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For complex diseases, underlying etiologie heterogeneity may reduce power to 
detect linkage. Thus, methods to identify more homogeneous subgroups within 
a given sample in a linkage study may improve detection of putative susceptibility 
loci. In this study we describe an ordered subsetting approach that utilizes 
disease-related quantitative trait data to complement traditional linkage analysis. 
This approach uses family-based lod scores derived from the initial genome screen 
and a family-based descriptor of the trait of interest. The goal of the approach is 
to identify more homogeneous subgroups of the data by ranking families based on 
their quantitative trait data. Permutation testing is used to assess statistical 
significance. This approach can be adapted to a variety of linkage methods and 
may provide a means to dissect some of the underlying heterogeneity in 
complex disease genetics. ® 1999 Wiley-Liss, Inc. 
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INTRODUCTION 

It is generally assumed that in complex diseases a number of genes of varying effect 
contribute to disease penetrance. Furthermore, the effect of any given gene may be 
influenced by environmental factors and/or interact with other loci along the genome. 
Thus, etiologie heterogeneity likely exists for complex diseases. This underlying 
heterogeneity may confound the identification of susceptibility loci using linkage 
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analysis approaches that rely upon disease status alone. In the presence of heterogeneity, 
maximum lod score curves can consist of broad peaks covering wide regions or multiple 
overlapping peaks in a narrow region along the chromosome. Thus, identification of 
unique peaks representing evidence for a potential susceptibility locus may be 
problematic. This scenario suggests that reliance upon affection status alone for genomie 
scans may be insufficient to localize susceptibility loci for complex disorders. 

A systematic approach to identifying and characterizing subsets of these data that 
contribute significantly to linkage may prove useful in circumventing the problem of 
etiologie heterogeneity. To this end, we examine the efficacy of an ordered subsetting 
approach to assist in the identification of susceptibility loci for alcoholism using data 
collected for the Collaborative Study on the Genetics of Alcoholism (COGA) [Begleiter 
et al., 1995; Reich et al., 1998]. In this approach we attempt to increase our evidence for 
linkage by subsetting the data using quantitative trait data collected on affected subjects 
for the COGA study. Subsetting on disease-related trait values likely identifies a more 
phenotypically homogeneous subset of the sample and therefore likely approaches genetic 
homogeneity. 

METHODS 

Genome Scan 

We performed a genome scan and subsequent ordered subset analysis on pedigrees 
from the COGA study [Begleiter et al., 1995; Reich et al., 1998]. This sample consisted 
of 450 affected and 533 unaffected subjects in 105 pedigrees. Alcohol dependency was 
defined according to the COGA criteria [Begleiter et al., 1995]. The initial genome scan 
(autosomes only) was performed using GENEHUNTER PLUS (GH+) [Kong and Cox, 
1997]. 

Ordered Subset Analysis 

Three sets of traits were examined for this study; age of onset for alcohol 
dependency, platelet monoamine oxidase (MAO) activity, and the P300 component of the 
event-related potentials (ERP). MAO activity has been reported to be associated with 
alcohol dependency; however, this association appears to be confounded by both gender 
and current smoking [Begleiter et al., 1995]. We therefore computed mean values after 
adjusting MAO activity data for gender and current smoking. For the P300 component, 
we examined all eight leads, with the understanding that some degree of correlation likely 
exists among these neurological tracings. 

To perform the ordered subset analysis, we modified the GH+ software to output 
family-by-family the GENEHUNTER statistic (Ż) for each evaluation of the excess allele 
sharing parameter Ô, as described by Kong and Cox [1997]. This was done for all putative 
disease locus positions along the genome. 

Once the genome scan was completed, we performed our ordered subsetting analysis 
as follows. We computed a mean trait value for each family using data from the affected 
members only. The m families in our sample were then ranked by the trait mean in either 
ascending or descending order. The GH+ family-based statistics were then sequentially 
added in increasing rank order; denoted as Low-High. With each addition of a family, 
maximization was performed for the given subset and the maximum statistic value and 
estimated map position noted. Thus for each subset, we recalculated the GENEHUNTER 
Z/r statistic as: 
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Zfr(x) = J2_Zln[l + ŚZ|.(x)] 

Here Z,· (x) is the family-specific GENEHUNTER statistic at disease position x for family 
i of the k families in the current subset, and δ is the maximum likelihood estimate of the 
excess sharing parameter. The summation and maximization was repeated until all the 
families in the data set had been added and the parameter estimates and statistic value for 
the subset yielding the maximum evidence for linkage was then reported. We repeated 
the analysis adding statistics in decreasing rank order (High-Low) to ensure we did not 
miss subsets that might reside in either extreme of the trait distribution. 

