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£ all the seas were one sea,
What a great sea that would be!

If all the trees were one tree,
What a great tree that would be!
And if all the axes were one axe,
What a great axe that would be!
And if all the men were one man,
What a gneat man that would be!

And if the gieat man took the greal axe,
And cut down the great tree,

And let it f21l into the greaf sea,
What a splish-splash that would be!

Normally aggregate demand for private goods can not be treated as if it
were the demand of a single gigantic rational consumer. This is possible only
if "income distribution doesn't affect aggregate demand”. Gorman (1953) dis-
covered restrictions on the form of indirect utility functions that are
necessary and sufficient to allow such aggregation. In early partial equili-
brium treatments of public goods theory by Lindahl (1910) and Bowen (1943) the
efficient amount of public goods appears to be determined independently of
income distribution. Samuelson (1955), (1966) observes that generzlly an
efficient amount of public goods cannot be determinec independently of the
distribution of private goods. He points out that such separation is possible
in the special case where preferences of all consumers are quasi-Linear, that
is, representable by utility functions that are linear in private goods. Mus-
grave (1966) responds that although independence of allocation from distribu-
tion is not legitimate in a strict logical sense, sepzration of allocational
decisions from distributional decisicns is a useful simplification of reality

that may in practical situations lead to better decision making than attempts

to simultaneously determine allocation and distribution.
If quasi-linear preferences were necessary for separation of allccation
from distribution, then Musgrave's case for separation, even as an approxima-

tion, would not be good. Quasi-linearity has- strong and rather easily re-
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futable implications. For example, it implies a zero income elasticity of
demand for public goods. Several recent studies of the demand for public
goods strongly reject the hypothesis that the income elasticity of demand
for local public goods is close to zero.1 As it turms out, however, separa-
tion of allocation from distribution is possible for a much broader class of
preferences. This class is essentially dual to the class of preferences
found by Gorman to admit comstruction of a ''representative consumer” in the
theory of demand for private goods.2

In the next section we develop a rigorous theory of when allocation can
be separated from income distribution, or equivalently of when there is a repre-
sentative consumer of public goods. It remains an open question whether
empirical data can be found that refute the hypothesis that preferences for
public goods allow such aggregation., This being the case, it also remains to
be decided whether the assumption that preferences satisfy this hypothesis
vields misleading guidance for public pelicy.

In the final section of this paper we show that the assumption that
preferences belong to the class that allows a representative consumer has
interesting implicationms for the theory of social welfare functioms, for Lindahl's
allocation theory, and for Bowen's majority voting theory., Ve alsoc demonstrate
that demand revealing mechanisms of the kind introduced by Clarke (1971) and

roves and Loeb (1975) for the case of quasi-linear utility can be extended

in a simple way to this much broader class cf preferences,

SECTION 1

A. Two heuristic clzims and their implications

sas - X : .3 .
Let there be n public goods and one crivate good. let Y denote the vector

of public goods supplied and let Ki denote the consumption of private goods by

consumer i, Subject to certain qualifications, we establish the fcllowing claims,
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Claim S - If all consumers have utility functions of the functional form
A(TX 5 + B i('Y), then the ‘Pareto efficient quantity of pudblic goods is in-

dependent of .the .distribution of -private goods,

Claim N ~ If the Pareto efficient .quantity of -public goods Ais independent
of the distribution of private goods, then all -consumers have -utildity func-

tions of the form A(Y)Xi + Bi(Y)_.

In these claims there is some good news and some bad news. 7The good
news is Claim S. The class of preferences that allow separation of .allocation
from distribution 1s much larger than the quasi-linear family. The special
case where A(Y) = 1 is the quasi-linear case. If A(Y) = Y% for ¢ > O and
B i(Y) = 0, preferences are identical and Cobb-Douglas. But A(Y) and Bi(Y)
could be chosen so that preferences are neither homothetic, separable, or
identical., The bad news is found in Claim N. This result states restrictiomns
on the class of preferences which admit separation between allocation .and
distribution. Some of the implications of me:nbersh..ip in this class are stated

in Theorem 1.

Theorem 1
Let preferences of consumer i be represented by a differentiable utility
function A(Y)X:L + Bi(Y) where A(Y) > 0 for 211 Y > O.
(a) Preferences of consumer i are homothetic if and only A(Y) is
homogeneous of some degree a and B i(‘Z) is either constant
or homogeneous of degree o + 1., 1II there is only one public

good, A(Y)X, + Bi(Y) =%, +k YCH'I for some k,.

bl <4

(b) Preferences of consumer i zre additivelvy separable detween public
and private goods if and only if they are representable by 2

utility function of the form A(Y)(X,+k,) for some k,.
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(¢) Preferences of each consumer i are additively separable and
homothetic if and only if all consumers have identical pre-
ferences representable by utility functions of the form A(Y)Xi
where A(Y) is a homogeneous function. If there is only one public
good, this implies that utility functions all have the Cobb-Douglas

form YaXi for some a > 0.

The assumptions that A(Y\Xi + Bi(Y) and A(Y)Xi + ZBi(Y) are quasi-concave
i
will play an important part in the development of our theory. It is therefore
useful to identify some necessary and some sufficient conditioms for quasi-

concavity of these functions.

Theorem 2
‘ Bi(Y>
i i = — 3 = Y .
Define the function Bi(Y) GO Then A(Y)Xi + Bi(Y) A( )(Xi+-ei(Y))

The following conditions are each sufficient for A(Y)Xi + Bi(Y) to be quasi-
concave,
GO A(Y) > 0 and Bi(Y) > 0 for all Y > 0 and the functions
A(Y) and £,(Y) are concave.
(1) There is only one public good, A(Y) > O and Bi(Y) >0
for all Y > 0 and the functions A(Y) and Bi(Y) have non-

negative first derivatives and negative second derivatives.

