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Abstract 

 Centaurea maculosa, commonly known as spotted knapweed, is an allelopathic invasive 

plant species rapidly increasing across rangelands and meadows throughout North America. 

Such invasions have notable impacts on soil chemistry and biodiversity loss, though the 

differential responses of native plant species to increasing C. maculosa densities or to the 

removal of C. maculosa following population establishment remain unknown. This study sought 

to determine (1) relationships between the density of C. maculosa and those of two native plant 

species: Vaccinium angustifolium (low-bush blueberry) and Fragaria virginiana (strawberry); 

and (2) whether the removal of C. maculosa differentially affects the growth of V. angustifolium 

and F. virginiana by comparing density and percent cover of the species of interest along with 

other commonly found species in the plots. In order to measure the difference in the growth of V. 

angustifolium and F. virginiana in the absence of C. maculosa, manual removal of C. maculosa 

was performed on a series of paired plots. Density and percent cover of C. maculosa had no 

influence on the density and percent cover of V. angustifolium or F. virginiana. The results 

suggest that C. maculosa density does not affect V. angustifolium or F. virginiana density within 

the study site. The removal of C. maculosa did not affect the growth of either V. angustifolium or 

F. virginiana, indicating that C. maculosa does not have short-term effects on either native 

species, and that manual removal of C. maculosa may not be an effective removal method. 
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Introduction  

 

Invasive species are those introduced outside of their native ranges that adversely 

influence the diversity and density of native species in a given area due to increased competition, 

having greater rates of growth and reproduction (Callaway & Ridenour 2004, Hejda et. al. 2009). 

Native species, that have not evolved ways to survive in the presence of invasive species, are 

consequently vulnerable to competition from invasive species and reduced fitness (Perry et. al. 

2005). As invasive species use soil resources, native species diversity may decrease because 

these organisms cannot obtain resources necessary for proper growth (DiTomaso 2000). Further, 

invasive species may deter native species from inhabiting an area after foraging and living 

habitats have been physically or chemically altered (DiTomaso 2000). In addition to out-

competing native species for space and nutrients, invasive species can alter the structure of 

environments as well. Many invasive plants use allelopathy to secrete chemicals into the soil, 

such that the chemistry of the habitat becomes altered (Perry et. al. 2005). Due to these potential 

effects, invasive species can be very costly to prevent and properly remove (DiTomaso 2000). 

Characterization of these impacts at both the population and community level is imperative, as 

such work may contribute to improved approaches of preventing biological invasions. 

Densities of Centaurea maculosa, commonly known as spotted knapweed, are rapidly 

increasing across rangelands and meadows throughout North America (Knochel & Seastedt 

2009). Native to Eurasia, the native range of C. maculosa spans from the Mediterranean to 

eastern Russia (Sheley et. al. 1998). Shortly after the introduction of C. maculosa in North 

America in the late nineteenth century, the plant established dominance in many habitats, most 

notably causing soil erosion, biodiversity loss, and reduction of grazing area in rangelands in the 

west (Sheley et. al. 1998). The mechanisms through which C. maculosa and its Centaurea 

relatives outcompete native species remain unknown and controversial, though several 

hypotheses have been proposed. These hypotheses fall into the following categories: direct plant-

plant interactions, indirect plant-soil interactions and plant-herbivore interactions (Knochel & 

Seastedt 2009). The plant-plant hypothesis focuses on the allelopathic mechanism by which C. 

maculosa alters soil chemistry. The plant secretes a phytotoxin known as catechin, which causes 

cell death in the roots of plants that have not evolved resistance to it (Callaway & Ridenour 2004, 

Perry et. al. 2005). Most North American plants that have recently been exposed to C. maculosa 
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have yet to evolve resistance to catechin, and as such, are vulnerable to the effects of the toxin 

(Perry et. al. 2005). The plant-soil hypothesis proposes that C. maculosa’s main competitive 

advantage in non-native habitats comes from its “selective inhibition of mycorrhizal fungi that 

benefit competing plants,” causing the roots of these plants to be less effective at uptaking 

nutrients (Knochel & Seastedt 2009). The plant-herbivore hypothesis maintains that C. maculosa 

populations benefit from low to intermediate levels of insect herbivory, as it increases the 

amount of catechin produced by individuals (Perry et. al. 2005, Knochel & Seastedt 2009, 

Nilsson et. al. 1993, Callaway & Ridenour 2004). 

