

TABLE OF COMTENTS
Introduction $8-3$
The Scope of the Investigation 1
Method of Investigation 2-3
Preliminary Discussion $4-5$
History of the Stand 4
Stand Description 4-5
Improvement Cutting 5
Analysids of Compartment 1 6.14
Changes in the Composition 6.7
Degree of Change of the various Species $7-8$
Changes within the Individual Species $8-13$
Diameter Distribution and Stocking of the Stand 13
Summary 14
Analysis of Compartment 4 15-22
Changes in the composition 15
Degree of Change of the Various Species 16
Changes within the Individual Species $16-20$
Diameter Distribution of the Morevaluable species in the stand . 21
Summary 22
Analysis of Compartment 6 23-30
Changes in the Composition 23-24
Degree of change of the Various Species $24-25$
Ohanges within the Individual Species 25-28
Diameter Diatribution of the more desirable Species 28-29
Summary 29-30
Analysis of Compartment 10 31
Changes in the Composition 31-32
Degree of Change of the Various Species 32-33
Changes within the Individual Species 34-37
Diameter Distribution of the More
Desirable Species in the stand 38
Summary 39

NATURAL SCIENCE LIBRARY

RESULTS
-
IMPROVEMENTCUTTINGS
at
EBER-WHITE-WOODS

INTRODUCTION

This paper represents a thesis for the degree of Master of Forestry in the branch of silviculture. The study has been carried on under the sponsorship of Professor Leigh Young, who is Professor of silviculture at the School of Forestry and Conservation at the University of Michigan.

The Scope of the Investigation.

The investigation concerns itself with the computation and in terpretation of data collected at Eber White Woods, where over a period of twenty years improvement cuttings have been carried on and information has been collected which enebles a comparison of the original stand with the present stand. The purpose of this study is to determine the changes that have taken place in the composition, in the stocking, and in the diameter distribution of the stand. It is beyond the scope of this investigation to account for the specific changes which have occured. The data that were available would not warrant any definite conclusions in that respect. There is no information on hand regarding tree forms and decay, or regarding the site factors in the stand. The study is limited to describing the changes that have taken place from one decade to another. It is a comparative analysis of the stand in its original condition and its present condition as influenced by the improvement cuttings. From this comparative study certatn conciusions may be drawn which may serve as a guide for future silvicultural treatments.

Mothod of Investigation.

Before considering the method of investigation it will be necessary to mention briefly the manner by which the information concerne ing the stand was obtained. Eber White Woods consists of a 43 acre tract of mixed hardwoods. The area is subdivided into ten compartments of t. 3 acres each. A separate record is kept for each compartment. The species are recorded by one inch diameter classes. A come plete inventory of the stand was taken before the first improvement cutting took place and gain after the last improvement cutting was carried out, This study concemas itself with compartments one, four, six, and tene Compartment fous represents a fifteen year interval since the first improvement cut was administered, while the others represent only a ten year interval.

The method of investigation consists of computations which bring out more clearly the changes that have occured as a result of the silvicultural treatment. First, the composition of the origingl stand. is compared with thet of the present stand. Second, the changes which have occured within each individual species are considered. Third, the percentage changes of each species, as compared to the sum total change in the stand is taken up. Fourth, the change in the diameter distribution of the more desirable species is taken up. Their mean diameter, the standard deviation and the coefficient of varication are computed to illustrate the general trend of the diameter distributions. Based upon the results of these computations a comparative analysis
of the original and the present stand is made from the viewpoint of change in compositionj diameter distribution and stocking of the stand. A summary is included emphasizing the pertinent facts which have become evident from the investigation. The same procedure of investigation is persued for each one of the four compartments. The charts which resulted from the computations are included in the appendix. They are refered to in the text by the following symbolss "A for compartment 1 , "B" for compartment 4, "C" for compartment 6, and "D" for compartment 10.

PREL IMINARY DISCUSSION

I_{n} order to obtain a more complete picture of the stand, a brief history and stand description, and a discussion of the manner of imo provement cutting is here given.

History of the Stand.

The tract was acquired by the School of Forestry and Conservation in 1905. The stand had been cut-over ropeatedly for its better speciec. Grazing and firee had undoubtedly taken their toll; consequently trees of poor form, decadent trees, and a preponderance of less desirable species were left behind. There were some large Oak trees left standing; which the former owner had left for sentimental reasons. These large trees have assumed the dimensions of wolf trees and have complio cated the silvicultural treatment of the tract.

Stand Description.

The stand is located in the SE1/4, S E 1/4, Ser. 30, T $2 S_{s}$ R 6 E, Mich. P.M. It is adjacent to the western limit of the City of Ann Arbor. The stand comprises the native hardwoods of Lower Michigane The tract is now under fence, and is protected against fire and grazing. The land is of medium fertilety, it is on rolling ground of the interlobate morain region and consists of a variety of soils from sandy land to clay and eravel. The soil supports in addition to the hardwood stand, a herbaceoue ground cover of a rather rank growth and of medium density. Grasses are intermingled aparcely with the herbaceous weeds. Some of the outcroping rocks are covered with moss.

Under-brush is very sparce, it consists of a few raspberry, blackberyy. gooseberry, some prickly ash, and a few stray barberry bushes. Improvement Cutting.

The tract is managed as a selection fogest on a ten year cutting cycle. These cuttings up to date have assumed the neture of improvement cuttings more than that of harvest cuts. The object has been to inm prove the composition of the stand, and to obtain good tree formes and to rid the stend of decadent trees. Cleaning cuttings at pire year intervals have also been carried on. They were in the nature of light cuttings, removing the less desirable species which could not be removed during the harvest cut for fear of opening up the stand too much. The eilvicultural treatment has been hampered somewhat by the presence of these large wolf trees which in viow of the potential park value of the tract have been left standing.

ANALYSIS OF COMPARTMENT I

ANALYSIS OF COMPARTMENT ONE

The first cutting in compartment 1 took place in 1922. An intermediate cut in the form of a cleaning cutting was administered in 1927; and the last out took place in 1932. In the following discussion seference aball be wade to the charts designated by A in the Appendix. Changes in the Composition.

Chate IA in the Appendix compares the original stand and the present stand by tree nambers and by basal areas of each apecies in percentages to the total stand. It seems that comparatively little change in the composition of the stand has taken place. However, it must be noted that the percentages of tree numbers show an increase for the desirable tree species, while the lese desirable species, ironwood, shows a decrease from 52% to 44%. The basal area relationship has re mained more constant. The outstanding feature there, is the decrease in basal area of white oak which decreased from 24% to 20%. The greatest change has occurred with white ash and black cherry: The former increased from 6% to 11% by numbers and from 2% to 4.5% by basal area. Cherry increased from 1% to 3% in number of trees and from 0.5% to 1.5% in basal area. Hard Maple increased from 0.3% to 1.3% its basal area remaining the same. Red Oak shows an increase of 1% by numbers and a slight increase in basal area. Elm has been reduced from 6% to 4% by numbers and from 5.2% to 3.6% by basal area. While ironwood decreased in number, its basal area has slightly increased. The composition of the stand is determined much more by the basal area representation of
a species than by tree numbers. The dominant trees of the atand are the larger trees, and they make up the bulk of the basal area in the stand. High percentages of tiree numbers of a species with accompanying low percentages of basal areas indicate potential changes which the stand may undergo as a result of silvicultural management. Degree of Change of the Various Species.

Chapt 2 is a sumary of the computations for each individual spes cies, it indicates the degree of change that has taken place in res lation to the sum total change in the stand. It becomes evident from a study of this chart that the stand has undergone greater changes than the result of chart 1 indicates. The atand has decreased in tree numbers by 13% and increased in basal area by 12%. The greatest changes in the composition of the stand by tree numbers have occurred in ironwood, 50% of the sum total changes took place in that species. White Ash comes next with a relative gain of 13% basswood displayes a reo duction of 12%. elm is reduced by 9%, black cherey gained 5\%, The changes in the basal area relationship are quite different. Red Oak has undergone the greatest relative change, its basal area accounts for a 27% increase over the other species, white ash comes second with a 16% increase. Ironwood increased 12%, but white oak decreased neariy 11\%. It is of interest to note that practically all species increased in basal area. Even basswood increased ita basal area by 9% although in numbers of trees it decreased by 12%. Elm has declined considerably,
its relative loss in number of trees is 9%, and in basal area it is 6%. In connection with this chart it must be remembered. that these pere centages do not express absolute values but rather a degree of change related to the sum total change which the stand has undergone. Changes within the Individual Species.

