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The b2-adrenoceptor (b2AR) was one of the first Family A G

protein-coupled receptors (GPCRs) shown to form oligo-

mers in cellular membranes, yet we still know little about

the number and arrangement of protomers in oligomers,

the influence of ligands on the organization or stability of

oligomers, or the requirement for other proteins to pro-

mote oligomerization. We used fluorescence resonance

energy transfer (FRET) to characterize the oligomerization

of purified b2AR site-specifically labelled at three different

positions with fluorophores and reconstituted into a model

lipid bilayer. Our results suggest that the b2AR is predo-

minantly tetrameric following reconstitution into phos-

pholipid vesicles. Agonists and antagonists have little

effect on the relative orientation of protomers in oligo-

meric complexes. In contrast, binding of inverse agonists

leads to significant increases in FRET efficiencies for most

labelling pairs, suggesting that this class of ligand pro-

motes tighter packing of protomers and/or the formation

of more complex oligomers by reducing conformational

fluctuations in individual protomers. The results provide

new structural insights into b2AR oligomerization and

suggest a possible mechanism for the functional effects

of inverse agonists.
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Introduction

The majority of physiological responses to hormones and

neurotransmitters are mediated by G protein-coupled recep-

tors (GPCRs). These integral membrane proteins relay signals

elicited by an array of structurally diverse agonists including

photons, ions, small organic compounds, peptides, proteins

and lipids (Hill, 2006). GPCRs have been classically described

as monomeric transmembrane receptors that form a ternary

complex: a ligand, the GPCR, and its associated G protein

(Chabre and le Maire, 2005; Fung et al, 1981). This classical

view is compatible with observations that monomeric rhodop-

sin and b2-adrenoceptor (b2AR) are capable of activating G

proteins (Bayburt et al, 2007; Ernst et al, 2007; Whorton et al,

2007). Nevertheless, it is now well accepted that Family C

GPCRs are constitutive dimers (Jones, et al, 1998; Margeta-

Mitrovic et al, 2000; Galvez et al, 2001), and many Family A

GPCRs have been observed to oligomerize in cells. This was

initially shown for the b2AR in 1996 (Hebert et al, 1996), and

was later followed by publications demonstrating both homo-

and hetero-oligomerization of a broad spectrum of Family A

GPCRs using a variety of techniques (Jordan and Devi, 1999;

Angers et al, 2000; Gines et al, 2000; Rocheville et al, 2000;

Cheng and Miller, 2001; Mellado et al, 2001; Latif et al, 2002;

Salahpour et al, 2004; Gonzalez-Maeso et al, 2008; Guo et al,

2008; Vilardaga et al, 2008). Despite this evidence, the effect of

ligands on formation, organization and stability of receptor

oligomers, as well as the role of other cellular proteins, is not

well understood and may be receptor subtype specific (Angers

et al, 2000; Cheng and Miller, 2001; Latif et al, 2002; Zhu et al,

2002; Roess and Smith, 2003; Law et al, 2005).

High-resolution crystal structures are now available for the

inactive state of the b2AR (Cherezov et al, 2007; Rasmussen

et al, 2007; Rosenbaum et al, 2007); yet, we still know very

little about the structure, stoichiometry and dynamics of

oligomers in lipid bilayers. To date, much of what is known

about oligomerization of b2ARs and other Family A GPCRs

comes from elegant studies using intermolecular fluores-

cence/bioluminescence resonance energy transfer (FRET or

BRET) in live cells (Angers et al, 2000; Salahpour et al,

2004; Milligan and Bouvier, 2005). In an effort to complement

these cell-based studies and better understand the process of

GPCR oligomerization and the organization of protomers

within oligomers, we investigated oligomerization of purified

b2AR in a model membrane system. By site specifically

labelling purified monomeric b2AR and reconstituting it into

lipid vesicles, we are able to show that this receptor effec-

tively forms specific multimeric assemblies in lipid bilayers

as monitored by FRETand cross-linking studies. FRET satura-

tion studies are most consistent with the formation of

tetramers, and differences in FRET between different label-

ling pairs allow us to propose a model of the orientation

of the protomers within the tetramer. An agonist and

neutral antagonist have little effect on b2AR oligomerization,

but the inverse agonist ICI 118,551 promotes rearrangement

of the protomers and/or the formation of higher-order

oligomers.
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Results

Site-specific labelling of purified monomeric b2AR and

reconstitution into lipid vesicles

The goal of our studies was to monitor self-association of

b2AR following reconstitution in lipid vesicles and to obtain

information about the relative orientation of protomers in

oligomers. FRET using small-molecular-weight fluorescent

probes is an ideal tool for these studies because it provides

relative distance information yet requires relatively small

amounts of protein (Mansoor et al, 2006). To achieve site-

specific labelling of the b2AR, we generated modified recep-

tors having single-reactive cysteines that can be chemically

modified with sulphydryl-reactive fluorophores. Mutants

were made on a minimal cysteine background in which the

five chemically reactive cysteines, out of 13, were mutated

(see section Materials and methods). These mutations have

no effect on ligand binding or G protein coupling. The

remaining three cysteines that are not palmitoylated or are

part of disulphide bonds are not reactive due to their location

in the hydrophobic core (Figure 1A). We initially constructed

18 single-cysteine mutants in the cytoplasmic domains of the

receptor. Three were chosen based on their functional proper-

ties, chemical reactivity and their distribution (Figure 1B):

D5-T66C (intracellular loop-1, ICL1), D5-A265C (trans-

membrane domain-6, TM6) and D5-R333C (helix-8, H8)

(Cherezov et al, 2007; Rasmussen et al, 2007; Rosenbaum

et al, 2007). This spatial distribution of the labelling sites was

designed to provide information about the orientation of

protomers relative to each other.

