomed into a problem that is

formally similar to the problem of Anne and Bruce. What do the

indifference curves for U* and UD* look like? Draw a diagram
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similar to that done in Lecture 1 for the transformed utilities.

Find oQtimalitv conditions and show that they are the same as those

found in Lecture 2.

8. Prove that the dictator discussed in the lecture would choose a Pareto

optimal allocation.
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PUBLIC ECONCYECS LECIURE 3 T. BERGSTROM

Pollution

Ed smokes. Fiona, his neighbor, hates smoke. Ed and Fiona both love beans.

Neither cares how many beans the other eats. Ed can get tobacco for free.

Both have fixed incomes that can be used to buy beans. Ed's utility

function is

UE (S, BE

and Fiona's utility function is

UF (S, BF

where S is the amount of smoking that Ed does and BE and BF are the

amounts of beans consumed by Ed and Fiona respectively.

The set of allocations available to Ed and Fiona consists of all the triples

(S, BE' SF) such that

BE+BF 1E +WF

where WE and W are the weal ths of Ed and Fiona, measured in terms of

the numeraire, beans. Figure 1 represents the preferences of Ed and

Fiona among possible allocations.
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A point on the graph in Figure 1 represents an allocation in the following

way. The horizontal distance of the point from the left side of the graph

is beans for Ed. The distance from the right side is beans for Fiona.

The vertical distance from the bottom of the graph is the total amount

of smoking by Ed. Each point on the graph represents a feasible allocation

since the sum of Ed's and Fiona's beans will always be WE + WF and since

we have assumed that there is no resource constraint on Ed's smoking.

Ed's indifference curves are the curves bulging out from the right side.

They bend back on themselves because we suppose that, even for Ed, too

rmuch smoking is unpleasant. Fiona's curves slope downwards away from the

point 0. This gives her convex preferences and a preference for more

beans and less smoke.

If there were no restrictions on smoking and no bargains were made between

Ed and Fiona, then Ed and Fiona would each spend their own wealth on their

own beans and Ed would smoke an amount, SO. But the allocation

X = (S0 ' .!E' WF)

is not Pareto optimal. This can be seen by noticing that any point inside

the football-shaped region whose tip is .'iesignates a feasible -allocation

that is Pareto superior to X. They would both be made better off if

Fiona would give Ed some of her beans in return for which Ed would

smoke less. It is easy to see that the Pareto optimal allocations-are

points of tangency between Ed's and Fiona's curves. Those Pareto optimal

allocations which are better for both Ed and Fiona than the allocation X

are represented by the points on the line segment, YT. If Ed has a.

legal right to smoke as much as he likes and if Fiona and Ed bargain to

reach a Pareto optimal point, the outcome would be somewhere on YT.

Alternatively, there might be a law that forbids Ed to smoke without

Fiona's consent. If no deal were struck, the allocation would have no

smoking, Ed consuming WF and Fiona consuming W . Again we see from
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Figure 1 that this allocation is not Pareto optimal. Both parties would

benefit if Ed gave Fiona some beans in return for permission to smoke.

The Pareto optimal allocations that are Pareto superior to the no-smoking

allocation are represented by the line SZ.

The set of all Pareto optimal allocations includes the entire line ST as

well as points of tangency beyond S and T. We notice that the optimal

amount of smoke will not be entirely independent of the point on the curve

ST that is chosen.' More importantly, we notice that private bargains

. can be struck to reach optimality regardless of whether Ed has a right to

smoke as much as he wants or whether Fiona has a right to prevent him

from smoking altogether. What the law says that one has a right to do is

not necessarily what will be'done. Rather it determines the starting point

- from which bargaining can proceed. The situation is exactly analogous

to the specification of the initial allocation of ownership in the theory

of private goods in pure exchange. This point is made and illustrated

with fascinating legal examples by Ronald Coase in his article "The Problem

of Social Cost", JouraZ of Law and Econrics, 1960.