Statistical significance was assessed using a permutation approach [Good, 1994]. 
For our permutation test, the rankings for the family-based trait means are randomized and 
the permuted data were analyzed using the ordered subset approach. Five thousand 
replicates were generated to create the lod score distribution to allow determination of an 
empirical p-value. 

RESULTS 

Results from the initial genome scan are shown in Table I. We observed modest 
evidence for linkage on several chromosomes, with our strongest evidence found on 
chromosome 1. Several chromosomes appeared to show evidence for more than one 
locus. For example, the maximum lod score for chromosome 6 was observed at 23 cM; 
however, there was a secondary peak observed at 62.5 cM with a lod score of 1.17. 

Our ordered subset results are shown in Table II. Subsetting on the trait data 
provided evidence for linkage on several chromosomes. It is of interest to note that of the 
initial six chromosomes for which we observed evidence for linkage from our genome 
scan, only chromosome 16 showed significant evidence for linkage in our subsetting 
results. For chromosome 16 the ordered subset approach identified 53 families with the 
highest mean age of onset showing the strongest evidence for linkage (lod = 3.17, 87 cM, 
p = 0.0144). It is of interest to note that the location of this peak is in a slightly different 
location on the chromosome compared to the result from the initial genome scan (87 vs. 
79 cM). 

The ordered subset approach did identify families showing strong evidence for 
linkage on those chromosomes showing no initial evidence for linkage in our genome scan 
(cf. Tables I and II). In all, eight chromosomes that previously showed no evidence for 
linkage showed significant evidence for linkage in some subset of the sample. In the 
ordered subset results, our strongest evidence for linkage was observed on chromosome 
18 where we observed a lod of 3.89 in the 66 families with the lowest mean value for the 
t8 lead on the P300 ERP. 

TABLE I. Maximum Lod Scores a from GH+ Analysis on 105 Pedigrees 
Chromosome Lod scores Position (cM) 

1 2.80 176.5 
6 1.95 23.0 
7 1.00 100.5 
8 1.54 20.5 

11 1.49 52.0 
16 1.02 79.0 
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TABLE II. Maximum Lod Scores from Ordered Subset Analysis 

mosome 
2 

9 

10 

12 
13 
15 
16 
18 

22 

Stratification 
trait 

01 lead 
fpl lead 
02 lead 
Ol lead 

Age-of-onset 
fp2 lead 
fpl lead 
Ol lead 
MAO 
cz lead 

Age-of-onset 
t8 lead 
pz lead 
t7 lead 

Trait rank 
ordering 

High-Low 
High-Low 
High-Low 
Low-High 
Low-High 
High-Low 
High-Low 
Low-High 
Low-High 
Low-High 
High-Low 
Low-High 
Low-High 
Low-High 

#of 
families 
58 
26 
50 
76 
17 
68 
73 
42 
40 
27 
53 
66 
74 
23 

Lod 
3.71 
2.77 
2.70 
2.23 
2.07 
3.08 
2.78 
2.10 
2.52 
2.42 
3.17 
3.89 
3.33 
1.55 

Position 
(cM) 
93.5 

180.0 
92.0 

145.5 
141.0 
53.0 
54.0 

177.0 
89.0 

120.0 
87.0 
91.0 
91.0 
18.0 

Empirical 
p-value 
0.0004 
0.0190 
0.0240 
0.0224 
0.0368 
0.0128 
0.0314 
0.0324 
0.0064 
0.0308 
0.0144 
0.0006 
0.0078 
0.0038 

DISCUSSION 

In the search for susceptibility genes for complex diseases, etiologie heterogeneity 
may be an important component that actually reduces power to detect linkage. Given the 
hypothesized multigenic basis for many complex disorders, in a large-sample study it is 
likely that subsets of individuals, while contributing evidence for linkage in one part of 
the genome, may reduce evidence for linkage in another. A systematic approach to 
identifying homogeneous subgroups would provide a mechanism to assist in the 
identification of linkage peaks of importance. 

We propose an ordered subset approach that utilizes quantitative trait data to identify 
subgroups from the overall sample. Because these subgroups cluster in the same region 
of the trait distribution, it is likely that they represent a more homogeneous group; 
although, clearly one cannot be assured that the increased homogeneity is genetic in 
nature. We must emphasize that although our ordered subset approach uses disease-
related quantitative trait data, it is not an alternative to quantitative trait locus linkage 
analysis. In the ordered subset approach our basic linkage statistic is still based on disease 
affection status. 

