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Groves and Ledyard (1977) introduced a decentralized method for

determining optimal levels of public goods. They formulated a government

allocation-taxation scheme which has a Nash equilibrium such that 1) the

public good is produced at an optimal level, 2) there is neither a budget

surplus nor deficit, and 3) consumers find it in their self-interest to

reveal their true preferences for public goods. If one is willing to

accept Nash equilibrium as the appropriate equilibrium concept, then the

Groves-Ledyard mechanism can be regarded as a solution to the classical

Free Rider Problem for public goods.

In a later paper, Groves and Ledyard (1980) present general abstract

conditions under which equilibrium for their mechanism exists. However

they have no results concerning the multiplicity of equilibria. Multiple

Nash equilibria are an especially vexing problem in this case because a

practical implementation of the Groves-Ledyard mechanism must incorporate

an adjustment process for attaining Nash equilibria. If there are

multiple equilibria with differing distributions of utility, then indivi-

duals may have an incentive to falsify their preferences in order to drive

the adjustment process to a preferred Nash equilibrium. If on the other

hand Groves-Ledyard equilibrium is unique, then it is easy to devise

adjustment mechanisms which are cheatproof and converge to the Groves-

Ledyard equilibrium.

Applied microeconomists studying simulated or actual environments with

public goods usually work with specific families of utility functions which

are analytically malleable and which behave nicely under aggregation. They

are interested in the existence, uniqueness, and characterization of the

equilibria which arise in these more concrete situations. In this paper,

we study the Groves-Ledyard mechanism for the two most convenient families



of preferences for this purpose. These are: 1) quasi-linear utility with

constant marginal utility of private goods, and 2) the more general utility

functions which are dual to the Gorman polar form for private goods

economies. The latter is the most general class of preferences for which

a Pareto amount of public goods can be computed independently of income

distribution. Both of these environments always have Groves-Ledyard

equilibria. However, for the second class of preferences there are multiple

equilibria. In fact, the number of equilibria grows exponentially as the

number of agents in the economy increases. This suggests that the Groves-

Ledyard mechanism may not be a workable solution to the free-rider problem.

In finding and counting the number of Groves-Ledyard equilibria in the

more general models, we use some mathematical techniques which we believe

to be at least as interesting as the results they lead to and which have

the potential to be powerful yet simple tools for dealing with equilibria

in many situations where neither the domain nor the range of the equilibrium

map is compact. In our situation, both spaces are linear subspaces of IR.

Our proof indicates how one can use the notion of a "proper mapping" to

replace the usual compactness criteria in equilibrium computations. We

then use degree theory to illustrate how knowledge about the behavior of a

mapping at one point in its image can yield lower bounds for the preimages

of other points in the target space. In our model, the target space para-

metrizes the public goods economies and the preimages of a point in the

target space are the Groves-Ledyard equilibria.
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The General Model

Consider a community with a number I > 3 of citizens. Each citizen i

has a utility function of the form u (X ,Y) where K. is his consumption of

private goods and Y is the amount of public goods supplied to the community.

For the present, let us suppose that there is just one private good and

one public good so that X. and Y are simply non-negative real numbers.

Let us also suppose that public goods can be obtained in exchange for private

goods at a constant unit cost. If we do so, there is no loss of generality

in choosing units of measurement so that one unit of private good can be

exchanged for exactly one unit of public good. There is a "government"

which collects "taxes" in the form of private goods from individuals and

exchanges its tax revenue for public goods which it provides to the

community. The amount of taxes collected from each individual and the

amount of public goods provided will be determined by the government as a

function of a list of "messages" that it receives from the citizens. Each

citizen sends a message which is a number.mi., positive or negative, that ex-

presses his desired increment in the output of the public good. Let

the vector m = (m 1 ,...,m 1 ) denote the list of messages received by the

government. The government's rules of action can then be described by

functions C.(m) for each i and Y(m) where C.(m) is person i's tax bill and

Y(m) is the amount of public goods supplied if the list of messages is

m.

