CORRELATES OF CHILD RESTRAINT USE

Alexander C. Wagenaar
Lisa J. Molnar
Karen L. Businski
Lewis H. Margolis

SEPTEMBER 1986

UMTRI
 The University of Michigan Transportation Research Institute

Technical Report Documentation Page

17. Koy Words Child restraint use, Seatbelts Occupant restraints, Motor vehicle crashes, Children, Traffic safety, Surveys		18. Distribution Statement Unlimited	
19. Socurity Clessif. (of mis rapert) Unclassified	20. Socurity Clersit. (of this pape) Unclassified	21. No. of Pages 297	22. Price

This report was prepared in cooperation with the Michigan Office of Highway Safety Planning and the U.S. Department of Transportation, National Highway Traffic Safety Administration. Support of these organizations is gratefully acknowledged.

Findings, conclusions, and recommendations in this report are solely the authors' and do not necessarily reflect the views of the Michigan Office of Highway Safety Planning, the National Highway Traffic Safety Administration, or The University of Michigan Transportation Research Institute.

Contents

1 Introduction 1
2 Review of the Literature 3
3 Methods 7
3.1 Sample Design 7
3.2 Data Collection 8
3.3 Field Personnel Hiring and Training 10
3.3.1 Field Procedures 11
3.3.2 Field Personnel Supervision and Monitoring 12
3.4 Data Processing 12
3.5 Index Construction 14
3.6 Description of Study Sample 16
4 Results 21
4.1 Restraint Use 21
4.1.1 Sociodemographic Factors 21
4.1.1.1 Driver and Child Characteristics 21
4.1.1.2 Family Characteristics 29
4.1.2 Knowledge, Attitude and Belief Factors 33
4.1.2.1 Crash Experience 33
4.1.2.2 Injury Knowledge 39
4.1.2.3 Knowledge of the Law and Perceptions of Enforcement 42
4.1.2.4 Comfort and Convenience 50
4.1.2.5 Social Norms 58
4.1.2.6 Infringement of Rights 62
4.1.3 Behavioral Factors 70
4.1.3.1 Seat Belt Use 70
4.1.3.2 Other Health Behaviors 79
4.1.3.3 Exposure 81
4.1.4 Environmental Factors 83
4.2 Correctness of Restraint Use 89
5 Discussion and Recommendations 99
5.1 Target Groups for Efforts to Increase Child Restraint Use 99
5.2 Items to Consider in Efforts to Increase Child Restraint Use 100
6 References 103
7 Bibliography 107
Appendix A Site Schedule 113
Appendix B Data Collection Instruments 123
Appendix C Child Restraint Study Codebook 153
Appendix D Interview Comments and Other Responses 219
Appendix E Charts on Correctness of Child Restraint Use 225

List of Figures

3.1 Index of Incorrect Use of Child Restraint Devices 16
3.2 Response Rates at Each Stage of the Study 17
4.1 Child Restraint Use by Gender of Driver 22
4.2 Child Restraint Use by Gender of Child. 23
4.3 Child Restraint Use by Relationship of Driver to Child. 24
4.4 Child Restraint Use by Age of Driver 26
4.5 Child Restraint Use by Age of Child 27
4.6 Child Restraint Use by Child Birth Order 28
4.7 Child Restraint Use by Whether Child Has Siblings 29
4.8 Child Restraint Use by Marital Status 30
4.9 Child Restraint Use by Family Income 31
4.10 Child Restraint Use by Educational Level 32
4.11 Child Restraint Use by Family Occupational Prestige 34
4.12 Child Restraint Use by Ethnic Background 35
4.13 Child Restraint Use by Previous Exposure to Motor-Vehicle Crash 36
4.14 Child Restraint Use by Previous Injury in Motor-Vehicle Crash. 37
4.15 Child Restraint Use by Crash-Related Mortality of Friend or Relative 38
4.16 Child Restraint Use by Crash-Related Hospitalization of Friend or Relative. 39
4.17 Child Restraint Use by Belief That Child Held in Lap Is Safe. 40
4.18 Child Restraint Use by Perceived Effectiveness of Child Restraint Devices 41
4.19 Child Restraint Use by Belief about Major Cause of Child Mortality 42
4.20 Child Restraint Use by Awareness of Child Restraint Law 43
4.21 Child Restraint Use by Knowledge of Child Restraint Law 44
$4.22 \quad$ Child Restraint Use by Belief That Child Restraints Would Not Be Used Without Child Restraint Law 46
4.23 Child Restraint Use by Estimated Frequency of Child Restraint Use in Absence of a Child Restraint Law 47
4.24 Child Restraint Use by Influence of Fear of Ticket on Decision to Use Restraints 48
4.25 Child Restraint Use by Perception of How Often Police Stop Violators of Law. 49
4.26 Child Restraint Use by Perception of How Often Police Ticket Violators of Law. 50
4.27 Child Restraint Use by Belief That Child Likes Child Restraint 51
4.28 Child Restraint Use by Belief That Child under Age of Two Likes Child Restraint 52
4.29
Child Restraint Use by Belief That Children Age Two to Three Like Child Restraints 53
4.30 Child Restraint Use by Belief That Children Get Used to Restraint Devices 54
4.31 Child Restraint Use by Belief That Child Misbehaves in Child Restraint 55
4.32
Child Restraint Use by Belief That Child Restraint is a Bother for Adult 57
4.33
Child Restraint Use by Belief That Adult Seat Belts Are Uncomfortable. 58
4.34 Child Restraint Use by Estimated Cost of Child Restraint Device 59
4.35 Child Restraint Use by Perception of Public Support for Child Restraint Law 60
4.36
Child Restraint Use by Perception of Obedience to Child Restraint Law 61
4.37 Child Restraint Use by Percent of Friends Who Use Child Restraints 62
4.38 Child Restraint Use by Belief That Others Notice Child Restraint Use. 63
4.39 Child Restraint Use by Belief That Child Restraint Law Increases Likelihood of Child Restraint Use 64
4.40 Child Restraint Use by Belief That Child Restraint Use Should Be Required by Law 66
4.41
Child Restraint Use by Belief That Child Restraint Laws Should Be Strictly Enforced. 67
4.42
Child Restraint Use by Belief That Adult Seat Belt Use Should Be Required by Law 68
4.43 Child Restraint Use by Belief That Seat Belt Law Infringes on Individual Rights 69
4.44 Child Restraint Use by Belief That Federal Government is too Involved in Individual and Private Business 70
4.45 Child Restraint Use by Belief That State Government is too Involved in Individual and Private Business 71
4.46 Child Restraint Use by Observed Driver Restraint Use 72
4.47 Child Restraint Use by Self-Reported Seat Belt Use 73
4.48 Child Restraint Use by When Adult Seat Belt Most Often Used. 74
4.49 Child Restraint Use by Reported Frequency of Child Restraint Use. 76
4.50 Child Restraint Use by When Child Is Most Likely Restrained. 77
4.51 Child Restraint Use by Likelihood of Respondent's Spouse to Use Child Restraint 78
4.52 Child Restraint Use by Frequency of Restraint Use Among Children Not Related to Parents 79
4.53 Child Restraint Use by Child Seat Position 80
4.54 Child Restraint Use by Cigarette Smoking Behavior 81
4.55 Child Restraint Use by Number of Cigarettes Smoked 82
4.56 Child Restraint Use by Last Dental Visit 83
4.57 Child Restraint Use by Days Driving with Children 84
4.58 Child Restraint Use by Month of Observation 86
4.59 Child Restraint Use by Day of the Week 87
4.60 Child Restraint Use by Vehicle Size 88
4.61 Child Restraint Use by Number of Vehicle Occupants 89
4.62 Child Restraint Use by Presence of Nondriver Parent in Vehicle 90
4.63 Correctness of Child Restraint Use by Type of Child Restraint Device 91
4.64 Correctness of Child Restraint Use by Source of Child Restraint Information 93
4.65 Correctness of Child Restraint Use by Source of Child Restraint Device 94
4.66 Correctness of Child Restraint Use by Whether Instruction Received 95
4.67 Correctness of Child Restraint Use by Type of Instruction 96
4.68 Correctness of Child Restraint Use by Who Installed Restraint Device 97
4.69 Correctness of Child Restraint Use by Whether Assistance Was Received in Installing Child Restraint Device 98
E. 1 Correctness of Child Restraint Use by Gender of Driver 227
E. 2 Correctness of Child Restraint Use by Gender of Child 228
E. 3 Correctness of Child Restraint Use by Relationship of Driver to Child 229
E. 4 Correctness of Child Restraint Use by Age of Driver 230
E. 5 Correctness of Child Restraint Use by Age of Child 231
E. 6 Correctness of Child Restraint Use by Child Birth Order 232
E. 7 Correctness of Child Restraint Use by Whether Child Has Siblings 233
E. 8 Correctness of Child Restraint Use by Marital Status 234
E. 9 Correctness of Child Restraint Use by Family Income 235
E. 10 Correctness of Child Restraint Use by Educational Level 236
E. 11 Correctness of Child Restraint Use by Family Occupational Prestige. 237
E. 12 Correctness of Child Restraint Use by Ethnic Background 238
E. 13 Correctness of Child Restraint Use by Previous Exposure to Motor-Vehicle Crash 239
E. 14 Correctness of Child Restaurant Use by Previous Injury in Motor-Vehicle Crash. 240
E. 15 Correctness of Child Restraint Use by Crash-Related Mortality of Friend or Relative 241
E. 16 Correctness of Child Restraint Use by Crash-Related Hospitalization of Friend or Relative 242
E. 17 Correctness of Child Restraint Use by Belief That Child Held in Lap Is Safe. 243
E. 18 Correctness of Child Restraint Use by Perceived Effectiveness of Child Restraint Devices 244
E. 19 Correctness of Child Restraint Use by Belief about Major Cause of Child Mortality 245
E. $20 \quad$ Correctness of Child Restraint Use by Awareness of Child Restraint Law 246
E. 21 Correctness of Child Restraint Use by Knowledge of Child Restraint Law. 247
E. 22 Correctness of Child Restraint Use by Belief That Child Restraints Would Not Be Used Without Child Restraint Law 248
E. 23 Correctness of Child Restraint Use by Estimated Frequency of Restraint Use in Absence of a Child Restraint Law 249
E. 24 Correctness of Child Restraint Use by Influence of Fear of Ticket on Decision to Use Restraints. 250
E. 25 Correctness of Child Restraint Use by Perception of How Often Police Stop Violators of Law 251
E. 26 Correctness of Child Restraint Use by Perception of How Often Police Ticket Violators of Law 252
E. 27 Correctness of Child Restraint Use by Belief That Child Likes Child Restraint 253
E. 28 Correctness of Child Restraint Use by Belief That Child under Age of Two Likes Child Restraint 254
E. 29 Correctness of Child Restraint Use by Belief That Children Age Two to Three Like Child Restraints 255
E. $30 \quad$ Correctness of Child Restraint Use by Belief That Children Get Used to Restraint Devices 256
E. 31 Correctness of Child Restraint Use by Belief That Child Misbehaves in Child Restraint 257
E. 32 Correctness of Child Restraint Use by Belief That Child Restraint Is a Bother for Adult 258
E. 33 Correctness of Child Restraint Use by Belief That Adult Seat Belts Are Uncomfortable 259
E. 34 Correctness of Child Restraint Use by Estimated Cost of Child Restraint Device 260
E. 35 Correctness of Child Restraint Use by Perception of Public Support for Child Restraint Law 261
E. 36 Correctness of Child Restraint Use by Perception of Obedience to Child Restraint Law 262
E. 37 Correctness of Child Restraint Use by Percent of Friends Who Use Child Restraints 263
E. $38 \quad$ Correctness of Child Restraint Use by Belief That Others Notice Child Restraint Use 264
E. 39 Correctness of Child Restraint Use by Belief That Child Restraint Law Increases Likelihood of Child Restraint Use 265
E. 40 Correctness of Child restraint Use by Belief That Child Restraint Use Should Be Required by Law. 266
E. 41 Correctness of Child Restraint Use by Belief That Child Restraint Laws Should Be Strictly Enforced 267
E. 42 Correctness of Child Restraint Use by Belief That Adult Seat Belt Use Should Be Required by Law 268
-viii-
E. 43 Correctness of Child Restraint Use by Belief That Seat Belt Law Infringes on Individual Rights 269
E. 44 Correctness of Child Restraint Use by Belief That Federal Government Is too Involved in Individual and Private Business 270
E. 45 Correctness of Child Restraint Use by Belief That State Government Is too Involved in Individual and Private Business 271
E. 46 Correctness of Child Restraint Use by Driver Restraint Use 272
E. 47 Correctness of Child Restraint Use by Self-Reported Seat Belt Use 273
E. 48 Correctness of Child Restraint Use by Likelihood of Respondent's Spouse to Use Child Restraint 274
E. 49 Correctness of Child Restraint Use by Child Seat Position 275
E. 50 Correctness of Child Restraint Use by Cigarette Smoking Behavior 276
E. 51 Correctness of Child Restraint Use by Number of Cigarettes Smoked 277
E. 52 Correctness of Child Restraint Use by Last Dental Visit 278
E. 53 Correctness of Child Restraint Use by Days Driving with Children 279
E. 54 Correctness of Child Restraint Use by Month of Observation 280
E. 55 Correctness of Child Restraint Use by Day of the Week 281
E. 56 Correctness of Child Restraint Use by Vehicle Size 282
E. 57 Correctness of Child Restraint Use by Number of Vehicle Occupants 283

List of Tables

3.1 Number of Sites Within Each Restaurant Chain by Community 9
3.2 Selected Descriptive Statistics by Day of Week 18
3.3 Selected Descriptive Statistics by Community Sampled 19

Acknowledgements

We express our appreciation to Robert Jacobson, Lev Levenson, Barbara Singer, Kathy Sullivan, Thomas Williams, and Jethro Woodson who served as field staff for data collection. Meg Wiviott provided assistance during the sample design and data collection phases of the project, Charles P. Compton assisted with data file management, and Kathleen C. Richards created the graphics contained in the report. Special thanks to the restaurant managers of A\&W, Burger King, Elias Brothers, Hardee's, Kentucky Fried Chicken, and McDonald's for their cooperation.

Alexander C. Wagenaar, PhD
Lisa J. Molnar, MHSA
Karen L. Businski, BS
Lewis H. Margolis, MD

1 Introduction

Motor vehicle crashes are the leading cause of death of American children and are responsible for significant numbers of severe and often disabling injuries. The efficacy of child restraint devices (CRDs) and seat belts in preventing a substantial proportion of crash fatalities and injuries is well documented. Mandatory child restraint laws have been implemented in all fifty states in the United States to increase child restraint use, thereby reducing crash-related injuries. In Michigan, child restraint legislation was implemented in April of 1982 and was followed by a 27.4% reduction in the number of children aged zero to three years injured in motor vehicle crashes within the state (Wagenaar and Maybee, 1986). As recently as July 1986, however, more than one-fourth of the children under the age of four observed in motor vehicles throughout the state were unrestrained; further, a substantial number of the remaining three-fourths who were restrained were restrained incorrectly (Wagenaar, Businski, and Molnar, 1986b). Successful efforts to increase the use of child restraints and increase the proportion used correctly, requires identification of factors associated with correct use and an understanding of how these factors interact. The goal of this study is to facilitate that identification and understanding.

During the past 30 years, researchers in the field of public health have developed a model of injury and disease causation which is useful in the design of intervention strategies. The model recognizes that injuries, as well as disease, are caused by the interaction of multiple factors. The model groups factors into three major components. First, the agent is the element or instrument of an injury or disease that gives them their unique identity. In motor vehicle injuries, the agent is the impact force between the body and vehicle interior surfaces that exceeds the tolerance of human beings. Child safety restraints act by tightly coupling the child to the vehicle and its energy absorbing structures, distributing the remaining impact forces over a broad area of the child's body, and controlling the body's motion to minimize direct impact with the vehicle interior. The second component of the public health model is the individual or the host, whose particular characteristics increase or decrease his or her susceptibility to injury. For example, physical characteristics of infants, such as the high proportion of total body surface area accounted for by the head, increases the risk of serious head injury in a motor vehicle crash, while developmental characteristics such as immature judgment of a 15 -year-old driver increase the risk of a crash. The third component, the environment, consists of the physical, socioeconomic, psychological, and political surroundings which influence whether a particular host will come into contact with a particular agent.

The literature on child restraint use discusses numerous agent, host, and environmental variables that indicate child restraint use cannot be adequately explained by any single dimension. Numerous models might be used to categorize the hundreds of factors potentially related to CRD use. One such model was developed by Hughes (1979) and is based on a public health model for diagnosing health education needs (Green, 1976). Hughes
groups factors associated with child restraint behavior into three categories. First, predisposing factors are those factors or beliefs which make an individual inclined to act in a particular way and include knowledge, attitudes, values and previous behavior. Second, enabling factors are those external and internal factors which facilitate the accomplishment of particular actions, and include accessibility, availability, skills, information processing style. Third, reinforcing factors are physical and psychosocial factors which affect beliefs and behavior, and include comfort, convenience, protection, economic benefits, approval, assistance, and modeling. It is the interaction of these factors, in varying degrees, that determines child restraint behavior.

This study focuses on characteristics of motorists traveling with young children that are related to probability of restraining children with a seat belt or CRD. Certain characteristics of the environment, such as enforcement levels and social norms concerning child restraint use (as perceived by motorists) are also examined for their influence on child restraint use.

2 Review of the Literature

While the majority of studies on child restraint use have assessed the effect of more than one factor, few have controlled for the interactive effects of these factors. As a result, conclusions based on the available literature should be interpreted cautiously. For example, those studies finding ethnic background to be associated with child restraint use which do not control for the interactive effect of socioeconomic status provide less than optimal data for design of intervention strategies. In addition to the usual requirements for valid samples, adequately and operationally defined variables, and inclusion of field observation as well as interview data, studies on child restraint use must also consider effects on child restraint behavior of mandatory child restraint laws. Despite such limitations, extant studies of child restraint use provide many insights.

Hletko and others (1983) studied effects of an inpatient postpartum child restraint education program on infant restraint use. They found the following variables were positively correlated with correct use of restraints: parental education level (high school graduate or higher), occupation of mother (professional), marital status (married), self-reported seat belt behavior of parents (use), pediatric preventive health knowledge (high), smoking behavior of parents (nonsmokers), automobile ownership (two or more), and dental practice (existence of regular family dentist). This study suggests that high socioeconomic status and the practice of preventive health behaviors are related to child restraint use. Low family income (less than $\$ 15,000$) was associated with nonuse of CRDs.

Jonah and Dawson (1982) conducted an interview survey of Canadian motorists with children under the age of five. Results indicated that parents with higher levels of education were more likely to use CRDs and were more likely to support mandatory child restraint legislation. Primary reasons given for not using CRDs were that the child was too big or too old.

Level of education was one of several variables examined by Faber and Hoppe (1984) in a study of new mothers participating in an inpatient child restraint education program. Findings from personal interviews indicated that mothers planning to use CRDs to transport their infants home from the hospital were more likely to have attended college, to be white, over the age of 20 , employed in a professional occupation, to earn more than $\$ 10,000$, to have been involved in a motor vehicle crash, and to better understand basic components of vehicle safety than mothers not planning to use child restraints.

Neumann and others (1974) interviewed families at a pediatric clinic in order to identify factors associated with child restraint use. They found that parents most likely to use CRDs were married, had 12 or more years of education, used seat belts themselves, were white and U.S. born, and had an internal rather than external locus of control (Rotter, 1966). Previous motor vehicle crash experience, knowledge of the leading cause of death among children, and head of household occupational category were not found to be associated with
reported child restraint use. Reasons given for nonuse of restraints included discomfort of the child, inconvenience, and simply forgetting.

Consistent with the previously reported studies, parental education was found to be positively related to child restraint use in a telephone survey of families with young children conducted by Foss (1985). Use of child restraints was also associated with sex of driver (female), the belief that CRDs were highly effective, and the belief that government should enforce child restraint legislation. No relationship was found between CRD use and perceptions about enforcement efforts. Finally, previous crash experience of drivers had only a marginally significant effect on child restraint use.

Philpot and others (1979) developed a profile of child restraint users and nonusers by observing vehicles with children under the age of four before and after enactment of child restraint legislation in Tennessee. Drivers of the observed vehicles were also interviewed and asked to complete a questionnaire. Drivers traveling with restrained children were more likely to be female, married, have high family income, high educational attainment, own the vehicle they were driving, use their seat belt, and be the parent of the child in the vehicle. Age of the child and child restraint use were inversely related, and the sex of the child appeared to have no effect on restraint use.

Pless and Roghmann (1978) examined the relationship of sociodemographic characteristics and family stress to child restraint use through a telephone survey of New York parents. While income was directly related to child restraint use, the effects of education on restraint use were limited to parents with a family income below $\$ 12,000$. An inverse relationship was found between child restraint use and age of the mother, after controlling for age of the child. Finally, families experiencing high levels of stress were less likely to report child restraint use than families not experiencing such stress. Results of this study indicate that there are often significant interactions among variables associated with child restraint use, complicating interpretation of observed relationships.

Kielhorn and Westphal (1980) observed child restraint use at several types of sites including day care centers, shopping centers, fast food restaurants, zoo parking lots, and highway toll booths. Observed child restraint use was higher among children in vehicles with white or female drivers. Child restraint use declined as the number of vehicle occupants increased. The effect of the number of occupants on restraint use was not an independent one, however, since female drivers were much more likely than males to be the only adult in the vehicle. Kielhorn and Westphal also collected data on child restraint use through household interviews. Variables found to be positively related to owning a CRD and having it present in the vehicle were income, educational attainment, and occupational status. Pediatrician visits were associated with child restraint use although few households reported receiving information from their pediatricians about child restraints. Reasons cited for nonuse of CRDs included inconvenience, discomfort, high cost, lack of perceived safety of restraint, dislike of restraint by child, and misbehavior or activity of child.

Verreault and others (1982) conducted telephone interviews with parents in two Canadian cities and found parental use of seat belts to be the strongest predictor of reported
child restraint use. Other variables associated with child restraint use were birth order of the child, age of the child, and age of the parent. Specifically, restraint use was lowest among children with two or more older siblings and was inversely related to age of the parent.

Ward and Clearie (1982) studied child restraint use in several South Carolina communities through observations of children in motor vehicles and follow-up interviews with vehicle drivers. Sites included churches, shopping centers, physician offices, pediatrician clinics, day care centers, health departments, and recreation areas. Child restraint use was higher among drivers who were female, white, had graduated from high school, had high incomes, used seat belts, were advised by their pediatricians to use child restraints, and reported that a majority of their friends used CRDs. In addition, child restraint use was higher among drivers who believed that an unrestrained child in the front seat was dangerous, that motor vehicle crashes were a major cause of death among children, that CRDs were comfortable, and that both parents should share responsibility for restraining the child. The primary reason given for not owning a CRD was the high cost of such a device.

Agent (1983) observed child restraint use before and after implementation of child restraint legislation in Kentucky, and found use to be higher among children under the age of one, in rural areas, among children riding with a female driver, and among those riding with a belted driver. An inverse relationship was found between child restraint use and driver age.

A direct relationship between child restraint use and driver restraint use was also found by Rood and Kraichy (1986) in an observational study of restraint use by children in New York State. An inverse relationship was found between child restraint use and age of the child.

Observations of child restraint use in North Carolina by Hall and others (1983) indicated that children riding with their parents were almost twice as likely to be restrained as children riding with other drivers.

Cunningham and others (1981) studied a number of factors associated with child restraint behavior through observations of vehicles in Tennessee with children under the age of four and follow-up interviews with their parents. Parents using CRDs were more likely than parents not using such devices to be aware of the Tennessee child restraint law, to be familiar with specifics of the law, to perceive the law as effective in promoting restraint use, and to support adult seat belt legislation as well as government regulation in general.

Cynecki and others (1984) are among relatively few researchers who have examined factors associated with correct use of CRDs. Their findings from observations of vehicles with occupied child seats and interviews with drivers indicated that 64.6% of CRDs were incorrectly used. Incorrect use of CRDs was higher among drivers who did not use their seat belt, were not the parent of the child, gave nonsafety reasons for restraint use and obtained the seat used and installed the seat without aid of instructions. Incorrect use was not found to be related to who installed the seat or the age of the child, although incorrect use did vary by type of seat (infant, toddler, or booster). The authors concluded that the CRDs most
likely to be used correctly were those which were more comfortable for the child, easier to use, and had fewer opportunities for incorrect use.

Kahane (1986) evaluated the effectiveness, benefits, and use of CRDs through analyses of traffic crash data and observational surveys of restraint system use and misuse. Kahane found that incorrect use of CRDs varied by brand of device. In general, those brands which appeared to be more convenient tended to be more often used correctly. Across all brands, overall use of child restraints decreased as the age of the child increased.

Shelness and Jewett (1983) observed unoccupied CRDs in vehicles in order to assess the frequency of incorrect seat belt routing and tether strap installation. Findings indicated that three quarters of the CRDs observed had errors in seat belt routing, tether use, or both. Incorrect use varied by brand of CRD observed.

Williams (1972) and Wittingslow (1983), in separate studies, examined seat belt (as opposed to child safety seat) use of older children. Williams surveyed ninth graders and their parents and found child seat belt use to be associated with parental use of seat belts, internal locus of control, and high levels of educational attainment. Wittingslow interviewed drivers of vehicles in Australia traveling with children between the ages of 8 and 13 and found that children were more likely to be belted in the presence of younger drivers (18 to 29) than older drivers. Wittingslow also surveyed children age 9 to 14 and their parents and found that child seat belt use decreased as age of the child increased.

In summary, a number of socioeconomic factors appear to be associated with child restraint use including family income, educational level, occupation, and ethnic background. Drivers who are professionally employed, white, and have high levels of income and educational attainment are more likely to restrain their children than other drivers. Seat belt use by the driver also appears to be a significant predictor of CRD use. Other characteristics of drivers associated with child restraint use include marital status (married), gender (female), and relationship to the child (parent). Conclusions about the effect of other factors such as knowledge and beliefs are not as clear. An association between previous crash experience and restraint use, for example, has been found in some studies and not in others. In addition, most studies have focused on socioeconomic and demographic factors, and findings regarding other factors are limited.

3 Methods

3.1 Sample Design

The goal of the sample design was to select sites for observations and interviews that would allow measurement of rates of correct and incorrect child restraint use and nonuse, to further identify groups with higher or lower than average use and nonuse rates, and ascertain reasons for correct and incorrect use and nonuse of child restraints. Design of the sample involved minimizing total survey error, with a particular focus on measurement error rather than sampling error, while providing sites where sufficient numbers of children under the age of four would be present in motor vehicles, where observations could be made efficiently and economically, and where interviews of observed motorists could be conducted. Several types of sites were considered in order to meet these sample needs including fast food restaurants, shopping centers, pediatric clinics, and day care centers. Motorists at pediatric clinics and day care centers are typically less representative of the general population than motorists at other potential sites. Fast food restaurants and shopping centers were evaluated as potential sites by field testing the data collection instruments at both types of sites. ${ }^{1}$ Based on considerations of representativeness of the sample, feasibility, and efficiency, fast food restaurant sites were used to locate motorists with young children.

Selection of communities for the study was initially based on three criteria. First, sites needed to be within driving distance of Ann Arbor due to budgetary constraints. Second, communities with both higher and lower than average rates of restraint use needed to be included in order to assess differences in the reasons motorists use or do not use restraints. Third, communities were needed that did not have extensive, special community education programs in order to minimize the potential effects of exogenous variables. Based on these criteria, Ann Arbor and Port Huron were selected as initial study communities. Since both communities had been included in previous UMTRI seat belt surveys, their use for this study enabled comparisons of observed restraint use among the fast food restaurant sample with use among a sample of motorists observed at randomly selected intersections (Wagenaar, Businski, and Molnar, 1986b).

As data collection efforts in these two communities proceeded, it became evident that, due to low traffic volumes, fewer cases than expected were being sampled. Rather than extending data collection in Ann Arbor and Port Huron beyond the scheduled period, a second phase of data collection was implemented in other southeast Michigan communities. By selecting different communities in the second data collection phase, the sample size was substantially increased while the problem of selecting the same individual more than once was reduced. Selection of communities for the second wave was based on the same criteria used in the first wave with the exception that restraint use in one community selected was unknown

[^0]since no seat belt surveys had been conducted there previously. In addition, communities of varying socioeconomic levels were selected to ensure that the overall sample population adequately represented the entire range of socioeconomic levels in the general population. Specific sites within each community were also purposely selected to include respondents of varying levels of socioeconomic status. Communities selected for the second wave of data collection included Brighton, Canton, Centerline, Chelsea, East Detroit, Farmington, Flint, Howell, Livonia, Madison Heights, Roseville, and Warren. Several of these communities have been grouped in this report for purposes of data presentation because of their proximity to one another. Specifically, Brighton and Howell have been grouped as the Brighton/Howell area and Centerline, East Detroit, Madison Heights, Roseville, and Warren have been grouped as the Warren area.

Sites selected within Ann Arbor and Port Huron in the first wave included the following fast food restaurants: A\&W, Big Boy, Burger King, Hardee's, Kentucky Fried Chicken, and McDonald's. These restaurant chains were believed to serve large numbers of children. It became apparent during data collection that motorists with young children were much more likely to frequent Burger King and McDonald's than the other chains. Site selection for the second wave was therefore limited to these two restaurant chains in order to maximize the number of cases included in the sample. A detailed site schedule for both phases of the data collection is contained in Appendix A. Table 3.1 identifies the number of restaurant sites within each restaurant chain used for data collection.

