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PUBLIC ECONOMICS LECTURE I T. BERGSTROH

A Primitive Public Economy

Anne and Bruce are roommates. They are interested in only two thingg....
the temperature of their room and playing cribbage together. Each has a ’

J

favourite room temperature and a preferred number of games of cribbage pe; .
week. The further the temperature rises above or falls below Anne's
favourite temperature the less happy she is. Similarly changes in the
direction away from her favourite amount of cribbage make her less happy.
Bruce's preferences have the same qdalitative character aé Anne's. But,

what makes our story economically interesting is that Anne and Bruce differ
in-their favourite tem#eratures and in‘§heir preferred number of games of
cribbage. Since they both must experience the same Tevel of each,.they will

have to reach some kind of agresment in’the presence of conflicting interests.

We will begin our study of public economics with an analysis of efficient

conduct of t..e Anne-Bruce household.

Our understanding of the case of Anne and Bruce will be aided by the
use of a diagram. In Figure 1, the points A = (CA, TA) and B = (CB’ TB)
represent Anne’g and Bruce's favourite combinations of cribbage and
tenperature. The closed curves encircling A are indifference loci for Anne.
She regards all points on such a curve as eqﬁa]Ty good, while she prefers
points on the inside of any Euch curve to points oﬁ the outside. 1In similar

fashion, the closed curves encircling B are Bruce's indifference curves.

At this point it is useful to introcduce a bit of vocabulary. We shall

speak of each combination of a room temperature and a number of games of
cribbage as a situation. IT everybody 1ikes situation o as well as
[

situation g8 and someone likes o better, we say that o is Pareto superior to 8.
A situation is said to be Pareto optimal if there are no possible situations ¢
that are Parzto superior to it. Thus if a situation is not Pareto optimal,

it should be possible to obtain unanimous consent for a beneficial change.
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If the existing situation is Pareto optimal, then there is pure conflict of
interest in the sense that any benefit to one person can ccme only at the

cost of harming another.
FIGURE 1
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B GAMES OF CRIBBAGE A

Our task is now to find the set of Pareto optimal situations,
chez Arme and Bruce. Consider a point like X in Figure 1. This point is
not Pareto optimal. Since each person prefers his inner indifference curve
to his outer ones, it should be clear thét the situation Y is preferred by
both Anne and Bruce to X. HNow if we take any point representing a possible
situation, the qualitative nature that we have assumed for preferences
requires that Anne and Bruce each have exactly one indifferenca curve passing

through that point. Either these two indifference curves cross or they are



tangent (or the point is on the boundary of the diagram). If they cross

at a point, then, by just the sort of reasoning used for the point X,

we can show that this point can not be Pareto optimal. -Therefore the .
Pareto optimal points must either be points at which Arne's indifference
curves are tangent to Bruce's or must be on the boundary of the diagram. ’
(For the time being we will confine our attention to "interijor” Pareto
optima). 1In Figure 1, all of the Pareto optimal points are points of
tangency betﬁeen Anne's and Bruce's indifference curves. Thus the points

Z and W are Pareto optimal. In fact there are many more Pareto optima which
would- be found if we drew more indifference curVeé and found more tangencies
The set of such Parefc optima is depiéted by the Tine BA iﬁ Figure 1. Notice
that there are some points of tangency such as V, which are not'Pgreto

optimal. It shod]d be clear that, for example, the situation A is Pareto

"superior to V.

Let us define a persen's marginal rate of substitdtion'be%ween .
tempsraturé and cribbage in a situation to be thé slope of his indiffere;ce
curve as it passes through that situation. -From our
discussion above, it should be clear that at an interior Pareto optimum,
Anne's marginal rate of substitution betwsen temperature and cribbage, must

. .
be the same as Bruce's. If we compare a Pareto optimal tangency like 7 with
a non-optimal tangency like V we notice a second necessary condition for an
interior Pareto optimum. At Z, Anne wants more cribbage and a Tower
temperature vnile Bruce wants less cribbage and a highef temperature. At V,
although their marginal rates of substitution are the same, both want more
cribbage and a lower temperature. Thus a more complete né§e§sary condition

for a Pareto optimum is that their marginal rates of substitution be equal

and their preferred directions of change be opposite. .

In order to generalize our theory to more people and more commodities, I
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wa need wore povierful tools. The toolkit in which we find.them is the
calculus of functions of several variables. We will first analyze our
(by now) cosy little household with these tools. After that we will
demonstrate the great power of the tools we have acquired for analysis of

public problems of all kinds.

A Lagrangean Approach to Playing House

One way of describing.a Pareto cptimum is to say that each Pareto
optimum solves a constrained maximization problem where we fix Bruce's
utility-at some level and then maximize Anne's utility subject to the
constraint that Bruce receives at least his fixed level of ﬁti]ity. We
should, in principle, be able to genergte the entire set of Pareto optimal
situations by repeating this operation fixing Bruce oﬁ different

indifference levels.

Suppose that Anne's utility function is UA(C, T) and Bruce's utility
function is UB(C, T). To find one Pareto optimum, pick a level of utility
UB for Bruce and find (C, T) to maximize UA(C, T) subject to the constraint

B

that UB(C, T) 3 U . A convenient tcol for the study of problems of

maximization subject to constraints is the "method of Lagrange multipliers™.
g p

‘The fact that we need to know is the following:

Let f(.) and g](-), cees gk(') be differentiable real valued functions
of n real variables. Then (subject to certain regularity conditions) a
necessary condition for X to yield an interior maximum of f(-) s&bject to
the constraints that gi(x) § 0 for all i is that thare exist real numbers

1] g.O, cees Ak 3 0, such that the "Lagrangezn” experession

L(x, A5 ois 2 ) 2 F(x) + 2 20 ) (x)
n oo
j=1
has each of its partial derivatives equal to zero at X.

Here we will not study the "certain regularity conditions" alluded to

above. In most applications they are satisfied. However we will present



an alternative version of the Lagrangean conditicn which is clways true.

This is:

If f(-) and g]('), - gk(') are differentiable, a necessary
condition for an interior X to maximize f(-) subject to gj < 0 for each j )
is that the gradient vectors (the vectors of partial derivatives) at X for '

f and the gJ's be 1inearly dependent.

Returning to Anne and Bruce, a Pareto optimum is found By finding

(C, T) and A such that the partial derivatives of
A, T+t - e, By
with respect to C and T are both zero.

This tells us that:

CMNE T Boo ooy
(p e, T L
aC aC
- . :
o HED L E D
aT 3C

Using (1) and (2) we can deduce

U7 (C, T) aUB(Ez T)

3C aC
(3) S = o -
s (C, T) 2uB(C. T)

3T aT.

Thus we see that Anne's marginal rate of substitution between cribbage
and temperature must be the same as Bruce's at any Pareto optimal point.

Notice that the term 08 does not enter equation (3). This condition
must hold regardless of the level, 68, at which we set Bruce's utility. In
generé) there will be many solutions of (3) corresponding to different points

on the locus of Pareto optimal points in Figure 1 or equivalently to different g

levels of QB.



Recall also that wa must have A » 0. Therefor
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from (1) and (2)
vie see that the rmarginal utilities of cribbage and temperature must have

opposite signs for Anne and Bruce at a Pareto optimal point.