2
A(
+ A

(iii) The two quadratic forms, VZA(Y) - VA(Y) TACY) T and

’

| A

Bi(Y>[v2A(Y> - T

)
”
VA(Y)VACY) (Y)V“B{(Y) are both

m
i
1
H

negative semi-definite and one of them is negative de-

finite for all Y > O.
The fcllowing conditions are each necessaryforAA(Y)Xi-%Bi(Y) toc be quasi-concave.
(i)  A(Y) and Bi(Y) are both quasi-concave functiomns.

(ii) The quadratic forms in sufficient condition (iid)

are both negative semi~definite for all Y > O,
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The condition on quadratic forms is seen to be (essentially) a necessary
and sufficient comdition for quasi-concavity. Bowever, ip gemeral this con-
dition is rather difficult to verify or to intexpret. Sufficient conditions
(1) and (1) are easier to interpret but are mot necessary conditions. Ia
our applications, however, they will serve adegquately.

An easy comsequence of theorem 2 i{s the following.

Corollary 1 - If all individual utility functions satisfy necessary condition

(1) or (ii), of theorem 2 them the function A(Y)X + IB i(‘f‘) is quasi-concave.
i

B. Esta.blishing Claim S - Sufficiency

Define an outcome to be a vectm.; "(il,.f..,xm,‘z) where X:L is the amount
of private good for i and Y is the (n~dimensionral) vector of public goods.

Let the set of feasible outcomes be {(z.l,...,,xm,z),{C'szx ,I) ¢ FI for some set
1

Fe R

. An interior outcome is an outcome such t:bat.xi >0 for ail i. 4An

interior Pareto optimum is a Pareto optimal interior outcome.

If all ccnsume:s. Eﬁ;ﬁg:zzg;fuﬁcti&ns of the form A.(Y)Xi + Bi('f), a
possible mandate for the allocation branch is: "Choose (X,Y) to maximize
A(DX + ?L(Y) on the setF'". We show that an allocation branch that follows
this instruction will choose an aggregate output level that yields a Pareto

optimal outcome no matter how the private good is divided. Furthermore, given

comnvexity all of the "interesting” Pareto optima are found in this way.

Theoremn 3 e — -- S
Let all consumers have utility functioms of the form A(YIX, + Bi(Y). If

(Z,Y) maximizes A(T)X + IB_(Y) on F, then every outcome (}.:l,...,im,?) such that
i -
, = ¥ is Pareto cptimal. If A(Y)X + Z.Bi(‘.’) is quasi-concave, A(Y) > O, and
i

-
-

g s !

is a convex set, them <§1””"§m’§) is an interior Pareto optimum only if

(X

,Y) maximizes A(Y)X + IB,(Y) on F.
< i i i
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It is instructive to consider the application of Theorem 3 to a special

case.

Example 1. There are two consumers with identical quasi-linear
utility functions Xi + /Y. The set of feasible aggregate outputs

is F = {(X,Y) > 0|X + ¥ = 3],

In this example A(Y)X + §Bi(Y) {s maximized on F at X = 2, ¥ = 1. According to
Theorem 3, all outcomes that have one unit of public good and some distribution
of two units of private good between the consumers are Pareto optimal., Since
the convexity conditions of theorem 3 apply, it must also be that all interior
Pareto optima have exactly one unit of public good and two units of private
goods. There are also some non-interior Pareto optima for which Y # 1. 1Im

i

fact, an outcome is Pareto optimal if % Y < 1 and one of the consumers gets

no private goods while the other gets 3 - Y. The utility possibility frontier

for example 1 is shown in figure 1. Points on the line between (1,3) and (3,1)

correspond to outcomes where Y = 1, Points on the curved lines from (3,1) to

(3 2,

o
~le

1 . . .
) and from (1,3) to (-5, 3 =) represent ncn-intericr Pareto optima,

I

3

theorem 3, al:though we assumed preferences to be monotone increasing in
private goods, no assumption was made about monotonicity in public

goods. This is fortunate, since to model externalities in a natural way we
need some public goods that are desirazble to some consumers and undesirable, at
least in certain quantities, to others. Theorem 2 and its corollary specify

an interesting class of functions for which our assumption that utility is
quasi-concave applies. Nevertheless, the assumption of convex preferences

over public goods is not entirelv appesling. Ia fact, as Starret:t (1972)
pointed out, in the case of public "bads" convexity is very implausible, It

is therefore interesting to look closely at the use we have made of the con-

vexity assumptions and to find the best results available without convexity,
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We notice that the first statement of Theorem 3 is true independent of con-
vexity. Example 2 helps us to see why convexity is needed for the second
result of theorem 3.
Example 2. Preferences are as in example 1. There are only
two possible outputs of public good, ¥ = 1/4 and Y = 1. The

set F is therefore {(2 -2', -3:-) , (2,11},

Possible distributions of utility are represented by the two diagonal lines in
Figure 2. The upper line represemts utility distributioms possible 1f (X,Y) =
(2,1). The lower line represents utility distributions possible if (X,Y) =
(2 —3-, %). Clearly A(Y)X + ?1(’{) is greater at (2,1) than at (2 %,%’). But
there are some interior Pareto optima for which aggregate output levels are
(2 %,%). One such outcome is (Xl X, Y) = (2 2 é’, i’) This outcome corres-

ponds to the utility distributiom (3 -8-,3-) marked P in figure 2. From the

fig.ze it is apparent that (2 ¢ 8 , ;‘ s A) is an :Ln:erior Pareto optimum. There

Py

are other outcomes obtained by distributions from the aggregate outputs (2 = 4 , 1‘)

N 3
8
utility distribution marked Q in figure 1. This distribution is clearly dominated

which are not Pareto optimal. An example is (l-g, 1l ,—Z) . This yields the
by feasible utility distributions such as R in the figure. We see from this
example that without convexity, it is not true that every outcome obtained by
redistribution from an interior Pareto optimum is Pareto optimal.

