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It is common to conduct bootstrap inference in vector autoregressive (VAR)
models based on the assumption that the underlying data-generating process is
of finite-lag order. This assumption is implausible in practice. We establish the
asymptotic validity of the residual-based bootstrap method for smooth functions
of VAR slope parameters and innovation variances under the alternative
assumption that a sequence of finite-lag order VAR models is fitted to data
generated by a VAR process of possibly infinite order. This class of statistics
includes measures of predictability and orthogonalized impulse responses and
variance decompositions. Our approach provides an alternative to the use of the
asymptotic normal approximation and can be used even in the absence of
closed-form solutions for the variance of the estimator. We illustrate the
practical relevance of our findings for applied work, including the evaluation of
macroeconomic models.

1. introduction

It is common in applied vector autoregressive (VAR) analysis to condition on the

assumption that the lag order of the VAR data-generating process (DGP) is finite.

The implausibility of finite-lag order VAR models has been pointed out by Braun

and Mittnik (1993), among others, but the finite-lag order assumption continues to

play a central role in econometric inference in practice.

The fact that the DGP is thought to be represented by a VAR(1) process has

important implications for VAR inference. For example, Lütkepohl and Poskitt

(1991) show that, although the VAR impulse response estimator retains its

asymptotic normal distribution in the infinite-lag order case, its asymptotic variance

is a nondecreasing function of the forecast horizon. Unlike in the finite-lag order
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case, the asymptotic variance does not converge to zero as the horizon gets large.

The additional sampling uncertainty arises from the thought experiment that the lag

order is allowed to grow to infinity with the sample size. Thus, the resulting delta-

method intervals are quite different from traditional intervals for the finite-lag order

model (see Lütkepohl, 1990, p. 122, for an illustrative example).

In this article, we explore an alternative approach to inference in VAR(1) models

based on the bootstrap method. Although the asymptotic validity of the bootstrap

method for inference on standard statistics such as orthogonalized impulse responses

or variance decompositions is well established for finite-lag order VAR models (e.g.,

Bose, 1988; Kilian, 1998), no corresponding theoretical results are available for

VAR(1) models. We will demonstrate both the theoretical validity and the practical

feasibility of the bootstrap proposal. Our results cover orthogonalized impulse

responses and variance decompositions but also extend to other smooth functions of

slope parameters and innovation variances for which closed-form solutions for the

asymptotic variance are not available in the VAR(1) case, such as measures of

predictability (see Granger and Newbold, 1986; Diebold and Kilian, 2000).

In related work, Paparoditis (1996) proves the asymptotic validity of bootstrapping

the autoregressive coefficients of the VAR(1) model by means of a sequence of

finite-order autoregressive approximations. Paparoditis shows that if the autoregres-

sive lag order increases at a suitable rate with the sample size, the bootstrap

approximations of the distributions of these estimators are as sound asymptotically

as conventional large sample Gaussian approximations. His results also extend to the

implied moving-average coefficients (reduced-form impulse responses), but they do

not cover nonlinear functions of both slope parameters and innovation variances

such as orthogonalized impulse responses and variance decompositions or predict-

ability measures.2

The remainder of the article is organized as follows: In Section 2, we motivate and

describe the proposed bootstrap algorithm. Section 3 contains the main theoretical

results. Details of the proofs are relegated to the Appendix. Section 4 contains some

Monte Carlo evidence of the small-sample properties of the proposed bootstrap

procedure. In Section 5, we illustrate the practical usefulness of our results for the

econometric evaluation of macroeconomic models. We conclude in Section 6.

2. the bootstrap algorithm for var(1) models

VAR analysis plays an important role in empirical macroeconomics. It is well

known that the reduced-form representation of dynamic general equilibrium (DGE)

macroeconomic models will in general not have a finite-lag order VAR represen-

tation but often can be represented as a vector autoregressive moving-average

(VARMA) process. It may therefore seem that in conducting macroeconometric

2 Paparoditis (1996) focuses on autoregressive slope parameters, the number of which grows with
the sample size. In contrast, the theoretical results in Bühlmann (1997) for the univariate autore-
gressive sieve model cover nonlinear functions of the data that depend on a fixed number of lags
(such as autocorrelation coefficients). Bühlmann’s results do not apply if one is interested in boot-
strapping statistics such as impulse responses and variance decompositions.
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analysis we should condition on the particular reduced-form VARMA structure

implied by the theoretical economic model.3

It turns out that this proposal is neither theoretically appealing nor practical: First,

we have little confidence in the VARMA specification implied by a given DGE

model, because that specification depends on inherently atheoretical assumptions

about the exogenous driving processes and on the absence of measurement error and

aggregation of various forms (see Lütkepohl, 1993, p. 230, for further discussion). In

fact, in some cases, there may not even exist a finite-lag order VARMA

representation. Second, and more important, even if some finite-order VARMA

structure provides a good approximation to the reduced form, VARMA models of

the large dimensions of interest in most empirical work are notoriously difficult to

estimate in practice. This may explain why there are few, if any, examples of

VARMA models with more than two variables in applied macroeconometrics.

These considerations suggest that applied users consider an alternative class of

reduced-form representations known as VAR(1) processes (see Bühlmann, 1995).

Note that all stable invertible VARMA models can be represented as VAR(1)

processes. Assuming an exponential rate of decay of the coefficients of the

autoregressive representation of the VAR(1) process, the VAR(1) process may be

approximated by a sequence of finite-lag order VAR models, where the order k of

the approximating model increases at a suitable rate with the sample size. Unlike

VARMA models, which have to be estimated by numerical methods, approximating

VAR(k) models are easy to fit by standard least-squares (LS) techniques.