Each species has been considered separately in regards to changes by tree numbers and basal areas within each one-inch diameter class. The trend in reproduction and the diameter distribution of a species become evident from the tables in the Appendix designated as A 3 a 3.b, etc. A brief discussion of each species shall be given here.

Red Oaks Red Oak is the consorting species in the stand. It makes up 28% of the basal area of the stand and has undergone a change of 27% in basal area of the un total change in the stand. Numerically it increased to 104.5% of its former representetion and to 1200 of its former basal area. Much of the gain in number occurred in the 1 and 2 inch diameter classes. The diameter distribution from 3 to 10 inches inclusive is very deficient. From 11 inches to 22 inches the apecies is well sepresented. There are also a. few trees in the higher diameter classes. These trees seem to be growing at a rate of 2 inches in diameter per decade. The average diameter of the stand of Red Oaks has remainod practically the same. This is due to the removal of some of the larger trees and also due to a greater percentage of appo langs in the stand.

White Oak White oak displayes a decided loss in the sapling stage. It amounts to 29% in the 1 inch class. In all, white oak has decreased to 93% in number and to 92% in basal area of its original number. It is on the decline in the composition of the stand, as is indicated by the relative drop off in basal area of nearly 11% from chart 2. White oak still makes up 20% of the basal area in the stand. The oake as a group constitute nearly 50% of the basal area, but only 7% of the stand by tree numbers, with a slight decrease in basal area and a slight gain in number of trees over that of 1922. The diameter distribution of white oak is fairly good up to 16 inches, above that diameter, it is very scattered. There are a few large trees left standing, the biggest being 38 and 39 inches in diameters. These large trees at the best are growing at a rate of one inch in ten years. When these trees are removed, white oak will soon join the ranks of concomitant species.

爵ite Ash: White Ash displayes the greatest gain of any species in the sapling as well as in the pole class. It increased 53% by tree numbers and 148% by basal area. The 1 and 2 inch classes alone make up 44\% of the total gain. The pole class up to 7 inches gained another 50\%. A Hemes gatred anothor 20%. Above the 7 inch diameter class only a few scattered trees are found. The biggest of which is 15 inches in diameter. The growth rate in diameter seeme to be somes what over 2 inches per decade. In spite of the large increase in the small diameter classes the average diameter has increased from 2.35
inches to 3 inches. Ash will undoubtedly assume a more prominent poaition in the future stand than it has formerly maintained.

Hickory: Hickory decreased in tree numbers to 90% of its former representation, but increased its basal area to 112%. The change in number has taken place mostly in the 1 to 8 inch diameters. The diameter distribution up to 14 inches is good. Above that only a few scattered individuals are present to a 22 inch limit. The greatest gain has taken place in the 9 inch diameter class, while the greatest losses occurred from 8 inches down. But hickory is still well répre sented in these lower classes. Hickory makes up 12% of the total basal area of the stand; it is represented by a higher percentage of saplings than the oaks in the stand. Though the red oaks show a tendency toward an increase in the composition of the stand, while the hickories show a tendeney toward a decrease.

Basswood: Basswood makes up 22% of the stand by tree numbers and nearly 11\% by basal area. There has been a marked decrease in the 1 and 2 inch classes, and a gain from there on up to the 9 inch class, In all, basswood decreased to 86% of the original number, practicelily all of which took place in the 1 and 2 inch diameters. Its basal area increased to 116.5%, this increess took place in the 3 to 9inch classes. The diameter distribution to a 10 inch diameter is satisfactorily. There are oniy 3 trees above that diameter, the largest of which is 24 inches with a slow growth rate of about 1 inch in a ten year period. It is to be noted that the 10 inch class is the limit of regular diameter distribution both in 9922 and in 1932.

Elm: Em has lost considerable ground in the composition of the stand. It was reduced from 6% to 4%, chart 1) It contains only 60% of its original number and 77% of the original basal area. The greatest decrease has occurred in the sapling class, amounting to 80% of the total change. The diameter distribution of Elm is good to a 7 inch diameter. Above that it is patchy to a 15 inch limit.

Black Halnuts Black Walnut is decidedly a concomitant species in the stand. It makes up only . 42% of the stand in tree nurgbers and 2.6% in basal area. Walnut is of high intrinsic value and deserves every consideration. The species decreased to 81.3% of its original number and increased to 132% by basal area. The greatest decrease was suffered in the first four diameter ciasses. One is not justified in drawing definite conclusions regarding the probable trend of walnut in the come position of the stand, the species occurs in suca limited nurber that any littie change assumes relatively large proportions which may not express the trend of the species. The average diameter increased from 9.1 to 11.8 inches, it seams to be growing at a rate of about 2.5 inches per decade.

Black Cherry: Black cherry is decidedly on the increase. It increased roughly from 1% to 3% in the total stand composition. And gained 122\% over its former representation in tree numbers and 210\% in basal area. Most of the gain, 64\%, occurred in the 1 inch class. Its diameter distribution stops at 6 inches, excepting two larger trees,
one 14 inches in diameter, the other 20 inches in diameter. The latter is of a doubtful character since no lagge cherry was recorded on the 1922 tally.

Hard Maple: Hard Maple also is increasing. It was represented by 0.3% in 1922 and constituted 1.4% in 1932 in the composition of the stand. It increased to 420% by tree number and to 114% by basal area of its originsl value taken as 100%. 80% of the gain was obtained in the 1 and 2 inch diameters. These are really almost the only diameters represented in that species. There is a 17 inch tree which is probably responsible for the increased reproduction. The species appears to be a slow grower, putting on only one inch in ten years in tbis stand.

Ironwood: Ironwood by numbers has been reduced from 52% to 44% in the composition of the stand. The basal area remained almost the same, namely 16% of the total stand. It makes up 74% of the original number of ironwoods and 114.5% of the original basal area. The loss has been incurred in the 1 to 3 inch diameters, while the gain especially in basal area bas occurred in the 3 to 6 inch diameter. There are present 7 inch and a 8 inch tree, which are probably of seod bearing size. 1937 is the time for an intermediate cut in compartment one, and these larger trees will probably be removed in favor of reproduction of more desirable opecies.

Miscellaneous Species: This chart was prepared for species which occurred in such small numbers so that they could not be treated
separately. They are mostly less desirable species, such as blue beech. crab apple, service-berry, dogwood, sassafras, one butternut and one scotch pine. There has been an increase by numbers, but the basal area has been decreased from 0.9% to 0.5%. It is seen that these species are pi little importance in the stand.

DIAMETER DISTRIBUTION AND STOCKING OF THE STAND
Chart 4 illustrates the diameter diatribution of the more dease ablo species. The latter make up 105% of the original number of auch species. The gain occurred mosty in the 3 to 7 inch diameter classes. The average diametor bas increased, ar computed from frequency tableas from 3.18 inches to 3.82 inches. The atandard deviation in 1922 was was 4.19 inches, but in 1932 it had increased to $4 \% 42$ inches. However the coeficient of variation indicates a closer grouping of diameters about the mean value. It had changed from 132% to 108% This is a sign that the stand is approaching a more regular dianoter distributione Up to a 16 incb diameter the stand has a fair diatributiong above this diametor the tress are sparcely and scatteringly ropresented. In 1922 the 14 inch diameter class marked the limit of fair distribution. The stocking of the stand, when including the less desirable apocies, is good The spacing figure changed from 20.7 to 19.9. The average diameter of the stand increased from 4.1 to 4.7 inches. This clearly shows that the stand is closing up.

