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If all the seas were one sea,
What a gneat sea that would be!
If all the trees were one tree,
What a gteat tree that would be!

And if all the axes were one axe,
What aaest axe that would be!

And if all the men were one man,
What a gPCeat man that would be!
And if the gAezas man took the geca axe,
And cut down the ctCCt tree,
And let it fall into the age.at sea,
What a splish-splash that would be!

Normally aggregate demand for private goods can not be treated as if it

were the demand of a single gigantic rational consumer. This is possible only

if "income distribution doesn't affect aggregate demand". Gorman (1953) dis-

covered restrictions on the form of indirect utility functions that are

necessary and sufficient to allow such aggregation. In early partial equili-

brium treatments of public goods theory by Lindahl C1910) and Bowen (1943) the

efficient amount of public goods- appears to be determined independently of

income distribution. Samuelson (1955), (1966) observes that generally an

efficient amount of public goods cannot be determined independently of the

distribution of private goods. He points out that such separation is possible

in the special case where preferences of all consumers are quA--Zinea t, that

is, representable by utility functions that are linear in private goods. Mus-

grave (1966) responds that although independence of allocation from distribu-

tion is not legitimate in a strict logical sense, separation of allocational

decisions from distributional decisions is a useful simplification of reality

that may in practical situations lead to better decision making than attempts

to simultaneously determine allocation and distribution.

If quasi-linear preferences were necessary for separation of allocation

from distribution, then Musgrave 's case for separation, even as an approxima-

tion, would not be good. Quasi-linearity has strong and rather easily re-
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futable implications. For example, it implies a zero income elasticity of

demand for public goods. Several recent studies of the demand for public

goods strongly rej ect the hypothesis that the income elasticity of demand

for local public goods is close to zero. As it turns out, however, separa-

tion of allocation from distribution is possible for a much broader class of

preferences. This class is essentially dual to the class of preferences

found by Gorman to admit construction of a "representative consumer" in the

theory of demand for private goods. 2

In the next section we develop a rigorous theory of when allocation can

be separated from income distribution, or equivalently of when there is a repre-

sentative consumer of public goods. It remains an open question whether

empirical data can be found that refute the hypothesis that preferences for

public goods allow such aggregation. This being the case, it also remains to

be decided whether the assumption that pref er ences satisfy this hypothesis

yields misleading guidance for public policy.

rn the final section of this paper we show that the assumption that

pre:erences belong to the class that allows a representative consumer has

interesting implications for the theory of social welfare functions, for Lindahl's

allocation theory, and for Bowen's majority voting theory. We also demonstrate

that demand revealing mechanisms of the kind introduced by Clarke (1971) and

Groves and Loeb (1975) for the case of Quasi-linear utility can be extended

in a simple way to this much broader class of preferences.

SECTION 1

A. Two heuristic claims and their imrlications

Let there be n public goods and one prvt ood." Let Y denote the vector

of public goods supplied and let K. denote the consumption of private goods by

consumer i. Subject to certain qualifications, we establish the following claims.
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Claim S - If all consumers have utility functions of the functional form

A(Y) X + ,Bi(Y) , then the =Pareto efficient quantity of public goods is in-

,dtpe ndent of .the .distrihution f -pr.vate goods,

Claim -N .- If the Pareto efficient ;quantity of :public goods Is ,independent

of the distribution of private goods., then all -consumers have iutti-ity func-

tions of the form ACY)X + B.(Y1.
i 1

In these claims there is some good news and some bad news. The good

news is Claim S. The class of preferences that allow separation of allocation

from distribution is much larger than the quasi-linear family. The special

case where A(Y) = 1 is the quasi-linear case. If A(Y) -a for a > 0 and

B (Y) -= 0, pr.ef er enc es are identical and Cobb-Douglas. But A(~Y) .and B .(Y )
j 1.

could he chosen so that preferences are neither homothetic, separable, or

identical. The bad news is found in Claim N. This -r-esult states restrictions

on the class of preferences which admit separation between allocation .and

distribution. Some of the implications of membership in this class are stated

in Theorem1..

Theorem 1

Let preferences of consumer i be represented by a differentiable utility

function A(Y)X + B i(Y) where A(Y) > 0 for all Y > 0.

(a) Preferences of consumer i are homothetic if and only A(Y) is

homogeneous of some degree a and B.(Y) is either constant

or homogeneous of degree a + 1. If there is only one public

good, A(Y)X 4 + B (Y) = Y X + kT ~l for some k4 .

(b) Pr efer enc es o f c onsumer i ar e ad dit ively s eparable between public

and private -goods if and only if they are representable by a

utility function of the form A(Y) (X.+ k.) for some kI.

I
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(c) Preferences of each consumer i are additively separable and

homothetic if and only if all consumers have identical pre-

ferences representable by utility functions of the form A(Y)X

where A(Y) is a homogeneous function. If there is only one public

good, this implies that utility functions all have the Cobb-Douglas

form YaX. for some a > 0.

The assumptions that A(Y)X. + B (Y) and A(Y)X. + I (Y) are quasi-concave
2 i 2i

will play an important part in the development of our theory. It is therefore

useful to identify some necessary and some sufficient conditions for quasi-

concavity of these functions.

Theorem 2

B (Y)
Define the function S.(Y) = . Then A(Y)X +B.(Y) EA(Y)(X.+.(Y)).

2. (Y i 2 1 2i

The following conditions are each sufficient for A(Y)X. + B .(Y) to be quasi-

concave.