Modified receptors were expressed in Sf9 cells using

recombinant baculovirus and purified using sequential anti-

body and alprenolol affinity chromatography. We have

shown previously that this purification protocol produces

monomeric, detergent-solubilized b2AR (Whorton et al,

2007). Purified, detergent-solubilized b2AR was labelled

with Cy3 or Cy5 maleimide. These fluorophores were chosen

for FRET studies because they possess an R0 value (Förster

critical distance where 50% of energy transfer occurs) in the

range of 37 to 56 Å depending on the experimental system

(Mansoor et al, 2006; Massey et al, 2006). This is ideal for

studying receptor–receptor interactions since a monomer has

approximate dimensions of 30 Å� 40 Å� 70 Å. b2ARs were

labelled with stoichiometric amounts of either Cy3 or Cy5,

and the efficiency of labelling was determined by absorption

spectroscopy (Supplementary Table I). Labelled b2AR was

reconstituted into a mixture of 1,2-dioleoyl-sn-glycero-3-

phosphocholine (DOPC) and cholesterol hemisuccinate

(CHS) lipids. Three samples were generated for each experi-

ment: (1) reconstituted Cy3-labelled b2AR; (2) reconstituted

Cy5-labelled b2AR and (3) Cy3-labelled b2AR mixed with

Cy5-labelled b2AR and then reconstituted. The final lipid-to-

receptor molar ratio (mol-to-mol) was 1000:1 unless other-

wise indicated. The same samples were prepared for controls,

but were maintained in 0.1% DM and not reconstituted

into vesicles.

Orientation of b2AR in lipid vesicles

Knowing the orientation of b2AR in our lipid vesicles is

essential for interpreting FRET measurements. Random or-

ientation would generate potential non-physiological

(antiparallel) oligomers. While random orientation might be

expected, previous studies have shown that rhodopsin ori-

ents predominantly in one direction following reconstitution

(Niu et al, 2002). We used several complementary strategies

to determine the orientation of b2AR in phospholipid vesicles

(Figure 2A). Factor Xa is a protease that selectively cleaves

the b2AR within the third ICL (ICL3). Receptors oriented

inside-out (ICL3 outside of lipid vesicle) will be susceptible

to Factor Xa, whereas those oriented outside-out will not

(Figure 2A). Approximately 90% of reconstituted b2AR was

Cy3 maleimide (donor) Cy5 maleimide (acceptor)

TM6
(A265C) H8

(R333C)

ICL1
(T66C)

TM1

TM2

TM4

TM3

TM5

TM7

Figure 1 b2AR single-cysteine constructs and FRET donor–acceptor pair. (A) Three single-reactive cysteines constructs were generated on a
minimal cysteine background (D5-b2AR). The labelling sites were placed in the first ICL, D5-b2AR-T66C, at the cytoplasmic end of the sixth
transmembrane segment, D5-b2AR-A265C, and helix eight, D5-b2AR-R333C. (B) Intracellular 3D view of the distribution of regions chosen for
single-cysteine mutants, a-carbons are depicted. (C) FRET donor (lex¼ 549 nm; lem¼ 570 nm) and acceptor pair (lex¼ 650 nm; lem¼ 670 nm).
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resistant to Factor Xa, whereas all of the receptor was

cleaved in the presence of 0.1% DM (Figure 2B), a concen-

tration of detergent, which permeabilizes the vesicles. These

results are consistent with a predominantly outside-out or-

ientation. PNGase F is an enzyme that cleaves asparagine-

linked oligosaccharides on the extracellular N-terminus

(Figure 2A). Treatment of reconstituted receptor with

PNGase F led to a mobility shift that was indistinguishable

from that observed in the presence of 0.1% DM, consistent

with predominantly outside-out orientation (Figure 2C). The

orientation was further confirmed using NHS-PEO4-biotin to

chemically modify the N-terminus (Figure 2A). This polar

compound would not be expected to cross the lipid bilayer.

Chemical modification of the N-terminal FLAG epitope results

in loss of reactivity to the M1 antibody; treatment of vesicles

following reconstitution resulted in the loss of M1 reactivity

for more than 90% of reconstituted b2AR (Figure 2D and E).

Finally, we labelled A265C on the cytoplasmic side of the

b2AR with monobromobimane (mBBr) and examined the

ability of tryptophan in solution to quench bimane fluores-

cence. We observed no quenching of reconstituted, bimane-

labelled b2AR with 1 mM tryptophan. However, solubilization

of vesicles using 0.2% DM resulted in significant quenching

(Supplementary Figure 1). Taken together, these studies show

that the b2AR is predominantly oriented with the extracellular

domains on the outside of the vesicle.

Distribution of b2AR in lipid vesicles

In studying oligomerization, it is important to avoid forcing

protein together by inhomogeneous reconstitution, that is,

trapping the majority of the receptor molecules in a minor

population of lipid vesicles. For instance, it has been shown

previously that 90% of rhodopsin molecules were incorpo-

rated into only 10% of vesicles (Mansoor et al, 2006). We

used isopycnic density centrifugation to assess the distribu-

tion of b2ARs in lipid vesicles as previously described for

rhodopsin (Mansoor et al, 2006). Cy5-labelled b2ARs were

reconstituted at a lipid-to-receptor ratio of 1000:1 in lipids

containing NBD–phosphocholine (at a final of 0.4% of total

lipid content). This allowed us to analyze samples subjected

to a discontinuous sucrose density gradient by following Cy5

fluorescence (for the presence of b2AR) and NBD fluores-

cence (for the presence of lipid vesicles). Our results show

nearly perfect correlation between Cy5 fluorescence and NBD

fluorescence at every fraction analyzed, suggesting that b2AR

molecules are uniformly distributed in these vesicles

(Figure 3A). Similar results were obtained with b2AR recon-

stituted at a 10 000:1 lipid-to-receptor ratio (Supplementary

Figure 2).

To assess the density of b2ARs in the lipid vesicles, we used

electron microscopy to determine the average diameter of our

b2AR-containing lipid vesicle preparations. Using a negative

staining protocol, we determined that the average diameter of

our vesicle preparations at a lipid-to-receptor ratio of 1000:1

was 83 nm±12 nm (Figure 3B). Using the calculations de-

tailed in the Supplementary Materials and methods section,

we concluded that there are 50–60 b2ARs per lipid vesicle,

with the majority oriented in an outside-out manner.