3.2 Data Collection

Four data collection instruments were developed: a site form, an observer form, an interview form, and a questionnaire form (see Appendix B). All four data collection forms were used for each vehicle in the sample. All forms were precoded with a respondent number which was used to link all data related to one vehicle.

The site form was used to record the site location, date and time of data collection, and to identify field personnel collecting the data. Other data recorded were the beginning respondent code and ending respondent code for each site. Information as to the number of refusals was also recorded.

The observer form covered restraint use of the driver and child passenger in the vehicle. Observations were made on only one child passenger. If more than one child under age four was present in the vehicle, the child to be observed was selected based on the following criteria. First, if the driver was the parent of only one child under age four present, then that child was selected. If the driver was the parent of more than one child present, a random number table was used to select a child from among the driver's offspring. If none of the children present were offspring of the driver but a parent of one of the children under age four was in the vehicle, then that child was selected. The random table method was also used if more than one child was the offspring of the nondriver parent or if none of multiple children in the vehicle had a parent present.

TABLE 3.1
Number of Sites
Within each Restaurant Chain by Community

Community	Restaurant Chain						Total
	A\&W	Big Boy	Burger King	Hardees	Kentucky Fried Chicken	McDonald's	
Ann Arbor	2	2	2	2	2	3	13
Port Huron	1	1	1	1	2	-	6
Livonia	-	- -	1	-	-	1	2
Canton	-	-	1	-	-	-	1
Chelsea	-	-	-	-	-	1	1
Farmington	-	-	1	-	-	1	2
Brighton/Howell	-	-	1	-	-	2	3
Flint	-	-	3	-	-	3	6
Warren area	-	-	5	-	-	6	11
TOTAL SITES	3	3	15	3	4	17	45

Trained observers recorded the driver's restraint use, sex, and estimated age, as well as the child's restraint use, seat position, brand name of seat (if present), and the number of occupants riding in the vehicle. Observers also recorded detailed information on how the seat was installed in the vehicle and how the child was positioned in the seat. Specifically, data were collected on the type of seat used, whether the automobile seat belt was fastened, snug, and routed correctly, whether a locking clip was used, and whether a tether was required, used, anchored, and anchored properly. If the CRD was used, data were collected on whether the shield and/or harness were used, whether the harness was snug, whether a harness clip was used, and the harness position. The size and type of vehicle was also recorded, as well as time of observation.

The interview form was designed to provide the most important information on the respondent's attitudes and perceptions about restraint use and related issues in case the mailback questionnaire was not returned. Five different interview forms were used depending on how the child was riding in the vehicle in order to minimize skip patterns within each interview form and avoid inappropriate questions. Form A was used if the child was buckled into a CRD, Form B if the child was belted and an unused CRD was present, Form C if the child was unrestrained and an unused CRD was present, Form D if the child was belted in a lap or shoulder/lap belt and no CRD was present, and Form E if the child was unrestrained and no CRD was present. The interview was conducted by a trained interviewer, who along with the observer, made up the data collection team. The interview was conducted with the driver of the vehicle unless the driver was not the parent of any child in the vehicle and the parent of at least one child in the vehicle was present. In that case the parent was interviewed. In 54 cases, the driver was the parent but rather than responding to the interview questions alone, he or she jointly answered questions with another vehicle occupant or deferred to another occupant entirely. For example, in several cases the driver (typically the father of the child) left the vehicle to purchase food while the interview was conducted with the spouse.

The questionnaire was designed to be self-administered. Special care was taken to eliminate unnecessary skip patterns and to assure that respondents would be able to understand the questions and response options. In most cases, respondents completed the questionnaire while in the restaurant and returned it to the field staff upon leaving. The remaining respondents mailed the questionnaire back in a postage-paid envelope provided with each questionnaire.

Field testing of the data collection instruments was conducted at two sites, a fast food restaurant and a shopping center. Difficulties with the interview approach and procedures were identified and corrected. Changes resulting from this process included the use of prompt cards for complicated questions, placement of demographic questions at the end of the data collection instruments, and the decision to approach each vehicle in the sample from the front.

3.3 Field Personnel Hiring and Training

The study design required two-person data collection teams, one observer and one interviewer. Two data collection teams were in the field simultaneously with only one team at any given site. Three of the six field staff had previous experience with seat belt observation surveys.

Before data collection began, field staff received three days of intensive training. Project history, data collection and field procedures, and project goals and objectives were reviewed. An overview of child restraint systems was presented, including identification of each major category of child seat (infant, toddler, and booster) and a discussion of current federal standards. Several activities were undertaken to ensure accurate measurement of incorrect use of CRDs by field staff. Various brands of CRDs were described and proper installation and use of each child seat was discussed. Field staff studied diagrams of all current child restraint systems in order to identify configurations of correct and incorrect use for each brand of seat. Observers also were given field manuals describing all current restraint systems for use in the field. Finally, sample seats representing each major category of seat were available for examination. During the second and third days of training, field staff conducted supervised practice interviews at a local fast food restaurant.

3.3.1 Field Procedures

Prior to data collection, regional and/or national headquarters for each restaurant chain selected for the study were contacted to obtain their cooperation. If a particular restaurant was a franchise, the individual owners were contacted. Ninety-percent of those restaurants contacted agreed to participate in the study.

During data collection, one member of each data collection team notified the restaurant manager of the team's arrival immediately upon reaching the site. At the site, the data collection team positioned themselves near the lot entrance, where potential participants could be observed. A location was needed that allowed the observer to reach the vehicle before the occupants unbuckled their restraints. Upon observing a vehicle with small children in it enter the lot, the team quickly approached the vehicle from the front, so as not to frighten the driver. The interviewer quickly introduced himself or herself, explained the study, and asked the respondent to participate. Simultaneously, the observer began his or her observations. If the respondent agreed to participate, the interviewer introduced the observer who continued making observations and recording data as the interviewer proceeded with the interview. (If the respondent refused to be interviewed, the observer still recorded restraint use, estimated age, and nature of incorrect use.) If an observer was unable to clearly observe restraint use by the child before the child was out of the seat or had the restraint removed, the interview was terminated. This occurred in only four cases. When necessary, the observer asked the respondent to open the vehicle door so the observer could obtain a better view of the CRD. For legal liability reasons, under no circumstances did the observer or interviewer touch the CRD or seat belt. After completing the interview, the respondent was asked to complete the questionnaire and return it to the observer after his or her meal or to mail it in the stamped, addressed envelope that was provided. Respondents were then thanked for
participating and given a coupon to the restaurant for a free item of food valued at approximately $\$ 1.00$. After each interview, the data collection team assembled the data collection forms, recorded the interview in a log, and filed the forms.

3.3.2 Field Personnel Supervision and Monitoring

During the first wave of data collection, the field supervisor made at least two unannounced visits to each observer and interviewer. During the second wave, the field supervisor functioned as a second observer, alternating between the two data collection teams, and monitored performance in the field in that capacity. In addition, field personnel in both phases of the project made regular and frequent trips to UMTRI to deliver completed data collection forms and discuss any problems encountered in the field.

All completed data collection forms received from field personnel were logged and reviewed for consistency and accuracy by the field supervisor. As questionnaires arrived at UMTRI in the mail, they were matched with the observer and interview forms using the precoded respondent numbers on each form. Any discrepancies between forms were discussed with the observer and interviewer as soon as possible and then corrected as needed.

3.4 Data Processing

All site, observer, interview, and questionnaire forms were both keypunched and verified to ensure data accuracy. ${ }^{2}$ The raw data files were then examined for invalid or inconsistent codes. A few such codes were identified and corrected after reviewing the original data collection forms.

The observer, interview, and questionnaire data files were merged with the sitelevel data file so that all site-level information was attached to the records for all respondents observed at a particular site. The OSIRIS system of data analysis software was used to build the data files. The ADAAS and MIDAS systems of data analysis software were used for study analyses.

Each variable examined in this study was measured by one of the four data collection instruments--site form, observation form, interview or questionnaire form. The majority of variables were measured directly from items on a particular form. That is, item responses defined the levels of the variable. However, eight variables were derived from multiple items. One of these variables measured study participation and was derived from observation, interview, and questionnaire data regarding whether a respondent refused the interview, participated in the interview but refused the questionnaire, accepted the questionnaire but did not return it, or participated fully in the study. Three derived variables were related directly to child restraint use. One dichotomized child restraint use into use versus nonuse and was derived from a child restraint use variable with three levels of use (no restraint, belted, and child restraint). The second measured appropriateness of use. It was

[^1]derived from several variables measuring how a CRD was installed in the vehicle and how a child was positioned in the CRD and had three levels--correct use, partial misuse and extensive misuse. The final derived variable related to child restraint use measured correct, incorrect, and nonuse of CRDs. It was based on the sixteen dimensions of CRD use recorded on the observed form (See Appendix B) and the original child restraint use variable in the study. A fifth derived variable measured the reported age of the child and was based on the birth month and birth year provided by the respondent. A sixth variable measured child birth order and was derived from the number of older and younger siblings reported for the child. A seventh variable measured the self-reported age of the respondent and was derived from the reported birth month and birth year of the respondent. A final variable measured family occupational prestige and was derived from the higher of the two scores for a respondent's and spouse's occupational prestige. The data file codebook (Appendix C) lists each of the items measured in the study.

For several variables in the study, the operational definition may not be obvious since the variable could not be directly measured from the data collection instrument. Occupational prestige, for example, is believed to be associated with child restraint use. In order to measure occupational prestige, respondents were asked about the nature of their occupations and their spouses' occupations (See questions 36 and 38 on questionnaire form in Appendix B). Trained coders reviewed the data and determined prestige scores for each respondent and their spouse based on "Occupational Classification Distributions" (Davis, 1975). The resulting distributions of respondent and spouse prestige scores were then tricotomized representing low, medium, and high occupational prestige.

In order to measure respondents' perceptions regarding the effectiveness of child restraints, respondents were told how many children under the age of four were killed in crashes in 1983 and asked to estimate how many fatalities would have resulted if all children had used seat belts or CRDs (See question 8 on questionnaire form in Appendix B). Finally, in order to measure respondents' knowledge of the child restraint law, respondents were asked to identify provisions of the law. Interviewers recorded scores for each respondent based on the nature of the their knowledge. Respondents who knew all the specifics of the law (i.e., that drivers transporting a child in a motor vehicle must properly secure any child less than one year in an approved child restraint system; any child more than one year of age but less than four, when transported in the front seat must be in an approved child restraint system; and any child more than one year but less than four, when transported in the rear seat, must be in an approved child restraint system or adult seat belt) were considered to have perfect knowledge of the law (see question 29 on interview form in Appendix B). High knowledge was defined as knowing that children under one must be restrained in a CRD and children one to four in a seat belt; medium knowledge, as knowing that children under four must be restrained; low knowledge, as knowing that children must be restrained but not knowing the correct ages; and no knowledge as knowing none of the specifics of the law.

Because each variable in the study was measured by one of the data collection forms, (i.e., observer, interview, questionnaire) the actual number of cases within each variable subcategory as well as the extent of missing data for each variable was determined in part by the overall response rates for each of the data collection instruments. Of the 717 valid
observations in the study, site data and observation data were recorded in every case. However, in 56 cases the respondent refused to be interviewed. In each of those cases, data are missing for each variable measured by either the interview form or the questionnaire form. In an additional 210 cases, interviews were conducted but no questionnaire forms were returned. Data for each variable measured by the questionnaire form are therefore missing for a total of 266 cases. Several variables in the study have missing data in addition to the missing data resulting from overall response rates. These variables, however, all have incremental missing data frequencies of five or less with the exception of the following variables: driver restraint use (17 cases of missing data), vehicle size (13 cases), what kills most children (18 cases), significant other hospitalized (9 cases), estimated belted fatalities (13 cases), child misbehaves in CRD (10 cases), children two to three like CRD (6 cases), federal government does too much (16 cases), state government does too much (21 cases), belts uncomfortable (8 cases), occupation (25 cases), spouse occupation (31 cases), and family occupation (15 cases).

Appendix C contains total missing data frequencies and percentages for the study. It should be noted that in addition to the missing data category, a number of variables have a skip category. The data in this category are not missing data. They constitute a legitimate response category when a particular item on the data collection form was not appropriate for the respondent. A respondent who did not have a CRD present in the vehicle, for example, was not asked in the interview if he or she had help in installing the CRD.

3.5 Index Construction

In order to analyze incorrect use of CRDs, an index of incorrect use was developed. First, configurations of incorrect use were identified. These included how the CRD was installed in the vehicle and how the child was positioned in the device. Specifically, the following configurations of incorrect use were identified: automobile seat belt not fastened, routed incorrectly, or not snug; no locking clip; harness and/or shield not used, harness position incorrect, or harness not snug; required tether strap not used or not used properly; infant seat facing forward; and infant in convertible seat facing forward. These configurations were each determined by one or more variables recorded on the observer form. For example, two variables from the observer form, tether required and tether used, were used to determine if the configuration of incorrect use required tether strap not used was present in a vehicle. Second, each configuration was ranked according to the severity of misuse represented by that configuration and numerical values were assigned with lower numbers representing less serious levels of incorrect use. If two or more configurations were believed to be approximately equal in seriousness, then the same numerical value was assigned to each of them. Throughout the index development process, decisions were made based on review of the appropriate literature, discussion with experts in the field, and professional judgment. The total score of incorrect use for each respondent in the study was obtained by adding each of the individual configuration scores for a particular respondent together. Total scores of incorrect use ranged from 1 to 42 . For purposes of analysis and discussion, these scores were later dichotomized into partial and extensive misuse categories (such that the numbers in the categories were roughly equivalent). The partial misuse
category included scores of 1 to 9 and the extensive misuse category included scores of 10 to 42. For example, a CRD that required the use of a tether but was not used would receive an incorrect score of six; while a harness that was used but not snug would receive an incorrect score of two. Failure to fasten the CRD with the automobile seat belt or failure to restrain the child in the seat with a harness is considered extensive misuse. A combination of several errors, each of which would not by themselves be considered extensive misuse, might result in the CRD being classified as extensively misused if the sum of the scores was 10 or higher. Figure 3.1 identifies the configurations of incorrect use and their corresponding scores.

3.6 Description of Study Sample

Observations of the study sample were made during two survey waves. The first wave of data collection was conducted from September 14 to October 31, 1985 and resulted in a total of 265 valid observations of vehicles with children under the age of four. ${ }^{3}$ The second wave of data collection was conducted from May 1 to June 12, 1986 and resulted in a total of 452 valid observations. The two data collection waves were combined for analyses, since there was little change in child restraint use between the fall of 1985 and the spring of 1986 (Wagenaar, Wiviott, and Businski, 1986; Wagenaar, Businski, and Molnar, 1986a). The total number of valid observations across both phases of data collection was therefore 717. These valid observations constituted potential interview respondents for the study. Of the 717,56 or 7.8% refused to participate, resulting in 661 valid interviews. Of the 661 valid interview respondents, 657 accepted the questionnaire. Of the 657 distributed questionnaires, 451 questionnaires were returned to workers in the field or by mail. ${ }^{4}$ The return rate for the distributed questionnaires was therefore 68.6%. Figure 3.2 illustrates response rates at each stage of the study. Tables 3.2 and 3.3 identify the frequencies of completed valid observations, interviews, and questionnaires across both phases of data collection by day of week and community sampled.

The study sample was fairly representative of the larger Michigan population along several important dimensions. First, the overall rate of child restraint use observed in the study was comparable to use rates observed among children age zero to three in recent seat belt surveys using a probability sample of 240 intersections throughout the state. In the current study, 75.0% of children under four were restrained (either in seat belts or CRDs) compared to 73.3% in both the April and July 1986 seat belt survey waves and 59.1% in the December 1985 wave (Wagenaar, Businski, and Molnar, 1986a; Wagenaar, Businski, and Molnar, 1986b; Wagenaar, Wiviott, and Businski, 1986). Second, the driver restraint use rate of 61.1% observed in the current study was similar to the rate among drivers of vehicles in which children age zero to three were riding in the July 1986 statewide seat belt survey wave (57.7%) and slightly higher than rates observed in the April 1986 and December 1985 statewide waves (49.9% and 41.0%, respectively). Third, although the study sample is clearly more affluent and better educated than the general Michigan population, ${ }^{5}$ it more closely

[^2]Configuration of Incorrect UseScore
Automobile seat belt not fastened 14
Harness and/or shield not used 14
Infant seat facing forward 6
Harness position incorrect 6
Required tether not used 6
Infant in convertible facing forward 4
Required tether not anchored properly 4
Automobile seat belt routed incorrectly 4
Harness not snug 2
No locking clip 2
Automobile seat belt not snug 1

Figure 3.1: Index of Incorrect Use of Child Restraint Devices

Figure 3.2: Response Rates at Each Stage of the Study

TABLE 3.2

Selected Descriptive Statistics by Day of Week

$\begin{gathered} \text { Day } \\ \text { of } \\ \text { Week } \end{gathered}$	Total Valid. Observations ${ }^{1}$	Total Valid Interviews ${ }^{2}$		Total Valid Questionnaires Returned ${ }^{3}$		Return Rate ${ }^{4}$
		Number	Percent of Sample	Number	Percent of Sample	
Monday	47	43	91.5\%	30	63.8\%	69.8\%
Tuesday	58	53	91.4\%	39	67.2\%	75.0\%
Wednesday	92	90	97.8\%	63	68.5\%	70.0\%
Thursday	114	103	90.4\%	73	64.0\%	71.6\%
Friday	156	145	92.9\%	103	66.0\%	71.0\%
Saturday	153	138	90.2\%	85	55.6\%	62.5\%
Sunday	97	86	88.7\%	58	59.8\%	67.4\%
TOTAL	717	661	92.2\%	451	62.9\%	68.6\%

${ }^{1}$ Excludes 5 cases which were invalid
${ }^{2}$ All interviews were valid
${ }^{3}$ Excludes 3 cases which were invalid
${ }^{4}$ Percent of distributed questionnaires

TABLE 3.3
Selected Descriptive Statistics
by Community Sampled

Community	Total Observation Sample	Interviews		Questionnaires Returned		Return Rate ${ }^{1}$
		Number	Percent of Sample	Number	Percent of Sample	
Ann Arbor	159	146	91.8\%	107	67.8\%	74.3\%
Port Huron	106	96	90.6\%	67	63.2\%	69.8\%
Livonia	19	18	94.7\%	16	84.2\%	88.9\%
Canton	7	7	100.0\%	6	85.7\%	85.7\%
Chelsea	23	21	91.3\%	17	73.9\%	81.0\%
Farmington	25	22	88.0\%	15	60.0\%	71.4\%
Brighton/Howell	128	122	95.3\%	85	66.4\%	70.2\%
Flint	93	87	93.5\%	43	46.2\%	49.4\%
Warren area	157	142	90.4\%	95	60.5\%	66.9\%
TOTAL	717	661	92.2\%	451	62.9\%	68.6\%

[^3]represents the Michigan motoring population which one would expect to be more affluent than the total population. In addition, since greater affluence is associated with greater driving volume, affluent drivers had a higher probability of being selected for the study. Finally, in terms of ethnic background, whites are slightly over represented in the study (91.5% in the study compared to 85.0% in the general Michigan population; U.S. Bureau of the Census, 1982).

[^4]
4 Results

4.1 Restraint Use

Twenty-five percent of children under the age of four observed in motor vehicles in this study were riding unrestrained. An additional 20% of children observed were using seat belts and the remaining 55% were using CRDs. Of children restrained in CRDs, 62.9% were restrained incorrectly. Consequently, only 20.4% of all children in the study were observed to be using CRDs correctly; and 34.6% of total study participants were incorrectly using CRDs. While the observed misuse of CRDs is quite high, the figures are consistent with other studies which have measured incorrect use of CRDs (Cyneki and others, 1984; Shelness, 1983) and indicate that incorrect use is a prevalent problem.

The remainder of this section examines child restraint use by a number of variables, which for purposes of analysis and discussion, have been grouped into the following categories: sociodemographic, knowledge and belief, behavioral, and environmental factors. Throughout the remainder of the report, the term child restraint use is used to refer to either use of a seat belt or use of a CRD. The term CRD use is used to refer only to use of a child safety seat, and the term correct use is used to refer to correct use of a CRD.

4.1.1 Sociodemographic Factors

4.1.1.1 Driver and Child Characteristics. Child restraint use and correct use were examined by several driver and child characteristics. Driver and child gender had little effect on whether a child was restrained and whether a CRD was used correctly (Figures 4.1 and 4.2). Child restraint use was slightly higher among children riding with female drivers than male drivers (77.0% versus 71.6%), but correct use was essentially the same (19.6% versus 21.8%). The association between driver gender and child restraint use was weaker than might have been expected, given findings of numerous studies that female drivers are significantly more likely than male drivers to use child restraints. Total proportion restrained was the same for boys and girls but girls exhibited slightly higher rates of CRD use (58.9% versus 54.9%) and correct use (22.4% versus 17.6%).

The relationship between driver and child had a much greater impact on child restraint use and correct use than gender (Figure 4.3). Children riding in vehicles driven by their parents were significantly more likely to be restrained, to use CRDs, and use them correctly than other children. Specifically, 81.3% of children riding with their parents were restrained compared to 60.2% of children riding with other drivers. Similarly, rates of CRD use among the two groups were 62.0% and 32.8%, respectively, and rates of correct use were 22.4% and 8.0%, respectively. In light of the high CRD use rate among children riding with their parents and the expectation that a large proportion of parents of young children will be under the age of 40 , it is not surprising that children riding with drivers in the age groups 15

W	CRD Correct	$\square \square$	Belted

Figure 4.1: Child Restraint Use by Gender of Driver

Figure 4.2: Child Restraint Use by Gender of Child

Figure 4.3: Child Restraint Use by Relationship of Driver to Child
to 24 and 25 to 40 were much more likely to be restrained in CRDs than children riding with drivers over 40 (52.0% among drivers 15 to 24 and 60.9% among drivers 25 to 40 versus 32.7% among drivers over 40 ; Figure 4.4). In addition, 18.3% of children riding with drivers 15 to 24 and 21.5% of children riding with drivers 25 to 40 were correctly restrained compared to 10.3% of children riding with drivers over 40 .

Child restraint use, particularly CRD use, also varied by age of the child (Figure 4.5). Consistent with a number of studies, younger age groups exhibited significantly higher CRD use rates than older age groups. CRD use rates were as follows: zero to one year, 91.7%; one to two years, 78.3%; two to three years, 46.3%; and three to four years, 22.2%. While the lower rates of CRD use among older children were in part offset by higher rates of seat belt use, older age groups were still more likely to be totally unrestrained than the younger age groups. Correct use of CRDs was also higher among younger than older children, although children age one to two were more likely to be correctly restrained than children age zero to one.

An examination of child birth order revealed that while first born children were marginally more likely to be restrained in CRDs than later born children, overall restraint use was essentially the same among first and second borns (Figure 4.6). A total of 60.5% of first born children were restrained in CRDs compared to 55.3% of second born children and 53.0% of third or later born children. A stronger association between birth order and restraint use might have been expected given findings in the sociological literature that first borns are more dependent on authority and more suggestible and conforming than their brothers and sisters (McCandless, 1969). One might expect such dependency to result in less misbehavior by first borns, a reason often given by parents for nonuse of CRDs. The association between existence of siblings and CRD use was stronger. A total of 64.4% of children without siblings were restrained in CRDs compared to 53.1% of children with siblings. Correct use of CRDs among children with and without siblings was 25.3% and 17.1%, respectively (Figure 4.7).
4.1.1.2 Family Characteristics. Examination of family characteristics revealed differences in both child restraint use and correct use. As shown in Figure 4.8, children riding with married drivers were more likely to be restrained, particularly in CRDs, and more likely to be restrained correctly. Since a large proportion of two-parent families have both parents working, it is not surprising that restraint use was also associated with family income, given the relationship between marital status and restraint use. As shown in Figure 4.9, whereas 60.5% of children in families with incomes less than $\$ 12,000$ were restrained, 76.3% of children in families with incomes between $\$ 12,000$ and $\$ 29,999$ were restrained, 81% of children in families with incomes between $\$ 30,000$ and $\$ 49,999$ were restrained, and 89.4% of children in families with the highest incomes were restrained. Further, 22% to 27% of the children in the highest income families were correctly restrained in contrast to 11% to 18% for the lowest income families.

Given the relationship between education and income, one would expect greater variation in restraint use than suggested by Figure 4.10 . Although child restraint use increased as drivers' educational level increased, 80% of those with 12 or fewer years of schooling placed their children in CRDs or seat belts. Family occupational prestige tends to

W	CRD Correct	$\square \square$	CRD Incorrect	$\square 7$	Belted

Figure 4.4: Child Restraint Use by Age of Driver

Figure 4.5: Child Restraint Use by Age of Child

W\%	CRD Correct	$\square \square$	CRD Incorrect	$\square 7$	Belted

Figure 4.6: Child Restraint Use by Child Birth Order

Figure 4.7: Child Restraint Use by Whether Child Has Siblings

*Includes single, divorced, separated, and widowed

Figure 4.8: Child Restraint Use by Marital Status

W	CRD Correct	\square / D
Belted		

Figure 4.9: Child Restraint Use by Family Income

Figure 4.10: Child Restraint Use by Educational Level
reflect income and education, so the proportion of children restrained shown in Figure 4.11 corresponds to Figures 4.9 and 4.10. Finally, Figure 4.12 shows that white drivers were almost twice as likely to have their children in seat belts or CRDs and almost three times more likely to use the CRDs correctly than drivers of other ethnic backgrounds. The differences in child restraint use between whites and nonwhites remained after controlling for socioeconomic status. Of 16 nonwhites with family incomes less than $\$ 12,000,5$ were using child restraints (31.3%) compared to 67.6% of 65 whites with comparable incomes. Of 18 nonwhites with family incomes of $\$ 12,000$ to $\$ 29,999,8$ were using child restraints (44.5\%) compared to 79.7% of 177 whites with comparable incomes. And finally, of 20 nonwhites with family incomes of $\$ 30,000$ or more, 12 were using child restraints (60.0%) compared to 84.6% of 344 whites with comparable incomes.

4.1.2 Knowledge, Attitude and Belief Factors

4.1.2.1 Crash Experience. Adults who had been involved in a motor vehicle crash were not more likely to use child restraints than were adults without crash experience. First, nearly 80% of respondents had been involved in crashes including minor fender benders; 33% had previously been injured; nearly 40% had experienced the motor vehiclerelated death of a friend or relative; and 63% had experienced the hospitalization of a friend or relative due to a motor vehicle crash. As shown in Figures 4.13 through 4.16, these experiences were not associated with child restraint use. Those with friends or relatives who had been killed in a crash were slightly more likely to use CRDs but, interestingly, they were less likely to use the devices correctly (19.1% versus 24.9%).
4.1.2.2 Injury Knowledge. Three variables addressed drivers' knowledge of injuries as a major health problem for children. As shown in Figure 4.17, drivers who strongly disagreed that children riding in laps were safe were much more likely than others to use child restraints. Other types of knowledge were not as strongly associated with restraint use. For example, of those drivers who did not believe that restraints were particularly effective, 77.9% still had their children restrained (Figure 4.18). For those who believed that restraints were very effective, 84.9% had their children restrained, only marginally different from the former group. Similarly, although 83% of respondents correctly identified motor vehicle crashes as the major cause of childhood mortality, this knowledge did not strongly distinguish restraint users from nonusers (85.5% versus 79.8%; Figure 4.19).
4.1.2.3 Knowledge of the Law and Perceptions of Enforcement. Two variables addressed knowledge of the child restraint law. Nearly 95% of respondents were aware of the law, but for 30% their knowledge was only minimal. For those who were aware of the law, 78.6% of their children were restrained, in contrast to 61.8% of those who were not aware of the law (Figure 4.20). Similarly, 95.2% of those with perfect knowledge of the law had their children restrained, in contrast to only 68.2% of those with low or no knowledge of the law (Figure 4.21). Unfortunately, only 10% of respondents had perfect knowledge of the law. Perfect knowledge was defined as knowing all the specifics of the law; high knowledge as knowing that children under one must be restrained in a CRD and children one to four in a seat belt; medium knowledge as knowing that children under four must be restrained; low

Family Occupational Prestige

Figure 4.11: Child Restraint Use by Family Occupational Prestige

Figure 4.12: Child Restraint Use by Ethnic Background

Previous Exposure to Motor Vehicle Crash

Figure 4.13: Child Restraint Use by Previous Exposure to Motor Vehicle Crash

Figure 4.14: Child Restraint Use by Previous Injury in Motor Vehicle Crash

Friend or Relative Killed

Figure 4.15: Child Restraint Use by Crash-Related Mortality of Friend or Relative

Friend or Relative Hospitalized

Figure 4.16: Child Restraint Use by Crash-Related Hospitalization of Friend or Relative

Child Held in Lap Is Safe

W	CRD Correct

Figure 4.17: Child Restraint Use by Belief that Child Held in Lap Is Safe

Perceived Effectiveness of Child Restraint Devices

Figure 4.18: Child Restraint Use by Perceived Effectiveness of Child Restraint Devices

* Includes child abuse, cancer, and other diseases

Figure 4.19: Child Restraint Use by Belief about Major Cause of Child Mortality

Figure 4.20: Child Restraint Use by Awareness of Child Restraint Law

W	CRD Correct \quad Incorrect

Figure 4.21: Child Restraint Use by Knowledge of Child Restraint Law
knowledge as knowing that children must be restrained but not knowing the correct ages; and no knowledge as not knowing any of the specifics of the law.