(i) A(Y) > 0 and £.(Y) > 0 for all Y > 0 and the functions

A(Y) and (Y) are concave.

(ii) There is only one public good, A(Y) > 0 and B(Y) > 0

for all Y > 0 and the functions A(Y) and B (Y) have non-

negative first derivatives and negative second derivatives.

2 2 T(iii) The two quadratic forms, V A(Y) - 7A(Y) VA(Y) and

v (Y)f[V2A(Y) - -~ VA(Y)VA(Y)1 + A(Y) 7V ,(Y) are both
A(Y)

negative semi-defrinite and one of them is negative d e-

finite for all Y > 0.

The following conditions are each necessary for A(Y)X.+B.(Y) to be aasi-concave.
2. 1

(i) A(Y) and B()are both quasi-concave functions.

(ii) The quadratic f orms in suf ficient condition ( iii)

are both negative semi-definite for all Y > 0.
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Thge coedit ion on quiadatic f orms is seen to be (essentially) a nec essary

and snff iciest condition for quasi-conicavity . However,. ia general thiis. con-

iton Is, rathex dif ic.1t to verify or to interpret.. Siificient conditions

(i) and C(LL) are easier to interpret buzt are not neceessary conditions... In

our appl~ications, hover, they- ii. serve adequ~at ely.
An easy consequ en a of theorem 2 is the f oLlo d±ng.

Corollary 1J - If all individual utility functions satisfy- necessary condition

(±) or (Li) , of tiheorem 2 then the fnnc tLion ACT) I -4:L (T) is atas i-concave.

B. Establ~isbhing Clam S - Suafficiencv

Define an outcome to be a vector (X1,..... , T,) where Xi is the amount

of private good for i and Y is the Ca-dimensional) vector of public goods..

Let the set of feasible outcomaes be t((X,...., X ,) ,~Y) c-F} for some set

F C Rel. An interior outcome is an outcome such that. I. > 0 for- all L. An

interior Pareto ovtimta is a Pareto optimal interior outcome.

If all consuimers have utilty functions of the form A(Y).X 4+ B , (), a

possible nandate for the allocation branch is: "Choose (K,Y) to narimize

+ () = C () on the set F ". We show that an allocation branch that follows
it

this instruction will choose an aggregate output Level that yields a Pareto

optimal outcome no natter how the private good is divided. Furthermore, given

convexity, all of the "interesting" Pareto ovtima are found in this way.

Theorem --
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It is instructive to consider the application of Theorem 3 to a special

case.

Example 1. There are two consumers with identical quasi-linear

utility functions X + /Y. The set of feasible aggregate outputs

is F = {(x,Y) > OIX + Y = 3}.

In this example A(Y)X + EB.(Y) is maximized on F at X = 2, Y = 1. According to
ii

Theorem 3, all outcomes that have one unit of public good and some distribution

of two units of private good between the consumers are Pareto optimal. Since

the convexity conditions of theorem 3 apply, it must also be that all interior

Pareto optima have exactly one unit of public good and two units of private

goods. There are also some non-interior Pareto optima for which Y # 1. In

fact, an outcome is Pareto optimal if 1 < Y < 2 and one of the consumers gets

no private goods while the other gets 3 - Y. The utility possibility frontier

for example 1 is shown in figure 1. Points on the line between (1,3) and (3,1)

correspond to outcomes where Y = 1. Points on the curved lines from (3,1) to

1 1 1 1
(3 , 2 ) and from (1,3) to ( , 3 1) represent non-interior Pareto optima.

In theorem 3, although we assumed preferences to be monotone increasing in

private goods, no assumption was made about monotonicity in public

goods. This is fortunate, since to model externalities in a natural way we

need some public goods that are desirable to some consumers and undesirable, at

least in certain cuantities, to others. Theorem 2 and its corollary specify

an interesting class of functions for which our assumption that utility is

quasi-concave applies. Nevertheless, the assumption of convex preferences

over public goods is not entirely appealing. In fact, as Starrett (1972)

pointed out, in the case of public "bads" convexity is very implausible. It

is therefore interesting to look closely at the use we have made of the con-

vexity assumptions and to find the best results available without convexity.
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We notice that the first statement of Theorem 3 is true independent of con-

vexity. Example 2 helps us to see why convexity is needed for the second

result of theorem 3.

Example 2. Preferences are as in example 1. There are only

two possible outputs of public good, Y - 1/4 and Y 1. The

3 1
set F is therefore {(2 , ) , (2,1)).

Possible distributions of utility are represented by the two diagonal lines in

Figure 2. The upper line represents utility distributions possible if (X,Y)

(2,1). The lower line represents utility distributions possible if (X,Y)

(2 , $). Clearly A(Y) X + (Y) is greater at (2,1) than at (2 ,). But

there are some interior Pareto optima for which aggregate output levels are

(2 -, 4) . One such outcome is (xX 2 ,Y) - (2 , I, Z). This outcome corres-

1)5
ponds to the utility distribution (3 ,) marked P in figure 2. From the

fig-re it is apparent that (2 5, 1,1) is an interior Pareto optimum. There

3 1
are other outcomes obtained by distributions from the aggregate outputs (2 4 ,

3 31i
which are not Pareto optimal . An example is (1-s, l ) . This yields the

utility distribution marked Q in figure 1. This distribution is clearly dominated

by feasible utility distributions such as R in the figure. We see from this

example that without convexity, it is not true that every outcome obtained by

redistribution from an interior Pareto optimum is Pareto optimal.

