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Thermal equation of state and thermodynamic properties
of iron carbide Fe;C to 31 GPa and 1473 K
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[1] Resent experimental and theoretical studies suggested preferential stability of Fe;C over
Fe,C; at the condition of the Earth’s inner core. Previous studies showed that Fe;C remains in
an orthorhombic structure with the space group Pnma to 250 GPa, but it undergoes
ferromagnetic (FM) to paramagnetic (PM) and PM to nonmagnetic (NM) phase transitions at
6-8 and 55-60 GPa, respectively. These transitions cause uncertainties in the calculation of
the thermoelastic and thermodynamic parameters of Fe;C at core conditions. In this work we
determined P-V-T equation of state of Fe;C using the multianvil technique and synchrotron
radiation at pressures up to 31 GPa and temperatures up to 1473 K. A fit of our P-V-T'datato a
Mie-Gruneisen-Debye equation of state produce the following thermoelastic parameters for
the PM-phase of Fe;C: Vy=154.6 (1) A%, K7y =192 (3) GPa, K;/=4.5 (1), yo = 2.09 (4),
60=490 (120) K, and g=—0.1 (3). Optimization of the P-V-T data for the PM phase along
with existing reference data for thermal expansion and heat capacity using a Kunc-Einstein
equation of state yielded the following parameters: ¥, =2.327 cm?/mol (154.56 A3),
Kn=190.8 GPa, K7 =4.68, ®g;9=305 K (which corresponds to 6,=407 K), yo=2.10,
ep=9.2x 10K~ m=4.3, and g = 0.66 with fixed parameters mz =3n=12,7,=0,5=0.3,
and ay=0. This formulation allows for calculations of any thermodynamic functions of Fe;C
versus 7'and V or versus 7 and P. Assuming carbon as the sole light element in the inner core,
extrapolation of our equation of state of the NM phase of Fe;C suggests that 3.3+ 0.9 wt % C

at 5000 K and 2.3+0.8 wt % C at 7000 K matches the density at the inner core boundary.
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1. Introduction

[2] F. Birch was among the first to recognize that the
density of the Earth’s liquid core is about 10% lower than
the calculated density of iron at relevant PT-conditions [e.g.,
Birch, 1964]. During the following decades, the density
and sound velocity profiles of the Earth’s core have been
determined with increasing precision. Simultaneously, the
phase diagrams of iron and iron alloys have been studied
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experimentally and theoretically at core pressures and temper-
atures. However, more recent estimations for the core density
deficit are still approximately the same as those proposed by
Birch [1964]. The density deficits vary from 5 to 12% for
the outer core [Stevenson, 1981; Anderson and Isaak, 2002]
and from 3 to 5% for the inner core [Stixrude et al., 1997,
Dubrovinsky et al., 2000; Komabayashi and Fei, 2010,
Yamazaki et al., 2012]. In addition to the density deficit, the
core has lower sound velocities with respect to pure iron,
which also provides evidence for light element addition
[Figuet et al.,2001; Lin et al., 2005]. The possible candidates
for the light elements are H, C, O, Si, and S [Poirier, 1994; Li
and Fei, 2003]. The value of the density deficit, the core-
mantle boundary temperature, and quantitative estimations
for light elements in the core can be constrained from various
approaches. The thermodynamic analysis of equations of state
(EOS) for iron and its compounds is one of the most important
methods used to solve these problems.

[3] The Fe-C is a key system for understanding the compo-
sition of the core [Wood, 1993; Wood et al., 2013] and has been
extensively studied over the past few decades. Experiments
have been conducted to establish the Fe-C phase diagram at
1 bar or at high pressures using large-volume apparatus or
diamond anvil cells. The 1 bar and large-volume data showed
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Figure 1. Six sample configurations in the cell assembly
for TEL 12 mm. Only parts inside graphite heater with
4 mm inner diameter are shown. PM — pressure marker, TC —
thermocouple. Grey lines show isotherms for experiment at
1300 K indicating less than 10 K differences across the
samples (after Shatskiy et al. [2013]), which is confirmed by
pressures measured by pressure markers.

that Fe;C and Fe,C; are the stable iron carbides up to 15 GPa
[Strong and Chrenko, 1971; Chipman, 1972; Chabot et al.,
2008; Nakajima et al., 2009]. Results from diamond anvil cell
studies, however, have generated controversies concerning the
stable form of iron carbide at the pressure and temperature
conditions of the Earth’s core. Lord et al. [2009] suggested
Fe,C; as a principal carbide that is stable above 120 GPa based
on extrapolation of their experiments on the Fe-C system
performed at pressures up to 70 GPa. Taking the data from
these experiments into account [Nakajima et al., 2011] det-
ermined detailed P-V-T EOS of Fe,C; at pressures up to
30 GPa and temperatures up to 1873 K and provided some
constraints on the carbon content in the inner core. However,
the most recent data available [ Takahashi et al., 2012] indicate
the stability of Fe;C at pressures up to 250 GPa and temp-
eratures up to 4100 K, which specifies the possible importance
of'this carbide at pressure and temperature conditions found at
the Earth’s core and also substantiated the analysis of the EOS
too. The preferential stability of Fe;C at 350 GPa is supported
with theoretical calculation using the random structure search
approach [Weerasinghe et al., 2011]. Additional complica-
tions to the stable form of iron carbide at core conditions
originate from ab initio simulation, which suggests the lowest
formation enthalpy for Fe,C phase at 300400 GPa and 0 K
[Weerasinghe et al., 2011; Bazhanova et al., 2012].