Perceptions of law enforcement appeared to have only a marginal association with restraint use. As shown in Figure 4.22, regardless of how strongly a driver believed that the law influenced restraint use, restraint use did not vary greatly. Whereas those who strongly believed the law influenced behavior had 81% of their children restrained, those who did not believe the law influenced use had 88.7% of their children restrained. When the question of the relationship of restraint use to the law was personalized (i.e., respondents were asked to estimate the frequency of their child restraint use in the absence of a law), the responses indicated a stronger relationship than the previous one. As indicated in Figure 4.23, 83\% responded that they would always use a child restraint even without a law. It is interesting to note that of this 83%, the rate of child restraint use was 92.9%. The rate of incorrect CRD usage is seemingly high at 45.9%. It appears, however, that the majority of respondents in this study are concerned about their child's safety. Nevertheless, only 44.7% of the respondents who indicated that they would not always use a restraint did in fact have their children in a CRD or seat belt, with only 7.9% correctly restrained. Of those who believed that fear of a ticket did not influence restraint use, 85.9% of the children were restrained in contrast to 71.2% of those who believed that fear of a ticket had great influence (Figure 4.24). Perceptions of police enforcement of the law paralleled beliefs about fear of a ticket (Figures 4.25 and 4.26).
4.1.2.4 Comfort and Convenience. A number of variables examined beliefs about child comfort and convenience. The belief by respondents that children liked their CRD was positively associated with both CRD use and correct use (Figure 4.27). Of respondents who strongly believed their children liked riding in child seats, 78.5% used CRDs and 32.4% used them correctly. By comparison, only 42.7% of respondents who did not believe their children liked riding in CRDs used such devices and only 12.6% used them correctly. This finding is not surprising since "child dislike of CRDs" was one of the most frequently cited reasons by respondents for nonuse of such devices. ${ }^{6}$ When respondents were asked about the willingness of children under two years and children age two to three years to ride in CRDs, beliefs about such willingness were also found to be associated with CRD use (Figures 4.28 and 4.29). The belief that children who do not like CRDs get used to them with regular use was voiced by the majority of respondents (86.2%). However, CRD use was higher among those who strongly adhered to this belief than those who only moderately or somewhat adhered to it or did not adhere to it at all (Figure 4.30).

A related variable measured beliefs about child misbehavior. While most respondents did not believe their children misbehaved in their CRDs, the highest rate of CRD use was exhibited by those respondents who strongly disagreed that their children misbehaved (76.9%; Figure 4.31). By comparison, CRD use was 59.9% among those who only moderately or somewhat disagreed, 54.4% among those who agreed that their children

Figure 4.22: Child Restraint Use by Belief That Child Restraints Would Not Be Used Without Child Restraint Law

Frequency of Child Restraint Use in Absence of a Law

Figure 4.23: Child Restraint Use by Estimated Frequency of Child Restraint Use in Absence of a Child Restraint Law

Influence of Fear of Ticket on Restraint Use
WM CRD Correct $\quad \square \Delta \mathrm{cRD}$ Incorrect $\quad \boxtimes \Delta$ Belted

Figure 4.24: Child Restraint Use by Influence of Fear of Ticket on Decision to Use Restraints

Figure 4.25: Child Restraint Use by Perception of How Often Police Stop Violators of Law

| W CRD Correct $\quad \square$ | CRD Incorrect | Belted |
| :--- | :--- | :--- | :--- |

Figure 4.26: Child Restraint Use by Perception of How Often Police Ticket Violators of Law

| W | CRD Correct | $\square \square$ |
| :--- | :--- | :--- | :--- |
| Belted | | |

Figure 4.27: Child Restraint Use by Belief That Child Likes Child Restraint

Figure 4.28: Child Restraint Use by Belief That Child Under Age of Two Likes Child Restraint

Figure 4.29: Child Restraint Use by Belief That Children Age Two to Three Like Child Restraints

W\%	CRD Correct	\square	CRD Incorrect	$\square \square$	Belted

Figure 4.30: Child Restraint Use by Belief That Children Get Used to Restraint Devices

W\%	CRD Correct	\square	CRD Incorrect	7A	Belted

Figure 4.31: Child Restraint Use by Belief That Child Misbehaves in Child Restraint
misbehaved, and 53.6% among those who were neutral in the issue. This is consistent with the finding that children who like CRDs are more likely to be restrained since children who like riding in CRDs are presumably less inclined to misbehave than those who do not. Correct use of CRDs exhibited a pattern similar to overall CRD use.

Two variables addressed issues related to the comfort and convenience of the respondent. Respondents who expressed neutrality about whether CRDs were a bother for adults were less likely to use both CRDs and child restraints overall than either respondents who agreed or disagreed that CRDs were a bother (Figure 4.32). For example, CRD use was 46.5% among respondents who were neutral about the issue compared to 62.7% who were strongly in agreement and 76.3% of respondents who were in strong disagreement. Correct use was highest among respondents who strongly disagreed (33.9\%) and lowest among respondents who moderately or somewhat disagreed that CRDs were a bother (13.5\%). Respondents who believed seat belts to be uncomfortable were less likely to restrain their children in CRDs than other respondents but, interestingly, more likely to restrain them in seat belts (Figure 4.33). A total of 51.4% of respondents who agreed that seat belts were uncomfortable restrained their children in CRDs compared to 61.5% of respondents who moderately or somewhat disagreed and 68.3% of respondents who strongly disagreed. Rates of seat belt use, by comparison, were $25.7 \%, 21.3 \%$, and 19.7%, respectively, for the three groups.

Perceived costs of CRDs did not appear to affect child restraint use (Figure 4.34). Respondents who estimated such costs to be $\$ 40$ or more had a CRD use rate that was only marginally higher than respondents who estimated costs to be under $\$ 40$ (64.4% versus 62.2%). Correct use exhibited a similar pattern although the magnitude of difference was slightly greater (24.6% versus 20.0%).
4.1.2.5 Social Norms. Five variables explored the relationship between group norms or perception of norms and child restraint use. As shown in Figure 4.35, those who believed that there was widespread public support for the law were more likely to restrain their children than were those who believed public support was low. This relationship was demonstrated more strongly when parents were asked to estimate the prevalence of child restraint use. Drivers who estimated that such use was over 80% were much more likely to restrain their children than were those who believed that use was only 40% or less $(91.2 \%$ restrained versus 60.9% restrained; Figure 4.36). Friends' use of child restraints also showed this relationship. As shown in Figure 4.37, of those who reported high use rates by friends, 91.8% of the children were restrained in contrast to only 67.6% of those who reported lower use rates by friends. Furthermore, friends' use was clearly associated with correct use. Figure 4.38 shows that there was a substantial relationship between a driver's belief that others noticed restraint use and the likelihood of use. Figure 4.39 shows there was no consistent relationship between belief that the law influences use and the likelihood of putting a child in a restraint. Note the skewed pattern of responses in all areas in regards to attitudes towards the law and child restraint use.
4.1.2.6 Infringement of Rights. The next six figures explore the relationship between attitudes toward the child restraint law in particular, government regulation in

CRD Is A Bother For Adult

Figure 4.32: Child Restraint Use by Belief That Child Restraint is a Bother for Adult

Figure 4.33: Child Restraint Use by Belief That Adult Seat Belts Are Uncomfortable

Estimated Cost of Child Restraint Device

Figure 4.34: Child Restraint Use by Estimated Cost of Child Restraint Device

| W CRD Correct | \square / Δ | Belted |
| :--- | :--- | :--- | :--- |

Figure 4.35: Child Restraint Use by Perception of Public Support for Child Restraint Law

| WIM CRD Correct |
| :--- | :--- | :--- |

Figure 4.36: Child Restraint Use by Perception of Obedience to Child Restraint Law

Percent of Friends Who Use Child Restraints

Figure 4.37: Child Restraint Use by Percent of Friends Who Use Child Restraints

Belief That Others Notice Child Restraint Use

Figure 4.38: Child Restraint Use by Belief That Others Notice Child Restraint Use

Figure 4.39: Child Restraint Use by Belief That Child Restraint Law Increases Likelihood of Child Restraint Use
general, and the likelihood of child restraint use. Figure 4.40 indicates that 90% of the respondents believed to some degree that child restraint use should be compulsory. People who felt neutral about the requirement that children be restrained (17 respondents) were least likely to use restraints. Although 88.2% of those who agreed strongly with the law had the child restrained, 75% of those who disagreed with the law also had their children restrained. The same pattern appears when examining correct use. The pattern changes, however, when the issue of strict enforcement is raised. As shown in Figure 4.41, those who were against enforcement were least likely to restrain their children. Note that 91% of the respondents supported strict enforcement of the child restraint law. Furthermore, 72% of respondents supported compulsory use of seat belts for adults. Figure 4.42 shows that belief that there should be an adult law was only modestly associated with child restraint use. Figures 4.43 through 4.45 depict attitudes that may be the basis for opinions on restraint laws. Figure 4.43 shows that attitudes concerning whether a seat belt law infringes on individual rights was not strongly associated with use. Although 90.9% of those who felt strongly that such a law would not infringe on individual rights had their children in restraints, high proportions of the others had restrained their children as well. The relationship between correct use and belief about infringement was stronger. It appears that the more drivers believed that a seat belt law infringes on rights, the less attentive they were likely to be in installing their CRD (or positioning their child in the CRD), even though overall a high proportion of their children were restrained in one way or another. This relationship was seen again in response to beliefs about federal government (Figure 4.44) and state government (Figure 4.45) involvement in individual and private activities. Regardless of belief about federal or state concern with individual behavior, drivers restrained their children at approximately the same rates. Correct use, however, was associated with support for government involvement in individual behavior.

4.1.3 Behavioral Factors

4.1.3.1 Seat Belt Use. Eight variables explored the relationship between child restraint use and other restraint behaviors of vehicle occupants. Consistent with numerous studies, observed driver restraint use was strongly associated with child restraint use (Figure 4.46). A total of 89.5% of children riding with restrained drivers were restrained. However, even when the driver was not belted, 51.5% of children were in a CRD or seat belt. Correct use of CRDs was almost three times as high among belted drivers as unbelted drivers (27.8% versus 9.6%). Overall child restraint use and CRD use also increased as respondent selfreported seat belt use increased (Figure 4.47), although the magnitude of increase was less than that for observed seat belt use. Interestingly, of those respondents who reported always wearing their seat belts, 12% were observed to be unrestrained. This finding is consistent with other studies which suggest that motorists' self-reports substantially overestimate actual adult and child restraint use (Waller and others, 1969; Stulginskas and others, 1985). Respondents who reported using seat belts rarely, sometimes, or most times were asked if trip length resulted in greater likelihood of adult seat belt use. Although adult seat belt use was reported to be somewhat more likely on long trips than short trips, a substantial portion of respondents reported no difference (Figure 4.48).

Child Restraint Use Should Be Required by Law

W/V CRD Correct	(1) crd incorrect	VA Belted

Figure 4.40: Child Restraint Use by Belief That Child Restraint Use Should Be Required by Law

Figure 4.41: Child Restraint Use by Belief That Child Restraint Laws Should Be Strictly Enforced

W W CRD Correct $\quad \square \triangle$ Belted

Figure 4.42: Child Restraint Use by Belief That Adult Seat Belt Use Should Be Required by Law

Seat Belt Law Infringes on Rights

Figure 4.43: Child Restraint Use by Belief That Seat Belt Law Infringes on Individual Rights

Federal Government Too Involved

Figure 4.44: Child Restraint Use by Belief That Federal Government Is too Involved in Individual and Private Business

State Government Too Involved

Figure 4.45: Child Restraint Use by Belief That State Government Is too Involved in Individual and Private Business

Vla can corees	$\boxed{2}$ cofol noreet	V ${ }_{\text {batas }}$

Figure 4.46: Child Restraint Use by Observed Driver Restraint Use

| W CRD Correct |
| :--- | :--- | :--- | :--- |

Figure 4.47: Child Restraint Use by Self-Reported Seat Belt Use

Figure 4.48: Child Restraint Use by When Adult Seat Belt Most Often Used

As shown in Figure 4.49, the majority of respondents reported that their children always rode restrained and, as one might expect, actual observed restraint use was much higher among this group than among respondents reporting less frequent child restraint use. Specifically, 94.0% of children reported to always ride restrained were actually restrained compared to 61.0% of children reported to most times ride restrained and 4.8% of children reported to never, rarely, or sometimes ride restrained. Of the latter group, although the numbers are small, none were correctly restrained. Overreporting of child restraint use (6.0% of children reported to always ride in restraints were unrestrained) was less than the overreporting of adult restraint use. Observed child restraint use varied by whether child restraint use was reported to be more likely on long trips or short trips although the numbers are small and need to be interpreted with care (Figure 4.50). Restraint use also varied by how likely a respondent's spouse was to use child restraints for their child (88.4% among respondents reporting their spouse to be just as likely, 79.3% among respondents reporting their spouse to be more likely, and 70.3% among respondents reporting their spouse to be less likely to use child restraints (Figure 4.51).

As shown in Figure 4.52, respondents who reported they always restrained children other than their own were substantially more likely to restrain their own children than respondents who did not restrain other children. Finally, children seated in the rear right and rear left of the vehicle were most likely to be restrained, more likely to be in CRDs, and more likely to be correctly restrained (Figure 4.53).
4.1.3.2 Other Health Behaviors. Two questions addressed health behaviors other than belt use. The first, cigarette smoking behavior, was associated with child restraint use and CRD use. For example, of respondents who had never smoked, 66.8% restrained their children in a CRD compared to 62.1% of those who smoked in the past and 57.2% who currently smoked. Correct use exhibited a similar pattern (Figure 4.54). Among those who smoked, child restraint use increased slightly as the number of cigarettes smoked increased. Finally, examination of a variable measuring respondents' recent dental visits revealed that respondents who had visited the dentist within the last six months had a higher rate of child restraint use than other respondents; however, there was no consistent pattern of CRD use (Figure 4.56).
4.1.3.3 Exposure. As shown in Figure 4.57, the likelihood of restraining a child (either with a seat belt or CRD), the likelihood of using a CRD, and the likelihood of using a CRD correctly increased as the number of days driving with children increased. For example, respondents who reported driving six or seven days within the past week with children had a restraint use rate of 84.0% compared to 49.4% for respondents who reported driving one or no days in the past week with children. It is likely that a greater proportion of respondents reporting one or fewer days driving with children were nonparents. Because nonparents are less likely to restrain children than parents, this may explain the lower use rates among drivers reporting one or fewer days driving with children.

Figure 4.49: Child Restraint Use by Reported Frequency of Child Restraint Use

| WID CRD Correct $\quad \square$ |
| :---: | :--- | :--- |

Figure 4.50: Child Restraint Use by When Child is Most Likely Restrained

Figure 4.51: Child Restraint Use by Likelihood of Respondent's Spouse to Use Child Restraint

W\%	CRD Correct	$\square \square$	CRD Incorrect	$\square 7$	Belted

Figure 4.52: Child Restraint Use by Frequency of Restraint Use among Children Not Related to Parents

WM CRD Correct	Va crd incorrect	77 Belted

Figure 4.53: Child Restraint Use by Child Seat Position

Figure 4.54: Child Restraint Use by Cigarette Smoking Behavior

W	CRD Correct	$\square \square$	CRD Incorrect	$\square \square$	Belted

Figure 4.55: Child Restraint Use by Number of Cigarettes Smoked

Figure 4.56: Child Restraint Use by Last Dental Visit

Figure 4.57: Child Restraint Use by Days Driving with Children

4.1.4 Environmental Factors

A number of environmental variables were examined. The month in which child restraint behavior was observed did not appear to be associated with restraint use or correct use (Figure 4.58). Rates of restraint use and correct use varied somewhat by day of the week, with Monday and Wednesday exhibiting the highest rates (Figure 4.59). The higher rates observed on Monday may be due, in part, to sampling error since the sample size is relatively small. Child restraint use varied slightly by size of the vehicle (Figure 4.60). Use rates were 79.3% for children riding in small cars, 79.7% for children in medium cars, 68.3% for children in large cars, and 73.7% for children in other types of vehicles. Differences in child restraint use by number of vehicle occupants were substantial with children riding in vehicles with three or less occupants more likely to be restrained than children riding in vehicles with four or more occupants (Figure 4.61). Finally, while children riding in vehicles in which their parents were present but not driving were no more likely to be restrained overall than children riding in vehicles with no parent present, they were significantly more likely to be in a CRD (Figure 4.62). In only 25.3% of vehicles in which no parent was present was the child restrained in a CRD, compared to 46.4% of vehicles in which the parent was present but not driving. By comparison, rates of seat belt use were 35.2% for children in vehicles with no parent present and 14.6% for children riding with nondriving parents. However, presence of a parent in the vehicle had much less of an effect on correct use of child restraints (7.0% of children in vehicles with no parent versus 9.8% of children in vehicles with parent).

4.2 Correctness of Restraint Use

A total of 394 occupied CRDs were observed in vehicles in which children under the age of four were riding. ${ }^{7}$ Overall, 37.1% of these CRDs were correctly used; the remaining 62.9% were incorrectly used. Rates for specific configurations of incorrect use varied, however, and were as follows: automobile seat belt not fastened, 7.6% of occupied CRDs; automobile seat belt routed incorrectly, 23.8%; automobile seat belt not snug, 3.4%; no locking clip when required, 81.8%; harness and/or shield not used, 23.8%; harness position incorrect, 19.1%; harness not snug, 35.7%; required tether strap not used, 15.7%; required tether strap not used properly, 50.0%; infant seat facing forward, 29.7%; and infant in convertible seat facing forward, 85.0%..

The relationship of correctness of use with a number of variables was examined. Figure 4.63 indicates that correctness of use was strongly associated with the type of CRD used. Booster seats were more than twice as likely to be correctly used as toddler/convertible seats and almost three times as likely to be correctly used as infant only seats (65.6% versus 32.2% and 24.3%, respectively). Furthermore, infant only seats had the highest rate of extensive misuse (59.5% compared to 33.2% of toddler/convertible seats and 23.4% of booster seats).

W	CRD Correct $\quad \square \square$
Belted	

Figure 4.58: Child Restraint Use by Month Observation Made

Figure 4.59: Child Restraint Use by Day of the Week

* Includes pickups, vans, and other

| WIV CRD Correct |
| :--- | :--- | :--- |

Figure 4.60: Child Restraint Use by Vehicle Size

W\%	CRD Correct	\square	CRD Incorrect	$\square \square$	Belted

Figure 4.61: Child Restraint Use by Number of Vehicle Occupants

Figure 4.62: Child Restraint Use by Presence of Nondriver Parent in Vehicle

Figure 4.63: Correctness of Child Restraint Use by Type of Child Restraint Device

Source of child restraint information was only marginally associated with correctness of use (Figure 4.64). Whereas 38.5% of respondents who had first learned about child restraints from the news media correctly restrained their children, rates of correct use for respondents who had learned about restraints from doctors and other health care professionals or relatives and friends were only marginally lower (36.9% and 30.8%, respectively). Interestingly, the rates of extensive misuse were highest among respondents who reported learning about restraints from doctors and other health care professionals, although the differences were not great. A much stronger association was found between correctness of use and how the CRD was acquired (Figure 4.65). Respondents who had purchased their CRDs were three times more likely to correctly use their CRDs as respondents who had obtained them from friends or a loan source and only half as likely to extensively misuse them. CRDs received as gifts were also less likely to be used correctly as purchased CRDs, but the magnitude of difference was not as great.

As might be expected, respondents who received no written or verbal instructions for their CRDs were significantly more likely to misuse their CRDs overall and extensively misuse them than respondents who received instructions (Figure 4.66). For example, a total of 61.9% of respondents who received no instructions extensively misused their CRDs compared to 31.5% of respondents who received instructions. The most common type of instructions received were written instructions. Respondents receiving such instructions were less likely to misuse and extensively misuse their CRDs than respondents receiving verbal instructions or both written and verbal instructions although the numbers of cases for the latter two groups are small (Figure 4.67).

Correctness of use did not change markedly regardless of whether the mother, father, or both parents installed the CRD. Correct use declined and extensive misuse increased noticeably, however, when the CRD was installed by someone other than the parents (although the numbers of cases are again small; Figure 4.68). Finally, although the majority of respondents received no assistance in installing their CRDs (97.3%), of the 10 respondents who did receive assistance, a much smaller proportion extensively misused their CRDs than respondents who did not receive assistance (20.0% versus 34.9%; Figure 4.69).

Charts for numerous other variables potentially related to correct CRD use are shown in Appendix E.

Source of Child Restraint Information

Figure 4.64: Correctness of Child Restraint Use by Source of Child Restraint Information

Figure 4.65: Correctness of Child Restraint Use by Source of
Child Restraint Device

Received Instructions

Correct CRD Use	Partial Misuse	Extensive Misuse

Figure 4.66: Correctness of Child Restraint Use by Whether Instructions Received

Correct CRD Use	Partial Misuse	Extensive Misuse

Figure 4.67: Correctness of Child Restraint Use by Type of Instructions

| Correct CRD Use | \mathbf{N} Partial Misuse $\quad D$ Extensive Misuse |
| :--- | :--- | :--- | :--- |

Figure 4.68: Correctness of Child Restraint Use by Who Installed Restraint Device

Figure 4.69: Correctness of Child Restraint Use by Whether Assistance
Was Received in Installing Child Restraint Device

5 Discussion and Recommendations

Michigan has come a long way in its efforts to increase the proportion of young children traveling in automobiles that are protected by child safety seats or seat belts. Ninetytwo percent of all respondents traveling with children under the age of one had those children restrained in an approved child restraint device. Of children age 1 to $3,55 \%$ were traveling in a child safety seat, and an additional 20% were restrained with an adult seat belt. Public support for the law is now very high, with 90% indicating agreement with a statement that use of child safety seats should be required by law. ${ }^{9}$ Despite high rates of child restraint use and overwhelming public support for the mandatory use law, problems remain. Sixty-three percent of all child safety seats used were used incorrectly; for 34% of the child safety seats observed the incorrect use was serious, substantially reducing the protective effects of such devices.

5.1 Target Groups for Efforts to Increase Child Restraint Use

Results indicate that there are several groups of motorists that have substantially lower than average child restraint use rates. First, use of child safety seats decreases rapidly with age of child--only 22% of three-year-olds compared to 92% of infants under one year old. Second, drivers who are not the parents of children they are traveling with have low rates of child restraint use, and when they do use child safety seats they are much more likely to incorrectly use such seats. If in addition to a nonparent driver, the child's parent is not present as a passenger in the car, the probability of CRD use is even lower. Finally, drivers who travel with young children less than once per week have much lower rates of restraint use. Parents should be encouraged to be especially vigilant in requiring restraint use and demonstrating correct use of CRDs when they permit their child to travel in an automobile in which they are not present.

Other groups with low child restraint use and higher than average rates of incorrect CRD use include unmarried drivers, drivers over the age of 40 , and drivers with four or more passengers. Motorists with low income (under $\$ 12,000$ per year) show particularly low rates of child restraint use. Those with incomes of $\$ 12,000$ to $\$ 30,000$ per year also have significantly lower rates of use than those with incomes over $\$ 30,000$. Motorists of nonwhite ethnic backgrounds have low rates of seat belt or CRD use. Furthermore, over half of the CRDs observed with nonwhite drivers were seriously misused. Lower rates of child restraint use among nonwhites remained after controlling for the effects of income. However, note that results for nonwhites should be interpreted with caution, given that only 56 of 661 interviewees were nonwhite.

[^5]
5.2 Items to Consider in Efforts to Increase Child Restraint Use

Most respondents believe that CRDs are effective in reducing risk of injury, and almost everyone reports awareness of the mandatory child restraint law. However, the majority do not know the specifics of the law's requirements (i.e., that an infant under age one must be in a CRD in any seat position, that those age one through three may be in a seat belt if in the rear seat). Those who do not know the specific requirements of the law have lower rates of seat belt and CRD use than those who are aware of the specific requirements.

Respondents clearly believe that the child restraint law is not enforced. Threequarters believe that police rarely or never stop violators of the child restraint law. Furthermore, even if one experiences the rare event of a police stop, 38% believe that a ticket is rarely or never issued. Combining the perceived probability of not being stopped with the perceived probability of not receiving a ticket once stopped shows that this sample of Michigan motorists believe there is very little chance of experiencing any enforcement penalty for violation of the law. Motorists also seem to be dissatisfied with the low levels of enforcement-- 91% agree that child restraint laws should be strictly enforced (67% report strong agreement).

Very low levels of enforcement risk yet high rates of child restraint use indicate that enforcement has not been mainly responsible for the success achieved to date. In fact, almost half of the motorists said that fear of receiving a ticket does not influence their child restraint use. Instead of a simple deterrence effect, the law and associated programmatic efforts appear to have achieved a significant change in social norms concerning safety restraints for young children. Three-quarters of the respondents believe that 60% or more of the public support the law. Over half believe 60% or more of the public obeys the law. Almost two-thirds report that more than 80% of their friends restrain children when driving. Almost threequarters believe other people notice whether or not young children are belted or in a safety seat. All of these items indicate that there has now emerged a social norm that drivers are expected to restrain young children when traveling in an automobile. Furthermore, respondents who believe the public obeys the law, that their friends use child restraints, and that others notice use are more likely to use child restraints themselves. Public information programs should build on these trends with campaigns that tell people that most motorists restrain young children, that people notice when a child is not restrained, and that people look down on motorists who travel with an unrestrained child. Finally given the strong public support for strict enforcement of the child restraint law, enforcement efforts should be substantially strengthened.

Belt use by the driver is highly related to use of CRDs or seat belts for children. As a result, continued efforts to increase the proportion of Michigan's motorists using seat belts following enactment of the adult compulsory use law in 1985 are likely to have a spillover effect in increasing restraint use for children.

Although only a quarter of the respondents believed that children do not like to travel in safety seats, those who feel this way are substantially less likely to use CRDs or to
use them correctly. Continuing education efforts stating that children enjoy traveling in CRDs may help increase correct use by this part of the population.

Those who had no strong opinion concerning whether CRD use is bothersome and whether CRD use should be required by law had significantly lower rates of child restraint use than those who had strong opinions on these issues (either positive or negative). This pattern may indicate that there is a small segment of the population that simply does not care. Perhaps they do not take child restraint use seriously and are not willing to invest time and energy in this issue.

Certain dimensions of the child restraint device itself were related to incorrect use. Sixty percent of the infant-only seats observed were seriously misused (typically a combination of errors such as device facing forward, no harness used, required locking clip not used). In contrast, only 34% of booster seats had any incorrect use (including relatively minor errors such as seat belt not optimally snug). The reason booster seats are not often incorrectly used may be related to their design. For example, many booster seats have only one obvious place for routing the automobile seat belt. Continuing improvements are needed in the design of infant and convertible seats to reduce the probability of incorrect use. For example, perhaps plastic molding could enclose the frame such that a single cutout is available for routing the automobile seat belt. Many current CRDs have open steel pipe frames with several potential routes for the automobile seat belt, each appearing equally appropriate to the user.

Another reason for designing CRDs so that appropriate use is obvious to the user is that some motorists never receive instructions on use of a CRD. Eleven percent of respondents with CRDs present in the vehicle indicated that they received no instructions on its use. As expected, those who did not receive instructions had significantly lower rates of correct use (60% had serious misuse). Thirteen percent of the observed CRDs were obtained second hand from a friend or relative. Over half of the CRDs obtained secondhand were seriously misused, compared to one-third or less of CRDs purchased or received as a gift. In addition to better designs making correct use more obvious and therefore reducing the need for extensive instructions, continuing efforts are warranted by pediatricians, day care center staff, and others to educate parents on the importance of correct use. More important than simple exhortations to use CRDs correctly, however, are actual in-vehicle demonstrations of correct use. Ideally, pediatric nurses or others would physically observe how the child is restrained in the car, point out practices that are reducing the protection of the child, and show the parent how to use the CRD correctly. ${ }^{10}$

In summary, a high proportion of drivers restrain young children they are transporting, despite the perception that their chances of being cited for failing to restrain a child are extremely low. The state should significantly increase enforcement of the mandatory child restraint law, given the high levels of public support for strict enforcement. The mandatory child restraint law and associated programs appear to have caused a

[^6]substantial shift in social norms, such that restraint of children traveling in cars is now expected behavior. A large proportion of CRDs are used incorrectly, however. Improved CRD design and individualized consultation/demonstration of correct use are needed.

6 References

Agent, K.R. Child Safety Seat Usage in Kentucky After Enactment of a Mandatory Usage Law. Lexington: University of Kentucky Transportation Research Program, 1983.

Cunningham, J.L., E.C. Hughes, J.W. Philpot, et al. Parents' Knowledge, Attitudes and Behavior about Child Passenger Safety. Knoxville, TN: The University of Tennessee Transportation Center, May 1981.

Cynecki, M.J. and M.E. Goryl. The Incidence and Factors Associated with Child Safety Seat Misuse. Final Report. Study by Goodell-Grivas, Inc. of Southfield, MI. National Highway Traffic Safety Administration (DOT/HS 806 676), December 1984.

Davis, J.A. Codebook for the Spring 1975 General Social Survey. National Opinion Research Center, University of Chicago, July 1975.

Faber, M.M. and S.E. Hoppe. "Correlates of Seat Belt Use in New Parents." The Quarterly Journal. American Association for Automotive Medicine 6(4):19-29, October 1984.

Foss, R.D. "Psychosocial Factors in Child Safety Restraint Use." Journal of Applied Social Psychology 15(3):269-284, 1985.

Green, L.W. Preventive Medicine. USA. New York: Watson, Neal Academic Publishers, 1976.

Hall, W.L., B.T. Orr, D.T. Suttles, et al. Progress Report On Increasing Child Restraint Usage Through Local Education and Distribution Programs. Chapel Hill: The University of North Carolina Highway Traffic Safety Research Center, 1983.

