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Summary. Surrogates which allow one to predict the effect of the treatment on the outcome of interest from the effect of the
treatment on the surrogate are of importance when it is difficult or expensive to measure the primary outcome. Unfortunately,
the use of such surrogates can give rise to paradoxical situations in which the effect of the treatment on the surrogate is positive,
the surrogate and outcome are strongly positively correlated, but the effect of the treatment on the outcome is negative, a
phenomenon sometimes referred to as the “surrogate paradox.” New results are given for consistent surrogates that extend
the existing literature on sufficient conditions that ensure the surrogate paradox is not manifest. Specifically, it is shown that
for the surrogate paradox to be manifest it must be the case that either there is (i) a direct effect of treatment on the outcome
not through the surrogate and in the opposite direction as that through the surrogate or (ii) confounding for the effect of
the surrogate on the outcome, or (iii) a lack of transitivity so that treatment does not positively affect the surrogate for all
the same individuals for whom the surrogate positively affects the outcome. The conditions for consistent surrogates and the
results of the article are important because they allow investigators to predict the direction of the effect of the treatment on
the outcome simply from the direction of the effect of the treatment on the surrogate. These results on consistent surrogates
are then related to the four approaches to surrogate outcomes described by Joffe and Greene (2009, Biometrics 65, 530–538)
to assess whether the standard criteria used by these approaches to assess whether a surrogate is “good” suffice to avoid the
surrogate paradox.
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1. Introduction
There has been considerable interest in the statistics liter-
ature on measures and statistical methods for assessing the
adequacy of a surrogate outcome (Prentice, 1989; Freedman,
Graubard, and Schatzkin, 1992; Lin, Fleming, and DeGrut-
tola, 1997; Gail et al., 2000; Burzykowski, Molenberghs, and
Buyse, 2005; Taylor, Wang, and Thiebaut, 2005; Follmann,
2006; Chen, Geng, and Jia, 2007; Gilbert and Hudgens, 2008;
Joffe and Greene, 2009; Wolfson and Gilbert, 2010; Huang
and Gilbert, 2011). The use of a surrogate outcome may be
desirable in randomized trials if the cost or length of follow-up
required to obtain data on the outcome of interest is thought
prohibitive. A variety of statistical approaches and measures
have been proposed. In a recent article, Joffe and Greene
(2009) summarize a number of these statistical approaches
from the perspective of causal inference and discuss relations
between these approaches.

A smaller literature on surrogate outcomes has considered
what is sometimes referred to as the “surrogate paradox.” It
may be the case that the treatment has a positive effect on
the surrogate, that the surrogate and outcome are strongly
positively associated and yet that the treatment itself has a
negative effect on the outcome! We might refer to such cases
as instances of the “surrogate paradox.” This was illustrated
dramatically in the case of trials evaluating the effect of drug
treatment on ventricular arrhythmia, taken as a surrogate for
mortality. Ventricular arrhythmia is strongly associated with
mortality; several drugs were tested in randomized trials, were

found to lower ventricular arrhythmia, and were approved by
the Food and Drug Administration. However, in follow-up it
became clear that the drugs increased rather than decreased
mortality (Moore, 1995; Fleming and DeMets, 1996). One im-
portant task then with regard to surrogate outcomes—and
the one which will be the focus of this article—is determining
when data concerning the effect of treatment on the surrogate
can be used to make decisions about the direction of the effect
of the treatment on an outcome. In two articles Chen et al.
(2007) and Ju et al. (2010) discuss sufficient conditions which,
if satisfied by a surrogate, will avoid the surrogate paradox.
They refer to surrogates that avoid the surrogate paradox as
“consistent surrogates.”

There has been little effort to relate these sufficient
conditions to the statistical measures and approaches that
have been used to assess and measure surrogacy. This article
introduces new criteria for consistent surrogates and then
revisits the survey of approaches described by Joffe and
Greene (2009), evaluating each in light of the surrogate
paradox. Sections 2 and 3 summarize the results of Chen
et al. (2007) and Ju et al. (2010) on consistent surrogates and
then extend their results further to allow for more general
settings and to provide a characterization of conditions which
are necessary for the surrogate paradox to occur (analogously,
are sufficient to avoid it). The conditions and the results of
the article are important because they allow investigators
to predict the direction of the effect of the treatment on
the outcome simply from the direction of the effect of the
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Figure 1. Examples illustrating surrogate outcomes.

treatment on the surrogate. Section 4 then considers the
role and significance of the surrogate paradox for each of the
approaches described by Joffe and Greene (2009). Section 5
illustrates the surrogate paradox in the various approaches
and Section 6 offers some concluding remarks.

2. Definitions for Surrogates and the Surrogate
Paradox

Let A be a treatment of interest that we will assume random-
ized; let Y be the outcome of interest and let S be a proposed
surrogate. Let Ya and Sa be counterfactual outcomes (or po-
tential outcomes) for Y and S for each individual that would
have been obtained if treatment A had, possibly contrary to
fact been set to a. Finally let Yas be the counterfactual out-
come for each individual that would have been obtained if A

had been set to a and if S had been set to s. Contrasts of
the form Yas − Ya′s are referred to as controlled direct effects
(Pearl, 2001). Below we will also describe so-called “natural
direct effects” (Robins and Greenland, 1992; Pearl, 2001) but
unless otherwise indicated “direct effects” will refer to “con-
trolled direct effects.” We restrict our attention to settings
in which A, S, Y are measurable for all individuals. We thus
do not consider cases in which for some individuals an event
Y can occur before S is measured; see Gilbert and Hudgens
(2008) and Wolfson and Gilbert (2010) for discussion of these
settings.

In what follows we will consider several definitions in the lit-
erature concerning surrogate outcomes and discuss how these
various definitions are related to the surrogate paradox. In
what is now considered a classic article, Prentice (1989) sug-
gested that a surrogate should be such that a test of the null
of no effect of the treatment A on surrogate S should serve
as a valid test of the null of no effect of the treatment A on
outcome Y . Prentice proposed the following two main crite-
ria for assessing this and a variable satisfying such criteria
has subsequently been referred to as a “statistical surrogate”
(Frangakis and Rubin, 2002).

Statistical Surrogate (Prentice Criteria): S is said to
be a surrogate for the effect of A on Y if (i) Y is independent
of A conditional on S; (ii) S and Y are correlated.

The criteria are suggested by the diagram in Figure 1a.
Suppose there is no controlled direct effect of A on Y , then
if there is no effect of A on S it then follows that there will
be no effect of A on Y . Moreover, in this diagram if there is
no direct effect of A on Y then A will be independent of Y

conditional on S. But the relevance of the criteria is less clear
if there are unmeasured confounders of S and Y as in Figure
1b. There could be correlation between A and Y conditional
on S due to U even if A has no direct effect on Y . The Prentice
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Figure 2. Causal diagram allowing for an effect of A on Y
not through the putative surrogate S.

criterion might only be a reasonable requirement if we could
control for the common causes of S and Y , but we will return
to these considerations later.

Prompted perhaps in part by these concerns, Frangakis and
Rubin (2002) used the potential outcomes framework to pro-
pose an alternative criterion to evaluate surrogates and re-
ferred to a surrogate that satisfied this criterion as a “princi-
pal surrogate.”

Principal Surrogate (Frangakis and Rubin, 2002): S is
said to be a principal surrogate for the effect of A on Y if for
all s, pr(Y1|S1 = S0 = s) = pr(Y0|S1 = S0 = s).

Essentially a principal surrogate requires that whenever the
treatment does not change the surrogate (S1 = S0 = s) there
is no difference in the distribution of potential outcomes with
versus without treatment. If a surrogate satisfied this prop-
erty then an effect of A on Y will be present only if an effect
of A on S is present. If Y is binary the definition of a principal
surrogate is equivalent to E(Y1 − Y0|S1 = S0 = s) = 0, a con-
dition that may be referred to as no principal strata direct
effects VanderWeele (2008). This has likewise been referred
to as the property of “average causal necessity” (Gilbert and
Hudgens, 2008). If Y is not binary, then principal surrogacy as
defined above requires the stronger condition pr(Y1|S1 = S0 =
s) = pr(Y0|S1 = S0 = s). Lauritzen (2004) proposed a slightly
stronger definition related to surrogacy that he referred to as
a “strong surrogate”:

Strong Surrogate (Lauritzen, 2004): S is a strong sur-
rogate for the effect of A on Y if the causal diagram in Figure
1b is valid.

Conceived of another way, S is a strong surrogate for the
effect of A on Y if A is an instrument for the effect of S on
Y (Lauritzen, 2004). If S is not a strong surrogate then the
causal diagram would be that in Figure 2, where if the treat-
ment is randomized, U can be taken as the principal stratum
(S0, S1) so that Figure 2 makes no assumption about coun-
terfactual distributions beyond that implied by the random-
ization of A. The variable S will be a strong surrogate for
the effect of A on Y if the “controlled direct effects” (Pearl,
2001) are such that Y1s − Y0s = 0 for all s. A strong surrogate
is also a principal surrogate (Lauritzen, 2004; VanderWeele
et al., 2008) but the reverse implication does not hold be-
cause principal surrogacy only requires no direct effects when
S1 = S0 = s and only requires this in distribution, not for all
individuals. Note also that a strong surrogate will be a statis-
tical surrogate if there is no common cause of the surrogate
and the outcome as in Figure 1a but a strong surrogate need
not be a statistical surrogate if there is such a common cause
as in Figure 1b.
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Chen et al. (2007) introduced one further notion con-
cerning surrogacy which they referred to as a consistent
surrogate. Chen et al. (2007) restricted discussion of consis-
tent surrogates to setting which involved a strong surrogate.
Below we will generalize Chen et al.’s definition to one which
allows for a direct effect of A on Y . Chen et al. (2007) defined
a strong surrogate S to be a consistent surrogate for the
effect of A on Y if, (a) for a positive average causal effect of
S on Y , a non-positive (non-negative) average causal effect of
A on S implies a non-positive (non-negative) average causal
effect of A on Y , (b) for a negative average causal effect of
S on Y , a non-positive (non-negative) average causal effect of
A on S implies a non-negative (non-positive) average causal
effect of A on Y and (c) a null average causal effect of A on
S implies a null average causal effect of A on Y .

If a surrogate is not consistent in this sense then we may
have effect reversal: treatment A may have a positive effect
on S and S on Y but the effect of A on Y may be negative!
Chen et al. (2007) refer to such effect reversal as instances of
the “surrogate paradox.” Chen et al. (2007) went on further
to give an example showing that neither a principal surrogate
nor even a strong surrogate necessarily satisfies the properties
of a consistent surrogate. Both principal surrogates and strong
surrogates are subject to the surrogate paradox. This is some-
what surprising as the notions of a principal surrogate and a
strong surrogate are already quite stringent; it is also rather
disturbing in that such effect reversal seems to completely un-
dermine the value of a surrogate marker. In the next section
we review and extend results concerning sufficient conditions
that ensure the surrogate paradox is avoided. First, however,
we generalize the notion of a consistent surrogate described
by Chen et al. (2007) so as to allow for settings in which the
surrogate is not a strong surrogate (i.e., the treatment may
have a direct effect on the outcome not through the surrogate)
and for settings in which we may not be willing to talk about
the “causal effect” of the surrogate on the outcome and may
not be willing to envision interventions on the surrogate S.

Consistent Surrogate: S is said to be a a consistent
surrogate for the effect of A on Y if (a) when S and Y are
positively associated, a non-positive (non-negative) average
causal effect of A on S implies a non-positive (non-negative)
average causal effect of A on Y , (b) when S and Y are nega-
tively associated a non-positive (non-negative) average causal
effect of A on S implies a non-negative (non-positive) average
causal effect of A on Y . A surrogate that is not a consistent
surrogate is said to exhibit the surrogate paradox.

The focus of the remainder of this article will be on ar-
ticulating conditions under which the surrogate paradox as
defined above is avoided that is, when data on the effect of
A on S in conjunction with knowledge that the surrogate and
outcomes are strongly correlated can together be used to draw
conclusions about the direction of the effect of the treatment
A on the outcome Y .