[4] The compressibility of iron carbides at 298 K has been
determined up to 180 GPa [Scotf et al., 2001; Li et al., 2002;
Sata et al., 2010; Nakajima et al., 2011; Chen et al., 2012].
The results of these experiments suggest that structures of
Fe;C (space group Pnma) and Fe;C; (space group P63mc)
remain the same up to 200250 GPa. However, in addition
to compositional variations, iron carbides undergo a range of
second-order magnetic transitions. These magnetic transitions

may have approximately negligible effect on the unit cell
volume, but affect the thermodynamic properties and elasticity
of iron carbides. Fe;C is a metallic ferromagnet (FM) at 1 bar
and 298 K exhibiting the Invar effect with an extremely low
coefficient of thermal expansion a=1.3x10"> K~!. The
Curie temperature (T¢) is 480485 K [Tsuzuki et al., 1984;
Acet et al., 2001; Wood et al., 2004], above which Fe;C trans-
forms into the paramagnetic phase (PM). The pressure of the
transition from FM to PM and from PM to nonmagnetic phase
(NM) is currently a topic of debate. In situ investigations
probing atomic and electronic structure revealed the FM/PM
transition occurred at 4.3—6.5 GPa by nuclear resonant scatter-
ing [Gao et al., 2008], at 10 GPa by X-ray magnetic circular
dichroism [Duman et al., 2005], and at 25 GPa by X-ray emis-
sion spectroscopy (considered as FM/NM) [Lin et al., 2004].
Other studies conducted on this topic have claimed a softening
of phonon frequencies by inelastic X-ray scattering at 68 GPa
[Figuet et al., 2009] and changes in lattice parameters at
approximately 55 GPa by X-ray diffraction [Ono and Mibe,
2010]. Theoretical studies predicted that at 0 K, it loses its
magnetic moment and undergoes a FM to NM transition at
pressures above 60 GPa [Vocadlo et al., 2002; Mookherjee,
2011] or 55 GPa [Ono and Mibe, 2010]. Prescher et al. [2012]
performed single crystal measurements using Mossbauer
spectroscopy and X-ray diffraction and placed the FM/PM
transition at 8-10 GPa, the PM/NM transition at 22 GPa,
and noticed the absence of electronic transitions until pres-
sures of at least 55 GPa. The same transitions in Fe,C3 were
detected at slightly different conditions. The T~ was observed
at 523 K [Tsuzuki et al., 1984], whereas the FM/PM transition
at 298 K was observed at 18 GPa using X-ray diffraction and
detected via change in a/c ratio of the hexagonal unit cell
[Nakajima et al., 2011]. Between 5.5 and 7.5 GPa, the
FM/PM transition was determined using single crystal X-ray
diffraction and Mossbauer spectroscopy [Chen et al., 2012].
The PM/NM transition was observed at 53 GPa by analysis
of the X-ray diffraction data and a/c ratio [Chen et al., 2012].
Ab initio computations revealed the FM/NM transition at
67 GPa [Mookherjee et al., 2011].

[5s] Recognizing revived interest in Fe;C as a potential carbide
at Earth’s core conditions [ Weerasinghe et al., 2011; Takahashi
etal.,2012], here we present a P-V-T equation of state for Fe;C
up to 31 GPa and 1473 K with support from detailed thermo-
dynamic analyses. The data can be used for thermodynamic
modeling of chemical reactions with Fe;C at upper-lower
mantle conditions. Although the application to inner core
conditions is complicated due to magnetic and electronic
transitions in carbide, some constraints have been provided.

2. Experimental Methods

[6] The in situ X-ray diffraction experiments were conducted
at the “SPring-8” synchrotron radiation facility (Japan), using
Kawai-type multianvil apparatus, “SPEED-1500" [Utsumi
etal., 1998] and “SPEED-MKII” [Katsura et al., 2004], installed
at a bending magnet beam line BLO4B1. An energy-dispersive
X-ray diffraction technique was used for the in situ measure-
ments. The incident X-rays were collimated to form a thin
beam with dimensions of 0.05 mm in the horizontal direction
and 0.1 mm in the vertical direction by WC slits and were
positioned to the sample through a boron-epoxy window in a
pyrophyllite gasket. The X-rays diffracted by the sample are
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Table 1. Experimental Conditions and Unit Cell Parameters of Fe;C Obtained by In Situ X-ray Diffraction®