Hletko, P.J., J.D. Hletko, A.M. Shelness, et al. "Demographic Predictions of Infant Car Seat Use." American Journal of Diseases of Children 137(11):1061-1063, November 1983.

Hughes, E.C. Child Passenger Protection: Knowledge, Attitudes, and Behavior of Tennessee Parents. Knoxville, TN: The University of Tennessee Transportation Center. Institute for Traffic Safety Management and Research, 1979.

Jonah, B.A. and N.E. Dawson. The National Vehicle Occupant Restraint Survey: Attitudes Toward and Use of Restraints by Canadians. Ottawa, Ontario, Canada: Road and Motor Vehicle Traffic Safety Branch, Transport Canada, March 1982.

Kahane, C.J. An Evaluation of Child Passenger Safety: The Effectiveness and Benefits of Safety Seats Summary (Report Number DOT HS 806890). Office of Standards Evaluation, National Highway Traffic Safety Administration (DOT HS 806890), February 1986.

Kielhorn, T.G. and J. Westphal. A Study of the Use and Non-use of Child Restraint Devices in Metropolitan Oklahoma. Study by Oklahoma Survey Consultants. Oklahoma City: Oklahoma Highway Safety Office, 1980.

McCandless, R. "Childhood Socialization." In Handbook of Socialization Theory and Research. D.A. Goslin, ed. Chicago: Rand McNally College Publishing Company, 1969.

Neumann, C.G., A.K. Neumann, M.E. Cockrell, et al. "Factors Associated with Child Use of Automobile Restraining Devices." American Journal of Diseases of Children 128:469-474, October 1974.

Philpot, J.W., K.W. Heathington, R.L. Perry, et al. "Use of Child-Passenger Safety Devices in Tennessee." Transportation Research Record 739:8-14, 1979.

Pless, I.B.and K.J. Roghmann. "Safety Restraints for Children in Automobiles: Who Uses Them?" Canadian Journal of Public Health 69:289-292, 1978.

Rood, D.H., and P.P. Kraichy. Evaluation of New York State's Mandatory Occupant Restraint Law: Volume III, Observational Surveys of Safety Restraint Use by Children in New York State. Final Report, Institute of Traffic Safety Management and Research, State University of New York at Albany. U.S. Department of Transportation, National Highway Traffic Safety Administration (DOT HS806972), Springfield, VA: National Technical Information Service, 1986.

Rotter, J.B. "Generalized Expectations for Internal Versus External Control of Reinforcement." Psychological Monographs 80:1, 1966.

Shelness, A. and J. Jewett. "Observed Misuse of Child Restraints." In SAE Child Injury and Restraint Conference Proceedings. Warendale, PA: Society of Automotive Engineers, pp. 207-215, October 1983,

Stulginskas, J.V., R. Verreault, and I.B. Pless. "A Comparison of Observed and Reported Restraint Use by Children and Adults." Accident Analysis and Prevention 17(5):381-386, 1985.
U.S. Bureau of The Census. 1980 Census of Population, Volume 1: Characteristics of Population, Chapter B, General Population Characteristics, Michigan, 1982.
U.S. Bureau of The Census. 1980 Census of Population Volume 1: Characteristics of the Population, Chapter C. General Social and Economic Characteristics, Michigan, 1983.

Verreault, R., J. Stulginskas, P. Keyl, et al. "Use of Automobile Seat Restraints by Children in Two Canadian Cities." Canadian Medical Association Journal 126:1163-1168, 1982.

Wagenaar, A.C., M.B. Wiviott, and K.L. Businski. Direct Observation of Seat Belt Use in Michigan: December 1985. Ann Arbor, MI: The University of Michigan Transportation Research Institute, February 1986.

Wagenaar, A.C., K.L. Businski, and L.J. Molnar. Direct Observation of Seat Belt Use in Michigan: April 1986. Ann Arbor, MI: The University of Michigan Transportation Research Institute, May 1986a.

Wagenaar, A.C., K.L. Businski, and L.J. Molnar. Direct Observation of Seat Belt Use in Michigan: July 1986. Ann Arbor, MI: The University of Michigan Transportation Research Institute, September 1986b.

Wagenaar, A.C. and R.G. Maybee. Effectiveness Of Michigan's Mandatory Child Restraint Law: Three Year Follow-Up. Ann Arbor, MI: The University of Michigan Transportation Research Institute, August 1986.

Waller, P.F., and P.Z. Barry. Seat Belts: A Comparison of Observed and Reported Use. Chapel Hill, N.C.: The University of North Carolina Highway Safety Research Center, May 1969.

Ward, W.B. and D. Clearie. 1982 Child Safety Seat Utilization Survey Final Report. Office of Health Education, South Carolina Department of Health and Environment Control, December 1982.

Williams, A.F. "Factors Associated with Seat Belt Use in Families." Journal of Safety Research 4:133-138, 1972.

Wittingslow, G.E. "Investigation of Factors Significantly Affecting Child Seat Belt Usage." Accident Analysis and Prevention 15(4):267-274, 1983.

7 Bibliography

Agent, K.R. Child Safety Seat Usage in Kentucky After Enactment of a Mandatory Usage Law. Lexington: University of Kentucky Transportation Research Program, 1983.

Christophersen, E.R. and M.A. Sullivan. "Increasing the Protection of Newborn Infants in Cars." Pediatrics 70(1), July 1982.

Christophersen, E.R. and J. Gyulay. "Parental Compliance with Car Seat Usage: A Positive Approach with Long-Term Follow-Up." Journal of Pediatric Psychology 6(3), 1981.

Christophersen, E.R. "Improving Children's Behavior During Automobile Rides: Do Car Seats Make a Difference?" Pediatrics 60(1), July 1977.

Cunningham, J.L., E.C. Hughes, J.W. Philpot, et al. Parents' Knowledge, Attitudes and Behavior about Child Passenger Safety. Knoxville, TN: The University of Tennessee Transportation Center, May 1981.

Cunningham, J.L., W. Jozwiak, and J.W. Philpot. Factors Affecting Consumer Usage and Acceptance of Child Restraints. Knoxville, TN: The University of Tennessee Transportation Center, September 1983.

Cynecki, M.J. and M.E. Goryl. The Incidence and Factors Associated with Child Safety Seat Misuse, Final Report. Study by Goodell-Grivas, Inc. of Southfield, MI. National Highway Traffic Safety Administration (DOT/HS 806 676), December 1984.

Davis, J.A. Codebook for the Spring 1975 General Social Survey. National Opinion Research Center, University of Chicago, July 1975.

Dawson, N.E. and B.A. Jonah. "Attitudes Toward and Use of Child Restraints in Canada". In American Association for Automotive Medicine Proceedings, 26th Annual Conference. American Association for Automotive Medicine, 1982.

Faber, M. M. and S.E. Hoppe. "Correlates of Seat Belt Use in New Parents." The Quarterly Journal. American Association for Automotive Medicine 6(4):19-29, October 1984.

Fhaner, G. and M. Hane. "Seat Belts: Factors Influencing Their Use: A Literature Survey." Accident Analysis and Prevention 5(1):27-43, 1973.

Foss, R.D. "Psychosocial Factors in Child Safety Restraint Use." Journal of Applied Social Psychology 15(3):269-284, 1985.

Green, L.W. Preventive Medicine. USA. New York: Prodist, 1976.

Guild, A., T. Hanley, and J.A. Holden. "Observed CRD Use and Reported Knowledge and Use of CRDs and Seat Belts in a Chicago Sample." The Quarterly Journal of the American Association for Automotive Medicine 7(4):21-25, October 1985.

Hall, W.L. The North Carolina Passenger Protection Law: Implementation and Evaluation July 1982 - June 1985. Chapel Hill, NC: University of North Carolina Highway Safety Research Center, 1985.

Hall, W.L., B.T. Orr, D.T. Suttles, et al. Progress Report On Increasing Child Restraint Usage Through Local Education And Distribution Programs. Chapel Hill: The University of North Carolina Highway Safety Research Center, 1983.

Hletko, P.J., J.D. Hletko, A.M. Shelness, et al. "Demographic Predictions of Infant Car Seat Use." American Journal of Diseases of Children 137(11):1061-1063, November 1983.

Hughes, E.C. Child Passenger Protection: Knowledge, Attitudes, and Behavior of Tennessee Parents. Knoxville, TN: The University of Tennessee Transportation Center, 1979.

Jonah, B.A. and N.E. Dawson. The National Vehicle Occupant Restraint Survey: Attitudes Toward and Use of Restraints by Canadians. Ottawa, Ontario, Canada: Road and Motor Vehicle Traffic Safety Branch, Transport Canada, March 1982.

Kahane, C.J. An Evaluation of Child Passenger Safety: The Effectiveness and Benefits of Safety Seats Summary. Office of Standards Evaluation, National Highway Traffic Safety Administration (DOT HS 806890), February 1986.

Kielhorn, T.G. and J. Westphal. A Study of the Use and Non-use of Child Restraint Devices in Metropolitan Oklahoma. Study by Oklahoma Survey Consultants. Oklahoma City: Oklahoma Highway Safety Office, 1980.

Klenow, D.J. and G. Rohde. A Longitudinal Analysis of Parental Attitudes, Knowledge Levels and Behaviors Regarding Child Safety Car Seats 1979-1984. Fargo, ND: Dept. of Sociology/Anthropology, North Dakota State University, July 1985.

Kristiansen, C.M. "Seat Belt Legislation and Seat Belt Use: Effects on Differences Related to Sex, Social Class and Smoking." Accident Analysis and Prevention 17(1):75-78, 1985.

Kugle, C.L., A.E. Waller, O.J. Pendleton, et al. A Statewide Sampling Survey of Child Restraint Usage in Texas. College Station, TX: Traffic Accident Research and Evaluation, Texas Transportation Institute, Texas A\&M University, April 1985.

Manheimer, D.I., G.D. Mellinger, and H.M. Crossley. "A Follow-up Study of Seat Belt Usage." Traffic Safety Research Review 10(1):2-13, 1966.

McCandless, R. "Childhood Socialization." In Handbook of Socialization Theory and Research. D.A. Goslin, ed. Chicago: Rand McNally College Publishing Company, 1969.

Miller, J.R. and I.B. Pless. "Child Automobile Restraints: Evaluation of Health Education." Pediatrics 59:907, 1977.

Morgan, J.N. "Who Uses Seat Belts?" Behavioral Science 12(6):463-465, 1967.
Neumann, C.G., A.K. Neumann, M.E. Cockrell, et al. "Factors Associated with Child Use of Automobile Restraining Devices." American Journal of Diseases of Children 128:469-474, 1974.

Philpot, J.W., K.W. Heathington, R.L. Perry, et al. "Use of Child-Passenger Safety Devices in Tennessee." Transportation Research Record 739:8-14, 1979.

Pless, I.B., K. Roghmann, and P. Algranati. "The Prevention of Injuries to Children in Automobiles." Pediatrics 49(3):420-427, 1972.

Pless, I.B. "Accident Prevention and Health Education: Back to the Drawing Board. Pediatrics 62(3):431-435, 1978.

Pless, I.B. and K.J. Roghmann. "Safety Restraints for Children in Automobiles: Who Uses Them?" Canadian Journal of Public Health. 69:289-292, 1978.

Reisinger, K.S. and A.F. Williams. "Evaluation of Programs Designed to Increase the Protection of Infants in Cars." Pediatrics 62:280-287, 1978.

Reisinger, K.S., A.F. Williams, et al. "Effect of Pediatricians' Counseling on Infant Restraint Use." Pediatrics 67:210, 1981.

Rood, D.H., and P.P. Kraichy. Evaluation of New York State's Mandatory Occupant Restraint Law: Volume III, Observational Surveys of Safety Restraint Use by Children in New York State. Final Report, Institute of Traffic Safety Management and Research, State University of New York at Albany. U.S. Department of Transportation, National Highway Traffic Safety Administration (DOT HS806972), Springfield, VA: National Technical Information Service, 1986.

Rotter, J.B. "Generalized Expectations for Internal Versus External Control of Reinforcement." Psychological Monographs 80:1-28, 1966.

Runyan, C. W. Public Health Policy Making: The Role of Epidemiologic Data in Decisions about Motor Vehicle Safety. Dissertation submitted to the faculty of The University of North Carolina at Chapel Hill in partial fulfillment of the requirements for the degree of Doctor of Philosophy in the Department of Health Education, School of Public Health, 1983.

Shelness, A. and J. Jewett. "Observed Misuse of Child Restraints." In SAE Child Injury and Restraint Conference Proceedings. Warendale, PA. Society of Automotive Engineers, p. 207-215, October 1983,

Slovic, P., B. Fishchhoff, and S. Lichtenstein. "Accident Probabilities and Seat Belt Usage: A Psychological Perspective." Accident Analysis and Prevention 10:281-285, 1978.

Stulginskas, J.V., R. Verreault, and I.B. Pless. "A Comparison of Observed and Reported Restraint Use by Children and Adults." Accident Analysis and Prevention 17(5):381-386, 1985.

Teret, S.J., A.S. Jones, A.F. Williams, et al. "Child Restraint Laws: An Analysis of Gaps in Coverage." American Journal of Public Health 76(1):31-34, January 1986.
U.S. Bureau of The Census. 1980 Census of Population, Volume 1: Characteristics of Population, Chapter B, General Population Characteristics, Michigan, 1982.
U.S. Bureau of The Census. 1980 Census of Population Volume 1: Characteristics of the Population, Chapter C. General Social and Economic Characteristics, Michigan, 1983.

Verreault, R., J. Stulginskas, P. Keyl, et al. "Use of Automobile Seat Restraints by Children in Two Canadian Cities." Canadian Medical Association Journal 126:1163-1168, 1982.

Wagenaar, A.C., M.B. Wiviott, and K.L. Businski. Direct Observation of Seat Belt Use in Michigan: December 1985. Ann Arbor, MI: The University of Michigan Transportation Research Institute, February 1986.

Wagenaar, A.C., K.L. Businski, and L.J. Molnar. Direct Observation of Seat Belt Use in Michigan: April 1986. Ann Arbor, MI: The University of Michigan Transportation Research Institute, May 1986a.

Wagenaar, A.C., K.L. Businski, and L.J. Molnar. Direct Observation of Seat Belt Use in Michigan: July 1986. Ann Arbor, MI: The University of Michigan Transportation Research Institute, September 1986b.

Wagenaar, A.C. and R.G. Maybee. Effectiveness Of Michigan's Mandatory Restraint Law: Three Year Follow-Up. Ann Arbor, MI: The University of Michigan Transportation Research Institute, August 1986.

Waller, P.F., and P.Z. Barry. Seat Belts: A Comparison of Observed and Reported Use. Chapel Hill, N.C.: The University of North Carolina Highway Safety Research Center, May 1969.

Ward, W.B. and D. Clearie. 1982 Child Safety Seat Utilization Survey Final Report. Office of Health Education, South Carolina Department of Health and Environment Control, December 1982.

Weber, K. and N. P. Allen. Factors Affecting Consumer Acceptance and Use of Child Restraint Systems. Ann Arbor, MI: Highway Safety Research Institute, The University of Michigan, January 1982.

Weber, K. and J.W. Melvin. "Injury Potential with Misused Child Restraining Systems." In Twenty-Seventh STAPP Car Crash Conference Proceedings, P-134. p. 53-59, 1983.

Weber, K. and N.P. Allan. "Child Restraining Systems: Factors Affecting Their Acceptance and Use." HSRI Research Review May/June 12(6)7-8. Ann Arbor, MI: The University of Michigan Highway Safety Research Institute, 1982.

Williams, A.F. "Factors Associated with Seat Belt Use in Families." Journal of Safety Research 4:133-138, 1972.

Wittingslow, G.E. "Investigation of Factors Significantly Affecting Child Seat Belt Usage." Accident Analysis and Prevention 15(4):267-274, 1983.

Ziegler, P.N. Guidelines for Conducting a Survey of the Use of Safety Belts and Child Safety Seats. Office of Driver and Pedestrian Research, National Highway Traffic Safety Administration, May 1983.

Appendix A

Site Schedule

PHASE I SITE SCHEDULE

DATE	SITE	OBSERVERS
September 14	141: Hardee's 3325 Washtenaw, Ann Arbor	Karen Businski Linda Talik
September 15	142: Hardee's 175 N. Maple, Ann Arbor	Karen Businski Barbara Singer Meg Wiviott
September 16	141: Hardee's 3325 Washtenaw, Ann Arbor	Karen Businski Linda Talik
September 17	241: Hardee's 2626 Pine Grove, Port Huron	Karen Businski Meg Wiviott
September 18	241: Hardee's 2626 Pine Grove, Port Huron	Karen Businski Linda Talik
September 21	241: Hardee's 2626 Pine Grove, Port Huron	Karen Businski Barbara Singer
September 23	251: Kentucky Fried Chicken 3802 Pine Grove, Port Huron	Karen Businski Lev Levenson
September 24	151: Kentucky Fried Chicken 2355 Jackson, Ann Arbor	Karen Businski Lev Levenson
September 26	231: Burger King 3584 Pine Grove, Port Huron	Karen Businski Meg Wiviott
September 27	$\begin{aligned} & \text { 111: A \& W } \\ & 2835 \text { Washtenaw, Ypsilanti } \end{aligned}$	Karen Businski Meg Wiviott
September 28	162: McDonald's 4775 Washtenaw, Pittsfield	Lev Levenson Meg Wiviott
September 29	152: Kentucky Fried Chicken 3552 Washtenaw, Ann Arbor	Lev Levenson Meg Wiviott
October 1	121: Elias Brothers 3315 Washtenaw, Ann Arbor	Karen Businski Meg Wiviott
October 2	221: Elias Brothers 3961 24th Ave., Port Huron	Karen Businski Lev Levenson
October 4	252: Kentucky Fried Chicken 608 24th Ave., Port Huron	Karen Businski Lev Levenson
October 5	$\begin{aligned} & \text { 231: Burger King } \\ & 3584 \text { Pine Grove, Port Huron } \end{aligned}$	Karen Businski Barbara Singer

October 6

October 7

October 8

October 9

October 10

October 11

October 13

October 14

October 15

October 16

October 18

October 19

October 20

October 21

October 22

October 23

October 25

212: A \& W
618 24th, Port Huron
231: Burger King 3584 Pine Grove, Port Huron

112: A \& W
2405 W. Stadium, Ann Arbor
221: Elias Brothers
3961 24th Ave., Port Huron
132: Burger King 4885 Washtenaw, Ann Arbor

162: McDonald's 4775 Washtenaw, Ann Arbor

161: McDonald's 2000 W. Stadium, Ann Arbor

122: Elias Brothers 3611 Plymouth, Ann Arbor

231: Burger King 3584 Pine Grove, Port Huron

231: Burger King 3584 Pine Grove, Port Huron

163: McDonald's State St. \& I-94, Ann Arbor

152: Kentucky Fried Chicken 3552 Washtenaw, Ann Arbor

212: A \& W
618 24th, Port Huron
231: Burger King
3584 Pine Grove, Port Huron
121: Elias Brothers 3315 Washtenaw, Ann Arbor

131: Burger King 2295 W. Stadium, Ann Arbor

252: Kentucky Fried Chicken 608 24th, Port Huron

162: McDonald's 4775 Washtenaw, Ann Arbor

Karen Businski
Barbara Singer
Karen Businski
Barbara Singer
Karen Businski
Lev Levenson
Karen Businski
Meg Wiviott
Karen Businski
Lev Levenson
Karen Businski
Meg Wiviott
Karen Businski
Lev Levenson
Meg Wiviott
Lev Levenson
Meg Wiviott
Karen Businski
Lev Levenson
Karen Businski
Lev Levenson
Karen Businski
Meg Wiviott
Karen Businski Meg Wiviott

Karen Businski Barbara Singer

Karen Businski Barbara Singer

Karen Businski Lev Levenson

Karen Businski
Lev Levenson
Karen Businski
I iv Levenson
Karen Businski
Lev Levenson

October 26	231: Burger King	
3584 Pine Grove, Port Huron	Karen Businski Barbara Singer	
October 27	231: Burger King	
3584 Pine Grove, Port Huron	Karen Businski Barbara Singer	
October 28	161: McDonald's 2000 W. Stadium, Ann Arbor	Karen Businski Lev Levenson
October 31	162: McDonald's	
4775 Washtenaw, Ann Arbor	Karen Businski Meg Wiviott	

DATE	SITE	OBSERVERS
May 1	361: McDonald's 15399 Middlebelt Rd., Livonia	Tom Williams Bob Jacobson
	661: McDonald's 38425 W. Ten Mile Rd., Farmington	Kathy Sullivan Karen Businski
May 2	762: McDonald's 2250 E. Grand River, Howell	Tom Williams Bob Jacobson
	761: McDonald's 8515 W. Grand River, Brighton	Kathy Sullivan Karen Businski
May 3	762: McDonald's 2250 E. Grand River, Howell	Tom Williams Bob Jacobson
	761: McDonalds's 8515 W. Grand River, Brighton	Kathy Sullivan Jethro Woodson
May 4	861: McDonald's G-5390 N. Saginaw, Flint	Tom Williams Jethro Woodson
	965: McDonald's 2250 E. Ten Mile Rd., Warren	Kathy Sullivan Bob Jacobson
May 6	361: McDonald's 15399 Middlebelt Rd., Livonia	Tom Williams Bob Jacobson
	661: McDonald's 38425 W. Ten Mile Rd., Farmington	Kathy Sullivan Jethro Woodson
May 7	861: McDonald's G-5390 N. Saginaw, Flint	Tom Williams Jethro Woodson
	965: McDonald's 2250 E. Ten Mile Rd., Warren	Kathy Sullivan Bob Jacobson
May 8	862: McDonald's 3719 Davison Rd., Flint	Tom Williams Bob Jacobson
	966: McDonald's 17921 E. Nine Mi Rd., East Detroit	Kathy Sullivan Jethro Woodson
May 9	862: McDonald's 3719 Davison Rd., Flint	Tom Williams Bob Jacobson
	966: McDonald's 17921 E. Nine Mi Rd., East Detroit	Kathy Sullivan Karen Businski

May 10	963: McDonald's 27480 Van Dyke, Warren
	561: McDonald's 1535 S. Main St., Chelsea
May 11	963: McDonald's 27480 Van Dyke, Warren
	561: McDonald's 1535 S. Main St., Chelsea
May 14	964: McDonald's 32222 Gratiot, Roseville
	961: McDonald's 30837 Schoenherr, Warren
May 15	964: McDonald's 32222 Gratiot, Roseville
	961: McDonald's 30837 Schoenherr, Warren
May 16	964: McDonald's 32222 Gratiot, Roseville
	966: McDonald's 17921 E. Nine Mi Rd. East Detroit

May $17 \quad \begin{gathered}\text { 863: McDonald's } \\ \text { G-4131 W. Pierson Rd., Flint }\end{gathered}$
962: McDonald's
25141 Hoover, Warren
863: McDonald's
G-4131 W. Pierson Rd., Flint
962: RAINED OUT

May 21
431: Burger King
45114 Ford Rd., Canton
331: Burger King
34835 Plymouth Rd., Livonia

Tom Williams
Jethro Woodson
Kathy Sullivan
Bob Jacobson
Tom Williams
Karen Businski
Kathy Sullivan
Bob Jacobson
Tom Williams
Bob Jacobson
Kathy Sullivan
Karen Businski
Tom Williams
Bob Jacobson
Kathy Sullivan Karen Businski

Tom Williams
Bob Jacobson
Kathy Sullivan Jethro Woodson

Tom Williams Jethro Woodson

Kathy Sullivan Bob Jacobson

Tom Williams Jethro Woodson

Kathy Sullivan Bob Jacobson

Tom Williams Bob Jacobson

Kathy Sullivan Jethro Woodson

May 22

May 23

May 24

May 25

May 28

May 29

May 30

May 31

June 1
431: Burger King
45114 Ford Rd., Canton

331: Burger King 34835 Plymouth Rd., Livonia

831: Burger King G-5453 N. Saginaw, Flint

937: Burger King 1540 E Twelve Mile Rd., Madison

Heights
831: Burger King G-5453 N. Saginaw, Flint

937: Burger King
1540 E Twelve Mile Rd., Madison
Heights
631: Burger King 32704 Grand River, Farmington

731: Burger King 8489 W. Grand River, Brighton

631: Burger King 32704 Grand River, Farmington

731: Burger King 8489 W. Grand River, Brighton

932: Burger King 27010 Hoover Warren

935: Burger King
20840 Gratiot East Detroit
932: Burger King 27010 Hoover Warren

935: Burger King 20840 Gratiot East Detroit

932: Burger King 27010 Hoover Warren

935: Burger King 20840 Gratiot East Detroit

933: Burger King 24840 Ryan Warren

832: Burger King 4024 Davison Rd., Flint

Tom Williams
Bob Jacobson
Kathy Sullivan Jethro Woodson

Tom Williams Jethro Woodson

Kathy Sullivan Bob Jacobson

Tom Williams Bob Jacobson

Kathy Sullivan Jethro Woodson

Tom Williams
Bob Jacobson
Kathy Sullivan Jethro Woodson

Tom Williams
Bob Jacobson
Kathy Sullivan Jethro Woodson

Tom Williams Jethro Woodson

Kathy Sullivan Bob Jacobson

June 4	$\begin{aligned} & \text { 933: Burger King } \\ & \text { 24840 Ryan Warren } \end{aligned}$	Tom Williams Jethro Woodson
	832: Burger King 4024 Davison Rd., Flint	Kathy Sullivan Bob Jacobson
June 6	833: Burger King G-4408 W. Pierson Rd., Flint	Tom Williams Bob Jacobson
	$\begin{aligned} & \text { 934: Burger King } \\ & 26631 \text { Van Dyke } \quad \text { Warren } \end{aligned}$	Kathy Sullivan Jethro Woodson
June 7	833: Burger King G-4408 W. Pierson Rd., Flint	Tom Williams Bob Jacobson
	934: Burger King 26631 Van Dyke Warren	Kathy Sullivan Jethro Woodson
June 8	762: McDonald's 2250 E. Grand River, Howell	Tom Williams Bob Jacobson
	761: McDonald's 8515 W. Grand River, Brighton	Kathy Sullivan Jethro Woodson
June 9	762: McDonald's 2250 E. Grand River, Howell	Tom Williams Bob Jacobson
	761: McDonald's 8515 W. Grand River, Brighton	Kathy Sullivan Jethro Woodson
June 10	762: McDonald's 2250 E. Grand River, Howell	Tom Williams Bob Jacobson
	761: McDonald's 8515 W. Grand River, Brighton	Kathy Sullivan Jethro Woodson
June 11	862: McDonald's 3719 Davison Rd., Flint	Tom Williams Bob Jacobson
	863: McDonald's G-4131 W. Pierson Rd., Flint	Kathy Sullivan Jethro Woodson
June 12	862: McDonald's 3719 Davison Rd., Flint	Tom Williams Bob Jacobson
	863: McDonald's G-4131 W. Pierson Rd., Flint	Kathy Sullivan Jethro Woodson

Appendix B

Data Collection Instruments

124

SITE DESCRIPTION

Site \#: \qquad Site location: \qquad

Date [month/day]: \qquad / _ _ / 1985/6

Start Time: \qquad : _ -

Day of Week
[] Monday
[] Tuesday
[] Wednesday
[] Thursday
[] Friday
[] Saturday
[] Sunday

Break Time (total number of minutes during observation period): \qquad
Lunch Time: \qquad : \qquad to \qquad : \qquad

End Time: \qquad : \qquad

Hours	\# of Interviews	Refused
		Start R \#:————
$10-11$		End R \#: - ———
$11-12$		

$$
12-1
$$

1-2
2-3
3-4
4-5
5-6
6-7
Total
Observer \#:
Interviewer \#: \qquad
\qquad

Site \#: \qquad Respondent \#: \qquad

OBSERVATION FORM

DRIVER	CHILD PASSENGER	
[] No Rstrt	[] No Rstrt ---- NOTE: RECORD IN COMMENTS	
[] Belted	[] Belted [] CRD	HOW CHILD IS RIDING.
[] Male	Seat Position	
[] Female	[]FC	Number of occupants in vehicle
[] 16-29	[] RL	
[] 30-59	[] RC	-- --
[] 60+	[] RR	
	[] Cargo	Brand Name
	[] 3/4 Seat	- -

Is CRD present?

[] yes
[] no

CRD Type
[] Infant only
[] Toddler/Convertible
[] Booster
[] DK
[] SKIP

Auto Seat Belt Fastened
[] yes
[] no
[] DK
[] SKIP

Auto Seat Belt Snug
[] yes
[] DK
[] SKIP

Auto Seat Belt Routing Correct
[] yes
[] no
[] DK
[] SKIP

Locking Clip
[] yes
[] required-not used
[] not required

Seat Direction
[] forward
[] rearward
[] sideward
[] SKIP

Seat Angle

[] reclined
[] upright
[] DK
[] SKIP

Tether Required
[] yes
[] no
[] DK
[] SKIP
Tether Used

Tether Anchored

Anchored Properly
[] yes
[] no
[] DK
[] SKIP
[] yes
[] no
[] SKIP

Harness Snug

[] yes
[] no
[] DK
[] SKIP

Harness Clip
 [] yes
 [] no
 [] DK
 [] SKIP

Harness Position
[] yes
[] no --HOW INCORRECT?
[] DK
[] SKIP

Vehicle Size
[] small
[] medium
[] large
[] pick-up
[] van
[] other

Time Interviewed (24 hour): \qquad : ——

COMMENTS If child is unrestrained, note how child is riding [i.e., on lap, sitting, standing, lying].
\qquad
\qquad

INTERVIEW FORM

Hi, my name is \qquad from the University of Michigan. We are conducting a brief survey and wondered if you would be willing to answer a few questions [and allow me to look at your child seat]. It should take less than 5 minutes. You don't have to answer any question you don't want to. Everything you tell us will be kept confidential and will be used only for research.
[IF RESPONDENT AGREES TO PARTICIPATE] Thank you for your cooperation. This is not a test. We simply would like to know your opinions. The first questions I have are about the children riding with you today.