If a consumer has wealth W. before taxes, and the list of messages is

m, then his private consumption will equal his after-tax wealth, W~ - Ci(m).

Therefore if the list of messages is m, his utility level will be

(1) U.(m) =u.(X.(m),Y(m))
11 1~

where
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(2) X.(m) = W. - C.(m).

A consumer choosing his message is confronted with a game in which each

of the I players chooses a strategy m. and where the payoff function is

(1). A Nash equilibrium for this game is a vector m* = (m*, n*) such

that

(3) U.(m*,...,m* m*,m* ,...,mI) >
i 1' *'-li'i+1 ~ 'I =

U.(m*,...,m* ,,min ,m*)

for allreal numbersimn and for each i. Groves and Ledyard studyNash eauilihria

for a game of this form where the functions Y(m) and C(m) are judiciously chosen.

The functions Y(m) and C.(m) proposed by Groves and Ledyard are

(4) Y(m) = Im.
i

and for all i

Y I-1 i 2 12(5) C.(m) = a i +- [ --- (m.-y) -o ]

where y and the ai 's are arbitrarily chosen parameters such that y > 0 and

Ea. = 1 and where
. 1

1I

i 1(

(7) a = I-2 .ia h

h#i

A Nash equilibrium for the game described by equations (1) through (5) will

be called a Groves-Ledyard equilibrium.

The workings of the Groves-Ledyard government can be described informally.

Each citizen is asked to name a single quantity which he would like to add

to or subtract from the amount of public good ordered by others. A positive

number mn. denotes an addition and a negative mn. a subtraction. The govern-

ment will supply the sum of the quantities named by the citizens . Citizen
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i's tax will consist of a predetermined share a. of the total value of

public good supplied plus an amount that is proportional to the squared

deviation of his demand from the average of other citizens' m.'s less an

amount that is proportional to the variance of the r.'s stated by others.
.2

This last term, a , is entirely independent of i's choice of m..

With some algebraic manipulation of expressions (4) and (5) it can be

shown that

(8) Y(m) = EC.(m)
ii

for all m. Therefore the Groves Ledyard government always balances its

budget. Groves and Ledyard show that if preferences are convex then

Groves-Ledyard equilibrium produces a Pareto optimal allocation.

In this paper we assume that u.(X.,Y) is strictly quasi-concave and

twice continuously differentiable. We will be primarily interested in

"interior" Groves Ledvard equilibria. These are equilibria in which Y(m*) > 0

and X.(m*) > 0 for all i. In fact, for the class of economies that we study,

reasonable economic assumptions can be found which guarantee that all Groves

Ledyard equilibria are interior.

A necessary condition for m* to be a Groves-Ledyard equilibrium is that

9U. (m*)

am = 0 for all i. Differentiating (1) with respect tom. we see that

this first order condition is equivalent to

aC.(m*) au.(X.(m*),Y(m*)) au.(X.(m*),Y(m*))
(9) -- 1 * 1

9m. 3Y 9X.
11

for every i. In fact, given quasi-concavity of u.(X. ,Y), equation (9) is
11/

sufficient as well as necessary for m* to satisfy (3) .

Differentiating (5) reveals that

9C.(m)

(10) a. +y( -y--) (m.-y ) = N. + -y(m.-m)

where m =1- inm.. Therefore equations (9) can be written as
I i
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au.i(x. (m*) , Y(m*)) au. (x.(m*) ,Y (m*) )

(11) ca. +y(m*-m*) = 11* ax1 1 3Y x.
1

A necessary and sufficient condition for m* to be a Groves-Ledyard

equilibrium is that m* solve the system of equations (2), (4) and (11).

We will exploit this fact in solving for and enumerating Groves-Ledyard

equilibria.