Functional characterization of b2AR in lipid vesicles

We performed saturation binding on purified, reconstituted

receptor to determine the affinity of all three single-cysteine

mutants for the antagonist [3H]-dihydroalprenolol (DHA). We

observed no significant difference between the three modified

b2ARs and wild-type b2ARs (Table I and Supplementary

Figure 3). Competition binding studies with [3H]-DHA were

used to determine the Ki values for the agonist isoproterenol

(Iso) and the inverse agonist ICI 118,551 (ICI). As shown in

Table I and Figure 4, the values for the single-cysteine

mutants are comparable to those obtained for wild-type
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Figure 2 b2ARs are predominantly oriented outside-out in lipid bilayers. (A) Strategies for determining orientation of b2AR in lipid bilayers.
(B) Purified receptors were reconstituted as described under Materials and methods and then subjected to treatment with Factor Xa and
resolved by 10% SDS–PAGE and transferred onto nitrocellulose. The presence of b2AR was determined by probing with an M1 antibody
conjugated with Alexa-680. (C) Samples subjected to PNGase F were prepared and imaged as in panel A. (D, E) Reconstituted samples were
treated with the hydrophilic, amine-reactive, alkylating reagent NHS-PEO4-biotin that disrupts binding of the M1 monoclonal antibody to the
FLAG epitope. Samples were assessed for reactivity to M1 antibody (D) and an antibody that recognizes the C-terminal six-histidine tag (E).
All data are representative of three independent experiments.
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b2AR, suggesting that introduction of the single-reactive

cysteines and reconstitution of purified b2AR into lipid

vesicles does not alter the pharmacology of the receptor.

Functionality for G protein coupling of the three single-

cysteine mutants was addressed by [35S]-GTPgS binding. This

assay involves reconstituting purified b2AR with purified

Tet-Gas as previously described (Swaminath et al, 2005;

Granier et al, 2007). Agonist binding to all three b2AR

single-cysteine mutants led to significant stimulation of G

protein coupling that was similar to wild-type receptor

(Figure 4C). Treatment of samples with the inverse agonist

ICI led to decreases in basal activity similar to that observed

for wild-type receptor (Figure 4C). Modification of the single

cysteines with Cy5–maleimide fluorophore had no significant

effect on G protein coupling (Figure 4C; P40.05).

FRET analysis of fluorophore-labelled b2ARs in lipid

bilayers

We first determined FRET between receptors labelled at the

same position. D5-A265C labelled with Cy3 was reconstituted

with an equivalent amount of D5-A265C labelled with Cy5 in

order to monitor TM6/TM6 interactions. This was repeated

for D5-T66C and D5-R333C, as reporters for ICL1/ICL1 and

H8/H8 interactions, respectively. Figure 5A shows an exam-

ple of a typical experiment performed on D5-T66C. FRET

between Cy3- and Cy5-labelled receptors (30.3±1.2%) is

only observed after receptor reconstitution into a lipid bi-

layer, but not when receptors remain solubilized in detergent

(Figure 5A and Table II). Similar observations were made for

Cy3- and Cy5-labelled D5-A265C (16.7±1.3%) and for Cy3-

and Cy5-labelled D5-R333C (26.9±0.8%; Table II).

To provide additional information about the relative or-

ientation of b2AR protomers, we investigated FRET between

different labelling sites. For example, D5-T66C labelled with

Cy3 was reconstituted with an equivalent amount of

D5-A265C labelled with Cy5 in order to examine ICL1/TM6

interactions. The same approach was followed for the other

possible combinations, ICL1/H8 and TM6/H8 (Table II). The

observation of different FRET efficiencies for different label-

ling pairs suggests a specific arrangement of receptors in the

lipid bilayers rather than nonspecific aggregation. To further

rule out the possibility that the FRET observed in these

studies is simply due to crowding of labelled receptors at

the lipid bilayer, a 10-fold higher molar concentration of lipids

(a final lipid-to-receptor ratio of 10 000:1) was used in order

to reduce the number of receptors per unit area of lipid

bilayer. FRET efficiencies observed at a lipid-to-receptor

ratio of 10 000:1 were not significantly different from those

obtained at a ratio of 1000:1 (Figure 5B–D; P40.05).

FRET saturation of fluorophore-labelled b2AR oligomers

To further investigate the specificity of the observed oligo-

merization, as well as the stoichiometry of the oligomers, we

performed FRET saturation experiments where the ratio of

acceptor fluorophore (Cy5-labelled b2AR) to donor fluoro-

phore (Cy3-labelled b2AR) is increased, while maintaining

the overall receptor concentration and lipid-to-receptor ratio

constant. If the energy transfer is due to specific receptor–

receptor interactions, FRET efficiency will saturate as the

Cy5/Cy3 ratio is increased. In contrast, random collisions

should yield a quasi-linear relationship (Mercier et al, 2002;

James et al, 2006; Harikumar et al, 2008). We observe FRET

saturation for all three b2AR labelling sites (Figure 6A–C),

demonstrating the specific nature of the interactions.

In addition, FRET saturation can provide insight into the

number of protomers per oligomer. Our FRET saturation

results were compared with a well described mathematical

model (Veatch and Stryer, 1977; Mercier et al, 2002; James

et al, 2006; Harikumar et al, 2008; Harding et al, 2009) that

Table I Agonist, antagonist and inverse agonist binding properties
for the single-reactive cysteine receptorsa

b2AR Ki [s.e. interval] (nM) Kd±s.e.m.

Mutant (�)-Isoproterenol ICI 118,551 [3H-DHA]

Wild type 355 [203–620] 1.17 [0.77–1.77] 1.3±0.16
D5-T66C 388 [319–473] 2.09 [1.86–2.35] 1.8±0.21
D5-A265C 298 [255–348] 1.84 [1.45–2.33] 2.5±0.23
D5-R333C 214 [168–273] 1.90 [1.59–2.27] 2.4±0.24

aSaturation and competition binding were performed as described
under Materials and methods. Data represent the mean±s.e.m. of
at least three independent experiments.
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has been used to predict the maximal energy transfer

expected in energy transfer saturation experiments (FRET or

BRET) for dimers, trimers, tetramers, etc. It follows that

saturation will occur at a lower acceptor/donor ratio for

higher-order oligomers than for simple dimers. We normal-

ized our FRET saturation data for all three constructs and

compared them with models for dimers, trimers, tetramers

and higher-order oligomers (eight protomers), and found that

our data are superimposed on the theoretical curve for

tetramers (Figure 6D).