Define an aggregate output (X,Y) to be certainlv efficient if every outcome

(X.., cee X ,-) such that ‘.'ii = X is Pareto optimal, Let E < F be the set of

all certainly efficient aggregate outputs. In gemeral, the set £ may be empty.
However if utility is of the form A(Y) Xi + Bi(’f) for all consumers i, it follows
Zrom Theorem 1 that even without comvexity, £ will be non-empty given some weak
technical assumptions. The following is a direct consequence of Theorem 2 and
the Weierstrass theorem on the existence of maximal elements for continuous

fynctions on compact sets.

Corollarv 2 - 1f preferences of all consumers zre represented by continuous
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utility functions of the form A(Y)Xi + Bi(Y) and if F is closed and bounded,
then the set £ of certainly efficient aggregate outputs is non-empty.
According to theorem 3, every aggregate output (X,Y) that maximizes
A(DX + EBi(Y) on F belongs to the set E of certainly efficient aggregate
outputs. In general, however, E is larger than the set of maximizers of

A(M)X + ZBi(Y) on F. To see this, consider the following example.
i

Example 3. There are two consumers. Consumer i has a utility
function of the form A(Y)Xi + Bi(Y) where A(Y) = 1 for all Y and

where 31(0) = B,(0) = 2, Bl(l) = 6 and 3,(1) = 0. Let F = {(1,1),(2,0)}.

The utility possibility frontier is described in figure 3. Utility dis-
tributions obtainable when Y = O are represented on the line AR. Utility
distributions obtainable when Y = 1 are represented on the line CD. All of
these distributions can be seen to be Pareto optimal. Therefore the set E
contains both of the points (1,1) and (2,0) from F. However if (X,Y) = (2,0),
then A(Y)X + EBL(Y) = 6 and if (X,Y) = (1,1), A(Y)X + %Bi(Y) = 7. Therefore
the set £ is larger than the set of maximizers of A(Y)X + ;B;(Y).

{2

It is of interest to find a binarv relation vwhose maximzl elements on F
constitute precisely the set £. As it turns out, characterizing this result
is also the key to our converse result, claim N, Let us define a binary rela-
tion @ over aggregate outputs so that (X,¥) ® (X',Y') if some outcome obtained
by distributing X is Pareto superior to some outcome obtained by distributing
X', More formally, (X,¥) ® (X',Y") if and only if there exist outcomes
(Xl,...,xm,Y) and (Xi,...,Xé,Y') such that Exi = X, ixi = X' and (Xl,...,Xm,Y)
is Pareto superior to (Xi,...,X;.Y').4 From the definitions, it is easy to

verify the following.

Remark 1 - For arbitrary preferences, the set E of certainly efficient aggregate

outcomes is equal to the set 0f O maximal elements of F.
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In general, the binary relation @ may have cycles and therefore may
not have a maximal element even on a finite set F. One such case is
illustrated in example 4.

Example 4. There are two consumers. Let Ul(Xl,Y) = Xl for all

Y and U,(%,,0) = X, and U,(X,,1) = 2%,. Let F = {(2,1),(3,01.

The functions Ul(') and U,(+) are not of the special form A(Y)Xi + Bi(Y).
Utility distributions possible when aggregate output is (3,0) zre represented
by the line AB in figure 4. Distributions possible from (2,1) are represented
by CD. From figure 4 and the definition of @ it is clear that (1,1) ® (2,0)
and also (2,0) > (1,1). Therefore@ has a ¢ycle (of lemgth 2). Clearly ®
has no maximal elements on F and (equivalently) the set I is empty.

Suppose preferences of all consumers are representable by utility func-
tions of the form A(Y)Xi + Bi(Y)' Then if (X,Y) > (X',Y') it must be that there
exist outcomes (Xl,...,Xm,Y) and (Xi,...,X;;Y') such that §Xi = X, gx; = X'
and A(Y)Xi + Bi(Y) 2 A(Y')Xi + Bi(Y’) for all i with strict inequality for some
i. Therefore if (X,Y) > (X',Y') it must be that A(T)X + §Bi(Y) > A(Y")X' +

;Bi(Y'). From this fact, the following is obvious.
i

Remark 2 - If preferences of all consumers are of the form A(Y)X + ;Bi(Y),
i

then the relation ® has no cycles,

A standard theorem (see Bergstrom (1975)) is that if z continuous binary
relation has no cycles, then it takes maximal elements on compact sets. This
fact, with remark 2 provides an alternative derivation of corollary 2.

It is interesting to compare the relation ® with the more faﬁiliar Kaldor-

"new

Hicks-Samuelson partial order which was central to discussions of the
welfare economics' (see Chipman and Moore (1978)). The K.H.S. relation is de-
fined over aggregate outputs as follows: (X,Y)K.R.S.(X',¥") if and only if

for everv outcome (X',...,X;;Y') such that ZX; = X' there exists some outcome
i
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(Xl,...,Xm,Y) such that %Xi = X and such that (Xl,...,Xn,Y) is Pareto
superior to (Xi,...,X&,Y').

From the definition of the K.H.S. relation and from the fact that a
continuous binary relation with no cycles takes minimal elements on compact

sets, it is easily shown that:

Remark 3 - If individual preferences are symmetric and transitive, then the
relation K.H.S. has no cycles. If individual preferences are also continuous

and F is compact, then the set of K.H.S. maximal elements of F is non-empty.