The purpose of the study was to determine (1) relationships between the density of C. 

maculosa and those of two native plant species: Vaccinium angustifolium (low-bush blueberry) 

and Fragaria virginiana (strawberry); and (2) whether the removal of C. maculosa differentially 

affects the growth of V. angustifolium and F. virginiana. Primary literature on C. maculosa 

indicates a strong correlation between C. maculosa density and catechin levels in soil (Perry et. 

al. 2005), allowing C. maculosa density to be used as a proxy for potential allelopathic effects on 

co-occuring native plant species. Some plant species’ root systems contain long, deep roots, 

while other species specialize in shallower, more angled roots (Fitter 2008). C. maculosa exhibits 

a long taproot system, composed of a single long root extending deep into the soil and many 

small roots extending laterally along its sides (Fitter 2008). This taproot system allows C. 

maculosa to reach underground water resources more successfully than native species with 

shallower root systems, which could hinder the growth of these native plants (Fitter 2008, United 

States 2006). Both V. angustifolium and F. virginiana,co-occur with C. maculosa, while differing 

in root systems. V. angustifolium has a small tap root system, while F. virginiana has a shallow 

root system. The manual removal of C. maculosa on the short-term growth rates of the two 

native species were characterized in plots where C. maculosa was removed, and in paired control 

plots where C. maculosa densities were maintained. We hypothesized that increasing density of 

C. maculosa would be negatively associated with the densities of the two native species. We also 

expected results that C. maculosa density would have more adverse effects on the growth of F. 

virginiana due to its shallow root system and possible increased uptake of catechin. 

 

Materials and Methods 

Site Description 
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 The study was conducted on the UVB field, a meadow located on the University of 

Michigan Biological Station (UMBS) property in Pellston, Michigan. The study site measures 

approximately 100 m x 175 m and is located to the west of Douglas Lake ‘s South Fishtail Bay. 

The UVB field is surrounded by a hardwood forest dominated by Acer rubrum, Quercus rubra, 

and Populus grandidentata. Native species found within the UVB Field include: Pteridium 

aquilinum, Verbascum thapsus, Asclepias syriaca, Fragaria virginiana, Vaccinium angustifolium, 

Centaurea maculosa, Hieracium pratense, Cladonia rangiferina, Cladonia cristatella, 

Taraxacum officinale, and a species in the Lamiaceae family.  

 

Plant Diversity Field Studies 

To determine whether C. maculosa density affects growth of native V. angustifolium and 

F. virginiana, thirty-one 1 m x 1 m plots were set up along parallel linear transects in the UVB 

field (Figure 1). Each plot was placed more than 10 meters from the forest edge, to minimize any 

edge effects. The plots were established to represent the full range of densities of C. maculosa, V. 

angustifolium, and F. virginiana within the study site. The density (individuals/m2) of each target 

species and other native species (excluding grasses) were recorded. The main stem of each plant 

was measured from the tip to the base. Percent cover of each plant species (including grasses) 

was taken and recorded, as well. Percent cover was measured by dividing a 1 m x 1 m grid into 

forty-nine smaller cross sections. At each cross-section where two or more lines intersected, the 

plant species was recorded. The number of species occurrences was divided by total cross-

section number to estimate percent cover. Following field measurements, C. maculosa density 

and percent cover were related to the density and percent cover of V. angustifolium, and F. 

virginiana.  

 

Short-term Response of V. angustifolium and F. virginiana to C. maculosa Removal 

Plot-level plant community similarity was determined by pairwise comparisons using Chi 

square tests, for which  > 0.01. To minimize variability in other environmental properties not 

measured across the field (e.g. amounts of sunlight, soil moisture, soil nutrient content, and soil 

pH), the study site was partitioned into quadrants, and pairs of plots were chosen within each 

section. C. maculosa was manually removed from one plot of each pair, and maintained in the 

second plot as a control. To measure the effects of C. maculosa density on growth of V. 
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angustifolium and F. virginiana, three individuals of each species were measured in each plot. 

Three growth metrics measured three times over nine days following C. maculosa removal 

included: height of the plant stem, the length of one leaf, and the width of the same leaf. Total C. 

maculosa biomass (fresh-weight) collected by plot was recorded. A subset of the C. maculosa 

biomass was then dried in a 60°F oven for approximately 40 hours. A fresh weight to dry weight 

ratio was calculated and used to determine the dry weight biomass (g) of C. maculosa for each 

plot.  