We have now uncovered all of the optimality conditions that we saw
from the diagram, but using Lagrangeans. This may not sesm like a big
gain. But what we will soon discever is that we now have a tool that will

enable us easily to analyze cases that are much too complicated for graphs.

Before we leave Anne and Bruce to their own devices, we will ask them -
to introduce one more notion that we will find useful. This is the "utility
possibility frontier”. In Figure 2 we put utilities for Anne and Bruce on

the axes. e shade in the set of utility combinations for Anne and Bruce /

FIGURE 2

UTILITY
FOR
BRUCE

UTILITY FOR ANNE




that are achievable by means of possible situations. For example the

point B in Figure 2 represents'the utilities achieved from Bruce's favourite
position (B in Figure 1). Likgwise A represeﬁts the utilities achieved from
Anne's favourite situation. The line segment AB'in Figure 2 which is the ;
northeast boundary of the utility possibility ﬁet is known as the "uti]ityr ‘
possibility frontier”. Points on this line represent utilities achievable
from Pareto optima]lallocatfons. In general, a utility possibility frontier
might be either convex or conﬁave but it must slope downhill. Otherwise it B

would not represent the set of Pareto optimal distributions of utility.

EXERCISES
1. Suppose that Anne's preferences are represented by the utility functicn

UA(C, T) = _[(C—?_O)2 + (T—25)2] and Bruce's preferences are represented by
the utility function UB(C, T) = - [(c=10)% + (T-15)%.

A. Sketch their indifference curves og a diagram.

B. 1s the situation (10, 15) Pareto optimal?

C. Find the set of all Pareto optimal situations. (Hint: While Lagrangean
ana]ysisAso1ve§ this pfob1em nicely, it could also be solved by plain
plane geometry). | e | o

D. Find tﬁe set of situations that is Pareto superior to (9, 14).

E. Find a situation in which Anne's indifference curve is tangent to
Bruce's but which is not Pareto pptima]. Explain what is going on.

F. If situation aAis ParefO'dptjma1 and situation g is not Pareto optimal,
must o be Pareto superior to B2 éxp]ain. | '

G. Suppose'that Charles moves in with Anne and Bruce. The three of them
learn three-handed cribbage and Tose all interest in two-handed cribbage.

Anne’s and Bruce's utilities are as before, while Charles' utility

function is:

o€, 1) = 42002 + (T15)7).

Find the new set of Pareto optimal situations.



Forget Charles.
Suppose that Anne and Bruce lose interest in cribbage, but are still

concerned about two things ... the rcom temperature and breakfast time.

In principle, breakfast could be served at any time on a 24 hour clock.

On the tube from the center of a roll of toilet paper, or some similar
material draw indifference curves for Anne and Bruce. (Use two colours

of ink). Show the locus Pareto optimal situations.

Suppose the only two issues of concern are breakfast time and dinner

time. Explain how you tou}d use a doughﬁ&t to diagram.iﬁdifference
curves and Pareto optimal pOints;' What ﬁan you tell us about the set
of Pareto.opfimai points?

Find the utility ﬁossibi]ity frontier for Anne and Bruce in problem A.
Explaih why the utility possibility frontief ﬁust in géneral slope dovin.
In Firure 2 the boundary of the utility possibility set slopes uphill to

the west of point B. Explain why this is so.
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PUBLIC ECONCMICS ~ LECIURE 2 T, DERGSTRG

Charles and Diana live on a. green island. Théy are interested 1in
only two things ...-sherry and monuments. They both like sherry and
monuments, the more, the better. Neither Charles nor Diana is allowed
to work, but they do have a fixed- amount of money worth $W. They can
spend this money either-on sherry w@icﬁ cgsts p, per litre or on -
monuments which cost py'each. Now sherry, once purchased,‘cgn.be drunx
either by Charles or by Diana, while.a monument is enjoyed by both. A good
like sherry which. can be consumed by one persbn or the other but not by
both is known as a private goéd. A good tike monuments which is not
divided among the different consumers but which may affect the utility
of more than one person is known as a public good.' In the tale of Anne
- and Bruce, there were two public goods and no private goods.' Here we
have one public good and one private gbod. To fully describe an
'al}ocation of resources on the jsland we need to know not only the total
output of private goods and of public goods, but also how the private
- éood is divided between Charles and Diana. |

Wé‘proceed to analyze conditions for efficient resource allocation
on fhe green island. Let XC and XD be the amounts of sherry
consumed by Charles and Diana respectively. Let Y be the number of
monuments that they obtain. Since sherry and monuments are purchased
at prices Py and py, sugject to a budget of $W, the set of
possible resource allocations for Charles and Diana is described by the

set of triples: o _ : ' .

In general, Charles' Qti]ﬁty tfunction might depend on Diana's sherry
consumption as well as on his own and on the number of monuments. He
might, for example, Tike her to consume sherry because he likes her to
be happy or he might not like her to overindulge and- embarrass him.
Thus we would want him to have a ut111ty function of the yorm:

U (Xos X, Y)

crcr 'p?

For our first pass at the problem, however, let us simplify matters by
assuming that both Charles and Diana are totally selfish about sherry.
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That is, neither cares how much or little the other consumes. If this
is the case, then their utility functions would have the form:
(X5, Y) .

UC(X Y) and U

c’ D™D
The allocation prcblem of Charles and Diana is'mathematically a

bit more complicated than that of Anne and Bruce. There are three
decision variables instead of two and there is a feasibility constraint:
as well as the two utility functions. Therefore it is moﬁe difficult to
represent the whole story on a graph. In fact, at least at first, doing
this is so complicated as to obscure rather than clarify matters. It
is, however, quite easy to find interesting conditions for Pareto
optimality using Légrangean methods. In fact, as we will show, these

conditions can also be decuded by a bit of careful "literary" reasoning.

We bégin with the Lagrangean approach. At a Pareto optimum it
should be impossible to find a feasible allocation thét makes Charles
‘better off without making Diana worse off. Therefore, Pareto optimal
allocations can be found by setting Diana at an arb1trarj (but posswb]e)
level of utility, Ub and nax1m1z1ng Charles' ut111ty subgect to the
constraint that U (X , Y) = and the feasibility constraint.
Formally then we see< a so]ut1on to the constralned nax1m1zat10n

problem:

Choose XC’ XD and Y to maximize:
UC(XC,»Y)

subject to:

.-
UD(gD, Y) =Tp) anq
P (Xe +Xp) + pyY <H

The Lagrangean for this problem is:

L(Xes Xpo ¥ 25 3p) = Uc(Xes V)
+ (U (%5, ) - T
(- p (Xo + %) - py?) _ . (M)



Setting the pertial derivatives cf L(.)

5U
C -
» - Asz =0
°*c
aU
D -
A] ax - Asz =0
D
3l aU
C D
+ A — = xp, =0
sy ' gy 2y
From (2) it follows that:
3U
12=._1—__C_‘
Py aXc
From (3) and (5) it follows that:
A:auc —iU_,D_
1
BXC EXD
Use (5) and (6) to eliminate Ay and
. 3l
resulting ‘expression by <
oX
C
ay ey Py
SXC 3XD

11.

equal to zero we have:

(2)

(3)

(4)

(5)

(6)

Ay fronm (4). Divide the

and you will obtain:

(7)

This is the fundamental "Samuelson condition” for efficient provision of

public goods. Stated in words, (7)

requires that the sum of Charles'

and Diana's marginal rates of substitution between monuments and sherry

must equal the cost of an extra unit of monument relative to an extra

unit of sherry.