LEC1UPE 4
Congestion

Only two activities interest the citizens of Hot Rod, Indiana. These are

driving cars and eating Big Macs. Each individual, i, in Hot Rod has

an initial wealth, W.. Big Macs cost $1 each. The cost of the fuel

used per unit of driving is p.' Driving also causes congestion. L.et

H be the amount of highways in Hot Rod and let

n
D D.

j=1 3

be the total amount of driving by the n citizens of [lot Rod. The level

of congestion is a function C(D, H). Denote °C by CD and N by CH'

We assume that CD > 0 and CH < 0. Preferences of the ith Hot Rodder
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are represented by a utility function:

n
(1) U. = U.(D ., C( E D , H), M")

j=1

where D and M. are respectively the amount of driving and the number

of Big Macs consumed by i. We assume that U. is an increasing function

of D and M and a decreasing function of C. The set of feasible

allocations in Hot Rod is described as the set of vectors of the form

(D,...,Dn, H, M 1 , ... , Mn) such that total expenditures on Big

Macs, fuel, and highways in Hot Rod add to the total wealth of its

citizens. If the price of a Big Mac is $1, a unit of fuel costs pF, and

a unit of highway costs the commiunity pH, this budget constraint is:

n n'n
(2) . M.+p1 p. D.i+pHH < Z14.

i=1 Fi=l 1 H i=l *'

We could solve directly for the necessary conditions for Pareto optimality,

using Lagrangean analysis. Alternatively we could notice that formally

this model is equivalent to a model in which there are n+l public goods

and one private good. Each person's driving enters everyone's utility

function. So does the level of highway expenditures. Hence there are

n+l public goods where anyone's driving is a public good.. (Of course

one person's driving is a public good which is disliked by averyone

other than the driver, but the theory we have developed works as well for

public "bads" as for public goods.) No-one but i cares about i's

Big Mac consumption. Thus, Big Macs are private goods.

Recalling the Samuelson conditions for Pareto efficiency, we have:

(3) I (C =p

and for all i:

n 3U. 1.=

J=l J
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Condition (3) says that the sum of the marginal rates of substitution

between highways and private goods must equal the marginal cost of

highways. Condition (4) asserts that for each i, the sum of the marginal

rates of substitution for the public good "driving by person i" must

equal the marginal resource cost of driving by i. Condition (4) could

be written equivalently as:

(5) 0 a i V _F (3. .J C1

1 3 ~Jrl

for all i. Since for' ji, - <0, we see that (5) requires that

i's marginal rate of substitution between driving and Big Mac's must

equal the fuel cost pF plus the sum of the amounts that would have

to be paid each other citizen to compensate for a marginal bit of driving

by i.

Where congestion costs. enter through a congestion function of the form

indicated in (1), we can exploit the special structure of the problem

to deduce stronger results. Given the special form of (1), we can write

(3) and (5) as:

nl 313 au .

(6) CH .EF C1  M.

and
JU. U.. U. 31.1.

Pp C
(7) D Jr 3

for all i. Define

-3.3. 3M3.

(8) A.=n30 U

-~ 3C M.

Then substituting from (6) and (8) , we can rewrite (7) as:

aU . BU. PHCD

9) Up -- \ P D for all i.
Di aM. F 1 C

1 1H
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For large economies , x. will be close to one. Thus (9) implies the

following approximation

(9') BU. BU. C

+D - -z - P - pH C41 1

CDSince C >0 and C <0 < 0.

Condition (9') asserts that i's marginal rate of substitution between

driving and Big Macs should be approximately equal to the fuel cost of

driving plus the cost of adding enough extra highway to eliminate the

extra congestion caused by the marginal bit of driving.

If all Hot Rodders were allowed to drive as much as they liked so long

as they paid for their own fuel, they would drive to the point where

( 1 0 ) ~ + = .p F

Comparing (10) with (8) and noticing that apH < 0, we see that
H.

there would then be "too much" driving. (At least if there are dimninishing

marginal rates of subs ti tut ion).