The effect of ligand efficacy on b2AR oligomerization

We examined the effects of three classes of GPCR drugs: a full

agonist (isoproterenol), a neutral antagonist (alprenolol) and

an inverse agonist (ICI) on FRET efficiency between different

labelling sites. Upon treatment with saturating amounts

(10mM) of the full agonist isoproterenol, a small, but sig-

nificant, increase in FRETwas observed between TM6 and H8

(Figure 7A and Table II; Po0.05). At saturating concentra-

tions (500 nM), alprenolol produced a similar result between

TM6 and H8 (Figure 7A and Table II; Po0.05). It is not

possible to say if these small changes are due to subtle

changes in the relative arrangement of protomers, or small

conformational changes in the receptor.

In contrast to the small changes observed with the agonist

and neutral antagonist, much larger changes were observed

following exposure to the inverse agonist ICI (Figure 7A and

Table II). Inverse agonists include many compounds that

were originally classified as antagonists, ligands that

occupy the orthosteric binding site, but do not alter receptor

function. Instead, inverse agonists inhibit basal agonist-in-

dependent activity exhibited by many GPCRs, including the

b2AR (Galandrin and Bouvier, 2006). Interestingly, at a

saturating concentration (500 nM) of ICI, significant changes

in FRET efficiency were observed for four of the six

labelling pairs (Figure 7A and Table II). The ICI-induced

changes in FRET reach a maximum at 10 min

(Supplementary Figure 4).

The changes in FRET observed with ICI could reflect

changes in the orientation of protomers or the number of

protomers in the oligomeric complex. However, these

changes could also be due to ligand-induced changes in the

Table II FRET efficiencies in the absence of ligand and upon binding of agonist, neutral antagonist or inverse agonista

b2AR region No ligand±s.e.m. +Isoproterenol±s.e.m. P-value +Alprenolol±s.e.m. P-value +ICI 118,551±s.e.m. P-value

ICL-1/ICL-1 30.26±1.2 31.43±0.4 0.45 29.72±4.1 0.86 34.86±1.4 0.043*
TM-6/TM-6 16.73±1.3 17.71±2.1 0.64 21.48±0.8 0.23 27.67±2.0 0.005**
H-8/H-8 26.85±0.8 29.56±1.1 0.06 31.40±3.5 0.07 28.33±1.8 0.418
ICL-1/TM-6 24.58±2.3 22.26±0.4 0.56 27.82±6.1 0.54 30.00±4.6 0.269
ICL-1/H-8 24.08±1.6 23.71±0.7 0.91 26.87±4.8 0.49 35.33±2.4 0.006**
TM-6/H-8 30.98±0.7 35.27±1.5 0.01* 33.63±0.2 0.05* 25.33±2.0 0.005**

aFRET efficiencies were calculated as described under Materials and methods. Data represent the mean±s.e.m. of at least three independent
experiments. P-values refer to statistical comparisons between no ligand and three different ligands: isoproterenol, alprenolol and ICI 118,551.
*Po0.05; **Po0.005.
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Figure 6 Specificity of b2AR oligomerization as assessed by FRETsaturation. FRETsaturation involved varying the ratio of Cy5- to Cy3-labelled
b2ARs over a range of 1:1 to 10:1 (Cy5:Cy3), while the overall b2AR concentration was kept constant. Saturable FRET is observed for ICL1/ICL1
(A), TM6/TM6 (B) and H8/H8 (C). FRET measurements were performed and calculated as described in the Supplementary data. Data represent
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maximal FRET efficiency and then averaged and plotted together with theoretical curves (dashed lines) for dimer, trimer, tetramer and higher-
order oligomer that were generated using equation (1) in the Supplementary data.
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conformation of receptors that influence the mobility of the

fluorophore or the polarity of its environment. We, therefore,

examined the effect of isoproterenol and ICI on the intensity

of the fluorescence and on the anisotropy of the fluorophores

in labelled receptors. For both Cy3- and Cy5-labelled b2AR

reconstituted individually, treatment with either isoprotere-

nol or ICI did not induce significant changes in the intensity

of the fluorescence (data not shown) or anisotropy of the

fluorophores, suggesting that the change in FRET efficiencies

observed upon ICI treatment are not a result of conforma-

tional changes in protomers (Supplementary Figure 5).

The ICI-induced changes in FRET efficiency may be attrib-

uted to several additional factors: reorientation of protomers

in the oligomers, a tighter packing of the protomers, an

increase in the temporal stability of the oligomers (assuming

there is an equilibrium between monomers and oligomers),

and an increase in the stoichiometry of the oligomeric state

(e.g., going from dimers or tetramers to higher-order oligo-

mers). To distinguish between these possibilities, we per-

formed FRET saturation in the presence and absence of ICI,

alprenolol or isoproterenol. Samples were incubated with

ligands for 30 min at room temperature and measurements

were taken. Results show that in the presence of ICI the

saturation curve is more similar to a model for higher-order

oligomers, while alprenolol and isoproterenol appear to

have no effect on the apparent oligomeric state of the

receptor (Figure 7B). Higher-order oligomerization was also

observed for the inverse agonists carazolol and carvedilol

(Figure 7D).

Cross-linking was used to further address the state of

multimeric assembly of the b2AR. We used Bis(NHS)PEO5,

a homobifunctional cross-linker with a spacer length of

21.7 Å that covalently modifies e-amines of lysine residues

and a-amine groups at the N-termini, effectively trapping

receptors that come within interacting distances. Although

concerns have been raised about the potential for cross-

linkers to trap transiently interacting proteins (Brett and

Findlay, 1979; Downer, 1985; Medina et al, 2004), it is evident

that pre-incubation of samples with ICI leads to more

extensive cross-linking and trapping of higher-order oligomers

of reconstituted b2AR when compared with the unliganded,

the agonist and the antagonist treated samples (Figure 7C and

Supplementary Figure 6). Taken together, these results

suggest that the b2AR forms higher-order oligomers in the

presence of the inverse agonists ICI, carazolol and carvedilol.