In this article, we consider bootstrap inference based on such models. Consider a

vector time series {yt}
T
t¼1, generated from

yt=
X1
j=1

Ajyt�j+et

where A(k)=(A1‚ A2‚ . . . ‚ Ak) and R is the covariance matrix of the independent and

identically distributed (iid) innovations et. All deterministic components are assumed

to have been removed. Suppose that the statistic of interest is a smooth function of

AðkÞ and R. Then bootstrap approximations to the distribution of this statistic may be

constructed as follows:

(1) Use the LS method to estimate the approximating VAR(k) model:

yt=A1‚kyt�1+ � � �+Ak‚kyt�k þ ek‚t

Denote the LS estimate of A(k) by ÂA(k) ¼ (ÂA1‚k‚ ÂA2‚k‚ . . . ‚ ÂAk‚k) and the LS

estimate of R by R̂Rk=
PT

t=k+1êek‚t êe
T
k‚t=(T � k), where êek‚t=~eek‚t �

PT
t=k+1~eek‚t=

(T � k) and ~eek‚t=yt � ÂA1‚kyt�1 � � � � � ÂAk‚kyt�k .

(2) Generate T � k bootstrap innovations e�t by random sampling with replace-

ment from the centered regression residuals êek‚t, t=k+1‚ . . . ‚ T .

(3) Generate a random draw for the vector of k initial observations

Y �
0=(y�1‚ . . . ‚ y�k), as described by Berkowitz and Kilian (2000).

3 Methods for constructing confidence intervals for many of the statistics of interest in VARMA
models have been proposed, for example, by Mittnik and Zadrozny (1993).
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(4) Given Y �
0, ÂA(k) and {e�t }Tt=k+1, generate a sequence of pseudodata of length T

from the recursion

y�t=ÂA1‚ky�t�1+� � �+ÂAk‚ky�t�k+e�t

Fit a VAR(k) model to {y�t }Tt=1 and calculate the bootstrap LS regression

estimates ÂA
�
(k) ¼ (ÂA

�
1‚k‚ ÂA

�
2‚k‚ . . . ‚ ÂA

�
k‚k) and R̂R

�
k=
PT

t=k+1êe
�
k‚t êe

�T
t =(T � k), where

êe�k‚t=~ee�k‚t�
PT

t=k+1~ee
�
k‚t=(T � k) and~ee�k‚t=y�t �ÂA

�
1‚ky

�
t�1 � � � � � ÂA

�
k‚ky

�
t�k . Use these

LS estimates to compute the bootstrap analog of the statistic of interest.

(5) Repeat steps 2–4 until the empirical distribution of the statistic of interest is

approximated to the desired degree of accuracy.

3. theoretical results

Let Yt‚k=(yT
t ‚ y

T
t�1‚ . . . ‚ yT

t�k+1)T, ĈC1‚k=(T � k)�1PT�1
t=k Y t‚kyT

t+1, and ĈCk=(T � k)�1PT�1
t=k Y t‚kY T

t‚k . Let a(k)=vec(A(k)).4 The LS estimator of a(k) based on the kth order

approximating vector autoregression is denoted by âa(k)=vec(ÂA(k)), where ÂA(k)=

ĈC
T

1‚kĈC
�1

k . Denote the corresponding bootstrap LS estimator by ÂA
�
(k)=ĈC

�T

1‚kĈC
��1

k ,

where Y �
t‚k=(y�T

t ‚ y�T
t�1‚ . . . ‚ y�T

t�k+1)T, ĈC
�
1‚k=(T � k)�1PT�1

t=k Y
�
t‚ky

�T
t+1 and ĈC

�
k=(T � k)�1PT�1

t=k Y
�
t‚kY

�T
t‚k . Then, âa�(k)=vec(ÂA

�
(k)) and R̂R

�
k=(T � k)�1PT

t=k+1êe
�
k‚t êe

�T
k‚t are the boot-

strap versions of âa(k) and R̂Rk , respectively.

Assumption 1.

yt=
X1
j=1

Ajyt�j+et

(a) {et} is a sequence of iid r-dimensional random vectors with E(et)=0r	1,

E(eteT
t )=R and finite-dimensional moments up to the eighth order.

(b) det(Ir �
P1

j=1Ajzj) 6¼ 0 for all j z j � 1.

(c)
P1

j=1kAjk(1+g)j < 1 for some g > 0, where k � k is the matrix norm defined

by kXk={tr(XTX )}1=2.

(d) k ! 1 as T ! 1 and k=o(T 1=7).5

Except for the assumption of finite moments up to the eighth order, assumptions

(a)–(d) are from Paparoditis (1996). Throughout this article, we establish the

validity of the bootstrap by showing that, conditional on the sample, the bootstrap

analog converges weakly to the limiting distribution of the original statistic in

probability. The in-probability bootstrap asymptotics used in this article are

described in detail in Giné and Zinn (1990) (also see Freedman, 1981; Kreiss, 1988;

Paparoditis and Streitberg, 1992; Paparoditis, 1996).

4 We use vec to denote the column stacking operator and vech to denote the operator that stacks
only the elements on and below the diagonal.

5 Assumption (c) ensures that we do not require a lower bound on k.

312 INOUE AND KILIAN



Theorem 1. Under Assumption 1, for all k,

(T � k)1=2l(k)T(âa(k) � a(k))

(T � k)1=2vech(R̂Rk � R)

� �
!d N(0{1+r(r+1)=2}	1‚ X)(1)

where X is defined in the Appendix, and{l(k)}k2N is a sequence of kr2 	 1 vectors

satisfying 0 < M1 � kl(k)k � M2 < 1, and, conditional on the sample,

(T � k)1=2l(k)T(âa�(k) � âa(k))

(T � k)1=2vech(R̂R
�
k � R̂Rk)

 !
!d N(0{1+r(r+1)=2}	1‚ X)(2)

in probability.