It is reasonable to guess that a system of Lolls for driving could be

imposed to induce Pareto efficient behavior. In case Hot Rodders had

identical preferences and wealths, it turns out that an equalitarian

Pareto optimum could be enforced by a uniform system of tolls. Suppose

that a toll of T is charged by the government per unit of driving.

Suppose also that the total revenue from tolls is returned in equal

shares to all citizens of Hot Rod. Suppose likewise that the cost of

highways are paid for by lump sum taxes collected in equal amounts by

all citizens of Hot Rod. Then the budget constraint for citizen i of

Hot Rod is:
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n

PH H T .- d1 D-
(11) M. + (p, + T) D. = W. H+ T

.1 1 1 fl n

or rearranging terms slightly:

F P H H T s p .D

(12) M. + + (-) TD=. H+ j
1l 3 1 fn

n

The right side of (12) consists of variables that i does not control.

From the left side of (12) we see that he is choosing i. and D.

where the "prices" are respectively 1 and F +( T. Therefore

he will choose M. and D. so that:

(13) ( = F 1- T.

Recalling (9) we see that'the toll T would lead to efficient amounts

of driving only if:

C
(14) (1 - )T =- pHn i H C

Since we are looking at a symmetric solution, we see that . = 1 -
1 n

so that (14) is equivalent to

C

(15) C
H . "

Thus condition (15) is a solution for the toll that induces an efficient

amount of driving.

The government in this model has two tasks. Collecting (and returning)

tolls and providing (and taxing for) highways. An interes ting question

is whether the revenue collected from efficient tolls woul d be

sufficient to pay for highway construction.

Let us suppose that the congestion function is homogeneous of some

degree, k. If k = 0, there are 'constant returns to scale" in the

sense that doubling both the amount of driving and the amount of highways

leaves the level of congestion unchanged. If k > 0, there are"decreasing return

Doubling driving and highways makes congestion worse. If k < 0, there are
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increasing returns. Doubling driving and highways leads to less

congestion. Using Euler's theorem we note that

(16) DCD + HCH = kC.

From (16) we see that

(17) DC ' -HC
D < H

if k0.

From (15) we see that if an optimal toll is charged, total government

revenue from tolls will be:

C
(18) TD =H CD

NH

If k = 0, we see from (17) and (18) that

(19) TD = pHH.

Thus in the case of constant returns to scale, the revenue from tolls

just covers construction costs. Also from (17) and (18) we see that

(20) TD > pHH if k ; 0.

Thus if there are decreasing (increasing) returns, efficient toll revenue

will more than (less than) cover total highway construction costs.

I



LO.

1OTES ON CIARKE TAX LCRTREp 5 T. BERGSTpD

Let there by one private good and one public good. Consumer i

has the utility function.

( 1 ) U . ( X . , Y ) = K . + F . ( Y )
2. l 1. 2

where X. is his private good consumption and Y is the amount of

public good. Each i has an initial endowment of W. units of

private good. Public good must be produced using private goods

as an input. The total amount of private goods needed to

produce Y units of public good is a function C (Y) . Assume

that F. is a strictly concave function and C a convex function.

If we consider only allocations in which everyone receives at

least some private good, then for this economy there is a

unique Pareto optimal amount of public good. This amount is

the amount that maximizes

(2).(2)EF . (Y) - C(Y)

Consumers are asked to reveal their functions F. to the

government. Let M. (possibly different from F.) be the function

that consumer i claims. Let M = (M 1 , ... ,M ) be the vector of

functions claimed by the population. If the reported vector

is M, the government chooses an amount of public goods, Y (M) ,

such that

EM. (Y (M) ) - C (Y (M) ) > EM4. (Y) - C (Y)
.. 1- .1

for all Y>O0.