1. Are any of the children riding with you today under age four?
[] yes
[] no IF NO ------ TERMINATE INTERVIEW
2. Are you the parent of any child under four in the vehicle?
[] yes
[] no IF NO— \downarrow
3. Is the parent of the child with you today?
[] yes ---- INTERVIEW PARENT [] no ----- INTERVIEW DRIVER
[] SKIP
4. What are the ages of the child/ren with you today? [Four youngest if more than four children.]

Child 1: \qquad Child 2: \qquad Child 3: \qquad Child 4: \qquad

IDENTIFY CHILD - INFORM PARENT WHICH CHILD THEY SHOULD REFER TO IN THE FOLLOWING QUESTIONS.

5. In what month and year was the child born?

[] Jan	[] July
[] Feb	[] Aug
[] Mar	[] Sept
[] Apr	[] Oct
[] May	[] Nov
[] June	[] Dec
[] DK	

$19 _\quad \begin{aligned} & \text { CODE } 66 \text { IF DK } \\ & \text { CODE } 77 \text { IF R }\end{aligned}$

6 . Is the child a boy or a girl?
[] boy
[] girl
7. Does this child have any brothers or sisters?
[] yes IF YES
[] no
[] DK
[] R
\qquad 8. How many are older?

- -

9. How many are younger?
10. In the last seven days, from last
through yesterday, how many days did you drive with children under age four in the car?
\qquad days

A $=$ IN CRD
B = BELTED WITH CRD PRESENT
C = UNRESTRAINED WITH CRD PRESENT
D = BELTED WITHOUT CRD PRESENT
$\mathrm{E}=\mathrm{UNRESTRAINED}$ NO CRD PRESENT
\qquad
11. [SHOW CARD A] Look at this card and tell me how you first learned about child seats. Was it from:
[] news media
[] doctor
[] spouse
[] other health care professional
[] friend
[] relative
[] school/daycare teachers
[] other IF OTHER---Who was it? \qquad
[] DK
[] R
12. Where did you get the child seat?
[] received as gift
[] bought it
[] got it from a friend or relative
[] got it from loan program
[] other Please specify \qquad
[] DK
[] R
13. Did you receive instructions on how to install or use the child seat?
[] yes IF YES --------
[] no
[] DK
[] R
14. Were the instructions verbal, written, or both?
[] verbal
[] written
[] both
[] DK
[] R
[] SKIP
15. Who gave you the instructions?
verbal written

[]	[]	manufacturer
[]	[]	store ----PROMPT: Did the instructions
[]	[]	friend
[]	[]	relative
[]	[]	spouse
[]	[]	loan program
[]	[]	other IFOTHER--Who was this?
[]	[]	DK
[]	[]	R
[]	[]	SKIP
[]	[]	NA

16. Who installed the child seat? Was it the child's:
[] mother
[] father
[] both parents
[] brother/sister
[] other relative
[] or someone els
[] DK
[] R
17. Did you/they receive help installing the child seat?
[] yes
IF YES

[] no
[] DK
[] R
Who? \qquad

18. Who helped? IF MORE THAN ONE HELPED, PROMPT
[] store WHICH HELPED THE MOST
[] friend
[] relative
[] spouse
[] loan program
[] other IF OTHER: Who was it?
[] DK
[] R
[] SKIP
19. To the best of your knowledge is the child seat installed in the car according to the manufacturer's instructions?
[] yes
[] no IF NO
[] DK
[] R

20. What is different about the way it is installed?
21. Why was it installed the way it is?
22. To the best of your knowledge, when you drove here today, was
the child riding in the child seat according to the instructions?
[] yes
[] no IF NO
[] DK
[] R
23. What is different about the way the child was riding?
24. Why was the child was riding this way?
\qquad
IS CHILD SEAT FOR THIS CHILD?
YES - CONTINUE WITH FORM B
NO - SKIP TO FORM D
25. [SHOW CARD A] Look at this card and tell me how you first learned about child seats? Was it from:
[] news media
[] doctor
[] spouse
[] other health care professional
[] friend
[] relative
[] school/daycare teachers
[] other IF OTHER---Who was it? \qquad
[] DK
[] R
26. Where did you get the child seat?
[] received as gift
[] bought it
[] got it from a friend or relative
[] got it from loan program
[] other Please specify
[] DK
[] R
27. Did you receive instructions on how to install or use the child seat?
[] yes IF YES
[] no
[] DK
[] R
28. Were the instructions verbal, written, or both?
[] verbal
[] written
[] both
[] DK
[] R
[] SKIP
29. Who gave you the instructions?
verbal written

30. Who installed the child seat? Was it the child's:
[] mother
[] father
[] both parents
[] brother/sister
[] other relative
[] or someone else Who? \qquad
[] DK
[] R
31. Did you/they receive help installing the child seat?
[] yes
[] no
[] DK
[] R
IF YES

32. Who helped? IF MORE THAN ONE HELPED, PROMPT
[] store WHICH HELPED THE MOST
[] friend
[] relative
[] spouse
[] loan program
[] other IF OTHER: Who was it?
[] DK
[] R
[] SKIP
33. To the best of your knowledge is the child seat installed in
the car according to the manufacturer's instructions?
[] yes
[] no IF NO
[] DK
[] R
34. What is different about the way it is installed?
35. Why was it installed the way it is?
36. Today when you drove in here the/your child was not riding in the child seat. Why was the child was riding this way?

FORM C

\qquad
IS CHILD SEAT FOR THIS CHILD?

YES - CONTINUE WITH FORM C

NO - SKIP TO FORM E

11. [SHOW CARD A] Look at this card and tell me how you first learned about child seats? Was it from:
[] news media
[] doctor
[] spouse
[] other health care professional
[] friend
[] relative
[] school/daycare teachers
[] other IF OTHER---Who was it? \qquad
[] DK
[] R
12. Where did you get the child seat?
[] received as gift
[] bought it
[] got it from a friend or relative
[] got it from loan program
[] other Please specify \qquad
[] DK
[] R
13. Did you receive instructions on how to install or use the child seat?

14. Were the instructions verbal, written, or both?
[] verbal
[] written
[] both
[] DK
[] R
[] SKIP
15. Who gave you the instructions?
verbal written

[]	[]	manufacturer
[]	[]	store ---PROMPT: Did the instructions
[]	[]	friend
[]	[]	relative
[]	[]	spouse
[]	[]	loan program
[]	[]	other IF OTHER--Who was this?
[]	[]	DK
[]	[]	R
[]	[]	SKIP
[]	[]	NA

16. Who installed the child seat? Was it the child's:
[] mother
[] father
[] both parents
[] brother/sister
[] other relative
[] or someone else Who? \qquad
[] DK
[] R
17. Did you/they receive help installing the child seat?
[] yes
[] no
[] DK
[] R
IF YES
SS

18. Who helped? IF MORE THAN ONE HELPED, PROMPT
[] store WHICH HELPED THE MOST
[] friend
[] relative
[] spouse
[] loan program
[] other IF OTHER: Who was it?
[]DK
[] R
[] SKIP
19. To the best of your knowledge is the child seat installed in the car according to the manufacturer's instructions?
[] yes
[] no IF NO
[] DK
[] R

20. What is different about the way it is installed?
21. Why was it installed the way it is?
——
22. Today when you drove in here the/your child was not riding in the child seat.

Why was the child was riding this way?
27. [SHOW CARD C] Look at this card and please tell me which one item best describes your reason for not using a seat belt for this child.
[] child doesn't like them
[] too much trouble
[] don't think they really protect in a crash
[] other [please specify] \qquad .
\qquad
11. [SHOW CARD A] Look at this card and tell me how you first learned about using a seat belt for your child? Was it from:
[] news media
[] doctor
[] spouse
[] other health care professional
[] friend
[] relative
[] school/daycare teachers
[] other IF OTHER---Who was it? \qquad
[] DK
[] R
25. Do you have a child seat for this child?
[] yes
[] no
[]DK
[]R
[]NA
26. [SHOW CARD B] Look at this card and please tell me which one item best describes your reason for not using a child seat.
[] too expensive
[] child doesn't like them
[] too much trouble to use
[] takes too much room in the car
[] too difficult to install
[] don't think they really protect in a crash
[] child too big
[] CRD in other vehicle
[] CRD in parents vehicle
[] didn't know they were available
[] too busy to get one
[] other [please specify] \qquad .
[] DK
[] R

FORM E

\qquad
25. Do you have a child seat for this child?
[] yes
[] no
[] DK
[] R
[]NA
26. [SHOW CARD B] Look at this card and please tell me which one item best describes your reason for not using a child seat.
[] too expensive
[] child doesn't like them
[] too much trouble to use
[] takes too much room in the car
[] too difficult to install
[] don't think they really protect in a crash
[] child too big
[] CRD in other vehicle
[] CRD in parents vehicle
[] didn't know they were available
[] too busy to get one
[] other [please specify] \qquad .
[] DK
[] R
27. [SHOW CARD C] Look at this card and please tell me which one item best describes your reason for not using a seat belt for this child.
[] child doesn't like them
[] too much trouble
[] don't think they really protect in a crash
[] not enough seat belts for number of occupants
[] other [please specify] \qquad .
[] DK
[] R

ALL RESPONDENTS

\qquad
28. Have you heard of the Michigan Child Restraint law?
[] yes IF YES
[] no

29. Would you tell me briefly what you know about the law?
[] 1 = PERFECT KNOWLEDGE
[] $2=>1$ IN CRD 1-3 IN BELT
[] 3 = RESTRAINED UNDER 4
[] 4 = RESTRAINED NO/INCORRECT AGE
[] 5 = NO KNOWLEDGE
[] SKIP

IF RESPONDENT ANSWERS "NO" TO QUESTION 28 OR GIVES INCORRECT ANSWERS TO QUESTIONS 29, INFORM RESPONDENT THAT: The law requires children under four-years-old to be in child seats or seat belts when traveling in a car.
30. How much would the thought of getting a ticket for not buckling up young
children influence your decision to use child seats or seat belts?
[] great influence
[] some influence
[] no influence
[] DK
[] R
[]NA
31. What percent of parents with small children do you think are in
favor of the child restraint law?
[] less than 20%
[] between 20 and 40%
[] between 40 and 60%
[] between 60 and 80%
[] more than 80%
[] DK
[] R
32. What percent of parents with small children do you think obey the
child restraint law?
[] less than 20%
[] between 20 and 40%
[] between 40 and 60%
[] between 60 and 80%
[] more than 80%
[] DK
[] R
33. How often do you think police officers stop drivers who they see are not buckling up young children?
[] most of the time
[] sometimes
[] rarely
[] never
[] DK
[] R
34. How often do you think police officers give tickets to drivers they stop who are not buckling up young children?
[] most of the time
[] sometimes
[] rarely
[] never
[] DK
[] R

The next questions are for general background.
35. Are you currently
[] single
[] married
[] divorced/separated
[] widowed
[] R
36. [SHOW CARD D] Look at this card and please give me the letter that indicates your yearly family income, before taxes.
[] A
[] B
[] C
[] D
[] DK ------- PROMPT: What do you think is the closest group?
[] R
37. What is your birth date?
[] Jan
[] Feb
[] Mar
[] Apr
[] May
[] June
[] July
[] Aug
[] Sept
[] Oct
[] Nov
[] Dec
[] R
38. What is your ethnic background?
[] White
[] Black
[] Oriental
[] Hispanic
[] Native American
[] Other Please specify \qquad

This is the end of the interview, but I would like you to fill out a brief questionnaire. It won't take more than 10 minutes to fill out and you can do it at any time. If you complete it during lunch and return it to me on you way out of the restaurant, I will give you a coupon from \qquad for . If you can't complete it now, we'd appreciate it if you would mail it back tomorrow. When it is completed put it in the pre-stamped envelope that is attached and mail to the University of Michigan.

DID RESPONDENT TAKE QUESTIONNAIRE?
[] YES
[] NO
WAS RESPONDENT OFFERED INCENTIVE?
[] YES
[] NO
[] SKIP

[IF RESPONDENT REFUSES QUESTIONNAIRE]

Thank you for your cooperation.
[IF RESPONDENT AGREES, GIVE THEM QUESTIONNAIRE AND ENVELOPE]
Thank you for helping. Your assistance is greatly appreciated.

QUESTIONNAIRE

Introduction

This survey is being conducted by the University of Michigan. You do not have to be part of the survey. If you do participate all the information you give will be kept confidential. Only a summary of the information collected will be used in reports written about this survey. Because the survey is voluntary you may skip over any question that you do not want to answer. However, it is most helpful if you carefully answer all questions. It should take you less than 10 minutes to complete the questionnaire. It would be helpful if you would complete the questionnaire during your meal. If you can't complete it now, please mail it in the attached envelope to the University of Michigan. The envelope provided already has a stamp on it.
\qquad Respondent \#

QUESTIONNAIRE

1. Were you the driver of the vehicle when you received this questionnaire?
[] yes
[] no If "no" what is your relation to the driver? \qquad

THE NEXT QUESTION SHOULD BE ANSWERED FOR THE CHILD IDENTIFIED IN THE INTERVIEW

2. What is your relation to the child?
[] parent
[] sister/brother
[] grandparent
[] other relative
[] babysitter
[] friend
[] other Please specify \qquad
3. Which problem do you think kills the most children age 1 to 10 in the

United States?
[] child abuse
[] motor vehicle accidents
[] cancer, including leukemia
[] other diseases
4. Have you ever been in a motor vehicle accident (including fender benders)?
[] yes
[]no
5. Have you ever been injured in a motor vehicle accident that required any home treatment such as band-aids, ice, or aspirin or a visit to a doctor or emergency room?
[] yes
[] no
6. Has anyone close to you (friend or relative) been killed in a motor vehicle accident?
[] yes
[] no
7. Has anyone close to you (friend or relative) been injured in a motor vehicle accident that required a stay in the hospital?
[] yes
[] no
8. In 1983, 1,200 children under age 4 were killed in car crashes in the United States. If all children used seat belts or child seats, how many do you think would have been killed?
[] more than 1,200
[] 501-1,199
[] 251-500
[] less than 250
9. When riding in a motor vehicle how often do you wear a seat belt?
[] never
[] rarely IF RARELY
[] sometimes IF SOMETIMES
[] most times IF MOST TIMES
[] always
10. Are you more likely to wear a seat belt on long trips or short trips?
[] long trips
[] short trips
[] no difference between long and short trips
[] Skip
11. When driving a motor vehicle with your children under 4 years old how often do they ride in child seats or seat belts?
[] never
[] rarely
[] sometimes
[] most times
[] always
[] don't have children under four
12. Are they more likely to ride in child seats or seat belts on long trips or short trips?
[] long trips
[] short trips
[] no difference between long and short
trips
[] Skip
13. When you are driving with young children that are not your own, how often do you require that they buckle up?
[] never
[] rarely
[] sometimes
[] most times
[] always
[] never drive with young children other than my own
14. Is your husband/wife more likely or less likely than you are to ensure that your children under age four are buckled up?
[] more likely
[] less likely
[] just as likely
[] don't know
[] not currently married
15. What do you think is the average cost of a child seat?
[] \$10 to \$24
[] \$25 to \$39
[] \$40 to \$54
[] over \$55
16. If child restraint use were not required by law, would you put your child in a child seat or seat belt?
[] never
[-] rarely
[] sometimes
[] always
[] don't have children under 4 years
17. What portion of your friends with children under four years put them in child seats or seat belts?
[] less than 20%
[] between 20 and 40%
[] between 40 and 60%
[] between 60 and 80%
[] more than 80%
[] don't have friends with children under 4
18. Do you think many people notice whether or not young children in other cars use child seats or seat belts?
[] yes
[] no

150
PLEASE INDICATE THE DEGREE TO WHICH YOU DISAGREE OR AGREE WITH THE
FOLLOWING STATEMENTS BY CIRCLING THE APPROPRIATE NUMBER. IF YOU DO NOT HAVE CHILDREN, CIRCLE "NA".
19. The use of child seats should be required by law.

1234567
20. Parents will not use a child seat unless there is a fine for breaking the law.
21. Child restraint laws should be strictly enforced.
-
22. A child restraint law makes parents more likely to secure their child in a child seat.

1234567
23. A small child who is held on the lap of a passenger in a car is as safe as a child riding in a child seat.
24. It is a bother to put my child in a child seat.
\qquad
25. My child likes to ride in child seats.
-
26. My child does not behave if he/she has to ride in a child seat.
\qquad
27. Children under two years of age are willing to ride in a child seat.

1234567 NA

1234567 NA

1234567 NA

1234567
28. Two and three year old children are willing to ride in child seats.

1234567
29. Children who don't like riding in child seats get used to it with regular use.

1234567
30. The use of seat belts by adults should be required by law.

1234567
31. Laws that require the use of seat belts infringe on individual rights.

1234567
32. The federal government in Washington is trying to do too many things that should be left to individuals and private businesses.

1234567
33. The state government in Lansing is trying to do too many things that should be left to individuals and private businesses.

1234567
34. Seat belts for adults don't allow movement for comfortable driving.

1234567

THE NEXT QUESTIONS ARE FOR GENERAL BACKGROUND.

35. Are you currently
[] employed
[] unemployed
[] homemaker
[] retired
[] not applicable
36. What is your usual occupation? \qquad

152
37. Is your husband/wife currently
[] employed
[] unemployed
[] homemaker
[] retired
[] not applicable
38. What is his/her usual occupation? \qquad
39. What is the highest level of school you have completed?
[] less than 8th grade
[] between 8 th and 11th grade
[] high school graduate
[] some college or vocational/technical school
[] college graduate
[] post graduate education

THE NEXT QUESTIONS ARE ABOUT HEALTH.

40. When was the last time you personally went to see a dentist?
[] in last 6 months
[] 6 to 12 months ago
[] 1 to 2 years ago
[] more than 2 years ago
41. Do you now, or have you ever smoked cigarettes?
[] never smoked
[] smoked in past
[] smoke now

42. How many cigarettes do/did you smoke each day?
[] less than half a pack a day
[] half to one pack a day
[] one to two packs a day
[] more than two packs a day
[]

If you have any comments that you would like to make regarding this survey or any of the questions, please do so on the back of this page.

Thank you.

Appendix C

Child Restraint Study Codebook

Variable Number	Variable Name	Field Width	Character Type	Mult Resp	Page Number

21	Driver Restraint Use	1	Numeric	11
22	Driver Sex	1	Numeric	11
23	Driver Age-Estimated	1	Numeric	11
24	Driver Age-Self Reported	2	Numeric	11
25	Child Restraint Use	1	Numeric	13
26	Child Restraint Use(Y/N)	1	Numeric	13
27	Correctness of Use	2	Numeric	13
28	Child Seat Position	1	Numeric	14
29	Number Vehicle Occupants	2	Numeric	14
30	Brand Name	2	Numeric	14
31	CRD Present	1	Numeric	16
32	CRD Type	1	Numeric	17
33	Auto Belt Fastened	1	Numeric	17
34	Auto Belt Snug	1	Numeric	17
35	Auto Belt Routing OK	1	Numeric	17
36	Locking Clip	1	Numeric	18
37	Seat Direction	1	Numeric	18
38	Seat Angle	1	1	Numeric

Variable Number

54	Child Under Four	1	Numeric	25
55	Is Driver Parent	1	Numeric	25
56	Parent in Car	1	Numeric	25
57	Child Birth Month	2	Numeric	25
58	Child Birth Year	2	Numeric	26
59	Child Age-months	2	Numeric	26
60	Child Sex	1	Numeric	27
61	Siblings	1	Numeric	28
62	Number Older Siblings	2	Numeric	28
63	Number Younger Siblings	2	Numeric	28
64	Child Birth Order	2	Numeric	28
65	Days Driving w/Children	1	Numeric	29
66	Form	1	Numeric	29
67	Learn About Restraints	2	Numeric	29
68	Obtain Seat	1	Numeric	30
69	Receive Instructions	1	Numeric	30
70	How Instructions	1	Numeric	30
71	Instructions-verbal	2	Numeric	30
72	Instructions- Written	2	Numeric	31
73	Who Installed Seat	2	Numeric	31
74	Help Installing Seat	1	Numeric	32
75	Who Help Install Seat	2	Numeric	32
76	Installed Correctly	1	Numeric	32
77	How Incorrectly Install	2	Numeric	32
78	Why Incorrectly Install	2	Numeric	33

Child Restraint Study Interview Data					159
Variable Number	Variable Name	Field Width	Character Type	Mult Resp	Page Number
79	Child Riding Correctly	1	Numeric		33
80	How Incorrectly Riding	2	Numeric		33
81	Why Incorrectly Riding	2	Numeric		34
82	Have a Seat for Child	1	Numeric		34
83	Why Not Use Child Seat	2	Numeric		34
84	Why Not Use Seat Belt	2	Numeric		35
85	Hear of CRD Law	1	Numeric		35
86	Knowledge of Law	1	Numeric		36
87	Fear of Ticket	1	Numeric		36
88	Percent in Favor of Law	1	Numeric		36
89	Percent Obey Law	1	Numeric		37
90	How Often Police Stop	1	Numeric		37
91	How Often Police Ticket	1	Numeric		37
92	Marital Status	1	Numeric		38
93	Family Income	1	Numeric		38
94	Birth Month	2	Numeric		38
95	Birth Year	2	Numeric		39
96	Ethnic Background	1	Numeric		40
97	Take Questionnaire	1	Numeric		40
98	Incentive Offered	1	Numeric		40

Variable Number	$\begin{aligned} & \text { Variable } \\ & \text { Name } \end{aligned}$	$\begin{aligned} & \text { Field } \\ & \text { Width } \end{aligned}$	Character Type	Mult Resp	Page Number
99	Questionnaire Present	1	Numeric		41
100	Were You Driver	1	Numeric		41
101	Relation to Driver	2	Numeric		41
102	Relation to Child	1	Numeric		42
103	What Kills Most Children	1	Numeric		42
104	Ever in a Crash	1	Numeric		42
105	Injured in Crash	1	Numeric		42
106	Significant Other Killed	1	Numeric		43
107	Sig. Other Hospitalized	1	Numeric		43
108	Est. Belted Fatalities	1	Numeric		43
109	Freq. Seat Belt Use	1	Numeric		43
110	When Seat Belt Used	1	Numeric		44
111	How Often Child Rest.	1	Numeric		44
112	When Children Restrained	1	Numeric		44
113	Other Children Rest.	1	Numeric		44
114	Spouse Child Rest. Use	1	Numeric		45
115	Est. Cost of CRD	1	Numeric		45
116	Use CRD Without Law	1	Numeric		45
117	\% Friends Who use CRD	1	Numeric		45
118	Other People Notice CRD	1	Numeric		46
119	CRD Should be Law	1	Numeric		46
120	CRD Not Used W/O Law	1	Numeric		46
121	Enforce CRD Law	1	Numeric		46
122	CRD Law Causes Use	1	Numeric		47
123	In Lap is Safe	1	Numeric		47

Variable Number	Variable Name	Field Width	Character Type	Mult Resp	Page Number
124	CRD is a Bother	1	Numeric		47
125	My Child Likes CRD	1	Numeric		48
126	Child Misbehaves in CRD	1	Numeric		48
127	Child Under 2 Likes CRD	1	Numeric		48
128	Childern 2-3 Like CRD	1	Numeric		49
129	Children Get Used to CRD	1	Numeric		49
130	Make Adult Belt Use Law	1	Numeric		49
131	Belt Law Infringe Rights	1	Numeric		50
132	Feds Do Too Much	1	Numeric		50
133	State Does Too Much	1	Numeric		50
134	Belts Uncomfortable	1	Numeric		51
135	Employment Status	1	Numeric		51
136	Occupation	2	Numeric		51
137	Spouse Employment Status	1	Numeric		52
138	Spouse Occupation	2	Numeric		53
139	Education Level	1	Numeric		54
140	Last Dentist Visit	1	Numeric		54
141	Smoked Cigarettes	1	Numeric		54
142	How Many Cigarettes	1	Numeric		55
143	Correct CRD Use	1	Numeric		55
144	Family Occupation	2	Numeric		55

The Site Variables are coded once for each site and are the same for all subjects at a given site on a given day.

0	0.0	00. Missing Data
23	3.2	01.
32	4.5	02.
31	4.3	03.
28	3.9	04.
14	2.0	05.
22	3.1	06.
22	3.1	07.
49	6.8	08.
55	7.7	09.
53	7.4	10.
40	5.6	11.
17	2.4	12.
8	1.1	13.
21	2.9	14.
25	3.5	15.

FREQ Prent Var 4 Day

41	5.7	16.
21	2.9	17.
6	0.8	18.
5	0.7	19.
8	1.1	20.
12	1.7	21.
15	2.1	22.
11	1.5	23.
17	2.4	24.
31	4.3	25.
20	2.8	26.
16	2.2	27.
43	6.0	28.
11	1.5	29.
7	1.0	30.
13	1.8	31.

Variable 5		Start Hour	MD1:	00	Field	Width: 2
FREQ Prent		Start Hour				
0	0.0	00. Missing Data				
222	31.0	10.				
469	65.4	11.				
	1.8	12.				
	0.6	13.				
	1.3	16.				
Variable 6		Start Minute	MD1: MD2 :	$\begin{aligned} & 99 \\ & 61 \end{aligned}$	Field Type:	Width: 2
FREQ Prent		Start Minute				
275	38.4	00.				
62	8.6	10.				
88	12.3	15.				
15	2.1	20.				
28	3.9	25.				
142	19.8	30.				
14	2.0	38.				
16	2.2	40.				
37	5.2	45.				
17	2.4	50.				
23	3.2	55.				
0	0.0	99. Missing Data				

Variable	7	Day of Week	$\begin{aligned} & \text { MD1 : } \\ & \text { MD2: } \end{aligned}$	0	Field Type:	Width: 1 Numeric
FREQ Prent		Day of Week				
0	0.0	O. Missing Data				
47	6.6	1. Monday				
58	8.1	2. Tuesday				
92	12.8	3. Wednesciay				
114	15.9	4. Thursday				
156	21.8	5. Friday				
153	21.3	6. Saturday				
97	13.5	7. Sunday				
Variable	8	\# Break Minutes	MD1:	99	Field	Width: 2
FREQ Prent		\# Break Minutes				
613	85.5	00.				
7	1.0	05.				
4	0.6	07.				
35	4.9	10.				
44	6.1	15.				
14	2.0	30.				
0	0.0	99. Missing Data				

Variable 10	Lunch start - minute	MDI:	99	Field	Width: 2
		MD2 :	61	Type:	Numeric
FREQ Prent	Lunch start - minute				
55877.8	00.				
182.5	05.				
415.7	10.				

EREQ Prent Var 10 Lunch start - minute
$20 \quad 2.8 \quad 15$.
$11 \quad 1.5 \quad 20$.
131.8 30.
$6 \quad 0.8 \quad 35$.
$42 \quad 5.9 \quad 45$.
81.150.

0 0.0 99. Missing Data

Variable 12		Lunch end - minute	MD1:	99	Field	Width: 2
FREQ Prent						
		Lunch end - minute				
220	30.7	00.				
6	0.8	05.				
32	4.5	15.				
17	2.4	20.				
331	46.2	30.		.		
18	2.5	35.				
36	5.0	40.				
29	4.0	45.				
11	1.5	50.				
17	2.4	55.				
0	0.0	99. Missing Data				

Variable 13	End time - hour	MD1:	00	Field Width: 2
MD2:	25	Type: Numeric		

0	0.0	00. Missing Data
2	0.3	12.
6	0.8	14.
18	2.5	15.

FREQ Prent Var 13 End time - hour
$90 \quad 12.6 \quad 16$.
$277 \quad 38.6 \quad 17$.
$169 \quad 23.618$.
15521.619.

Variable 14		End time - minute	MD1:	99	Field	Width: 2
			MD2 :	61	Type:	Numeric
FREQ Prent		End time - minute				
382	53.3	00.				
16	2.2	04.				
61	8.5	05.				
6	0.8	08.				
11	1.5	10.				
41	5.7	15.				
34	4.7	20.				
10	1.4	25.				
63	8.8	30.				
24	3.3	35.				
7	1.0	40.				
40	5.6	45.				
18	2.5	50.				
4	0.6	55.				
0	0.0	99. Missing Data				

Variabl	e 15	Start Respondent \#	MD1:	0000	Field	Width: 4
			MD2 :	9999	Type:	Numeric
FREQ	Prent	Start Respondent \#				
0	0.0	0000. Missing Data				
5	0.7	0001.				
2	0.3	0006.				
4	0.6	0008.				
1	0.1	0012.				
4	0.6	0013.				
6	0.8	0017.				
1	0.1	0024.				
4	0.6	0026.				
9	1.3	0030.				
8	1.1	0039.				
15	2.1	0047.				
6	0.8	0063.				
3	0.4	0069.				
8	1.1	0072.				
6	0.8	0080.				