Next, we consider several applications of Theorem 1. The first application is a

sequence of smooth functions of A(k) and R. Consider a sequence of functions {gk}
1
k=1

such that gk :<kr2+r(r+1)=2 ! <. Let Dgk(x‚ y) denote the derivative of gk with respect

to (xT‚ yT)T, where x 2 <kr2

and y 2 <r(r+1)=2.

Assumption 2.

(a) 0 < M1 � kDgk(x‚ y)k � M2 < 1 for all x 2 <kr2

and y 2 <r(r+1)=2.

(b) Dgk satisfies a Lipschitz condition: There is M > 0 such that

kDgk(x0‚ y0) � Dgk(x‚ y)k � Mk(x0T‚ y0T)T � (xT‚ yT)Tk

for all x‚ x0 2 <kr2

and y‚ y0 2 <r(r+1)=2.

Corollary 1. Under Assumptions 1 and 2,

(T � k)1=2{gk(vec(ÂA(k)); vech(R̂Rk)) � gk(vec(A(k))‚ vech(R))}!d N(0‚ Xg)(3)

where Xg is defined in Appendix A.1, and, conditional on the sample,

(T � k)1=2{gk(vec(ÂA
�
(k))‚ vech(R̂R

�
k)) � gk(vec(ÂA(k))‚ vech(R̂Rk))}!d N(0‚ Xg)ð4Þ

in probability.

An example of the class of statistics covered by Corollary 1 is the half-life of a unit

shock in an AR(p) process. Corollary 1 is a general result, but in many cases it is

easier to prove the asymptotic validity of the bootstrap directly rather than verifying

Assumption 2. The following three corollaries to Theorem 1 are of particular interest

in applied work. The first two examples are orthogonalized impulse responses and

variance decompositions. Let

B̂Bj‚k=
Xj
i=1

B̂Bj�i‚kÂAi‚k

for 0 < j � k with B̂B0‚k=Ir, and let P̂P k be the lower triangular Cholesky decompo-

sition of R̂Rk such that P̂P kP̂P
T
k=R̂Rk . Further, let B̂B

�
(h‚ k)=(B̂B

�
1‚k‚ B̂B

�
2‚k‚ . . . ‚ B̂B

�
h‚k) and P̂P

�
k

denote the corresponding bootstrap moving-average parameters and the Cholesky

decomposition of R̂R
�
k , respectively, where h denotes the horizon. Define the
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orthogonalized impulse responses by Hi=BiP and denote their estimates and

bootstrap estimates by ĤHi‚k and ĤH
�
i‚k , respectively.

Corollary 2. Under Assumption 1, for h fixed,ffiffiffiffi
T

p
vec([ĤH0‚k‚ ĤH1‚k‚ . . . ‚ ĤHh‚k]� [H0‚ H1‚ . . . ‚ Hh])!

d
N(0(h+1)r2	1‚ Xh)(5)

where Xh is defined in Appendix A.1, and, conditional on the sample,ffiffiffiffi
T

p
vec [ĤH

�
0‚k‚ ĤH

�
1‚k‚ . . . ‚ ĤH

�
h‚k ]� [ĤH0‚k‚ ĤH1‚k‚ . . . ‚ ĤHh‚k ]

� 	
!d N(0ðh+1)r2	1‚ Xh)(6)

in probability.

We follow Lütkepohl and Poskitt (1991) in defining forecast error variance

components

xmn‚h=
Xh�1

j=0

eT
mHjen

PMSEm‚h
‚ h=1‚ 2‚ . . .

where em is the mth column of Ir and PMSEm‚h is the mth diagonal element of the

forecast error covariance matrix
Ph�1

j=0HjH
T
j .

Corollary 3. Under Assumption 1, for h fixed,ffiffiffiffi
T

p
(x̂xmn‚h(k) � xmn‚h)!d N(0‚ r2

mn‚h)(7)

where r2
mn‚h is defined in Appendix A.1, and, conditional on the sample,ffiffiffiffi

T
p

(x̂x�
mn‚h(k) � x̂xmn‚h(k))!d N(0‚ r2

mn‚h)(8)

in probability.

The third example that is of special interest is the measure of predictability

proposed by Diebold and Kilian (2000). We prove the asymptotic validity of

bootstrapping this statistic under Assumptions 1 and 2 for the special case of a

quadratic loss function. The predictability measure P(m‚ n) for a given series

i=1‚ . . . ‚ r is defined as

P i(m‚ n)=1 � PMSEi(m)

PMSEi(n)
‚ m � n < 1

where PMSEi(h) denotes the ith diagonal element of the PMSE matrix at horizon h.

Under our assumptions, P i(m‚ n) 2 [0‚ 1] for all m � n with larger values indicating

higher predictability.

Corollary 4. Under Assumption 1, for n fixed, we haveffiffiffiffi
T

p
(P̂P k(m‚ n) � P(m‚ n))!d N(0‚ Rp(m‚ n))(9)

where Rp(m‚ n) is defined in Appendix A.1, and, conditional on the sample,
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ffiffiffiffi
T

p
(P̂P

�
k(m‚ n) � P̂P k(m‚ n))!d N(0‚ Rp(m‚ n))(10)

in probability.