3. Results on Consistent Surrogates to Avoid the
Surrogate Paradox

Chen et al. (2007) gave the following sufficient conditions con-
cerning avoiding the surrogate paradox.

Proposition 1. (Chen et al., 2007): If S is a strong surro-
gate for the effect of A on Y (i.e., if Figure 1b is a valid causal
diagram) then if (a) E(Y |s, u) is non-decreasing in s for all u

and (b) pr(S > s|a, u) is non-decreasing in a for all s, u, then
E(Ya) = E(Y |a) is non-decreasing in a.

Viewed another way, if S is a strong surrogate (no direct ef-
fects of treatment on the outcome not through the surrogate)
and if conditions (a) and (b) are satisfied then the effect of A

on Y will be in the direction expected and the surrogate para-
dox avoided: E(Ya) is non-decreasing in a so E(Y1) − E(Y0) ≥
0. The result remains true if in both conditions (a) and (b),
“non-decreasing” is replaced by “non-increasing;” if only one
of conditions (a) or (b), “non-decreasing” is replaced by “non-
increasing” then the conclusion of Proposition 1 changes to
E(Ya) = E(Y |a) is non-increasing in a. Similar remarks hold
for the other propositions below. Note that to avoid the sur-
rogate paradox (i.e., to ensure a consistent surrogate) a non-
negative average causal of A on S is not sufficient; rather
one needs the effect to be non-negative in the distributional
sense that pr(S > s|a, u) is non-decreasing in a for all s, u;
this is sometimes referred to as “distributional monotonicity”
(VanderWeele et al., 2008; VanderWeele and Robins, 2009,
2010). Note that the assumption that S is a strong surrogate
is not a testable assumption. Note also there may be differ-
ent variables U for which Figure 1b could be a valid causal
diagram. The conclusion of Proposition 1 will hold if there
is any U such that Figure 1b is a causal diagram and such
that conditions (a) and (b) hold. Similar points pertain also
to Propositions 2–4 below.

Ju and Geng (2010) generalized the result of Chen et al.
(2007) to give a stronger conclusion if condition (a) is also
replaced by one of distributional monotonicity.

Proposition 2. (Ju and Geng, 2010): If S is a strong sur-
rogate for the effect of A on Y (i.e., if Figure 1b is a valid
causal diagram) and if (a) pr(Y > y|s, u) is non-decreasing in
s for all y, u and (b) pr(S > s|a, u) is non-decreasing in a for
all s, u, then pr(Ya > y) = pr(Y > y|a) is non-decreasing in a.

Here we get the slightly stronger conclusion that not sim-
ply does A increase Y on average but that the effect of A on Y

is also distributionally monotonic. In fact, as discussed in the
online supplement, both of these results of Chen et al. (2007)
and Ju and Geng (2010) follow almost immediately from the
theory of signed causal directed acyclic graphs (VanderWeele
and Robins, 2009, 2010). Moreover, more general results are
possible. The definitions and results above have essentially
been concerned with the case in which the effect of A on Y is
entirely through S. In most settings, this will likely be unreal-
istic. A good surrogate may account for a large portion of the
effect of A on Y but it is unlikely that the surrogate accounts
for all of this effect. Likely there will be an effect of A on Y

not through S as in Figure 2. It is shown in the online sup-
plement that the following two results hold; these generalize
Chen et al. (2007) and Ju and Geng (2010), respectively, by
allowing for an effect of A on Y not through S.

Proposition 3. In the causal diagram in Figure 2, if (a)
E(Y |a, s, u) is non-decreasing in a and s for all u and (b)
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pr(S > s|a, u) is non-decreasing in a for all s, u then E(Ya) =
E(Y |a) is non-decreasing in a.

Similar results hold under non-increasing rather than
non-decreasing functional relationships. Proposition 3 has
an important and intuitive interpretation. Suppose that in a
randomized trial we find a positive average causal effect of A

on S and we know that S and Y are strongly positively cor-
related. This is often the setting encountered with surrogate
outcomes. In this setting, under what circumstances might
the surrogate paradox arise? When might the effect of A on Y

be negative rather than positive? Proposition 3 states that at
least one of three things must occur if we are to get this effect
reversal. First, there may be a negative direct effect of A on
Y not through S (i.e., the first part of assumption (a) that
E(Y |a, s, u) is non-decreasing in a may be violated). Second,
it may be the case that although S and Y are positively cor-
related this may not indicate the actual causal relationship of
S on Y ; the association may be due to confounding by U (i.e.,
the second part of assumption (a) that once we condition
on U, E(Y |a, s, u) is non-decreasing in s may be violated).
Third, even if neither of these first two phenomenon occur,
it may be the case that even though A positively affects S on
average and S positively affects Y , A may not positively affect
S for all individuals; it may decrease S and thus decrease Y

for some individuals; we may have a lack of transitivity (i.e.,
assumption (b), the assumption concerning distributional
monotonicity which guarantees that this is avoided, may be
violated). In summary, if the surrogate paradox is to occur we
either need (i) a direct effect of A on Y not through S in the
opposite direction or (ii) confounding for the effect of S on Y ,
or (iii) a lack of transitivity so that A does not positively affect
S for all the same individuals for which S positively affects
Y . In thinking about whether the surrogate paradox might
occur and whether one ought to draw conclusions concerning
an outcome of interest from the analysis of the results con-
cerning a surrogate, an investigator could think through each
of these three possibilities. Proposition 3 states that at least
one of them must occur if the surrogate paradox is to arise.

Proposition 4 below gives a somewhat stronger conclusion
concerning distributional monotonicity of the effect of A on Y

under somewhat stronger assumptions. Proposition 4 gener-
alizes the results of Ju and Geng (2010) to allow for a direct
effect of A on Y . If the outcome Y is binary Propositions 3
and 4 are equivalent.

Proposition 4. In the causal diagram in Figure 2, if (a)
pr(Y > y|a, s, u) is non-decreasing in a and s for all y, u and
(b) pr(S > s|a, u) is non-decreasing in a for all s, u then
pr(Ya > y) = pr(Y > y|a) is non-decreasing in a.

In the next section we will relate these results on consistent
surrogates to various statistical and causal approaches to the
analysis of surrogate outcomes.

4. Consistent Surrogates and Measures
of Surrogacy

Joffe and Greene (2009) considered four different approaches
that have been proposed to evaluate surrogates or to measure
the extent of surrogacy and they derived relations between

them under linear model assumptions. Here we will revisit
each of these four approaches in light of the results above on
consistent surrogates. These four approaches could broadly
be described as (i) a “proportion-explained” approach, (ii) an
“indirect effects” approach, (iii) a “meta-analytic” approach,
and (iv) a “principal stratification” approach. We will con-
sider each in turn. Each of these approaches may tell us some-
thing about the role that the surrogate S plays in the relation-
ship between treatment A and outcome Y . Here, however, we
will assess whether these approaches help us evaluate whether
a surrogate is consistent that is, whether the surrogate para-
dox is avoided. We will consider the metrics that are used to
evaluate surrogacy in each of these four approaches and con-
sider whether these metrics correspond in any way to ensuring
that one has a consistent surrogate.

Building on Prentice (1989), Freedman et al. (1992) pro-
posed using a “proportion explained” measure to assess sur-
rogacy. Suppose one were to regress the outcome Y on the
exposure A:

E(Y |A = a) = �0 + �1a

and then regress the outcome Y on the exposure A and the
surrogate S:

E(Y |A = a, S = s) = θ0 + θ1a + θ2s

The proportion of the total effect explained by the surrogate
is then taken as:

(�1 − θ1)/�1, (1)

which is equivalent to 1 − θ1/�1. Statistical inference for this
measure is also described by Lin et al. (1997). The measure
does, however, suffer from problems if either �1 is small or
if the model for E(Y |A = a, S = s) is not correctly specified
(Molenberghs et al., 2002). A similar measure is sometimes
used in the setting of “mediation analysis” to assess the pro-
portion of the effect of A on Y mediated by S. In the setting of
mediation analysis this measure is problematic because there
may be confounding of the effect of S on Y by U; this can
occur even if treatment A is randomized since the surrogate
S is generally not randomized. Because of this confounding
using the proportion in (1) as a measure of mediation can
be highly problematic (Robins and Greenland, 1992; Pearl,
2001; VanderWeele, 2010). However, in the context of surro-
gacy (rather than mediation) if the goal is simply to assess
how much of the effect of A on Y can be predicted by the ef-
fect of A on S these concerns about confounding may be less
relevant. Even if U is a common cause of S and Y , if because of
U, S give important information about Y then S may still be
a good surrogate insofar as it may be possible to predict the
sign of the effect of A on Y from the sign of the effect of A on
S. Although the measure in (1) of the “proportion explained”
may thus serve as a useful measure, it is not immune to the
surrogate paradox. An example is given below in which the
average causal effect of A on S is positive, the average causal
effect of S on Y is positive, “proportion explained” is 100%,
but the effect of A on Y is negative. This can occur because
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it may be the case that A does not positively affect S for the
same individuals for which S positively affects Y . Nothing in
the “proportion explained” measure guarantees the distribu-
tional monotonicity needed to avoid the surrogate paradox.
Thus even if a surrogate is judged to be “good” from the
standpoint of having a high proportion explained, this does
not guarantee that the surrogate is consistent.

The second approach considered by Joffe and Greene (2009)
may be referred to as the “indirect effects” approach. This was
essentially the approach pursued by Taylor et al. (2005). This
approach relies on the counterfactual framework and specifi-
cally counterfactual definitions of what are now often called
natural indirect effects (Pearl, 2001). The alternative notion
of controlled direct effect (Pearl, 2001), although useful for
assessing whether there is an effect of the treatment on the
outcome not through the surrogate, cannot be employed di-
rectly to assess mediation (Robins and Greenland, 1992). The
average natural indirect effect is defined as E(Y1S1 − Y1S0)
and measures the effect comparing setting the treatment to
present with the surrogate set to what it would have been
with versus without the treatment (Robins and Greenland,
1992; Pearl, 2001). For it to be non-zero the treatment must
have an effect on the surrogate (i.e., S1 and S0 must differ)
and then the surrogate must have an effect of the outcome
(i.e., the change in the surrogate from S0 to S1 must have an
effect on Y). This is thus sometimes referred to as a “medi-
ated effect.” A measure of surrogacy may then be taken as the
“proportion mediated” that is, the proportion of the natural
indirect effect to the total effect:

E(Y1S1 − Y1S0)

E(Y1 − Y0)
. (2)

The conditions for identification and estimation of the natu-
ral direct and indirect effect are described elsewhere (Pearl,
2001; Taylor et al., 2005; Joffe and Greene, 2009; VanderWeele
and Vansteelandt, 2010; Imai, Keele, and Tingley, 2010) and
are beyond the scope of this article. Identification of the nat-
ural indirect effect does, however, require control for com-
mon causes of the intermediate S and the outcome Y (Pearl,
2001; Joffe and Greene, 2009; VanderWeele and Vansteelandt,
2010). The advantage of this approach to surrogate measures
is that, provided the natural indirect effect has been cor-
rectly identified and estimated, it gives the actual effect of
the treatment on the outcome through the surrogate. Like-
wise, the natural direct effect, E(Y1S0 − Y0S0), can be used
to assess whether there is an effect of the treatment on the
outcome not through the surrogate and one could evaluate
whether this was in the opposite direction of the direct ef-
fect. The natural indirect and direct effects sum to the total
effect: E(Y1S1 − Y1S0) + E(Y1S0 − Y0S0) = E(Y1S1) − E(Y0S0) =
E(Y1) − E(Y0). Thus, if the natural direct and indirect effects
were known this could be useful in diagnosing the surrogate
paradox if these two effects were in opposite directions. The
difficulties are, however, effectively transferred to the chal-
lenge of identifying and consistently estimating the natural
indirect effect, E(Y1S1 − Y1S0). The identification conditions
needed to identify this natural indirect effect are quite strong
(Pearl, 2001; VanderWeele, 2010) which constitutes a disad-
vantage to this approach. Within the “indirect effects” ap-
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Figure 3. Example of a surrogate S with no effect on the
outcome Y.

proach, the criterion generally used to assess whether a sur-
rogate is “good” (whether the proportion mediated is large)
unfortunately, however, does not help guarantee that a surro-
gate is consistent. As will be seen in the illustration below, we
can in fact have a high proportion mediated (even 100% me-
diated) in settings in which S exhibits the surrogate paradox.
Although the natural direct and indirect effects themselves
(if known) could be useful in diagnosing the surrogate para-
dox, the proportion mediated criterion itself does not ensure
a surrogate is consistent.