Taxes, T. (M4), are then assigned to each consumer i where

(3) Tr. (M4) = C(Y(M)) -- M. (Y (M)) - R. (M)-

and where R. (M) is some function that may depend on the functions,
-1

2 , reported by consumers other than i but is constant with
r

respect to M N.
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- If the vector of functions reported to the government is

M = ( . . ,Mn) , then Consumer i's private - consumption is

(4) X. CM) = W. - T- (M)ii(M .i -

and his utility is

(5) X. (M) + F. (Y(M)) =W. + E M. (Y(M)) +F. (Y(N)) -- C(Y(M) -) +R. (M)
1 1 I .. i

Since W. + R. (M) is independent of M., we notice that the
1 11

only way in which i's stated function M. affects his utility is

through the dependence of Y(M) on M..

We see, therefore from (5) that given any choice of

strategies by the other players, the best choice of M. for i
.. 1

is the one that leads the government to choose Y(M) so

as to maximize

(6) E M.(Y) + F. (Y) - C (Y) .

Jr

But recall that the government attempts to maximise

n

(7) E M. (Y) - C (Y) .
j=l 3

Therefore if consumer i reports his true function, so that,
C. C..

M. = F., ,then the government in maximizing (7) will maximize (6).
1 i -

It follows that the consumer can not do better and could do worse

than to report the truth. Honest revelation is therefore a

dominant strategy.

Since everyone ohooses .his dominant strategy, true

preferences are revealed and the governments choice of Y (M)

is the value of Y that maximizes

n
(8) E F.(Y) -C(Y)

i=1 J

This leads to the correct amount of public goods. Of course.

for the device to be feasible, it must be that total taxes

collected are at least as large as the total cost of the



public goods. If the outcome is to be Pareto optimal, the total

amount of taxes collected must be no greater than the total

cost of public goods. Otherwise private goods are wasted. We

are left, therefore, with the task of trying to rig the functions

R. (M) in such a way to establish this balance. In .general, it

turns out to be impossible to find functions R. (M) that are independ-

ent of M. for each i and such that

(9) ET. (M) = C(Y(M))
.i1

However, Clarke and also droves and Loeb found functions

R. (M) that guarantee that tax revenues at Least cover total

costs.

Their idea can be explained as follows. Suppose that for

eachi, the government sets a "target share" 0.> 0 where E9. = 1.

The g'overnment then tries to fix R.(M) so that T.(M) > G.C(Y (M) )

for each i. Then, of course, ET.(M) > C(Y(M)). From equation (3) ,
* 1

it follows that

(10) T.(M) -O.C(Y(M)) = { (1-G.)C(Y(M) )- E M. (Y(M)) - R. (M).
1 1 1 1

Therefore the government could set T((M) = C0.C(Y (M)) if and only if

it could set

R.(1M) = (1-9.) C(Y(M)) -Z M. (Y(M)).

But in general such a choice of R (N) would be inadmissable for our

purpose because R. (M) depends on M 1. , since Y (M) depends on M..

Suppose that the government sets

(11) R. (M) = Min [(1-G.) C (Y) - M. (Y)1
1 V 1 .-ai ]

Then R. (M) depends on the. M.'s for j/i but is independent of M
1 ] J

From (10) it follows that with this choice of R- (M) we have:

(12) T. (M) - Q. C (Y (M)) > 0 for all i.
1 1 =

Therefore

(13) IT.(M) C(Y(M)).

This establishes the claim we made for the Clarke tax.
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THE GROVES-LEDYLRD Dom. D RVEALING MECH-IA.ThSN

LECL E 6

T. BERGSTRCM

Groves and Ledyard propose a demand revealing mechanism

which they call "An Optimal Government". The mechanism

formulates rules of a "game" in which the amount of public

goods and the distribution of taxes is determined by the

government as a result of messages which the citizens choose

to communicate. Although the government has -no independent

knowledge of preferences, and citizens are aware that sending

deceptive signals might possibly be beneficial, it turns out

that Nash equilibrium for - this game is Pareto optimal. The

Groves-Ledyard mechanism is defined for general equilibrium

and app'.ies to arbitrary smooth convex preferences.

In contrast, the Clarke tax (discovered independently by

Clarke [ 1971) and Groves and Loeb [19751) is well defined only

for economies in which relative prices are exogenously deter-

mined and where utility of all consumers takes the quasi-linear

form: U. (X. ,Y) = X. + F. (Y).