Define an aggregate output (X,Y) to be potentially efficient if there is

some Pareto optimal outcome (El,...,§$,f} such that gii = X. Let E* denote
the set of all potentially efficient aggregate outputs in F. TFrom the de-

finitions it is easy to verify the fellowing.

Remark 4 - The set of K.H.S. maximal elements of F is equal to the set E* of

potentially efficient aggregate outputs.

In general the set £E* of potentially efficient aggregate outputs is larger
than the set £ of certainly efficient aggregate outputs. Equivalently the set
of K.AH.S. maximal elements on F contains the set of > maximal elements of F.

For instance, in example 1 above, E = {(2,1)} while E* = {(X,¥)|X+Y = 3 and

-

WA

Y < 1}, 1In example 4, E is empty, while E* = F = {(2,0),(1,1):.

Although, as we see from remark 3, the set of K,%Z.S. maximal elements is
never empty for ''well-behaved" preferences and compact F, this set is in general
toc large to serve the purpose of decentrelizing allocation from distributionm,
since the distribution branch can not be assured that every outcome cbtained from

distributing a2 K.H.S. maximal outcome will be Pareto optimal,
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C. Establishing Claim N - Necessity

A minimal requirement for the allocation branch to be able to choose
efficient aggregate output iﬁdgpendenzly of income distribution, is that the
set £ of certainly efficient aggregate outputs must be non-empty. As remarked
in the previous section, £ is equal to the set .of 5 maximal elements on F.
Suppose that the set of & maximal elements of F is non-empty for all closed
bounded sets F. Then, in particular, ® must have at least one maximal element
on all finite sets F. But this is possible if and only if O has no cycles.
Therefore a necessary condition for independence of allocation from distribu-
tion on all closed bounded feasible sets F is that the relation® has no cycles.
Theorem 4 states conditions under which the aSsence of cycles in (© implies that
utility functions take the form ACY)Xi + Bi(Y)’ This establishes our claim N,
Since we regard the proof of theorem A to be novel and interesting we include

it in the text rather than in the appendix.

Theorem 4

Let preferences of each consumer be representable by & continuous utility

function U,(X,,¥) that is monotone increasing in Xi. Let there be some T° such
that U, (X,,¥) > U,(X,,Y°) for all Y > 0 and assume that for all L, ¥, and Y'

there exists Xi such that Ui(Xé,Y')

v

Ui(Xi,Y). If the binary relation > has no
cycles, then for each i, U4(X4,Y) is a monotone transformation of z utility func-

tion of the form: A(Y)X, + Bi(Y).

Proof of Theorem 4

From our assumptions it follows that for every (Xi;Y), there exists a unique
. - et o0 . s e
Xi such that Ui(hi’Y ) = Di(Xi,Y). Therefecre we can define U:*(Xi,Y) so that

o1 sl N -
u:(bi*(xi,Y),Y ) = bi(li,Y) represents 1's preferences. TFurthermore, we see
rs

from the definition that Ui*(X:,Yo) = X, for all .
-
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The assumption that (O has no cycles implies that if ZXi = ZXi = X, then
ZUi*(Xi,Y) = ZUi*(Xi',Y). For suppose not. Then without loss of generality,
i i

§
. - * ' = = (Vv - —
let IU *(Xi,Y) ?pi (Xi ,Y) § > 0. Let Zi Ui (%,,9 and let

11 "1 T
s o
L. * 1 — = LI . * = *
Zi Ui (Xi ,Y) + °n Then %Zi ZZi 2 Now Ui (Zi’Y ) - Zi < Ui (Xi,Y)
for all i and Ui*(Zi',Yo) = Zi' > Ui*(X',Y) for all i, Therefore (X;Y)<:)(Z,Y°)

and (Z,Yo) > (X,Y). But this contradicts the assumption that O has no cycles.

From the result of the previous paragraph it follows that EUi*(Xi,Y) =
U(iXi,Y) for some function U. An equation of this fupctional form is known as
Pexider's functional equation. It is well known (see Aczel (1966)) that Pexider's
functional equation implies that Ui*(Xi,Y) = A(Y)Xi + Bi(Y) for all i. Since
Ui*(xi’Y) represents i's preferences, Theorem 4 is established.

Q.E.D.

SECTION 2 Applications

If preferences are representable by utility functions of our special form,
then several of the standard problems in the theory of public finance and welfare

economics have interesting specizl solutiomns.

L. Cardinel Usilicvy and Social Welfare Functions

Classical utilitarians (Edgeworth (1881)) proposed that the goal of society
should be to maximize the sum of human happiness. Since Pareto, it has been well-
known that to maximize the sum of utility functions represeﬁting individual pre-
ference is not 2 well-defined prescription, since such functicnc are unique only
up to monotone transformations. Bergson (1938) and Samuelson (1947) have suggested
that ethical value systems which respect the Pareto ordering can generally be

represented by a social welfare function which depends (not necessarily in a

" "

linear way) on the level of "utili:cy

of each consumer according to an arbitrary,
but prespecified, utility representation of each consumer's preferences.
P s P P

Where utility functions are of the form: U4(Xi,Y) = A(Y)Xi + Bi(Y), con-
sider the function W(Xl,...,Xm,Y) = gUi(Xi,Y) = A(Y) iXi + EBi(Y).
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If the technical conditions of Theorem 3 are satisfied, then finding aﬁ interior
Pareto optimum is equivalent to finding an allocation (Xl,...,xn,Y) that maxi-
mizes W(*) subject to the feasibility comstraint, (Exi,Y) € F. The function,
W(+), is therefore very useful as a guide to solving for efficient aggregate
outputs. On the other hand, it provides absolutely no guidance about distribution
of private goods. In fact all redistributions of the same amount of private
goods yield the same value of W. This is as it should be since we sought condi-
tions under which efficient levels of aggregate output could be chosen independently
of income distribution.