Let us now try to deduce this condition by literary methods.

The

rate at which either person is willing to exchange a marginal bit of
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sherry for & marginal bit of monument is just his marginal rate of
substitution. Thus the left side cf equation (7) represents the amount
of sherry that Charles would be willing to give up in return for an extra
bit of monument plus the amount that Diane is willing to forego for an
extra bit of monument. If the left side of (7) were greatsr than
Py .

5 then they could both be made better off, since the totz]1 amount of
X
sherry that they are willing to give up for an extra bit of monument is

. p
greater than the total amount, Ex , of sherry that they would have to give
X

up in order to be able to afford an extra bit of monument. Similarly if
P

the left hand side of (7) were less than E! , it would be possible
X

to make both better off by purchasing fewer monuments and giving each
person more sherry. Therefore an allocation can be Pareto optimal only
if (7) holds.

A Femily of Special Cases - Transferable Utility

Suppuse that Charles and Diana have utility functions that have the
special functional form:

Ue(Xp, ¥) = X + F(Y) and

UD(XD, Y) = XD + fD(Y) where

the functions f. and fy have positive first derivatives and negative
second derivatives. Then the indifference curves of ezch person wi]) be
qualitatively like Figure 1.

Figqure 1 X
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The assumptions about the derivatives of fc and fD ensure that the
curves slope down and are convex toward the origin. The assumption that
U(Xe, Y)  is linear in X implies that each indifference curve is

simply a vertical translation of any other and that indifference curves )
are parallei in the sense that for given Y, the slop2 of tha indifference

curve at (X, Y) 1is the szme for all X.

c
Since EQE. =1, it is easy to see that Charles' marginal rate of
aX au
substitution between monuments and sherry is simply w5 fc‘(Y).
d

Likewise Diana's marginal rate of substitution is just fD'(Y). Therefore
the necessary condition stated in equation (7) takes the special form

p .
fe' (V) + ' (Y) =_Ef ‘ (10)

Since we have assumed that fc" and fD" are both negative, the left

side of - (8) 1is a decreasing function of Y. Therefore, given

BX-, there can be at most one value of Y that satisfies (8). The
X .

following 4iagram may be helpful.

ETREA\
v

Y* Figure 2

The curves fc'(Y) and fD'(Y) represent Charles' and Diana's

marginal rates of substituticn between monuments and sherry. (In the_
special case treated here merginal rates of substitution are independent
of the other variables XC and XD.) The curve fc'(Y) + fD'(Y) is
obtained by summing the individual m.r.s. curves vertically (rather than

summing horizontally as one does with demand curves for private goods) .
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The only value of Y that satisfies condition (8) 1is Y*, where the

p
surmed m.r.s. curve crosses the level Bx .
X
As we will show later, the result that the optimality condition (8)
uniquely determines the amount of public goods is special to models of
the kind discussed in this section. In fact this class of models is so
special and so convenient that it has earned itself a special name.
iodels in which there is some commodity consumed by everyone in which each
consumer's utility function is linear are said to have transferable
utility. If there is transferable utility, the utility possibility
frontier will be a straight line at all points on the frontier achievable
with positive consumptions of the good in which utility is linear.

An Example Without Transferable Utility

Suppose that Charles and Diana both have Cobb-Douglas utility
“functions. In particular:

Uo(Xes Y) = XgY

U, (X

]
>
—<

2 V)

Suppose that Py =Py~ 1.

® . *
We calculate the marginal rates of substitution to find that condition -
- (7) in this special case reduces to
X X

<+ Lo (9)

2 ~ 4+
Y Y

or equivalently:

ZXC + XD =Y : (10)
We see that (10) does not yield a unique solution for Y as did (3).
How much public gocd is to be prqvided depends on how we choose tc divide
the private good. Equivalently the emcunt of public good selected
depends upon which point on the utility possibility frontier we choose.



Since Py = p‘y = 1, the feasibility constraint for our example
reduces to:
XC + XD + Y =V ().

Equations (10) and (11), together give us two linear equations in the
three unknowns XC’ XD and Y. Thus there is in general a one
dimensionzl family of solutions to these two equations. If we specify in
advance, says the ratio of XC tg XD’ then Y 1dis completely
determined. For example if X. = X then (10) implies that Y = 3X

C D’
and (11) implies that 5X

3 .. c
=W so that Y = g-w. I, instead,

C -
Xo = 20p. then Y =5X. and fram (11), 8X; =V 5o that Y = 2.

On Social Welfare Functions

In the last example we saw that the Pareto efficient amount of public
good depends in general on how the privafe goods are divided. Different
points on the utility possibility frontier correspond to different
distributions of private goods and in.general to different amounts of
public goods. ‘ o '

Suppose that a benevo]ent.dictator vere placed in charge of choosing
an allocation of resources between Charles and Diana. The dictator's
jncome, w2 will assume, is constitutionally fixed so that he cannot
take sherry or monuments away from Charles and Oiana. His utility
depends on the allocation of resources, *ut it has the special property
that the happier Charles and Diana are, the happier he is. Thus the
dictator's utility function takes the sﬁecia1 form

U (s Xgs V) = (UK, V), Uplxp, ¥)

3 W
sU

> 0 and aw 0 for all UC and U.. The dictator

D
c 3l
will choose Xeo XD and Y so as to maximize w(UC(XC, Y), UD(XC’ Y)
subject to the constraint, px(XC + XD) + pyY = . Since w(.) is

vhere

an increasing function of Ug and Up, it follows that the dictator will
choose a Pareto optimal allccation. In fact, if we wish we can
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separate his choice problem into three parts.

(7) Construct the utility possibility frontier.
(i) Find the point (U., U,) on the utility possibility frontier
¢’ D . P
that maximizes M(UC, UD).
(ii1) Find the allocation of resources that yields the utility

combination (UC, UD).

The theory we have just outlined is a pretty good théory of
benevolent dictatorships. One difficulty with the theory is that many
of the organizations and governments that we want to study are not
dictztorships. One point of view which could be taken is that there is
a "social welfare function", forma]}y the same as the function, W,
but representing not the will of a dictator but rather a "social ethic”
or a "justice" or the "will of God".

Implicit in many discussions of social choice }s the following &ind
of reasoning. (i) It has been shown that the optimal amount of public
goods cannot be determined without knowing the distribution of income.
(ii) In order to decide on the best distribution of income we need a
social welfare function. (iii) Therefore economists must either find a
social welfare function or despair of giving intelligent advice to
policy-makers. Some economists have been led by this reasoning to press
the search for a social welfare function, no matter how unpromising the
search may se.mn. Others have concluded that since there is no likelihood
of a social welfare function ever being found, there can be no respectable
intellectual foundation for economics as a "policy sicence". Perhaps the
majority of econcmists muddle zhead, advising anyone who will listen to
them. Among these, the intellectually sensitive may occasionally express
discomfort about the lcgic of what they do.

fuch of this concern is, I be]{eve, misplaced. Although premise (i)
of the argument is true as we have shown and premise (ii) is approximately
true (though somewhat overstated), the conclusion (iii) does not follow
from (i) and (ii). There is much useful advice that econcmics can give
even if it is unable to determine a "best" allocation of resources. To
see this point, let us consider a stylized example. An econcmist
discovers that a certain public project would cost one million dollars



and that the sum of everyone's willingness to pay for the project

given their current incomes is ten million dollars. If he knew everybody's
preferences it would not be difficult in principle for him to devise a
tax scheme that would pay for the project and leave everyone better off.*
(Even if he had only estimates of individual preferences he could
probably devise a scheme that makes almost everybody better off.) The
only difficulty is that he has an embarrassment of possibie solutions.
There are many different ways to collect one million dollars from a
population willing to pay ten million dollars so that everyone benefits
more from the project than he is taxed. Even without a social welfare
function, the economist can recommend that the project is justified

by the Pareto criterion if it is paid for by any one of a family of

tax schemes that he suggests. This is important and useful advice. What
the economist cannot do without something like a social welfare function
is specify which of these alternative tax schemes is "best". For to do
so he would have tq decide on the "best" way to divide the surp1us )
obtained from the project. Of course the econcmist may have his own
ideas about the best way to divide the spoils. He could suggest what

he vould do if he were dictator. (I am aware of no hi§torica] instances
in which an econcmist was allowed to be dictator.)