Pareto efficiency of the Groves-Ledyard equilibrium can be demonstrated

by showing that equations (2), (4) and (11) imply the well known Samuelson

first order necessary and sufficient conditions for Pareto optimal allocation

when preferences are convex. To see this we sum equations (11) over all

i to obtain
au. (X .(m*) , Y(m*)) au. (X .(m*) , Y(m*) )

(12) l= E ( Ya x1)
i 1

(Here we use the obvious fact that the sum over i of the right hand in (10) equals

1.) Equation (12) requires the summed marginal rates of substitution for the public

good to equal the marginal rate of transformation between private and public goods.

If we add the budget equations (2) and substitute from (8), we find that

(13) EX.(m*) + Y(m*) = EW..

Since preferences are assumed to be convex, equations (12) and (13) imply

that (X1 (m*),. .. ,X 1 (m*), Y(m*)) is a Pareto optimal allocation.

Quasi-linear Utility

In the simplest models of economies with public goods , all citizens have quasi-

linear utility (constant marginal utility of private goods) . See , for example,

Feldman (1980: chapter 6) . In such models, computing Groves-Ledyard equilibrium

is particularly simple and it turns out that equilibrium is unique. Quasi-linear

utility has the special form

(14) u.(X.,Y) = X. + f.(Y)
1 1 1 1

for some strictly concave function f.. In this case, the first order condi-
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tion (11) specializes to

(15) a. + y(m* - m*) = f!(Y(m*)).

Summing equations (15) over i yields

(16) 1 = Ef!(Y(m*)).

Since, by assumption, f' < 0 for all i, there can be at most one value of

Y that satisfies (16). Let this value be Y*= Y(m*). According to equation (4),

Y* = Im = Im*. Therefore equation (15) can be rearranged as
i Y

(17) m* = -(f!(Y*) - a.) +-
1 Y 1 1 I

which solves uniquely for m*.

So far we have shown that there can be no more than one interior Groves-

Ledyard equilibrium when preferences are quasilinear. We must also find conditions

which insure that there is at least one interior equilibrium. Let us assume

that the problem is non-trivial in the sense that Pareto efficiency re-

quires positive aggregate outputs of both public and private goods. Then

there will exist some Y* such that Ef!(Y*) = 1 and Y* < IW.. We show that
i iI

if this assumption holds, there will always exist some parameters a ,...,an and Y

for which an interior Groves-Ledyard equilibrium exists.

An interior Groves Ledyard equilibrium will exist if for m* defined

by (17), we have

(18) Xi(m*) = W - C(m*) > 0.

Using equations (4), (5), (7) and (17) we can show that

(19) C.(m*) < c.Y* +-- ( --- )(f(Y*) -a. )

Therefore if a Y* < W1 for all i, then (18) would hold for all sufficiently

large y. But since by assumption, Y* < IW ,we could guarantee thata.*<W

by setting a = . Tefoethere are always some ct.'s and a y for

which an interior Groves-Ledyard equilibrium exists.
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A More General Class of Preferences

Finding a unique Groves-Ledyard equilibrium in the case of quasi-linear

utility was easy because there were no "income effects" on individual

marginal rates of substitution. On the other hand, available empirical

evidence convincingly refutes the hypothesis that individual marginal

willingness to pay for public goods is independent of the level of one's

private consumption. Therefore we study Groves Ledyard equilibrium in

more general environments. We consider a family of utility functions that

lies intermediate in generality between quasi-linear utility and general

quasi-concave functions. This class was introduced by Bergstrom and

Cornes (1981), (1983) and consists of preferences representable by a

utility function of the form

(20) U.(X.,Y) = A(Y)X. + B.(Y)
1 1 1 1

for each i. Bergstrom and Cornes show that this class of preferences,

which is dual to the Gorman polar form for private goods is exactly the

class for which a Pareto amount of public goods can be computed independently

of income distribution. This class is considerably broader than the quasi-

linear class and allows individual marginal rates of substitution to depend

on consumption of private goods as well as public goods.