It would be misleading to think of W(*) as a "social welfare function" in
the sense employed by Bergson and Samuelson. Notice that W(+) ascribes a higher
"score" to any Pareto optimal allocation, no matter how asymmetrically private
goods are distributed, than it does to any less efficient but much more‘symmetric
distribution, Clearly then such a function could not represent the distributiomal
preferences of a person with continuous preferences, who although he wishes all
individuals to be happier, has some taste for equality.

In fact, the function W(.) defined above is not the only function that will
always pick a Pareto optimum when maximized om the feasible set. Consider the

2

= = 1
3 * = - - = —
function W (Xi,...,Xm,Y) W(Xl,...,Xm,Y) %‘:(Xi X)° where X = §xi. Clearly

[

W* gives a higher value to some non-optimal equalitarian allocaticns than it does
to some asymmetric Pareto optimal allocations. On the other hand, it is easily
seen that maximizing W* on the feasible set will always yield a Pareto optimal
allocation., In fact this procedure will yield an allocation that maximizes W on

the feasible set and has the additional property that X1 = Xz = .. = Xm = X.
0f course W* is not the only '"'social welfare function'" that reflects concern
for the distribution of private income. An infinity of other functions could

be constructed, each of which recommended a Pareto optimum with a different dis-

tribution of private goods and excluded all other distributionms. t should be
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cleér, from this discussion, that the function W(-) does not typically represent
a full schedule of belief about the ethics of distribution. In fact the state-
ment "Maximlze W on the feasible set" has no more content than we built into it.
Under anpropriate conditions this conditiou is‘equivalent to ""Find .aggregate
output levels that can be distributed to yield interior Pareto optima”. There

is no implicit recommendation about distribution.

B. Lindahl Equilibrium

A Lindahl equilibrium occurs when individual "tax prices" are adjusted
in such a way that, given their tax prices, consumers agree unanimously on the
amount of public goods to be provided. Lindahl equilibrium is known to be Pareto
optimal and to belong to the "core" when public goods are desirable. (Foley

(1970)). 1In case utility functions are of the special form
(D A(DX, +B,(Y)
i i

Linéahl equilibriuﬁ has a very special structure. As it turns out, in this case
Lindahl tax schedules will be affine in wealth., This means that such taxes could
be collected by means of a proportional wezl:zh tazx (at the same rate for every-
one) augmented by 2 "head tax" that may be positive or negative for an individual
depending on the private functionms, Bi(Y).

We conduct this discussion with z simplified formal model which could be
extended in a straightforward way to more general enviromments. Let there be
cne private good and one public good. Each i has an initial endowment Wi of
private good. Public goods can be made from private goods at constant unit

cost ¢. The set of feasible allocations, then, is

e ,
X ,e0e,X% ")‘““1 cY =

P
q 7
4

!

h
o]
a]

A Lindahl equilibrium consists of tax shares ti each i where Zt; =1 and a
i

feasible allocation (X;,...,%,Y) such that for

m
'-J

14, (X,,Y) maximizes U, (X,,Y
i i 1
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subject to the budget constraint Xi + t icY =W In Lindahl equilibrium,

5
therefore, each consumer's marginal rate of substitution between public and

private goods equals his tax price t_c.

i
If utility functions are of the form (1), then marginal rates of substitn-
. AT (T) B4 (Y)
tion take the form a(Y)Xi + Yi(Y) where o(Y) = NG and Yi(Y) =X

Therefore, in Lindahl equilibrium,

(2) tic = a(?)-ii + Yi(?)

a(Y) [Wi - t:icY] + yi(’i’) .
Rearranging equation (2), we have:

(3) te = oY) W+ v, (1)
1+ (DY - 1+ (DY

From (2) we see that, as promised, each consumer's tax share is an affine

function of his wealth. Summing equation (2) over the i's, recalling that

j‘:_ti = 1, and rearranging terms, we find that:
4 ¢ =a@®IW, - T] + cvF)
1 1 i i

which is just the Samuelson first order condition for efficiency applied to this
case. Thus if the government knows the utility functions, it could compute
Lindahl equilibrium simply by solving equation (4) ‘for Y and then assessing taxes
tic-‘f where t.c is found from equation (3). These taxes will just pay for Y and

'

all consumers, given their tax rates, will agree that Y is the "right" amount of

public goods.

C. Majoritv Voting Equilibrium

A serious disadvantage of the Lindahl allocation method is that it requires
the goveroment to know details of individual preferences which are private

o

ormation and which individuals may have an incentive to conceal. A less

[ 1Y

2
phed

stringent requirement would be that the govermment knows A(Y) and has a good

[S¢)

. = 1
estimate of B(Y) = Py B.(¥). Then the governmen: would know an "average utility

1

[
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function"

(1) A(Y)Xi + B(Y)

although it wéuld not know detailed individual preferences. The govermment would
know enough to find an efficient amount of public goods since it needs only to

choose Y to maximize:

2 A

R (V) = 7YY+ )
11+§Bi<‘> a(Y) X, + nB(Y)

1

subject to the feasibility constraint.

If taxes are assessed according to an "average" Lindahl schedule, we have:

(3) t,c = ———iﬁigrt: W, +
1+ a(Y)Y .

Y (Y)
1+ (DY

[ N

where a(¥)

and ;K?)

Suppose tax shares are set by the schedule (3) and consumers are allowed to vote
on the amount of public goods. If the amount of public goods were Y, then the

-

utility of consumer i after paying his taxes would be

(4) Ui(Y) = A(Y) [wi - ticY] + Bi(Y).