SUMMARY

The pertinent facts which have become evident from this amarsis shall now be emphasized. First, the stand is undergoing a gavorable change in composition as illustrated by the percentage increase of of the more desirable species. This change is tending toward a decided increase in the pepresentation of white asha black cherry, hard maple, and also red oak. White oak and elm are loosing ground in the como position of the forest.

Second reproduction of white oak is falling off, while that of red oak is increasing. It is possible that this difference lies in the fall germinating character of the whit oaks which may oncounter unfavorable weather conditions at that tine, while the red oaks germinating in the spring do not encounter this difficulty.

Third, the less desirable species, ironwood, while decreasing its representation by numbers, has slightly increased in basal area, which makes up 16% of the stand. The besal area of that apecies cen readily be reduced by the renovel of some of its larger trees in the $6-7$ and 8 in diameter class.

Fourth, the diameter distribution of the more desireble species is improving. It is fairly well represented to a 16 inch limit, above that, the distribution is deficient.

ANALISIS OF COMPARTMENT IV

ANALYSTS OF OOMPARTMENT FOUR

In compartment four a fifteen year interval has elapsed since the initial improvement cut was administered in the year of 1920. A second improvement cut was applied in 1930, and an intermediate cleaning cutting took place in 1935.

Changes in the Composition.
The changes in the composition of this compartment are more proo nounced than those of any other compartment. Chart B-1 of the Appendix illustrates this change. The outstanding features are, the marked increase in hard maple and white ash, and the decrease in Ironwood. Male increased numerically from 5% to 17% and by basal area from 7% to 11% in the composition of the stand. White ash changed from 4% to 14% by numbers, its basal area remained the same. Ironwood decreased its oce curance from 54% to 37% and its basal area decreased from 11% to 6%. Basswood likewise has changed its relative position in the stand. Numerically it increased from 5% to 7%, but by basal area it decreased from 11% to 7%. Red oak has slightly increased in tree numbers, and increased in basal area from 24% to 32%. While white oak has somewhat reduced its relative position in the stand, the same holds true of chickoyy and elm. Walnut and black cherry have slightly increased their reprem sentation in the stand, the total of which amounts to but 1% by numbers and about 4% by basal area.

Degree of Chenge of the Various Species.

This discussion is based upon chart B-2 which is a summary for the tables prepared for the individual species. It serves to bring out the degree of change which a species has undergone in relation to changes sustained by other species. Againg it becomes evident that ironwood has suffered the greatest change. It makes up 45% of the change in tree numbers in the stand. Its basal area displays a relative decrease of 15% of the basal area change in the stand. Hard maple comes next with a gain of 15% by numbers and one of 20% by basal area. White ash gained 12% relatively and 2% by basal area. Red Oak shows the greatostereo lative increase in basal area of any species, namely 36% it is the most vigorous species in the stand. Basswood and elm display a large relative decrease in basal area, although basswood gained 1.5% in numbers its basal area $108 s$ amounts to 13% of the change within the stand. Elm decreased by 7% in both columns. The stand as a whole decreased its stems by 20% and increased ita basal area by 7%. Changes within the Individual Species.

Tables for the individual species in the stand were prepared to determine the changes which occurred within a species by diameter classes. The trend of chenge of a species becomes evident from an analysis of these charts. The charis are attached to the Appendix under Come partment four.

Red Oak: Red oak has increased to 114% of its original number and to 140% of its original basal area. There is an increase of 14% in the sapling class, but the pole class which formerly was deficient has further reduced; so that practically no trees are present between the 4 and 9 inch diameters inclusive. From 12 inches on up there has been a general increase in the representation of trees per diameter class to a 24 inch limit. It is within this latter group of trees that the large basal area increase has occurred. The average diameter of red oak increased from 13.7 inches to 15.1 inches. Although the species makes up only 4% of the stand by tree numbers, it is nevertheless the dominant species in the stand, as indicated by the' basal area which constitutes $1 / 3$ of the total basal area of the stand.

White Oak: Thi basal area of white oak has remained constant, but it is rapidly fallingroff in the numerical representation of the stand as shown by a decrease to 65% of its original number. There has been a reduction of white oak from the 1 inch class to the 9 inch class diameters. The 16 inch diameter marks the untroken diameter distribution of white oak, The remaining trees seem to be growingeat a good rate d apparently 2 inches in diameter per decade. The average diameter increased from 8.4 to 10.7 inches.

Hard Maple: Hard maple is the most aggressive species in the stamd. It increased over its original number by 150% and by 84% over its basal
area. Of this increase 70% were sustained in the sapling class. Above the 4 inch diameter the representation of maple falls off rapidly and ceases at 14 inches, with only an occassional tree above that diameter. There appears to be a discrepancy in the data for the 25 inch trees, of which 3 are recorded in 1935, while only one tree was recorded in 1920 which could have grown to that size in the interem. The growth rate of the larger maples seems to be at a rate of slightly over 2 inches in diameter per decade.

White Ash: Among the better species white ash displeys the second largest gain in the numbers of the more desirable apecies, although its basal area increased but little. The numerical change amounts to 243% of the original, and the basal area changed to 108%. The bulk of the increase, 80%, was obtained in the 1 to 3 inch diameters, while the 9 to 17 inch diameter classes have reduced their representation in the stand. From the 9 inch diameter clase to the 24 inch diameter class white ash is but scatteringly represented. In view of the large anount of saplings in the stand it may be expected that ash will assume a more dominant position in the future stand.

Basswood: Although basswood has increased in numbers to 118% of the original, its basal area has reduced to 68% of the original. The gain has been obtained in the 2 and 3 inch classes. The basal area $108 s$ resulted from the removal of some of the larger mature trees. Tho diameter distribution is continuous to a 14 inch diameter, however
from a 10 inch diameter upward it is sparcely represented. Formerly a 10 inch diameter marked the limit of unbroken diameter diatribution.

Hickory: Hickory is on the decline in its representetion in the stand. It represents only 56% of its former number. The sum total basal area remained constant. there occurred a 44% decrease in the 1 inch diameter class alone by tree numbers and an average 5% decrease per diameter class from there on up to the 9 inch class. The diameter distribution is good to a 15 inch diameter. A few larger trees are represented above this diameter.

Elm: The decrease in elm is very marked, it makes up only 57% of the original number and 72% of the former basal area. The reduction occurred in the sapling class where it amounts to 85% of the total decrease of that species. The diameter distribution is satisfactorily to an 11 inch diameter. Above this diameter only a few trees are represented.

Walnut: Black walnut assumes an insignificant position in the composition of the stand. It makes up only 0.4% by numbers and 3% by basal area. The species appears to be on the increase in the stand. From a careful analysis of the chart it seems however that the records for black wal nut are none too reliable. The diameter growth of the trees varies from 2 to 5 inches, during a 15 year period: while a large 28 inch tree seems to have decreased in diameter or else has come up from no-where.

Black Cherry: Black cherry likewise occupies an inferior position in the stand. It makes up only 0.6% by numbers and 0.8% by basal area. The species is displaying an increase to 167% by numbers over its original number, the basal area remaining the same.

The Less Desirable Soecies: Of the less desirable tree apecies ironwood is the most important species, it constitutes 37% of the steme in the stand and 6% of the basal area of the stand. Ironwood has been reduced to 54% of its original representation, and to 62% by basal area of its former representation in the stand. The species is now represented to a 6 inch diameter, while formerly it occurred to an 11 inch diameter. Most of the reduction however took place in the 1 and 2 inch diameters which may indicate that the source of previous, much heavier reproduction, has been eliminated.

Blue beech, which now makes up 4% of the atand by numbers has been reduced 50% from its original number in the stand and 53% by basal area.

Dogwood of which no representatives were recorded in 1920 now constitutes 1% of the stems in the stand and. 08% by basal area.