T (K) Vwgo (A7) Puigo (GPa) a(A) b(A) c(A) V(A%
Run #1
1273 76.55(2) 2.26(4) 5.1360 6.8390 4.5600 160.17(1)
1073 75.78(2) 2.48(4) 5.1160 6.8040 4.5460 158.24(1)
873 75.10(2) 2.60(4) 5.0970 6.7770 4.5290 156.44(1)
673 74.42(2) 2.80(4) 5.0770 6.7550 45120 154.74(1)
573 74.23(2) 2.60(4) 5.0698 6.7488 4.5060 154.17(1)
523 74.11(2) 2.57(4) 5.0673 6.7453 4.5056 154.00(1)
473 74.01(2) 2.50(4) 5.0641 6.7399 45035 153.71(2)
423 73.93(2) 2.39(3) 5.0644 6.7366 4.5022 153.60(2)
373 73.84(2) 2.32(3) 5.0678 6.7313 4.5021 153.58(1)
300 73.68(2) 2.30(4) 5.0681 6.7272 4.5003 153.43(1)
673 74.82(3) 1.94(8) 5.0852 6.7630 4.5220 155.52(1)
573 74.53(3) 1.95(8) 5.0781 6.7525 45152 154.83(1)
523 74.46(3) 1.80(9) 5.0751 6.7476 4.5126 154.53(1)
473 74.32(3) 1.81(7) 5.0717 6.7439 45105 154.27(1)
423 74.20(3) 1.79(8) 5.0717 6.7407 4.5088 154.14(1)
373 74.12(3) 1.69(8) 5.0719 6.7387 4.5085 154.09(1)
300 73.95(1) 1.68(2) 5.0720 6.7350 4.5081 154.00(1)
300 74.56(2) 0.33(3) 5.0837 6.7477 45162 154.92(1)
373 74.74(2) 0.33(4) 5.0845 6.7503 45184 155.08(1)
423 74.85(3) 0.38(6) 5.0852 6.7522 4.5205 155.22(1)
473 75.00(2) 0.35(4) 5.0849 6.7569 4.5203 155.31(1)
523 75.07(3) 0.50(6) 5.0891 6.7597 45231 155.60(1)
573 75.24(2) 0.45(3) 5.0926 6.7655 4.5263 155.95(1)
673 75.46(3) 0.62(7) 5.0990 6.7740 4.5320 156.54(1)
873 76.10(3) 0.60(8) 5.1130 6.7990 4.5430 157.93(1)
1073 76.64(2) 0.84(6) 5.1270 6.8230 4.5590 159.48(1)
1273 77.37(2) 0.78(4) 5.1510 6.8570 4.5770 161.66(1)
473 75.06(2) 0.23(4) 5.0873 6.7588 45223 155.49(1)
300 0 5.0878 6.7512 4.5197 155.25(1)
Run #2
300 71.69(1) 7.23(2) 5.029 6.664 4.463 149.57(1)
1473 75.23(2) 6.07(4) 5.117 6.817 4.538 158.30(1)
1373 74.83(2) 6.30(5) 5.109 6.802 4.528 157.35(1)
1273 74.50(2) 6.37(4) 5.101 6.778 4516 156.14(2)
1173 74.18(2) 6.45(4) 5.096 6.750 4.514 155.27(2)
1073 73.88(1) 6.48(3) 5.086 6.736 4.508 154.44(1)
873 73.33(1) 6.50(2) 5.070 6.719 4.499 153.26(1)
673 72.78(1) 6.58(2) 5.057 6.705 4.488 152.18(2)
473 72.25(1) 6.71(2) 5.042 6.687 4.475 150.88(1)
Run #3
300 0 5.085 6.751 4.521 155.20(2)
1473 73.26(2) 10.4(1) 5.088 6.761 4.499 154.77(2)
1273 72.71(2) 10.5(1) 5.069 6.731 4.484 152.99(2)
1073 72.06(3) 10.9(1) 5.054 6.702 4.475 151.58(2)
873 71.71(1) 10.5(1) 5.039 6.681 4.470 150.49(2)
673 71.45(3) 10.0(1) 5.030 6.672 4.461 149.71(2)
473 71.17(2) 9.6(1) 5.021 6.657 4.451 148.77(2)
300 70.92(3) 9.3(1) 5.012 6.641 4.446 147.98(2)
Run #4
300 0 5.084 6.744 4.524 155.11(2)
300 67.94(4) 18.6(1) 4.952 6.559 4389 142.56(2)
1473 70.64(2) 17.2(1) 5.038 6.680 4.449 149.73(2)
1273 69.98(2) 17.9(1) 5.025 6.643 4.432 147.94(2)
1073 69.81(2) 17.1(1) 5.018 6.631 4.427 147.31(2)
1073 69.38(2) 18.4(1) 5.012 6.619 4422 146.70(2)
873 69.66(2) 16.3(1) 5.011 6.623 4.424 146.82(2)
873 68.84(2) 18.9(1) 4.987 6.592 4413 145.07(2)
673 69.54(3) 15.5(1) 4.997 6.618 4.427 146.40(2)
473 69.43(3) 14.7(1) 4.985 6.611 4.422 145.73(2)
300 69.36(3) 14.0(1) 4.980 6.601 4.417 145.202)
Run #5
1473 68.26(3) 24.5(1) 4.994 6.622 4.408 145.77(2)
1273 67.90(2) 24.5(1) 4981 6.601 4397 144.57(2)
1073 67.70(4) 24.0(1) 4971 6.588 4391 143.80(2)
873 67.47(4) 23.6(1) 4.962 6.571 4385 142.97(2)
673 67.28(3) 23.0(1) 4.955 6.558 4382 142.39(2)
473 67.08(3) 22.6(1) 4.944 6.543 4373 141.46(2)
300 67.05(3) 21.8(1) 4.936 6.536 4368 140.92(2)
300 67.15(2) 21.4(1) 4937 6.536 4372 141.08(2)
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Table 1. (continued)

T (K) Vwgo (A7) Puigo (GPa) a(A) b(A) c(A) V(A%
Run #6
673 65.23(5) 31.02) 4.908 6.503 4.340 138.52(2)
873 65.66(5) 30.5(2) 4919 6.515 4353 139.50(2)
1073 65.92(2) 30.6(1) 4.928 6.521 4.365 140.27(2)
1273 66.22(2) 30.7(1) 4.943 6.544 4369 141.32(2)
1473 66.46(2) 31.0(1) 4.954 6.561 4377 142.27(2)
1273 66.67(2) 29.0(1) 4.953 6.557 4375 142.09(2)
1073 66.08(2) 30.0(1) 4.932 6.529 4366 140.59(2)
873 65.85(4) 29.7(1) 4.923 6.520 4353 139.72(2)
673 65.61(3) 29.4(1) 4916 6.512 4.348 139.19(2)
473 65.47(5) 28.9(2) 4.906 6.499 4.341 138.41(2)
300 65.31(4) 28.6(1) 4.898 6.486 4332 137.62(2)
Run #7
1473 71.05(2) 16.1(1) 5.048 6.701 4.459 150.83(2)
1373 70.79(2) 16.1(1) 5.044 6.681 4.449 149.93(2)
1273 70.75(2) 15.6(1) 5.041 6.667 4.446 149.42(2)
1273 70.53(4) 16.3(1) 5.035 6.661 4.440 148.91(2)
1073 70.44(3) 15.3(1) 5.033 6.654 4.437 148.59(2)

“Run #7 includes measurements from several runs on carbonate-iron interaction experiments (unpublished data). The 1o errors are in parentheses, they are
not shown for unit cell dimensions (<0.001 A). Pressure was calculated using MgO EOS in Sokolova et al. [2013].

detected by a pure Ge solid state detector with a 4096
multichannel analyzer. The analyzer was calibrated by using
characteristic X-rays of Cu, Mo, Ag, La, Ta, Pt, Au, and Pb.
The diffraction angle (20) was approximately 5.5°, was cali-
brated before compression using the known d values of
X-ray diffraction peaks of MgO (note volumes used in the
beam line software, V,=71.778 A3), with an uncertainty of
less than 0.0005°. In “SPEED-MKII,” an oscillation system
was used to obtain more accurate X-ray powder diffraction
patterns at high temperature by oscillating the press from
—3° to 6° in horizontal plane. A detailed description of the
press system and performance of the oscillation is given by
[Katsura et al., 2004].