FREQ Prent	Var 15	Start Respondent \#
14	2.0	0086.
2	0.3	0100.
4	0.6	0102.
5	0.7	0106.
9	1.3	0111.
9	1.3	0120.
13	1.8	0129.
9	1.3	0142.
8	1.1	0152.
8	1.1	0160.
6	0.8	0168.
13	1.8	017.
2	0.3	0188.
5	0.7	0190.
8	1.1	0195.
3	0.4	0203.
6	0.8	0206.
4	0.6	0212.
19	2.6	0216.
11	1.5	0235.
8	1.1	0246.
11	1.5	0254.
6	0.8	0265.
9	1.3	0271.
14	2.0	0280.
17	2.4	0294.
11	1.5	0311.
5	0.7	0322.
8	1.1	0327.
10	1.4	0335.
13	1.8	0345.
9	1.3	0358.
3	0.4	0367.
4	0.6	0370.
9	1.3	0374.
7	1.0	0383.
11	1.5	0390.
2	0.3	0401.
5	0.7	0403.
2	0.3	0408.
5	0.7	0410.
5	0.7	0415.
6	0.8	0420.
2	0.3	0426.
2	0.3	0428.
4	0.6	0430.
2	0.3	0434.
2	0.3	0436.
5	0.7	0438.
9	1.3	0443.
5	0.7	0452.

FREQ Prent Var 15 Start Respondent \#

5	0.7	0457.
2	0.3	0462.
7	1.0	0471.
10	1.4	0478.
14	2.0	0488.
6	0.8	0502.
7	1.0	0508.
7	1.0	0515.
16	2.2	0522.
17	2.4	0538.
14	2.0	0555.
9	1.3	0569.
4	0.6	0578.
8	1.1	0582.
17	2.4	0590.
9	1.3	0607.
1	0.1	0616.
4	0.6	0617.
4	0.6	0621.
8	1.1	0625.
7	1.0	0633.
11	1.5	0640.
3	0.4	0651.
5	0.7	0654.
3	0.4	0659.
2	0.3	0662.
3	0.4	0664.
3	0.4	0667.
3	0.4	0670.
9	1.3	0673.
11	1.5	0682.
16	2.2	0724.
6	0.8	0740.
15	2.1	0746.

MDI: 0000 Field Width: 4 MD2: 9999 Type: Numeric

FREQ Prent End Respondent \#
$0 \quad 0.0 \quad 0000$. Missing Data
$5 \quad 0.7 \quad 0005$.
20.30007 .
40.60011.
10.10012 .
$4 \quad 0.6 \quad 0016$.
$6 \quad 0.8 \quad 0023$.
10.10025 .
$4 \quad 0.6 \quad 0029$.

FREQ Prent Var 16 End Respondent \#

	1.3	0038.
8	1.1	0046.
15	2.1	0062.
6	0.8	0068.
3	0.4	0071.
8	1.1	0079.
6	0.8	0085.
14	2.0	0099.
2	0.3	0101.
4	0.6	0105.
5	0.7	0110.
9	1.3	0119.
9	1.3	0128.
13	1.8	0141.
9	1.3	0151.
8	1.1	0159.
8	1.1	0167.
6	0.8	0173.
13	1.8	0187.
2	0.3	0189.
5	0.7	0194.
8	1.1	0202.
3	0.4	0205.
6	0.8	0211.
4	0.6	0215.
19	2.6	0234.
11	1.5	0245.
8	1.1	0253.
11	1.5	0264.
6	0.8	0270.
9	1.3	0279.
14	2.0	0293.
17	2.4	0310
11	1.5	0321.
5	0.7	0326.
8	1.1	0334.
10	1.4	0344.
13	1.8	0357
9	1.3	0366.
3	0.4	0369.
4	0.6	0373.
9	1.3	0382
7	1.0	0389.
11	1.5	0400
2	0.3	0402
5	0.7	0407
2	0.3	0409
5	0.7	0414.
5	0.7	0419
6	0.8	0425
2	0.3	0427

2	0.3	0429.
4	0.6	0433.
2	0.3	0435.
2	0.3	0437.
5	0.7	0442.
9	1.3	0451.
5	0.7	0456.
5	0.7	0461.
2	0.3	0463.
7	1.0	0477.
10	1.4	0487.
14	2.0	0501.
6	0.8	0507.
7	1.0	0514.
7	1.0	0521.
16	2.2	0537.
17	2.4	0554.
14	2.0	0568.
9	1.3	0577.
4	0.6	0581.
8	1.1	0589.
17	2.4	0606.
9	1.3	0615.
1	0.1	0616.
4	0.6	0620.
4	0.6	0624.
8	1.1	0632.
7	1.0	0639.
11	1.5	0650.
3	0.4	0653.
5	0.7	0658.
3	0.4	0661.
2	0.3	0663.
3	0.4	0666.
3	0.4	0669.
3	0.4	0672.
9	1.3	0681.
11	1.5	0692.
16	2.2	0739.
15	0.8	0745.
	2.1	0760.

Variable $\quad 17$			
FRES Prerver			
Prent		Observer	
0	0.0		O. Missing Data
207	28.9		1. Karen
94	13.1		2. Meg
13	1.8		3. Linda
0	0.0		4. Kathy
0	0.0		5. Tom
209	29.1		6. Bob
194	27.1		7. Jethro

MD1: 0 Field Width: 1 MD2: None Type: Numeric

FREQ Prent Observer

Variable 18		Interviewer	MD1:	0	Field	Width: 1
FREQ Prent		Interviewer				
69	9.6	1. Karen				
140	19.5	2. Lev				
56	7.8	3. Barb				
259	36.1	4. Kathy				
193	26.9	5. Tom				
0	0.0	6. Bob				
0	0.0	7. Jethro				

Observer Variables

The following variables were coded by the Observer as the subject drove into the survey area and during the interview.

FREQ Prent	Var. 24 Driver Age-Self Reported	
9	1.3	20.
12	1.7	21.
19	2.6	22.
20	2.8	23.
29	4.0	24.
36	5.0	25.
43	6.0	26.
46	6.4	27.
44	6.1	28.
37	5.2	29.
48	6.7	30.
31	4.3	31.
41	5.7	32.
43	6.0	33.
30	4.2	34.
34	4.7	35.
17	2.4	36.
14	2.0	37.
18	2.5	38.
10	1.4	39.
5	0.7	40.
6	0.8	41.
5	0.7	42.
3	0.4	43.
2	0.3	44.
4	0.6	45.
1	0.1	47.
2	0.3	48.
1	0.1	49.
1	0.1	50.
5	0.7	51.
3	0.4	52.
1	0.1	53.
1	0.1	54.
4	0.6	55.
3	0.4	59.
4	0.6	60.
2	0.3	61.
1	0.1	62.
1	0.1	64.
1	0.1	66.
2	0.3	69.
2	0.3	70.
1	0.1	71.
1	0.1	77.
1	0.1	83.
58	8.1	99.

Variable 25		Child Restraint Use	MD1:	0	Field	Width: 1
			MD2 :	None	Type:	Numeric
FREQ Prent		Child Restraint Use				
0	0.0	O. Missing Data				
179	25.0	1. No Restraint				
144	20.1	2. Belted				
394	55.0	3. Child Restraint				

Variable	27	Correctness of Use	MD1:	99	Field	Width: 2
			MD2 :	None	Type:	Numeric

Based on the individual and combined values of variables 32 48 and child age indicating correct use of the CRD.

FREQ Prent Scale Indicating Correct Use of Child's Restraint

146	20.4	00. Correct Use
3	0.4	01. Minor Incorrect Use
31	4.3	02.
20	2.8	04.
1	0.1	05. Moderate Incorrect Use (2-9)
32	4.5	06.
1	0.1	07.
25	3.5	08.
1	0.1	09.
8	1.1	10.
11	1.5	12.
38	5.3	14.
1	0.1	15.
4	0.6	16.
19	2.6	18.
2	0.3	19.
21	2.9	20.
2	0.3	21.
5	0.7	22.
4	0.6	24.
1	0.1	25.
2	0.3	26.

FREQ Prcnt Var 27 Correctness of Use

```
    9 1.3 28.
    6 0.8 34.
    1 0.1 42.
323 45.0 99. Missing Data
```


Variable 29 Number Vehicle Occupants MDl: 00 Field Width: 2
FREQ Prent Number Vehicle Occupants

2	0.3	00. Missing Data
143	19.9	02.
272	37.9	03.
190	26.5	04.
79	11.0	05.
19	2.6	06.
7	1.0	07.
4	0.6	08.
1.	0.1	10.

Variable 30	Brand Name	MD1:	00	Field Width: 2

FREQ Prent Brand Name

```
    1 0.1 00. Missing Data
        INFANT SEATS
    21 2.9 0l. Infant Love Seat - Century
    0 0.0 02. Cuddle Shuttle - Collier-Keyworth
```

FREQ Prent Var 30 Brand Name

1	0.1	03. First Ride - Cosco
9	1.3	04. Dyn-o-mite - Evenflo (Questor)
0	0.0	05. Snug Seat - Graco
3	0.4	06. Rock 'N' Ride - Kolcraft
		CONVERTIBLE SEATS
0	0.0	07. Wonda Chair - Babyhood Industries
5	0.7	08. Century Missing Model
22	3.1	09. Century 100 - Century
31	4.3	10. Century 200 - Century
10	1.4	11. Century 300 - Century
0	0.0	12. Century 400 XL - Century
1	0.1	13. Collier-Keyworth Missing Model
1	0.1	14. Roundtripper - Collier-Keyworth
8	1.1	15. Safe \& Sound - Collier-Keyworth
3	0.4	16. Cosco Missing Model
1	0.1	17. Commuter - Cosco
5	0.7	18. Safe \& Snug - Cosco
2	0.3	19. Safe N Easy - Cosco
2	0.3	20. Safe-T-Mate - Cosco
23	3.2	21. Safe-T-Seat - Cosco
6	0.8	22. Safe-T-Shield - Cosco
8	1.1	23. Evenflo Missing Model
7	1.0	24. Bobby-Mac Deluxe - Evenflo (Questor)
10	1.4	25. Bobby-Mac Champion - Evenflo (Questor)
0	0.0	26. Bobby-Mac Lite - Evenflo (Questor)
1	0.1	27. Kantwet Care Seat - Evenflo (Questor)
67	9.3	28. Kantwet One Step - Evenflo (Questor)
9	1.3	29. Fisher-Price - Fisher-Price
1	0.1	30. Guardian - Gerry
0	0.0	31. GT 1000 - Graco
0	0.0	32. Little Trav'ler - Graco
1	0.1	33. International Missing Model
1	0.1	34. Teddy Tot Astroseat 9100A - International
2	0.3	35. Teddy Tot Astroseat 9300A - International
0	0.0	36. Kolcraft Missing Model
5	0.7	37. Hi Rider XL2 - Kolcraft
0	0.0	38. Quickstep - Kolcraft
2	0.3	39. Redi-Rider - Kolcraft
0	0.0	40. Nissan - Nissan
0	0.0	41. Pride-Trimble Missing Model
0	0.0	42. Pride Ride 820 - Pride-Trimble
1	0.1	43. Pride Ride 830 - Pride-Trimble
5	0.7	44. Strolee Missing Model
9	1.3	45. Wee Care (500 Series) - Strolee
15	2.1	46. Wee Care (600 Series) - Strolee
0	0.0	47. Travel Tot - Welsh
		TOODLER SEATS
31	4.3	48. Child Love Seat - Century
0	0.0	49. Bobby-Mac Lite - Evenflo (Questor)

```
    0 0.0 50. Britax - Evenflo (Questor)
    0 0.0 51. Kantwet Safe Guard - Evenflo (Questor)
    0 0.0 52. ez On vest - Rupert
        BOOSTER SEATS
    10 1.4 53. Commander - Century
    40.6 54. Safe-T-Rider I, II - Century
    0 0.0 55. Mopar Child Shield - Chrysler
    5 0.7 56. Co-Pilot - Collier-Keyworth
    30.4 57. voyager - Collier-Keyworth
    10 1.4 58. Explorer - Cosco
    3 0.4 59. Travel Hi LO - Cosco
    4 0.6 60. Bobby Mac Wings - Evenflo (Questor)
    0 0.0 61. Tot Guard - Ford
    3 0.4 62. Teddy Tot Astrorider - International
    10.1 63. Flip 'n GO - Kolcraft
    7 1.0 64. Tot Rider - Kolcraft
    2 0.3 65. Tot Rider XL - Kolcraft
    24 3.3 66. Don't Know
    13 1.8 67. Tot Rider Quick Step - Kolcraft
    0 0.0 68. Quick Click - Strolee
    1 0.1 69. Wee Care 602/604 - Strolee
    0 0.0 70. Child Cushion - Volvo
        OTHERS
    2 0.3 77. Refused Question
    1 0.1 78. Seats manufactured prior to }1981\mathrm{ that do not meet
        federal standard
        UNAPPROVED DEVICE
    5 0.7 79. Unapproved Other Device
289 40.3 99. No Child Seat
```


FREQ Prent CRD Present

0	0.0	O. Missing Data
429	59.8	1. Yes
288	40.2	2. No

Variable 38	Seat Angle	MD1:	0	Field	Width: 1
		MD2 :	8	Type:	Numeric
FREQ Prent	Seat Angle				
$0 \quad 0.0$	0. Missing Data				
11115.5	1. Reclinded				
$310 \quad 43.2$	2. Upright				
71.0	6. Don't know				
28940.3	8. Skip				

Variable 43	Is CRD Used	MD1:	0	Field	Width: 1
		MD2 :	8	Type:	Numeric
FREQ Prent	Is CRD Used				
$0 \quad 0.0$	O. Missing Data				
39455.0	1. Yes				
354.9	2. No				
28840.2	8. Skip				

Variable 44		Is	Shield Used	MD1:	0	Field	Width: 1
				MD2:	8	Type:	Numeric
FREQ Prent			Shield Used				
0	0.0		O. Missing Data				
45	6.3		1. Yes				
23	3.2		2. No				
314	43.8		3. Not Required				
12	1.7		6. Don't know				
323	45.0		8. Skip				

Variable 45	Harness Fastened	MD1:	0	Field	Width: 1
		MD2 :	8	Type:	Numeric
FREQ Prent	Harness Fastened				
$0 \quad 0.0$	O. Missing Data				
24434.0	1. Yes				
8211.4	2. NO				
$55 \quad 7.7$	3. Not Required				
$12 \quad 1.7$	6. Don't Know				
32445.2	8. Skip				

Variable	e 46	Harness Snug	MD1:	0	Field	Width: 1
			MD2 :	8	Type:	Numeric
FREQ Prent		Harness Snug				
0	0.0	O. Missing Data				
157	21.9	1. Yes				
87	12.1	2. No				
13	1.8	6. Don't Know				
460	64.2	8. Skip				

0	0.0	O. Missing Data
50	7.0	1. Yes
192	26.8	2. No
15	2.1	6. Don't Know
460	64.2	8. Skip

Variable 48	Harness Position	MD1:	0	Field	Width: 1
FREQ Prent	Harness Position				
$0 \quad 0.0$	O. Missing Data				
$186 \quad 25.9$	1. Yes				
588.1	2. No				
131.8	6. Don't know				
$460 \quad 64.2$	8. Skip				
Variable 49	Vehicle Size	MD1:	0	Field	Width: 1
FREQ Prent	Vehicle Size				
	O. Missing Data 1. Small				
	2. Medium				
	3. Large				
	4. Pick-up				
	5. Van				
	6. Other				

Child Restraint Study Observer Data

FREQ Prent Minute Interviewed

44	6.1	00.
2	0.3	01.
5	0.7	02.
5	0.7	03.
36	5.0	05.
4	0.6	06.
1	0.1	07.
6	0.8	08.
3	0.4	09.
39	5.4	10.
3	0.4	11.
3	0.4	12.
8	1.1	13.
2	0.3	14.
39	5.4	15.
2	0.3	16.
1	0.1	17.
2	0.3	18.
49	6.8	20.
2	0.3	21.
2	0.3	22.
1	0.1	23.
4	0.6	24.
45	6.3	25.
1	0.1	26.
2	0.3	27.
1	0.1	28.
64	8.9	30.
2	0.3	31.
2	0.3	32.
3	0.4	33.
40	5.6	35.
3	0.4	36.
4	0.6	37.
5	0.7	38.
3	0.4	39.
44	6.1	40.
6	0.8	42.
4.	0.6	43.
2	0.3	44.
67	9.3	45.
1	0.1	46.
2	0.3	47.
2	0.3	48.
60	8.4.	50.
3	0.4	51.
2	0.3	52.
3	0.4	53.

FREQ Prent Var 51 Minute Interviewed

3	0.4	54.
63	8.8	55.
2	0.3	56.
5	0.7	57.
5	0.7	58.
2	0.3	59.
3	0.4	99. Missing Data

Variable 52 License Plate Number

| Variable 53 | Vehicle Sequence No. |
| :--- | :--- | :--- | | MD1: |
| :--- | | None Field Width: 2 |
| :--- |
| MD2: None Type: Numeric |

FREQ Prent Vehicle sequence number at site.

45	6.3	01.
44	6.1	02.
43	6.0	03.
43	6.0	04.
40	5.6	05.
36	5.0	06.
33	4.6	07.
31	4.3	08.
27	3.8	09.
24	3.3	10.
23	3.2	11.
20	2.8	12.
17	2.4	13.
14	2.0	14.
12	1.7	15.
12	1.7	16.
12	1.7	17.
12	1.7	18.
11	1.5	19.
10	1.4	20.
9	1.3	21.
9	1.3	22.
9	1.3	23.
8	1.1	24.
8	1.1	25.
7	1.0	26.
7	1.0	27.
7	1.0	28.
7	1.0	29.
7	1.0	30.
7	1.0	31.

FREQ Prent Var 53 Vehicle Sequence No.
$7 \quad 1.0 \quad 32$.
$6 \quad 0.8 \quad 33$.
$\begin{array}{lll}5 & 0.7 & 34 .\end{array}$
$\begin{array}{lll}5 & 0.7 & 35 .\end{array}$
$\begin{array}{lll}5 & 0.7 & 36 .\end{array}$
$\begin{array}{lll}5 & 0.7 & 37 .\end{array}$
$\begin{array}{lll}5 & 0.7 & 38 .\end{array}$
$\begin{array}{lll}5 & 0.7 & 39 .\end{array}$
$\begin{array}{lll}5 & 0.7 & 40 .\end{array}$
$\begin{array}{lll}5 & 0.7 & 41 .\end{array}$
$\begin{array}{lll}5 & 0.7 & 42 .\end{array}$
$5 \quad 0.7$ 43.
$5 \quad 0.7 \quad 44$.
$5 \quad 0.7 \quad 45$.
$\begin{array}{lll}5 & 0.7 \quad 46 .\end{array}$
$\begin{array}{lll}5 & 0.7 & 47 .\end{array}$
$5 \quad 0.7 \quad 48$.
$\begin{array}{lll}5 & 0.7 & 49 .\end{array}$
$4 \quad 0.6 \quad 50$.
$2 \quad 0.3 \quad 51$.
$2 \quad 0.3 \quad 52$.
20.353.
20.354.
$20.3 \quad 55$.
$20.3 \quad 56$.
20.3 57.
$2 \quad 0.3 \quad 58$.
$2 \quad 0.3 \quad 59$.
$2 \quad 0.3 \quad 60$.
10.161.
$10.1 \quad 62$.
10.163.
10.164.
10.165.
10.166 .
00.0 99. Missing Data

Interview Variables

The following variables are responses given by subjects and coded by the Interviewer.


```
Child Restraint Study
    Interview Data
```

 FREQ Prent Var 57 Child Birth Month
 | 61 | 8.5 | 05. May |
| ---: | :--- | :--- |
| 56 | 7.8 | 06. June |
| 51 | 7.1 | 07. July |
| 54 | 7.5 | 08. August |
| 51 | 7.1 | 09. September |
| 58 | 8.1 | 10. October |
| 48 | 6.7 | 11. November |
| 52 | 7.3 | 12. December |
| 2 | 0.3 | 66. Don't Know |

Variable	e 58	Child Birth Year	MD1: MD2 :	00 None	Field Type	Width: 2 Numeric
FREQ P	Prent	Child Birth Year				
56	7.8	00. Missing Data				
2	0.3	66. Don't know				
10	1.4	81.				
105	14.6	82.				
193	26.9	83.				
221	30.8	84.				
115	16.0	85.				
15	2.1	86.				

| Variable 59 Child Age-months | MD1: | 99 | Field Width: 2 |
| :--- | :--- | :--- | :--- | :--- |
| | | | |

FREQ Prent Child Age in Months Derived From Birth Month and Year

3	0.4	01.
3	0.4	02.
7	1.0	03.
6	0.8	04.
8	1.1	05.
7	1.0	06.
12	1.7	07.
5	0.7	08.
10.	1.4	09.
12	1.7	10.
11	1.5	11.
16	2.2	12.
23	3.2	13.
18	2.5	14.
11	1.5	15.
12	1.7	16.
14	2.0	17.
15	2.1	18.

FREQ Prent Var 59 Child Age-months
$26 \quad 3.6 \quad 19$.
$20 \quad 2.8 \quad 20$.
$21 \quad 2.9 \quad 21$.
23 3.2 22.
$223.1 \quad 23$.
$15 \quad 2.1 \quad 24$.
$17 \quad 2.4 \quad 25$.
$10 \quad 1.4 \quad 26$.
$22 \quad 3.1 \quad 27$.
263.6 28.
$25 \quad 3.5$ 29.
131.830 .
$23 \quad 3.231$.
$12 \quad 1.7 \quad 32$.
131.833.
$11 \quad 1.534$.
$14 \quad 2.0 \quad 35$.
$15 \quad 2.136$.
$12 \quad 1.7 \quad 37$.
212.938.
$11 \quad 1.539$.
$15 \quad 2.1 \quad 40$.
142.041.
$9 \quad 1.3$ 42.
$9 \quad 1.3 \quad 43$.
$142.0 \quad 44$.
$11 \quad 1.545$.
$7 \quad 1.0 \quad 46$.
152.147.

58 8.1 99. Missing Data

Variable 60	Child Sex	MD1:	0	Field	Width: 1
		MD2 :	None	Type:	Numeric
FREQ Prent	Child Sex				
598.2	O. Missing Data				
34648.3	1. Male				
31243.5	2. Female				

Child Restraint Study Interview Data

Variable	e 61	Siblings	MD1: MD2:	07	Field Type:	Width: 1 Numeric
FREQ Prent		Siblings				
56	7.8	O. Missing Data				
428	59.7	1. Yes				
233	32.5	2. No				
	0.0	6. Don't Know				
Variable	e 62	Number Older Siblings	MD1:	99	Field	Width: 2
FREQ Prent		Number Older Siblings				
276	38.5	00.				
251	35.0	01.				
94	13.1	02.				
22	3.1	03.				
9	1.3	04.				
8	1.1	05.				
1	0.1	06.				
56	7.8	99. Missing Data				

Variable	e 63	Number Younger Siblings	MD1: MD2 :	None	Field Type	Width: 2 Numeric
FREQ	Prent	Number Younger Siblings				
600	83.7	00.				
59	8.2	01.				
2	0.3	02.				
56	7.8	99. Missing Data				

Variabl	e 64	Child Birth Order	MD1: MD2 :	None	Field Type:	Width: 2 Numeric
FREQ	Prent	Number of Older Siblings	Plus One			
276	38.5	01.				
251	35.0	02.				
94	13.1	03.				
22	3.1	04.				
9	1.3	05.				
8	1.1	06.				
1	0.1	07.				
- 56	7.8	99. Missing Data				

variable	e 65	Days Driving w/Children	MDI:MD2:	$\begin{array}{r} 9 \\ \text { None } \end{array}$	Field Type:	$\begin{aligned} & \text { Width: } 1 \\ & \text { Numeric } \end{aligned}$
FREQ P	Prent	Days Driving W/Children				
47	6.6	0.				
30	4.2	1.				
38	5.3	2.				
60	8.4	3.				
61	8.5	4.				
67	9.3	5.				
27	3.8	6.				
328	45.7	7.				
59	8.2	9. Missing Data				

Variable 66	Form	MD1:	0	Field Width: 1
MD2:	7	Type: Numeric		

FREQ Prent Interview Form Used (Based on Restraints Used)

0	0.0	0. Missing Data
377	52.6	1. Form A
16	2.2	2. Form B
15	2.1	3. Form C
121	16.9	4. Form D
132	18.4	5. Form E
56	7.8	7. Refused Interview

Variable	- 67	Learn About Restraints	MDI:	00	Field Type:	Width: 2 Numeric
			MD2 :	88		
FREQ Prent		Learn About Restraints				
57	7.9	00. Missing Data				
242	33.8	01. News Media				
49	6.8	02. Doctor				
23	3.2	03. Spouse				
43	6.0	04. Health Care Profe	onal			
38	5.3	05. Friend				
79	11.0	06. Relative				
4	0.6	07. School/Daycare Te	ers			
41	5.7	08. Other				
9	1.3	66. Don't know				
132	18.4	88. Skip				

Variable 68		Obtain Seat	MD1:	0	Field	Width: 1
			MD2:	8	Type:	Numeric
FREQ Prent		Obtain Seat				
56	7.8	O. Missing Data				
106	14.8	1. Gift				
247	34.4	2. Purchase				
49	6.8	3. Friend				
4	0.6	4. Loan				
2	0.3	5. Other				
0	0.0	6. Don't Know				
253	35.3	8. Skip				
Variable	69	Receive Instructions	MD1:	0	Field	Width: 1
FREQ Prent		Receive Instructions				
56	7.8	O. Missing Data				
362	50.5	1. Yes				
	6.1	2. No				
253	0.3	6. Don't know				
	35.3	8. Skip				
Variable	70	How Instructions	MD1:	0	Field	Width: 1
FREQ Prent		How Instructions				
$57 \quad 7.9$		O. Missing Data				
142.0		1. Verbal				
329	45.9	2. Written				
16	2.2	3. Both				
3	0.4	6. Don't know				
298	41.6	8. Skip				

57	7.9	00. Missing Data
0	0.0	01. Manufacturer
3	0.4	02. Store
9	1.3	03. Friend
10	1.4	04. Relative

```
Child Restraint Study

FREQ Prent Var 71 Instructions-verbal
\begin{tabular}{rrl}
0 & 0.0 & 05. Spouse \\
1 & 0.1 & 06. Loan Program \\
5 & 0.7 & 07. Other \\
0 & 0.0 & 66. Don't Know \\
302 & 42.1 & 88. Skip \\
330 & 46.0 & 99. Not Applicable
\end{tabular}


Variable 73 Who Installed Seat MDI: 00 Field Width: 2

FREQ Prent Who Installed Seat
\begin{tabular}{rrl}
58 & 8.1 & 00. Missing Data \\
208 & 29.0 & 01. Mother \\
151 & 21.1 & 02. Father \\
23 & 3.2 & 03. Both Parents \\
1 & 0.1 & 04. Brother/sister \\
16 & 2.2 & 05. Other Relative \\
7 & 1.0 & 06. Else \\
0 & 0.0 & 66. Don't Know \\
253 & 35.3 & 88. Skip
\end{tabular}

\begin{tabular}{rrl}
60 & 8.4 & O. Missing Data \\
11 & 1.5 & 1. Yes \\
393 & 54.8 & 2. No \\
0 & 0.0 & 6. Don't Know \\
253 & 35.3 & 8. Skip
\end{tabular}

\begin{tabular}{rrl}
61 & 8.5 & 00. Missing Data \\
0 & 0.0 & 01. Store \\
0 & 0.0 & 02. Friend \\
3 & 0.4 & 03. Relative \\
6 & 0.8 & 04. Spouse \\
0 & 0.0 & 05. Loan Program \\
0 & 0.0 & 06. Other \\
0 & 0.0 & 66. Don't Know \\
647 & 90.2 & 88. Skip
\end{tabular}

\begin{tabular}{llllll}
\hline Variable 77 & How Incorrectly Install & MD1: & 00 & Field Width: 2 \\
& \\
\(M D 2:\) & 88 & Type: Numeric
\end{tabular}

FREQ Prent How Incorrectly Install
\begin{tabular}{rll}
59 & 8.2 & 00. Missing Data \\
7 & 1.0 & 01. Belt Routing Incorrect \\
3 & 0.4 & 02. Not Belted In \\
24 & 3.3 & 03. Not Tethered \\
4 & 0.6 & 50. Other
\end{tabular}

FREQ Prent Var 77 How Incorrectly Install
```