Define an aggregate output (X,Y) to be certainly efficient if every outcome

(L ,...,X ,Y) such that :X -i=Xis Pareto optimal. Let E C. Fbe the set of

all certainly efficient aggregate outputs. In general, the set E may be empty.

However if utility is of the form A(Y)X. + B.(Y) for all consumers i, it follows

:rom Theorem 1 that even without convexity, E will be non-empty given some weak

technical assumptions. The following is a direct consequence of Theorem 2 and

the Weierstrass theorem on the existence of maximal elements for continuous

functions on compact sets.

Corollary 2 - If preferences of all consumers are represented by continuous
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utility functions of the form A(Y)X 1 + B (Y) and if F is closed and bounded,

then the set E of certainly efficient aggregate outputs is non-empty.

According to theorem 3, every aggregate output (X,Y) that maximizes

A(Y)X + B.(Y) on F belongs to the set E of certainly efficient aggregate

outputs. In general, however, E is larger than the set of maximizers of

A(Y) X + 2Bi(Y) on F. To see this, consider the following example.
i 2

Example 3. There are two consumers. Consumer i has a utility

function of the form A(Y)X + B.(Y) where A(Y) = 1 for all Y and
i 2.

where B1(0) = B2(0) = 2, B3(1) = 6 and B2(1) = 0. Let F = {(1,1),(2,0) }.

The utility possibility frontier is described in figure 3. Utility dis-

tributions obtainable when Y = 0 are represented on the line AR. Utility

distributions obtainable when Y = 1 are represented on the line CD. All of

these distributions can be seen to be Pareto optimal. Therefore the set E

contains both of the points (1,1) and (2,0) from F. However if (X,Y) = (2,0),

then A(Y) X + ZB .(Y) = 6 and if (X,Y) = (1,1) , A(Y) X + ZB.(Y) = 7. Therefore
ii i1

the set C is larger than the set of maximizers of A(Y) X + EB, (Y) .

It is of interest to find a binary relation whose maximal elents on P

constitute precisely the set E. As it turns out, characterizing this result

is also the key to our converse result, claim N. Let us define a binary rela-

tion (Q over aggregate outputs so that (X,Y) a (X',Y') if some'outcome obtained

by distributing X is Pareto superior to some outcome obtained by distributing

X'. More formally, (X,Y) 0 (X',Y') if and only if there exist outcomes

(X,... ,X ,Y) and (X ,..X',Y') such that X. = X, EX = X' and (x X , Y),X

is areo speror o( ,...X Y'). From the definitions, it is easy to

verify the following.

Remark 1 - For arbitrary preferences, the set E of certainly eff icient aggregate

outcomes is ecual. to the set of G maximal elements of F.
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In general, the binary relation Q may have cycles and therefore may

not have a maximal element even on a finite set F. One such case is

illustrated in'example 4.

Example 4. There are two consumers. Let U1 (X 1 ,Y) = X for all

Y and U2(2,) X2 and U2 (x 2 ,1) = 2X2 . Let F = {(2,1),(3,0)}.

The functions U (-) andtU2(-) are not of the special form A(Y)X + B (Y).

Utility distributions possible when aggregate output is (3,0) are represented

by the line AB in figure 4. Distributions possible from (2,1) are represented

by CD. From figure 4 and the definition of Q it is clear that (1,1) Q (2,0)

and also (2, 0) > (1,1) . Therefore 0 has a cycle (of length 2) . Clearly G

has no maximal elements on F and (equivalently) the set E is empty.

Suppose preferences of all consumers are representable by utility func-

tions of the form A(Y)X. + B (Y) . Then if (X,Y) > ( X' ,Y') it must be that there

exist outcomes (X,...,XY) and (X ,..,K',Y') such that IX.= X, X! = X'
' n1 n.'i i 'i z

and A(Y)X. + B.(Y) > A(Y')X' + B.(Y') for all i with strict inequality for some
2i 21 = 1. 21

i. Therefore if (X,Y) > (X',Y') it must be that A(Y)X + B.(Y) > A(Y')X' +

B .(Y') . From this fact, the following is obvious.

Remark 2 - If preferences of all consumers are of the form A(Y) X + TB (Y) ,
i

then the relation 0 has no cycles.

A standard theorem (see Bergstrom (1975)) is that if a continuous binary

relation has no cycles, then it takes maximal elements on compact sets. This

fact, with remark 2 provides an alternative derivation of corollary 2.

It is interesting to compare the relation Q) with the more familiar Kaldor-

Hicks-Samuelson partial order which was central to discussions of the "new

welfare economics" (see Chipmaan and Moore (1978)) . The K.H.S. relation is de-

f ined over aggreg ate output s as f ollows: (X,Y)K. R. S. (X' ,Y') if and only if

f or every out come (X' , Y ' ,Y ') such tha t TX'. = X' there exists some out come
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Xm,Y)such that ZX. = X and such that (XIS,...,n,Y) is Pareto
i 2.

superior to (Xl,...,X',Y')

From the definition of the K.H.S. relation and from the fact that a

continuous binary relation with no cycles takes minimal elements on compact

sets, it is easily shown that:

Remark 3 - If individual preferences are symmetric and transitive, then the

relation K.H.S. has no cycles. If individual preferences are also continuous

and F is compact, then the set of K.H.S. maximal elements of F is non-empty.