The “indirect effects” approach, taken as a measure of sur-
rogacy, also suffers from another problem. Consider the causal
diagram in Figure 3 in which the surrogate S has no effect on
the outcome Y . Now it may be the case that although S has
no effect on Y , it may, because of a common cause U, serve as
a very good proxy for Y . Knowing about the value of S may
be strongly predictive of what will occur with Y potentially
for both the treatment and the control arm of a trial. In this
case, S could still be a very useful and informative surrogate.
However, the natural indirect effect, E(Y1S1 − Y1S0), would be
0 because S has no effect on Y . The measure of surrogacy
in (2) would be 0 even though S might be a highly informa-
tive surrogate. Whereas the “proportion explained” measure
is essentially too liberal for mediation (but may be useful for
surrogacy), the “indirect effect” measure is too conservative
to assess surrogacy (even though it may be of use in assess-
ing mediation). A good surrogate need not mediate the effect
of treatment on the outcome if it is otherwise informative of
the effect of treatment on the outcome. Conceived of another
way, although confounding is important to consider in eval-
uating the surrogate paradox, when considering measures of
surrogacy it is not always simply a problem to be gotten rid
of, but can provide valuable relations between S and Y which
may be helpful in predicting the effect of A on Y from the
effect of A on S. The “indirect effects” approach by attempt-
ing to control for or eliminate confounding essentially misses
this potentially important source of information concerning
surrogacy. The “indirect effect” measure of surrogacy in (2)
may be of use when most of the effect of A on Y is in fact me-
diated through S and when the confounding between S and Y

is weak but in general it eliminates, rather than incorporates,
information that may be of importance for assessing the value
of a surrogate.

Much of the literature seems to treat the problems of sur-
rogacy and direct/indirect effects as almost interchangeable
problems, and certainly the concepts and methods that have
been employed have overlapped considerably for surrogacy
and mediation. The goals, however, are quite different. In
mediation analysis, we are interested specifically in whether
there is an effect of treatment on the outcome that operates
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through the intermediate. This setting may also be of interest
when assessing the properties of a surrogate; but with sur-
rogate outcomes there are settings, as illustrated in Figure 3
above, in which a variable may serve as a very valuable surro-
gate even if it does not mediate at all the effect of treatment
on the outcome. Whereas mediation concerns the pathways
by which effects arise, surrogacy concerns principally whether
we are able to predict the direction of one effect (of treatment
on the outcome) by using another (the treatment on the sur-
rogate). Confounding plays a very different role in questions of
mediation versus questions of surrogacy. Whereas it is a prob-
lem in assessing mediation, it may be an important source
of information in surrogacy. The causal estimands best used
to capture mediation and surrogacy also differ. The natural
indirect effect (Robins and Greenland, 1992; Pearl, 2001) is
arguably the most important counterfactual contrast when as-
sessing mediation. However, as argued above, it may, at least
in some settings, be of limited interest in assessing surrogacy.
A good surrogate need not mediate the effect. While methods
developed for mediation and for surrogacy will undoubtedly
inform methodology in the other area, the goals and the ques-
tions of each setting should be firmly kept in view in deciding
on what concepts, definitions and methods are most relevant.

The third approach considered by Joffe and Greene (2009)
may be referred to as the “meta-analytic” approach. It may be
applied to subgroups defined across studies (as in traditional
meta-analysis) or by creating subgroups based on covariates.
Burzykowski et al. (2005), for example, propose using ei-
ther multiple studies or multiple groups defined by covariates
within a study to assess surrogacy. Let �j denote the effect
of treatment A on the outcome Y in the jth study/group. Let
φj denote the effect of treatment on the surrogate in the jth
study/group. Note that estimation of �j and φj relies only
on the assumption of randomization. To assess surrogacy vi-
sually, we could plot estimates of �j against estimates of φj.
For a good surrogate, we would hope to find (i) a monotonic
relationship between φj and �j, (ii) when φj = 0 then �j = 0
and (iii) in a (possibly non-parametric) regression of estimates
of �j on estimates of φj we should not find much variability
around the regression line. If the relationship between �j and
φj is approximately linear we could run a linear regression
of estimates of �j on estimates of φj and use the R2 in this
regression

R2 = Corr(�j, φj), (3)

as a measure of surrogacy. For this approach to work, however,
there must of course be variation in �j and φj and there must
be multiple studies or subgroups in which to estimate effects.
Let us now turn to the question of the relation of the meta-
analytic approach to the surrogate paradox and the notion
of a consistent surrogate. The meta-analytic approach does
not give a criterion that ensures the absence of the surrogate
paradox, but it can help diagnose and circumvent it. With the
meta-analytic approach, if sample sizes are sufficiently large
and estimates and modeling assumptions sufficiently precise,
an investigator will be able to identify which studies or sub-
groups are subject to effect reversal (the surrogate paradox)
and, for such subgroups, avoid the use of the surrogate. The
meta-analytic approach does not give a criterion for avoiding

the surrogate paradox but may be of use in detecting groups
for which the surrogate is not consistent.

The fourth approach to surrogacy considered by Joffe and
Greene (2009) is that of “principal stratification.” This ap-
proach builds on the initial insights of Frangakis and Ru-
bin (2002) and was developed more fully by Follmann (2006),
Gilbert and Hudgens (2008), Wolfson and Gilbert (2010) and
Huang and Gilbert (2011). Using notions of principal stratifi-
cation (i.e., conditioning on the joint counterfactual (S0, S1)),
Gilbert and Hudgens (2008) define as a measure of surrogacy
what they call the “causal effect predictiveness surface” given
by:

CEP(s1, s0) = E(Y1 − Y0|S1 = s1, S0 = s0). (4)

If we knew CEP(s1, s0) then we would know for each principal
stratum (S1 = s1, S0 = s0) what the effect of treatment would
be. For a binary outcome, the notion of principal surrogacy
of Frangakis and Rubin (2002) is simply that CEP(s1, s0) = 0
for s1 = s0. For example, suppose the surrogate is binary.
The effects CEP(0, 0) and CEP(1, 1) are sometimes referred
to as “dissociative effects” and CEP(1, 0) (or CEP(0, 1)) as
an “associative effect.” Principal surrogacy requires that the
dissociative effects are zero: CEP(0, 0) = CEP(1, 1) = 0 that
is, that when the treatment does not change the surrogate,
the treatment will not change the outcome. Principal surro-
gacy is often taken as a criterion for a “good surrogate.” The
notion is theoretically appealing. Unfortunately, as already
indicated above, a principal surrogate does not prevent the
surrogate paradox (Chen et al., 2007). A principal surrogate
need not be a consistent surrogate. This is also illustrated
in the example below. If we knew the causal predictive sur-
face CEP(s1, s0) for each principal stratum (S1 = s1, S0 = s0)
then this could potentially be useful in diagnosing the sur-
rogate paradox. For example, if we knew we had a princi-
pal surrogate (i.e., CEP(0, 0) = CEP(1, 1) = 0) and if we also
had monotonicity of the effect of A on S so that the prin-
cipal stratum (S1 = 0, S0 = 1) was empty, then the direction
of the average treatment effect of A on Y would be of the
same sign as CEP(1, 0). However, the criterion of “principal
surrogacy” alone (which itself may be difficult to assess) does
not ensure a consistent surrogate. Accordingly, Gilbert and
Hudgens (2008) modify the definition of a principal surro-
gate from that of Frangakis and Rubin (2002) to also require
what they call 1-sided average causal sufficiency that, for a
binary outcome, S1 > S0 implies P(Y1 = 1|S1 = s1, S0 = s0) >

P(Y0 = 1|S1 = s1, S0 = s0). If a surrogate S has the properties
of causal necessity and 1-sided average causal sufficiency, it
is straightforward to verify that S cannot exhibit the surro-
gate paradox. This modified criteria could then be used for
diagnosing the surrogate paradox.

Unfortunately, like the “indirect effects” approach, the
“principal stratification” approach also requires strong
assumptions for identification of the causal predictiveness
surface. Moreover, even when assumptions have been made
to identify effect measures, one still does not know which
individuals fall into which strata and thus the measures are
difficult to use in making decisions prospectively about which
individuals should or should not be treated. Notions of
surrogacy based on principal stratification are theoretically
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appealing but difficult to identify in practice. Alternative
designs and additional assumptions (Follmann, 2006; Huang
and Gilbert, 2011) can help with identification of these effects;
alternatively, Follmann (2006) and Huang and Gilbert (2011),
have argued that an alternative estimand that conditions only
on S1 and ignores S0 may be easier to identify from data and
still of interest, though, as with others, the value of such alter-
native estimands in ensuring a consistent surrogate is unclear.

In summary, none of the approaches to surrogate outcomes
is entirely immune to the surrogate paradox. For the “pro-
portion explained,” “indirect effects” and “principal stratifi-
cation” approaches, none of the standard criterion guarantee
a consistent surrogate. The “proportion explained” may be
100% and yet the surrogate paradox may still arise. Likewise
the “proportion mediated” using the ratio of the natural in-
direct effect to the total effect may be 100% and again the
surrogate paradox may arise. Finally, a surrogate may be a
“principal surrogate” but not a consistent surrogate—the sur-
rogate paradox may still be present. The “meta-analytic” ap-
proach does not provide a criterion to avoid the surrogate
paradox but it can be useful in diagnosing it. Likewise in the
“indirect effects” approach if the natural direct and indirect
effects were known, these could be useful in diagnosing the
surrogate paradox if it were due to the direct and indirect ef-
fects being in opposite directions; and in the principal strat-
ification approach, if the causal predictiveness surface were
known this could likewise be useful in diagnosing the surrogate
paradox. Unfortunately, however, both the “indirect effects”
approach and the “principal stratification” approach suffer
from issues of lack of identification; strong assumptions are
in general needed to identify these effects, though alternative
study designs or sensitivity analysis techniques can sometimes
be useful. In light of the aforementioned issues concerning the
problems with the surrogate paradox and difficulties in iden-
tification, the “meta-analytic” approach may offer the most
promise for assessing surrogate outcomes and for making pol-
icy and treatment decisions. The approach in principle relies
only on randomization assumptions and does not consider ef-
fects that require stronger assumptions to identify; moreover,
it allows for easier diagnosis of effect reversal manifested in the
surrogate paradox. Nonetheless, it is not without its disadvan-
tages as the sample size requirements for effective implemen-
tation may be prohibitively large (Gail et al., 2000). Wu et al.
(2011) have also recently proposed some empirical criterion to
assess consistent surrogate but sample size requirements may
likewise make practical implementation difficult.