[7] Fine-grained Fe;C powder (99.9%, Rare Metallic Co. Ltd.)
was prepared as the starting material. We used 26 mm WC
anvils with different truncation edge lengths (TEL) for the
experiments. In runs #1 and #2 (TEL 12 mm) we investigated
six starting materials (Figure 1), including Fe;C, placed sepa-
rately in a graphite capsule and adjusted with a MgO pressure
marker (Table 1). In runs #3 and #4 (TEL 5.0 and 3.5 mm,
respectively), we investigated Fe;C and FesN together in the
same graphite capsule (Figure 2). These materials were sepa-
rated by a MgO plate which served as a pressure marker.
The X-ray probed area within the pressure marker and the
sample are about 20 um apart, and their temperatures differ
by no more than 10 K. In runs #5 and #6 (TEL 2.0 mm), a
pressure marker composed of a fine mixture of Au and MgO
(1:15) was placed symmetrically to the Fe;C sample in rela-
tion to the temperature field of the cell (Figure 2). The sample
and the Au-MgO pressure marker were separated by a thin
graphite plate. Also, some data on the volume of Fe;C were
obtained from several unpublished carbonate-iron reaction
experiments at 15-17 GPa and were used to supplement the
data collected in run #7 (Table 1). The sample configuration
in run #7 was the same as in runs #5 and #6.

[8] The sample assembly at 20-31 GPa was similar to that
reported by Litasov et al. [2005, 2008], and consisted of a
Co-doped MgO pressure medium, a cylindrical LaCrO;
heater, molybdenum electrodes, and a graphite sample capsule.
Lower pressure (<20 GPa) cell assembly included a ZrO,

pressure medium with a diamond powder insert with MgO
caps (for X-ray transparency) and a LaCrOj; or graphite heater.
The graphite heater was separated from the graphite sample
capsule by a thin BN sleeve. Temperature was monitored
by a Wo7e,Re30,-W7s0,Re;50, thermocouple with a junction
located at nearly the same position as where the X-rays pass
through the sample. This minimized the effect of the thermal
gradient across the sample chamber on temperature measure-
ments. The effect of pressure on thermocouple electromotive
forces (emf) was ignored during experiments.

[¢] The P-T conditions of the experiments are summarized
in Figure 3. In all runs we performed compression with either
one or two subsequent heating cycles. The exposure times for
collecting diffraction data were between 200 and 400 s. The
experimental pressures at high temperature were calculated
from the unit cell volume of MgO using the optimized EOS
presented in Litasov et al. [2013] and Sokolova et al. [2013].

A B
ZrO2 Sample 1 PM
3 MM : N
| Gr
X-ray -] x|
xray-L 1K B T1, Sample'2
MgO | Dia
Mo/\ / Sample 1 PM

Figure 2. (a) Cell assembly for TEL 5.0 mm and (b)
schematic sample configurations in the assemblies for TEL
5.0, 3.5, and 2.0 mm. In Figure 2b, top scheme shows con-
figuration for two samples separated by PM (e.g., FesC,
Fe;N, and MgO-pressure marker). Figure 2b, bottom scheme
shows configuration for one sample and pressure marker
separated by a plate from capsule material (e.g., Fe;C and
MgO + Au pressure marker in graphite capsule). X-ray path
or window is indicated in the drawing, Gr — graphite, Dia —
diamond powder, TC — thermocouple.
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Figure 3. Pressure-temperature conditions of in situ X-ray
diffraction experiments for Fe;C. The pressures were calcu-
lated using MgO EOS. Phase diagram is after Nakajima
et al. [2009]. *Run #7 includes several measurements from
Fe-carbonate interaction experiments resulting in formation
of Fe;C (unpublished data). The boundary between FM and
PM phase is based on data by Wood et al. [2004] at 1 bar, this
work, and at 300 K with uncertainty shown as a grey field
according to Gao et al. [2008] and Prescher et al. [2012].

This pressure scale was similar to that reported in Dorogokupets
and Dewaele [2007] and Dorogokupets and Oganov [2007]
with <0.3 GPa differences at 30 GPa and high temperatures.
Typically, 4-5 diffraction lines (111), (200), (220), (311), and
(222) of MgO were used to calculate pressure, and up to 20
major diffraction lines were used to calculate the volume of
Fe;C (Figure 4). We refined the X-ray diffraction patterns to
determine the d values using the “XRayAnalysis” software
provided by the beam line. The uncertainties of the unit cell
volume of MgO were determined by a least-squares fit method
and yielded typical values of less than 0.1 GPa uncertainty
in pressure.

[10] The quality of the diffraction patterns and the deviation
from the hydrostatic conditions during the experiment were
determined using FWHM (full width at half maximum) of
X-ray diffraction lines. The FWHM of X diffraction lines of
Fe;C and MgO at the maximum pressure and high temperature
were below 10 keV, identical to those at 0.0001-3.0 GPa after
heating. This indicated that differential stress was nearly
relaxed by high-temperature annealing at all pressures. The pre-
cision of the experiments was confirmed by consistent results
obtained using various cell configurations in different runs.