Define an aggregate output (X,Y) to be potentially efficient if there is

some Pareto optimal outcome ()L,. .. ,XmY) such that IX. = X. Let E* denote
i i

the set of all potentially efficient aggregate outputs in F. From the de-

frinitions it is easy to verify the following.

Remark 4 - The set' of K.H.S. maximal elements of F is equal to the set E* of

potentially efficient aggregate outputs.

in general the set E* of potentially efficient aggregate outputs is larger

than the set E of certainly efficient aggregate outputs. Equivalently the set

of K.H.S. maximal elements on F contains the set of > maximal elements of F.

For instance, in example 1 above, E = {(2,1) } while E* = {(X,Y) 1X+Y = 3 and

Y 12. In example 4, E is empty, while E = F = {(2,0),(1,1)Y.

Although, as we see from remark 3, the set of K.V.S. maximal elements is

never empty for "wall-behaved" preferences and compact F, this set is in general

too large to serve the purpose of decentraLizing allocation from distribution,

since the distribution branch can not be assured that every outcome obtained from

distributing a K.E.S. maximal outcome will be Pareto optimal.
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C. Establishing Claim N - Necessity

A miimal requirement for the allocation branch to .be able to choose

efficient aggregate output independently of income distribution, is tbat the

set E of certainly efficient aggregate outputs must be non-empty. As remarked

in the previous section, E is -equal -to the set 0 marimal elements on F.

Suppose that the set of ( maximal elements of F is non-empty for all closed

bounded sets F. Then, in particular, (D must have at least one maximal element

on all finite sets R. But this is possible if .and only if a has no cycles.

Therefore a necessary condition for independence of allocation from distribu-

tion on all closed bounded feasible -sets F is that the relation()has no cycles.

Theorem 4 states conditions under which the absence of cycles in () implies that

utility functions take the form A(Y)X. + B (Y).. This establishes our claim N.2 i

Since we regard the proof of theorem 4 to be novel and interesting we include

it in the text rather than in the appendix..

Theorem 4

Let preferences of each consumer be representable by a continuous utility

function UT(X.,Y) that is monotone increasing in .. Let there be some YO such

that U.(X.,Y) > U (X.,Y°) for all Y > 0 and assume that for all I !, and Y'i i = i i i

there exists X! such that U.-(XI,Y 1 ) > U.(X.,Y) . If the binary relation > has no
S1 1 1 2.

cycles, then for each i, U.(Xi,Y) is a monotone transformation of a utility func-

tion of the form: A(Y)X. + B.(Y) .

proof of Theorem .4

From our as sumpvtions it f ollows that f or every (X,. ,) , ther e exists a unique

X~ such that U.(X',Y 0) = U (X.,Y) . Therefore we can def ine U.*(K, ,Y) so that

U,(U.*(X.,Y) ,Y ) = Ui(Xi,Y) represents 1's preferences. Furthermore, we see

from the definition that U.*(X.,Y 0 ) =X. for all X..
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The assumption that Qhas no cycles implies that if EX. = EX' = X, then
i i

EU *(X.Y) =tJ.*(X.',Y). For suppose not. Then without loss of generality,
Si i' ii

6
let ZU *(X,Y) - EU*(X ',Y) = 6 > 0. Let Z. = U.*(X ,Y) --- and let

i i j iii1 3 I 2n

Z ' = U *(X ',Y) + Then ZZ. = Z'E Z. Now U *(Z Y°) = Z < U.*(XY
i i i ) 2n i i i i i iY)

for all i and U *(Z ',Y°) = Z ' > U *(X ,Y) for all i. Therefore (X,Y) 0 (Z,Y°)

and (Z,Y°) > (X,Y) . But this contradicts the assumption that ( has no cycles.

From the result of the previous paragraph it follows that 7U.*(X.,Y) =

U(Xi,Y) for some function U. An equation of this functional form is known as
i

Pexider's functional equation. It is well known (see Aczel (1966)) that Pexider's

functional equation implies that U.*(X.,Y) = A(Y)X. + B (Y) for all i. Since
. 2. 1 i

Ui*(X.,Y) represents i's preferences, Theorem 4 is established.

Q.E.D.

SECTION 2 Applications

If preferences are representable by utility functions of our special form,

then several of the standard problems in the theory of public finance and welfare

economics have interesting special solutions.

A. Cardinal U4ili:s and Social Welfare Functions

Classical utilitarians (Edgeworth (1881)) proposed that the goal of society

should be to maximize the sum of human happiness. Since Pareto, it has been well-

known that to maximize the sum of utility functions representing individual pre-

ference is not a well-defined prescription, since such functi::E are unique only

up to monotone transformations. Bergson (1938) and Samuelson (1947) have suggested

that ethical value systems which respect the Pareto ordering can generally be

represented by a social welfare function which depends (not necessarily in a

linear way) on the level of "utili~y" of each consumer according to an arbitrary,

but prespecified, utility representation of each consumer's preferences.

Where utility functions are of the form: U,(X.,Y) =A(Y)X, + B.(Y) , con-
.i2i i.

sider the function W(X 1 ,...,X ,Y) = U.(X.,Y) = A(Y) IX. + 2.(Y).
mfi ii i i
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Lf the technical conditions of Theorem 3 are satisfied, then finding an interior

Pareto optimum is equivalent to finding an allocation (X ,..,X,Y) that maxi-

izes W() subject to the feasibility constraint, (Xi,Y) cF. The function,

W('), is therefore very useful as a guide to solving for efficient aggregate

outputs. On the other hand, it provides absolutely no guidance about distribution

of private goods. In fact all redistributions of the same amount of private

goods yield the same value of W. This is as it should be since we sought condi-

tions under which efficient levels of aggregate output could be chosen independently

of income distribution.