 

Statistical Analysis 

 Relationships between the percent cover and density of C. maculosa and that of the two 

native species (V. angustifolium and F. virginiana) were analyzed using both linear regression 

and Mann-Whitney U tests. Research suggests that catechin levels in soil are directly correlated 

with C. maculosa biomass (Perry et. al. 2005), so we also tested whether target native plants 

were less abundant in areas with higher C. maculosa density using linear regression. The data 

was then split into three groups based on C. maculosa density (<10, 10-79, and >80), and 

Kruskal-Wallis tests were performed followed by Mann-Whitney U tests to determine pair-wise 

differences in native plant species responses to C. maculosa density classes. The significance of 

the Kruskal-Wallis test and Mann-Whitney U test outcomes were evaluated at  = 0.05. 

Wilcoxon Rank Sum tests were used to determine the variation among means of native species 

growth in the paired plots. The significance of the Wilcoxon rank sum test outcomes were 

evaluated at  = 0.05.  

 

 

Results 

Linear regressions indicated that C. maculosa density was positively associated with, but 

did not significantly explain, V. angustifolium density (Figure 2; R
2
 = 0.102, p = 0.553). 

Similarly, C. maculosa density was negatively associated with, but did not significantly explain, 

F. virginiana density (Figure 3; R
2
 = 0.072, p = 0.445). C. maculosa percent cover was 

positively associated with, but did not significantly explain, V. angustifolium percent cover 

(Figure 4; R
2
 = 0.063, p = 0.787). C. maculosa percent cover was negatively associated with, but 

did not significantly explain, F. virginiana percent cover (Figure 5; R
2
 = 0.005, p = 0.240).  
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Nonparametric Mann-Whitney U tests were performed to analyze the relationships 

between abundances and percent cover data of C. maculosa with V. angustifolium and F. 

virginiana, separately. No significant correlation was found between the density of C. maculosa 

and V. angustifolium (p = 0.466). The test between the density of C. maculosa and F. virginiana 

indicates no significant correlation between the densities of the two species (p = 0.787). No 

significant associations were found from the test between the percent cover of C. maculosa and V. 

angustifolium (p = 0.492) or from C. maculosa and F. virginiana (p = 0.950). 

 C. maculosa density was divided into three density classes based upon number of C. 

maculosa individuals per plot: <10, 10-79, and >80. Split into these three density classes, 

nonparametric Kruskal-Wallis tests were performed to determine whether the changes in native 

species density or percent cover were correlated with differing density groups (Table 1). No 

significant correlation was found between densities of C. maculosa and V. angustifolium density 

(p = 0.525). Similarly, no significant correlation was found between different densities of C. 

maculosa and F. virginiana density (p = 0.366). No significant correlation was found between 

different densities of C. maculosa and V. angustifolium percent cover (p = 0.303), or between 

different densities of C. maculosa and F. virginiana percent cover (p = 0.630). 

Plots A2 and B5, C1 and E3, and E2 and Y3 were paired together based on Chi square 

tests, for which the significance value was set to p = 0.01. C. maculosa was removed from plots 

A2, C1, and E2, and was maintained in plots B5, Y3, and E3. The Wilcoxon Rank Sum test 

compared the overall change in stem height of F. virginiana in all pairs and the overall change in 

stem height of V. angustifolium in the pair of E2 and Y3 (the only statistically similar plots in 

which V. angustifolium was present). No significant difference was found between the change in 

F. virginiana stem height in plots in which C. maculosa was removed or maintained (p = 0.342). 

A similar result was found for growth rates in V. angustifolium (p = 0.109). 

 

 

Discussion 

Correlations between density and percent cover of both V. angustifolium and F. 

virginiana and C. maculosa density were compared to determine whether the density of either 

native species would be affected by C. maculosa differently. Given that neither the density nor 

the percent cover of C. maculosa were significantly associated with the density and percent 
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cover of either V. angustifolium or F. virginiana, the null hypothesis was retained that C. 

maculosa does not affect the density or percent cover of one native species more adversely than 

the density or percent cover of the other. It is unlikely that C. maculosa has no effect on either V. 

angustifolium or F. virginiana, as this invasive species has been known to alter the structure of 

similar plant communities and produce negative effects on the native species present (DiTomaso 

2000).  