5. Illustration

To illustrate some of the difficulties with the various ap-
proaches considered, especially in the absence of subgroup
data required by the meta-analytic approach, consider the
following example. Suppose A is randomized, that S has
three levels, and that pr(S1 = 0, S0 = 0) = pr(S1 = 1, S0 =
1) = pr(S1 = 2, S0 = 2) = 0.1, pr(S1 = 1, S0 = 0) = 0.5, and
pr(S1 = 1, S0 = 2) = 0.2 and finally suppose Y = (0.1) ∗ 1(S =
1) + 1(S = 2) + εY , where εY is a standard normal random
variable. Here it can be calculated that E(Sa=1 − Sa=0) =
0.3, E(Ys=2 − Ys=1) = 0.9, E(Ys=1 − Ys=0) = 0.1 but E(Ya=1 −
Ya=0) = −0.13 so that the surrogate paradox is present, with

a positive effect of A on S, a positive effect of S on Y , no
direct effect of A on Y not through S, but a negative over-
all effect of A on Y ; S is not a good surrogate. If we ap-
ply the “proportion explained” approach we get a propor-
tion explained estimate of 100%, suggesting that S is a per-
fect surrogate. If we apply the “indirect effects” approach,
the natural indirect effect and total effect are both −0.13,
suggesting 100% mediation and thus that S is a good sur-
rogate, which it is not. The surrogate does, moreover, sat-
isfy Prentice’s criteria. Finally, using principal strata, we
would have CEP(0, 0) = CEP(1, 1) = CEP(2, 2) = 0, imply-
ing that S is a “principal surrogate” and, by this criterion,
thus a good surrogate. In this example, the associative effect
CEP(S1 = 1, S0 = 0) = 0.1, which is of the opposite sign of the
overall effect of treatment on the outcome and of the other as-
sociative effect, CEP(S1 = 1, S0 = 2) = −0.9. If we were to use
as a criterion for a “good surrogate” either (i) the proportion
explained, or (ii) the ratio of the natural indirect effect to total
effect, or (iii) principal surrogacy, then all three of these ap-
proaches would suggest that we have a good surrogate, when,
in fact, with the surrogate coded as S ∈ (0, 1, 2), the sign of the
effect of the treatment on the surrogate is the opposite of the
sign of the effect of the treatment on the outcome, even though
the surrogate has a positive effect on the surrogate and even
though there is no direct effect of treatment on the outcome
not through the surrogate. In this example, failure of tran-
sitivity causes the problem. In other examples, unmeasured
confounding or the presence of a direct effect may give rise to
the surrogate paradox. Note that in this particular example a
recoding of S to (0, 1, 10) would resolve the surrogate paradox
in that the effect of the treatment on the surrogate would be
of the same sign as that of the treatment on the outcome.

6. Concluding Remarks

The surrogate paradox is an important problem. If the effect
of the treatment on the surrogate is in the opposite direction
of the effect of the treatment on the outcome of interest,
policy and treatment decisions may be severely misguided.
In the case of ventricular arrhythmia, this very problem
resulted in an estimated 50,000 excess deaths (Moore, 1995).
In this article, we have reviewed definitions relevant to
surrogate outcomes and have specifically considered how
these definitions are related to the surrogate paradox, namely
that, the effect of the treatment on the surrogate may be
positive, the surrogate and outcome strongly positively
associated, but the effect of the treatment on the outcome
might still be negative. Such effect reversal can arise with
what has been defined as “statistical surrogates” (Prentice,
1989), “principal surrogates” (Frangakis and Rubin, 2002)
and “strong surrogates” (Lauritzen, 2004). We have reviewed
and extended results on sufficient conditions that ensure a
surrogate is “consistent” that is, that it avoids the surrogate
paradox. These results extend previous literature by showing
that there are sufficient conditions that avoid the surrogate
paradox even when there is a direct effect of the treatment on
the outcome not through the surrogate. The results show that
for the surrogate paradox to arise at least one of the following
must be present: (i) a direct effect of the treatment on the
outcome not through the surrogate, (ii) confounding of the
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surrogate–outcome relationship or (iii) a lack of transitivity
so that the treatment does not positively change the surrogate
for all the same persons for whom the surrogate positively
changes the outcome. In the case of the drugs for ventricular
arrhythmia (Moore, 1995; Fleming and DeMets, 1996) there
was a direct effect of the drugs on mortality not through the
surrogate. Other instance of phenomena described in (i), (ii)
or (iii) above could likewise give rise to the surrogate paradox
in other settings. The conditions and the results of the article
are important because they provide simple conditions which
allow investigators to predict the direction of the effect of
the treatment on the outcome from the direction of the effect
of the treatment on the surrogate. We have seen how these
notions of consistent surrogates are related to four surrogate
assessment approaches described by Joffe and Greene (2009):
the “proportion explained” approach (Freedman et al., 1992),
the “indirect effects” approach (Taylor et al., 2005), the
“meta-analytic” approach (Burzykowski et al., 2005) and the
“principal stratification” approach (Frangakis and Rubin,
2002). All potentially suffer from the surrogate paradox. In
particular, without imposing further conditions, none of these
approaches’ criteria to assess whether a surrogate is “good”
(e.g., “100% proportion explained,” “100% proportion medi-
ated,” “principal surrogacy”) is sufficient to ensure that the
surrogate paradox is avoided. However, a modification of the
“principal surrogacy” criterion (Gilbert and Hudgens, 2008)
does suffice. The “meta-analytic” approach may also prove
useful in in making treatment decisions based on surrogates
and circumvents some of the identification issues of other
approaches, though sample size requirements (Gail et al.,
2000) may make this impractical.

In this article, we have focused on the task of determining
when data concerning the effect of treatment on the surrogate
can be used to make decisions about the direction of the effect
of the treatment on an outcome that is, of assessing whether
a surrogate is consistent. We have considered the value of a
number of different results and approaches to surrogate out-
comes in accomplishing this task. Surrogates may however be
useful in other tasks. For example, we might be interested in
determining the extent to which we can predict the outcome
once we observe the treatment and surrogate; or the extent to
which we could use treatment, surrogate and outcome data in
one population to predict the effect of treatment on outcomes
in another population (or the effect of a different treatment in
the same population) for which only data on treatment and
surrogate are available. Future research could consider the
value of the various approaches considered here (proportion
explained, indirect effect, meta-analytic, principal stratifica-
tion) or other approaches in accomplishing these other tasks
and goals for which surrogates may be of use.

7. Supplementary Materials

Web Appendices referenced in Section 3 are available with this
paper at the Biometrics website on Wiley Online Library.
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We thank Vanderweele (2013) for yet another excellent con-
tribution to the causal inference literature, this time in the
surrogacy setting. His exploration of the “surrogate paradox”
phenomenon is important, especially in light of examples such
as the anti-arrhythmic drugs to which he refers, approval of
which may have cost thousands of lives (Moore, 1995). Our
discussion will explore in more detail the implications of con-
sistent surrogacy for the principal stratification and meta-
analytic settings, and consider some extensions suggested by
these implications. We retain his notation except where oth-
erwise noted.

1. Principal Stratification Approaches

1.1. Binary Surrogates and Outcomes

Table 1 gives the joint distribution of the potential surrogate
markers and outcomes in the binary setting. The rows consist
of the support for the potential surrogate (S0, S1), correspond-
ing to the principal strata (PS). Monotonicity assumes that
the treatment is not harmful; assuming that 1 corresponds to
a “good” value for the marker/outcome, monotonicity implies
π41 = · · · = π44 = π4+ = 0 when assumed for the marker, and
π14 = · · · = π44 = π+4 = 0 when assumed the outcome.

Gilbert and Hudgens (2008) suggest that a good surro-
gate should possess two properties: “average causal neces-
sity” (ACN) and “average causal sufficiency” (ACS). ACN
requires that the causal effect of treatment on the out-
come be zero when the causal effect of treatment on the
surrogate is zero (i.e., conditioning on the PS for which
S0 = S1) and ACS requires a non-zero treatment effect on

the outcome when there is a non-zero treatment effect on
the surrogate (i.e., conditioning on the PS for which S0 �=
S1). As Vanderweele notes, Frangakis and Rubin (2002)
proposed the associative effect AE = E(Y1 − Y0 | S1 �= S0) =
π22 + π42 − (π24 + π44), corresponding to ACS in the binary
setting, and the dissociative effect DE = E(Y1 − Y0 | S1 =
S0) = π12 + π32 − (π14 + π34), corresponding to ACN in the
binary setting. “Perfect” principal surrogacy is defined by the
DE being equal to 0. Such a requirement will almost never
be met perfectly, suggesting that “large” values of AE and
“small” values of DE correspond to good surrogates from a
principal stratification perspective. Since AE + DE equals the
overall causal effect CE = E(Y1 − Y0) = π+2 − π+4 on the out-
come, Taylor, Wang, and Thiebaut (2005) suggested using
the “associative proportion” and “disassociative proportion”
AP = AE/CE and DP = DE/CE to “standardize” the effects
relative to the PS. When monotonicity is assumed for both
the marker and the outcome, the “common associative pro-
portion” CAP = π22

π12+π21+π22+π23+π32
has been proposed as a

criterion (Li, Taylor, and Elliott, 2010), since the ideal surro-
gate will perfectly associate causal effects of the treatment on
the marker with causal effects of the treatment on the out-
come. In the absence of monotonicity, simple measures such as
AP, DP, and CAP are not as easily interpretable; thus the full
joint distribution of the potential surrogate marker should be
assessed, with a focus on large values of π22/π2+ and π44/π4+
and small values of π12/π1+ and π32/π3+ (8). The focus of
principal surrogacy measures has been on causal mechanisms
rather than surrogate consistency; nonetheless both mecha-
nism and consistency are important.
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Table 1
Joint distribution of binary potential surrogate marker and outcome without monotonicity assumptions

(Y0 = 0, Y1 = 0) (Y0 = 0, Y1 = 1) (Y0 = 1, Y1 = 1) (Y0 = 1, Y1 = 0)
(S0 = 0, S1 = 0) π11 π12 π13 π14 π1+
(S0 = 0, S1 = 1) π21 π22 π23 π24 π2+
(S0 = 1, S1 = 1) π31 π32 π33 π34 π3+
(S0 = 1, S1 = 0) π41 π42 π43 π44 π4+

π+1 π+2 π+3 π+4 1

The parameters in Table 1 are not identifiable from the
data, with only 8 sufficient statistics for the 15 free parame-
ters without assuming monotonicity and 6 sufficient statistics
for 8 free parameters assuming monotonicity. Boundary
conditions for the cell probabilities and associated principal
surrogacy measures can be identified (1); alternatively, a
fully Bayesian approach can be used to obtain inference in
the absence of a convergent likelihood function (5), as in Li,
Taylor, and Elliott (2010) and Elliott, Li, and Taylor (2013).
A second advantage of the Bayesian approach is the ability to
formally incorporate reasonable assumptions via prior distri-
butions on π, many of which are themselves consistent with
surrogate consistency. Indeed, monotonicity can be viewed as
a strong prior that assumes P(π4j = 0) = P(πi4 = 0) = 1 for
i, j = 1, . . . , 4. As Vanderweele notes, marker monotonicity
combined with perfect surrogacy and one-sided ACS im-
plies surrogate consistency, since marker monotonicity and
perfect surrogacy together imply E(S1 − S0) = π2+ > 0 and
E(Y1 − Y0) = π22 − π24, which is positive by the definition of
one-sided ACS in the binary setting. If monotonicity is not
assumed for either the marker or outcome, then E(Y1 − Y0) =
(π22 + π42) − (π24 + π44) = (π22 − π24) + (π42 − π44) under
perfect surrogacy, and preserving surrogate consistency
requires (π22 − π24) > (π44 − π42), or π2+

π4+ ≥ π4|4−π2|4
π2|2−π4|2 , where

πij = πj|iπi+. This suggests a reasonable result, namely that,
to avoid the surrogate paradox, the ratio of those whose
marker is helped to those whose marker is harmed must be
greater than than ratio of the conditional “harmed” effect on
the outcome in the “harmed” marker stratum to “helped” ef-
fect on the outcome in the “helped” stratum. More generally,
P(S1 = 1) > P(S0 = 1) and P(Y1 = 1) > P(Y0 = 1) imply

π2+ > π4+, π+2 > π+4, (1)

while P(Y1 = 1 | S1 = 1) > P(Y1 = 1 | S1 = 0) and and P(Y0 =
1 | S0 = 1) > P(Y1 = 1 | S1 = 0) imply

π33 + π34 + π43 + π44

π13 + π14 + π23 + π24

>
π3+ + π4+
π1+ + π2+

,

π22 + π23 + π32 + π33

π12 + π13 + π42 + π44

>
π2+ + π3+
π1+ + π4+

. (2)

These conditions are coherent with a strong correlation
between the potential surrogate marker values and the
potential outcome values, since such a correlation will lead to
larger values in the numerator and smaller values in the de-
nominator on the left hand side of (2) because the numerators
include terms from the diagonal or near-diagonal elements of
Table 1, while the denominator contain terms from the off-

diagonal elements of Table 1; while (1) while tend to increase
the denominators on the right hand side of (2) relative to the
numerators. These relationships are also consistent with less
restrictive constraints than monotonicity, such as “stochastic
monotonicity” (π2j > π4j, j = 1, 2, 3) or positive odds ratios

among the 2 × 2 cells
πij/πi,j+1

πi+1,j/πi+1,j+1
, constraints that have been

utilized in (7) and (4). Finally, while these quantities in (1)
and (2) are estimable from the observed data, we can use the
Bayesian approach to assess the posterior probability that
conditions (1) and (2) are met, and determine the degree to
which the consistency results of (1) and (2) occur in concert
with large values of AP and small values of DP for the joint
posterior distributions of these quantities.