It would be misleading to think of W(') as a "social welfare function" in

the sense employed by Bergson and Samuelson. Notice that W(') ascribes a higher

"score" to any Pareto optimal allocation, no matter how asymmetrically private

goods are distributed, than it does to any less efficient but much more symmetric

distribution. Clearly then such a function could not represent the distributional

preferences of a person with continuous preferences, who although he wishes all

individuals to be happier, has some taste for equality.

In fact, the function W(.) defined above is not the only function that will

always pick a Pareto optimum when maximized on the feasible set. Consider the

function W(X ... X ,Y) = W(X ,...,XY) - z(X. ) where X = - 1X.. Clearly
i'm 1 m ) hi n Cle

W* gives a higher value to some non-optimal equalitarian allocations than it does

to some asymetric Pareto optimal allocations. On the other hand, it is easily

seen that maximizing W* on the feasible set will always yield a Pareto optimal

allocation. In fact this procedure will yield an allocation that maximizes W on

the feasible set and has the additional property that X = X2 = *. =X

Of course W* is not the only "social welfare function" that reflects concern

for the distribution of private income. An infinity of other functions could

be constructed, each of which recoended a Pareto optimum with a different dis-

tribution of private goods and excluded all other distributions. It should be
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clear, from this discussion, that the function W(-) does not typically represent

a full schedule of belief about the ethics of distribution. In fact the state-

ment "Maximize W on the feasible set" has no more content than we built into it.

Under appropriate conditions this condition is equivalent to "Find aggregate

output levels that can be distributed to yield interior Pareto optima". There

is no implicit recommendation about distribution.

B. Lindahl Equilibrium

A Lindahl equilibrium occurs when individual "tax prices" are adjusted

in such a way that, given their tax prices, consumers agree unanimously on the

amount of public goods to be provided. Lindahl equilibrium is known to be Pareto

optimal and to belong to the "core" when public goods are desirable. (Foley

(1970)). In case utility functions are of the special form

(1) A(Y)X. +B.(Y)
1 .

Lindahl equilibrium has a very special structure. As it turns out, in this case

Lindahl tax schedules will be aff ine in wealth. This means that such taxes could

be collected by means of a proportional wealh tax (at the same rate for every-

one) augmenred by a "head tax" that may be positive or negative for an individual

depending on the private functions, Bi(Y).

We conduct this discussion with a simplified formal model which could be

extended in a straightforward way to more genera. environments. Let there be

one private good and one public good. Each i has an initial endowment W of

private good. Public goods can be made from private goods at constant unit

cost c. The set of f easible allocations , then, is

A Lindahl equilibrium consists of tax shares t , f or each i where Et. = 1 and a

feasible allocation (Xi,...,Xm'Y such that for all i, (X ,Y) maximizes UI (X.,Y)
i i
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subject to the budget constraint X. + t.cY = W1. In Lindahl equilibrium,
2 3. i

therefore, each consumer's marginal rate of substitution between public and

private goods equals his tax price tic.

If utility functions are of the form (1), then marginal rates of substitu-

A'()f (Y) B-

tion take the form a(Y) X + Ti(Y) where a(Y) = and Y (Y) =

Therefore, in Lindahl equilibrium,

(2) tic = a(Y)X. + Y.(Y) = a(Y)[Wi - t.cY] + y.(Y) .

Rearranging equation (2), we have:

(3) tic= a(Y) W. + Yi__ _

1 + a(Y)Y 1 + -a( Y

From (2) we see that, as promised, each consumer's tax share is an affine

function of his wealth. Summing equation (2) over the its, recalling that

t. = 1, and rearranging terms, we find that:

(4) c = a(Y) [W - cY] + :y )

which is just the Samuelson first order condit ion f or efficiency applied to this

case. Thus if the government knows the utility functions, it could compute

Lindahl equilibrium simply by solving equation (4) for Y and then assessing taxes

t cY where tic is found from equation (3). These taxes will just pay for Y and

all consumers, given their tax rates, will agree that Y is the "right" amount of

public goods.

C. Majority Voting Equilibrium

A serious disadvantage of the Lindahl allocation method is that it requires

the government to know details of individual preferences which are private

information and which individuals may have an incentive to conceal. A less

stringent requirement would be that the government knows A(Y) and has a good

estimate of II(Y) = B.(Y). Then the government would know an "iaverage utility
nli2i
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function"

(1) A(Y) X +B(y)

although it would not know detailed individual preferences. The government would

know enough to find an efficient amount of public goods since it needs only to

choose Y to maximize:

(2) A(Y) X + B.(Y) = A(Y) X, + nB(Y)
ii ij2

subject to the feasibility constraint.

If taxes are assessed according to an "average" Lindahl schedule, we have:

(3) t c = W. +

1 + a(Y)Y . + a(Y)Y

- A'(Y)
where a(Y) = _AIM

A(Y)

and y (Y) =.()= -= EY.(Y).

A(Y) nji 2

Suppose tax shares are set by the schedule (3) and consumers are allowed to vote

on the amount of public goods. If the amount of public goods were Y, then the

utility of consumer i after paying his taxes would be

(4) U.(Y) = A(Y)[W. - t.cY] + B (Y).