If consumer i has convex preferences, then the function Ei(Y)‘will be quasi-concave
in Y and hence single-peaked. Consumer i's "peak"iﬁ'Y§ where Yz maximizes 61(Y). Let
Y* be the median of the Y;'s. Since preferences are single peaked, T* would be the
only stable outcome of a pairwise majority voting process. By straightforward

calculation we see that:
Ty 2 D Iw - T . I >
(5) Ui(Y) - 0 as a(Y)[ki ticY] + Yi(Y) ” tic.

Substituting from (3) into (3) and rearranging terms we have:
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9  U®Z0 as v, @ 2 vD.

Therefore Y;_ % _Y_ as Yi(:f) —:— YX).

Suppose, now, that the functions Yi(-) are symmetrically distributed over the
population. Then the mean, Y(Y), of the terms, Yif?},will equal their median. Thié
fact, together, with (6) implies that just as many people will want more as will wamt
less public good. Therefore Y = é*, the median of the favorite amounts. It
follows that if taxes are assessed according to (3) and if preferences are
symmetrically distributed in this senrse, then majority vote will select the
Pareto efficient quantity, Y. This generalizes a result of Bowen (1943) who
showed that if preferences are symmetrically distributed and quasi-linear and

if taxes are the same for everyone, then the majority rule outcome is Pareto

optimal,

D, Demand-Revealing Mechanisms5
Clarke (1971) and Groves and Loeb (1975) have demonstrated that if utility

"incentive compatible" mechanism that de-

is quasi-linear, then there exists an
termines the supply of public goods and individual tax rates. This mechanism

uses information supplied by consumers about their own preferences and has the
property that honest revelation of preferences is a dominant strategy for each
consumer. The amount of public goods selected will satisfy the Samuelson
marginal rate of substitution conditions. Groves and Ledyard (1976) suggest

that in more realistic cases where the demand for public goods is income respon-
sive, it may be necessary to settle for a preference revelation mechanism in which
honest revelation is a Nash equilibrium but not a dominant strategy. They concede
nowever, that Nash equilibrium in this context is a less persuasive game
theoretic "solution" than dominant strategy. We show here that the Clarke,

Groves-~Loeb results generalize to the case where utility functions are of the

form:
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(D Ui(xi,'i') = A(Y)Xi + Bi(Y)

where U, is strictly quasi-concave.

i
The procedure in its simplest form assumes that the function A(Y) is

public information.7 The mechanism induces consumers to honestly reveal the
"private information" Bi(Y)’ in their utility functions. Let the technology be
as follows. Each consumer i has an initial endowment of private goods, Wi.
Public good is produced from private goods at a total cost C(Y) where C'(Y) > O
and C"(Y) > 0. The set of feasible allocations is then the conmvex set:

{(X X.m,Y)IZXi 4+ C(Y¥) = W}. All consumers are asked to reveal their func-
i

1reres
tions Bi('). Each i then reports a function Mi(~) (possibly different from

Bi(°)). Let M = (Mi('),...,Mn(-)) be the vector of functions reported.

The government chooses an amount of public goods Y(M) so as to maximize:
(2) AT (IW, - (D)) + M. (D).
id i

Consumer i is assessed a tax bill equal to

LM (D + R0
(3 T,00 =W, - IW, 4 Crn) - | 45 :
: B AT QD)

where Ri(M is a function that may depend on :the Information sent Dy all con-
sumers other than i but must be entirely independent of i's own message. Since
for each 1,

(&) X, (0 = W, - 'Ii(M),

it follows from (1), (3) and (4) that if the vector of functions reported is M,

then i's utility is

7

(3 AGY() [Zw, - C(Y(M)) ] + ':iM‘(Y(M)> +3,(3(M) + R, (M.
i- IFL - -

Since Ri(M) is independent of Mi(-), we notice from (3) that the only way in
which i's stated function ¥, (:) affects his final utility is through the dependence

of (5) on Y(M). Therefore, given any choose o7 messages by the other plavers,
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the best choice of Mi for i is the one that leads the government to choose

Y(M) to maximize

(6) . AW, - c(V] + £ M (Y) + Bi(Y)-.

But recall that the govermment seeks to maximize (3). Therefore if i reports
his true function, 'so that Mi(Y) = Bi(Y), then the government in maximizing
(3) will also maximize (6). It follows that regardless of the message sent
by others, consumer i can do no better than to report the truth. Honest
revelation is therefore a dominant strategy.

Let (fl,...,fn,?) be an equilibrium for this process. That is, Y maximizes

(2) where Mi(-) = Bi(-) for all i and T, = Ti(Bl(~),...,Bn(-)). If it happened

i

that Iifi = C(Y), then the allocationm (-)El,... ,in,_Y_) where X, = Wi - -fi would be

i
Pareto optimal. This is a consequence of Theorem 3 and the fact that Y maximizes
AD I, - (D] + 2B, (D).

3 :

J .
dere, as in the case of quasi-linear utility, it is in general impossible

;= C(Y). For the quasi-linear

case, Clarke and Groves-Loeb were able to find functions R,(M) that guarantee
-

to find functions, Ri(~), that guarantee that g_‘f

feasibility in the sense that tax revenues at least cover costs.8 Ve can extend
their idea to our broader class of preferences, Suppose that for each i, 'the
government sets a ''target share", @i > 0 where 'z}@i = 1, The govermment tries to
: = i

fix Ri(M) so that Ti(M) 2 ©,C(Y(M)) for each i. From (3) we see that

(7N A(Y ()

——

T,(M - e c¥)] = AIIA-00CEM) - I W]
pS J#i -
- I M. (Y(™) - R, (M.
j41 7 >

From equation (7) and the assumption that A(Y(M)) > 0, we see that the govern-

\%

ment could guarantee that T, (M)

5 > Gﬂ,C(Y(M)) if it could set:

(8) RO < AT) [(1-0)C(XM)) - w.l- z Mj(Y(M)).