Our approach is family-based and uses the mean trait value derived from the affected 
individuals of the pedigree. We chose the mean value as our family-based descriptor 
variable for the purpose of simplicity, but clearly other descriptive measures, such as the 
trait median or variance, can be used. Similarly, for these analyses we chose to use the 
allele sharing approach of Kong and Cox [1997] for our linkage statistic, but the ordered 
subset approach can be easily adapted to other linkage methods. For example, we have 
applied this approach to affected sibling pairs from the Finland-United States Investigation 
of Non-insulin-dependent diabetes mellitus (FUSION) study [Valle et al., 1998] in which 
a linkage approach based on Risch's recurrence risk ratio was used [Hauser et al., 1996; 
Risch, 1990]. 

It is interesting to note that for some chromosomes (2, 9, 10, and 18) our subsetting 
approach showed evidence for linkage for more than one locus or more than one trait. The 
latter observation can be partially attributed to possible correlation among the traits. In 
fact, for chromosomes 9, 10, and 18 this may be the case as both subsets identified 
maximize at the same location on the chromosome and there is significant overlap in 
families in the subsets identified. However, for chromosome 2 it is noteworthy that while 
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evidence for linkage maximizes at the same chromosomal location (~93 cM) when 
subsetting on the 01 and 02 leads, subsetting on the fpl lead maximizes at a different 
location on the chromosome (180 cM). The fact that the 01 and 02 strata maximize at 
the same location is likely due to correlation between these two traits (49 common 
families between mese subsets). However, when we checked for overlap among families 
in the fpl subset compared to the 01 and 02 subsets, there were only 17 and 15 common 
families, respectively. Thus, some of the difference cannot be explained by correlation 
in the data. 

One of the attractive properties of this subsetting approach is that use of disease-
related trait information can lend itself to easy biologic interpretation. For example, low 
MAO activity is thought to be associated with early-onset forms of alcohol dependency 
[Begleiter et al., 1995]. With our subsetting approach we identified 40 families with low 
mean MAO activity, after adjustment for gender and smoking, who provide evidence for 
linkage on chromosome 13 (lod = 2.52, p = 0.0064) that did not appear in the original 
genome scan with the entire sample. Thus, these families could represent a subset with 
a slightly differing form of early-onset alcohol dependency. 

A certain level of caution is required in the implementation of the approach and 
interpretation of the results. First, the a priori selection of traits should be carefully 
considered with respect to the relative informativity of the trait in relation to disease 
status. For example, in affected subjects trait values can be negatively impacted by 
treatment regimens for disease such that the trait, although related to the disease, may not 
be informative. In such cases, it may be preferable to stratify on unaffected offspring of 
affected subjects, as the offspring are "at risk" for disease and their trait data may be more 
informative. Alternatively, it may be more informative to rank on clusters of traits rather 
than individual traits. Second, the significance of the lod scores obtained from our 
subsetting approach requires careful interpretation. Our current permutation approach 
addresses the specific question regarding the probability of identifying a contiguous subset 
of families with the observed maximum lod score given a specific set of family-based lod 
scores and trait information. We have yet to incorporate the effect of multiple 
comparisons due to subsetting on multiple traits, or overall linkage information at a given 
locus from our original genome scan. In fact, when we make a simple Bonferroni 
correction for multiple comparisons, only three of the results reported in Table II remain 
statistically significant. Also, it is clear that alternative hypotheses can be addressed using 
this subsetting approach. For example, one may be interested in assessing statistical 
significance for the maximum lod score observed in the subset conditional on the 
maximum lod score observed in the initial genome scan. Also, the number of 
permutations to be performed should be selected with care. Third, although we have 
identified a contiguous subset of families with evidence for linkage, this obviously does 
not represent the absolute "best subset" of families. The current algorithm always starts 
with the family with the lowest (or highest) trait ranking regardless of whether that 
particular family provides evidence for linkage. Therefore, the current approach may 
report families with rankings 1 to 50 having the strongest evidence for linkage, when in 
reality only families 20 to 50 contribute the majority of evidence for linkage. It may be 
of use to include an optimization to identify the "best" contiguous subset of families 
contributing evidence for linkage from all possible contiguous subsets. 

Finally, when a subset is identified, it would be of interest to repeat linkage analysis 
removing that subset from the data. Such an approach would not only provide an 
interesting assessment of the contribution of those families to any positive linkage result, 
but also may reveal other loci where the families in the subset were uniformly contributing 
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negative evidence for linkage. An approach to assess statistical significance for the 
observed change in lod score under such a scenario is yet to be addressed. 

In summary, we applied an ordered subset analysis approach to data from the COGA 
study after an initial genome scan using GH+. The ordered subset approach identified 
subsets of the original data that appeared to provide significant evidence for linkage on 
several chromosomes. Many of these results were obtained on chromosomes where the 
original genome scan did not yield any evidence for linkage. The use of quantitative trait 
information coupled with disease status in this approach may provide a means to diminish 
the impact of the underlying etiologie heterogeneity associated with complex diseases and 
allow for easier identification of potential disease susceptibility loci. 
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