If consumer i has convex preferences, then the function U.(Y) will be cuasi-concave

in Y and hence single-peaked. Consumer i's "peak" is Y* where Y* maximizes U.(Y). Let

Y* be the median of the Y 's. Since preferences are single peaked, Y* would be the

only stable outcome of a pairwise majority voting process. By straightforward

calculation we see that:

(5) U'.(Y) -. C as a(Y)[W. - t .cY) + y'.(Y) -- t.c.
i. < i. 1. i < 2

Substituting from (3) into (5) and rearranging terms we have:
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(6) U'Y- as y.() - y(Y).

Therefore Y* -Yas Y (Y) y(Y)
i<. i <

Suppose, now, that the functions y,(-) are symmetrically distributed over the

population. Then the mean, y(Y) , of the terms, y (Y), will equal their median. This

fact, together, with (6) implies that just as many people will want more as willwant

less public good. Therefore Y = Y*, the median of the favorite amounts. It

follows that if taxes are assessed according to (3) and if preferences are

symmetrically distributed in this sense, then maj ority vote will select the

Pareto efficient quantity, Y. This generalizes a result of Bowen (1943) who

showed that if preferences are symmetrically distributed and quasi-linear and

if taxes are the same for everyone, then the majority rule outcome is Pareto

optimal.

D. Demand-Revealing Mechanisms 5

Clarke (1971) and Groves and Loeb (1975) have demonstrated that if utility

is quasi-linear, then there exists an "incentive compatible" mechanism that de-

term2ines the supply of public goods and individual tax rates. This mechanism

uses information supplied by consumers about their own preferences and has the

property that honest revelation of preferences is a dominant strategy for each

consumer. The amount of public goods selected will satisfy the Samuelson

marginal rate of substitution conditions. Groves and Ledyard (1976) suggest

that in more realistic cases where the demand for public goods is income respon-

sive, it may be necessary to settle for a preference revelation mechanism in which

honest revelation is a Nash equilibrium but not a dominant strategy. They concede

however , t hat Nas h equ ilibr ium in this cont ext is a les s p er suas iv e game

theoretic "solution" than dominant strategy. We show here that the Clarke,

Groves-Loeb results generalize to the case where utility functions are of the

f orm:.
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(1) U (XY) = A(Y)X. + B.(Y)
i i 1 2.

where U is strictly quasi-concave. 6

The procedure in its simplest form assumes that the function A(Y) is

public information. The mechanism induces consumers to honestly reveal the

"private information" B (Y), in their utility functions. Let the technology be

as follows . Each consumer i has an initial endowment of private goods, W .

Public good is produced from private goods at a total cost C(Y) where C'(Y) > 0

and C"(Y) > 0. The set of feasible allocations is then the convex set:

{(X ,...,X'Y) IX + C(Y) = W}. All consumers are asked to reveal their func-
1 m ii

tions B (-). Each i then reports a function N.(-) (possibly different from
i 2

B.(-)). Let M = (M (-) ,...,M (-)) be the vector of functions reported.
2i n

The government chooses an amount of public goods Y(M) so as to maximize:

(2) A(Y)(1W. - C(Y)) +EM.(Y).
jJ j JJ

consumer i is assessed a tax bill equal to

.1.M. (°) + R. (M)

(3) T.(M) = w . - :w , + C(Y(M)) -
1 1. J A(T(V))

where R.(M) is a function that may depend on ths information sent by all con-

sumers other than i but must be entirely independent of i's own message. Since

for each i,

(4) X.(M) =Wi -T.(M),

it follows from (1) , (3) and (4) that if the vector of functions reported is M,

then i t s utility is

(5) A(Y(M))[(W. - C(Y(H))] + ,2,. (Y(M)) + B.(Y(M)) + R.(M).

S ince R.(M) is independent of M - we notice from (5) that the only way in

which i Ts stated function MJ() affects his final utility is through the dependence

of (5) on Y(M). Therefore, given any choose of messages by the other players,
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the best choice of M for i is the one that .leads the government to choose

Y(M) to maximize

(6) A(Y)fEW. - C(Y)] + E (Y) + B (Y).
j J gi j i

But recall that the government seeks to maximize (3). Therefore if I reports

his true function, so that Mi (Y) iB (Y), then the government in maximizing

(3) will also maximize (6). It follows that regardless of the message sent

by others, consumer i can do no better than to report the truth. Honest

revelation is therefore a dominant strategy.

Let (T 1,...,T n,Y) be an equilibrium for this process. That is, Ymaximizes

(2) where Mi(-) = Bf(-) for all i and Ti = T:(B 1(") ,...,B(-)). If it happenred

that ET. = C(Y), then the allocation (X1 ,...,X ,Y) where X = W -T. would be
i1

Pareto optimal. This is a consequence of Theorem 3 and the fact that Y maximizes

A(Y) [W. - C(Y)] + IB.(Y) .

Sere, as in the case of quasi-linear utility, it is in general impossible

to find functions, R.), that guarantee that IT = C(Y) . For the quasi-Linear

case, Clarke and Groves-Loeb were able to find functions R.(M) that guarantee

feasibility in the sense that tax revenues at least cover costs.8 We can extend

their idea to our broader class of preferences. Suppose that for each i,.the

government sets a "target share", ® 0 where 10. = 1. The government tries to

fix R.(M) so that T.(M) > ®,C(Y(M)) for each i. From (3) we see that

(7) A(Y(M))[T.(M) - £.C(Y(M))) = A(Y(M))[(1-6.)C(Y(M)) - I W.

- I M.(Y(M)) - R.(M).