The Clarke tax has the advantage that for each consumer,

equilibrium is a dominant strategy equilibrium rather than just

a Nash equilibrium. Thus there are no complications related.

to stability or multiple equilibria. On the other hand, the

Clarke tax has the disadvantages that although it leads to a

Pareto efficient amount of public goods it generally will lead

to some waste of private goods.

It is of some interest to examine the nature of the Groves-

Ledyard mechanism as applied to the case of transferable utility.
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This helps us 'to develop some "feel" for the device by seeing

how it performs in a manageable envirorrent. It also is of

some interest to compere the merits of this system with the

Clarke tax when both are operating on the Clarke tax's home turf.

We are able to show quite generally that when there is quasi-

linear utility, the Groves-Ledyard mechanism has exactly one

Nash equilibrium. Furthermore, this equilibrium is quite

easily computed and described. This is of some interest

because, in general, little is known about the uniqueness of

Groves-Ledyard's equilibrium and the question of the existence

of equilibrium is also less than satisfactorily resolved.

Suppose that there are n consumers, and one public good

and one private good. Each consumer has an initial endowmnent

of W. units of private good. Public good is produced at a

constar' unit cost of q. Utility of each consumer takes the

form U. (X. ,Y) = X. + F. (Y).

The government asks each consumer i to submit a number ,

(positive or negative) m .. The government will supply an

amount of public goods Y = Im.. It will charge a tax to consumer

i equal to

(l) CA (ml, ... ,m n) etgqm

kkk

+ (m .Cm, }(..E-) F((m-m)]

2 a - I n 2( -)(-.ks

where F.' > 0 and F." < 0.
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Therefore in a Nash equilibrium each consumer i would be

choosing m. to maximize (2) .

The first order condition for maximizing (2) reduces to

(3) F.'(Emk = ym. - - Im + a.q
z k k .n k k i

Summing the equations in (3) and recalling that Eak 1,
kk

we see that

(4) EFk' r = q.
k k

This is the Samuelson condition for efficient provision

of public goods.

Since Fk" < 0, (4) has a unique solution for Em. Let
kk

Y denote this solution. Now define

(5) . = i-(.' Y).
Fq ()

Then (3) can be rewritten as

l-
(6) . = y[.. - -Y + a.q.

2. i n i.

Now a. , q and y are parameters and . is uniquely solved

for by (4) and (5) . Thus we solve uniquely for m as

follows.

(7) M 1 _ aY
1Y(~l)cm.c=a-(S. ia.aq) + -.S Y . 2. n

This establishes our claim that in case of quasi-linear

utility. Nash .equilibriumn exists, is unique and is easily

computed.



LECTURE 7

OUR TOWN - AN EXPOSE T.C. Bergstrom

Christchurch 15 July 1981

Life in Our Town is simple. Folks here are interested in

only three things. One of these we are not allowed to discuss.

So we will assume they are interested in only two things. These

are hot dogs and the Circus. There are really only twokinds of

people in town - the toads and the blades. Toads don't care at

all about the circus but always prefer more hot dogs to less.

Blades like both hot dogs and circus. As it happens, preferences

of blades can be represented by the utility function UB (Xi')=

X.+2/Y while toads' utility functions are simply UT(Xi , Y)=X.

where ; is the amount of hot dogs that person i consumes and Y

denotes the size of the circus. Each citizen, i, of Our Town has

an intial endowment of wealth W. which can be used either to buy

hot dogs or to pay taxes. Tax revenue is used to pay for the

circus. The bigger the circus, the more i.. costs. In fact, let

us choose units of measurement for. the size of the circus so that

the cost of a circus of size Y is just $1. Let us also suppose

that hot dogs cost 1 each. There are N people in Our Town.