If utility functions are of this form, then individual marginal rates

of substitution between public goods and private goods can be written:

aU.(X.,Y) aU.(X.,Y) ,B(Y)
(21) i . 1 _ A())X +2Y * ax A(Y) i A(Y)

A'(Y) _B!(Y)

Let a(Y (Y) b()
A(Y)Y)E n b.(Y) ACY . Then the system of equations (2,4,11) that

constitute the first order conditions for Groves-Ledyard equilibrium is

(22) a(Y(m*))X.(m*) + b.(Y(m*)) = a. + y(m* - mn*)
1 1 i 1
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(23) Em* = Y(m*)
1

(24) X.(m*) = W. - C.(m*)
1 1 1

where C.(m*) is defined by (5).

Summing equations (22) over all i yields

(25) a(Y(m))X(m) + Eb.(Y(m)) = 1
ii

where

(26) X(m) = EXi(m).
1

Summing equations (24) over all i and recalling (8) we have

(27) X(m) = EW. - Y(m)
i

The assumption that U.(X.,Y) is strictly quasi-concave is equivalent
1 1

to the assumption that A(Y) is a strictly convex function and B.(Y) is a

2/
strictly concave function of Y.- Therefore if each U.(X.,Y) is strictly

1 1

quasi-concave, then so is the "aggregate utility function".

(28) U(X,Y) E A(Y)X + EB.(Y).
i

Now (25) is the first order condition for maximizing (28) subject to the

constraint (27). If preferences are strictly quasi-concave, therefore,

equation (27) will have at most one solution for X(m) and Y(m). If we

also assume that the problem is non-trivial in the sense that there is some

Pareto optimal allocation with positive total outputs of both public and

private goods, then there is exactly one aggregate output vector (X*,Y*)

that satisfies (25).

Having solved for Y* = Em* we have next to solve for the individual

m*'s from the equation system (22) and (24). Let a* = a(Y*) and b* = b.(Y*).

Then this system of equations can be reduced to

(29) a*C.(m*) + y(m* - m*) = a*W. + b* - .
1 1 1 1
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Recalling (5) we notice that (29) is a quadratic function in the variables

m* - m*. This system of equations is simplified if we make the affine change
1

of variables

- I-2
(30) q. = m* - m* + a() 1 1Ia*

Substituting from (30) into (29) and rearranging terms leads to

2 1 2
(31) q2 - E q. = k., for i = 1,...,I,

SI . i1

where

32)k.= I-2_ (a*(W. - a.Y) + b* - a.),(3) i Y I a* i 1 i 1

(See Appendix I for more details of these computations.) Summing (30) over iyields

(33) E = I-2
( ei a*

1

The I x I system of equations (31) is linear in the squares of the q's and is of

rank I - 1. The other equation (33), is linear in the qi's.
*1

Finally, we set z.= - q and rewrite (31) and (33) in terms of the z.'s.
i I-2 i

This yields

2 2
(34) A(z 1 ,...,z 1 ) = (k ,...,k )

and

(35) Z z. = 1
ii

where A is an I x I matrix for which the off-diagonal elements are all l's

and the diagonal elements are all 1 - I. The rows of the symmetric matrix A sum

to (0,...,0). In fact, the rank of A is I-1, and its nullspace is spanned by

the vector (1,...,1). Since the row space (and column space) of A is the

orthogonal complement of the nulispace, (k ,..k ) is in the image (i.e., the

column space) of A if and only if

(ky..,kg -(l,...,l) = 0, i.e., Ek =O0.

One uses (32) to check that the k.'s do indeed sum to zero. So (34) has
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2 2
a line of "solutions" (zz... ,z) for each (k 1 ,...,k) defined by (32).

i'*I'' I

One then uses (35) to reduce this solution set to a finite number of points.

Finally, one uses z = *q and (30) to find the unique message m*
i 1-2z

which corresponds to each one of these solutions z* of (34) and (35).

The k.'s in (32) contain all the exogeneous data of the model. For

example, if each citizen has the same wealth W. and the same preferences

and if the tax shares are equalized so that each a. equals 1/I, then

k. = 0 for i = 1,...,I. So, in a sense, k represents the deviation from

perfect symmetry. The solution to (34) in this special case where

kl = ... = k = 0 requires that

2 2 2
(36) z2 = z2 = ... = z2.