The appropriate lesson to be drawn from this discussion is that
econcmics could use the Pareto criterion in important and useful ways
even if it offered little or nothing in the way of guidance about choice
among Pareto optimal points. In later lectures we will argue that,
while there is no hope for finding "the social welfare function", economic
reasoning can provide some useful guidance about choosing among alternative
Pareto optimal points.

PROBLEMS

1. Generalize the analysis of this lecture by using Lagrangean analysis
to extend the results to the .case of several people, and several
goods of each kind.

2. Prove the assertions made in the two sentences following Figure 1.
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Surnose that U(XC’ Y) = Xe * 2/Y and UC(XD’ Y) = X + .

Suppose that py =Pt 1. Determine, if possible, the amount of
Y to be produced if the output is 'to be Pareto optimal and both

perscns are to have positive consumption of private goods.

In problem 3, find the Pareto optimal allocations (if any) in which
one or the other persons consumes no private good. Hint: At
"boundary solutions" of this type the summed.marginal rate of
substitution conditions need not apply. The prcblem can still be
solved without any advanced mathematics. Careful thinking will do
the trick.

For problem 3, find the set of possible utility combinations and
the utility possibility frontier.

Show that {f there is transferable utility as discussed in the

text of the lecture, then the utility possibility frontier is linear
at utility combinations achieved with positive consumption of sherry
by-both persons. ’

Diagrams for Charles and Diana

Reduce the dimensionality of the problem and eliminate explicit
use of the feasibility constraint by using the feasibility constraint
to eliminate Y. Since .

pX(XC + XD) + pyY = W, we can write

p
Y=w--—"~(xc+xo)
p

Y
- - ] Py
Define UC*(XC, XD) = UC(XC,_N - B;—(XC + XD)) and
. - Py
UD*(XC, XD) = Up(Xy, W - E;-(XC + XD))
Notice that UC*(.) and UD*(.) depend both on XC and XD.

The preoblen has thus been transformed into a preblem that is
formally similar to the problem of Anne and Bruce. W4What do the
indifference curves for UC* and UD* lock like? Draw a diagram
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similar to that done in Lecture 1 for the transformed utilities.
Find optimalitv conditions and show that they are the same as those

found in Lecture 2. . -

Prove that the dictator discussed in the lecture would choose a Pareto

optimal allocation.
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PUBLIC ECONGMICS LECTURE 3 T. BERGSTRCM

go]]uéion

Ed smokes. .Fiona, his neighbor, hates smoke. Ed and Fiona both love beans.
Neither cares how many beans the other eats. £d can get %obacc& for free.
Both have fixed incomes that can be uséd to buy beans. Ed's uti]ity'

function is

E
U= (s, Bg)

and Fiona's utility function is

F

u (s, B

£
where S is the amount of smoking that Ed does and BE and BF are the

amounts of beans consumed by Ed and Fiona respectively.

The set of allocations available to Ed and Fiona consists of all the triples

(s, B> BF) such that

+ NF

where HE and HF are the wealths of'Ed and Fiona, measured in terms of
the numeraire, beans. Figures 1 represents the preferences of Ed and

Fiona among possible allocations.
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A point on the graph in Figure 1 represents an allocation in the following
way. The horizontal distance of the point from the left side of the greph
is beans for £d. The distance from the right side is beans for Fiona.

The vertical distance from the bottom of the graph is the total emount

of smoking by Ed. Each point on the graph represents a feasible a]]ocatioﬁ
since the sum of Ed's and Fiona's beans will always be NE + HF and since
we have assumed that there is no resource constraint on Ed's smoking.

Ed's indifference curves are the curves bulging out from the right side.
They bend back on themselves because we suppose that, even for Ed, too
_much smoking is unpleasant. Ffona's curves §1ope downwards away from the
point 0. This gives her convex preferences and a preference for more

beans and less smoke.

If there were no restrictions on smoking and no bargains were made between
Ed and Fiona, then Ed and Fiona would each spend their own wealth on their

own beans and Ed would smoke an amount, SO- But the allocation._

X = (So, WE, HF)
is not Pareto opfima]. This can be seen by noticing that any point inside
the football-shaped region whose tip is Y*designates a feasible-allocation
that is Pareto superior to X. They would both be made better off if
Fiona would give Ed some of her beans in return for which Ed would
smoke less. It is easy to see thaf the Pareto optimal allocations-are
points of tangency between Ed's and Fiona's curves. Those Pareto optimal
allocations which are better for both Ed and Fiona than the allocation X
are represented by the points on the line segment, YT. If Ed has a
legal right to smoke as much as he likes and if Fiona and Ed bargain to

reach a Pareto optimal point, the outcome would be somewhere on YT.

Alternatively, there might be a law that forbids Ed to smoke without
Fiona's consent. If no deal were struck, the allocation would have no

smoking, Ed consuming W¢ and Fiona consuming Wc. Again we ses frem
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Figure 1 that this allocation is not Pareto optimal. Both parties would
benefit i7 Ed gave Fiona some beans in return for permission to smoke.
The Pareto optimal allocations that are Pareto superior to the no-smoking -

allocation are represented by the 1ine SZ.

The set of all Pareto optimal allocations includes the entire line ST as
well as points of tangency beyond S and T. We notice that the optimal
amount of smoke will not be entirely independent of the point on the curve
ST that is chosen.” More importantly, we notice that private bargains

. can be struck to reach optimality regardless of whether Ed has a right to
smoke as much as he wants or whether Fiona has a right to prevent him

from smoking altogether. What the Jaw says that one has a right to do is
not necessarily what will be'doﬁet Rather it determineg the starting point
- from which bargaining can proceed. The situation is exactly analogous

to the'specificat%on of thé initial ai]ocation of ownership in the theory
of private geods in pure exchange. This point is made andvi11ustrated

with fascinating iegal examples by Ronald Coase in his article "The Problem

of Social Cost", Jowrnal of Law and Economics, 1960.