To investigate the effect of ICI on the stability of interac-

tions between protomers, we monitored FRET following

addition of 0.2% DDM, a concentration of detergent that

solubilizes the vesicles. We found that the decline in FRET

following the addition of detergent was slower and less

complete in samples pre-incubated with ICI compared with

unliganded samples (Supplementary Figure 7, Po0.05),

providing evidence that ICI also stabilizes interactions

between protomers.
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Figure 7 b2AR oligomers are regulated by inverse agonists. (A) Treatment of FRET samples with saturating amounts of the inverse agonist ICI
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The effect of Gs on b2AR oligomerization

To investigate the effect of G protein coupling on oligomer-

ization, we performed FRET saturation experiments by

reconstituting b2AR with a three-fold molar excess of purified

Gs heterotrimer (Figure 8). This concentration of G protein

was chosen to ensure that sufficient G protein would be

incorporated into vesicles while having a minimal effect on

the reconstitution. The inclusion of Gs did not alter the

orientation of the b2AR as determined by the susceptibility

to PNGase F (Figure 8A). We observed a statistically signifi-

cant (Po0.008) decrease in FRET saturation in the presence

of Gs as compared with reconstitutions in the absence of Gs

(Figure 8B) for Cy5/Cy3 of 0.25, 0.5 and 1. To determine

whether the effect of Gs on FRET saturation was due to

nonspecific effects of reconstituting with another mem-

brane-associated protein, we performed FRET saturation of

b2AR in the presence of Gs and GTPgS, which uncouples

b2AR and Gs. As shown in Figure 8C, the presence of GTPgS

increases, in a statistically significant manner (Po0.04),

FRET saturation to the values observed for b2AR alone.

To estimate the fraction of b2AR that couples to Gs under

these reconstitution conditions, we labelled C265 at the

cytoplasmic end of TM6 with mBBr, an environmentally

sensitive fluorescent probe. We previously showed that max-

imal coupling of Gs to b2AR reconstituted into HDL particles

results in a decrease in the fluorescence intensity and an

18-nm shift in the maximal emission wavelength (lMAX) of

mBBr–b2AR (mBBr–b2AR; Yao et al, 2009). As shown in

Figure 8D, under reconstitution conditions used for FRET

saturation experiments, Gs induced a decrease in intensity

and a 4-nm shift in lMAX of mBBr–b2AR relative to the same

reconstitution in the presence of GTPgS. Based on the shift of

lMAX we estimate that approximately 20% of the reconsti-

tuted b2AR is coupled to Gs.

Discussion

Receptor dimerization plays an essential role in the function

of Family C GPCRs (Margeta-Mitrovic et al, 2000; Pin et al,

2005). However, the role of oligomerization for Family A

(rhodopsin-like) GPCRs is less clear. It has been shown that

monomeric rhodopsin and b2AR can activate their respective

G proteins (Bayburt et al, 2007; Ernst et al, 2007; Whorton

et al, 2007). Yet, there is convincing evidence from a variety

of experimental approaches that the b2AR and many other

Family A GPCRs exist as dimers or oligomers in the plasma

membrane. Most compelling are studies that apply FRETand/

or BRET technology to receptors tagged with fluorescent

proteins and expressed in cultured cells (Angers et al, 2000;

Mercier et al, 2002; Milligan and Bouvier, 2005; Guo et al,

2008), as well as studies using disulphide cross-linking to

trap interactions in cell membranes to map the interface

between protomers (Guo et al, 2003, 2005, 2008; Klco et al,

2003). Characterization of the structure (protomer organiza-

tion) and dynamics of GPCR oligomers is challenging and will
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require integration of information from a variety of different

approaches. In an effort to provide additional structural

insight into the organization, stability and regulation of

GPCR oligomers by ligands, we used FRET to study oligo-

merization of purified b2AR site specifically labelled with

relatively small fluorescent probes and reconstituted into a

model lipid bilayer. Our results show that monomeric b2ARs

oligomerize spontaneously upon reconstitution into lipid

bilayers in the absence of other cellular chaperones or

scaffold proteins. FRET saturation studies suggest that the

oligomers consist of more than two protomers, and are

probably tetramers. Agonists have little effect on b2AR oligo-

merization, whereas inverse agonists appear to promote

higher-order oligomerization and stabilize the oligomers

against dissolution by detergent.

Spontaneous oligomerization of the b2AR in model lipid

membranes

In a cell membrane, proteins associate in a complex lipid

environment involving mixtures of cholesterol and lipids

having different polar groups, alkyl chain lengths and alkyl

chain saturation. Moreover, the lipid composition of outer

and inner membrane layers is different, and there may be

distinct lipid domains that regulate the function of associated

membrane proteins (Allen et al, 2007). b2AR oligomers have

been observed to form during biosynthesis in the endoplas-

mic reticulum (Salahpour et al, 2004), suggesting that

chaperones and other cellular proteins may also be involved

in the assembly and/or maintenance of oligomers for some

GPCRs. For example, oligomerization of the opioid receptor

has been shown to depend on the G protein Gi (Law et al,

2005). Nevertheless, our results show the strong tendency for

purified b2AR to oligomerize spontaneously in a model lipid

bilayer, and suggest that b2AR oligomerization is an intrinsic

property of the receptor and does not require other cellular

proteins or a specific lipid environment. However, we cannot

exclude the possibility that oligomerization in vivo is regu-

lated in some way by cellular proteins or specific lipid

environments. It should be noted that rhodopsin, neurotensin

receptor 1 and muscarinic receptors have also been observed

to oligomerize following reconstitution into synthetic lipid

bilayers (Mansoor et al, 2006; Ma et al, 2007; Harding et al,

2009), suggesting that spontaneous oligomerization might be

an intrinsic property of Family A GPCRs.

Following purification from insect cell membranes, b2ARs

exist as pure monomers in detergent solution (Whorton et al,

2007). Our reconstitution experiments use a simple model

lipid bilayer composed of DOPC and CHS (DOPC/CHS).