1 2 I<

Consider the case where I = 3 and k = 0. Then (35) and (36) are

satisfied only at the symmetric solution z1 = z2 = z3 = 3and at the three

asymmetric solutions in which one of the z.'s is -1 and the other two are +1.

More generally, for all I, (36) implies that for some z > 0 and all i,

(37) z. = + z
1-

while (35) and (37) imply

(38) 1 = zN+ - (I - N+)z = (2N+-I)z

where N+ is the number of indices i for which z. > 0. For each choice of

N I
N+ > there are (N+) distinct solutions to (38) each of which corresponds

to a different N+ member subset of I having positive zi's. Table 1

enumerates the solutions at kg = k2 = .. = kg = 0 for various values of

I. As we see, the number of solutions increases exponentially as I increases.

In fact, for I odd, there are 2 solutions.
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Table I

I Number of Solutions

3 4
4 5
5 16
6 22
7 64

E (n)

n < J

Although there are no simple algebraic expressions for solutions of

(34,35) for general (k 1 ,...,kn), we can tell a great deal about the number

of solutions in general by using the tools of differential topology.

Consider the map F: EI + I where I E {x R x. = a} and F(x,... .,x)=
1 0 a111 n

(x2 , .. , x2) A with A a matrix with l's off the diagonal and 1-n in each

diagonal location. The solutions to equations (34) and (35) are precisely

the elements of the set F~(k 1 ,...,k). A vector (k 1 ,...,k) is said to be

3/ -l
a regular value of F if DF(x) is non-singular- for all x s F (k) or if

F~1(k) is empty. The degree of the map F at a regular value k is equal to

xF-1 sign det DF(x.). If F is a mapping between compact manifolds without
x. EF (k)1

boundary, like a sphere or torus, then the degree of F at k turns out to be the same

at all regular values k in the image manifold and is called the degree

of the map F. (See Schwartz (1969) or Milnor (1965) for a complete dis-

cussion of degree theory. One can also define the degree of a map

using homology theory or by an integral formula. These methods yield a

degree theory for non-smooth maps.) In particular, if k is not in the

image of F, i.e., F is not onto, then the degree of F at k is zero and

so the degree of the map F is zero. As a result, degree theory is a

powerful technique for showing that a smooth map between two compact

manifolds is onto. One need only show that the degree is non-zero at

one regular point in the image. Furthermore, it is clear from the defini-



-13-

tion of degree that the number of elements in the inverse image of F at

any regular point must be at least as large as the degree of the map.

So, a calculation at just one point can show that every point is in the

image of F and can give a lower bound for the size of each F- 1 (k).A/

We would like to apply this powerful technique to our map F: E1 +}0'

However, E1 and 20 are hyperplanes, not compact spaces. Some compactness

must be added to F in order make degree theory work. One way of accomplish-

ing this is to require that F be a "proper map". A map G: X -+ Y is proper

if the inverse image of any compact set in Y is a compact set in X. (If

G is continuous and X is compact, G is automatically proper). If X and Y

are affine spaces, like E or even 1R , then a continuous G is proper if
a

the inverse image of any bounded set is bounded, i.e., if lxn - 0 in
X, then jG(xn) must - ° in Y.

In this case, one can "compactify" X and Y to X and Y by adding a

"point at infinity" to both spaces. If X and Y are m-dimensional af fine

spaces, X and Y can be considered as m-dimensional spheres. By requiring

that G map {°°} to {°°}, one defines an extension of G to a map G: X + Y.

The properness of G is exactly what one needs to show that G is continuous

everywhere, even at {°°}. One can now apply all the techniques and results

of degree theory to G and hence to G. In summary, if our map F: E +}E0

is proper, then 1) the degree of F is well-defined, 2) F will be surjective

if the degree of F is not zero, and 3) for all regular values k, the

cardinality of F (k) > absolute value of the degree of F.