The lack of significant relationships could have been caused by an inability of C. 

maculosa to affect the native species selected, the timing of the observations made, and noisy 

variables that were not properly standardized. C. maculosa populations have been established on 

UMBS property for a few years, such that the the remaining V. angustifolium and F. virginiana 

populations in the area likely contain phenotypes with the ability co-occur with C. maculosa. 

This possibility would also yield a non-significant response between the density and percent 

cover of C. maculosa and the two native species. This is a reasonable explanation, due to the fact 

that C. maculosa individuals begin producing catechin within the first few weeks after 

germination, and the toxin can be fatal to seeds of native species at low levels (Weir 2003, 

Inderjit et. al. 2008). While noisy variables were standardized wherever possible, undetected 

noisy variables could have created no-correlation responses. All plots were placed at least 10 m 

from the forest to avoid edge effect; however, as no standard exists for where edge effect begins, 

and it remains unknown whether this effect altered the data collected. Possible edge effect could 

have contributed differences in soil composition, light availability, and species diversity in each 

plot. Soil composition and nutrients were also not measured and as such, location of differing 

amounts of invasive and native plants could have been caused by any of these factors, and 

relationships between the invasive and native species abundances may have been obscured. Last, 

a better representation of the effects of C. maculosa could have been obtained with a greater 

number of plots and knowledge of  the species composition of the study site before the 

introduction of C. maculosa. Standardizing environmental conditions and establishing  the 

composition of plant communities before C. maculosa invassions would have allowed for mor 

rigourous tests of community responses to C. maculosa densities. 

Herbivory may play a significant role in the ability of invasive species to spread in their 

respective environments, as native specialist herbivores do not prey on invasive species, and 

generalist herbivores tend to ignore the presence of the new invasive plants (Inderjit 2012). 
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Similarly, herbivory rates on invasive species are lower than those of non-invasive exotic species, 

which are non-native species that do not create the same risks of habitat invasion and 

biodiversity loss (Cappuccino & Carpenter 2005). Invasive species suffer “on average, 96% less 

leaf damage than non-invasive species,” likely due to the greater taxonomic gap between 

invasive species and native species than that of non-invasive and native species (Cappuccino & 

Carpenter 2005). Herbivory on the F.virginiana plants by Emphytus maculatus larvae (Scholtens, 

personal communication) could have functioned as a confounding variable; we attempted to 

avoid this when selecting paired plots for C. maculosa removal by pairing plots in the same 

quadrant that exhibited similar levels of herbivory.  Entomologist, Brian Scholtens identified the 

larvae as “Emphytus maculatus, the strawberry sawfly in the family Tentredinidae,” based upon 

the placements of its eyespots and its particular host (Scholtens). Herbivory on native plants may 

still pose a problem, however, as the absence of leaves could altogether hinder potential plant 

growth. Additionally, leaf length and leaf width measurements on native plants could not be 

quantified in certain cases due to herbivory. Though not quantified in this study, higher levels of 

herbivory on native plant specie relative to that of herbivory on C. maculosa, could have long-

term effects on the abundance of either native species in the field and indicates a competitive 

advantage of C. maculosa in that it lacks a natural herbivore in the study site.  

Current removal techniques of C. maculosa include the introduction of co-evolved 

herbivores (e.g. natural enemy release), removal using chemicals or fire, addition of other native 

plant species, or manual removal (Knochel & Seastedt 2009). While the best method for 

eliminating C. maculosa in a habitat is “concurrent top-down (herbivory), and bottom-up (plant-

mediated resource density) effects,” these methods require several years to become effective, due 

to pre-existing C. maculosa seed banks in many habitats (Knochel & Seastedt 2009). The 

possibility also exists that insect herbivores introduced for biocontrol could be one of the species 

that cause increased catechin dispersal by C. maculosa, thereby conferring this invasive a 

competitive advantage (Thelen et. al. 2005). Most removal techniques, with the exception of 

manual removal, tend to have significant negative impacts on total biomass of native species in 

the area (Knochel & Seastedt 2009). While manual removal was the only removal method 

available for the study, it is not considered the best technique for permanently removing C. 

maculosa from a given area, and may lead to the colonization of the area by other weeds and the 

return of C. maculosa (Knochel & Seastedt 2009, Mauer 2001). The high density of C. maculosa 
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in certain plots also made it difficult to remove C. maculosa individuals without disturbing 

native species, and some invasive roots and seeds may have been left behind. This may have 

created a noisy variable of differential disturbance across plots, with the highest levels of 

disturbance in plots that exhibited higher densities of C. maculosa. 