T
3#1 j#i

To this end, the government mav choose
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€)) Ri(M) = Min{A(Y)[(l-v@i)C(Y) - .2 Wj] - ‘Z. M, (Y).
Y j# j#i
It can be seen that Ri(M) as defined in (9) does not depend in any way on i's
stated function Mi('). Furthermore, it is clear that Ri(M) defined in this
way satisfies the inequality (8). From (7) it follows that Ti(M) > eiC(Y(M)).
Since iei = 1, it must be that Ei:’ri(M) > c(x(M)).

The fact that a simple extension of the Clarke tax performs equally satis-
factorily on a much larger class of preferences than the quasi-linear reduces
the sting of one of the list of criticisms of this mechanism found in Groves
and Ledyard (1976). Whether in this environment, the Clarke tax is likely to
perform as well as alternative mechanisms in which honest preference revelation

is a Nash equilibrium rather than a dominant strategy equilibrium remains an

open question.



Proof of Theorem 1
(a) To verify sufficiency is straightforward. To prove necessity, let

Hi( Xi’Y) be the vector of marginal rates of substitution between public and
+ .
TADX, + B (¥

private goods. 1f preferences are homothetic then Hi(Xi,Y} =

A(Y)
VB, (KY)
must be homogeneous of degree zero in X'i. and Y. Therefore AR and
VA(KY) KX, VA(k,Y)kXi
YN must both be constant as functions of k. If NG is

independent of k, it must be that A(Y) is homogeneous of some degree a. If
VB, (1)
A(ky)

homogeneous of degree o + 1.

is constant, it must be that either VBi(Y) = 0 for 2all Y eor Bi(Y) is

(b) If preferences are additively separable between public and private goods,
then there exist functions F(-), Vl(-) and Vz(-) for consumer i such that

A(Y)Xi + Bi(Y) = r(vz(xi) + V,(¥)). Therefore the vector of marginal rates of

vV (1)
substitution of public for private goods can be written I[(Xi,Y) = V‘}(_X—S- . Hence
1'71
the effect of 2 change in Xi is to change all the components of the vector
VA(Y) X, + VB, (V)
it - = 1t

l(:{i,Y) proportionately. But we also have HCKi,Y) = NeD) .

changing Ki changes all components of JI(,X:.L,Y) proportionately it must be that
the gradient vectors VBi(Y) and VA(Y) are proportionate. Therefore for some

constants, ki andc , B (Y) = kK A(Y) + c,- Ignoring the inessential constant
- Fs

i’
c, we have V, (}'.i,i’) = A(Y)(Xi + k,). Conversely, a(Y) (X, + ki) = F(Vl(}li) + v, (YY)
- . - <«

~ . - - N Vl-!-Vz
where Vl(Xi) = ZLn(Xi + k., VZ(Xi) = 1nA(Y) and ‘(Vl V) = e .

(¢) Result c is immediate from (a) and (b).

Procf of Theorem 2

Sufficient condition (i)

Suppose that A(Y) > 0 and Si(Y) > 0 for 211 ¥ > 0. Then the function
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InA(Y) (X, + Si(Y)) = InA(Y) + In(X, + Bi(Y)) is a well defined monotone in-
creasing function of A(Y)(Xi + Bi(Y)). Therefore A(Y)(Xi + Bi(Y)) will be
quasi-concave if InA(Y) + 1n(X1 + Bi(Y)) is quasi-concave. If Bi(Y) is a

concave function and A(Y) is a concave function, then the functions A(Y)

and Xi + Bi(Y) are concave functions. Since an increasing concave function

of a concave function is concave, 1nA(Y) and ln(xi + Bi(Y)) are both concave
functions. Since the sum of concave functions is concave, lnA(Y) + ln(Xi + Bi(Y))
is concave and therefore quasi-concave. It follows that A(Y)(Xi+-si(Y)) =

A(Y)Xi + B4(¥) is quasi-concave.

Sufficient condition (ii)

This condition is most easily demonstrated by examining the bordered
Hessian of Ui(Xi,Y). The principle minors of the bordered Hessian are -A(Y)2
and A(Y)A'(Y)(A'(Y)Xi + B;(Y)) - [A"(Y)Xi + Bi"(Y)]A(Y)z. A sufficient condition
for gquasi-concavity of U(Xi,Y) is that the first principle minor be negative
and the second be positive for all X, and Y. If A(Y) > 0, then -A(Y)2 < 0.
If A(Y) > 0, 4"(D) 2 0, BI(Y) 2 0, &"(¥) ¢ 0 and BY(Y) < 0 for all¥ > O, then

the second principle minor is positive Zor all Xi‘> 0 and ¥ > 0. This establishes

uasi-concavity.
q y

Sufficient condition (iii)

4 standard result in the theory of quasi-concave functions is that a
function is quasi-concave if its Hessian matrix is negative definite on the
null space of its gradient. In the case of U(X,,Y) = A(Y)Xi + 3 ,(Y), we have

VU = (A(Y),(Xi + Si(Y))VA(Y) + A(Y)VEi(Y)) and

T

[4

2
VL= 0 VA(Y)

YA(T) (x,+ %(Y))VzA(Y) + 29ACY) Ve, () + ACY) vzei(Y)
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The condition for quasi-concavity states that for all vy e R and c ¢ Rn, such

that (Y,CT)VU = 0, and (y,c) # 0, (Y,cT)VzU(Y) < 0. But (Y,CT)VU = 0 if and
c

only if vy = ) [(X + B (Y))VA(Y) -+ A(Y)VB (Y)T]c. Substituting this

A(Y
expression for y into the quadratic expression, we see that U will be quasi—

2
X&)

all c ¢ Rn, ¢ # 0 and for all (Xi,Y) such that Xi >0, Y

will be negative for all such Xi’ Y and ¢ if the two quadratic forms

2 2
A(Y) A(Y)

are negative semi-definite while at least one of them is negative definite.