DIAMELER DISTRIBUTION OF THE MORE VALUABLE SPECIES IN THE STAND

The more desirable species in this compartment have increased by 8.6\%. Most of the increase took place in the 2 and 3 inch diameter classes, The distribution is good to a 25 inch diapeter. It extends to a higher diameter limit in this compartment than it does in any other compartment. Statistical calculations will describe this diameter distribution more adequately. The diameter distribution of the more desirable species changed from 4.26 inches to 4.42 inches. The standard deviation remained at practically 5 inches. The coefificient of variation changed from 118% to 112%. It is seen that the diameter distribution of this stand has not changed very much, with the exception of a large increase in the 2 and 3 inch diameter classes, and an extension of the continuous distribution in the upper diameters from 20 inches to 25 inches.

The stocking of the stand as a whole has slightly closed up. In spite of a reduction of 45% of the large amount of the less desirable species, the apacing figure has changed from 21.18 to 20.46 . The stand reduced to an average acre basis has undergone the following changes: It changed in numbers of trees from 680 to 543 trees, in besal area it increased from 76.35 to 84.69 square feet, the average dianeter increased from 4.5 inches to 5.3 inches. Expressed in percents the number of stems decreased 29% while the basal increased 7%.

EUMMARY

The important changes which this stand has undergone during a 15 year interval, from the firat to the last applied improvement cut, ase now summarized:

In general, the composition of the stand has undergone aceided change.

This change is reflected by quite a large increase of hard maple, and by a large increase of white ash.

Red oak is an aggressive species in the stand, while white oak is on the decline.

Basswood, black cherry, and possibly walnut display a tendency to increase their representation in the stand.

While hickory and elm are decreasing in the stand composition.
The less desirable species have greatly reduced their position in the stand. This reduction may be expected since the more desirable species have increased their representation by 8.5%.

The stand has decreased in number by 20% and increased its basel area by 7% with an accompanying decrease of the spacing figure from 29.2 to 20.5.

The diameter distribution of the more valuable species has changed but little. The coefficient of variation decreased from 118% to $11 \% \%$, this indicates a tendency toward a more regulated distribution. The latter is now fairly wellyeresented to a 25 inch diameter.

ANALYSIS OF COMPARTMENT VI

ANALYSIS OF COMPARTMENT SIX

The first improvement cutting upon this compartment was adminiatered in 1922. This was followed by a light cleaning cutting in 1927, and by a second improvement cut in 1932. An intermediate cut will again take place in 1937. The tables refered to in the following discuesion are found in the appendix. When seferences to percentages are made, only whole numbers are given in the text, while in the tables they are carried out to fractional values. Ohanges in the Composition.

Chart i compares the original composition of the stand with the composition of the present stand on a percentage basis by numbers of trees and by basal areas. It is seen from this table that in 1922 费解 more desirable species comprised 59% of the atand by tree numbers, and while in 1932 they made up only 37% of the stand. However, by basal area the stand comprised 94% of the bettor species in 1922, and 95% of such species in 1932. This ind icatos that the dominant canopys made up of the better species; is holding its own in spite of a large removal of its bigger trees and in spite of an increase of the lese deairable species. The latter have increased in number from 49% to 63% but deo creased in basal area from 6% to 5% of tbe basal asea of the stand.

It is seon from this chart that white ash, elm, wnd baswoud aso the only ones of the more desirable species which have increased their numerical representation in the stand. All other species display a
decided decrease. White oak has been reduced to one half its former position in the stand. Red oak likewise has suffered a considerable drop in tree numbers: The basal area relationship hars remained much more constant. Though, white oak has been reduced from 29% to 15% of the basal area in the stand, red oak has increased from 43% to 49% by basal area representation. Other species, irrespective of an increase or decrease in numbers have maintained about the same basal area. Degree of Change of the Various Species.

From a study of chart 2 the degree of change that has taken place becomes more pronounced. The greatest change in the numerical repreo sentation of species has occurred in white ash and elm. They display a respective increase of 8% and 6%. The oak group has undergone the next greatest change, it was reduced by 9%, hickory was reduced by 3%, while basswood increased by $3 \% \%$, Of the less desirable species, ironwood has gained 68% in relation to the sum total change that the stand has undergone.

The basal area changes do not correepond with the numerical changes, except in the case of white oak and hard maple. The former has undergone a negative change of 30% by basal area; and maple which decreased numerically by 0.3% lost 3% by basal area. O_{n} the other hand, red oals which has undergone a negative change of 3% by numbers has changed positively by 48% in basal area. The same holds true of hickory, it decreased 3% in numbers but gained 4% in basal area. White ash changed
favorably both in number and in basal areas while the basal area increase for elm is very slight, although it had increased numerically almost 6.5\%. This aame relationship is brought out more forceffully with imono wood which bad undergone a positive change of 68% numerically, but gained only 1.5% by basal area. It must be remembered that these figures do not indicate so much the relative importance of a species in the stand, but thoy do indicate the degree of change that a species has undergone relative to the change undergoneby other species. It brings out the tendency of change in the atand.

Ohanges within the Individual Speeies.

The preceding discussion has considered the direction of change of the species in relation to each other. The next consideration shall deal with the changes that have taken place within the individual speties.

Red Oak Group: The red oaks display a favorable trend in reproduction. A positive change of 9% in the 1 and 2 lnch classes is recorded. Alo though the species makes up only 89% of its original number the basl area bas increased to 118% of the original. The diameter diatribution is deficient, almost lacking, from the 3 to the 6 inch class. other diameters are well represented to a 19 inch limit. The larger trees are growing at a rate of 2 inches per decade. The average diameter of red oak has increased from 10.35 to 11.9 inches.

White Oak: White oak is on the decline in the composition of this stand. Roproduction is falling off. There is a negative change of 64\% between the 2 and 6 inch diameters. It constitutes only 66% of the
original number and 77% of the original basal area. Fair diameter distribution is limited between the diameters from 4 to 13 inches. Above and below:these diameter classes the distribution of white oak is very deficient. The larger trees of the species 31 and 35 inches in diameter aro still growing at a rate of 2 inches per decado.

White Ash: White ash shows an increase of 88% by numbers and 16% by basal area within the 1 to 3 inch diameter classes. It mounted to 341% of its original number and to 157% of its original basal area. The diameter distribution above 3 inches is very scattered with few representatives here and there to 17 inch diameter limit. The growth rate of the individual trees, of large pole sizeg is again 2 inches per decade.

Hickory: Hickory is loosing ground in the small pole class. Reo production, in the form di saplings is at a stand still, but from an 8 inch diameter upward the epecies has increased its representation in the stand. The general trend is toward a reduction of hickory. It makes up numerically only 72% of the original number and 10% of the basal areat. The diameter distributiong when hickory is considered as a concomitant species in the stand, is good.

Maple: Maples in general has maintained the same position in the stand. Its representation is 98% of the original by numbers and 97% by basal area. However, a relative gain of 41% in the sapling class is significant as it indicates a future increase of maple in the coms position of the stand. The diameter distribution with the exception of
the 3 and 4 inch class is good to a 17 inch diameter. There is a 22 inch diameter tree recorded in 1932, while in $1^{y} 22$ a 1^{6} inch tree marked the upper diameter distribution. This would indicate an error in the tally of the species at one time or another.

Elms In $\underset{n}{\text { n }}$ the sapling class elm is well represented. Numerically it has increased to 263% of the original occurance, but only to 104% of the basal area. Most of the increase occurred in the 1 and 2 inch diameters. Elm representation above the sapling class is insignifent.

Basswood: Basswood displayes a large relative increase over its original frequency. It mounted to 534% by tree numbers and to 74% by basal area. It is present only in the 1 to 4 inch diameter classes, and makes up butid. 44% of the total stand table and $0 ; 96 \%$ of the basal area of the stand.

Black Cherry Black cherry also shows an increase in the sapling class. This species makes up only 0.45% of the stands but it seems to be on the increase.

Black Malnut: There are no black walnut trees below the 9 inch diameter class. The few saplings which were present in 1922 have dien appeared. There are only 4 representatives of that species in the stand.

Less Desirable Epecies: Ironwood has nearly doubledifte former representation in the stand, though its basal area remained practically the same. This apecies makes up 60% of the stand in numbers and 5%
by basal area, as against 44% and 5% respectively in 1922. All of the incresse has occurred in the 1 to 3 inch diameter classes. While 47% of the besal area was removed from the larger trees; 53% were gained in basal area by the smaller trees, There still are a few of the larger ironwoods standing.

