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Error in phenotypic measurement can significantly compromise ability to detect 
linkage. We assessed the impact of introducing phenotypic measurement error on 
our ability to detect a quantitative trait locus in the Collaborative Study on the 
Genetics of Alcoholism (COGA) data. The impact of introducing three different 
types of errors was evaluated: 1) errors generated by sampling from a normal 
distribution; 2) errors generated by permuting phenotype values between subjects; 
and 3) errors generated by sampling from a uniform error distribution. 
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INTRODUCTION 

The development of new analytic methods for quantitative trait linkage analysis will 
greatly facilitate efforts to detect genes for complex diseases. The appeal of these 
methods is their applicability over a range of genetic models, thus obviating the need to 
specify model parameters. However, the ability to detect linkage is influenced by the 
quality of the genotypie and phenotypic information. Relatively little is known about the 
sensitivity of some of these methods to variability in these data. The goal of this study is 
to investigate the sensitivity in our ability to detect linkage in the face of phenotype error. 
Such errors may occur for a variety of factors, including circadian rhythm, measurement 
error or because of assay errors resulting from variability of reagents required to quantitate 
the trait in question. In addition, collection errors such as data entry, sample ID switching, 
or sample switches in the lab may cause problems with the phenotypes. 
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In this paper, we investigated the effect of introducing phenotypic measurement 
error on our ability to detect linkage to a quantitative trait in the Collaborative Study on 
the Genetics of Alcoholism (COGA) data. In an initial genome scan of the COGA data, 
we detected significant evidence for linkage to a quantitative trait using a variance 
component approach [Amos, 1994; Almasy and Blangero, 1998]. In addition, evidence 
for linkage for the same trait and chromosome was also previously found in this data set 
[Begleiter et al., 1998]. To address our study question, we performed a sensitivity analysis 
in which we introduced three different types of measurement error, in varying degrees, 
and then re-evaluated evidence for linkage at that locus. 

METHODS 

We analyzed the trait Cz for the P300 event-related potential (ERP) data for 604 
people in a total dataset of 1,214 individuals. Linkage analyses were performed using the 
variance components approach of Almasy and Blangero [1998], in which the covariance 
of trait values in pairs of relatives is decomposed into major gene, polygenic and 
environmental components. Analyses were conducted using the SOLAR software program 
(Sequential Oligogenic Linkage Analysis Routines). Multipoint analysis revealed a 
maximum lod score of 3.54 at 198 cM on chromosome 6 using the information from all 
15 markers from the COGA dataset. All subsequent analyses were then performed at this 
locus. 

We performed a sensitivity analysis to evaluate the effect of introducing error in 
phenotype measurement on our ability to detect linkage. Our strategy involved replacing 
the Cz values of a subset of individuals with values taken from a pre-defined error 
distribution. Following replacement of the phenotype values, we recomputed the lod score 
at position 198. 

We considered three different types of error distributions, each corresponding to a 
different source of error. For each type of error we introduced, we also evaluated the 
effect of varying the proportion of individuals whose phenotypes were altered. 
Specifically, for each type of error we evaluated the impact of altering phenotypes in 1%, 
5%, 20%, 50%, and 100% of the total population. Each of these five sampling proportions 
was generated randomly. 

The first type of error we considered corresponded to variability associated with 
imprecision in the measurement. Errors corresponding to this source were generated by 
replacing the observed phenotype value with a value drawn from an "error" distribution 
with mean equal to that of the observed value and variance, Oe. To evaluate the effect of 
different degrees of imprecision, we assessed sensitivity for values of oe corresponding 
to 1%, 5%, 20%, 50%, 100%, 120%, 150%, 175%, 200%, 225%, 250%, 275%, and 300% 
of the original population variance of Cz P300 (σ = 74.96). We then generated 500 
replicates for each unique combination of sampling proportion (ranging from 1% to 
100%) and variance (ranging from 1% to 300%) and linkage analysis was then performed 
on each replicate data set. Thus, a total of 27,500 (500 x 5 x 13) analyses were 
performed. 

The second type of error we considered corresponded to errors introduced by sample 
swapping, as, for example, might occur by incorrectly matching the ID numbers to their 
corresponding phenotype measurements. We simulated this type of error by permuting 
the phenotypic values between individuals. Again, 500 replicate data sets were generated 
across each of the five sampling proportions, for a total of 2,500 separate analyses. 

The third type of error we considered corresponded to errors introduced by an 
invalid measurement that was uncorrelated with the observed measurement. Such a 
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measurement could be obtained in a number of ways, including data recording error and 
instrument malfunction. To simulate this type of error, we replaced the phenotypic value 
with a value obtained from a uniform distribution, whose minimum and maximum values 
were defined by the corresponding values taken from the observed distribution of Cz P300 
measurements. As before, we generated 500 replicate data for each of the five sampling 
proportions, for a total of 2,500 separate analyses. 

RESULTS 

The results obtained from introducing measurement imprecision into the data are 
shown in Figure 1, which shows the mean and standard error of the lod scores across the 
500 replicates for each combination of generating parameters. As expected, for each of 
the five sampling proportions, the lod scores decreased as the variability in the replaced 
phenotypic measurements increased. Replacing only 5% of the sample reduces the lod 
score from 3.54 to 1.75 if the variability associated with the replaced values is 300% of 
the original population variance. Conversely, if measurement error (at 100% of the 
population variance) is introduced to 50% of the sample, lod score decreased to 
approximately 1.5. Interestingly, if the variance surrounding the replaced values is 50% 
of the population variance or less, the ability to detect linkage remained relatively high, 
even if phenotypes for large proportions of the population were replaced. In fact, if 
variability equaling 50% of the population variance was introduced for every single 
individual in the entire population, the lod score decreased to only 2.2. 