1.2. Gaussian Surrogates and Outcomes

Assuming multivariate normality for marker and outcome in
the continuous setting, we have the following joint distribution
(Conlon, Taylor, and Elliott, 2013):

⎛
⎜⎜⎝

S0

S1

Y0

Y1

⎞
⎟⎟⎠∼ N

⎛
⎜⎜⎜⎝

⎛
⎜⎜⎝

μS0

μY1

μY0

μY1

⎞
⎟⎟⎠,

⎛
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σ2
S0

ρsσS0σS1 ρ00σS0σY0 ρ01σS0σY1

σ2
S1

ρ10σS1σY0 ρ11σS1σY1

σ2
Y0

ρtσY1σY0

σ2
Y1

⎞
⎟⎟⎟⎠

⎞
⎟⎟⎟⎠.

(3)

As in the binary setting, we focus on the distribu-
tion of the treatment effect conditional on S0, S1. Let-
ting S1 − S0 correspond to a continuous extension of the
the principal stratum concept, the distribution of (Y(1) −
Y(0)|S(1) − S(0) = s) is normal with mean (μY1 − μY0) +
(

ρ11σS1 σY1−ρ10σS1 σY0−ρ01σS0 σY1+ρ00σS0 σY0
σ2
S0

+σ2
S1

−2ρsσS0 σS1
)(s − (μS1 − μS0)). Thus

we have E[Yi(1) − Yi(0)|Si(1) − Si(0) = s] = γ0 + γ1s, where

γ0 = (μY1 − μY0)

−
(

ρ11σS1σY1 − ρ10σS1σY0 − ρ01σS0σY1 + ρ00σS0σY0

σ2
S0

+ σ2
S1

− 2ρsσS0σS1

)

× (μS1 − μS0)

γ1 =
(

ρ11σS1σY1 − ρ10σS1σY0 − ρ01σS0σY1 + ρ00σS0σY0

σ2
S0

+ σ2
S1

− 2ρsσS0σS1

)
.

ACN is then satisfied if γ0 = 0 and ACS is satisfied if
γ1 �= 0. It is simple to see that, if ACN is satisfied, E[Yi(1) −
Yi(0)|Si(1) − Si(0) = s] will be in the same direction as
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S1 − S0 = s as long as γ1 > 0, thus avoiding the surrogate
paradox. If ACN is not perfectly satisfied, then there is a small
range of s for which the surrogate paradox can occur. If γ0 < 0,
then E[Yi(1) − Yi(0)|Si(1) − Si(0) = s] < 0 for s ∈ [0, −γ0/γ1];
conversely, if γ0 > 0, then E[Yi(1) − Yi(0)|Si(1) − Si(0) = s] >

0 for s ∈ [−γ0/γ1, 0]. This result indicates that the more nearly
ACN is satisfied relative to ACS, the more constricted the sur-
rogate paradox will be.

Note that γ1 > 0 is equivalent to
ρ11σS1 σY1+ρ00σS0 σY0

2
>

ρ10σS1 σY0+ρ01σS0 σY1
2

, requiring the mean of the “within treat-
ment arm” covariances between the marker and the outcome
to be greater than the mean of the “across treatment arm”
covariances between the marker and the outcome, consis-
tent with intuition about a well-behaved surrogate marker.
(3) considered variations on this constraint to improve effi-
ciency and repeated measure properties for principal surro-
gacy assessment in the multivariate normal setting. As in the
categorical setting, this model is not fully identifiable: ρs, ρt ,
ρ01, ρ10 cannot be directly estimated from the data, although
the requirement that the joint variance–covariance matrix in
(3) be invertible does impose constraints. Use of priors in a
Bayesian setting can help insure these constraints hold: for
example, tuned beta priors on ρ01 and ρ10 can be used to
ensure that the prior probability for these “across treatment
arm” correlations is zero for negative values but also unlikely
to be larger than the minimum of the (estimable) “within
treatment arm” correlations.

2. Meta-Analytic Approaches

In contrast to the principal stratification approach, which
focuses on causal associations between the treatment, marker,
and outcome, the meta-analytic approach focuses on predic-
tion of the association between the effect of A on S (φi) and
the effect of A on Y (�i) across multiple trials. While not re-
quiring untestable assumptions as in the direct/indirect effect
or principal stratification approaches, the meta-analytic ap-
proach comes with its own set of analytical challenges. Large
numbers of identical trials need to be available to achieve
sufficient statistical power in evaluating surrogate consistency
across trials. However, studies are rarely identically repeated
due to cost, ethical considerations, and the complexity
of disease progression. If similar studies are conducted,
many aspects likely vary, such as treatment compositions,
patient disease conditions and eligibility criteria. To deal
with this heterogeneity, (2) (BMBRG) proposed a bivariate
mixed model used to describe the joint distribution of Sij

and Yij:

Sij = αS + βSAij + aSi + bSiAij + εSij,

Yij = αY + βYAij + aYi + bYiAij + εTij, (4)

where

(
εSij

εTij

)
∼ MVN

((
0

0

)
, σ =

(
σss σst

σtt

))
(5)

and

⎛
⎜⎜⎝

aSi

aYi

bSi

bYi

⎞
⎟⎟⎠ ∼ MVN

⎛
⎜⎜⎝

⎛
⎜⎜⎝

0

0

0

0

⎞
⎟⎟⎠ , D =

⎛
⎜⎜⎝

dss dsy dsa dsb

dyy dya dyb

daa dab

dbb

⎞
⎟⎟⎠

⎞
⎟⎟⎠ . (6)

The treatment effect in the nth trial is �n = βY + bYn. Moti-
vated by the fact that the trial level effects for the marker
aSn and bSn are typically available in advance for those of the
outcome, BMBRG showed that �n given aSn and bSn follows
a normal distribution with conditional mean

E(�n | aSn, bSn) = βY + (
dsb dab

)(
dss dsa

dsa daa

)−1 (
aSn

bSn

)
(7)

and conditional variance

var(�n | aSn, bSn) = dbb − (
dsb dab

)(
dss dsa

dsa daa

)−1 (
dsb

dab

)
. (8)

The trial-level correlation between S and Y is defined by BM-
BRG as

R2
trial =

(
dsb dab

)(
dss dsa

dsa daa

)−1 (
dsb

dab

)

dbb

,

so that when R2
trial = 1, var(�n | aSn, bSn) = 0.

R2
trial has often been used as measure of the quality of the

surrogate marker in the meta-analytic setting (see, e.g., Saad
et al. 2010). We note this is closely related to Vandeweele’s
Corr(�i, φi), since E(�i | aSi, bSi) is linear in φi = βS + bSi:

E(�i | aSi, bSi) = βY + θ1aSi + θ2bSi

= βY − θ2βS + θ1aSi + θ2φi (9)

for θ1 = dsbdaa−dabdsa

dssdaa−d2sa
and θ2 = dabdss−dsbdsa

dssdaa−d2sa
. Thus var(�i |

aSi, bSi) = 0 implies Corr(�i, φi) = 1 as long as θ2 > 0. How-
ever, we note that these conditions do not avoid the possibility
of the “surrogate paradox,” which in the meta-analytic setting
we take to mean, as Vanderweele does, effect reversal (signs
of �i and φi differ); if aSi is large and of the reverse sign of
βY , βS , and φi, the signs of �i and φi might still differ. Testing
the surrogate paradox in the meta-analytic setting is equiv-
alent to testing the null hypothesis H0: φi > 0(or < 0) AND
�i > 0(or < 0) for all i, versus Ha: φi > 0(or < 0) AND �i <

0(or < 0) for at least one i (Gail and Simon 1985; Zelterman
1990). A Bayesian alternative might be to consider to what
extent the joint distribution of (φi, �i) satisfies the above con-
straints. Consider a plane with the x-axis defined by φi and y-
axis defined by �i, and note that, from (9) βy − θ2βs + θ1aSi =
0 corresponds to the “necessity” concept while θ2 �= 0 corre-
sponds to “sufficiency.” In the event that the directionality
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of Y and S are the same, quadrants I and III correspond to
surrogate consistency, while quadrants II and IV correspond
to the region in which the surrogate paradox occurs. Under
(4)–(6), the proportion of the CDF of (φi, �i) that lies in
these two quadrants is given by F1(0;βS, daa) + F1(0;βY , dbb) −
2F2((0, 0);β, �), where Fk(x, 
, �) is the CDF of a k-variate
normal distribution with mean 
 and variance � evaluated at

x, β = (βS, βY )T, and � =
(

daa dab

dbb

)
. As long as R2

trial is large

and βS and βY are of the same sign, the proportion of joint
distribution of (φi, �i) in the region where surrogacy consis-
tency holds will also be large. Also, this approach will also
favor markers for which E(�i | φi = 0) = 0, a feature corre-
sponding to the “necessity” concept but which is not typically
considered in the meta-analytic approach to our knowledge.
This approach could be subsetted to focus on subgroups of
concern, as Vanderweele also notes, or extended outside of
the assumption of multivariate normality by use of copulas or
bivariate kernel density estimators.

A final practical matter is that when treatment effects are
small or uncertain—often part of motivations to conduct new
trials—it becomes even more challenging for surrogacy consis-
tency to hold. Furthermore, we must be reminded that even
if the surrogacy consistency is not rejected through statisti-
cal tests, we will need to make extrapolations that the results
based on current trials (subgroups) are applicable to future
studies. Taking account of surrogate consistency when design-
ing trials involving surrogate markers requires the new trial to
have sufficient power to confirm prior observations on surro-
gacy inconsistencies, whether overall or for certain subgroups.
Other strategies include collecting some information on Y in
the new trial in addition to the information on S. It has been
shown that when a new study only has A and S available but
not Y , the statistical power can be extremely poor. On the
other hand, a small fraction of information on Y can improve
the statistically power tremendously (6), particularly when
R2

indiv = σ2
st/σssσtt is high. For example, when 30 per cent of

Y are observed, the lost information due to missingness is
almost completely recovered from S when R2

indiv = 0.9. Since
randomized trials often recruit subjects sequentially, it is quite
possible to consider collecting some information on Y to im-
prove statistical power.
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Tyler VanderWeele (2013) (henceforth VW) has written a
useful paper, which advances the ideas of the surrogate para-
dox to imperfect surrogates. This paper and earlier papers on

the paradox (Chen, Geng, and Jia, 2007; Ju and Geng, 2010)
correctly require the field to reevaluate the definition of and
criteria for a good surrogate outcome. The paper additionally
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proposes sufficient conditions for avoiding the paradox which
are more relaxed than those previously published. Unfortu-
nately, these conditions are not directly applicable to proxy
or noncausal surrogates, the most relevant class of surrogates
for applied settings.

This commentary will thus focus on two main issues:

1. The importance of avoiding the so-called surrogate para-
dox, a point which was not adequately explained in either
this paper or the paper that introduced the notion of the
paradox; and

2. How the approach presented here applies to noncausal or
proxy surrogates, which do not themselves affect the out-
come of clinical interest.