In Appendix Two, we show that our map F: EI + I0 is indeed proper.

We also show that k = (0,0,... ,O) is a regular value of F and compute the

degree of F at (0,... ,0). The results of these computations are summarized

in Table 2.
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Table 2

Degree of F

3 2
4 3
5 6
6 -10
7 -20

[2-1]

n - E (-1) (n

j=0

This analysis shows that the system of equations (34) and (35)

has at least the number of solutions stated in Table 2 for any (k 1 ,...,k )

such that Ek = 0. Since equations (34) and (35) are the results of an affine
ii

change of variables from the Groves-Ledyard first order conditions (22)-(24)

(see (40) below), these first-order conditions have at least as many solu-

tions as are recorded in Table 2.

Some solutions to these equations may not be Groves-Ledyard equilibria

because they do not satisfy the economic non-negativity constraints of the

original problem. To study this question, we need to invert our change of

variables and see whether the vector (m 1 ,. . . ,m) that corresponds to a

given solution (z 1 , ... ,z) of (33) and (34) allows positive consumptions

for all consumers.

Since z = ( - ) q, we see from (30) that

(39)z = (a* )(m.- m*) + 1

and 121
(40) Cmi -m)* = (-w)(z.-y) .

Equation (A3) in Appendix One shows that

(41) Ci(m) Ele * m - m*)2 - ECm* - m)
ii 21I-2 iCm I. 3
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From (40) and (41) it follows that the solution z 1 , .1. .,z implies

(42) C. = a.Y* + (I- 2 )I [(z. - 1) 2_ 1 1 2
i i 2 a*2 I) I§J I

It is clear from (42) that if the a.'s are chosen so that a.Y* < W. for
1 1

all i and if y is chosen to be sufficiently small, then C. < W. for C.
1 1 ~ 1

corresponding to any of the solutions (z 1 ,... ,zn) of equations (34) and

(35). We have argued before that very weak assumptions ensure that it is

possible to choose the a.'s so that a.Y* < W. for all i. Therefore it is
3. 1 1

always possible to choose parameters a 1 ,...,an and y so that all of

the solutions to (34) and (35) are Groves-Ledyard equilibria.
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Appendix I

In this Appendix, we sketch the calculations involved in progressing

from the system (29) to the system (31,32). Given a message vector m =

- 1 I i 1
(ml,...,m1), recall that 1=EEmh and y = I-1 himh By adding and

subtracting $ from the left hand side, one computes easily that

i I-
(Al) m. -uy =- (m. - m)

i 1-1 i
1 I-1 i

First, let p. = m. - m = I-y(m1-iu ). Add and subtract m. - m to the term
1 1 I i1

in parenthesis in (7). Then use (Al) to compute that in (7)

(A2) -= 2 + p) 2 _ 1 2 I 2
1-2 h/i h I-1 "(hhi I-I-1 i

Plug (Al) and (A2) into (5), rearrange terms, and use (4) to find that

(A3) C.(m) = a.Y +x (2 _-1 2
1 1 2 I-2 i -I h h

Plug (A3) into (29) and rearrange terms again to find:

(A4) p a* I (2 -1 2 1(A4) p. +(p. i - I p) = - [a*(W. -a.Y) + b* -a.].
1 2 I-2 i I h h Y 1 1 1 1

Finally, the change of variables (30)

. =p -2
cig i Ia*

changes the system (A4) to the system (31,32).
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Appendix II

In this appendix, we discuss the solution of the system (34,35) for

general (k ,...,k ). Let Ea ={x c JR' Ix.= a} and let1'...' I

2 2
F (x , ... ,x)=(x 1 ,...,x2)A

where A is the matrix with 1 - I in each diagonal entry and 1 in each off-

diagonal entry. Then, F maps E1 to E0 and a solution of (34,35) is an

element of F1(k 1 ,... ,k).