In this environment we observe normal ligand binding prop-

erties and efficient G protein activation. The high degree of

homogenous orientation of receptors in this lipid bilayer

model suggests that there must be a non-random mechanism

that controls receptor insertion. While the mechanism for this

is unknown, preferential orientation has also been observed

with reconstitution of rhodopsin, although in this case re-

ceptor was oriented preferentially with the N-terminus in the

inside of the vesicle (Niu et al, 2002). Isopycnic density

centrifugation experiments and EM images (Figure 3) show

that reconstitution using size-exclusion chromatography

yields a homogenous distribution of receptors into lipid

vesicles of an average diameter of 83 nm and an average

surface area of approximately 21 600 nm2. Under our recon-

stitution conditions, we estimate that there are 50–60 b2AR

molecules per vesicle. Based on the crystal structure of the

b2AR, we can calculate that the surface area occupied by a

single receptor is approximately 16 nm2. Therefore, receptors

occupy less than 10% of the surface area of the vesicle,

suggesting that the FRET we observe is not the result of

nonspecific interactions due to high receptor density. To

further exclude the possibility of nonspecific oligomerization,

we reconstituted receptors at a 10-fold higher lipid-to-protein

ratio and found no significant decrease in FRET efficiency

(Figure 5B–D, P40.05).

Organization and stability of b2AR oligomers

Our reconstitution system, as well as current cell-based

methods, is limited in the ability to precisely define the

structure and stoichiometry of oligomers. Nevertheless,

recent evidence from resonance energy transfer studies,

cysteine cross-linking and fluorescence recovery after photo-

bleaching (FRAP) studies suggest that the D2 dopamine

receptor and the b2AR form higher-order oligomers (tetra-

mers or greater) (Guo et al, 2008; Dorsch et al, 2009). Data

from FRET studies can provide insight into the orientation of

protomers within these oligomers. However, the following

facts should be taken into account. First, while Cy3 and Cy5

are small relative to fluorescent and luminescent proteins,

they are still large compared with amino acids and have

relatively long flexible linkers tethering them to cysteine

(Figure 9A). As such, their precise orientation in the protein

is not known and has been estimated by computational

techniques. Second, both the distance between fluorophores

and the orientation of fluorophores influence FRET. The

orientation factor becomes a concern for highly constrained

fluorophores; however, this probably is not the case here,

since the anisotropy values that we observe experimentally

for Cy3 and Cy5 are similar to those reported for free

fluorophores in solution (Kobitski et al, 2007), and these

values are not influenced by ligands. Third, as discussed

below, the oligomers may be dynamic. While the predomi-

nant form may be a tetramer, these may exist in equilibrium

with monomers, dimers and higher-order oligomers. Finally,

in a tetramer several combinations of donor/acceptor pairs

(0 donors, 4 acceptors; 1 donor, 3 acceptors; etcy) are

possible. In such a system, the measured FRET signal will

be the combination of all the individual energy transfers

between every possible donor/acceptor pair, which compli-

cates the analysis of the measured FRET signal, and thus, the

estimation of protomer orientation in the tetramer.

Notably, saturation experiments (Figure 6) result in a

much simpler system, composed mostly of tetramers with

one donor and three acceptors. This system dramatically

reduces the number of energy transfer combinations and

simplifies the analysis of FRET efficiencies. These values are

used to propose possible monomer orientations within the

tetramer. In FRET saturations studies, the greatest energy

transfer is observed for H8/H8 and smallest for TM6/TM6

(Figure 6B and C). These results are compatible with arrange-

ments of oligomers involving a TM1 interface (Figure 9C)

previously described for the D2 dopamine receptor and

rhodopsin (Liang et al, 2003; Guo et al, 2008). In contrast,

an arrangement that would place TM6/TM6 fluorophores in

close proximity (Figure 9B) is not compatible with the lowest

FRET efficiency observed for this pair (Figure 6B).
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While our FRET saturation experiments best fit a mathe-

matical model for tetramers (Figure 6D), our results are

compatible with a dynamic equilibrium where a fraction of

b2AR exists as monomers in equilibrium with higher-order

oligomers, with the average size of the oligomer being a

tetramer. This is in agreement with the observed maximal

FRET saturation values of 30–45% (Figure 6), lower than

would be expected for stable tetramers given that R0 values

for Cy3 and Cy5 range from 37–56 Å, depending on the

biochemical system under investigation (Mansoor et al,

2006; Massey et al, 2006). Further evidence supporting this

dynamic behaviour is the observation that the affinity of

interactions between protomers is relatively weak outside of

the bilayer environment, as show by the rapid dissociation of

protomers upon the addition of a non-ionic detergent

(Supplementary Figure 7). Recent FRAP studies provide

evidence that D2 dopamine receptors may also exist in a

dynamic equilibrium of monomers and oligomers (Fonseca

and Lambert, 2009). In these studies, oligomers were only

detected by FRAP after receptors formed stable covalent

dimers through oxidative cross-linking of cysteines in TM4.

While a b2AR monomer can activate Gs (Whorton et al,

2007), it is not known whether higher-order oligomers facil-

itate or impair coupling. Oligomers of rhodopsin (Bayburt

et al, 2007) and NT1 receptor (White et al, 2007) couple less

efficiently to G proteins than monomers. If higher-order

oligomers impair coupling, the dynamic character of b2AR

oligomers would ensure that a fraction of the b2AR would

exist as monomers or dimers competent for G protein activa-

tion. Under our experimental conditions, the co-reconstitu-

tion of Gs with b2AR was associated with a small decrease in

FRET saturation that was reversed by GTPgS (Figure 8).