Prior research posits that C. maculosa biomass is directly correlated with catechin levels 

in the soil, and as such, the assumption was made that plots in which C. maculosa was more 

abundant would also exhibit higher levels of catechin in the soil (Perry et. al. 2005). After 

quantifying C. maculosa biomass removed from the study site (Table 2), a significant positive 

relationship between C. maculosa density and biomass was verified by a linear regression 

(Figure 6). Catechin remains in the soil for an unknown period of time following the removal of 

C. maculosa, and that “North American soil biota may promote invasion” by allelopathy from 

the Centaurea family (Vivanco 2004). Thus, after the removal of C. maculosa, catechin may 

have remained in the soil and inhibited the growth of V. angustifolium and F. virginiana, thereby 

contributing a noisy variable to the experiment. C. maculosa also reappeared in the plots in 

which it was removed towards the end of experiment, thereby allowing individuals to secrete 

catechin again. C. maculosa seeds likely remained in the soil (Emery & Gross 2005). The most 

effective method of removing the viable seeds and reducing catechin levels would include annual 

burnings of the soil; however, while effectively removing C. maculosa, prescribed burns would 

do so at the expense of the native species abundances as well (Emery & Gross 2005). 

 

 

Future Directions 

 The results of this study indicate that further research will be necessary to better 

understand the effects of C. maculosa on specific native plants. A possible topic for further study 

would be to explore the effects of juvenile C. maculosa, rather than that of established 

individuals, on native species. Also, this study could be replicated over a longer observation 

period, to more accurately define the time-scale over which C. maculosa may affect the density 

and growth of native plant species. The removal technique could also be evaluated over an 

extended period of time, as manual removal is the simplest and least habitat-damaging technique 

available. The ability to predict biomass from C. maculosa density could facilitate future studies 

linking population density to soil catechin levels.  
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Table 1: Kruskal-Wallis tests describing significant differences in the density and percent cover 

of the native plants among different densities of C. maculosa. 

 

Transect Plot 

Number 

C. maculosa 

Fresh Weight 

(g) 

Subsample 

Fresh 

Weight (g) 

Subsample 

Dry 

Weight (g) 

Dry Weight to 

Fresh Weight 

Ratio 

C. maculosa 

Dry Weight (g) 

A 1 80.41 35.95 5.16 0.1435 11.5414 

A 2 591.04 129.87 20.78 0.1600 94.5700 

A 3 119.62 36.63 4.76 0.1299 15.5444 

B 2 90.91 46.26 7.40 0.1599 14.5425 

C 1 101.41 47.97 8.88 0.1851 18.7726 

E 2 92.59 33.22 6.37 0.1918 17.7543 

 

Table 2: Fresh weight (g) and dry weight (g) of C. Maculosa removed from experimental plots. 
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Figure 1: Google Maps’ image of the UVB field at UMBS. Parallel yellow lines represent five, 

25 m transects, each with four to five 1x1 m plots. Yellow boxes represent areas each containing 

3, 1x1 m plots. The study site contained 31 total plots. Blue circles represent plots A2 and B5, 

one experimental pair of plots. Additional pairs include C1 and E3 (orange circles) and E2 and 

Y3 (purple circles).  
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Figure 2: Linear regression between V. angustifolium density and C. maculosa density. R

2 
value 

is 0.102. Regression equation is: y = 19.37+0.18x. 
 

 

Figure 3: Linear regression between F. virginiana density and C. maculosa density. R
2 

value is 

0.072. Regression equation is: y = 37.68+-0.18x. 
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Figure 4: Linear regression between V. angustifolium percent cover and C. maculosa percent 

cover. R
2 

value is 0.063. Regression equation is: y = 0.16+0.21x.  
 

 

Figure 5: Linear regression between F. virginiana percent cover and C. maculosa percent cover. 

R
2 

value is 0.005. Regression equation is: y = 0.15+-0.12x. 
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Figure 6: Linear regression describing C. maculosa density according to C. maculosa biomass. 

R
2
 value is 0.959. Regression equation is: y = -8.91+1.85x. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 