IECIURE 4
Congestion
[ )

Only two activities interest the citizens of Hot Rod, Indiana. .These are
driving cars and eating Big Macs. Each indiﬁidual, i, in Hot Rod has

an initial wealth, wi. Big Macs cost $1 éach. The cost of the fuel

used per unit of driving is pF.' Driving also causes congestion. Let

H be the amount of highways in Hot Rod and let

be the total amount of driving by the n citizens of Hot Rod. The level
3C
3H

Ve assume that CD >0 and CH < 0. Preferences of the ith Hot Rodder

of congestion is a function C(D, H). Denote %% by CD and by C

b



are represented by a utility function:
n
(1) U, = U.(D,, C( Z

where Di - and Mi are respectively the amount of driving and the number
of Big Macs consumed by 1. We assume that Ui is an increasing function .
of Di and M. and a decreasing function of C. The set of feasible
allocations in Hot Rod is described as the set of vectors of the form

(Dl’ eee Dn, H, M], . Mn) such that total expenditures on Big'

Macs, fuel, and highways in Hot Rod add to the total wealth of its

citjzens. If the pfice o% a2 Big Mac is $1, a unit of fué] costs Pgs and

a unit of highway costs the community Py» this budget constraint is:

(2)

IRYE:)
M

M].+pF'i D.+pHH;

=] 1!
We could solve directly for the necessary conditions for Pareto optimality,
using Laérangean analysis. Alternatively we could notice that formally
this model is equivalent to a model in which there are n+1 public goods
and one privaté good. Each persua's driving enters everyone's utility
function. So does the level of highway expenditures. Hence there are

n+1 public goods where anyoﬁe's driving is a public good.. (0f course

ore person's driving is a public good which is disliked by everyone

other than the driver, but the theory we have developed works as well for

public "bads" as for public goods.) No-one but i cares about i's

Big Mac consumption. Thus, Big Macs are private goods.

Recalling the Samuelson conditicns for Pareto efficiency, we have:

(3) St R I
j=1 - oH H
and for all i:
n aU. 3U
(4) Z sph e gt P -
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Condition (3) says that the sum of the marginal rates of substitution
between highways and private goods must equal the marginalicost of
highways. Condition (4) asserts that for each i, the sum of the marginal-
rates of substitution for the public good "driving by person i" must

equal the marginal resource cost of driving by i. Condition (4) could

be written equivalently as:

( ) an an SUj an .
5 — = =P - 2 (=% =)
YY) n
L4 ) BU‘ '
for all i. Since for Jj#i, Eﬁg'c 0, we see that (5) requires that
i

i's marginal rate of substitution between driving and Big Mac's must
equal the fuel cost Pe plus the sum of the amounts that would have
to be paid each other citizen te compensate for a marginal bit of driving

by 1.

Where congestion costs. enter through a congestion function of the form
indicated in (1), we can exploit the special structure of the problem
to deduce stronger results. Given the special form of (1), we can write

(3) and (5) as:

n an an
(6) C, 2 =& s~ P
H o 3C oM~ TR
and
U, aU. sV, sU;
(7) St Cp 2 2t
by 3y jFl ¢ j

for all i. Define

foooaU.
= aL% . MJ

: . 3 M.

- 371 J

FB) A % Tnoau. U,
z ——%-e —rl

=1 %0

(9) 1. 'i = - X L for all i.
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For larges economies, As will be close to one. Thus (9) implies the

follewing approximation

(9") al.  aU. c

i 1 D
+ = = pL_ - p —_—
aDi oMi ; H CH
CD
Since C. >0 and C, <0, — < 0.
D H CH

Condition (9') asserts that i's marginal rate of substitution between
driving and Big Macs should be approximately equal to the fuel cost of
driving plus the cost of adding'enough extra highwayito eliminate the

extra congestion caused by the marginal bit of driving.

If all Hot Rodders were allowed to drive as much as they liked so long

as theypaid for their cwn fuel, they would drive to the point where

u.

i, 1.
(]O) N |a‘4i . pF'

%)
[
)

c
Comparing (10) with (8) and noticing that AsPy EQ
H :
there would then be "too much" driving. (At least if there are diminishing

< 0, we see that

marginal rates of substitution).

It is reasonable to guess that a system of ;o]ls for driving couid be
imposed to induce Pareto efficient behavior. In case Hot Rodders had
identical preferences and wealths, it turns out that an equalitarian
Pareto optimum could be enforced by a uniform system of tolls.  Suppose
that a toll of T is charged by the government per unit of driving.
Suppose also that the total revenue from tolls is returned'fn equal
shares to all citizens of Hot Rod. Suppose likewise that the cost of
highways are paid for by lump sum taxes collected in equal amounts by
all citizens of Hot Rod. Then thé budget constraint for citizen i of

Hot Rod is:
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n
<
P H T.Z, Dy
. _ H j=1 7
M.+ =W, - -
(]]) '-i (.D'g_- + T) D] .J]. h t -
or rearvanging terms slightly:
1 PHH' T 2 Dj
(12) Mi + (pF + ("lu—r—{) TDi = w_i - T

The right side of (12) consists of variables that i does not control.
From the left side of (12) we see that he is choosing M, and D{
where the "prices" are respectively 1 and Pp ¥ (1-—%)T- Therefore
he will choose Mi and Di so that:

U, |, aU.

i i 1
(13) 50, e, = Pp (19T

Recalling (9) we see that 'the tol1 T would lead to efficient amounts
of driving only if:
c
Ty _ D
(18)  (1-DT = -apy 2
R
Since we are looking at a symmetric solutjon, we see that Ay = 1--%

so that (14) is equivalent to

CD
(]5) T = —pH -C;l- .

Thus condition (15) is a soluticn for the toll that induces an efficient

. .
amount of driving.

The government in this model has two tasks. Collecting (and returning)
tolls and providing (and taxing for) highways. An interesting question
is whether the revenue collected from efficient tolls would be

sufficient to pay for highway construction.

Let us suppose that the congestion function is homogenecus of some
degree, k. If k = 0, there are "constant returns to scale" in the
sense that doubling both the amount of driving and the amount of highways

leaves the level of congestion unchenged. If k > 0, there are"decreasing return

Doubling driving and highways makes congestion worse. If k < 0, there are
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increasing returns. Doubling driving and highways leads to less

congestion. Using Euler's theorem we note that

(16) DCD + HCH = kC.

From (16) we see that

(17) oC -HC

AV

[wo]

H

if k

vila
o

From (15) we see that if an optimal toll is charged, total government
revenue from tolls will be: .
Cp * -

If k =0, we see from (17) and (18) that

(19) 71D = pH.

PH
Thus in the case of constant returns to scale, the revenue from tolls

just covers construction costs. Also from (17) and (18) we se2 that

(20) TD I pH if kO,

Thus if there are decreasing (increasing) returns, efficient toll revenue

will more than (less than) cover total highway construction costs.