Let us define an allocation to be a vector (X ,..,XNY) where X.

is the number of hot dogs consumed by person i and Y is the size

of the circus. An allocation is feasible for the town if the

-total cost of hot dogs consumed plus the cost of the circus just

equals total wealth of its citizens. The set of feasible
N N

allocations can therefore be denoted by S={ (Xl,...X,N' i + .
1 i=1

A feasible allocation is said to be Pareto optimal if there is

no other feasible allocation that is as good for everyone and better
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for someone. A classic result of Samuelson is that a ne'cessary

condition for Pareto optimality in a place like Our Town is that

the sum of everyone's marginal rate of substitution of public for

private goods must equal the marginal cost of public goods in

terms of private goods. In our town the marginal cost of public

goods is always one. Therefore the Samuelson condition takes the

special form:

N u .U
(l) I - =l

i=1

Recalling the special form of utility functions assumed we see

that for a toad --- Ui is always zero. For a blade, we
31 OX.

calculate , __ 1' Therefore in Our Town equation (1)
oY ox. Y

1
takes the special form

(2) N 1/ = 1.
B/fY

From (2) we see that the Pareto optimal amount of public goods

for Our Town is

2
(3) Y = NB.

Our Town is a democracy. Everybody pays the same tax rate.

We decide by majority vote how much circus to have. Of course

toads always vote for no public goods, since they have to pay

taxes but don't enjoy the circus. As it turns out, toads are in

the minority in Our Town. Therefore blades always out-vote the

toads and get a positive amount of circus. (You might want to

know why the toads haven't all moved to a town that has a majority

of toads and no circus. The answer is that some of the necessary

jobs in town can only be done by toads. For example , we need a

banker, a mortician, some accountants, an estate agent, a lawyer,

a school principal and some mothers-in-law.)
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How much circus would a blade like to have? Where Y is the

amount of circus, his tax bill will be just -. Therefore his after-N
Y

tax wealth is just W. -. Therefore he will be able to consume

X. = W.-- hot dogs when the amount of circus is Y. His utility
1 i N

would then be

4) U (W.--,Y) = W.-- + 2vY
B iN i N

From (4) we see that
Y

dU (W.--,Y)
(5) B i N 1 1

dY Y N

Therefore a blade's utility is an increasing function of Y for

Y<N , a decreasing function of Y for Y>N and is maximized at

Y=N 2 . Since there are more blades than toads, it is clear that

the only amount of circus that "wins" in majority voting is

Y - 2('6) Y =N.

For a long time the toads in Our Town have been grousing

about high taxes and too much circus. Blades never paid much

attention. The other day an economist visited us. (Claimed

he wasn't a toad). He said the toads were right. He showed us

equation (3) and pointed out that we have more than the Pareto

efficient amount of public goods. He said he had just come from

Their Town in the next county, where the problem was just the

opposite. A majority of the people in Their Town (but not

everyone) are toads. They have no circus at all.

This economist suggested that we try a different political

system where we require unanimity instead of majority rule. But,

since we have people with different tastes, we would have to set

different tax rates for different people so as to get unanimity

about quantities. He called this idea Lindahl equilibrium. In

Our Town, the only way we could get the toads to agree to any

Dositive amount of circus is if we don't tax them for the circus.

Then blades would have to pay all the taxes. Suppose that ali
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blades are taxed at the same rate. Then each blade would have a

tax bill of . He could therefore consume X. = W. - hot dogs
NN i NB

and would have a utility of

Y Y
(7) U(W.-Y ,Y) = W.-- + 2/.

i N i N
B B

This is maximized when

(8) Y = N 
2

( ) B

2
Therefore all blades would choose the amount N as their most

B

preferred quantity of circus. Since toads pay no taxes and have

no interest in the circus, this amount is as good as any other

2
amount for them. Therefore the amount, N , receives unanimous

B
-2

approval. The allocation in which Y=N , X.=W. if i is a toad
B 1 1

Y
and X.=W. -,-W-N if i is a blade is.therefore a Lindahl

1 i NB 1 B
B

equilibrium.