The next result establishes the asymptotic validity of bootstrapping the scalar

measure of predictability proposed by Granger and Newbold (1986, p. 310). This

measure of predictability is patterned after the familiar R2 for univariate linear

regressions:

PGN=1 � var(et+1)

var(yt+1)

where et+1=yt+1 � ŷyt+1jt denotes the one-step ahead forecast error. By construction,

PGN 2 [0‚ 1] with larger values indicating higher predictability.

Theorem 2. Under Assumption 1 of Theorem 1 with (d) replaced by

(d0) k ! 1 as T ! 1 and k=o(T 1=8),cffiffiffiffi
T

p
(P̂PGN(k) � PGN)!d N(0‚ RGN)(11)

where RGN is defined in Appendix A.1, and, conditional on the sample,ffiffiffiffi
T

p
(P̂P

�
GN(k) � P̂PGN(k)Þ!d N(0‚ RGN)(12)

in probability.

4. monte carlo evidence

We conduct two Monte Carlo simulation studies to analyze the accuracy of the

proposed bootstrap method. Details of the DGPs can be found in Appendix A.2. The

first study examines a univariate measure of predictability, and the second

application focuses on orthogonalized impulse responses in a vector autoregressive

model. Measures of predictability play an important role in policy analysis as well as

in the evaluation of macroeconomic models (see Barsky, 1987; Ball and Cecchetti,

1990; Rotemberg and Woodford, 1996; Diebold and Kilian, 2000). Here, we focus on

the scalar measure of predictability, PGN, proposed by Granger and Newbold (1986)

and described in Section 3. Theorem 2 provides the basis for constructing bootstrap

confidence intervals for PGN. The bootstrap approach has several advantages over

the delta method in this context. Not only are closed-form solutions for the

asymptotic standard errors not available for PGN, but the application of the delta

method itself is questionable because the PGN statistic is bounded between 0 and 1. It

is well known that the delta-method interval is not range respecting and may produce

confidence intervals that are logically invalid. In contrast, the bootstrap percentile

interval by construction preserves these constraints (see Efron and Tibshirani, 1993).

Here, we present evidence that the bootstrap may be used to provide reliable

measures of sampling uncertainty for the PGN statistic. Our DGP is based on an

ARMA(2,4) model for U.S. post-war inflation (chosen by the Akaike information

criterion). The data are for monthly residential consumer prices excluding shelter
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(DRI code: PRXHS) from 1960.1 to 1998.10. The parameters of the estimated model

are frozen and treated as the parameters of the population model that underlies

the simulation study. We then proceed by analyzing the coverage probabilities of

the nominal 90 percent bootstrap percentile confidence intervals based on the

approximating autoregressive model. We implement the bootstrap using the bias

corrections described in Kilian (1998). These small-sample bias corrections have no

effect on the asymptotic validity of the procedure but greatly enhance the small-

sample performance (see Diebold and Kilian (2000) for further simulation evidence).

Table 1 shows effective coverage probabilities for the nominal 90 percent

bootstrap confidence interval based on 1000 Monte Carlo trials each. The sample

size in the Monte Carlo study is T=240. Asymptotic theory provides no guidance as

to the choice of the lag order k of the approximating model for a given sample size.

We therefore display results for a number of alternative lag orders k.

We find that good approximations may require fairly high lag orders in practice.

This point has also been illustrated by Berkowitz et al. (1999) for univariate

ARMA(p‚ q) models and by Braun and Mittnik (1993) for VARMA(p‚ q) models.

Table 1 shows that for k = 3, 4, and 5 the sieve approximation does not work well.

Even for k=6 and 7, the sieve approximation is inadequate, although the coverage

accuracy steadily improves, as we add more lags. Table 1 shows that for k=8, the

reliability of the bootstrap method is excellent. For larger approximating models, the

bootstrap coverage rates are conservative. This simulation study illustrates that valid

bootstrap inference is possible based on the theoretical results in this article,

provided care is taken to include a sufficient number of lags.

The second simulation study is based on a direct application of Corollary 2. The

DGP is based on the trivariate example used by Braun and Mittnik (1993). Models of

this dimension are not uncommon in applied work. Models of similar or smaller size

have been analyzed, for example, by Rotemberg and Woodford (1996, 1997), Cogley

and Nason (1995), Canova and Marrinan (1998), Galı́ (1999), and Leeper and Sims

(1994). We follow Braun and Mittnik in estimating a VARMA(1,1) model for

aggregate, quarterly postwar U.S. time series data on investment expenditures, the

price of investment, and the 90-day commercial paper rate. The DRI codes are

GIFQF, GDIF, and FYCP90. The sample period is 1971.I–1998.II. The investment

and deflator series are specified in log differences. This amounts to assuming that the

variables are I(1) but not cointegrated. The interest rate is specified in levels. The

estimated parameters are frozen and treated as the population DGP in the Monte

Carlo study. Based on this DGP we compare the coverage rates and average length

of the bootstrap percentile and delta-method intervals for the orthogonalized

Table 1

coverage rate of nominal 90 percent confidence interval for granger–newbold predictability

measure of inflation rate (results for alternative ar(k) approximating models given T = 240)

k 3 4 5 6 7 8 9 10

Coverage 56.4 65.0 75.5 82.2 86.4 90.3 92.5 93.7

Notes: Univariate ARMA(2,4) data-generating process for U.S. postwar monthly inflation rate. For details see text
and Appendix A.2.
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impulse responses. The delta-method intervals are calculated based on the closed-

form solutions proposed by Lütkepohl and Poskitt (1991). We again implement the

percentile interval using the bias corrections described by Kilian (1998).6 All results

are based on 1000 Monte Carlo trials.