In discussing these issues, we will consider the usefulness
of causal ideas in the proposing and evaluating surrogate
outcomes.

1. The Importance of the Surrogate Paradox

In his seminal paper, Prentice (1989) defined a surrogate end-
point as “a response variable for which a test of the null
hypothesis of no relationship to the treatment groups un-
der comparison is also a valid test of the corresponding null
hypothesis based on the true endpoint.” More recent papers
have proposed alternative definitions; for example, Joffe and
Greene (2009) define a surrogate endpoint as “an outcome for
which knowing the effect of treatment on the surrogate allows
prediction of the effect of treatment on the more clinically rel-
evant outcome.” We consider why these definitions are inade-
quate, as both VW and earlier papers on the paradox consider
its problematic nature almost self-evident; in fact it is not.

In the case of the Prentice definition, the problem with a
putative surrogate meeting the definition yet subject to the
paradox is nearly self-evident. Under this definition and the
associated criteria, one could correctly reject the null hypoth-
esis of no effect using the surrogate outcome, yet conclude
that the treatment is beneficial when it is in fact harmful.
One might rephrase the definition by including directional-
ity explicitly. Thus, for a superiority trial, one might define a
surrogate outcome as “a response variable for which a test of
the null hypothesis of no positive relationship to the treatment
groups under comparison is also a valid test of the correspond-
ing null hypothesis based on the true endpoint.” As shown in
VW as well as in earlier papers (Chen, Geng, and Jia, 2007;
Ju and Geng, 2010), the associated operational criteria are
not sufficient under the new definition.

It is less self-evident why the surrogate paradox makes in-
adequate the prediction-based definition discussed by Joffe
and Greene (2009). There are several possible ways to predict
the effect of treatment on the primary outcome based on its
effect on the surrogate. Consider, for example, one based on
the Prentice criterion:

E(Ya) =
∑

s

E(Ya|Sa = s)Pr(Sa = s)

=
∑

s

E(Y |S = s, A = a)Pr(S = s|A = a) (1)

=
∑

s

E(Y |S = s)Pr(S = s|A = a),

where the second equality follows from randomization and
the third if the so called Prentice criterion involving condi-
tional independence (Pr(Y |S = s, A = a) = Pr(Y |S = s)) holds
((1) may be viewed as a version proposed by Prentice as
applied to continuous outcomes instead of hazards). If the
criteria hold, we can in fact identify the outcome distribu-
tion among the treated Pr(Y1) and controls Pr(Y0) and their
contrast using (1) even if the surrogate paradox holds. Con-
sider the illustration in Section 5 of VW (2013); we can com-
pute E(Y1) = ∑

s
E(Y |S = s)Pr(S = s|A = a) = 0 ∗ 0.1 + 0.1 ∗

0.8 + 1 ∗ 0.1 = 0.18 and E(Y0) = 0.31 and thus the risk dif-
ference is correctly characterized as −0.13. Thus, we can cor-
rectly predict the effect of treatment on the Y from its effect
on S. Why is this inadequate?

To answer this, consider how judgments based on surrogate
outcomes are typically made. They are based on combining
information from a trial with a surrogate outcome and knowl-
edge from sources external to that trial about the association
of the putative surrogate with the clinical outcome. Typically,
one would not expect the numerical relationships between the
surrogate and the clinical outcome derived from other sources
to apply precisely in the new setting (e.g., had the current
study been extended long enough to have sufficient numbers
of events to study the clinical outcome directly). Thus, it is
usually expected that the directions of the relationships be-
tween the variables will continue to hold in the new setting
even if more precise quantification is elusive. As such, formu-
lae such as (1) are of limited use, and judgments are typically
made on the basis of directions of associations, which may
be more transportable across settings (Pearl and Barenboim,
2011). The criteria proposed by VW are based on such judg-
ments, and so are in concert with the style of reasoning used
in these settings and are an advance on earlier criteria.

VW’s conditions for avoiding the surrogate paradox involve
causal judgments rather than the merely associational ones
implicit in or the Prentice criteria. Basing the criteria on
causal judgments has advantages and disadvantages. Because
S is not randomized and U may not be fully observed, the
conditions in Propositions 3 and 4 may not be verifiable from
knowledge of the joint distribution of the observable variables;
thus, these conditions may not be useful for validation or eval-
uation of a putative surrogate from a single trial in which A,
S, and Y are all measured. In contrast, the conditional inde-
pendence of the Prentice criteria is approximately verifiable,
although the sample sizes needed to verify rough conditional
independence can be huge, especially as one demands close
approximation to that independence.

Nonetheless, making judgments about potential surrogacy
based on causal knowledge is an important advance. The
causal judgments required to justify the assumptions under-
lying Propositions 3 and 4 may be based on external knowl-
edge of causal relations among variables, and so will, at least
sometimes, be based on fundamental building blocks of our
knowledge (Pearl, 2009). In contrast, failure to reject condi-
tional independence in the Prentice criteria may be less stable
across settings, as, in small samples, approximate conditional
independence in one setting may be the result of chance can-
cellations due to different paths (e.g., A → S ← U → Y and
A → Y in Figure 2 of VW) and may not hold in another
setting.
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Figure 1. DAGs of proxy surrogates. (a) S is a proxy for
the causal intermediate; (b) setup of putative principal surro-
gate; (c) S is a proxy for the causal intermediate which fully
mediates effect of A on Y.

2. Proxy Surrogates

We use the term proxy surrogates to refer to variables which
are not themselves on the causal pathway from treatment to
outcome but nonetheless are proposed as surrogate endpoints.
Most putative surrogates are selected to be related to the
causal pathway from treatment to outcome, but may them-
selves not be on the pathway. While not logically necessary
for a surrogate, being on or near the pathway provides a rea-
son why one would expect the effect of the treatment on the
surrogate to predict its effect on the clinical outcome. Con-
sider, for example, hemoglobin A1c; it is thought itself not
to directly affect outcomes in diabetes but to represent long-
term average levels of blood sugar, high levels of which may
affect clinical outcomes. Such settings are represented in Fig-
ure 1, where S∗ represents the true causal intermediate (e.g.,
long-term course of blood glucose) and S is hemoglobin A1c.
If the unmeasured S∗ is eliminated from the graph, we recover
the graph in Figure 3 in VW, which is also consistent with
Figure 2 of VW.

Unfortunately, for proxy surrogates, even if the conditions
in Propositions 3 and 4 of VW hold, they are not by them-
selves useful. To see this, consider a proxy surrogate for which
Figure 3 of VW holds. We have that E(Y |a, s, u) = E(Y |a, u)

A
S1

S2 Y

UA
S1

S2 Y

U

a b

Figure 2. DAGs of time-varying surrogates. (a) {S1, S2}
fully mediates effect of A on Y . (b) {S1, S2} partially mediates
effect of A on Y.

and so is nondecreasing in s, so satisfying part of condi-
tion a of Proposition 3. Suppose further that E(Y |a, s, u)
is nondecreasing in a for all u. Then E(Ya) = E(Y |a) is
non-decreasing in a even if condition b of the proposition
fails. Further, if E(Y |a, s, u) is also increasing in a for some
u with nonzero support, we can conclude that E(Ya) = E(Y |a)
is increasing in a even without performing the surrogate
experiment which would allow us to see the effect of A on
S. Using such logic, one could conclude that a treatment is
beneficial without ever performing a trial.

It would is thus valuable to consider criteria for consistent
surrogates that are tailored to the structure of proxy surro-
gates. The reason to consider this would be that the structure
of Propositions 3 and 4 involve only pretreatment unmeasured
confounders U, whereas the structure of the proxy surrogate
problem also involves post-treatment unmeasured variables
S∗. It is thus plausible that restrictions on that structure
would result in more useful operational criteria for identifying
consistent surrogates.

An alternative structure for proxy surrogates would involve
principal surrogacy or generalizations thereof (Frangakis and
Rubin, 2002; Gilbert and Hudgens, 2008). Here the structure
of the problem would replace U in Figure 3 of VW by the
potential surrogates {S0, S1} and possibly outcomes {Y0, Y1}
(Figure 1b). Unlike the assumptions underlying Proposi-
tions 3 and 4, the assumptions used to rule out the surrogate
paradox (i.e., 1-sided average causal sufficiency (S1 > S0 im-
plies P(Y1 = 1|S1 = s1, S0 = s0) > P(Y0 = 1|S1 = s1, S0 = s0))
and causal necessity) in this paradigm require data from the
surrogate experiment to estimate the effect of treatment on
the surrogate, and so this might be a fruitful paradigm for us-
ing external knowledge for proposing variables as surrogates.

For surrogates that do not fully mediate the effect of treat-
ment (e.g., Figure 2 of VW) or that are proxies for intermedi-
ate variables (Figure 1a,c), the condition of causal necessity
will generally not hold. Thus, the conditions of Gilbert and
Hudgens (2008) outlined in the last paragraph for avoiding the
surrogate paradox are not directly relevant. It is easy to show
that 1-sided average causal sufficiency together with mono-
tonicity (S1≥S0) is sufficient to rule out the surrogate paradox,
even for nonbinary Y; monotonicity, while not fully testable,
has testable implications (i.e., that E(S|A = 1)≥E(S|A = 0)).

The original work by Prentice on surrogates involved a set-
ting in which the putative surrogate is not a scalar but is
measured repeatedly over time and the outcome a failure-time
outcome. Most of the subsequent literature has considered a
scalar surrogate measured once and an outcome measured at a
fixed follow-up time. The simplification allows more straight-
forward presentation of certain conceptual issues but also ob-
scures some important aspects of the surrogacy problem.

This is especially true for the causal effects paradigm (Joffe
and Greene, 2009). To see this, consider the directed acyclic
graph in Figure 2a. Here, the generic putative surrogate S
fully mediates the effect of the intervention on the outcome.
However, it is only the entire history of S which fully medi-
ates the effect of treatment A; the individual variable St at
any given time only mediates a part of the treatment effect.
Additionally, in typical settings, St is measured only intermit-
tently, and so the entire measured St process does not fully
mediate the effect of treatment. Thus, an individual St and
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even the entire measured St process may be viewed as, at
best, partial proxy surrogates for the effect of the treatment
of interest.

In the situation in Figure 2a, some specific St (e.g., S1)
might mediate only a portion of the effect of A on Y; nonethe-
less, the effect of A on that St might predict the effect of A on
Y well if the effect of A on St were similar for different times
t. Further, the surrogate paradox might be avoided if the na-
ture of the effects of A on St and of St on Y were common
for different times t. It would thus be useful to generalize the
conditions of Propositions 3 and 4 to the time-varying surro-
gate considered in Figure 2a,b (which allows indirect effects
of the treatment), or even time-varying proxy surrogates (i.e.,
{St} does not mediate effect of A on Y but is proxy for time-
varying {St∗} which at least partially mediates effect of A on
Y). In this setting, the criterion of causal necessity for a per-
fect principal surrogate would not be satisfied by a single St .

3. Discussion

Since Prentice’s original formalization, there have been mul-
tiple attempts at formalization of criteria for good surrogate
endpoints. Several of these have included criteria for perfect
surrogates, which typically involve standards unattainable
in typical applications, including conditional independence
(Prentice, 1989), complete mediation (Chen, Geng, and Jia,
2007), and causal necessity (Frangakis and Rubin, 2002), and
a recent manuscript on transportability by Pearl and Baren-
boim (2011). Attempts to relax these standards have been
made, sometimes later (see, e.g., Freedman, Graubard, and
Schatzkin, 1992; Gilbert and Hudgens, 2008), and sometimes
simultaneously (Frangakis and Rubin, 2002). VW provides an
important contribution in this line of thought.