From equation (7) and the assumption that A(Y(M)) > 0, we see that the govern-

ment could guarantee that T.(M) > O.C(Y(M)) if it could set:

(8) R.(M) < A(Y(M))[(1-e.)C(Y(M)) - I W.] - I M.(Y(N)).

To this end, the government may choose
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(9) R.(M) = Min(A(Y)[(l-G.)C(Y) - ZW.] - I M,(Y).
Y j#i J j #i J

It can be seen that R.(M) as defined in (9) does not depend in any way on i's
.2.

stated function MN(-). Furthermore, it is clear that R (M) defined in this

way satisfies the inequality (8). From (7) it follows that T.(M) > 8.C(Y(M)).

Since ZG = 1, it must be that LT.(M) > C(Y(M)).
i i .1 =

The fact that a simple extension of the Clarke tax performs equally satis-

factorily on a much larger class of preferences than the quasi-linear reduces

the sting of one of the list of criticisms of this mechanism found in Groves

and Ledyard (1976). Whether in this environment, the Clarke tax is likely to

perform as well as alternative mechanisms in which honest preference revelation

is a Nash equilibrium rather than a dominant strategy equilibrium remains an

open question.



A- L

Append ix

Proof of Theoremi 1

(a) 'To verify sufficiency is straightforward. 'To prove necessity, let

~Ij(,Y) be the vector of marginal rates of substitution between public and

VA('Y) Xi + VB .(Y)
private goods. If preferences are homothetic then 7 (X.,Y) = A(Y)

must be homogeneous of degree zero in X, and Y. Therefore Ak) and

7 A( kY) kX.?A( k, Y) kXi

A( kY)1 must both be constant as functions of k~. If Ak is

independent of k, it must be that A(Y) is homogeneous of som~e degree c. If

VB1(kY)
Ay)is constant, it mst be that either VB CT) = 0 for all Y or B (Y) isi iy

homogeneous of degree a + 1.

(b) If preferences are additively separable between pulic and private goods,

then there exist functions F',VI(') and V2 (&) f cr consumer i such that

A(Y)X. + B.(Y) = ?(VzCX) + V.%(Y>). Therefore the vector of marginal rates of

substitution -of public for private goods can be written T(X. 'Y) = ti h ence
L i

the effect of a change it Xi is to change all the components of the vector

7A(Y)X. -+ VB .JY)

I(., Y) proportionately. But we also have fl(X.,Y) = AY . If

changing Xi changes all -comnponent~s of 1I(X. ,Y) proportionately it must be that

the gradient vectors 7B .(Y) and ?A(Y) are proportionate. Therefore for some

constants, k. and c , ,3BCY) = k,'A(Y) + c ,. gnoring the inessential constant
1 1 -1

c: we have V,(.,Y) = AY) (Xi. -+k,). Conversely, A(7)(1 . +~ k.) = (f(H)V{)
. 11 .. 1 . 1

where V. (M-) = l(. + k.) V(x) =nA)and 7V_ +V) =ey
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lnA(Y) (X. + S (Y)) = lnA(Y) + ln(X + i (Y)) is a well defined monotone in-

creasing function of A(Y)(X + S (Y)). Therefore A(Y)(Xi + S (Y)) will be

quasi-concave if InA(Y) + ln(X + i (Y)) is quasi-concave. If s (Y) is a

concave function and A(Y) is a concave function, then the functions A(Y)

and X. + S (Y) are concave functions. Since an increasing concave function
:i i

of a concave function is concave, lnA(Y) and ln(X. + S (Y)) are both concave

functions. Since the sum of concave functions is concave, lnA(Y) + ln(X + S (Y))

is concave and therefore quasi-concave. It follows that A(Y) (X + 8(Y)) =

A(Y) X + B1 (Y) is quasi-concave.

Sufficient condition (ii)

This condition is most easily demonstrated by examining the bordered

Hessian of U.(X ,Y) . The principle minors of the bordered Hessian are -A(Y) 2
ii

2
and A(Y)A' (Y) (A' (Y)X. + B'(Y)) - [A" (Y)X. + B ."(Y) ]A(Y) . A sufficient condition

2. 1 1 1

for quasi-concavity of U(X.,Y) is that the first principle minor be negative
2.2

and the second be positive for all X. and Y. If A(Y) > 0, then -A(Y) < 0.

If A(C) > 0, A'(Y) > 0, B!(Y) > 0, A"(y) < 0 and B'.(Y) < 0 for all Y > 0, then

the second principle minor is positive for all ,> 0 and Y > 0. :his establishes

quasi-concavity.

Sufficient condition (iii)

A standard result in the theory of quasi-concave functions is that a

function is quas i-concave if its Hessian matrix is negative definite on the

null space of its gradient. T the case of T(X,Y) = A(Y)X. + B .(Y), we have

VU =(A(Y) ,(X . + . () ) VA(Y) + A(Y)'75.(Y) ) and
1 1.

A(=Y0 (xA( )

VA(Y)(X.+ 5(Y))V~A(Y)+ 2VA(Y)?B.(Y)+ A(Y)V~5,(Y)
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The condition for quasi-concavity states that for all y c R and c e Rn, such

that (Y,CT)VU = 0, and (y,c) o, (y,cT)V2 U(Y).< 0. But (y,c T )VU 0 if and
\C

only if Y - - - [(X + $.(Y))VA(Y)T + A(Y) V (Y)7]c. :Substituting this
Y ~A(Y) i i

expression for y into the quadratic expression, we see that U will be quasi-

concave if cT{(X. + a.(Y))(
2 A(Y) - 2 VA(Y) VA(Y)T) + A(Y)2(Y)))c < 0 for

i i A(Y)

all c E Rn, c # 0 and for all (X.,Y) such that X > 0, Y > 0. This expression
i -

will be negative for all such Xi, Y and c if the two quadratic forms

72 A(Y) - A) VA(Y)A(Y) T and S (Y) [V 2A(Y) -AY VA(Y)VA(Y) T ] + A(Y)?Vs(Y)i YA(Y) )
are negative semi-def inite while at least one of them is negative -def inite.