For illustrative purposes, we focus on the response of investment to an

orthogonalized innovation in the discount rate. The first column of Figure 1 shows

the coverage rates for the pointwise impulse response confidence intervals based on

alternative VAR(k) approximating models given T=200.

The coverage rates of the bootstrap intervals are remarkably accurate overall

except for k=2. There is little difference between the results for k=3, 4, and 5.

Average widthsCoverage rates

Figure 1

pointwise nominal 90 percent confidence intervals for response of investment to an

orthogonalized interest rate innovation (results for alternative var(k) approximating

models given T= 200)

Notes: Trivariate varma(1,1) data-generating process for quarterly investment expenditures, investment deflator,
and discount rate. For details see text and Appendix A.2.

6 We do not explore percentile-t intervals. See Kilian (1999) for a detailed analysis of the tradeoffs
between alternative bootstrap confidence intervals for impulse responses and other nonlinear
functions of slope parameters and innovation variances.
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Unlike in Kilian’s (1998) analysis of the finite-lag order VAR model, the coverage

rates of the delta-method interval do not decline as the horizon increases. However,

the percentile interval tends to be more accurate than the delta-method interval at

longer horizons, nevertheless. The reason is that the coverage rates of the delta-

method intervals tend to approach 100 percent coverage at long horizons, whereas

those of the bootstrap interval remain closer to the nominal coverage probability of

90 percent even after 16 quarters.

Broadly similar results hold for most other impulse responses not shown here. The

only exception to the good performance of the bootstrap is that the three own-

impulse responses tend to have somewhat lower coverage accuracy on impact. This

pattern is suggestive of poor bootstrap approximations of at least some elements of

the innovation covariance matrix. However, the coverage accuracy tends to improve

drastically after a few quarters in all cases.

The second column of Figure 1 reveals that the conservative coverage rates of the

delta method come at a price. The delta-method interval tends to be much wider on

average at longer horizons than the bootstrap interval. Although we know that, as T
approaches infinity, the interval endpoints of Lütkepohl and Poskitt’s delta-method

interval and of the bootstrap percentile interval will coincide, for h > k and fixed T
the intervals can be quite different. We also note that, for h > k and fixed T , the

conventional asymptotic theory for bootstrapping finite-lag order models appears to

provide a better approximation than the bootstrap asymptotic theory for VAR(1)

models. We conclude that the bootstrap approximation to the distribution of impulse

response estimates in VAR(1) processes provides a useful alternative to the use of

the asymptotic normal approximation and may have important practical advantages

both in terms of accuracy and in terms of width.

5. application: evaluating the fit of macroeconomic models

It is common in applied work to compare the spectra, impulse responses,

autocorrelations, measures of predictability, and other statistics implied by a

theoretical macroeconomic model to the corresponding statistics calculated from

reduced-form VAR representations (e.g., Cogley and Nason, 1995; King and Watson,

1996; Rotemberg and Woodford, 1996, 1997). Nonparametric approximations to the

reduced form may be used to construct confidence intervals for the statistic of interest

that do not depend on a correctly specified theoretical model (e.g., Diebold et al.,

1998; Schmitt-Grohé, 1998; Diebold and Kilian, 2000). A model is said not to

conform to the data if the statistic generated by the theoretical model is not contained

within the confidence bands estimated from the reduced form of the data.

For example, Canova and Marrinan (1998, p. 139) suggest identifying pseudo-

structural shocks from the actual data using arbitrary restrictions and comparing the

resulting impulse responses of the model with those obtained from data simulated

from different specifications of the macroeconomic model where shocks are

identified using the same arbitrary restrictions. In other words, the impulse responses

are used as a ‘‘window’’ through which we measure the quality of the model

approximation of the data. This approach avoids some of the pitfalls in the

econometric evaluation of macroeconomic models recently discussed by Cooley and
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Dwyer (1998). It is important, however, that the theoretical model has enough

shocks to avoid singularities of the covariance matrix of the data. For example, it is

not valid to fit an approximating VAR model to data generated from theoretical

models with just one exogenous driving process. Alternative ‘‘windows’’ that do not

depend on the number of shocks in the theoretical model economy have been

suggested by Watson (1993), Rotemberg and Woodford (1996), Diebold and Kilian

(2000), and Diebold et al. (1998), among others. Here, we focus on an application

based on the predictability measure proposed by Diebold and Kilian (2000).

The asymptotic validity of bootstrapping this statistic has been established in

Corollary 4.

For expository purposes, consider the following cash-in-advance model economy:

The representative household chooses labor input, ht, and next period’s capital stock,

kt+1, to maximize expected lifetime utility,

E0

X1
t=0

btU(ct‚ ht)

subject to a sequence of cash-in-advance constraints, wealth constraints, and time

endowments for each period t (see Cooley and Hansen, 1995, p. 195, for details). The

utility function of the representative household is U(ct‚ ht)=( cw
t + (1 � ht)

1�w)1�q=

(1 � q) � 1 and 0 < b < 1. Firms choose capital and labor services each period to

maximize profits. Since firms are competitive, they treat all prices as given.

Production is Cobb–Douglas of the form xtkh
t h

1�h
t , where 0 < h < 1 is the capital

share. xt is an exogenous productivity factor that follows a log-linear process

xt=(1 � c)+cxt�1+e x
t with e x

t � NID(0‚ r2
x). Capital is accumulated according to

kt+1=(1 � d)kt+it, with depreciation rate 0 � d � 1. Money supply growth is

exogenous and follows the log-linear process gt=(1 � l)+lgt�1+egt with

egt � NID(0‚ r2
g). Agents treat k0, x0, and g0 as given.