Other less desirable species are of minor importance in the stand, Although dogwood shows a 50% gain in the 1 inch class, the remaining 50% change resulted in elimination of dogwood in the 3 to 5 inch diameter classes. Hawthorn was entirely eliminated. Blue beech dieplayes a very slight increase. These species at the present time are of no importance in the stand.

DIAMETER DISTRIBUTION OF THE MORE DESIRABLE SPECIES

From chart 4 it is seen that the representation of the more desirabe e species in the stand hes increased by 6%. Most of this increase took place in the 1 and 2 inch diameter classes. The prequency distribution of the diameters can best be described by statistics. In 1922 the average diameter was 7.8 inches and in 1932 it had increased to 9.35 inches. The standard deviations were respectively 4.74 and 4.96 inches. While the coefficient of variation changed from 61% to 53%. This clearly indicates that the better species in the stand are gaining and that their diameter distribution is becoming more and more normal. The distribution to a 17 inch diameter is fair, there is however a doficiency in the 3 to 5 inch diameters. Above the 17 inch diameter the
distribution is broken and scant. The change in the stocking of the stand, including the less desirable species, is refledted best by the spacing figure, which changed from 20.02 to 19.68 . The average number of trees per acre changed from 355 to 515 trees per acre; while the basal area increased from 85.53 sq. ft. to 88.49 sq . ft. per acre. The average diameter of the stand $2 s$ a whole, as computed from basal areas, decreased from 6.6 inches to 5.7 inches. This change is not significant, it is the result of a large increase of ironwoods in the 1 and 2 inch classes.

SUMMARY

The outstanding facts which have become evident from the analysis of compartment six are as follows s

First, the proportion of the more desisable species in the stand is increasing as illustrated by an increase to 334% in the 1 inch diameter class and an increase to 228% in the 2 inch diameter class of the original representation of such species.

Second, the diameter distribution of the more desirable species. is improving as illustrated by a decrease in the coefficient of variation. Third, white ash, elm, and basswood are aggressive species in the stand as shown by the increase of their tree numbers.

Fourth, red oak is the consorting species in the stand and it diso playes a strong tendency to maintain that position; while white ak is decidedly on the downill grade in the composition of the stand.

Fifth, Ironwood displayes a large increase in the composition of
the lower canopy of the forest. This, however, is no indication of an undesirable effect upon the stand. Ironwood as a nurse tree and as a site improver may fullfill a much needed task. When competition with more desirable species arises the competing ironwood can always be removed. In the absence of suck competition ironwood may well act as a beneficiary agent.

ANALYSIS OF COMPARTMENT X

ANALYSIS OF COMPARTMENT TEN

The first improvement cut was applied to compartment ten in 1926. An intermediate cut took place in 1931, and the last improvement cut Fas administered in 1936. Additional silvicultural treatment consisted in the planting of coniferous species. In the following discussion reference is made to the tables found in the Appendix under comparto ment ten.

Changes in the Composition.

The changes in the general composition of the stand become evident from chart 1. The striking feature of the change is again, the marked increase of white ash which increased by numbers from 6\% to nearly 11%, and from 2% to 4% by basal area, in the relative composition of the stand. Other natural increases in the stend composition have occurred in hard maple and black cherry. The former increased from 0.4% to $\mathbf{1 . 5 \%}$ by tree numbers and from 1.6% to 2.4% by basal area. Black cherry which makes up a larger percentage in the composition of the atand increased from 14% to 16% by numbers, and from 1.6% to 3.2% by basal area, The coniferous species in the stand increased as a result of planting.

They now make up 17% of the stand by tree numbers as against a 5% representation in 1926. The basal area changed fromo. 25% to 9% of the basal area of the stand. Scotch pine alone constitutes 7.5% thereof.

In contrast to other compartments, red oak has decreased its basal
area position in this stand from 43% to 33%. The numerical position of red oak remained the same. White oak, although it decreased in numbers from 2. 4% to 1.3% has increased in basal area from 9\% to 12%. Basse wood is loosing ground in the stand composition, it decreased numerically from 32\% to 2 4 and by basal area it decreased from 15% to 13%. Hickory also is on the decline as reflected by a basal area decreased from 9.5% to 4.5%.

The less valuable species in this compartment ase evidently being replaced by more desirable species as indicated by a decrease in the numerical stand composition from 26% to 10% and from 5% to 1% by basal area. The stand differs from other compartments not only through the presence of conifers, but also by a much lower sepresentation of ironwoode.

The above description deals with the general changes in the como position of the stand. It does not indicate the direction of change of the species themselves, nor does it show the degree of change which the various species have undergones

Degree of Change of the Various Species.
It becomes evident at onces. From a study of table 2 that the actual changes of a species are different than composition chart 1 would indicate. The direction of changer and the degree of change of a species in relation to the change undergone by other species are brought out in chart 2 .

Some of the results coincide with those of the previous discussion. For instance, white ash and black cherry indicate a pronounced gain in both cases. Though from a study of chart 2 it is seen that cherry has really undergone a much greater change than was indicated upon chart 1. Its numerical change amounts to a 12% gain of the sum total change undergone by the stand. Ash has gained 14% by numbers in the change of the stand. Red oak which decreased in the stand composition has actually gained 2% by numbers, though its basal area displayes a negative change of 33%. The same holds true of elm, its relative position in the stand remained the same, while it actually increased 4% by troe numbers, relative to the sum total change undergone by the stand. The most pronaynced change by tree numbers resulted Prom planting, this amounts to a 32\% increase for Scotch pine, douglas fir and white pine. The basal area change of conifers amounts to about a 16% gain.

As a group, the conifers have undergone the second greatest positive change in the stand by basal area, and it may be expected that this gain in the future will become much more pronounced. The less desirable species listed under miscellaneous species have suffered a relative deduction of 19% by numbers and 7% by besal area. The stand as a whole has increased in tree numbers by 25% and decreased in basal area by 19%, Thisbasal area decrease will soon be remedied by the growth of the younger saplings which are now much more numerous.

OHANGES WITHIN THE INDIVIDUAL SPECIES

The preceeding analysis has considered the changes in the stand in relation to the sum total stand, and in relation to other species in the stand. The following discussion treats each species separately in order to point out the changes undergone within a species in respect to diameter class changes and with regards to reproduction, and the general aggressiveness of a species in the stand.

Red Oak: Red oak displayes a gain in tho sapling class which amounts to 45% of the numerical change undergone within the species. Most of the remaining diameter classes record a loss in numbers of tree per diameter class. Red oak mounted to 122% of its original number, taken as 100% and to 63% from its original basal area. The diameter distribution of red oak extends to a 28 inck limit, however, it is a rather thin distribution when considered from the frequoney of trees per diameter. Red oek still constitutes $1 / 3$ of the basal area in the stand. Even though its basal area bes been reduced considerably, the species is by no means assuming an inforior position in the stand; it is rather on the aggressive side as indicated by the increase in the sapling class.

White Oak\% White oak has been reduced to 65% of its original number, while its basal area remained constant. 25% of the decrease occurred in the sapling ciass. There is a general loss of trees throughout the diameter classes of white oak. The species is on the doclines this is apparent from its diametor distribution which is thin and more seattered than formerly.

White Ash: White ash more than doubled its originel number and increased its basal area to 163% of its former basal area. Practically all of the increase was obtained in the 1 to 4 inch diameters, above this diameter only a few trees are represented: mong them a 20 inch tree which has grown at a rate of 2 inches in one decade.

Hickorys Even though hickory has reduced in basal area to 39% of the original basal asea of hickory, the numerical repreaentation of the opecies remained almost the same, due to as inoresae of hickogy in the sapling class. The rather scant diameter distribution above the sapo ling class ceases at 13 inches, with 2 trees above that diameter.