This is compatible with G protein coupling shifting the

equilibrium to lower-order oligomers.
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Figure 9 Schematic representation of possible b2AR oligomers. (A) Cytoplasmic view of the 3D structure of the b2AR (left) and cartoon of this
footprint (right), with the centre of mass of Cy3 depicted as spheres: T66C (green), A265C (blue) and R333C (red). TM6 is depicted in the
inactive conformation (top) and in the proposed active conformation as observed in the structure of opsin (bottom). (B) Receptor
oligomerization involving the surfaces of TMs 4 or/and 5 is not compatible with our FRET results and might sterically prevent movement
of TM6. (C) Our FRET results suggest an arrangement of protomers involving the TM1 interface. (D) The movement of the cytoplasmic end of
TM6 upon agonist binding repositions the fluorophore outwards in two of the four protomers, and towards H8 in the other two. (E) Treatment
with the inverse agonist ICI probably reduces conformational fluctuations responsible for basal activity, increasing the packing of the
oligomers. (F) ICI may stabilize higher-order oligomers where TM6 is packed into the core of the oligomer, contributing to increase FRET
efficiency and possibly the inactive state of the receptor.
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Ligand regulation of b2AR oligomers

The effect of agonists on oligomerization has been described

for several GPCRs. The results appear to be receptor specific:

for some receptors no effect is observed, whereas for others,

agonists induce dissociation or association (Angers et al,

2000; Cheng and Miller, 2001; Latif et al, 2002; Zhu et al,

2002; Roess and Smith, 2003; Dorsch et al, 2009). For the

b2AR, Michelle Bouvier’s laboratory reported a small agonist-

induced increase in steady-state BRET; however, they con-

cluded that this could be due to a small change in the steady-

state oligomers or due to conformational changes in indivi-

dual protomers (Angers and Bouvier, 2000). In subsequent

BRET saturation studies from this laboratory (Mercier et al,

2002) and fluorescence recovery after photobleaching studies

from the Bünemann laboratory (Dorsch et al, 2009), no

significant agonist-induced effect was observed. Our

results with the full agonist (isoproterenol) are in agreement

with these cell-based studies. Isoproterenol causes a rela-

tively minor change in intermolecular FRET, with the only

significant change occurring in the TM6/H8 FRET pair

(Figure 7A and Table II), but no change in FRET saturation

(Figure 7B). The results are in agreement with the model

depicted in Figure 9C and D where agonists induce a change

in protomer conformation, but not oligomerization. We have

previously shown significant agonist-induced movement of

TM6 (Gether et al, 1997; Ghanouni et al, 2001a, b; Yao et al,

2006) consistent with relatively large conformational changes

observed in rhodopsin by DEER spectroscopy (Altenbach

et al, 2008), and from the crystal structure of opsin (Park

et al, 2008; Scheerer et al, 2008). Assuming a tetramer, the

movement of the cytoplasmic end of TM6 away from TM3

(Park et al, 2008) (Figure 9A) locates the fluorophore at-

tached to TM6 towards the periphery in two of the four

protomers, and towards H8 in the other two (Figure 9D).

Thus, the symmetric movement of TM6 in the tetramer,

inwards and outwards, explains the minor changes in

intermolecular FRET of TM6/TM6 observed upon agonist

binding. In addition, the inward movement of TM6 towards

H8 is compatible with the changes occurring in the TM6/H8

FRET pairs. Therefore, protomer packing does not appear to

interfere with conformational changes involving TM6.

In agreement with this, agonist-induced movement of the

cytoplasmic end of TM6, as detected by an environmentally

sensitive fluorophore covalently bound to C265, is similar

for b2AR monomers (reconstituted into HDL particles) and

oligomers (reconstituted into phospholipids vesicles)

(Supplementary Figure 8).

We were surprised to see that the most dramatic changes in

intermolecular FRET were observed on exposure to the

inverse agonist ICI. Most notable are increases in FRET

for TM6/TM6 and ICL1/H8 (Table II and Figure 7A).

Fluorescence studies on monomeric b2AR may provide us

with the link between the effect of an inverse agonist on the

structure of the monomer and the process of oligomerization.

We have previously shown that ICI does not induce major

rearrangements in the structure of the monomer, but may

reduce normal conformational fluctuations responsible for

basal activity (Yao et al, 2006, 2009). We speculate that this

inherent flexibility may interfere with higher-order packing of

the oligomers. Thus, the more constrained structure of the

inverse agonist-bound receptor may be more compatible with

closer packing of protomers within a tetramer (Figure 9E),

a higher-order packing (Figure 9F) or more stable b2AR

oligomers with fewer monomers. It has been observed that

oligomers of rhodopsin (Bayburt et al, 2007) and NT1 recep-

tor (White et al, 2007) couple less efficiently to G proteins

than monomers; therefore, higher-order packing induced by

the inverse agonist may restrict access of receptor to G

protein. However, this higher-order packing is not required

for the inverse agonist effect, as an inverse agonist can

efficiently prevent coupling of monomeric b2AR to Gs (Yao

et al, 2009). It is likely that a combination of all three effects

is responsible for the ICI-induced FRET changes. The in-

creased stability of oligomers against dissociation by deter-

gent in the presence of ICI (Supplementary Figure 7) is in

agreement with closer packing of protomers, while FRET

saturation (Figure 7B and Supplementary Figure 5) and

cross-linking experiments (Figure 7C and Supplementary

Figure 6) are in agreement with higher-order oligomers.

Our results are consistent with a rearrangement of the

oligomerization interfaces that has been observed for the

dopamine D2 receptor upon inverse agonist binding (Guo

et al, 2005), and the observation of higher-order packing of

the inactive state of rhodopsin in rod outer segment mem-

branes (Liang et al, 2003). The functional consequence of this

higher-order oligomerization is not known, but could impair

coupling of the b2AR to Gs, or be involved in the coupling of

the b2AR to other signalling pathways. Interestingly, both ICI

and carvedilol have been shown to activate MAPK through a

G protein-independent, arrestin-dependent signalling path-

way (Galandrin and Bouvier, 2006; Wisler et al, 2007). The

dramatic effects of ICI on oligomerization might be expected

to influence ICI binding affinity or cooperativity; however, no

differences in ICI binding properties were observed between

b2AR monomers (reconstituted into HDL particles) and

oligomers (reconstituted into phospholipids vesicles) (data

not shown).

In conclusion, we find that the b2AR is capable of forming

specifically oriented multimeric assemblies in a model lipid

bilayer in the absence of other cellular proteins, complement-

ing previous studies of Family A GPCRs. Although we cannot

determine the oligomeric interfaces with precision, our

results are compatible with models proposed for several other

Family A GPCRs, where oligomerization involves primarily the

TM1/H8 interface. Most unexpected was the observation that

inverse agonists promoted higher-order b2AR oligomerization.