The econor-ist said that Lindahl equilibrium was both more

equitable and more efficient than our old ways. The toads said

he was right. The blades were not so sure.. A blade made the

following calculations. Under the, current system a blade has

the utility:

(9) W.----+ +2/N 2 =W.+N.
iN

Under the Lindahl system a blade has the utility
N:2

(10) W.- + 2v'7N2 = W.+N
y N B 1 B

B

Sce N>N,, moving to the Lindahl systemr is bad for blades}. The

economist said that the blade had a point (though he was being a

hi piggish) . But the economist said that since we know that the

current system is not Pareto optimal, it should be possible for

the toads to bribe the blades to move to Lindahl equilibrium.

The economist pointed out that under the current system each toad

has a utility of
2

(11) X. = W.N-2 = W.-N
1 i N i
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while under the Lindahi system he would have no taxes so his

utility would be

(12) X. = W.
1 1

We can see from expressions (9) and (10) that a blade could be

bribed to accept the Lindahl system if he was given N-NB T hot

dogs. Since there are NB blades, it would take NBNT hot dogs to

bribe all of the blades to accept the Lindahl system. Therefore

if each toad gave up NB hot dogs to bribe the blades, there would

be just enough hot dogs to do so. If this is done, each toad

would have a utility of

(13) X. = W.-NB.
1 1

Equation (10) expresses the utility of each blade in the Lindahl

system without bribes. With bribes of NT for each blade, the

utility of each blade would be

(14) W. + N B+ NT = W. + N

which is the same as his utility under the current system.

Since (13) is greater than (11) and (14) equals (9), we see that

moving to Lindahl equilibrium with this system of bribes benefits

all toads and leaves all blades as well off as before. If we

made the bribes slightly larger, everyone would be better off

than in the current system.

The blades and the toads were all impressed by this argurent.

/The bribes were paid, and The entire community agreed to s;:itch

<to the Lindahl system. There was one small hitch. You can' t

always tell by looking, whether a person is a toad or _ lae

To solve this problem, the mayor asked everyone to come de>wn to

the town hall and answer the simple question:

"Are you a toad?"

To his amazement almost everyone in town squatted down and croaked:



Each blade made the following calculation. If all the

other blades are telling the truth, then if I confess to

being a blade, the Lindahl equilibrium amount of circus

will be NB, and my tax bill will be N so that my utilityB yb B s htm tlt

will be

(15) W.-N + 2vNW7 = W. + N1 B B B

If I claim to be a toad, the amount of public good will be

only (NB-1) but I won't have any taxes, so my utility will

be

(16) W. + 2/(NV-1)2 = W. + 2(N -1).
1 B iB

But (16) is bigger than (15) so- long as NB>2. Since in Our

Town I know that NB>2, it is therefore worthwhile for me to

pretend to be a toad. As a result of this experience, blades

in Our Town are inclined to look at economists (and at each

other) with suspicion. True toads, of course, are pleased

and amused with the outcome.

It is time, I think, to draw the curtain on the sordid

situation in Our Town, while we seek aid from some more

general analysis. So far, we have learned the following

lessons which apply not only in Our Town but quite generally.

(1) For an arbitrary distribution of taxes, majority voting

will not in general lead to a Pareto optimal supply of

publ ic g oods .

(2) Lirndahl equilibrium is -Pareto optimal. Hicwever

imposition of a Lindahl equilibrium requires the

central authority to know individual preferences.

(3) If people are asked to state their preferences,

knowing that their statements will be used to calculate

a Lindahl equilibrium that is then imposed, the

situation where everyone tells the truth is not a best
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response (Nash) equilibrium.

The difficulty alluded to in (3) is often called the

"free-rider problem". It is representative of a fascinating

class of problems of the firm. "How do you get someone else

to tell you the truth about something that only he knows?"

A related question is "When can you design a system of

rewards and punishments such that when selfish people who

are willing to lie will act in such a way as to yield a

Pareto optimal outcome?"