concave if cT[(Xi ¥ Bi(Y))(VzA(Y) VAT VAD D) + A(Y) V28, (D)1 <0 for

v

0. This expression

v2A(Y) - VA VA(r) T and 8, (¥) [V2AD) - va@ vam 1 + A v2e (D)

Necessary condition (i) - 1f A(Y)Xi + Bi(Y) is a'quasi-cohcave.function,;then
it must be quasi-concave in Y nolding Xi constant at zero. This imylies-that
Bi(Y) is quasi-concave.‘ Furthermore A(Y) Xi + Bi(Y_) m\}st be quasi-concave in

Y holding Xi constant for arbitrarily large values of.Xi. Therefore A(Y) must

also be quasi-concave.

Necessary condition (ii) - A necessary condition for a2 function to be quasi-

concave is that its Hessian be negative semi-definite on the null space of its
gradient. Reasoning as in the proof of sufficient condition (iii) we show that

necessary condition (ii) is implied.

Proof of Corollarv 1

IZ individual utility functions satisfy sufficient condition (i) or (ii)
then the utility function A(Y)X + B(Y) also satisfies condition (i) or (ii)
respectively where we define B(Y) = ZBi(Y). This is true since the sum of
i

A~ ———
SSIiC

o)

ve functions s concave. But if A{(Y)X + B(Y) satisfies either of these

concdizions it must, according to theorem 2, be concave..
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Proof of Theorem 3

Suppose that (X,¥) maximizes A(Y)X + iBi(Y) on F and let (El,...,-}zm,:f)
be an outcome such that ‘lji:fi =X. If (il"’“'imj) is Pareto superior to
(-il, . ..,_im,?) , then A(D) ii. + Bi&) > A(?)ii + ‘Bi'(-‘f) for all i with strict
inequality for some i. Therefore A(?)?:{ 4+t EB i(;?) > A(MX + ili i(‘Y_) . Since
(X,Y) maximizes A(Y)X + EBi(Y) on F, it must be that &, ¢ F. Therefore
(il,...,f‘(n,?) is not feasible. It follows that (3{1,...,3(;5) is Pareto optimal.
This proves the first statement of the theorem.

Suppose that (-il,.. . ’—in ,Y) is an interior Pareto optimum and that
ADI + %Biﬁ) > A(f)?ii + ?i(?) for some (X,Y) ¢ F. Define X = gii and for
0 < %<1, define X(A) = X + (1- VX and ¥(A) = ¥ + (1-D¥F. Since F is a
convex set, (X(1),¥(A)) ¢ F for all i ¢ 10,1]. Since AM{T)X + ?i(Y) is assumed
to be guasi-concave, A(T(A))X(A) + ?i(Y(») > A(DX + iZZB_i'(‘:’_) for 0 < A < 1.

Let 8() = A(YODX(O) + IB(Y(N) - [ADX + B,(V]. Then §(A) > 0 for
: : i i

- DT+ (F) - " 1
0 <3 <1. Define X (1 = 4VE*+B,(D -3,000 +7 8B
ACE(A))

i
6(A) >0, B,(*) is a continuous function, and A(Y) > 0 for 211 Y, it follows that
= J

. Since X, > 0,
ke

for some X* < 1 but sufficiently close to one, 5{1().*) > 0 for all i, But
- - - 1 . _
A% *) = r(A%)) = _ = > A (T -
AGOMZ (%) + B (T(A*)) = AKX, + B (X)) + 8D > A(DX, + B, (Y) for
0 < A <1l., Therefore (Xl(k*),...,}.in(k*), Y(A*)) is Pareto superior to (El"""’

i:n,-f). Furthermore, LX,(A*) = X(A*)., Since (X(3*),Y(A¥)) ¢ F., the outcome

oy
(5’.1()*) seue ,Xn(A*) ,Y(A*)) is feasible as well as Pareto superior to (il,...,}?n,‘f) .
This contradicts the assumption that '<i-1"°"’§n’§) is Pareto optimal. Therefore
if (gl”“’in ,Y) is an interior ' Pareto optimum, there .can mot be an (i,‘?) e F
such that A(;—l')ii + iZBi(§) > A(DX + J;‘Bi(':—’). This proves the second assertion of

the thecren.

Q.E.D.



FOOTNOTES

Examples of such studies are Borcherding and Deacon (1972) and Bergstrom
and Goodman (1973). Other similar studies are reviewed by Inman (1979).

This'duélity is discussed explicitly in‘Bergstrom and Cornmes (1981).

Throughout this paper we confine our attention to this case. Possibly the
private good is an aggregate. Aggregation would be possible either if
relative prices of private goods were constant throughout the analysis or if
homothetic separability permitted aggregation under varying prices.

The natural extension of this relation to the case where there is more than
one private good would require that ( ',...,X;,Y) entail a Pareto efficient
distribution of the total vector ZX&O private goods.

After this paper was written, we discovered a recent paper by Joseph
Sicilian which reports results very similar to the results of this section.

Conn (1980) has shown a different way in which the Clarke-Groves-Loeb results '
can be extended beyond the quasi-linear case.

This does not seem unreasonable since if A(Y) is common to everyone's
utility function, anyone could discover A(Y) by introspection. If one
wished, however, it would not be difficult to devise a mechanism in which
honest revelation of A(Y) is a Nash equilibrium and honest revelation of

Bi(Y) is dominant strategy.

For expository simplicity, we extend the Ciarke tax. The Groves-Loeb tax
includes the Clarke tax as a special case. Loeb (1976). The generalization
of the Groves-Loeb tax is a straightforward extension of the argument used
here.
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