One approach is to "decompose" F into o $ where $: E -+ JR is the map

2 2
4(x,. .. ,) = (x 1 ,... ,x 1 )

and P: JR -+0 is the orthogonal projection. This decomposition works be-

cause the system (34) can be written as

q2K1

1q 1
12 '

. = . + - q .
-".I ih .

q2 K 1 ,2I I) i

k."
where K. = . For I = 2, one can show easily that $ o $ is one-to-one

1

and onto. Figure 1 summarizes the geometry of this approach.

2

(l

i o $ for 1=2.
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However, for I = 3, (p is a map from a two-dimensional hyperplane into

JR . One easily checks that the image of (p folds over itself around the

points $(1,0,0), $(0,1,0), and $(0,0,1). These crossings of $(E) turn out

to be examples of the only generic singularity of a mapping from JR2 3-IR

the Whitney Umbrella, as pictured in Figure 2. (See Martinet (1982) for

more details on this singularity.) The occurence of this singularity implies

that (p and therefore F is not one-to-one. So we can expect multiple equilibria.

Figure 2. Whitney's Umbrella

We turn now to the more analytical approach described in the main part

of the paper. We first show that F is proper. We then calculate the degree

of F by calculating the degree at k = (0,0,...,0).

To show that F is proper, we need to show that the inverse image of any

bounded set is bounded. We will use the Euclidean norm lxi = (Ix?)l12 . Let

X. F.(x x)2 2
X1'F(x ,. .x ) = (1 - I)x + hf

Then

2= ( )24 4 2 2 2(1 2
X. = (1-I)2x. + E xh +2 Exhjx - xx2(I-1) E x, and

J h#j hj h<i
hij
ifj

(A5) IF(x)| = EX.= I[ E (x. -x.)2]
j i<j 1 3

Suppose that

(A6) IF(x)12 < b2 an Exhi.'
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We want to show that [xl is bounded. Suppose there is an unbounded sequence

{xn} which satisfies (A6). Without loss of generality, we can assume that

x + +o. By (AS) and (A6),

(A7) (x12- 2x 2 < b2<for all j.

Therefore, each sequence of numbers {x.} is also unbounded. By taking sub-

sequences, we can assume that

xxn...,2''''h+coas n-+oo and

(A8)
n n
h+1, ... , xI+-w as n +* o .

n n 2 b2
For i = 1,...,h, ( -x.) < 2+ 0 by (A7) and (A8). Similarly,

1 1 (xn+x)

for i = h + 1,...,I,

n n 2 b2
(x - (-xi)) < xn( n)2+ 0.

[x + (-x.)]

Choose N so that for n > N,

|xn- xn < 1 for i < h and |x n+ xi< 1 for i > h.

Then, for n > N

h I
n n n nn n n

1 = Ex. = E (x + (x. -xn)) + E (-xn + (xn+x )
1 i=i i)) i=h+l

= (2h - I)x + E a , where Ija.I < Ela .' <

This implies that

|1i- (2h - I)xyl < j for all n > N

This contradiction to xn + 00 means that (A6) defines a bounded set of x's,

i.e., F is proper.

Since F is proper, the degree of F is well-defined and may be computed

using any regular value. We will work with the value k = (0,... ,0) and will
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choose (x1,...,xyIl) as a coordinate system for both Z0 and E in JR.

In this coordinate system, the Jacobian matrix of DF is the (I-1) X (I-1)

matrix:

-2 (I-L) x1- 2x2x 2 - 2xI . . . . 2xI_ -2x

2xI - 2xI -2(I-L)x 2 -2xI . . . . 2xy_ - 2xI

2xI -2xI 2x2 - 2xI -2(I-1)x -2x ,

where x 1 = 1 - x1 - x2- '.. - xI 1 . To compute the determinant of this

matrix, first subtract the first row from each of the other rows, then add

xl
- times column j to column 1 for j > 1. The result will be an upper

x.