We follow the existing literature in parameterizing the model as follows: w=1=3,

b=0:98, q=2, d=0:19, h=0:4, c=0:95, l=0:586, rg=0:0097, rx=0:007. The money

supply process is calibrated to U.S. M1 money growth for 1959.I–1998.III using the

standard procedure described by Cooley and Hansen (1995). The choice of the other

parameters is conventional. After solving for the approximate linear decision rules

for ht and kt+1 in terms of the current period states kt, xt, and gt, the predictability of

the endogenous model variables can be calculated numerically by fitting an

approximating autoregressive model to 5000 observations generated by the model

economy. We compute the predictability of the actual U.S. data for 1959.IV–1998.III

based on univariate sieve approximations with k=8 after linearly detrending

the data. Very similar results are obtained with k=4 and 6. The computation of the

predictability measure of the model data is not subject to sampling error, while the

predictability estimates for the U.S. data are; thus, we compute confidence intervals

only for the latter. As noted in Section 2, it is essential to allow for possibly infinite-

lag orders in evaluating macroeconomic models. This application illustrates the

practical relevance of our bootstrap theory.

Figure 2a shows the predictability measures implied by the macroeconomic model

together with nominal 90 percent bootstrap confidence intervals based on the sieve

approximation of the DGP. We set n=40 and plot P(m‚ n) for m � 20.
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Money growth

Money  growth

(a)

(b)

Figure 2

(a) performance of cash-in-advance model in terms of predictability: l ¼ 0.586.

(b) performance of cash-in-advance model in terms of predictability: l ¼ 0.97.

Notes: For a detailed description of the model and its parameterization see Section 5. The dashed lines are the
pointwise 90 percent confidence intervals for the U.S. estimates. All data are from DRI. Output is computed as real
GDP minus real government purchases. Investment is real gross fixed private sector investment. Consumption
refers to real private consumption of nondurables and services. Money growth is growth of M1. Inflation is based
on the implicit deflator of private sector output. The interest rate is the three-month T-bill rate. The sample period
is 1959.I–1998.III. All data are linearly detrended.
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How consistent are the data generated by this model with the U.S. data? We find

that the predictability of private sector output, fixed investment, and consumption of

nondurables and services in the model economy is generally consistent with the

interval estimates based on the reduced form. The predictability of model output and

investment is within the bootstrap confidence intervals at all horizons. Consumption is

slightly less predictable in the model than in the data at short horizons, but its

predictability in the model is generally within the bootstrap confidence intervals. In

sharp contrast, both the inflation rate and the nominal interest rate are far less

predictable in the model than in the data at all horizons, indicating that the model is

completely unable to explain the predictability of nominal variables. Notably, inflation

is virtually unpredictable at all horizons. Its predictability is so low that the plotted line

in Figure 2a cannot be distinguished from the horizontal axis. Given that the model-

based predictability is completely outside the bootstrap confidence intervals for these

series, we can reject the hypothesis that the model is consistent with the data.

Unlike summary measures of goodness of fit, our approach is constructive in that it

helps to pinpoint the weaknesses of the model. We illustrate this point for the model

at hand. One of the problems with the baseline model in Figure 2a is the standard

procedure for calibrating exogenous money supply growth by fitting an AR(1) model

to U.S. M1 data (see Cooley and Hansen, 1995). An AR(1) model is unlikely to be

an adequate representation if M1 growth data possibly follow an infinite-order

process. This inadequacy of the AR(1) model is reflected in the large deviations

between the model measure and the data measure of money growth predictability in

Figure 2a.

A second and more fundamental objection to the standard approach of calibrating

the exogenous money supply process is that the U.S. M1 data used to calibrate the

exogenous money supply process in the model clearly contain an important

endogenous component. This fact suggests that we treat l as a free parameter instead

and calibrate this parameter to produce predictability profiles consistent with the

interval estimates. Figure 2b shows that for l=0:97 the performance of the model

improves dramatically.

Now the predictability of both the inflation rate and the nominal interest rate is

consistent with the data. There is little change in the predictability of output and

investment, but model consumption now is contained within the bootstrap

intervals at all horizons. This exercise suggests that a cash-in-advance model is

capable in principle of accounting for several of the stylized facts of the U.S.

economy, provided that the exogenous money supply growth process is highly

persistent and much more predictable than U.S. M1 data and other monetary

aggregates. Thus, a key question to be addressed is the plausibility of such highly

persistent money supply growth processes. Insights of the type developed here are

useful for understanding the propagation mechanism of the theoretical model and

for determining which features of the model are essential and which are not.

6. concluding remarks

We have established the asymptotic validity of the residual-based autoregressive

bootstrap method for smooth functions of slope parameters and innovation variances
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under the assumption that a sequence of finite-lag order VAR models is fitted to data

generated by a VAR process of possibly infinite order. Our theoretical results cover

a wide range of statistics currently in use in macroeconometrics. The existence of

finite-lag order VAR models is highly implausible in practice and often inconsistent

with the assumptions of the macroeconomic model underlying the empirical analysis.

The proposed bootstrap approach for VAR(1) models provides an alternative to

the use of the asymptotic normal approximation and can be used even in the absence

of closed-form solutions for the variance of the estimator. Our results are of interest

both for structural VAR modeling and for the econometric evaluation of dynamic

economic models. In a Monte Carlo study, the bootstrap approach compared

favorably with results based on the asymptotic normal approximation for orthogo-

nalized impulse responses in VAR(1) models. We also illustrated the practical

usefulness of our theoretical results for the evaluation of dynamic general

equilibrium models.