3. Equation of State

[11] We used two conventional approaches to calculate
thermoelastic parameters for Fe;C: (a) a high-temperature
(HT) EOS and (b) a Mie-Griineisen-Debye (MGD) EOS.
The formalism for these approaches can be found in the liter-
ature [Anderson, 1995; Jackson and Rigden, 1996; Poirier,
2000; Litasov et al., 2007]. For 298 K isotherm, we used
the Vinet-Rydberg (VR) EOS [Vinet et al., 1987]. In addition,
we performed a thermodynamic analysis of EOS based on the
formalism proposed by Dorogokupets et al. [Dorogokupets
and Dewaele, 2007; Dorogokupets and Oganov, 2007;
Litasov et al., 2013; Sokolova et al., 2013]. We named this

approach as a Kunc-Einstein (KE) EOS. The detailed formal-
ism is presented by Litasov et al. [2013], and we note here
only some modifications and details.

[12] The Kunc EOS for room-temperature isotherm with pa-
rameter k=2 is equal to Vinet/Rydberg EOS [Kunc et al.,
20037, so we used a similar equation in all three approaches.
The full solution allowed us to find all the necessary parame-
ters for KE EOS, which include: V; —volume at standard con-
ditions, Ky — isothermal bulk modulus and K7’ — its pressure
derivative, ®g;¢ and g,y — two characteristic temperatures,
mpg1 =mpg>=3n — number of atoms in a formula unit, y, and
Yo — Griineisen parameters at ambient conditions and infinite
compression, S — power-mode parameter in Griineisen
equation, ey — parameter, which denotes an electronic contribu-
tion to the free energy, a( — intrinsic anharmonicity parameter,
m — which is an anharmonicity equivalent of the Griineisen
parameter, and g — which is an electronic equivalent of the
Griineisen parameter. In this work we simplified this approach
to use one characteristic temperature taking into account
scarce data for thermochemistry and elasticity of PM Fe;C at
ambient conditions. With the described formalism, we can
calculate any thermodynamic functions versus 7'and ¥ or versus
T and P. The procedure for optimization of the thermody-
namic parameters for EOS was also described previously
[Dorogokupets and Oganov, 2007].

4. Results

[13] The measured unit cell parameters of FM Fe;C before
and after experiments (a=5.086 A, b=6.749 A, c=4.522 A,
and V'=155.2 (1) A®) are consistent with previous data [Li
et al., 2002; Wood et al., 2004]. The analysis of X-ray
diffraction data began with determination of the magnetic
transitions, which can significantly affect the calculated
thermoelastic parameters if all of the data were considered
together. The FM/PM transition can be successfully moni-
tored using the calculated unit cell volume, and specifically
the parameter a (Figure 5). The temperature dependence of
the a value changes from the FM to the PM phase and marks
the T- value. We observed a minor decrease of 7T in the pres-
sure interval from 0.3 to 3 GPa and found consistent results
with neutron diffraction data at 1 bar [Wood et al., 2004].
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Figure 4. Representative X-ray diffraction patterns of Fe;C
at different pressures.

5278



LITASOV ET AL.: THERMAL EQUATION OF STATE OF FE;C

5.16
® 2327GPa A
m 1.7-19GPa
5141 A 0307GPa °
o Wood et al. (2004) A
5.12 4 — FM/PM
Y °
a
5.10 q A °
5.08 4
5.06 T T T T T
200 400 600 800 1000 1200 1400
A
457 4
A [ ]
4.55 4
[ ]
A
C
4,53 - 4 .
M "
| |
] )
451 o mm®
o ®® °
4.49

200 400 600 800 1000 1200 1400

7y
6.84 4 °
A
6.81 4
.
b A
6.78 4
N °
A
n
At o
6.75 4 at o8
?
a8
°
6.72 T T T T T
200 400 600 800 1000 1200 1400
A
161 4
°
A
159 4
°
Vv A
157
A °
P
155{ e o
L LIS
o ®0°
153

200 400 600 800 1000 1200 1400

Temperature (K)
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The pressure of the FM/PM transition may be located
between 7.2 and 9.3 GPa; however, the data point at 7.2 GPa
cannot be considered as significantly deviated from the
298 K compression curve (Figure 6), which is consistent with
the data by Gao et al. [2008] and Prescher et al. [2012]. The
transition from the PM to NM phase suggested by Prescher
et al. [2012] at 22 GPa and 298 K cannot be precisely deter-
mined from our data. The data at 28-31 GPa are generally
consistent with the fit of other data for the PM phase
(Figure 6), whereas the volume of Fe;C at 28.6 GPa may
correspond to the compression curve of both the PM phase

165

Volume (A3)

0 5 10 15 20 25 30 35
Pressure (GPa)
Figure 6. KE EOS fitto P-V-T data for Fe;C. Solid lines are
isothermal compression curves at 300, 473, 673, 873, 973,

1073, 1273, and 1473 K. The dashed line shows the compres-
sion curve of the NM phase of Fe;C [Sata et al., 2010].

(this work) and the NM phase, if we plot the data from Sata
et al. [2010] (Figure 6). The position of the PM/NM transition
at high temperatures is unknown, because it can be structurally
hidden. From our data we can conclude that the thermal prop-
erties of the PM and the NM phases may be close to each other
if the NM phase is stable at 20-31 GPa and high temperatures.
We observed only minor deviations of the volumes from the

Table 2. Comparison of the Volume and Bulk Modulus Data
for Fe;C

Vor Ko P Range
Phase (A®) (GPa) K'r (GPa) EOS Ref
Experiments, 298 K
FM 155.2 175 5° 0-72 VR This work
PM 15456 190(2) 4.8(1) 0-31 VR  This work, HT®
PM 154.42 194(1) 4.6(1) 0-31 VR This work, MGD®
PM 15456 191 (2) 4.68(8) 0-31 VR This work, KE®
-8 1553 168(3) 58(3) 0-31 VR Li et al. [2002]
FM 1554 166 (6) 6.7(3) 14-35 VR Ono and Mibe [2010]
PM 1542 1453) 85(7) 822  BM Prescher et al. [2012]
NM 148.5 316(6) 3.5(1) 50-184 VR Sata et al. [2010]
Calculations, 0 K
FM 153.3 173 5.8 BM  Vocadlo et al. [2002]
FM 152.0 212 4.5 Huang et al. [2005]
FM 1519 216 4.15 0-35 BM Ono and Mibe [2010]
FM 151.6 183 6.0 VR Mookherjee [2011]
NM 1489 317 43 BM  Vocadlo et al. [2002]
NM 149.5 322 3.7 Huang et al. [2005]
NM 142.5 316 44 <400 BM Ono and Mibe [2010]
NM 143.2 297 4.9 VR Mookherjee [2011]
“Not specified.
“Fixed value.