NCTES ON CLARKE TAX LECTURE 5 T. BERGSTPCM B

a~o

Let ﬁhere by one private good and one public good. Consumer i
has the utility function.
(L) - Ui(Xi,¥) = X, + Fi(Y)
where X, is his private gocd consumptibn and Y is the amount of
public good. Each i has an initiai endowment of Wi units of
private good. Public good must be produced using private goods
as an input. The total amount of private goods needed to
produce Y units cf public gooa is a function C(Y). Assume -
that Fi is a strictly concave function and C a convex function.
If wevconsider only allocations in which éveryone receives at
least some private good, then for thi's economy there is a

unigue Pareto optimal amount of public good. This amount is

_the amount that maximizes
(2) P (Y) - C(¥)
*

‘Consumers are asked to reveal their functions Fi to the
government. Let_&i (possibly different from Fi) be the function
that consumer i claims. Let M= (Ml,..;,Mn) be the vector of
" functions claimed by the éo?ulation. If the reported vector

is M, the government chooses an amount of public goods, Y (M), .

such that ' ' . .
(3) DM (Y (M) - C(Y0D) 2 IM (V) - C(¥)

i 1 - i ‘
for all Yy > 0.
Taxes, Ti(M), are then assigned to each consumer i where
(3) P,(M) = C(Y(M)) - T M. (Y(M)) - R, (M) e !

i R i

J7L

and where Ri(M) is some function that may depend on the functions, -

Mj' reported by consumers other than i but is constant with

respect to'Mi.

e m————— o i 2 g e - e
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If the vector of functions reported to the government is

M = (Ml,...,Mn), then Consumer 1i's private consumption is

4 M) = W, - .
(4) : Xi(i) Vo= T, (1)
and his utility is
(5) X. (M) + F.(Y(M)) =W, + Z M_(Y(M)) +F. (Y (M)) ~C(Y(M)) +R. (M)
i i s i 1
Jj71 :

Since wi + Ri(M) is independent of Mi' we notice that the
only way in which i's stated function Mi affects his utility is
through the dependence of ¥Y(M) on Mi'

We see, therefore from (S)Athaé given any choice of
strategies by the other players, the best choice of Mi for i
is the one that leads the government to choose Y(M) so

as to maximize

(6) ’ T M.(Y) + Fi(Y) - Cc(Y).
j#i -

But recall that the government attempts to maximise

n
(7) I M. (Y) - C(Y).
j=1
Therefore if consumer 1 reports his true function, so Ehat,
t.c. N -
Mi = Fi'a then the government in maximizing (7) will maximize (6).

It follows that the consﬁmer can not do better and could do worse
than to report the truth. Honest revelation is therefore a
dominant strategy. |

Since everyone - ¢hooses . his dominant strategy, true
preferences are revealed ana the governmengs choice 6f Y ()
is the value of Y that maximizes

F.(Y) - C(¥)

(8) N

I sl

J
This leads to the correct amount of public goods. O0f course
for the device to be feasible, it must be that total taxes

collected are at least as large as the total cost of the



public goods. If the outcome is to be Pareto optimal, the total
amount ©f taxes collected must be no greatexr than the total

cost of public goods. Otherwise private goods are wasted. We

e

are left, therefore, with the task of trying to rig the functions -

Ri(M) in such a way to establish this balance. In general, it

turns out to be impossible to find functions Ri(M) that are independ- ~

ent of Mi for each i and such that

(9) ; | zri'ium = c(y ).
. i . o

However, Clarke and also Groves and Loeb found functions
Ri(M) that éuarantee.that'tax revenues at least cover total
costs. ' 7 "' o i .

.  Their idea can be explained as follows. Suppose that for

each.i, the gbvernmgnt sets a "target share" Gi ;.0 where ;ei = 1.
The govern@ent then tries to fix Ri(M)'so that Ti(M)'; GiC?Y(M))
for each i.. Then,'of course,~§Ti(M)n; C(Y(M)). Froh-equation (3),
it follows that :

(10) T.(M) - 8.C(Y (M) = [ (L-8)C(YM))~- T M_(Y(M))] - R, (M).
l bl : hy ] . 1
: : . 37 :
‘Therefore the government could set Ti(M) = GiC(Y(M)) if and only if

it could set
[]

R, (M) = (1-8.) C(Y(M)) - Z Ml(y(m)).
i . i’ azs 3
J71

But in general such a choice of Ri(M) would be inadmissable for our
purpose because Ri(M) depends on Mi’ since Y (M) depends on Mi.
Suppose that the government seﬁs
(11) R, (M) = Min [(1-6,) C(Y) - I M.(Y)]
1 Y 1 j#l ,
Then Ri(M) depends on the.Mj's for j#i but is independent of Mi.

From (10) it follows.that with this choice of Ri(M) we have:

(12) T, (M) - 8, C(Y(M)) > 0 for all i.
Therefore
(13) LT, (M) 2 C(Y(M)).

i

This establishes the claim we made for the Clarke tax.

- - [ cm et — - ————

e ot e Am e —— = aema R e
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THE GROVES-IEDYARD D) REVEALING MECHANLISM

LECTCRE 6

T. BERGSTRCM

Groves and Ledyard propose a demand revealiné mechanism
which they call "An Optimal Government". The mechanism
formulateé rules of a "game" in which the amount of public
goods and the distribution of taxes is determined by the
government as a result of messages which the citizens choose
to communicate. Although the government has sno inaependent
knowledge of preferences, and éitizens are aware that sending
deceptive signals might possibly be beneficial, it turns out
that Nash equilibrium for-this game is Pareto optimal. The
Groves-Ledyard mechanism is defined for general equilibrium
and app’.ies to.arbitrary smooth convex p?eferences.

In contrast, the Clarke tax (discovered independently'by
Clarke [1971] and Groves and Loeb [1975]) is well defined only
for economies in which relative prices are exogencusly dester-—
mined and where utility of all consumers takes ﬁhe quasi-linear

: U, (X.,Y) =X, + F.(Y).
form: Ul(Xl,X) Xl Fl(Y)

The Clarke tax has the ad&antage that for each consumer,
equilibriuvm is a dominant strategy equilibrium‘rather than just
a Nash eguilibrium. Thus there are no complications related .
to stability or multiple equilibria. On the other hand, the
Clarke tax has the disadvantéges that although it leads to a
Pareto efficient amount of public goocds it generally will lead
to same waste of private goods.

It is of scme interest to examine the nature of the Groves-

Ledyaré@ mechanism as applied to the case of transferable utility.
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This helps us "to develop some "feel" for the device by se=ing
how it performs in a managea-=le environment. It also is of
some interest to compare the merits of this system with the -
Clarke tax when both are operating on the Clarke tax's honme turf-
We are able to show quite generally that when there is quagi;
linear utility, the Groves-Ledvard mechanism has exactly one
Nash equilibrium. Furthexrmore, this equilibrium is guite .
easiiy computed and described. This is of some interest -
because, in general, little is known about the unigueness of
Groves-Ledyard's equilibrium and the’question of the existence
of equilibrium is also less tﬁ;n satisfactorily resolved.

Suppose that there are n consumers, and one public good
. and one private good. Each consumer has an initial endowment
of Wi units of private good. Public good is produced at a
constar® unit cost of g. Utility of each consumer takes the

form Ui(Xi,Y) = Xi + Pi(Y)'

The government asks each consumer i to submit a number,
(positive or negative) Ry - The govermment will supply an
amount of public goods ¥ = imi. It will charge a tax to consumer
i equal to

i -
(l) C (mlf ...,mn) = aiq}im}( .
Y, n-1 1 2 1 k k! .
+ =i m,——= I m) - 57— L I (mT-m )] .
2" n in lkri X 2(n—-1)n %k#i K'#i

vhere the ai's and Y are arbitrarily chosen positive para-

meters and Zak=l. If the vector of messages is (ml,...,mn)
k

then consumexy i's utility will be
i

where F.' > 0 and F." < 0. -
i i



(3)

(4)

(6)

(7)
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Therefore in a Nash equilibrium each consumer i would be
choosing m. to maximize (2).