The technical development in VW regard criteria that a pu-
tative surrogate should satisfy to avoid the surrogate paradox.
As such, these involve criteria that should apply in a hypo-
thetical trial to be performed testing the efficacy of a new
agent. Like many previous attempts at criteria for surrogate
outcomes, these criteria can, at best, be partially validated
for a treatment only after a trial of the treatment has been
performed. They are potentially more useful in two ways: (1)
using data from earlier trials to examine whether a particular
variable seemed reasonable as a surrogate for a previous com-
bination of treatment, outcome, and population, thus making
it more plausible for a future combination, and (2) considering
whether the presumed causal relationships among variables
encoded in graphs would make a particular candidate variable
a reasonable surrogate. Because these criteria do not allow

prior validation of a potential surrogate for a new setting, VW
considers the meta-analytic approach (Daniels and Hughes,
1997; Burzykowski, Molenberghs, and Buyse, 2006), which
deals with transportability of results from several studies to
new settings, more appropriate for this purpose. It would be
valuable to also see whether the approach of VW might apply
to modifying the graph-based criteria of Pearl and Barenboim
(2011) for transportability to allow for imperfect surrogates
and yet avoid the surrogate paradox.
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I commend Professor VanderWeele for providing a lucid de-
scription of the “surrogate paradox” and, through it, a com-

prehensive discussion of the current state of thinking about
surrogate endpoints, their function in experimental studies,
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and the various approaches devised to give them formal un-
derpinnings.

The first question that came to mind in reading Vander-
Weele’s paper was: can we explain the phenomenon in simple
terms, divorced from the technical vocabulary that was de-
vised to formulate notions such as “indirect effect,” “princi-
pled strata,” “proportion-mediated,” and perhaps others? My
second question was: If we take the negation of the “surrogate
paradox” as a criterion for “good” surrogate, why cannot we
create a new, formal definition of “surrogacy” that (1) will au-
tomatically avoid the paradox and (2) will settle, once for all,
the disputes (among theoreticians) as to what ”approach” is
best for defining surrogates (Joffe and Green, 2009, pp. 530–
538; Pearl, 2011).

In thinking about these two questions, I came across a sim-
ple way of explaining how the paradox comes about and, in-
directly, why the requirement of avoiding the paradox could
not, in itself, constitute a satisfactory definition of surrogacy.

As with other paradoxes of causal inference (e.g., Simp-
son’s paradox, Berkson’s paradox, suppression effect, and re-
verse regression) a good starting point is linear models, where
the emergence of “paradoxical” phenomena can be examined
under the powerful “microscope” of path analysis and elemen-
tary linear regression (Pearl, 2013a). If a paradox emerges in
linear models, we can be sure that its origin does not rest
with effect heterogeneity or idiosyncratic non-linearities, but
with the age-old confusion between regression and causation
(Pearl, 2013b).

Indeed, starting with the simple linear model of Figure 1(a),
we can write the effects of A on S and on Y , as well as the
correlation between S and Y in terms of the structural param-
eters α, β, γ, and δ.1

E(Y1 − Y0) = α + βγ, (1)

E(Y |S = 1, A = a) − E(Y |S = 0, A = a) = β + δ, (2)

E(S1 − S0) = γ. (3)

The surrogate paradox will be exhibited when the effect of
treatment A on the surrogate S (3) is positive, S and Y are
positively correlated (2), but the effect of A on Y is negative
(1), that is, when the structural parameters satisfy:

α + βγ < 0, (4)

β + δ > 0, (5)

γ > 0. (6)

Clearly, for any γ > 0 and any β, one can find α sufficiently
negative and δ sufficiently positive so as to satisfy (4) and
(5). Moreover, even for the unconfounded case, δ = 0, shown
in Figure 1(b), the three inequality can be satisfied with β > 0
and α sufficiently negative, namely, α < −βγ.

1We assume a randomized trial, hence, A and S are not con-
founded nor are A and Y . δ stands for the covariance of the “dis-
turbances” affecting S and Y .

αA Y

δ
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βγ

a b

S
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Figure 1. Path diagram in which S acts as a surrogate for
the effect of A on Y , demonstrating the “surrogate paradox”
under both confounded (a) and unconfounded (b) models.

We conclude that the surrogate paradox may occur in very
common models; it does not require confounding, nor inter-
action or heterogeneity. It requires only that the direct effect
of A on Y be sufficiently negative for the paradox to surface.
This of course is an unlikely situation in practice. A treat-
ment that has such a negative direct effect on outcome would
rarely be a candidate for surrogacy analysis. In practice, the
paradox is more likely to take place under confounding con-
ditions (δ > 0) where even a positive α and a negative β will
permit it to surface.

We now address the question of why we cannot pose the
avoidance of the surrogate paradox, namely, the positivity of
all quantities on the left hand side of Eqs. (1)–(3) as a for-
mal definition of a “good” surrogate. Indeed, unlike Simpson’s
paradox, which stems from a misinterpretation of statistical
data (Pearl, 2009, Ch. 6), negating the surrogate paradox ex-
presses precisely what we expect a “good” surrogate to do. It
is expected to provide a good prediction of outcome, once it is
found to be positively affected by the treatment. Why, then,
have researchers labored to define “good” surrogates using
fancy formalisms such as “indirect effect,” “principal strata,2”
or “proportion-mediated” (Joffe and Green, 2009) instead of
constraining Eqs. (1)–(3) with the proper inequalities?

The reason, I believe, is that definitions are expected to be
formulated in terms of the knowledge available to the inves-
tigator at the time of the study, and this knowledge consists
of qualitative understanding of the model’s structure prior to
seeing the data, or quantitative assessments of the parame-
ters after examining the data. Eqs. (4)–(6) show that struc-
tural knowledge is not sufficient to protect us from the para-
dox. The paradox may surface even when α = 0 (strong surro-
gacy) or β = 0. About the only structural condition to prevent
the paradox is α = δ = 0, which amounts to perfect mediation
(Prentice, 1989). As to quantitative protection from the para-
dox, the confounding model of Figure 1 does not permit the
identification of α, β, and δ, or, in the nonparametric case, of
direct and indirect effects.

Another important consideration is robustness. Pearl and
Bareinboim (2011) argued that good prediction of the effect of
A on Y should not be the sole criterion for judging surrogacy,
but must be accompanied with a requirement of robustness.

2The choice of “principal strata” to define surrogacy is par-
ticularly inadequate, for these strata are empty in the case of con-
tinuous S (Pearl, 2011).
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Let us imagine two studies. In the first, we measure the
effects of A on both S and Y and confirm that S is a good
surrogate, that is, knowing the effect of treatment on S allows
prediction of the effect of treatment on the outcome. Once
S is proclaimed a “surrogate,” it invites efforts to find direct
means of controlling S. For example, if cholesterol level (S)
is found to be a predictor of heart disease in a long run (Y),
drug manufacturers would rush to offer cholesterol-reducing
substances for public consumption. As a result, both the
prior P(S = s) and the treatment-dependent probability
P(S = s|A = a) would undergo a change. For S to be a good
surrogate, we should be able to re-assess the effect of the
treatment E(Y1 − Y0) in a new population in which the effect
of treatment on S has changed, and in which access to Y is
no longer available. Instead, we have an experiment to assess
the new value of E(S1 − S0). Pearl and Bareinboim (2011)
have shown that, if we assume that the disparity between
the two populations lies only in the difference in E(S1 − S0)
(the surrogate’s susceptibility to treatment) the effect of
treatment on the outcome under the new conditions can still
be estimated from the two studies, provided S and Y are not
confounded.
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Rejoinder

Tyler J. VanderWeele

I thank Professors Pearl, Joffe, and Elliott and colleagues for
their comments and insights. It seems to me that one of cen-
tral methodological question concerning surrogates is, or at
least should be, under what conditions the research commu-
nity should allow a surrogate to be used as the primary out-
come in a randomized trial. I will respond to the comments
of Pearl, Joffe, and Elliott et al. with this central question in
view. In my article (VanderWeele, 2013), I laid out criteria for
ruling out settings in which (i) the treatment had a positive
effect on the surrogate, (ii) the surrogate and the outcome
were strongly positively correlated but (iii) the effect of the
surrogate on the outcome was negative, a setting described as
the “surrogate paradox.” When the sign of the effect of the
treatment on the surrogate is the same as that of the treat-
ment on the outcome, the surrogate is said to be “consistent”
(the surrogate paradox is absent). In settings manifesting the
surrogate paradox we would not want to use the surrogate as

the primary outcome in a randomized trial because it could
give us the wrong conclusions about the outcome of ultimate
interest. The three criteria laid out in my article were (A)
if there is a direct effect of the treatment on the outcome
not through the surrogate then it is positive, (B) the positive
correlation between the surrogate and the outcome indicates
an actual positive effect of the surrogate on the outcome and
is not simply due to confounding, and (C) if the surrogate
is not binary then the effect of treatment on the surrogate
is not simply positive on average but rather the treatment
increases the whole distribution of the surrogate. This last
criterion rules out settings in which the treatment positively
changes the surrogate for different individuals than for whom
the surrogate positively changes the outcome resulting in lack
of transitivity and effect reversal. As pointed out in my arti-
cle and by Pearl and Joffe, these criteria are sufficient to rule
out the surrogate paradox but not necessary. As also pointed
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out in my article and by Pearl and Joffe, these criteria can-
not in general be evaluated empirically and must be decided
upon on a priori substantive grounds. I will argue below that
these criteria can be useful in addressing the fundamental
question of under what conditions a surrogate should be al-
lowed to be used as the primary outcome in a randomized
trial.

Concepts Versus Decisions and Decision-Making
Contexts

In their commentaries, both Elliott et al. and Joffe turn to no-
tions of principal stratification (Frangakis and Rubin, 2002;
Gilbert and Hudgens, 2008). Within this framework we hope
that for individuals for whom the treatment does not change
the surrogate, the treatment has no effect on the outcome
(“causal necessity”); and for individuals for whom the treat-
ment changes the surrogate, the treatment has an effect on the
outcome (“causal sufficiency”). These notions seem to capture
well the meaning of surrogacy. Unfortunately, because we do
not know who is in which stratum, we cannot identify effects
within such principal strata. As discussed by Joffe and Elliott
et al., by using Bayesian approaches and sensitivity analysis,
we can, to a certain extent, bound these effects. Although
these concepts are theoretically appealing and arguably cap-
ture what is meant by surrogacy, what still seems unclear is
how they are useful in decision-making in the context of sur-
rogate outcomes.

This brings us to the question of what are the relevant
decision-making contexts for surrogate outcomes. Suppose we
have one or more trials with data on the treatment and the
surrogate and the outcome and, on some grounds, we believe
we have identified a good surrogate. As indicated by Joffe,
one context of interest with surrogates might be evaluating
the same treatment in a new population using a new trial
with only the surrogate as the outcome; another context of
interest might be evaluating a different treatment in the same
population using a trial with only the surrogate as the out-
come. We would then be interested in when it is sufficient to
only use the surrogate alone in these new trials? As suggested
by Joffe, one could imagine two approaches to try to settle
such questions. First, one might use the data from one or
more of the existing trials with data on the treatment, surro-
gate, and outcome to empirically assess whether the surrogate
would have in some sense been a good surrogate in the exist-
ing trial(s) and if so, then hope that it would likewise be a
good surrogate for a new drug or in a new population. Sec-
ond, it might be possible to articulate criteria (as was done
in my article), that could be assessed on a priori substantive
grounds, and that would ensure that the direction of the ef-
fect of the treatment on the surrogate would match that of
the treatment on the outcome. One could attempt to assess
whether these criteria were likely to be satisfied with a new
drug or in a new population.