“See text for thermal parameters. The EOSes for pressure markers used in
original works were recalculated to Ruby or MgO scale from Sokolova et al.
[2013]. BM — Birch-Murnaghan EOS, VR — Vinet-Rydberg EOS.
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Table 3. Calculated Thermodynamic Parameters for PM Phase of Fe;C at Different Pressures and Temperatures Using KE EOS

P T ax107° Cp Ky Ks AG
(GPa) X) x=VIV, X s (@mol”' K™Y Cy (GPa) (GPa) y (KJ mol™")
0.0001 298.15 1.0000 436 104.48 96.76 94.25 190.8 195.9 2.096 0.002
0.0001 500 1.0093 4.80 157.13 106.42 101.47 183.5 192.4 2.102 —26.775
0.0001 1000 1.0355 5.44 235.32 120.26 108.50 165.0 182.8 2.118 —126.736
0.0001 1500 1.0659 6.14 286.67 13432 113.87 1459 172.1 2.137 —257.861
0.0001 2000 1.1015 7.05 327.55 151.36 119.21 126.1 160.1 2.158 —411.702
10 298.15 0.9541 3.58 95.53 94.49 92.49 236.0 241.1 2.067 227.129
10 500 0.9614 3.95 147.19 104.67 100.68 228.9 238.0 2,072 202.272
10 1000 0.9818 4.40 223.90 117.34 108.01 2114 2297 2.085 107.662
10 1500 1.0046 4.82 273.65 128.99 113.25 193.5 220.4 2.099 ~17.367
10 2000 1.0303 531 312.50 142.02 11833 1752 2102 2.115 —164.212
20 298.15 0.9177 3.06 88.34 92.48 90.82 278.6 283.6 2.043 444765
20 500 0.9237 3.40 139.17 103.31 99.94 271.7 280.9 2.047 421.456
20 1000 0.9405 375 214.84 115.44 107.60 254.8 273.4 2.058 331.128
20 1500 0.9590 4.05 263.59 125.78 112.76 237.6 265.0 2.070 210.873
20 2000 0.9793 437 301.27 136.86 117.67 220.1 256.0 2.083 69.339
30 298.15 0.8874 2.68 82.33 90.63 89.21 319.3 324.4 2.023 654.690
30 500 0.8926 3.01 132.42 102.17 99.23 312.6 321.9 2.026 632.681
30 1000 0.9069 3.30 207.29 114.05 107.23 296.1 314.9 2.036 545.944
30 1500 0.9225 3.53 255.33 123.57 112.35 2793 307.2 2.046 429.640
30 2000 0.9395 3.77 29222 133.47 117.14 2624 298.9 2.057 292.429
40 298.15 0.8616 2.40 77.17 88.90 87.66 358.7 363.7 2.005 858.122
40 500 0.8661 2.71 126.59 101.15 98.55 352.1 361.4 2.008 837.234
40 1000 0.8786 2.97 200.78 112.96 106.89 335.8 354.9 2,016 753.598
40 1500 0.8922 3.16 248.29 121.92 112.00 319.4 347.7 2.026 640.680
40 2000 0.9068 335 284.60 131.01 116.69 302.8 340.0 2.036 507.133

isothermal fitting curves at 21-24.5 and 28.6-31 GPa.
Because the values of the isothermal fitting curves were
closely related in this work, we analyzed them together.
[14] It was difficult to determine a compressibility curve for
PM-phase from our data at 298 K, because it included only
five data points in a narrow pressure interval of 9-22 GPa
with uncertain V. Therefore, we combined the analysis of
the 298 K isotherm with the high-temperature data. The
results of the fitting of the P-V-T data using different
approaches are presented in Tables 2 and 3 and plotted in
Figure 6. Calculated residual pressures showed no systematic
errors in the measurements with a maximum deviation of
0.7-0.8 GPa (Figure 7), which indicates relatively high preci-
sion and consistency within the results. A least-square fit to
HT-VR EOS yields V,=154.5+0.1 A% K;,=190+3 GPa,
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Figure 7. Differences between pressures calculated using
EOS of MgO pressure standards and pressures calculated
using KE EOS for PM Fe;C.

and K7/ =4.8+£0.2. Thermal parameters include (0K/0T)p=
—0.029 +0.002 GPa/K and thermal expansion o =a,+ a; T with
ap=3.90(£0.15)x 10K 'and @;=1.22 (x0.17) x 10 3 K2,
In comparison, extrapolation of 1 bar measurements of Wood
et al. [2004] at 460—600 K to the lower temperatures yields
Vo=154.14 A? and calculated a=4.1 x 107> K~! The analy-
sis of the compression curve for the PM phase in previous
works was considered only along with the FM phase
(Figure 8) and revealed parameters shown in Table 2. Fitting
of our data to MGD relation yielded yo=2.15+£0.03 and
q=—0.03+0.27 and the Debye temperature, 9o=314+ 120 K.
Usually, 6, is poorly resolvable from the high-pressure P-V-T
data; however, there are no reported reference values for the

1.00 ‘i ' ® This work
\{. . ——— VR Fit, This work
\. P Li et al. (2002)
) VR Fit, Li et al. (2002)
0.97 1 FM i A Prescheretal. (2012)
e N I VR Fit, Mookherjee (2011)
PoiA O Ono and Mibe (2010)
;5 0.94 :
—
>
0.91 1
0.88 -
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Pressure (GPa)