A philosopher who dabbles in economics, Alan tibbard, and an

economist who dabbles in philosophy, Mark Satterthwaite,

independently showed that in general it is not possible to

design such mechanisms. There are, however, some interesting

special cases where the truth can be elicited even though the

answers are used to choose a Pareto optimal policy.

The first example is William Vickerey's suggestion

for a sealed bid auction. Suppose that there are n people

and one object to the allocated ~among them. Let V. be. the

maximum amount that person i would be willing to pay for the

object. Pareto efficient allocations would have the object

go to the person with the greatest willingness to pay. Why?

If a sealed-bid auction were held, with the object going to

the highest bidder at his bid price, it would not be -?ise

for anyone to bid his true valuation. Why? Vickerey

suggested that the object be given to the highest bidder at

the second highest bid price, With this system, it turns

out that bidding ones true valuation is the best thing to

do no matter what other people bid. A strategy that is best

no matter what others do is known as a dominant stratev.

A social outcome where everyone is using a domina:t s-:ategy



the outcome where everyone bids his true valuation and the

object goes to the person with the highest valuation at a

price equal to the second highest valuation is a dominant

strategy equilibrium. Lets see why this is so. Suppose

that you bid more than your true evaluation. If your bid

is not the highest bid, you are no better (or worse) off

than if you had told the truth. If your bid is the highest

bid, then there are two possible cases. If your true

valuation would also have been the highest bid, then you

are no better (or worse) off than if you had bid the truth.

If your true valuation is lower -than the second highest bid,

then you get the object but you must pay more than it is

worth to you. You would have been better off bidding the

truth and not getting the object. Thus we see that you can

not gain but you can lose by overbidding. You should be able

to construct a similar argument to show that you can not

gain and may lose by underbidding. 'Therefore, bidding the

truth is a dominant strategy.

The idea of Vickerey's auction can be extended to

other kinds of discrete choices. Of particular interest

are all-or-nothing choices on public issues, such as whether

to allow public nudity or public rugby playing, or the sale

of handguns. I have promised not to discuss certain interests

of the people in Our Town, so -we will consider the Springbok

issue in New Zealand. Define V. to be person i's willingness

to pay to have the Springboks allowed into New*. Zealand. yore

formally, let U.(X.,0) and U.(X.,l) denote respect ivelyl 1 1

person i's utility when his wealth is X. and the Springboks

are allowed or not allowed to tour, and let X.denote i's

current wealth. Then V. is the solution to the equation
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U.(X.+V.,0) = U. (X.,l).
1 1 1 1 1

Thus V. is positive for people who want them to come and

negative for people who don't want them.

One possible decision mechanism is to decide the issue

by majority vote. The weakness of this mechanism is that

it may not be Pareto optimal. The minority may be intensely

concerned, while members of the majority each care very

little. In this case it might be possible to find a Pareto

superior outcome which reverses the result since the minority

cares enough to buy off the majority.

To make an efficient decision, we need to compute the

sum over the entire population, EV. . If EV.>O, then with the
i i1

current allocation of wealth, allowing the Springboks to

come is Pareto optimal and not allowing them to come is not.

If EV.<0, the story is reversed.
. 1
1

If we just asked people to state V., and then decided

on the Springbok issue by the sign of EV., they would have
Si

an incentive to overstate the intensity of their preferences.

We need a more subtle device. Here is one that works. Each

i is asked to state V.. The state then calculates 'V. and
1 .1

i

allows the Springboks to come if and only if EV.>0. In addition
- 1

some taxes are assessed in the following way. If person j's

answer does not affect the outcome, that is if the sign of

E V. is the same as the sign of EV. , then he pays no tax.

j~i J i

If person j's answer does make a dif ference, then he pays

the amount Z V .. Any revenue from this scheme is thrown

away. Using exactly the same kind of reasoning that we did

in the case of the Vickerey auction, we can show that the
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equilibrium. Furthermore, the resulting decision is "Pareto

optimal". There is, however, some waste in the process,

since the tax revenue is thrown away. In large economies,

it can be shown that under reasonable assumptions the amount

of waste of this type will be small.



till