Elm: Elm has increased in tree numbers and in basal area to 123% and 116% respectively. There has been a very consiatant increase of elm to a 16 inch diameter, excepting the 1 inch class where a negative 29.5% change occurred. But there atill is an ample representation of elm in the 1 inch diameter class. The distribution of elm 18 good to and 11 inch diameter, above this diameter a few single trees are found in scattered diameter classes to a 32 inch limit。

Basswoods. The greatest change for basswood occurred in the 1 inch class diameter, where a negative change of 53% took place. From the 2 inch to the 12 inch diameters only positive changes took places so that the final reduction in basswood is but little below the original representet ion of the species. The diameter distribution is good to an 8 inch limits formerly the limit of fair distribution was marked by the 6 inch diameter class.

Hard Maple: Hard maple displays a large relative increase which amounts to 462% by numbers and 123% by basal area of the original stand of maple, however, maple makes up only 1.6% of the stand composition and the relative gain is therefore not so important. There are practically no trees above the sapling class.

Black Cherry: Black cherry is strongly represented in the sapling class of the stand and is still increasing in numbers. It has increased to 144% of its former number and to 164% of its former basal area. In the stand cherry makes up 16% by numbers and 3% by basal area. The diameter distribution extends to 7 inches, with most of the trees in the first 3 inch classes.

Black Walnut: Black walnut is more abundant in this compartment, it makes up 3% of the stand by tree numbers and 4% by basal area. Numerically it has mounted to 127.5% of its original number, in besel area it decreased to 85.5%. There is a good diameter diatribution to a 6 inch diameter, with a few additional scattered trees in the higher diameter classes to a 21 inch limit. The larger trees appear to be growing at a rate of 2 inches per decade.

Ironwood and Blue Beech: Of the less desirable species, ironwood and blue beech display a tendency towasd an increase in the numerical representation in the stend. However, the basal areas of both epecies have decreased; that of ironwood has been reduced to 47% of the original. Ironwood and blue beech are represented only in the first 3 diameter
classes as against a previous representation to a 7 inch and 8 inch diemeter respectively. Both species combined constitute 9% of the stend by numbers and 0.9% by basal area.

Miacellaneous Apecies: A decided change has taken place among the miscelleneous species, which consist of dogwoods sassafiras; blue ash. and hawthorn. These species have been practically eliminated. There are only 6% of the original number of these trees left, and only a little over 1% of the basal area is left. The dianeter distribution of these species formerly extented to 9 inches, while now it ceases at 3 inches. In the composition of the stand the position of these mpecies has dow clined from 10% to 0.5%.

Coniferoun Species: Of the coniferous species scotch pine te the is the most abundant species. It constitutes 11% of the trees in the stand. Douglas fir makes up 6% by tree numbers, and white pine con stitutes only 0.4% in the composition of the stand. Scotch pine is now represented to a 6 inch diameter as against a former 2 inch limit. And douglas fir is found to a 5 inch diameter as against a former 1 inch diameter. White pine has come into the stand since 1926 and is represented in the 2 in 3 inch diameters. According to the above figures, some specimen of scotch pine and douglas fir are growing at a rate of 4 inches per decade.

DIAMETER DISTRIBUTION OF THE MORE DESIRABLE SPECIES IN THE STAND

The diameter distribution is best described by means of statitics. The average diameter has changed from 3.3 inches to 3.0 inches. The standard deviation decreased from 5 to 3.7 inches, and the coefficient of variation decreased from 150% to 123%. It becomes obvious from these data that the distribution is becoming more concentrated about the mean diameter, and is approaching toward normality. There is a large proo portion of small trees in this stand, between the 1 inch and 5 inch diameters. From the 6 inch diameter class to the 32 inch class the frem quency of trees per diameter class is steadily decreasing, and is somes what deficient from the 12 inch diameter upward.

As a result of a much larger number of young trees the stocking of the stand has become more open. The spacing figure changed from 21.6 to 24. The changes in the stand reduced to an acre basis are as follows: The number of trees has increased from 445 to 554 trees the basal area decreased from 73.39 to 59.63 square feet. And the aversge diameter. computed from basal areas, changed from 5.5 to 4.4 inches. With the great preponderance of young trees in the stand the basal asea will soon ino crease and the stocking of the stand will improve.

SUMMARY
A brief sumary of the results of the analysis of this compartment is given to emphasize the more outstanding changes which this stand has undergone。

One of the outstanding features is the opening up of the stand as a result of the removal of 19% of the basal area of the forest.

This small basal area of the stand is a natural consequence of emcouraging the growth of the large number of saplings of desirable tree species which have increased their numbers by 39%.

This gain in the sapling class is partly due to a natu-al incrasse from the reproduction of white ash and black cherry, and to e lesser extend to an increase of elm, maple and red oak.

A large percentage of the gain in the sapling class has reaulted from the planting of coniferous species of which scotch pine is the most numerous, followed by douglas firs and a small amount of white pine.

The less desirable species in the stand have been greatly reduced, though ironwood and blue beech are numerically on the increase in the stand. However, they are represented only in the sapling class and have little influence upon the composition of the stand. The total basal area of the lessedesirable apecies amounts to only 1% of that of the total stand.

APPENDIOES

Computations for Compartment 1 $1-12$
Original Composition against present Composition 1
Summary of charts for Individual Species 2
Charts for Individual Species $3-11$
Red Oak 3
White Oak 4
White Ash 5
Hickory 6
Basswood 7
Elm 8
Walnut 9
Black Cherry \$10
Hard Maple 10
Ironwood 91
Miscellaneous Species 11
Diameter Distribution of the More Desirable Species 12
Computations for Compartment 4 13-25
Original Composition againat present Composition 15
Sumary-Degree of change and Direction of change 14
Charts for Individual Species 15-24
Red Oak 15
Whit Oak 16
Hard Maple 17
White Ash 18
Basswood 19
Hickory 20
Elm 21
Walnut 22
Cherry 23
Sassafras 23
Ironwood 24
Blue Beech 24
Dogwood 24
Diameter Distribution of the More Desirable Species 25
Computations for Compartment 6 26-37
Original Composition against Present Composition 26
Summary Degree and Direction of Ohange 27
Changes within the Individual Species 28-36
Red Oaks 28
White Oak 29
White Ash 30
Hickory 31
Hard Maple 32
Black Walnut 33
Black Cherry 34
Ironwood 35
Blue Beech 35

APPENDICES

Dogwood 36
Hawthozn
36
Diameter Distribution of its More desirable Species
Computations for Compartment 10 38
Original Composition against Present Composition 38
Summary-Degree and Direction of Change 39
Changes within the Individual Species 40
Red Oaks 40
White Oak 41
White Ash 42
Hickory 43
Elim 44
Basswood 45
Hard Maple 46
Black Cherry 47
Butternut 47
Black Walnut 48
Ironwood 49
Blue Beech 49
Miscellaneous Species: 50
Scotch Pine 51
Douglas Fis 51
Diameter Distribution of the More Desirable Species 52

LIST OF THE TREES REFERRED TO IN THIS REPORT

COMPUTATIONS FOR COMPARTMENT I

ChartI.
Comp. 1
Original Composition against Present Composition.

Specres	Percentof Numberoffres 19221932
Percentof BasalArea 19221932	
Red OQKs	$2.413 .44+26.5828 .20+$
WhiteGak	$3.033 .20+24.3419 .90-$
WhiteAsh	$6.3911 .20+2.064 .57+$
Hickovy	$6.036 .20+11.7211 .74+$
B1.Walnut	$.45 .42-2.182 .59+$

Basswood 22:3 21.80 - $10.4010 .81+$
Flm $5.884 .05-55183.58$
B1.Cherry $\quad 1.122 .86+.561 .56+$
H. Mapole $\quad 281.35+\quad .71 .72+$

Ironwood $55.6044 .16-15: 4115.84+$
Miscellaneens $\frac{.681 .32+\frac{.86 .49}{100.00100 .00}-}{100.00100 .00}-$

Summary
CompI.