Figure 8. The compression curve of Fe;C along the 298 K

isotherm (solid circle) fitted to a VR EoS (solid curve). The

dashed lines denote boundaries between the FM and PM phases
according to Gao et al. [2008] and Prescher et al. [2012].
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Table 4. Relative Volumes (V/V;) of PM Fes;C as a Function of
Pressure and Temperature Using KE EOS*

T (K)
P(GPa) 298.15 500 750 1000 1250 1500 1750 2000
0.0001 1.0000 1.0093 1.0220 1.0355 1.0501 1.0659 1.0829 1.1015
5 0.9756 0.9838 0.9948 1.0066 1.0192 1.0326 1.0470 1.0624
10 0.9541 0.9614 0.9713 0.9818 0.9929 1.0046 1.0171 1.0303
15 0.9350 0.9416 0.9505 0.9599 0.9699 0.9804 0.9914 1.0031
20 0.9177 0.9237 0.9319 0.9405 0.9495 0.9590 0.9689 0.9793
25 0.9019 0.9075 0.9150 0.9229 0.9312 0.9398 0.9489 0.9583
30 0.8874 0.8926 0.8996 0.9069 0.9145 0.9225 0.9308 0.9395
35 0.8741 0.8789 0.8854 0.8922 0.8993 0.9067 0.9144 0.9224
40 0.8616 0.8661 0.8722 0.8786 0.8853 0.8922 0.8993 0.9068

Ay, =154.56 A*,

PM phase of Fe;C. Reported 6, for (presumably) FM phase
determined by different methods was 394 K [Gustafson, 1985],
420-450 K [Belikov and Savinskaya, 1962], 468-475 K
[Dodd et al., 2003], and 604 K [Wood et al., 2004]. If we
fix 6, at 500 K, the vy, calculated from our data will be
2.134+0.02 and ¢=-0.36+0.23. The thermal Griineisen
parameter calculated by Wood et al. [2004] was yo=2.1.
Optimization of the P-V-T data for the PM phase along with
the reference data for thermal expansion and heat capacity using
KE EOS yields the following parameters: ¥, =2.327 cm*/mol
(154.56 A3), K;y=190.8 GPa, K;/=4.68, @;o=2305 (which
correspond to 0y=407 K), vo=2.10, ¢,=9.2x10"> K,
m=4.3, and g=0.66. Fixed parameters include: mz; =3n=12,
Y=0, £=0.3, and ao=0. Calculated thermoelastic and ther-
mochemical parameters using KE EOS for PM Fe;C are listed
in Tables 3 and 4.

[15] Axial compressibility of PM Fe;C at 298 K is shown
in Figure 9. The VR EOS fit with fixed K7/ =4.8 revealed
limited axial anisotropy of compressibility for PM Fe;C.
We obtained aq=5.085 A, by=6.743 A, ¢,=4.523 A, and
Kr0,=195 (2) GPa, K7y, =186 (3) GPa, K7p.=163 (2) GPa.

[16] Finally, we note that fitting of limited volume data at
pressures below 8 GPa for the FM phase using VR EOS yields
Vo=155.27+0.05 A3, and K= 175+ 2 GPa, if K/ is fixed at 5.

5. Discussion

5.1. Thermoelastic and Thermochemical Properties
of Fe-Carbide

[17] In order to constrain the thermodynamic properties
of PM Fe;C, we applied the KE EOS and formalism de-
scribed in Litasov et al. [2013] and Sokolova et al. [2013].
Thermodynamic data for Fe;C at 1 bar are complicated due
to the magnetic transition. Thermochemical data for PM
Fe;C are summarized in Barin [1995 and Hallstedt et al.
[2010]. The thermal expansion data are available for the tem-
perature range of 480-700 K [Jellinghaus, 1966; Kagawa
and Okamoto, 1983; Wood et al., 2004]. The coefficient
of thermal expansion and the temperature dependence of
the unit cell volume determined by Kagawa and Okamoto
[1983] and Wood et al. [2004] are generally consistent with
the calculated values from our data (Figures 10a and 10b).
The calculated heat capacity is also fairly consistent with
experimental and theoretical data for Cp (Figure 10c).
Similar minor deviation can be noted for the calculated
entropy and the Gibbs free energy, Sos00=157.1 J/(mol K)
and AGy sp0 = —26.8 kJ/mol in this work and So s00=177.6 J/

(mol K) and AGysp0=—33.7 kl/mol in Barin [1995]. The
temperature dependence of the bulk moduli is shown in
Figure 10d. Calculated pressure dependence of the bulk mod-
uli can be compared with data obtained by inelastic X-ray
scattering (IXRS) (Figure 11). The data for K;/Kg calculated
for FM and PM phases are consistent with those obtained by
IXRS [Gao et al., 2008; 2011]. Although at pressures above
25 GPa the data on Ky calculated from IXRS [Gao et al.,
2011] deviate slightly (following linear trend) toward a higher
bulk modulus, they remain significantly lower than estima-
tions of K7 from X-ray diffraction measurements by Saza
et al. [2010] for NM-Fe;C.

[18] The unit cell volumes of the PM and NM phases are
very similar at 25-30 GPa, and the differences in volumes
at 200 GPa are about 1.5-1.7% (Figure 12). In this diagram
we should note significant differences in volume and compress-
ibility between single crystal [Prescher et al., 2012] and powder
diffraction data [Ono and Mibe, 2010] for Fe;C. Nevertheless,
certain uncertainties remain about PM/NM phase transition
at high pressures. Although Prescher et al. [2012] argued for
the PM/NM transition at 22 GPa, in the work by Ono and
Mibe [2010] and in theoretical calculations [Mookherjee,
2011], this magnetic transition (named as FM/NM) was
observed at 55-60 GPa. If the PM/NM transition occurs at
22 GPa [Prescher et al., 2012], what would be the reason for
the observed significant unit cell volume drop [Ono and Mibe,
2010] at 55 GPa? The authors of newer work [Prescher et al.,
2012] did not comment on this matter. Thus, this uncertainty
should be clarified in future studies. In this work we followed
the higher-pressure PM/NM transition data by Ono and Mibe
[2010], who showed a prominent volume change at 55 GPa
(Figure 12).