620 86.5 88. Skip

```
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline Variable & - 78 & Why Incorrectly Install & MD1: MD2: & 00
88 & Field & Width: \\
\hline FREQ P & Prent & Why Incorrectly Install & & & & \\
\hline 60 & 8.4 & 00. Missing Data & & & & \\
\hline 4 & 0.6 & 01. Doesn't Work in C & Type & & & \\
\hline 1 & 0.1 & 02. Husband Installed & & & & \\
\hline 1 & 0.1 & 03. Child Asleep & & & & \\
\hline 1 & 0.1 & 04. Child in Cast & & & & \\
\hline 5 & 0.7 & 05. Inconvient & & & & \\
\hline 4 & 0.6 & 06. Hasn't Been Insta & d Yet & & & \\
\hline 10 & 1.4 & 07. No Tether Holes i & ehicle & & & \\
\hline 2 & 0.3 & 08. Only One CRD Used & 2 Car & & & \\
\hline 1 & 0.1 & 09. Tether Missing & & & & \\
\hline 1 & 0.1 & 10. Child Likes to Ri & in Fro & Seat & & \\
\hline 7 & 1.0 & 50. Other & & & & \\
\hline 620 & 86.5 & 88. Skip & & & & \\
\hline Variable & - 79 & Child Riding Correctly & MD1: & 0 & Field & Width: 1 \\
\hline FREQ P & Prent & Child Riding Correctly & & & & \\
\hline 58 & 8.1 & O. Missing Data & & & & \\
\hline 326 & 45.5 & 1. Yes & & & & \\
\hline 49 & 6.8 & 2. No & & & & \\
\hline 1 & 0.1 & 6. Don't Know & & & & \\
\hline 283 & 39.5 & 8. Skip & & & & \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|}
\hline Variable 80 & How Incorrectly Riding & MD1: & 00 & Field & Width: 2 \\
\hline & & MD2: & 88 & Type: & Numeric \\
\hline FREQ Prent & How Incorrectly Riding & & & & \\
\hline
\end{tabular}
\begin{tabular}{rll}
59 & 8.2 & 00. Missing Data \\
11 & 1.5 & 01. Not Harnessed Properly \\
5 & 0.7 & 02. Shield Not Down \\
2 & 0.3 & 03. Harness Clip Not Used \\
1 & 0.1 & 04. Child Sitting on Pillow \\
3 & 0.4 & 05. Armrest Not Down \\
25 & 3.5 & 06. Harness Not Used \\
1 & 0.1 & 50. Other
\end{tabular}

FREQ Prent
\(610 \quad 85.1\)
88. Skip

\begin{tabular}{|c|c|c|c|c|c|c|}
\hline \multirow[t]{2}{*}{Variable} & e 82 & Have a Seat for Child & \multirow[t]{2}{*}{\begin{tabular}{l}
MD1: \\
MD2:
\end{tabular}} & \multirow[t]{2}{*}{0
8} & \multicolumn{2}{|l|}{\multirow[t]{2}{*}{Field Width: 1 Type: Numeric}} \\
\hline & & & & & & \\
\hline \multicolumn{2}{|l|}{FREQ Prent} & Have a Seat for Child & & & & \\
\hline 57 & 7.9 & O. Missing Data & & & & \\
\hline 163 & 22.7 & 1. Yes & & & & \\
\hline 90 & 12.6 & 2. NO & & & & \\
\hline 0 & 0.0 & 6. Don't Know & & & & \\
\hline 407 & 56.8 & 8. Skip & & & & \\
\hline 0 & 0.0 & 9. Not Applicable & & & & \\
\hline
\end{tabular}
\begin{tabular}{lllll} 
Variable 83 & Why Not Use Child Seat & MD1: & 00 & Field Width: 2 \\
& \\
\end{tabular}

FREQ Prent Why Not Use Child Seat
\begin{tabular}{rll}
57 & 7.9 & 00. Missing Data \\
5 & 0.7 & 01. Too Expensive \\
61 & 8.5 & 02. Child Doesn't Like Them
\end{tabular}

\section*{FREQ Prent Var 83 Why Not Use Child Seat}
\begin{tabular}{rll}
14 & 2.0 & 03. Too Much Trouble \\
15 & 2.1 & 04. Takes Too Much Room In the Car \\
1 & 0.1 & 05. Too Difficult To Install \\
1 & 0.1 & 06. Don't Think They Really Protect In A Crash \\
66 & 9.2 & 07. Child Too Big \\
37 & 5.2 & 08. CRD In Other Vehicle \\
20 & 2.8 & 09. CRD In Parents' Vehicle \\
0 & 0.0 & 10. Didn't Know They Were Available \\
2 & 0.3 & 11. Too Busy To Get One \\
30 & 4.2 & 12. Other \\
1 & 0.1 & 13. Short Distance \\
0 & 0.0 & 66. Don't Know \\
407 & 56.8 & 88. Skip
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline \multirow[t]{2}{*}{Variable} & e 84 & Why Not Use Seat Belt & \multirow[t]{2}{*}{\[
\begin{aligned}
& \text { MD1: } \\
& \text { MD2: }
\end{aligned}
\]} & 00 & \multirow[t]{2}{*}{Field Type:} & \multirow[t]{2}{*}{Width: 2 Numeric} \\
\hline & & & & 88 & & \\
\hline \multicolumn{2}{|l|}{FREQ Prent} & Why Not Use Seat Belt & & & & \\
\hline 57 & 7.9 & 00. Missing Data & & & & \\
\hline 52 & 7.3 & 01. Kid Objects & & & & \\
\hline 13 & 1.8 & 02. Trouble & & & & \\
\hline 5 & 0.7 & 03. Don't Protect & & & & \\
\hline 11 & 1.5 & 04. Not Enough Belts in & Vehicle & & & \\
\hline 31 & 4.3 & 05. Other & & & & \\
\hline 0 & 0.0 & 06. Don't Know & & & & \\
\hline 12 & 1.7 & 11. Short Distance & & & & \\
\hline 23 & 3.2 & 12. Claimed Belt Used & & & & \\
\hline 513 & 71.5 & 88. Skip & & & & \\
\hline
\end{tabular}

Variable 85 Hear of CRD Law MDI: 0 Field Width: 1 MD2: None Type: Numeric

FREQ Prent Hear of CRD Law
\begin{tabular}{rrl}
56 & 7.8 & O. Missing Data \\
627 & 87.4 & 1. Yes \\
34 & 4.7 & 2. No \\
0 & 0.0 & 8. Skip
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline \multicolumn{2}{|l|}{\multirow[t]{2}{*}{Variable 86}} & Knowledge of Law & MDI: & 0 & Field & Width: 1 \\
\hline & & & MD2 : & 8 & Type: & Numeric \\
\hline \multicolumn{2}{|l|}{FREQ Prent} & \multicolumn{5}{|l|}{Knowledge of Law} \\
\hline 57 & 7.9 & O. Missing Data & & & & \\
\hline 62 & 8.6 & 1. Perfect & & & & \\
\hline 88 & 12.3 & 2. CRD < 1 & & & & \\
\hline 252 & 35.1 & 3. Restrained < 4 & & & & \\
\hline 196 & 27.3 & 4. Restrained, No Age & & & & \\
\hline 28 & 3.9 & 5. None & & & & \\
\hline 34 & 4.7 & 8. Skip & & & & \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline \multirow[t]{2}{*}{Variable} & e 87 & Fear of Ticket & \multirow[t]{2}{*}{\begin{tabular}{l}
MD1: \\
MD2:
\end{tabular}} & \multirow[t]{2}{*}{0
7} & \multicolumn{2}{|l|}{\multirow[t]{2}{*}{Field Width: 1 Type: Numeric}} \\
\hline & & & & & & \\
\hline FREQ & Prent & Fear of Ticket & & & & \\
\hline 56 & 7.8 & O. Missing Data & & & & \\
\hline 198 & 27.6 & 1. Great & & & & \\
\hline 140 & 19.5 & 2. Some & & & & \\
\hline 319 & 44.5 & 3. None & & & & \\
\hline 4 & 0.6 & 6. Don't know & & & & \\
\hline 0 & 0.0 & 7. Refused Question & & & & \\
\hline
\end{tabular}

\begin{tabular}{rrl}
56 & 7.8 & O. Missing Data \\
10 & 1.4 & 1. \(<20 \%\) \\
31 & 4.3 & 2. \(20-40 \%\) \\
100 & 13.9 & 3. \(40-60 \%\) \\
211 & 29.4 & 4. \(60-80 \%\) \\
299 & 41.7 & 5. \(>80 \%\) \\
9 & 1.3 & 6. Don't Know \\
1 & 0.1 & 7. Refused Question \\
0 & 0.0 & 8. Skip
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline \multicolumn{2}{|l|}{\multirow[t]{2}{*}{Variable 89}} & Percent Obey Law & MD1: & 0 & Field & Width: 1 \\
\hline & & & MD2 : & 7 & Type: & Numeric \\
\hline \multicolumn{2}{|l|}{FREQ Prent} & \multicolumn{5}{|l|}{Percent Obey Law} \\
\hline 56 & 7.8 & O. Missing Data & & & & \\
\hline 16 & 2.2 & 1. < 20\% & & & & \\
\hline 71 & 9.9 & 2. \(20-40 \%\) & & & & \\
\hline 228 & 31.8 & 3. \(40-60 \%\) & & & & \\
\hline 218 & 30.4 & 4. \(60-80 \%\) & & & & \\
\hline 124 & 17.3 & 5. \(>80 \%\) & & & & \\
\hline 4 & 0.6 & 6. Don't Know & & & & \\
\hline 0 & 0.0 & 8. Skip & & & & \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|}
\hline Variable 90 & How Often Police Stop & MD1: & 0 & Field & Width: 1 \\
\hline & & MD2 : & 7 & Type: & Numeric \\
\hline FREQ Prent & How Often Police Stop & & & & \\
\hline 567.8 & O. Missing Data & & & & \\
\hline \(39 \quad 5.4\) & 1. Most Times & & & & \\
\hline 12317.2 & 2. Sometimes & & & & \\
\hline 36150.3 & 3. Rarely & & & & \\
\hline 12517.4 & 4. Never & & & & \\
\hline 131.8 & 6. Don't Know & & & & \\
\hline 00.0 & 8. Skip & & & & \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline Variable & e 91 & How Often Police Ticket & MD1: & 0 & Field & Width: I \\
\hline & & & MD2 : & 7 & Type: & Numeric \\
\hline FREQ P & Prent & How Often Police Ticket & & & & \\
\hline 56 & 7.8 & O. Missing Data & & & & \\
\hline 213 & 29.7 & 1. Most Times & & & & \\
\hline 184 & 25.7 & 2. Sometimes & & & & \\
\hline 194 & 27.1 & 3. Rarely & & & & \\
\hline 50 & 7.0 & 4. Never & & & & \\
\hline 20 & 2.8 & 6. Don't Know & & & & \\
\hline 0 & 0.0 & 8. Skip & & & & \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|}
\hline Variable 92 & Marital Status & \begin{tabular}{l}
MD1: \\
MD2 :
\end{tabular} & 0 & Field Type: & Width: I Numeric \\
\hline FREQ Prent & Marital Status & & & & \\
\hline 567.8 & O. Missing Data & & & & \\
\hline 496.8 & 1. Single & & & & \\
\hline 56879.2 & 2. Married & & & & \\
\hline \(41 \quad 5.7\) & 3. Divorced/separated & & & & \\
\hline 30.4 & 4. Widowed & & & & \\
\hline 00.0 & 8. Skip & & & & \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|}
\hline Variabl & - 93 & Family Income \\
\hline FREQ & Prent & Family Income \\
\hline 56 & 7.8 & O. Missing Data \\
\hline 81 & 11.3 & 1. Less than \(\$ 12,000\) \\
\hline 195 & 27.2 & 2. \$12,000-29,999 \\
\hline 269 & 37.5 & 3. \$30,000-49,999 \\
\hline 94 & 13.1 & 4. Over \(\$ 50,000\) \\
\hline 4 & 0.6 & 6. Don't Know \\
\hline 18 & 2.5 & 7. Refused Question \\
\hline 0 & 0.0 & 8. Skip \\
\hline
\end{tabular}
\(\begin{array}{lll}\text { MD1: } & 0 & \text { Field Width: } 1 \\ \text { MD2: } & 7 & \text { Type: Numeric }\end{array}\)
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline Variable & 94 & Birth Month & MD1: & 00 & Field & Width: 2 \\
\hline & & & MD2 : & 77 & Type: & Numeric \\
\hline
\end{tabular}

FREQ Prent Birth Month
\begin{tabular}{rll}
56 & 7.8 & 00. Missing Data \\
69 & 9.6 & 01. January \\
59 & 8.2 & 02. February \\
56 & 7.8 & 03. March \\
52. & 7.3 & 04. April \\
35 & 4.9 & 05. May \\
53 & 7.4 & 06. June \\
49 & 6.8 & 07. July \\
62 & 8.6 & 08. August \\
60 & 8.4 & 09. September \\
58 & 8.1 & 10. October \\
52 & 7.3 & 11. November \\
54 & 7.5 & 12. December \\
2 & 0.3 & 77. Refused Question \\
0 & 0.0 & 88. Skip
\end{tabular}

Variable 95 Birth Year

FREQ Prent Birth Year
\begin{tabular}{rll}
56 & 7.8 & 00. Missing Data \\
1 & 0.1 & 02. \\
1 & 0.1 & 09. \\
1 & 0.1 & 14. \\
3 & 0.4 & 16. \\
1 & 0.1 & 17. \\
1 & 0.1 & 20. \\
1 & 0.1 & 21. \\
1 & 0.1 & 23. \\
2 & 0.3 & 24. \\
4 & 0.6 & 25. \\
3 & 0.4 & 26. \\
3 & 0.4 & 30. \\
2 & 0.3 & 31. \\
1 & 0.1 & 32. \\
3 & 0.4 & 33. \\
4 & 0.6 & 34. \\
2 & 0.3 & 35. \\
1 & 0.1 & 36. \\
1 & 0.1 & 37. \\
2 & 0.3 & 38. \\
2 & 0.3 & 40. \\
3 & 0.4 & 41. \\
4 & 0.6 & 42. \\
4 & 0.6 & 43. \\
6 & 0.8 & 44. \\
6 & 0.8 & 45. \\
12 & 1.7 & 46. \\
12 & 1.7 & 47. \\
17 & 2.4 & 48. \\
14 & 2.0 & 49. \\
34 & 4.7 & 50. \\
30 & 4.2 & 51. \\
38 & 5.3 & 52. \\
44 & 6.1 & 53. \\
28 & 3.9 & 54. \\
45 & 6.3 & 55. \\
37 & 5.2 & 56. \\
50 & 7.0 & 57. \\
45 & 6.3 & 58. \\
43 & 6.0 & 59. \\
37 & 5.2 & 60. \\
28 & 3.9 & 61. \\
24 & 3.3 & 62. \\
17 & 2.4 & 63. \\
14 & 2.0 & 64. \\
9 & 1.3 & 65. \\
9 & 1.3 & 66. \\
& & \\
\hline
\end{tabular}
\(\begin{array}{lll}\text { MD1: } & 00 & \text { Field Width: } 2 \\ \text { MD2: } & 77 & \text { TYpe: Numeric }\end{array}\)
```