Decrease in, W0.of Trees 458 Increase in Basa/Ares 39.116

$$
12.8 \% \quad \$ 11.9 \%
$$

Ave.perAcre 831. 124
77.36686 .581

Average DBH
4.124 .68

Spacing Figure
20.719 .9
chart A IIIa
Ped OaK Group.
Comp. 1.
DBH No. of Trees Gain Losis Dercent BasalAria Garin Loss Percent Classes 19221932 Vumb. Nimber Gainahoss $19421932 B^{\prime \prime \prime} 4$ B"A GaindLoss

| 31 | 1 | 1.59 | | 1.59 | 5.240 | $5: 240$ | 6.41 | |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 37 | 1 | | | 1 | 1.59 | 7.470 | 7.470 | 9.13 |
| Totals. | 86 | 107 | 42 | 24 | 66.71 | 33.29 | 88.087105 .11549 .70031 .97460 .94 | 39.06 | \%oof 124.546924 .4 Are D.B.IT.

White OQK
Comp. I.
DOH No.oftrees Gain loss Percent Sasaltirea Gain loss Percent
class 19221932 Number Number Gainahoss $1922 \cdot 1932 \mathcal{B}^{\prime \prime \prime} A \mathcal{B}^{\prime \prime \prime} A$. Gainandloss

Ash
Comp. I.
OBH No. of trees Gain Loss Percent BasalArea Gain Loss Percent

$.78 \quad .922 \quad .922 .68$

Are.D.B.H.

Hickory
Comp. I.
DBH No of frees Gain Lase Percent Basal Area Gain lass Percent
 \%orig. $\quad 89.810 .720 .9$
Are. DB H
5.776 .4

Bass wood
comps.

Compo T.
DBH No. of Trees Gain Loss Percent Basaldrea Gain Loss Percent
Class 19221932 Nunb: Nunber Gairaloss 19221932 Bus.A. B̌A Gain ar aloss

Onigined: 60 7.15 47.15
Ave.DBH.
3.8744

Walnut.

DBH No. of trees Gain Loss Percent BasalArea Gain Loss Percent
Class 19221932 Number Number Gain+Loss 19221932 BA'A. B'A G. Gainatoss

Black Cherry.
Comps.
DBH No. of trees Gain Loss Percent BasalArca Gain Loss Pin Brent

Hard Mols.
DBH No of Trees Gain Loss Percent Basal Area Gain Loss Percent

Changes in Diameter Classes
Iron wood
Comp. 1
DBH No. of Trees Gain Loss Percent Basa/AresGain loss Percent Classis 19221932 Number Number Gainatloss 19221932 Bit B'A Gain Loss

1	635	361	274	31.45	3.810	2.166	1.644	5.65
2	708	412	2.96	45.4515 .516	9.064	6.512	22.40	
3	353	304		49		5.53	17.29714 .896	2.401
4	122	191	69		7.92	10614	166176.003	20.65
5	19	86	67		7.68	2.58411 .6969 .112	31.38	
6	3	19	16		1.85		58883.7243 .136	10.75
1	2	1		1		.12	.534	267
8	1	1				.349	.349	

Totals $18431375 \quad 152 \quad 62017.4582 .5551 .35258 .71918 .25110 .82462 .7837 .22$ $\begin{array}{llll}\text { O of of } \\ \text { Original } & 74 & 8.2534 .25\end{array}$

AVEDRH.
2.252 .80

Miscellaneous Species.

DBH No. of Trees Gain Loss Percent BasalAreabain Loss Percent

To of
Origiker 17111342
$64 \quad 58.594 .5$
Average $D B H$

A-4
romp.I Diameter Distribution of the More Desirable Species.
No. of trees.
DO.H. Stand Stand

1	645	514	Mean Diameter	3.18	3.82
2	478	407			1932
3	201	228	Standard deviation	4.19	4.42
4	99	160			
5	45	90	Coedficientoflariation	132%	108%
6	46	60			
7	27	49			

COMPUTATIONS FOR COMPARTMENT IV

Changes in Diameters per Species.
Comp. IN.

Original Composition against Present Compersition.

Decreasein No. of Trees peracre 137 Increasein B A.perAcre 5.353 Average D.B.H.

$$
4.5 \quad 5: 3
$$

spacing F igurs

$$
21.18 \quad 20.46
$$

Changes in Diameter Classes
Northern Bed OaK
comp. IT

Changes in Diameter Classes White Oak

$\left.\begin{array}{llllllll}25 & 1 & 0 & 1 & 1.5 & 3.410 & 30 & 3.40 \\ 26 & 1 & 0 & 1 & 1.510 & 8.690 & 3.900 & 3.690\end{array}\right) 8.76$

30	0	1	1	1.5	4.910	4.910	11.70	
Totals	102	66	15	51	23.0	77	039.6164 .242	21.899
20.263	51.89	48.11						

Oof $\begin{array}{llll}\text { org: } & 64.7 & 14.7 & 50\end{array}$
$104 \quad 55.3 \quad 5 \% .3$
Ave.DBH
8.4410 .7

Changes in Diameter Classes by Species.
Maple.
Comp. IV.

Changes in Diameter Classes
White Ash
Comps. II

Changes in Diameter Classes within the Species' Basswood

Comp. IV.

Changes in Diameter Classes Hickory

Comp. IF

D3H No. of treas Gain Lass Percent BasalArea Gain Loss Percent
Class 19201935 Numb. No. Gainahoss 1220 1955 BiA. BiA. Gainotass

Changes in Diameter Classes
Eln.
comp. IF.
OBH No. of Treas Gain Loss Percent FardhreqGain Loss Percent Class. 19201935 Nimbor Nimber Gainahoss 19201935 B'A B'A Gaindloss

Oorig. $\quad 56.8 \quad 5: 348.5$
$\begin{array}{llll}12.0 & 21.7 & 50.3\end{array}$
Are.DBH
405455

Changes in Diameter Classes.
Walnut.
Comp. IF.

Changes in Diameter Classes.
Cherry
comp.IV
DBA How Trees Gain Loss Percent BardArea Gain Loss Percent

\%o atm. 16789,22
Ave.DBH.

1045450 6.975 .55

Sassafras
DBH No.adrees Gain Loss Percent Basalfrea Guin loss Percent

Origin. 5050200
700700100
Ave. DB H.
1.66 .0

Changes in Diameter Classes
Iron wood
Comp IV.
DBH No. of Trees Gain Loss Percent BasdAreq Gain Loss Percent

Blue Beech.
DBH No. of Tres Gain Loss Percent JasaltireqGain Loss Percent

Dogwood
10BH Noostrees Gain Lass Percent Basaltiea Gain Loss Perent

1	15	10	65.2	.090 .090
2	8	8	34.8	.176 .176
Totals	23	23	100.0	.266 .266
Are $D B H$.			1.46	

Diameter Distribution. of The More Desirable Species. 25

Average diameter in 1920
Average diameter in 1935
Standarddeviation in 1920 Standard deviation in 1955

Cuedpiccient oflleriationin 420
Coefficient of laviationin 1935
4.26 inches 4.42 inches

Percent Increase of Desirable Species. 8.6%

Chart No I
Original Composition against Present Composition.

Species	Percent of Numberoflres	Percent Basal Area	
	1922	19.32	$1922 \quad 1932$
Nh. Oak	11.28	5.10	20.60

Chart IN o. 2.
Showing the percent changes and by Basal Area.

Species Stand Stand in reese Decrease Percent Basal Area InereasoDecrease Percent

$\left\{\begin{array}{l}\text { Actual increase } \\ \text { in }\end{array} \quad\right.$ Increase in Basal Area 12.709
in Number of trees
690
45.3%

$$
3.5 \%
$$

Aver. jer Acre $355 \quad 515 \quad 192 \quad 32$
85.53488 .49

Average DBH.
6.645 .72

Spacing Figure
20.0219 .68
C IIB
Red Oatt Gromps.
Comp. 6

DBH No.oflrees Gain Loss Fercent BasalArea Gain hoss Peicent

Totals $271 \quad 241 \quad 63 \quad 9340.3659 .64158 .068185 .96160 .23432 .34165 .0534 .95$
$\begin{array}{llll}\text { \%oof. } \\ \text { orig. } & 89 & 23 & 34\end{array}$
$\begin{array}{lll}118 & 38 & 20\end{array}$
Are. DBH.

$$
10.3511 .9
$$

Chart III a
White Oak
Comp. 6.
DBH No.ofTreesGuin Lois Percent Based Area Gain Loss Percent
Class 19221932 Numb. Numb. Gaind Lars $1922 \quad 1932$ BiA. B'̈̆A. Gaind Loss

White Ash.
comp. 6
$D B H$ No. of Trees Gain loss Percent TesalArea Gain Loss Percent

CIIIe
Hickory
Comp. 6 .