The first order condition for maximizing (2) reduces to

1
t = -
F, ' (Imy) Ylm; = Zr%{] +o.q
k k
Summing the equations irn (3) and recalling that Zo, = 1,

X k

we see that

ﬁF '(Im ) = q.
P koK

This is the Samuelson condition for efficient provision

.

of pﬁblic goods.

Since F. " < 0, (4) has‘a unique solution for Im Let

k X k°
Y denote this solution. Now define . -
._.i I.—"
siqui (Y).

Then (3) can be rewritten as

_ 1=
B, = Y[mi - Hf] + @ q.

Now @ g and y are parameters and Bi is uniquely solved

for by (4) and (5). Thus we solve uniquely for m, as

follows. . °
-l . Y
m; ﬂY(Bl a.q) +n.

This establishes our claim that in case of quasi-linear

utility. Nash equilibrium exists, is unique and is easily

computed.



LECTURE 7

OUR TOWN - AN EXPOSE T.C. Bergstrom

. Christchurch 15 July 1981

Life in Our Town is simple. Folks here are interested in
only three things. One of these we are not allowed to discuss.
So we will assume they are interested in only two things. These
are hot dogs and the Circus. There are really only twokinds of
people in town - the toads and the blades. Toads don't care at
all about the circus but always prefer more hot dogs to less.
Blades like both hot dogs and circus. As it happens, preferences
of blades can be represented by the utility function UB(Xi,Y)=
Xi+2/Y while toads' utility functions are simply UT(Xi,Y)=Xi,
where Xi is the amount of hoﬁ dogs that person i consumes and Y
denotes the size of the circus. Each citizen, i, of Our Town has
an intial endowment of wealth Wi which can be used either to buy
hot dogs or to pay.taxes. Tax revenue is used to pay for the
circus. The bigger the circus, the more it costs. 1In fact, let
us choose units of measuremenf for. the siie of the circus sc that

S

the cost of a circus of size Y is just ":*. Let us also suppose

that hot dogs cost sl each. There are N people in Our Town.

Let us define an allocation to be a vector (Xl""’XN'Y) wnere Xi
is the number of hot dogs consumed by person i1 and Y is the size
of the circus. An allocation is feasible for the town if the
-total cost of hot dogs consumed plus the cost of the circus just
equals total wealth of its citizens. The set of feasible

allocations can therefore be denoted by S={(Xy,....,X

A feasible allocation is said to be Pareto optimal if there is

no other feasible allocaticn that is as good for everyone ana better



for someone. A classic result of Samuelson is that a necessary
condition for Pareto optimality in a.place like Our Town is that
the sum of everyone's marginal rate of substitution of public for
private goods must equal the marginal cost of public goods in
terms of private goods. 1In our town the marginal cost of public
goods is always one. Therefore the Samuelson condition takes the

-~

special form

2u
Y

(e

= 1.

-
0}

la»
e

(1)

N
z
i=

1

Recalling the special form of utility functions assumed we see

that for a toad %%i + ggl is always zero. For a blade, we
3U 1t

0
v
=
9]
o
-
v
t+
(1]
asla»
%Lg
Je

gg; =5 Therefore in Our Town eguation (1)

ecial form

+
o]
=
(1]
0]
rt
o}
1]
w0

o)

1 _
(2) Ng,~v = 1.

From (2) we see that the Pareto optimal amount of public goods
for Our Town is
2

(3) Y = NB .

Our Town is a democracy. Everybody pays the same tax rate.
Je cdecide by majority vecte how much circus to have. Of course
toads alwavs vote for no public goods, since they have to pay
taxes but don't enjoy the circus. As it turns out, toads are in
the minority in Our Town. Therefore blades always out-vote the
toads and get a positive amount of éircus. (You might want to
know why the toads haven't all moved to a tocwn that has a majority
of tcads and no circus. The answer is that some 0f the necessary
jobs in town can only be done by toads. For example, we need a

banker, a mortician, some accountants, an estate agent, a lawyer,

a school principal and some mothers-in-law.)



How much circus would a blade like to have? Where Y is the

amount of circus, his tax bill will be just Y. Therefore his after-

N
. . . Y . . .
tax wealth 1is just hi -5 Therefore he will be able to consume
X, = wi—% hot dogs when the amount of circus is Y. His utility
would then be
Y Y

(4) UB(wi_ﬁ’Y) = wi_ﬁ + 2vY

From (4) we see that
Y o,
dUB(Wi ﬁ,i)

(5) _
ay vV Y

Therefore a blade's utility is an increasing function of Y for
Y<N2, a decreasing function of Y for Y>N2 and is maximized at
Y=N2. Since there are more blades than toads, it is clear that
the only amount of circus that "wins" in majority voting is

(6) Y = N°.

For a léng time the toads in Our Town have been grousing
about high taxes and too much circus. Blades never pzid much
attention. The other day an economist vigited us. (Claimed
he wasn't a toad). He said the toads were right. He showed us
equation (3) and pointed out that we have more than the Pareto
efficient amount of public goods. He sa;d he had just come from
Their Town in the next county, where the problem was just the
opposite. A majority of the people in Their Town (but not
everyone) are toads. They have no circus at all.

This economist suggested that we try a different political
~system where we regquire unanimity instead of majority.rule. But,
since we have people with different tastes, we would have to set
different tax rates for different people so as toc get unanimity
about quantities. He called this idea Lindahl equilibrium. In
Cur Town, the only way we could get the toads to agree to any

positive amount of circus is if we don't tax them for the circus.

Then blades would have to pay all the taxes. Suppose that all
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% blades are taxed at the same rate. Then each blade would have a
. Y
tax bill of ? . He could therefore consume X. = W. - 2 hot dogs
I\N 1 1 NB -
and would have a utility of
- Y
(7) U(W.-=—,Y) = w.-lL + 2VY.
1 NB 1 NB

This is maximized when

_ 2
(8) Y = NB .

, - R 2 .
Therefore all blades would choose the amount NB as their most

preferred quantity of circus. Since toads pay no taxes and have
no interest in the circus, this amount is as good as any other

amount for them. Therefore the amount, N receives unanimous

B ’

. . . -2 Ce s s
approval. The allocation in which Y=NB ’ Xi=wi if 1 is a toad
and X.=w.—gl=w.—N if i is a blade is therefore a Lindahl

1 1 N 1 B

B
eguilibrium.

The econorist said that Lindeahl equilibrium was both mcre
eguitable and more efficient than our old ways. The toads said

ne was right. The blades were not so sure. A blacde made the

-k

ollowing calculations. Under the current system a blade has

(%

he utility

2 S
J
(9) w.-X 4 2/A° = W.4N.
i N i
Under the Lindahl system a blade has the utility
N_2

. B

B! Na.-
(10) Wy o
B

+ 2VN_2Z2 = W.+N
B 1 B

Since N>NB, moving to the Lindahl system is bad for blades. The
eccnomist said that the blade had a point (though he was being a

cish

ty
-
t

~—

oi

Q0

. Eut the economist said that since we Xnow that the

rent svsten is not Pareto optimal, it should be possible for

0
H

u

h

(0]

toads to bribe the blades to move to Lindahl eguilibrium.

(o}

=]

he econcmist pointed out that under the current system each toacd
has & vuvtility of

(11) X. = W.-3_ = w.-N
1 1



while under the Lindahl system he would have no taxes so his
utility would be

(12) Xi = Wi.