APPENDIX: PROOFS AND SIMULATION DESIGN

A.1. Proofs

Notation
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and H is defined as in Lütkepohl and Poskitt (1991, Equation 5):

H=LT
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r ]
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Lr is the (r(r+1)=2 	 r2) elimination matrix and Krr is the (r2 	 r2) commutation

matrix.
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Proof of Theorem 1. Let

Dk =(T � k)�1
XT�1

t=k

et+1Y T
t‚k

D�
k =(T � k)�1

XT�1

t=k

e�t+1Y
�T
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C�
k =(C�(m� n))m‚n=1‚2‚...‚ k

C�(m� n)=E�(y�t+ny
�T
t+mÞ

and kAk1= supx6¼0 {kAxk=kxk}. Paparoditis (1996) shows that

kD�
kk=Op(k1=2T�1=2)(A:1)

kĈC��1
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kC��1
k � C�1
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in the proofs of his Theorems 3.1 and 3.2 (p. 289, ll.10–11; p. 290, l.14; and p. 288,

l.20). We have
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where the first equality follows from Theorem 3.1 of Paparoditis (1996), (A.1) and

(A.2), and the second follows from (A.1) and (A.3). Thus, it suffices to show the joint

convergence of

(T � k)1=2l(k)T vec(D�
kC

�1
k )

(T � k)1=2 vech (T � k)�1 PT
t=k+1

e�t e
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s=k+1

êek‚ sêe
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� �
0
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CA(A:4)

to the normal distribution. We will apply a vector version of Theorem 24.3 of

Davidson (1994) to (A.4), which can be paraphrased as follows:

Let {XTt‚ F Tt} be a martingale-difference array, where {XTt} is a triangular array of n-

dimensional random vectors andF Tt is the r-algebra generated byXT1‚ XT2‚ . . . ‚ XTt. If

(a) plimT!1
PT

t=1E[XTtX Tt�T=V , where V is an n	 n positive definite matrix, and

(b) plimT!1 max1�t�T jXTt j=0,

then ST=
PT

t=1XTt !
d
N(0‚ V ).

First, we will show that (A.4) is a martingale array. Second, we will show that

conditions (a) and (b) of the above theorem are satisfied.
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Let F�
t=r(e�t ‚ e�t�1‚ . . . ‚ e�1) denote the r-algebra generated by e�1‚ e�2‚ . . . ‚ e�t . Then,
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By the law of iterated expectations, it follows from (A.5) and (A.6) that (A.4) with

F�
t is a martingale array under the bootstrap probability measure.

Next, we will show that condition (a) of the above theorem is satisfied.

First, the (1, 1) element in the asymptotic covariance matrix is positive by

Theorem 3.3 of Paparoditis (1996). For the lower-right {r(r+1)=2} 	 {r(r+1)=2}

matrix in the asymptotic covariance matrix, it suffices to show
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êek‚si1 êek‚si2
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where the equality follows from arguments analogous to the inequality in Paparoditis

(1996, p. 288, ll.9–12) and the proof of his Theorem 2.3. Using arguments similar to

the proof that (A.4) is a martingale array, one can show that
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is a sequence of square-integrable martingale-difference arrays. Hence, we have
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by the McLeish inequality (Gallant and White, 1988, Theorem 3.11) and the Markov

inequality.
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One can show that
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with F�
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where ~YYk‚t is defined in Paparoditis (1996, p. 291) and the last equality follows from

the inequalities in the proof of Theorem 3.2 of Paparoditis (1996, p. 292, l.9 and l.18).

By the Markov inequality, it follows that (A.9) is opð1Þ, which completes the proof of

(A.7).

Because each element of (A.4) is the sum of Op(T�1=2), condition (b) is satisfied.

Therefore, we obtain the desired results. A similar argument can be used to establish

the first part of Theorem 1. j

Proof of Corollary 1.
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TÞ�(vec(A(k))T‚ vech(R)T)}T

+Op(kT�1=2)

!d N(0‚ Xg)

where (vec(�AA(k))T‚ vech(�RRk)
T)T is in the line segment between (vec(ÂA(k))T‚

vech(R̂Rk)
T)T and (vec(A(k))T‚ vech(R)TÞT. The first equality follows from the mean-

value theorem, the second from Theorem 2.1 of Paparoditis (1996), Assumptions

2(b) and 1(d), and the last convergence from Assumption 2(a) and Assumption 1(d).

Therefore, the first result of Corollary 1 follows. The proof of the second result is

analogous to that of the first one with the use of Theorem 2.1 of Paparoditis (1996)

and Op(kT�1=2) by the use of Theorem 1 and Op(k2T�1=2), respectively. Thus, we omit

the proof of the second result of Corollary 1. j

327BOOTSTRAPPING VAR(1) MODELS



Proof of Corollary 2. By the second-to-last equation in the proof of Theorem

3.4 in Paparoditis (1996, p. 295):ffiffiffiffi
T

p
l(h‚ k)T vec(B̂B

�
(h‚ k) � B̂B(h‚ k))=

ffiffiffiffi
T

p
l(h‚ k)TWk‚k(âa�(k) � âa(k))+op(1)

where {l(h‚ k)} is a sequence of kr2 	 1 vectors with jth element equal to zero for all

j > h, by the fact that @ vec(P)=@ vech(R)T=H (see Lütkepohl and Poskitt, 1991,

p. 495), and by the Cramér–Wold device, it follows thatffiffiffiffi
T

p
vec(B̂B

�
(h‚ k) � B̂B(h‚ k))ffiffiffiffi

T
p

vec(P̂P
�
k � P̂P k)