5.2.

[19] Data for EOS of Fe-carbides can be compared with
density and sound velocity data for the inner core. For this
purpose we need large extrapolation of the data obtained at
lower pressures. For both Fe-carbides, Fe,C; and Fe;C, the
EOS for the PM phase is obtained for a pressure range of
0-30 GPa. However, thermodynamic data for the PM phase
of Fe;C cannot be directly applied to model NM carbide in
the inner core as was performed by Nakajima et al. [2011]

Implication for the Inner Core

0.95

0 5 10 15 20 25 30 35
Pressure (GPa)

Figure 9. Axial compressibility of PM Fe;C along 298 K
1sotherm. VR fits for all axes are shown.
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for Fe;C; because of the magnetic transition and clear differ-
ences in their compressibility. Taking into account minor
differences in volume change across the PM-NM transition,
we can assume that thermal properties of PM-Fe;C can be
very similar to those of NM-Fe;C. At present, this is the only
possible way to extrapolate the thermoelastic data for Fe;C to
inner core pressure. Similar assumptions for NM-Fe-,C; were
considered by Chen et al. [2012].

[20] Figure 13 shows the comparison of Fe-carbides and
hep-Fe with the density of the core according to the PREM
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Figure 11. Pressure dependence of bulk moduli of Fe;C

from this study (black and orange solid lines) in comparison
with reference data based on X-ray diffraction [Sata et al.,
2010] and nuclear resonant inelastic X-ray scattering mea-
surements [Gao et al., 2008; 2011].

model [Dziewonski and Anderson, 1981]. Calculated densities
at 1 atm are 7.717 g/cm? for the PM-phase and 7.979 g/cm? for
the NM-phase of Fe;C. According to Sata et al. [2010], NM-
phase has lower compressibility than the PM-phase (Table 2).
However, calculated densities at 2898 K at inner core condi-
tions (Figure 13) are almost similar with extrapolation error
of about 0.2 g/cm>. Accordingly, high-temperature isotherms
would also be nearly similar. This is not the case for Fe;Cs.
The extrapolation of elasticity data for PM- and NM-phase
of Fe;C5 to inner core conditions shows the difference in
density of 1.5 cm® [Chen et al., 2012]. Accordingly, their
high-temperature isotherms will also be significantly different.
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Figure 12. Compressibility of Fe;C up to 200 GPa.
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Figure 13. Calculated density of (a) FesC and (b) Fe,C; at
the Earth’s core conditions. For NM-Fe;C, we used compress-
ibility data from Sata et al. [2010] and thermal parameters of
PM phase from this work. For NM-Fe,;C;, we used compress-
ibility data from Chen et al. [2012] and thermal parameters for
PM phase [Nakajima et al., 2011]. Profiles for hcp-Fe are
shown using parameters listed in Seagle et al. [2006]. The
PREM profile is after Dziewonski and Anderson [1981]. The
error bars for Fe;C and PREM are shown.

At the outer-inner core boundary, the density at 298 K will
be (g/cm?) 13.8 for hep-Fe, 12.95 for NM-Fe;C; (6.2% density
reduction), and 12.8 for NM-Fe;C (7.2% density reduction).
We should also note that high-temperature isotherms at
3000 and 5000 K in the inner core for Fe;C and Fe,C; are
significantly different (Figure 13) due to different 0K/0T
between the phases (—0.045 for PM-phase Fe,C; [Nakajima
etal., 2011]).

[21] An assumption that the inner core consists of mixture
of Fe (without Ni) and Fe-carbide provides an outer-inner
core boundary temperature of 5000-7000 K [Nakajima et al.,
2011; Chen et al., 2012]. The estimation of the carbon con-
tent in the inner core based on thermoelastic data for Fe,;C;
corresponds to 6.5+2.0 and 4.9+1.8 wt % at 5000 and
7000 K, respectively [Nakajima et al., 2011; Chen et al.,
2012]. Similar calculations for NM-Fe;C indicate 3.3+0.9 and
2.3+0.8 wt % C for 5000 and 7000 K, respectively. Taking
into account recent data on the stability of NM-Fe;C at the core
conditions [Takahashi et al., 2012] these estimations would
correspond to the maximum carbon content in the Earth’s inner
core. In order to place tighter constraints on the carbon content
of the inner and outer cores, thermal EOS data of NM-Fe;C
under relevant pressures are required. In a recent comprehen-
sive review that integrates constraints from mineral physics,

geochemistry, and cosmochemistry [Wood et al., 2013] the
carbon content of the core was estimated at the 1 wt% level.

6. Conclusions

[22] In this work we represent the first P-V-T equation of state
for Fe;C obtained using the multianvil technique and synchro-
tron radiation at pressures up to 31 GPa and temperatures up to
1473 K. As a note of caution, magnetic transitions at 8—10 and
55-60 GPa would introduce uncertainties into the calculation
of thermodynamic parameters of Fe carbides and especially
for extrapolation of the data to core-mantle boundary and inner
core conditions. A fit of the P-V-T data was completed using
Mie-Griineisen-Debye EOS and the newly suggested Kunc-
Einstein EOS, which allows for the calculation of all thermo-
dynamic parameters necessary to calculate free energy at high
PT-conditions. We propose to use our present data for any
thermodynamic calculations of chemical equilibria involving
Fe;C at pressures of PM-NM transition at 25-30 GPa.

[23] Assuming carbon as a sole light element in the sys-
tem extrapolation of our data for equation of state to the
NM-phase of Fe;C indicate 3.3+0.9 wt % C at 5000 K and
2.3+0.8 wt % C at 7000 K at depths close to the inner core
boundary. However, for accurate determination of the possible
carbon concentrations in the core by comparison with inner
core properties, we need to obtain experimental (in diamond
anvil cell) of theoretical high-pressure and high-temperature
EOSes for the NM phases of Fe carbides.
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