DBH No. of Treos Gain Loss Porcent BasalArea Giin Lass Percent Class $1922 \quad 1932 \mathrm{Numbor}$ Nimber Gaind Loss 19221932 B. A Bin Gainaloss

$\begin{array}{llll}\text { \%or.ig. } & 72 & 23 & 51\end{array}$
Ave. DBH.
$106 \quad 5549$
9.0210 .93

Maple
comp. 6.
DBH No.oftrees Gain Loss Percent Besal Areg Gain Loss Percent Class 19221932 Mimber Nimber Gainaloss 19221932 Díh. Sóns. Gainalloss

22	1	1	1	1.23	2.640	2.640	13.45	
1otelals	140	137	39	12	48.15	51.85	53.81152 .209	9.025
10.627	45.90 619.10							

Poriginal $98 \quad 28 \quad 30$
AveDBH.
$97 \quad 16.819 .8$
8.378 .35

Black Cherry
comp. 6.
OBAI No.ofTrees Gain Loss Percent Basi/Area Gain Loss Percent

\%origigal $143 \quad 114.5 \geqslant 1.5$
$97 \quad 80.483 .4$
Ave. DBH.
8.376 .27

Basswood
PBH No.of Trees Gain Loss Percent Basal Area Gain Loss Percent

Ironwood
comp. 6 .
DBH No. of Trees Gain loss Percent Basal Area Gain Loss Percent

Totals $612 \quad 1325 \quad 703 \quad 50.93 \cdot 316.6919 .026$ 19.937 8.133 $7.222 \quad 53.0047 .00$
Oolite 197 cos 8
$10543 \quad 38$
Ave. DB H
2.271 .65

Blue Beech
DBH No. of Trees Gain Loss Percent BasalArea Gain Loss Percent

$\begin{array}{llllll}\text { Or .in. of } & 175 & 87.512 .5 & 168 & 114 & 46\end{array}$
AVe. DBH.
$1.55 \% .55$

C要i
Dognood
coms. 6
D134 No.of Trees Gain Lass Percent Basa/AreaGain Loss Percent

Gratargus
DBH No.oflrees Gain Loss Percent BasalArea Gain Loss Percent Class 19221932 numb. Number Gainaloss 1922.1932 B'A B'A Gaintloss

1	2	2	16.7	012	
2	5	5	41.7	110	
3	3	3	$25: 0$	147	
4	2	2	$16 \cdot 6$	174	
Totals	12	12	$100.00 \cdot 443$	100	

Sass ofras
DBH No. of Trees

Class	19221932
1	0

Chart IE.
Diam eter Distribution
Merchant table Species.
Comp. 6
$D B H$ Stand $\operatorname{Stand}_{\text {ind }}$

Class	1922	1932
	60	206

Original Composition against Present Composition.

Species Stand Stand Increase Decrese Percent Basol Basal/ Inerese Dercease Percent

Increasin llo.ofTrees 471 Decreasein Basa/Area 5885
$\%$ Increase 24.6% Decrease 18.7
Are. perAcre $445 \quad 554 \quad 169 \quad 59 \quad 73.30759 .629$
Encreaseperthre 110 Decrease per Acre 13.678

Averege DBH
sposing Fisurc.
5.54 .44
21.6123 .96

Bed Oak
Comp. 10.

DBH No. of Trees Gain Loss Percent Basal Area Gain Loss Percent

Totals $95 \quad 116 \quad 59$ 38 60.8539.15 134.93785 .24629 .11 .478 .80526 .9273 .08 \%of AredBr.

DBH No. oftrees Sain Loss Percent BasalAreq Gain Loss Percent klass 1926 1936 Number Nimber GaindLoss 19261936 Bitt B'A Gaind Loss

\%orig. $\quad 65.217 .434 .8$
1037067
Are.DBH.

DBH No. of Trees Gain Loss Percent Basal Area Gain Lass Percent

$\begin{array}{llll}\text { Prig. } & 2 / 7.5120 .9 \quad 3.4\end{array}$
$163 \quad 135 \quad 72$
Avenibut

$$
3.2 \quad 2.73
$$

Hichory.
Comp. 10

DBH No. of trees Gain Loss Percent Basal Area Gain Loss Percent

Orig. $\quad 122.635 .412 .8$
$158 \quad 115.8 \quad 57.8$

Are. DB.H.
4.925 .58

Basswood.

DBH No. of trees Gain Loss Percent Basaldrea Gain Loss Percent

$\%$ of Orig.

AreDBH.
$\begin{array}{llll}94.5 & 17.7 & 23.2\end{array}$

$$
71.0 \quad 34.0 \quad 63.0
$$

$3 \cdot 8 \quad 3 \cdot 3$

Hard Maple

Blark Cherry

DBH No.oftrees Gain Loss Percent DasalArea Gain Loss Percent
Class 19261936 Numb. Numb. GainaLoss 19261936 BA'A B'A Gainaloss.

Butternat.
DBH No.oftrees Gain Loss Porcent BasalAreaGain Loss Percent
Class 19261936 inmber Number Gainaloss $19261936 B^{\prime \prime \prime} A$ B B Guindloss

1	7			$53.9 \cdot 154$	1.88	
4	1			1	7.7 .087	1.06
7		1	1		7.7	
13	2		2	15.31 .844	3.41	
20	1		1	7.7	2.181	22.40
26	1			1	7.7	3.690

$\begin{array}{llllll}\text { O of } \\ \text { Original } & 8.3 & 8.3 & 100\end{array}$
Ave. DBH.

B1. Walnut

DBH No.oftreesGain Loss Percent BasalAreaGain Loss Percent
Class 19261936 Numbervingber Gainaloss 19261936 Bi'A BinA Gaina Loss

DBH No. of Tres Gain Loss, Percent Basal Area Gain Loss Percent

\%oof.
144.571 .527 .0
$47.014 .0 \quad 67.0$
Ave. DB.H.
2.431 .35

Blue Beech.
DBH No. of Treas Gain loss Percent Basal Area Gain Loss Percent

orig 127.830 .83

$$
78 \quad 23.845: 8
$$

Are. DB H.
$1.8 \quad 1.4$

Miscellaneurs Need Species.
Sassafras, Dog wood, Blae Ash, Gratorgas

DBH No. oftrees Gain lass Percent Basalthea Gain lass Percent Class 19261936 Number ivmber Gainaloss 19261936 Bin Sis A. Gaind loss

Talip Poplas

$$
\begin{array}{rll}
\text { DBH No. of Trues } \\
\text { chass ig26 } 1930 \\
\hline 10 & 1 & \text { Percent } \\
& \text { Gaindloss } & \text { Ba.salitrea } \\
& 100
\end{array}
$$

Wh. Pine
DBH Na optrees PercentGain Basal Area
Class 1926 1936 1920 Pa 1930

1			1220
2	6	60	1930
3	$\frac{4}{10}$	$\frac{40}{100}$	$\frac{.196}{.328}$

Scotch Pine
compo.
DBH No. of Trues Gain Lass Percent Basal Area Gain Loss Percent Class $1926 \quad 1936$ Number Number Gainaloss $1926 \quad 1936$ Bit. Ain Gainahoss

Douglas Fir.
DBH No. of Trees Gain Loss Percent Basallires Gain Loss Percent

| Class | 1926 | 1936 | Number Number | GaindLoss | 1926 | 1936 | $B^{\prime \prime \prime} A$ | $B^{\prime \prime \prime} 1$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | Gain Loss

Diameter Distribution of the More Desirable Species.
No. of Trees

THE UNIVERSITY OF MICHIGAN