triangular matrix whose determinant (the product of the diagonal entries)

is the same as that of our original Jacobian. Some simple algebra shows that

I-1 I-I1I-2 1 1
(A9) detDF(x)= (-1) [2 Ir ] - xlx...x ( - -+1 .. + -- )

.2 I xIx

The solutions of F(z) = 0 must satisfy (35) and (36), i.e., Iz.| must

equal some non-zero constant a independent of i. If h of the z.'s are posi-

tive and (I-h) are negative,

1 = I z. = ha + (I-h)(-a) = (2h -I)a
1 1

or
1

a =2h-I '

This implies that h > . It also implies that

1 1

zy zy

so, detDF(z) # 0 in (A9) for all z in F~ (0), i.e., 0 is a regular value of F.

For each I and each integer h such that < h < I, there are exactly

22

(i)solutions of F(z) = 0. For each of these solations z (with I and h fixed),

detDF(z) will have the same sign by (A9). If I is fixed and h changes by
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one, the sign of all the detDF(z)' s will also change. If h = I, this sign

will be (-1) . It follows that the degree of F at 0

zsF1(0) sign det DF(z)

= (-1 I( ()+I 2 ~ ±

where I* is the least integer strictly greater thanI. These numbers are

listed in Table 2 for various values of I. Since they are all non-zero, F

is surjective; their absolute value gives a lower bound for the cardinality

of F~1(k) for each regular value k.

Let S denote the singular set of F in El, i.e., S = {z E I 1 detDF(z) =0}.
Let T denote the component of E lmS which contains the regular point

1 1 1
(I I,, . . , ) .Then, the restriction

FIT: T -+ F(T)

is a one-to-one mapping. For example, when I = 3,

S = { (x,x2'x3E3 i = 1 and x 1 x 2 +x 1 3 + x 2x3=O}

by (A9). In our (x 1 ,x 2 ) - coordinates, S is the ellipse

2 2x+xx +x2 -x -X =0
x 1  12 2 1 2

while F(S) is a closed curve with 3 cusps in E0. By following through the

changes of coordinates, one notes that the ellipse S (and therefore the
region T on which F is one-to-one) becomes larger as a* + 0. Since a*= A'(Y*)

)aA (Y*)

a* = 0 corresponds to the quasilinear utility function +- f(Y) that we

studied earlier (A(Y) = 1) where the corresponding F is globally one-to-one.
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Footnotes

1/
- If u.(X.,Y) is quasi-concave in X. and Y, then UT((m) is a quasi-concave

1 1 1

function of mi.. This follows from straightforward application of the defini-

tion of quasi-concavity, the fact that C. (;n) is a convex function of m. and

that utility is an increasing function of Y. Since Ut(m) is quasi-concave,

the first order condition for maximization is sufficient.

2/
- Quasi-concavity of U(X,Y) = A(Y)X + B(Y) is seen to be equivalent to con-

vexity of the function h(Y) = (AY) )U - 3(Y) ) for all u > 0. But h(Y) is
~~B(Y)

convex for all u > 0 if and only if ( ) is a convex function and ($- )
y A(Y) AY

is a concave function of Y.

3/
- Here DF(x,) is the Jacobian derivative of F at x.. To evaluate it, choose

global coordinate systems for the (n -1)-dimensional hyperplanes I and Z0'~ n-i n-1
Let F: IR - IR be F and x. be x. in these coordinate systems. Then,

1

one can use the (n-1) x (n -1) Jacobian matrix ((h/x.(xi))
J h,j=1,... ,n-1

to represent DF(x 1 ). By Sard's Theorem, most points in the range of any F

are regular values in the sense that the non-regular values (i.e., "critical

values") form a set of measure zero in the range. See, for example, Milnor

(1965).

4'
- Sometimes, one can even use the degree of a map to show that the map is

one-to-one. For example, if the degree of F is 1 and if det DF(x) never

changes sign (i.e., F is "sense-preserving"), then each point in the range

must have exactly one pre-image. This is the idea behind Mas-Collel's (1979)

proof of the Gale-Nikaido Theorem.
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