FREQ Prent Var 95 Birth Year

```
    \(4 \quad 0.6 \quad 67\).
    20.368.
    \(3 \quad 0.4 \quad 69\).
    \(2 \quad 0.3\) 77. Refused Question
    \(0 \quad 0.0\) 88. Skip
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline Variable & 96 & Ethnic Background & MD1: MD2: & None & \begin{tabular}{l}
Field \\
Type:
\end{tabular} & \begin{tabular}{l}
Width: 1 \\
Numeric
\end{tabular} \\
\hline FREQ Pr & Prent & Ethnic Background & & & & \\
\hline 56 & 7.8 & 0. Missing Data & & & & \\
\hline 605 & 84.4 & 1. White & & & & \\
\hline 41 & 5.7 & 2. Black & & & & \\
\hline 5 & 0.7 & 3. Oriental & & & & \\
\hline 8 & 1.1 & 4. Hispanic & & & & \\
\hline & 0.0 & 5. Native American & & & & \\
\hline 2 & & 6. Other & & & & \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|}
\hline Variable 97 & Take Questionnaire & MD1: MD2: & None & Field Type: & Width: . 1 Numeric \\
\hline FREQ Prent & Take Questionnaire & & & & \\
\hline 567.8 & 0. Missing Data & & & & \\
\hline 65791.6 & 1. Yes & & & & \\
\hline 40.6 & 2. No & & & & \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline Variable & 98 & Incentive Offered & MD1: & 0 & Field & Width: \\
\hline & & & MD2 : & None & Type: & Numeric \\
\hline
\end{tabular}

FREQ Prent Incentive Offered
\begin{tabular}{rrl}
56 & 7.8 & O. Missing Data \\
642 & 89.5 & 1. Yes \\
19 & 2.6 & 2. No
\end{tabular}

\section*{Questionnaire Variables}

The Questionnaire Variables are coded by the respondent interviewed at a later time and mailed back to UMTRI.
\begin{tabular}{|c|c|c|c|c|c|}
\hline Variable 99 & Questionnaire Present & MD1:
MD2: & 0 & Field & Width: \\
\hline FREQ Prent & Questionnaire Present & & & & \\
\hline \(451 \quad 62.9\) & 1. Yes & & & & \\
\hline 26637.1 & 2. No & & & & \\
\hline Variable 100 & Were You Driver & MD1: & 0 & Field & Width: 1 \\
\hline FREQ Prent & Were You Driver & & & & \\
\hline \(267 \quad 37.2\) & O. Missing Data & & & & \\
\hline 34347.8 & 1. Yes & & & & \\
\hline 10714.9 & 2. No & & & & \\
\hline Variable 101 & Relation to Driver & MDI: & 00 & Field & Width: 2 \\
\hline FREQ Prent & Relation to Driver & & & & \\
\hline 26837.4 & 00. Missing Data & & & & \\
\hline 7210.0 & 01. Spouse & & & & \\
\hline 91.3 & 02. Sister/Brother & & & & \\
\hline 91.3 & 03. Daughter/Son & & & & \\
\hline 20.3 & 04. Daughter/Son in Law & & & & \\
\hline 131.8 & 05. Friend & & & & \\
\hline 10.1 & 07. Other & & & & \\
\hline 34347.8 & 88. Skip & & & & \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline \multicolumn{2}{|l|}{Variable 102} & Relation to Child & \multirow[t]{2}{*}{\begin{tabular}{l}
MD1: \\
MD2:
\end{tabular}} & \multirow[t]{2}{*}{None} & \multicolumn{2}{|l|}{\multirow[t]{2}{*}{Field Width: 1 Type: Numeric}} \\
\hline & & & & & & \\
\hline FREQ & Prent & Relation to Child & & & & \\
\hline 267 & 37.2 & O. Missing Data & & & & \\
\hline 414 & 57.7 & 1. Parent & & & & \\
\hline 1 & 0.1 & 2. Sister/Brother & & & & \\
\hline 15 & 2.1 & 3. Grandparent & & & & \\
\hline 10 & 1.4 & 4. Other Relative & & & & \\
\hline 7 & 1.0 & 5. Babysitter & & & & \\
\hline 3 & 0.4 & 6. Friend & & & & \\
\hline 0 & 0.0 & 7. Other & & & & \\
\hline
\end{tabular}

\begin{tabular}{|c|c|c|c|c|c|}
\hline Variable 104 & Ever in a Crash & \begin{tabular}{l}
MDI: \\
MD2:
\end{tabular} & O & Field Type: & \begin{tabular}{l}
Width: 1 \\
Numeric
\end{tabular} \\
\hline FREQ Prent & Ever in a Crash & & & & \\
\hline \(270 \quad 37.7\) & O. Missing Data & & & & \\
\hline 35549.5 & 1. Yes & & & & \\
\hline 9212.8 & 2. No & & & & \\
\hline
\end{tabular}

\begin{tabular}{|c|c|c|c|c|c|}
\hline Variable 106 & Significant Other Killed & MD1: & 0 & Field & Width: 1 \\
\hline & & MD2 : & None & Type: & Numeric \\
\hline FREQ Prent & Significant Other Killed & & & & \\
\hline \(270 \quad 37.7\) & O. Missing Data & & & & \\
\hline \(178 \quad 24.8\) & 1. Yes & & & & \\
\hline 26937.5 & 2. NO & & & & \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|}
\hline Variable 107 & Sig. Other Hospitalized & MD1: & \[
0
\] & Field & Width: \\
\hline FREQ Prent & Sig. Other Hospitalized & & & & \\
\hline 27538.4 & 0. Missing Data & & & & \\
\hline 28039.1 & 1. Yes & & & & \\
\hline 16222.6 & 2. No & & & & \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|}
\hline Variable 108 & Est. Belted Fatalities & MD1: & 0 & Field & Width: 1 \\
\hline FREQ Prent & Est. Belted Fatalities & & & & \\
\hline 27938.9 & O. Missing Data & & & & \\
\hline 20.3 & 1. More Than 1,200 & & & & \\
\hline 436.0 & 2. \(501-1,199\) & & & & \\
\hline 18826.2 & 3. \(251-500\) & & & & \\
\hline 20528.6 & 4. Less Than 250 & & & & \\
\hline Variable 109 & Freq. Seat Belt Use & MD1: & 0 & Field & Width: \\
\hline FREQ Prent & Freq. Seat Belt Use & & & & \\
\hline 26837.4 & O. Missing Data & & & & \\
\hline 1.0 & 1. Never & & & & \\
\hline \(30 \quad 4.2\) & 2. Rarely & & & & \\
\hline \(48 \quad 6.7\) & 3. Sometimes & & & & \\
\hline \(98 \quad 13.7\) & 4. Most Times & & & & \\
\hline 26637.1 & 5. Always & & & & \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|}
\hline Variable 110 & When Seat Belt Used & MD1: & 0 & Field & Width: 1 \\
\hline & & MD2: & 8 & Type: & Numeric \\
\hline FREQ Prent & When Seat Belt Used & & & & \\
\hline \(270 \quad 37.7\) & O. Missing Data & & & & \\
\hline 7610.6 & 1. Long Trips & & & & \\
\hline 152.1 & 2. Short Trips & & & & \\
\hline 8311.6 & 3. No Difference B & Length & & & \\
\hline 27338.1 & 8. Skip & & & & \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline \multicolumn{2}{|l|}{\multirow[t]{2}{*}{Variable 111}} & How Often Child Rest. & MD1: & 0 & Field & Width: 1 \\
\hline & & & MD2: & 6 & Type: & Numeric \\
\hline FREQ & Prent & How Often Child Rest. & & & & \\
\hline 268 & 37.4 & 0. Missing Data & & & & \\
\hline 3 & 0.4 & 1. Never & & & & \\
\hline 2 & 0.3 & 2. Rarely & & & & \\
\hline 16 & 2.2 & 3. Sometimes & & & & \\
\hline 59 & 8.2 & 4. Most Times & & & & \\
\hline 348 & 48.5 & 5. Always & & & & \\
\hline 21 & 2.9 & 6. No Children Under & & & & \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline Variable & e 112 & When & Children Restrained & \begin{tabular}{l}
MD1: \\
MD2 :
\end{tabular} & 0 & Field Type: & \begin{tabular}{l}
Width: \\
Numeri
\end{tabular} \\
\hline FREQ P & Prent & When & Children Restrained & & & & \\
\hline 270 & 37.7 & & Missing Data & & & & \\
\hline 28 & 3.9 & & Long Trips & & & & \\
\hline 11 & 1.5 & & Short Trips & & & & \\
\hline 36 & 5.0 & & No Difference By Trip & Length & & & \\
\hline 372 & 51.9 & & Skip & & & & \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|}
\hline Variable 113 & Other Children Rest. & MD1: & 0 & Field & Width: 1 \\
\hline & & MD2 : & None & Type: & Numeric \\
\hline FREQ Prent & Other Children Rest. & & & & \\
\hline \(266 \quad 37.1\) & O. Missing Data & & & & \\
\hline \(4 \quad 0.6\) & 1. Never & & & & \\
\hline \(4 \quad 0.6\) & 2. Rarely & & & & \\
\hline 172.4 & 3. Sometimes & & & & \\
\hline 354.9 & 4. Most Times & & & & \\
\hline 36350.6 & 5. Always & & & & \\
\hline 283.9 & 6. Never Carry Other's & hild & & & * \\
\hline
\end{tabular}

\begin{tabular}{|c|c|c|c|c|c|}
\hline Variable 115 & Est. Cost of CRD & MD1: & 0 & Field & Width: 1 \\
\hline & & MD2 : & None & TYpe: & Numeric \\
\hline FREQ Prent & Est. Cost of CRD & & & & \\
\hline 26837.4 & 0. Missing Data & & & & \\
\hline \(9 \quad 1.3\) & 1. \$10-\$24 & & & & \\
\hline 17624.5 & 2. \(\$ 25\) - \$39 & & & & \\
\hline 22931.9 & 3. \(\$ 40-\$ 54\) & & & & \\
\hline 354.9 & 4. Over \$55 & & & & \\
\hline
\end{tabular}


\begin{tabular}{|c|c|c|c|c|c|}
\hline Variable 118 & Other People Notice CRD & MD1: MD2: &  & Field & Width: \\
\hline FREQ Prent & Other People Notice CRD & & & & \\
\hline 27037.7 & O. Missing Data & & & & \\
\hline 32345.0 & 1. Yes & & & & \\
\hline \(124 \quad 17.3\) & 2. No & & & & \\
\hline Variable 119 & CRD Should be Law & MD1: & 0 & Field & Width: 1 \\
\hline & & & & & \\
\hline FREQ Prent & CRD Should be Law & & & & \\
\hline 26837.4 & O. Missing Data & & & & \\
\hline \(15 \quad 2.1\) & 1. Disagree Strongly & & & & \\
\hline \(5 \quad 0.7\) & 2. Disagree Moderately & & & & \\
\hline \(8 \quad 1.1\) & 3. Disagree Somewhat & & & & \\
\hline 172.4 & 4. Neutral & & & & \\
\hline 162.2 & 5. Agree Somewhat & & & & \\
\hline 436.0 & 6. Agree Moderately & & & & \\
\hline 34548.1 & 7. Agree Strongly & & & & \\
\hline Variable 120 & CRD Not Used W/O Law & MD1: & 0 & Field & Width: 1 \\
\hline & & & & & \\
\hline FREQ Prent & CRD Not Used W/O Law & & & & \\
\hline 26937.5 & O. Missing Data & & & & \\
\hline 365.0 & 1. Disagree Strongly & & & & \\
\hline \(53 \quad 7.4\) & 2. Disagree Moderately & & & & \\
\hline \(75 \quad 10.5\) & 3. Disagree Somewhat & & & & \\
\hline 11716.3 & 4. Neutral & & & & \\
\hline 9313.0 & 5. Agree Somewhat & & & & \\
\hline 365.0 & 6. Agree Moderately & & & & \\
\hline 38.5 .3 & 7. Agree Strongly & & & & \\
\hline Variable 121 & Enforce CRD Law & MD1: & 0 & Field & Width: 1 \\
\hline & & & & & \\
\hline FREQ Prent & Enforce CRD Law & & & & \\
\hline 26837.4 & 0. Missing Data & & & & \\
\hline \(6 \quad 0.8\) & 1. Disagree Strongly & & & & \\
\hline \(8 \quad 1.1\) & 2. Disagree Moderately & & & & \\
\hline \(6 \quad 0.8\) & 3. Disagree Somewhat & & & & \\
\hline 212.9 & 4. -Neutral & & & & \\
\hline
\end{tabular}

FREQ Prent Var 121 Enforce CRD Law
\begin{tabular}{rrl}
43 & 6.0 & 5. Agree Somewhat \\
64 & 8.9 & 6. Agree Moderately \\
301 & 42.0 & 7. Agree Strongly
\end{tabular}


\begin{tabular}{|c|c|c|c|c|c|c|}
\hline \multicolumn{2}{|l|}{\multirow[t]{2}{*}{Variable 124}} & CRD is a Bother & \multirow[t]{2}{*}{\[
\begin{aligned}
& \text { MD1: } \\
& \text { MD2: }
\end{aligned}
\]} & \multirow[t]{2}{*}{0
9} & \multirow[t]{2}{*}{Fiel Type} & \multirow[t]{2}{*}{Width: 1 Numeric} \\
\hline & & & & & & \\
\hline FREQ & Prent & CRD is a Bother & & & & \\
\hline 269 & 37.5 & 0. Missing Data & & & & \\
\hline 165 & 23.0 & 1. Disagree Strongly & & & & \\
\hline 48 & 6.7 & 2. Disagree Moderately & & & & \\
\hline 26 & 3.6 & 3. Disagree Somewhat & & & & \\
\hline 56 & 7.8 & 4. Neutral & & & & \\
\hline 48 & 6.7 & 5. Agree Somewhat & & & & \\
\hline 36 & 5.0 & 6. Agree Moderately & & & & \\
\hline 51 & 7.1 & 7. Agree Strongly & & & & \\
\hline
\end{tabular}

FREQ Prent Var 124 CRD is a Bother
\(18 \quad 2.5\) 9. Not Applicable


FREQ Prent Var 127 Child Under 2 Likes CRD
\(0 \quad 0.0 \quad\) 9. Not Applicable
\begin{tabular}{|c|c|c|c|c|c|}
\hline \multirow[t]{2}{*}{Variable 128} & Childern 2-3 Like CRD & MD1: & 0 & Field & Width: 1 \\
\hline & & MD2 : & None & Type: & Numeric \\
\hline FREQ Prent & Childern 2-3 Like CRD & & & & \\
\hline \(272 \quad 37.9\) & O. Missing Data & & & & \\
\hline 294.0 & 1. Disagree Strongly & & & & \\
\hline 243.3 & 2. Disagree Moderately & & & & \\
\hline 517.1 & 3. Disagree Somewhat & & & & \\
\hline 10214.2 & 4. Neutral & & & & \\
\hline \(90 \quad 12.6\) & 5. Agree Somewhat & & & & \\
\hline 7911.0 & 6. Agree Moderately & & & & \\
\hline \(70 \quad 9.8\) & 7. Agree Strongly & & & & \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline \multicolumn{2}{|l|}{\multirow[t]{2}{*}{Variable 129}} & Children Get Used to CRD & \multirow[t]{3}{*}{\[
\begin{aligned}
& \text { MD1: } \\
& \text { MD2: }
\end{aligned}
\]} & \multirow[t]{3}{*}{None} & \multicolumn{2}{|l|}{\multirow[t]{3}{*}{\begin{tabular}{l}
Field Width: 1 \\
Type: Numeric
\end{tabular}}} \\
\hline & & & & & & \\
\hline FREQ & Prent & Children Get Used to CRD & & & & \\
\hline 269 & 37.5 & O. Missing Data & & & & \\
\hline 7 & 1.0 & 1. Disagree Strongly & & & & \\
\hline 12 & 1.7 & 2. Disagree Moderately & & & & \\
\hline 11 & 1.5 & 3. Disagree Somewhat & & & & \\
\hline 32 & 4.5 & 4. Neutral & & & & \\
\hline 60 & 8.4 & 5. Agree Somewhat & & & & \\
\hline 126 & 17.6 & 6. Agree Moderately & & & & \\
\hline 200 & 27.9 & 7. Agree Strongly & & & & \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline \multicolumn{2}{|l|}{\multirow[t]{2}{*}{Variable 130}} & Make Adult Belt Use Law & \multirow[t]{2}{*}{\[
\begin{aligned}
& \text { MD1: } \\
& \text { MD2: }
\end{aligned}
\]} & \multirow[t]{2}{*}{\[
\begin{array}{r}
0 \\
\text { None }
\end{array}
\]} & \multicolumn{2}{|l|}{\multirow[t]{2}{*}{\begin{tabular}{l}
Field Width: 1 \\
Type: Numeric
\end{tabular}}} \\
\hline & & & & & & \\
\hline \multicolumn{2}{|l|}{FREQ Prent} & Make Adult Belt Use Law & & & & \\
\hline 270 & 37.7 & O. Missing Data & & & & \\
\hline 42 & 5.9 & 1. Disagree Strongly & & & & \\
\hline 23 & 3.2 & 2. Disagree Moderately & & & & \\
\hline 16 & 2.2 & 3. Disagree Somewhat & & & & \\
\hline 44 & 6.1 & 4. Neutral & & & & \\
\hline 37 & 5.2 & 5. Agree Somewhat & & & & \\
\hline 52 & 7.3 & 6. Agree Moderately & & & & \\
\hline 233 & 32.5 & 7. Agree Strongly & & & & \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline \multicolumn{2}{|l|}{\multirow[t]{2}{*}{Variable 131}} & Belt Law Infringe Rights & \multirow[t]{2}{*}{\[
\begin{aligned}
& \text { MD1: } \\
& \text { MD2: }
\end{aligned}
\]} & \multirow[t]{2}{*}{None} & \multicolumn{2}{|l|}{\multirow[t]{2}{*}{\begin{tabular}{l}
Field Width: 1 \\
Type: Numeric
\end{tabular}}} \\
\hline & & & & & & \\
\hline FREQ & Prent & Belt Law Infringe Rights & & & & \\
\hline 271 & 37.8 & O. Missing Data & & & & \\
\hline 154 & 21.5 & 1. Disagree Strongly & & & & \\
\hline 65 & 9.1 & 2. Disagree Moderately & & & & \\
\hline 35 & 4.9 & 3. Disagree Somewhat & & & & \\
\hline 74 & 10.3 & 4. Neutral & & & & \\
\hline 37 & 5.2 & 5. Agree Somewhat & & & & \\
\hline 28 & 3.9 & 6. Agree Moderately & & & & \\
\hline 53 & 7.4 & 7. Agree Strongly & & & & \\
\hline
\end{tabular}

\begin{tabular}{|c|c|c|c|c|c|}
\hline Variable 134 & Belts Uncomfortable & MD1: MD2: & 0 & Field & Width: 1 \\
\hline FREQ Prent & Belts Uncomfortable & & & & \\
\hline 27438.2 & 0. Missing Data & & & & \\
\hline 17324.1 & 1. Disagree Strongly & & & & \\
\hline 8912.4 & 2. Disagree Moderately & & & & \\
\hline 334.6 & 3. Disagree Somewhat & & & & \\
\hline 476.6 & 4. Neutral & & & & \\
\hline 314.3 & 5. Agree Somewhat & & & & \\
\hline 405.6 & 6. Agree Moderately & & & & \\
\hline \(30 \quad 4.2\) & 7. Agree Strongly & & & & \\
\hline \(0 \quad 0.0\) & 8. Skip & & & & \\
\hline Variable 135 & Employment Status & MD1: & 0 & Field & Width: 1 \\
\hline FREQ Prent & Employment Status & & & & \\
\hline 26937.5 & O. Missing Data & & & & \\
\hline 24434.0 & 1. Employed & & & & \\
\hline 121.7 & 2. Unemployed & & & & \\
\hline 18625.9 & 3. Homemaker & & & & \\
\hline \(6 \quad 0.8\) & 4. Retired & & & & \\
\hline 00.0 & 8. Skip & & & & \\
\hline
\end{tabular}
\begin{tabular}{llrl} 
Variable 136 Occupation & MD1: & 0 & Field Width: 2 \\
& & \\
\end{tabular}

Davis, James A.,"Occupational Classification Distributions," Appendix \(F\) In National Data Program for the Social Sciences. Codebook for the Spring 1975 General Social Survey. Chicago: National Opinion Research Center, July, 1975.

FREQ Prent Occupation
\begin{tabular}{rrl}
291 & 40.6 & 00. Missing Data \\
2 & 0.3 & 15. \\
3 & 0.4 & 16. \\
9 & 1.3 & 17. \\
9 & 1.3 & 20. \\
2 & 0.3 & 22. \\
10 & 1.4 & 23. \\
1 & 0.1 & 24. \\
4 & 0.6 & 25. \\
4 & 0.6 & 26. \\
3 & 0.4 & 27. \\
8 & 1.1 & 29.
\end{tabular}

FREQ Prent Var 136 Occupation
\begin{tabular}{rll}
9 & 1.3 & 31. \\
5 & 0.7 & 32. \\
7 & 1.0 & 33. \\
4 & 0.6 & 34. \\
1 & 0.1 & 35. \\
16 & 2.2 & 36. \\
6 & 0.8 & 37. \\
1 & 0.1 & 38. \\
4 & 0.6 & 39. \\
7 & 1.0 & 40. \\
5 & 0.7 & 41. \\
3 & 0.4 & 42. \\
2 & 0.3 & 43. \\
1 & 0.1 & 44. \\
5 & 0.7 & 45. \\
30 & 4.2 & 46. \\
7 & 1.0 & 47. \\
14 & 2.0 & 48. \\
1 & 0.1 & 49. \\
24 & 3.3 & 50. \\
12 & 1.7 & 51. \\
10 & 1.4 & 52. \\
3 & 0.4 & 56. \\
1 & 0.1 & 58. \\
34 & 4.7 & 60. \\
11 & 1.5 & 61. \\
22 & 3.1 & 62. \\
1 & 0.1 & 63. \\
3 & 0.4 & 67. \\
2 & 0.3 & 69. \\
2 & 0.3 & 71. \\
1 & 0.1 & 74. \\
2 & 0.3 & 76. \\
2 & 0.3 & 78. \\
3 & 0.4 & 82. \\
110 & 15.3 & 88. \\
& &
\end{tabular}

\begin{tabular}{lll} 
Variable 138 & Spouse Occupation & MD1:
\end{tabular} \begin{tabular}{rl} 
& 0 \\
Field Width: 2 \\
\(M D 2:\) & 88
\end{tabular}

Davis, James A.,"Occupational Classification Distributions," Appendix \(F\) In National Data Program for the Social Sciences. Codebook for the Spring 1975 General Social Survey. Chicago: National Opinion Research Center, July, 1975.
\begin{tabular}{rrl} 
FREQ & Prcnt & Spouse Occupation \\
& & \\
297 & 41.4 & 00. Missing Data \\
1 & 0.1 & 12. \\
3 & 0.4 & 16. \\
15 & 2.1 & 17. \\
1 & 0.1 & 18. \\
3 & 0.4 & 20. \\
3 & 0.4 & 22. \\
1 & 0.1 & 23. \\
2 & 0.3 & 25. \\
1 & 0.1 & 26. \\
13 & 1.8 & 27. \\
2 & 0.3 & 28. \\
14 & 2.0 & 29. \\
3 & 0.4 & 30. \\
5 & 0.7 & 31. \\
13 & 1.8 & 32. \\
1 & 0.1 & 33. \\
5 & 0.7 & 34. \\
1 & 0.1 & 35. \\
8 & 1.1 & 36. \\
12 & 1.7 & 37. \\
4 & 0.6 & 39. \\
15 & 2.1 & 40. \\
8 & 1.1 & 41. \\
10 & 1.4 & 42. \\
2 & 0.3 & 45. \\
9 & 1.3 & 46. \\
14 & 2.0 & 47. \\
15 & 2.1 & 48. \\
5 & 0.7 & 49. \\
40 & 5.6 & 50. \\
21 & 2.9 & 51. \\
1 & 0.1 & 52. \\
1 & 0.1 & 53. \\
1 & 0.1 & 54. \\
2 & 0.3 & 55. \\
1 & 0.1 & 56. \\
5 & 0.7 & 57. \\
2 & 0.3 & 58. \\
11 & 1.5 & 60. \\
5 & 0.7 & 61. \\
7 & 1.0 & 62. \\
2 & 0.3 & 66. \\
& &
\end{tabular}
FREQ Prent Var 138 Spouse Occupation
\begin{tabular}{rll}
20 & 2.8 & 67. \\
4 & 0.6 & 68. \\
6 & 0.8 & 69. \\
1 & 0.1 & 70. \\
2 & 0.3 & 71. \\
2 & 0.3 & 72. \\
2 & 0.3 & 74. \\
5 & 0.7 & 76. \\
3 & 0.4 & 78. \\
9 & 1.3 & 82. \\
36 & 5.0 & 88. \\
42 & 5.9 & 99. NO Occupation Spouse
\end{tabular}

\begin{tabular}{|c|c|c|c|c|c|}
\hline Variable 140 & Last Dentist Visit & MD1: MD2: & 0
None & Field Type: & Width: \\
\hline FREQ Prent & Last Dentist Visit & & & & \\
\hline \(270 \quad 37.7\) & O. Missing Data & & & & \\
\hline 25034.9 & 1. Last 6 Months & & & & \\
\hline 88.12 .3 & 2. 6 to 12 Months & & & & \\
\hline 547.5 & 3. 1 to 2 Years & & & & \\
\hline 55.7 .7 & 4. More Than 2 Years & & & & \\
\hline Variable 141 & Smoked Cigarettes & MD1: & 0 & Field & Width: 1 \\
\hline FREQ Prent & Smoked Cigarettes & & & & \\
\hline \(270 \quad 37.7\) & O. Missing Data & & & & \\
\hline 21129.4 & 1. Never Smoked & & & & \\
\hline 12417.3 & 2. Smoked In Past & & & & \\
\hline
\end{tabular}

FREQ Prent Var 141 Smoked Cigarettes
\(112 \quad 15.6\) 3. Smoke Now
\begin{tabular}{|c|c|c|c|}
\hline Variable 142 & How Many Cigarettes MDI: & 0 & Field Width: 1 \\
\hline & MD2 : & None & Type: Numeric \\
\hline FREQ Prent & How Many Cigarettes & & \\
\hline \(271 \quad 37.8\) & O. Missing Data & & \\
\hline \(77 \quad 10.7\) & 1. Less Than Half Pack a Day & & \\
\hline 10013.9 & 2. Half to One Pack a Day & & \\
\hline \(57 \quad 7.9\) & 3. One to Two Packs a Day & & \\
\hline 10.1 & 4. More Than Two Packs a Day & & \\
\hline 21129.4 & 8. Never Smoked & & \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline \multicolumn{2}{|l|}{\multirow[t]{2}{*}{Variable 143}} & Correct CRD Use & \multirow[t]{2}{*}{\[
\begin{aligned}
& \text { MD1: } \\
& \text { MD2: }
\end{aligned}
\]} & \multirow[t]{2}{*}{} & \multicolumn{2}{|l|}{\multirow[t]{2}{*}{Field Width: 1 Type: Numeric}} \\
\hline & & & & & & \\
\hline FREQ & Prent & Based on V25 and V27 & & & & \\
\hline 0 & 0.0 & O. Missing Data & & & & \\
\hline 179 & 25.0 & 1. No Restraint & & & & \\
\hline 144 & 20.1 & 2. Belted & & & & \\
\hline 248 & 34.6 & 3. Incorrect CRD & & & & \\
\hline 146 & 20.4 & 4. Correct CRD & & & & \\
\hline
\end{tabular}

Variable 144 Family Occupation \(\quad\) Dl: 0 Field Width: 2
MD2: 88 Type: Numeric

Davis, James A.,"Occupational Classification Distributions," Appendix \(F\) In National Data Program for the Social Sciences. Codebook for the Spring 1975 General Social Survey. Chicago: National Opinion Research Center, July, 1975.

FREQ Prent Highest Family Occupation Code
281 39.2 00. Missing Data
\(2 \quad 0.316\).
\(10 \quad 1.417\).
10.118.
\(4 \quad 0.6 \quad 20\).
\(20.3 \quad 22\).
\(6 \quad 0.8 \quad 23\).
\(10.1 \quad 25\).
\(20.3 \quad 26\).
8 1.1 27.
\begin{tabular}{rll}
1 & 0.1 & 28. \\
14 & 2.0 & 29. \\
1 & 0.1 & 30. \\
7 & 1.0 & 31. \\
11 & 1.5 & 32. \\
3 & 0.4 & 33. \\
4 & 0.6 & 34. \\
1 & 0.1 & 35. \\
11 & 1.5 & 36. \\
10 & 1.4 & 37. \\
1 & 0.1 & 38. \\
5 & 0.7 & 39. \\
17 & 2.4 & 40. \\
7 & 1.0 & 41. \\
10 & 1.4 & 42. \\
1 & 0.1 & 43. \\
1 & 0.1 & 44. \\
7 & 1.0 & 45. \\
18 & 2.5 & 46. \\
14 & 2.0 & 47. \\
21 & 2.9 & 48. \\
5 & 0.7 & 49. \\
44 & 6.1 & 50. \\
23 & 3.2 & 51. \\
5 & 0.7 & 52. \\
1 & 0.1 & 53. \\
1 & 0.1 & 54. \\
1 & 0.1 & 55. \\
3 & 0.4 & 56. \\
1 & 0.1 & 57. \\
3 & 0.4 & 58. \\
31 & 4.3 & 60. \\
13 & 1.8 & 61. \\
21 & 2.9 & 62. \\
2 & 0.3 & 66. \\
21 & 2.9 & 67. \\
4 & 0.6 & 68. \\
8 & 1.1 & 69. \\
1 & 0.1 & 70. \\
2 & 0.3 & 71. \\
2 & 0.3 & 72. \\
3 & 0.4 & 74. \\
7 & 1.0 & 76. \\
5 & 0.7 & 78. \\
11 & 1.5 & 82. \\
17 & 2.4 & 88. \\
& & \\
& & \\
\hline
\end{tabular}

\section*{Appendix D}

\section*{Interview Comments and Other Responses}

\section*{INTERVIEW COMMENTS AND OTHER RESPONSES}
QUES COMMENT ..... CODE
CASES
11 Lamaze Class ..... 04 ..... 6
Hospital ..... 04 ..... 5
News media + knowledge since 1957 ..... 01 ..... 1
Re:seat belts
OTHER
Always Knew ..... 0816
Common Sense ..... 08 ..... 7
Own decision/own incentive ..... 2
Store/salesman ..... 4
By having one ..... 1
In college/ health \& Child courses ..... 1
Other older Kids1
Work/former police officer ..... 1
Witnessed accident/experienced accident ..... 2
Sec. of State office/posters/The law ..... 2
12 COMMENT
Garage sale ..... 02 ..... 8
Through work/insurance company ..... 2
Used ..... 02 ..... 3
Parents provided05
Used from relative ..... 05
13 COMMENT11
With 5 kids I know how to put it in ..... 1
15 OTHER
Verbal:Nurse at hospital ..... 07
Verbal:Doctor ..... 07
Verbal:Yard sale person ..... 07
Written:Hospital handout sheet ..... 07
16 COMMENT
Grandma ..... 052
16 OTHER
Babysitter(self) ..... 071
Driver ..... 072
Friend ..... 071

OTHER
Seat in reclined position 50
Not an approved child seat
21 OTHER
Its belted instead
In front seat/usually sits in rear 50
where clip not needed
Car seat straps don't stay hooked 50
More comfort for baby 50
Not an approved child seat 50
OTHER
Not an approved child seat 50
OTHER
Sibling broke harness last week 50
Child had lap belt on
Child getting ready to eat
50
Harness clip doesn't stay up/old seat 50
Not an approved seat 50
Kids fighting over who in seat 50
so belted both instead
Was sleeping so just belted instead 50
Was in CRD took out/got out on 50 approach to Micky Dees

26 COMMENTS
Seat belts work just the same \(+\quad 03\)
Uses seat belt now + - 03
Not enough room when 3 kids in car + 03
Not enough room when everyone in car \(+\quad 06\)
Not driving own car + 05
If we are letting states have abortions why do we have to use seat belts to save them

OTHER
Cleaned out car-didn't put seat back in
Thought under 3 years didn't need a seat 05

Usually in seat belt in rear
In a hurry-forgot it 05

Don't own a car 05
Not using own car today/in for repair 05
Uses seat belt instead 05
Kid crawls out of harness/belts work 05
just as well
Needs repair or replacement 05
Left at relatives . 05
Don't have one 05
In trunk didn't get it out 05
Front doors do not work good/difficult to use 05
Too many people in car
Too heavy to carry from upstairs apt. by self 05

No seatbelts in back seat to hold seat 05 No seatbelts in back seat to hold seat
27 COMMENTS ..... 223
Kid wanted to lay down to sleep + ..... 02 ..... 1
Child being fed ..... 1
27 OTHER
Neglect ..... 05 ..... 1
Child unbuckles her/himself ..... 05 ..... 11
Child too small for belt ..... 05 ..... 1
Sitting in someones lap ..... 05
Child wants to look outside ..... 05
Not use to it/didn't think of it
Not use to it/didn't think of it ..... 05 ..... 05 ..... 2 ..... 2
Never have used it ..... 05
Forgot ..... 05
Buckle broken ..... 05
Front doors do not work good/difficult to use ..... 05 ..... 1
No reason ..... 05
Time-back seat folded down ..... 05
Child sleeping on floor ..... 05
No seat belt in back seat ..... 0531111111

\section*{Appendix E}

Charts on Correctness of Child Restraint Use

\begin{tabular}{|lll|}
\hline Correct CRD Use & \(\mathbf{N}\) Partial Misuse & \(\Delta \underset{\text { Extensive Misuse }}{ }\) \\
\hline
\end{tabular}

Figure E.1: \(\begin{gathered}\text { Correctness of Child Restraint Use by Gender of } \\ \text { Driver }\end{gathered}\)

\begin{tabular}{|lll|}
\hline Correct CRD Use & \(\mathbf{N}\) Partial Misuse & \(\Delta y\) Extensive Misuse \\
\hline
\end{tabular}

Figure E.2: Correctness of Child Restraint Use by Gender of Child

M Correct CRD Use \(\quad\) PN Partial Misuse \(\quad D\) Extensive Misuse

Figure E.3: Correctness of Child Restraint Use by Relationship of Driver to Child

\begin{tabular}{|lll|}
\hline Correct CRD Use & Partial Misuse & Extensive Misuse \\
\hline
\end{tabular}

Figure E.4: Correctness of Child Restraint Use by Age of Driver

\begin{tabular}{|lll|}
\hline Correct CRD Use \(\quad \mathbf{N}\) Partial Misuse \(\quad N\) Extensive Misuse \\
\hline
\end{tabular}

Figure E.5: Correctness of Child Restraint Use by Age of Child

Correct CRD Use Partial Misuse

Figure E.6: Correctness of Child Restraint Use by Child Birth Order

\begin{tabular}{|lll|}
\hline Correct CRD Use & Partial Misuse & Extensive Misuse \\
\hline
\end{tabular}

Figure E.7: Correctness of Child Restraint Use by Whether Child Has Siblings

* Includes single, divorced, separated, and widowed
\begin{tabular}{|lll|}
\hline Correct CRD Use & Partial Misuse & Extensive Misuse \\
\hline
\end{tabular}

Figure E.8: Correctness of Child Restraint Use by Marital Status



Figure E.9: Correctness of Child Restraint Use by Family Income

\begin{tabular}{|llll}
\hline Correct CRD Use & Partial Misuse & Extensive Misuse \\
\hline
\end{tabular}

Figure E.10: \(\begin{aligned} & \text { Correctness of Child Restraint Use by Educational } \\ & \text { Level }\end{aligned}\)

\begin{tabular}{|l|l|}
\hline Correct CRD Use & \(\mathbf{N}\) Partial Misuse \(\quad \Delta\) Extensive Misuse \\
\hline
\end{tabular}

Figure E.11: Correctness of Child Restraint Use by Family Occupational Prestige

\begin{tabular}{|lll|}
\hline Correct CRD Use & Partial Misuse & Extensive Misuse \\
\hline
\end{tabular}

Figure E.12: Correctness of Child Restraint Use by Ethnic Background


Previous Exposure to Motor Vehicle Crash


Figure E.13: Correctness of Child Restraint Use by Previous Exposure to Motor Vehicle Crash


Figure E.14: Correctness of Child Restraint Use by Previous Injury in Motor Vehicle Crash


Friend or Relative Killed

Figure E.15: Correctness of Child Restraint Use by Crash-Related Mortality of Friend or Relative


Friend or Relative Hospitalized


Figure E.16: Correctness of Child Restraint Use by Crash-Related Hospitalization of Friend or Relative

\begin{tabular}{|lll|}
\hline Eorrect CRD Use & Parial Misuse & Extensive Misuse \\
\hline
\end{tabular}

Figure E.17: Correctness of Child Restraint Use by Belief That Child Held in Lap Is Safe


Perceived Effectiveness of Child Restraint Devices
Correct CRD Use Partial Misuse Extensive Misuse

Figure E.18: Correctness of Child Restraint Use by Perceived Effectiveness of Child Restraint Devices

* Includes child abuse, cancer, and other diseases


Figure E.19: Correctness of Child Restraint Use by Belief about Major Cause of Child Mortality


Figure E.20: Correctness of Child Restraint Use by Awareness of Child Restraint Law



Figure E.21: Correctness of Child Restraint Use by Knowledge of Child Restraint Law

Correct CRD Use Partial Misuse Extensive Misuse

Figure E.22: Correctness of Child Restraint Use by Belief That Child Restraints Would Not Be Used Without Child Restraint Law


Frequency of Child Restraint Use in Absence of a Law
\begin{tabular}{|lll|}
\hline Correct CRD Use & Partial Misuse & Extensive Misuse \\
\hline
\end{tabular}

Figure E.23: Correctness of Child Restraint Use by Estimated Frequency of Child Restraint Use in Absence of a Child Restraint Law


Influence of Fear of Ticket on Restraint Use


Figure E.24: Correctness of Child Restraint Use by Influence of Fear of Ticket on Decision to Use Restraints


Figure E.25: Correctness of Child Restraint Use by Perception of How Often Police Stop Violators of Law


\section*{W}

Partial Misuse \(\square\) Extensive Misuse

Figure E.26: Correctness of Child Restraint Use by Perception of How Often Police Ticket Violators of Law

Correct CRD Use Partial Misuse A Extensive Misuse

Figure E.27: Correctness of Child Restraint Use by Belief That Child Likes Child Restraint

\begin{tabular}{|cccc|}
\hline Correct CRD Use & Eartial Misuse & Exiensive Misuse \\
\hline
\end{tabular}

Figure E.28: Correctness of Child Restraint Use by Belief That Child Under Age of Two Likes Child Restraint


Figure E.29: Correctness of Child Restraint Use by Belief That Children Age Two to Three Like Child Restraints

\begin{tabular}{|lll|}
\hline Correct CRD Use & Partial Misuse & Extensive Misuse \\
\hline
\end{tabular}

Figure E.30: Correctness of Child Restraint Use by Belief That Children Get Used to Restraint Devices

\begin{tabular}{|llll|}
\hline Correct CRD Use & Partial Misuse & \(\Delta\) Extensive Misuse \\
\hline
\end{tabular}

Figure E.31: Correctness of Child Restraint Use by Belief That Child Misbehaves in Child Restraint

\begin{tabular}{|lll|}
\hline Correct CRD Use & Partial Misuse & Extensive Misuse \\
\hline
\end{tabular}

Figure E.32: Correctness of Child Restraint Use by Belief That Child Restraint Is a Bother for Adult


Seat Belts Are Uncomfortable


Figure E.33: Correctness of Child Restraint Use by Belief That Adult Seat Belts Are Uncomfortable

\begin{tabular}{|lll|}
\hline Correct CRD Use & \(\mathbf{N}\) Partial Misuse & Extensive Misuse \\
\hline
\end{tabular}

Figure E.34: Correctness of Child Restraint Use by Estimated Cost of Child Restraint Device

\begin{tabular}{|l|l|l|}
\hline Correct CRD Use & \(\mathbf{N}\) & Partial Misuse \\
\hline
\end{tabular}

Figure E.35: Correctness of Child Restraint Use by Perception of Public Support for Child Restraint Law


Figure E.36: Correctness of Child Restraint Use by Perception of Obedience to Child Restraint Law


Percent of Friends Who Use Child Restraints


Figure E.37: Correctness of Child Restraint Use by Percent of Friends Who Use Child Restraints


Belief That Others Notice Child Restraint Use
\(\square\)

Figure E.38: Correctness of Child Restraint Use by Belief That Others Notice Child Restraint Use

Correct CRD Use Partial Misuse

Figure E.39: Correctness of Child Restraint Use by Belief That Child Restraint Law Increases Likelihood of Child Restraint Use


Child Restraint Use Should Be Required By Law
\begin{tabular}{|llll|}
\hline Correct CRD Use & Partial Misuse & Extensive Misuse \\
\hline
\end{tabular}

Figure E.40: Correctness of Child Restraint Use by Belief That Child Restraint Use Should Be Required by Law


Figure E.41: Correctness of Child Restraint Use by Belief That Child Restraint Laws Should Be Strictly Enforced

\begin{tabular}{|lll|}
\hline Eorrect CRD Use & Partial Misuse & Extensive Misuse \\
\hline
\end{tabular}

Figure E.42: Correctness of Child Restraint Use by Belief That Adult Seat Belt Use Should Be Required by Law


Seat Belt Law Infringes on Rights


Figure E.43: Correctness of Child Restraint Use by Belief That Seat Belt Law Infringes on Individual Rights




Figure E.44: Correctness of Child Restraint Use by Belief That Federal Government Is too Involved in Individual and Private Business



Figure E.45: Correctness of Child Restraint Use by Belief That State Government Is Too Involved in Individual and Private Business


\section*{Correct CRD Use}

\section*{N}

Figure E.46: Correctness of Child Restraint Use by Driver Restraint Use

\begin{tabular}{|lll|}
\hline Correct CRD Use & \(\mathbf{N}\) Partial Misuse & \(\Delta \underset{y}{ }\) Extensive Misuse \\
\hline
\end{tabular}

Figure E.47: Correctness of Child Restraint Use by Self-Reported Seat Belt Use

Correct CRD Use \(\quad \mathbf{N}\) Partial Misuse \(\quad D\) Extensive Misuse

Figure E.48: Correctness of Child Restraint Use by Likelihood of Respondent's Spouse to Use Child Restraint


Figure E.49: Correctness of Child Restraint Use by Child Seat Position

\begin{tabular}{|lll|}
\hline Correct CRD Use & Partial Misuse & \(D\) Extensive Misuse \\
\hline
\end{tabular}

Figure E.50: Correctness of Child Restraint Use by Cigarette Smoking Behavior



Figure E.51: Correctness of Child Restraint Use by Number of Cigarettes Smoked

Correct CRD Use \(\quad\) Partial Misuse \(\quad D\) Extensive Misuse

Figure E.52: Correctness of Child Restraint Use by Last Dental Visit

\begin{tabular}{|l|l|}
\hline Correct CRD Use \(\quad \mathbf{N}\) Eartial Misuse \(\quad \Delta\) Extensive Misuse \\
\hline
\end{tabular}

Figure E.53: Correctness of Child Restraint Use by Days Driving with Children

\begin{tabular}{|l|l|}
\hline Exrect CRD Use & Partial Misuse \\
\hline
\end{tabular}

Figure E.54: Correctness of Child Restraint Use by Month of Observation



Figure E.55: Correctness of Child Restraint Use by Day of the Week

* Includes pickups, vans, and other
Correct CRD Use \(\quad \mathbf{N}\) Partial Misuse \(\quad A\) Extensive Misuse

Figure E.56: Correctness of Child Restraint Use by Vehicle Size

\begin{tabular}{|l|l|}
\hline Correct CRD Use Partial Misuse \(\quad A\) Extensive Misuse \\
\hline
\end{tabular}

Figure E.57: Correctness of Child Restraint Use by Number of Vehicle Occupants```


[^0]:    1. The restaurant used for pretesting was not included in the sample for the actual survey.
[^1]:    2. Verification refers to keypunching all data twice and comparing the two resulting data sets to locate and correct keypunch operator errors.
[^2]:    3. Five additional observations were invalid because two of the observations were of restaurant personnel, child restraint use was missing from a third observation, the fourth observation was a repeat, and the fifth observation was of a child over four.
    4. Three additional questionnaires returned were invalid due to the following: one was missing the respondent identification code and two were returned too late for inclusion.
[^3]:    ${ }^{1}$ Percent of distributed questionnaires

[^4]:    5. For example, $14.6 \%$ of the study sample reported having a family income of $\$ 50,000$ or more. By comparison, $6.5 \%$ of Michigan families had an income of $\$ 50,000$ or more in 1980. Similarly, $91.5 \%$ of the study sample had completed 12 or more years of schooling compared to $64.5 \%$ of Michigan residents age 15 and older (U.S. Bureau of the Census, 1983).
[^5]:    9. The reader is reminded that these estimates may be slightly higher than true values, because subjects who refused to participate in the survey were probably less interested in child safety issues and therefore less supportive of compulsory use.
[^6]:    10. Obviously, persuading pediatricians' offices or others to accept this responsibility may be difficult. Furthermore, legal liability issues associated with providing such advice must be addressed.