This may alter access to other signalling proteins, providing

insight into the ability of inverse agonists to inhibit basal G

protein signalling or in promoting G protein-independent activa-

tion of MAPK pathways. These results suggest a potential

structural link between the stabilizing effects of inverse agonists

on b2AR monomers and the assembly of oligomers in lipid

bilayers.

Materials and methods

Materials
Cy3–maleimide and Cy5–maleimide were both obtained from
Amersham Biosciences. [3H]-DHA and [35S]-GTPgS were purchased
from Amersham and Perkin Elmer, respectively. All drugs tested
were purchased from Sigma. The Bis(NHS)PEO5 homobifunctional
cross-linker and NHS-PEO4-Biotin were purchased from Pierce.

Engineering of single-cysteine b2AR mutants
Site-directed mutagenesis of the b2AR was performed by using the
human b2AR cDNA containing a FLAG epitope at the N-terminus as
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well as a six histidine tag at the C-terminus. The five reactive
cysteines (out of 13 native cysteines) in the b2AR were mutated as
follows: C77V, C265A, C327S, C378A and C406A to generate a D5
background (Gether et al, 1997). Mutations for the three single-
reactive cysteine constructs (T66C, A265C and R333C all in D5) in
these studies were carried out by PCR mutagenesis with Pfu
polymerase (Stratagene, La Jolla, CA). The mutated cDNA was then
digested with appropriate enzymes and cloned into the pFastBac1
(Invitrogen) vector. All constructs were confirmed by restriction
enzyme analysis and DNA sequencing.

Expression and purification of b2AR from Sf9 insect cells
Sf9 insect cells were grown at 271C in suspension cultures in ESF-
921 medium (Expression Systems, CA) supplemented with 0.5 mg/
ml gentamicin. The Bac-to-Bac Baculovirus Expression System
(Invitrogen) was used for generating baculovirus for each of the
b2AR constructs. b2AR expression was accomplished by infecting
Sf9 cells at a density of B3�106 cells/ml for B48 h. Cells now
expressing receptor, as assessed by immunofluorescence, were
harvested by centrifugation (15 min at 5000 g). Cell pellets were
stored at �801C prior to purification. b2AR from Sf9 cells was
purified using a three-step purification procedure involving M1 anti-
FLAG column, followed by alprenolol–Sepharose affinity column
and a second M1 anti-FLAG column as described previously
(Swaminath et al, 2005; Granier et al, 2007). Saturation binding of
the antagonist [3H]-DHA was used to determine the concentration
of functional purified b2AR. Detailed protocols are found in
Supplementary data.

Lipid preparation
DOPC 18:1 phospholipid (Avanti Polar Lipids Inc.) and CHS
(Steraloids, Inc.) were mixed and dissolved in chloroform to form
a stock solution of lipids at a concentration of 20 and 10 mg/ml,
respectively. DOPC and cholesterol were added to a glass vial, with
DOPC at a 10-fold molar excess, and chloroform was evaporated
under a fine stream of argon. The lipids were then further dried
under vacuum for 1 h. The lipids were resuspended in Buffer G
(20 mM HEPES, 100 mM NaCl, 1% octylglucoside, pH 7.5), vortexed
and sonicated for 1 h in an ice water bath. The lipid mixture was
stored at �801C.

Fluorescence labelling and reconstitution of purified receptors
Purified b2ARs were labelled with two equivalents of either Cy3–
maleimide or Cy5–maleimide (Amersham Biosciences) for 15 min
at 41C. Labelling reactions were quenched by adding a final of 1 mM
L-cysteine.

b2AR was reconstituted as described previously (Swaminath
et al, 2005). Briefly, for each mutant generated, 300-ml samples were
prepared containing the following receptors for reconstitution:
either Cy3–b2AR alone, Cy5–b2AR alone or both Cy3–b2AR and
Cy5–b2AR. The amount of both labelled receptors and lipids used
for reconstitution varied depending on the lipid-to-receptor ratio.
Either 1000:1 (mol lipid:mol receptor) or 10 000:1 (mol lipid:mol
receptor) conditions were used. The lipid/receptor mixture, plus
reconstitution buffer to 300 ml, was mixed and placed on ice for 2 h.
Vesicles were allowed to form by removing detergent on a

Sephadex G-50 (fine) column (25� 0.8 cm) using reconstitution
buffer (20 mM HEPES, 100 mM NaCl, pH 7.5).

To assess the proportion of receptors incorporating into vesicles,
we performed discontinuous sucrose gradients as described
previously for rhodopsin (Mansoor et al, 2006) (see Supplementary
data).

The number of fluorophore molecules per reconstituted receptor
was calculated by using the maximum absorbance of the donor- or
acceptor-labelled receptor. The number of donor or acceptor
fluorophores per b2AR ranged between different preps from 0.4 to
0.8 for all three constructs (Supplementary Table 1).

Fluorescence spectroscopy
Experiments were performed at 251C with a SPEX FluoroMax-3
spectrofluorometer (excitation and emission bandpass of 2 nm,
S/R acquisition mode). The final concentration of b2AR used for
spectroscopy was typically B20 nM.

For FRET experiments, spectra were taken from receptors
labelled with donor (Cy3) and reconstituted together with receptors
labelled with acceptor (Cy5) at the various cysteine mutants
generated. Spectra of receptors labelled with only the acceptor
fluorophore and reconstituted alone were also taken. For each type
of receptor, two types of emission scans were acquired. The first
emission scan (donor scan) acquired used the excitation maximum
for the donor fluorophore Cy3 (lex¼ 550 nm). The second emission
scan (acceptor scan) used the excitation maximum for the acceptor
fluorophore Cy5 (lex¼ 649 nm). For testing the effects of b2AR
ligands, samples±drug were mixed and incubated 20 min at RT.
Three separate samples were used for testing each type of drug and
individual spectra were acquired and averaged. Removal of
acceptor bleed-through and correction of any drug-induced acceptor
fluorescence intensity changes were carried out and described
in detail previously (Granier et al, 2007) and are present in
Supplementary data.

Supplementary data
Supplementary data are available at The EMBO Journal Online
(http://www.embojournal.org).
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