We also examined the minimum and maximum lod scores out of the replicates for 
each sample proportion and variance combination. The minimum lod score was often 
below 2, suggesting that even for a small phenotype change, there may be a small subset 
of individuals whose change of phenotype led to a large drop in lod score even if the mean 
of all the replicates remains fairly stable. The maximum lod score often increased with 
small variance and sample changes but showed a general decline when both these factors 
became larger. 
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Fig. 1. Mean (and standard error) lod scores associated with introducing phenotypic imprecision for 
sampling proportions of 1%, 5%, 20%, 50%, and 100%. 
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The effects of introducing measurement error attributable to permutation errors and 
invalid measurements are shown in Figure 2. As expected, in both cases the mean lod 
scores decreased as the proportion of the individuals whose values were replaced 
increased. At each sampling proportion, ability to detect linkage was lower for invalid 
measurement errors than for permutation-based errors. Compared with the errors 
introduced by measurement imprecision, errors introduced by both permutation errors and 
invalid measurements tended to have a more severe effect on the ability to detect linkage. 
For example, if phenotypic values of only 20% of the population were replaced, the mean 
lod scores were 1.4 and 0.7 for the permutation and invalid measurements groups, 
respectively, compared to 2.45 to 0.5 for the imprecise measurement group, for 
phenotypic variability ranging from 100% to 300% of the original population variance. 

Finally, we examined the proportion of replicates whose lod score appeared above 
a given threshold (Table I). As expected, an increase in the percent sample change led to 
fewer replicates above a specific threshold. 

DISCUSSION 

Measurement error is a ubiquitous and unavoidable feature of any scientific study. 
The impact of measurement error on quantitative trait linkage analysis has been left 
relatively unexplored. We have investigated this issue in the COGA data by examining 
the robustness of a linkage observed with Cz P300 values. We modeled three different 
types of errors that could occur in the measurement of this phenotype separately. Other 
sources of error are, of course, also possible, and in the "real world," measurement errors 
accrue not from a single source, but rather from multiple sources. Nevertheless, evaluation 
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Fig. 2. Mean (and standard error) of lod scores associated with introducing phenotype measurement 
error attributable to permutation erros and invalid measurement for samplings of 1%, 5%, 20%, 50%, 
and 100%. 

TABLE I. Percent of Replications Above the Lod Score Cutoff for Different Phenotype 
Errors 
Lod cutoff lod Ź 2 lod ź 3 
% Sample 1 5 20 50 100 1 5 20 50 100 
Uniform 94.8 57.8 23.6 3.8 0.0 67.0 16.8 0.4 0.0 0.0 
Swap 98.4 84.4 21.4 0.2 0.0 86.6 44.2 4.6 0.0 0.0 
100% Variance 100.0 98.8 66.4 24.0 4.4 96.4 61.8 21.0 3.4 0.0 
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of the errors arising from these three broad classes can provide insights into the overall 
robustness of the observed Cz P300 linkage in the COGA data set. 

Some general patterns are evident. First of all, as expected, ability to detect linkage 
declined as the proportion of the population to be replaced increased. Secondly, sources 
of error resulting in replacement of observed phenotypic value with an uncorrelated value 
(for example, errors attributable to permutation or to invalid measurement) tended to 
reduce the ability to detect linkage to a greater extent than replacement of the phenotypic 
value with a correlated error measurement (such as that attributable to an imprecise 
measurement). 

In general, ability to detect linkage to a locus influencing Cz P300 values remained 
excellent if phenotypes were altered for only 1% of the population and fairly good if 
phenotypes were altered for 5% of the sample. This was true even for relatively drastic 
changes in the phenotype (e.g., permutation changes or replacement with a value sampled 
from the uniform distribution). However, if phenotypes were replaced with uncorrelated 
values in more than 5% of the sample, ability to detect linkage declined rather quickly 
(Fig. 2). In contrast, ability to detect linkage was somewhat preserved if relatively small 
amounts of variability were introduced to the phenotypic measure in even a large 
proportion of subjects (Fig. 1). 

It is also noteworthy that the minimum lod score in each replication set dropped 
significantly with replacement of even a very small proportion of phenotypes. One 
possible explanation for this is that in these replications, the values of a few critical 
individuals who were highly informative for linkage were changed. In this context, the 
work of Mitchell et al. [this issue] may be relevant. In the analysis described by these 
authors, individuals were systematically removed from the Cz P300 COGA data set to see 
what effect this would have on the resulting lod score at 198 cM on chromosome 6. A 
small subset of individuals were identified who contributed disproportionately to the 
linkage because the lod score was substantially reduced if they were removed from the 
analysis. We expect that the influential individuals identified by Mitchell et al. were 
probably more likely in these analyses to have had their phenotypes replaced in the 
replications resulting in low lod scores. 

Because an increase in the proportion of people whose phenotypes were changed led 
to lower lod scores, we also looked at the variance as well as the coefficient of variation 
among the replicates. In general, while the variance decreased with a greater proportion 
change of phenotype, the coefficient of variation actually increased. Therefore, it is 
difficult to use these measures to examine whether a few critical individuals affect the lod 
scores significantly. 

The analyses presented in this paper focus on the effects of measurement error on 
the ability to detect a true linkage. The p-value for the lod score of 3.54 is 2.75 x 10"5 

under asymptotic assumptions, so there is a possibility, albeit very small, that the result 
is a false positive. In addition, all three classes of error could, in combination, impact 
phenotypic variation. This requires further exploring. 

In summary, we wish to emphasize that accurate and precise phenotype measurement 
is essential to detect linkage and to possibly guard against false positive results (work in 
progress). Incorrect phenotype measurement of certain critical individuals due to various 
causes can impact the lod score substantially. 
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