� �
!d N 0‚

Xbb Xbp

Xpb Xpp

� �� �
(A:10)

where

Xbb = lim
T!1

l(h‚ k)TWh‚k(C
�1
k � R)WT

h‚kl(h‚ k)

Xbp = lim
T!1

l(h‚ k)TWh‚kE[vec(etY T
t�1C

�1
k )vech(ete

T
t Þ

T]HT

Xpb =XT
bp

Xpp =HX22HT

By applying the delta method to (A.10) and Equation (10) in Lütkepohl and Poskitt

(1991), we obtain the desired result. j

Proof of Corollary 3. The proof is analogous to the proof of Corollary 2 in

Lütkepohl and Poskitt (1991) and thus is omitted. j

Proof of Corollary 4. The proof of Corollary 4 is analogous to the proof of

Corollary 2 and thus is omitted. j

Proof of Theorem 2. In population, the Granger–Newbold predictability

measure is

1 � E(yt � E(yt j yt�1‚ yt�2‚ . . . ))2

E(y2
t )

=

P1
j=1

b2
jr

2

P1
j=0

b2
jr

2

=

P1
j=1

b2
j

P1
j=0

b2
j

(A:11)

where bj is the jth coefficient of the moving-average representation. By Theorem 3.4

of Paparoditis (1996), a linear combination of the first k moving-average coefficients

is asymptotically normally distributed. The proof consists of two parts: First, we shall

show that the moving-average version of Assumption 2 is satisfied for

gk(b1‚ b2‚ . . . ‚ bk)=
Xk
j=1

b2
j

.Xk
j=0

b2
j

Next, we shall show that {gk} approximates the predictive measure.

Since the gradient vector of gk is given by

Dgk=
2b0Pk

j=0

b2
j

� �2
2b1Pk

j=0

b2
j

� �2
2b2Pk

j=0

b2
j

� �2 � � � 2bkPk
j=0

b2
j

� �2

0
@

1
A

T
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Assumption 2(a) is satisfied with M1=M2=2=(
P1

j=0b
2
j )3=2. Because the gradient

vector is differentiable, Assumption 2(b) is trivially satisfied. Thus, the bootstrap

works for a sequence of functions {gk}.
Next, we will show that gk=(

Pk
j=1b̂b

�2

j‚k)(
Pk

j=0b̂b
�2

j‚k) approximates the bootstrap

predictive measure 1 � r̂r�2
k ={(1=T )

PT
t=1y

�2
t }. It is sufficient to show

1

T

XT
t=1

Xt�1

j=0

b̂b
�2

j‚k �
Xk
j=0

b̂b
�2

j‚k=op(1)(A:12)

which is in turn equivalent to

1

T

Xk
t=1

Xk
j=t�1

b̂b
�2

j‚k=
1

T

Xk
j=1

jb̂b
�2

j‚k=op(1)(A:13)

and

1

T

XT
t=k+2

Xt�1

j=k+1

b̂b
�2

j‚k=
1

T

XT
j=k+2

(T � j)b̂b
�2

j‚k=op(1)(A:14)

By Theorem 4.1 of Paparoditis (1996), his Equation (10) and the inequality following

his Equation (10), it follows that

1

T

Xk
j=1

jb̂b
�2

j‚k �
2

T

Xk
j=1

j(b̂b
�
j‚k � b̂bj‚k)

2+
2

T

Xk
j=1

jb̂b
2

j‚k

=Op(k2T�2)+Op(k4T�1)

=op(1)

which proves (A.13). Similarly, by Theorem 4.1 and Equation (10) of Paparoditis

(1996),

1

T

XT
j=k+2

(T � j)b̂b
�2

j‚k �
2

T

XT
j=k+2

(T � j)(b̂b
�
j‚k � b̂bj‚k)

2+
2

T

XT
j=k+2

(T � j)b̂b
2

j‚k

=Op(k5T�1)+Op(k3T�1)

=op(1)

which establishes Equation (A.14). This completes the proof of the validity of the

bootstrap. The derivation of the asymptotic distribution of the PGN statistic is

analogous to the above proof and thus is omitted. j

A.2. Simulation Design. The ARMA(2, 4)-DGP for the inflation rate is of the

form

yt=1:794yt�1 � 0:8030yt�2+et � 1:5207et�1+0:5297et�1 � 0:0890et�2+0:1387et�4

where et � NID(0‚ 8:7679).

The VARMA(1, 1)-DGP for investment expenditures, the corresponding deflator,

and the commercial paper rate is of the form
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yt=A1yt�1+et+M1et�1

where et � NID(0‚ R). The coefficient matrices are

A1=
0:5417 �0:1971 �0:9395
0:0400 0:9677 0:0323

�0:0015 0:0829 0:8080

2
4

3
5‚ M1=

�0:1428 �1:5133 �0:7053
�0:0202 0:0309 0:1561

0:0227 0:1178 �0:0153

2
4

3
5

Let P be the lower triangular Cholesky decomposition defined by PPT=R. Then

P ¼
9:2352 0 0

�1:4343 3:6070 0
�0:7756 1:2296 2:7555

2
4

3
5
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Schmitt-Grohé, S., ‘‘The International Transmission of Economic Fluctuations: Effects of U.S.

Business Cycles on the Canadian Economy,’’ Journal of International Economics 44 (1998),
257–87.

Watson, M. W., ‘‘Measures of Fit for Calibrated Models,’’ Journal of Political Economy 101 (1993),
1011–41.

331BOOTSTRAPPING VAR(1) MODELS



332