We can see from expressions (9) and (10) that a blade could be

bribed to accept the Lindahl system if he was given N—NB=NT hot

dogs. Since there are NB blades, it would take NBNT hct cogs to

bribe all of the blades to accept the Lindahl system. Therefcre

if each toad gave up N_ hot dogs to bribe the blades, there would

B

be just enough hot dogs to do so. If this is done, each toad
would have a utility o=

h = -
(13) Xi Wi NB.

Equation (10) expresses the utility of each blade in the Lindzhl

system without bribes. With bribes of NT for each blacde, the

utility of each blade would be

J \ =
(14) hi + NB + hT Wi + N

which is the same as his utility under the current systemn.
Since (13) is greater than (11) and (14) eguals (%), we see that

’

moving to Lindahl eguilibrium with this systerm of bribes benelits
L ]

all toads and leaves all blades as well off as before. IF we

made the bribes slightly larger, everyone would be better off

than in the current system.

The blades and the toads were all impressed by this argunent.

[

b o e = =

jThe’bribes were pa d,;gn Fhe entire community agreec tc switch
Kﬁo the Lindahl system. There was one small hitch. You can't
always tell by looking, whether a person 1s a toad or =z blzce.
To solve this problem, the mayor asked everyone to come ccwn to
the town hall and answer the simple guestion:
"Are you a toag?"

To his amazement almost everyone 1in town sguatted dewn and crcoakecd:



Each blade madé the following calculation. If all the
other blades are telling the truth, then if I confess to
being a blade, the Lindahl equilibrium amount of circus

will be N 2, and my tax bill will be N

B so that my utility

B
will be

(15) wi—N + 2¢NB2 = wi + N

B B-

If I claim to be a toad, the amount of public good will be

only (NB-l)2 but I won't have any taxes, so my utility will

be

(16) W, + 2/(Ng-1)Z = W, o+ 2(N_-1) .

But (16) is bigger than (15) so- long as NB>2. Since in Our

Town I know that NB>2, it is therefore worthwhile for me tc,

pretend to be a toad. As a resﬁlt of this experience, blades

in Our Town are inclined to look at economists (and at each
other) with suspicion. True toads, of course, are pleased
and amused with the outcome.

It is time, I think, to draw tﬁe curtain on the sordic
situation in Our Town, while“we seek aid from some more
general analysis. So far, we have learned the following
lessons which apply not only in Our Town but guite generally.
(1) For an arbitrary distribution of taxes, majority voting

will not in general lead to a Pareto optimal supply of

public gocods.

(2) Lindahl equilibrium is .Pareto optimal. Hcwever
imposition of a Lindahl equilibrium reguires the
central authority to know individual preferences.

(3) If people are asked to state their preferences,
knowing that their statements will be useé to calculate
a Lincdahl equilibrium that is then imposed, the

situation where everyone tells the truth is not a best



respoﬁse (Nash) equilibrium.

The difficulty alluded to in (3) is often called the
"free-rider problem". It'is representative of a fascinating
class of problems of the firm. "How do you get someone else
to tell you the truth about something that only he knows?"

A related guestion is "When can you design a system of
rewards and punishments such that wheh selfish people who
are willing to lie will act in such a way as to yield a
Pareto optimal outcome?"

A philosopher who dabbles in economics, Alan &ibbard, ané an
economist who dabbles in philosophy, Mark Satterthwaite,

independently showed that in general it is not possible to

design such mechanisms. There are, however, some interesting

special cases where the truth can be elicited even though the

answers are used to choose a Pareto optimal policy.
The first example is William Vickerey's succestion

for a sealed bid auction. Suppose that there are n pesople

7

and one object to the allocéféd'among them. Let V. be the
.
maximum amount that person i would be willing to vay for the
object. Pareto efficient allocations would have the cbject
go to the person with the greatest willingness to pay. Why?
If a sealec-bid auction were held, with the cbject gocing to
the highest bidder at his bid price, it would not be wise
for anyone to bid his true valuation. Why? Vickerey
suggested that the object be given to the hichest bidier at
the second highest bid price. With this system, it turns
out that bidding ones true valuation is the best thinc to

do no matter what other people bid. A strategy that :is best

no matter what others do 1s known as a dominant stratecy.

n

A social outcome where everyone is using a dominant strategy
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the outcome whe;e everyone bids his true valuation and the
object goes to the person with the highest valuation at a
price egual to the second highest valuation is a dominant
strategy equilibrium. Lets see why this is so. Suppose
that you bid more than your true evaluation. If your bid
is not the highest bid, you are no better (or wcrse) off
than i1f you had told the truth. If your bid is the highest
bid, then there are two possible cases. If your true
valuation would also have been the highest bid, then you
are no better (or worse) off than if you had bid the truth.
If your true valuation is lower -than the second highest bid,
then you get the object but you must pay more then it is
worth to you. You would have béen better off bidding the
truth and not getting the object. Thus we see that you can
not gain but you can lose by cverbidding. You should be able
to construct a similar argument to show that you can not
gain and mey lose by unde;pi@ding. ‘Therefore, bidding the
truth is a dominant strategy;

The idea of Vickerey's auction can be extended to
other kinds of discrete choices. O0f particular interest
are all-or-nothing choices on public issues, such as whether
to allow public nudity or public rugby playing, cr the sale
of handguns. I have promised not to discuss certain interests
of the people in Our Tcwn, sc-we will consider the Springbok
issue.in New Zealand. Define Vi to be person i's willingneés
to pav to have the Springboks allcocwed into New Zezland. More
formally, let Ui(Xi,O) and Ui(Xi,l) denote respectively
person i's utility when his wealth is Xi and the Springboks
are allowed or not allowed to tcur, and let iidenote i's

current wealth. Then v is the solution to til.e eguaticon



U, (X;#V,,0) = U, (X;,1).

Thus Vi is positive for people who want them to come and
negative for people who don't want them.

One possible decision mechanism is to decide the issue
by majority vote. The weakness of this mechanism is that
it may not be Pareto optiﬁal. The minority may be intensely
concerned, while members of the majority each care very
little. In this case it might be possible to find a Pareto
superior outcome which reverses the result since the minority
cares enough to buy off the majority.

To make an ‘efficient decision, we need to compute the
sum over the entire population, ;Vi. If ;Vi>0, then with the

i i

current allocation of wealth, allowing the Springboks to

come is Pareto optimal and not allowing them to cocme is not.

If ZVi<0, the story is reversed.
i

If we just asked people to state Vi' and then decidead
on the Springbok issue by the sicn of ZVi, they would have
[ ]

an incentive to overstate the intensity of their preferences.

We need a more subtle device. Here is one that works. Each

fol)

i is asked to statevvi. The state then calculates Zvi an
i
allows the Springboks to come if and only if ZVi>O. In additi
i
some taxes are assessed in the following way. If person j's

answer does not affect the outcome, that is if the sign of

I V. is the same as the sign of ZV,, then he pays no tax.
$i it

If person j's answer does make a difference, then he pays
the amount < V.. Any revenue from this scheme is thrown
away. Using exactly the same kind of reasoning that we did

in the case of the Vickerey auction, we can show that the



-~

lLU.

equilibrium. Furthermore, the resulting decision is "Pareto
optimal". There is, however, some waste in the process,
since the tax revenue is thrown away. 1In large econonies,
it can be shown that under reasonable assumptions the amount

of waste of this type will be small.