Necessary condition (i) - If A(Y)X + B (Y) is a quasi-concave function, then
i I~

it must be quasi-concave in Y holding X. constant at zero. This implies that

B (Y) is quasi-concave. Furthermore A(Y)X. + B.(Y) .must be quasi-concave in

Y holding X. constant for arbitrarily large values of X.. Therefore A(Y) must

also be quasi-concave.

Necessary condition (ii) - A necessary condition for a function to be quasi-

concave is that its Hessian be negative semi-definite on the null space of its

gradient. Reasoning as in the proof of sufficient condition (iii) we show that

necessary condition (ii) is implied.

Proof of Corollary 1

If individual utility functions satisfy sufficient condition (i) or (ii)

then the utility function A(Y)X + B(Y) also satisfies condition (i) or (ii)

respectively where we define B(Y) = ZB.(Y). This is true since the sum of

conava fuc:tions is concave. But if A(Y)X + B(Y) satisfies either of these

conditions it must, according to theorem 2, be concave.
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Proof of Theoremn 3

Suppose that (X,Y) maximizes A(Y) X +4'B .(Y) on F and let (X ,..,X ,Y)

be an outcome such that x .If 00p,)is Pareto superior to

(:L ,X ,YT) then A(Y) X, 4 B .(Y) > A(Y) X + B -(Y) for all i with strict

inequality for scoe i. Theref ore A(Y) -11 + ZB3 (Y) > ;(IY)X 4+ 1B (Y) . Since

(X,Y) maximizes A(Y)X +- B (Y) on F, it must be that (544) r . Therefore

(X, ... ,X,J) is not feasible. Lt folblows that (X,., ,X Y) is Pareto optimal.

This proves the first statement of the theorem.

Suppose that (XI,. ,.,X ,Y) is an interior Pareto -optimum and that

A) + iY >AY)ji + B(Y for some (4Y,) s F. Define X = BX and fox

o < A < 1, deofine X(X) _= XX 4 (1~- \X and Z(X)_ AY + (1-T). Since -r is a
convex set, (X (2),Y,(X)) z =F for aLL AX. 10,11. iSince Ak Y) X +4tB (Y) is assumed

to be quasi-c-oncave, A(Y (A)) X(1) 4- WB(Y(A)) > A(Y) X +-B2(Y) for 0 < A < 1.

Let 6(A) = AiY (a)) X(X) + B .(Y(X)) t- A(Y) X4- a2.(Y)1.. Then 6(X) > 0 for

o < A < 1. Define X.+(X)= 1. a - . . Since X. > 0,

o (A) > 0, 3:(") is a continuous f unc tion,, and A() > 0 f or a I Y. i t f ollows that

for some X* <C but suf f isiently cdose to one, Xi.(A*) > 0 for all i. ButL
AY X)). (a*} 4 B (Y(1*)) = A(Y) K 4 B(Y)>+2.A)> :.Y)x. + B .(Y) for

o < A < L. Therefore (I (a*)...KX(A*) ,YC(X*)) is Pareto superior to (X,..,,
2. 1 n 1,

X,Y).Furthermore, Z1, (A*) = X(X*) , Since (X( A*) ,Y(X*)) a F, the outcome

((A* ,.. , ,: (A*) ,Y(X*)) is feasible as well as Pareto superior to(X,.,XV.

This contradicts the assumption that ,... XY is Pareto optimal. Therefore

ifX Y i a iteio Pr-tcopimxm ter-cn otbean(XY)s1

Q .E.D.



FOOTNOTES

1. Examples of such studies are Borcherding and Deacon (1972) and Bergstrom
and Goodman (1973) . Other similar studies are reviewed by Inman (1979) .

2. This duality is discussed explicitly in Bergstrom and Cornes (1981).

3. Throughout this paper we confine our attention to this case. Possibly the
private good .is an aggregate. Aggregation would be possible either if
relative prices of private goods were constant throughout the analysis or if
homothetic separability permitted aggregation under varying prices.

4. The natural extension of this relation to the case where there is more than
one private good would require that (X',... ,X',Y) entail a Pareto efficient
distribution of the total vector ZX' o privatne goods.

5. After this paper was written, we discovered a recent paper by Joseph
Sicilian which reports results very similar to the results of this section.

6. Conn (1980) has shown a different way in which the Clarke-Groves-Loeb results
can be extended beyond the quasi-linear case.

7. This does not seem unreasonable since if A(Y) is common to everyone's
utility function, aiyone could discover A(Y) by introspection. If one
wished, however, it would not be difficult to devise a mechanism in which
honest revelation of A(Y) is a Nash equilibrium and honest revelation of
B,(Y) is dominant strategy.

8. For expository simplicity, we extend the Clarke tax. The Groves-Loeb tax
includes the Clarke tax as a special case. Loeb .(1976). The generalization
of the Groves-Loeb tax is a straightforward extension of the argument used
here.
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