A difficulty with the first approach is that, as discussed in
my article, the empirical approaches that have been consid-
ered most often to date (Joffe and Greene, 2009) generally do
not suffice to preclude the surrogate paradox. The empirical
criteria for “good surrogates” used in the proportion-
explained approach, the indirect effects approach, and the

principal stratification approach do not, without further
assumptions, ensure the surrogate paradox is absent. For-
tunately, a recent set of empirical criteria have been put
forward by Wu, He, and Geng (2011) that do suffice to ensure
consistent surrogates. Wu et al. (2011) show that if one of
E(Y |A = 1, s) or E(Y |A = 0, s) is non-decreasing in s, and if
E(Y |A = 1, s) ≥ E(Y |A = 0, s) for all s, then the surrogate
paradox is avoided in the sense that if A has a positive distri-
butional effect on S, that is, P(S > s|a) is non-decreasing in a,
then E(Y |A = 1) − E(Y |A = 0) ≥ 0. These empirical criteria
have the advantage over the empirical approaches previously
proposed in that they ensure consistent surrogates. However,
when considering a new drug or a new population, one would
still have to hope that the empirical criteria that ensured sur-
rogate consistency in the original population with the original
drug also held with the new population or the new drug. As
suggested by Joffe, it is arguably this move to a new drug or to
a new population in which a priori criteria to assess whether
a surrogate is consistent (judged on substantive grounds and
background knowledge, rather than empirically) are of most
use. The criteria articulated in my article could be used to as-
sist with such decision-making in the context of a new popula-
tion or a new drug. For instance, before proceeding with a trial
that uses only the surrogate as the outcome, one would want
to know, for a new drug, whether the drug might have a nega-
tive direct effect (e.g., side effects) not through the surrogate;
whether the surrogate really does have a positive effect (not
just a positive association with the outcome); and whether
the drug might change the surrogate for different individuals
than for whom the surrogate changes the outcome. As pointed
out by Pearl, the criteria in my article are sufficient but not
necessary, and confounding that exaggerates the surrogate-
outcome relationship may, for instance, be offset by a positive
direct effect. It may be possible to further refine my criteria.
With neither the a priori criteria, nor with empirical criteria
assessed in the original population and with the original drug,
can we be certain that a surrogate will be consistent and
suitable for use with a new population and a new drug with-
out making assumptions. But together, empirical and a priori
approaches can perhaps be of some use in informing such
decision-making.

If none of the major existing empirical approaches con-
sidered by Joffe and Greene (2009) can ensure surrogate
consistency, we might ask whether these empirical ap-
proaches are at all useful for other purposes. Note first that,
as suggested by Pearl, the consistency of a surrogate is in
some sense a relatively minimal requirement for a surrogate.
Generally, if we think we have a good surrogate we hope not
only to get the direction of the effect of the treatment on the
outcome right from the trial of the treatment on the surro-
gate, but we also hope that if the effect of the treatment on
the surrogate is large, then the effect of the treatment on the
outcome should be large as well. The meta-analytic approach
(Burzykowski, Molenberghs, and Buyse, 2005) can help assess
this latter objective concerning effect sizes; the principal
stratification approach might also be useful in assessing this
if sufficiently narrow bounds on the principal stratum effects
can be achieved. Second, instead of deciding whether to allow
a trial in a new population or with a new drug with only the
surrogate as the outcome, a distinct decision-making context
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A S S’ Y
Figure 1. Two surrogates, S and S

′
, both with 100 %

proportion explained but with S
′

a better predictor for Y

than S.

might also arise concerning surrogacy when the original
population and the original drug are in view. We might, for
example, want to assess whether a surrogate is “good” in a
prognostic sense, that is, whether once we know treatment
status A and surrogate value S, we can do a good job pre-
dicting the outcome Y . This might be of interest if a patient
is trying to decide how to spend the last weeks or months
or years of her life and this decision will depend in part on
how much longer she is expected to live. This, I believe, is
quite a distinct decision-making context and the proportion-
explained approach (Freedman, Graubard, and Schatzkin,
1992) perhaps best captures, of the approaches considered
by Joffe and Greene (2009), a measure of the importance of
a surrogate in this decision-making context, but one could
presumably do even better with more sophisticated predictive
modeling approaches. Moreover, two surrogates (e.g., S and S′

in Figure 1) might each have a proportion explained of 100%
but S′ might be much better than S for predictive/prognostic
purposes.

Different Surrogates, Different Approaches:
A Structural Classification of Surrogates

Joffe pointed out that the criteria in my article were of most
use in settings in which the surrogate is on the pathway from
the treatment to the outcome, and that different criteria may
be more useful in cases of what he called “proxy surrogates.”
More generally, we might distinguish three types of surro-
gates: those that are on the pathway from treatment to out-
come as in Figure 2a; those that are related to variables on
the pathway from treatment to outcome as in Figures 2b, c;
and those that are not on the pathway and unrelated to vari-
ables on the pathway, as in Figure 2d. We might refer to
these three classes as mediator surrogates (Figure 2a), proxy-
mediator surrogates (Figures 2b, c), and prognostic surrogates
(Figure 2d), respectively. More formally, under faithfulness
(Pearl, 2009), we might say that a variable S is a surrogate
for the effect of A on Y if there is a directed path from A to
S and there is an unblocked path from S to Y not through
A. A surrogate S is a mediator surrogate if it is on a di-
rected path from A to Y . A surrogate S is a proxy-mediator
surrogate if S is not on a directed path from A to Y but
there is an unblocked path from S, not through A, to some
variable M that is on a directed path from A to Y . A sur-
rogate S is a prognostic surrogate if S is not on a directed
path from A to Y and there is no unblocked path from S, not
through A, to a variable M that is on a directed path from A

to Y .
As argued by Joffe, the criteria in my article are of pri-

mary use for mediator surrogates. Joffe suggests it may be
useful to have alternative criteria for surrogate consistency
for proxy-mediator surrogates (Figures 2b, c). In fact, the
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Figure 2. Different types of surrogates: mediator surro-
gates (a), proxy-mediator surrogates (b,c), and prognostic
surrogates (d).

criteria in my article could potentially be extended to proxy-
mediator surrogates. If we have a proxy mediator surrogate
S, then the surrogate paradox is avoided if there is some vari-
able M on the pathway from A to Y such that the criteria
in my article (criteria A–C above) hold with respect to M

and if a positive distributional effect of A on S (P(S > s|a)
is non-decreasing in a) implies a positive distributional of A

on M (P(M > m|a) is non-decreasing in a). If M is binary,
this latter condition can be reduced to a positive average ef-
fect of A on S implies a positive average effect of A on M.
However, a priori criteria would still need to be articulated
for this latter condition (almost the reverse of the problem of
surrogacy).

This brings us to prognostic surrogates (Figure 2d), that is,
surrogates unrelated to variables on the pathway from treat-
ment to outcome. Such surrogates may still be of interest if,
for example, they were to denote a side effect that occurs
only when the drug is going to be effective (e.g., an individ-
ual’s hair turning blue if and only if the drug will be effec-
tive). In such cases, the surrogate may predict the outcome
very well even though it does not cause the outcome. Here,
although the criteria in my article are still valid, and may
be useful in diagnosing the potential for the surrogate para-
dox, the criteria are less useful in establishing that a surro-
gate is consistent because, as suggested in a related context
by Joffe, in Figure 2d the criteria reduce to simply assess-
ing whether the treatment itself improves the outcome; we
would not need data from the trial of the treatment on the
surrogate at all. As suggested by Joffe and discussed in more
detail by Elliott et al., a priori criteria based on ideas of prin-
cipal stratification, may be of more use here. Many of the a
priori criteria noted by Joffe and Elliott et al. make strong
individual-level monotonicity assumptions and assumptions
about causal necessity, and so require more stringent condi-
tions than those in my article. However, Elliott et al. do also
provide one set of criteria, based on principal strata probabil-
ities, that do not require the monotonicity assumption. More
research along these lines, particularly in the case in which av-
erage causal necessity does not hold, would be of interest. It
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would also be of interest to assess whether and to what extent
we have real examples of surrogates that are prognostic surro-
gates with a structure such as that of Figure 2d, rather than
Figures 2a–c.

The discussion here also raises the issue considered by Joffe
of the extent to which a surrogate must be a mediator or be
related to a mediator. The final setting of prognostic surro-
gates in Figure 2d suggests that a good surrogate need not be
a mediator or even related to a mediator. It was in part for
this reason that I argued in my article that approaches to sur-
rogacy based on assessing mediation and indirect effects may
not be adequate. A good surrogate need not be a mediator.
In settings which the surrogate is in fact a mediator, assessing
the extent of mediation may be useful in trying to refine
treatment to better change or target the mediator, but again
mediation is not a logically necessary criterion for surrogacy
itself.

In summary, with the concepts, approaches and criteria
currently available, I believe the notions from principal strat-
ification perhaps best capture what we mean by a surro-
gate. However, in establishing surrogate consistency on a pri-
ori grounds, which is useful in deciding whether to allow a
trial using just the surrogate as an outcome, I believe my
criteria are most useful for mediator surrogates and proxy-
mediator surrogates; and I believe the principal strata criteria
in Elliott et al. may be the most useful to date for prognos-
tic surrogates. In establishing surrogate consistency on em-
pirical grounds, I believe the criteria of Wu et al. (2011)
are most useful. In establishing whether the magnitude of
the effect size in a trial of the treatment on the surrogate
would correspond to the effect size in a trial of the treat-
ment on the outcome, I believe the meta-analytic approach
(Burzykowski et al., 2005) is most useful. In refining treat-
ments to better target mechanisms and increase effect sizes,
I believe the indirect effects approach is most useful. And in
using surrogates for the purposes of predicting outcomes with
the same drug and same population I believe the proportion-
explained approach, or preferably better predictive model-
ing approaches, are most useful. How we approach surrogacy
should depend on the nature of our goals and the type of
surrogate.

Community Consensus and Practical
Considerations: The Sociology of Surrogacy

I began this discussion with the central question of under
what conditions the research community should allow a
surrogate to be used as the primary outcome in a trial
in which some other outcome is ultimately of interest. In
actual practice, research communities do, with time, settle
upon various surrogates which are considered acceptable to
use. The HIV treatment literature often takes CD4 count
as a surrogate for mortality. Joffe mentions the use of
hemoglobin A1c as a surrogate for diabetes outcomes. While
the process by which consensus within a research community
is established is not always clear, I suspect, in many cases
at least, it involves a combination of empirical evidence and
substantive understanding which are thought to establish
that the surrogate is either an important mediator or related
to an important mediator, and that if there is a direct effect

of the treatment on the outcome not through the mediator
then either it is not too large or it is in the correct direction.
I believe these are the practical circumstances under which
a community often comes to consensus that a particular
surrogate is acceptable to use. Often the surrogates estab-
lished by communal consensus, for example, CD4 count in
HIV treatment, work reasonably well. Sometimes, however,
as was seen with the drugs to treat ventricular arrhythmia
(Moore, 1995), the surrogates have disasterous consequences.
One way to interpret my criteria is that they provide an
additional set of questions and guidelines to consider in the
process of establishing community consensus concerning the
use of a surrogate. The questions my criteria pose are: (A)
Might the treatment have a negative direct effect not through
the surrogate? (B) Might observed associations between the
surrogate and the outcome be due to confounding rather than
causation? (C) Might the treatment affect the surrogate for a
very different group of individuals than for whom the surro-
gate affects the outcome? If the answer to all three questions
is “no,” researchers can more confidently proceed with using
a particular surrogate with less concern that the direction
of the effect, in trials with the surrogate as the primary
outcome, is wrong. If the answer to one or more of these ques-
tions is “yes,” this does not necessarily mean the surrogate is
bad, but merely that the research community should proceed
much more cautiously. The surrogate paradox may be
present.

I would like to conclude by taking up the issue of surrogate
robustness raised by Pearl. Pearl argued that the usefulness of
a surrogate should not depend on whether the prevalence of
the surrogate changes when efforts are made to alter the surro-
gate distribution to prevent disease. While I think it would in
general be good to know something about the “robustness” of
a surrogate, so defined, I do not think such robustness should
be a requirement for a good surrogate. Stated more gener-
ally, I think whether a surrogate is useful will depend heavily
on time and context. For HIV patients, CD4 count may at
present be a good surrogate for mortality. If, due to techno-
logical change and medical advance, we are eventually able to
keep patients alive with much lower CD4 counts, then it may
later no longer be a good surrogate for mortality. What occurs
in the future does not, however, mitigate its usefulness at the
present time. Surrogates, when used carefully and properly,
should assist in the reduction or eradication of disease. As
this is accomplished, the surrogate’s usefulness may become
diminished. The utility of a surrogate ultimately depends on
context.
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