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SUMMARY. Cluster randomized trials with relatively few clusters have been widely used in recent years for evaluation of
health-care strategies. The balance match weighted (BMW) design, introduced in Xu and Kalbfleisch (2010, Biometrics 66,
813-823), applies the optimal full matching with constraints technique to a prospective randomized design with the aim of
minimizing the mean squared error (MSE) of the treatment effect estimator. This is accomplished through consideration of M
independent randomizations of the experimental units and then selecting the one which provides the most balance evaluated
by matching on the estimated propensity scores. Often in practice, clinical trials may involve more than two treatment arms
and multiple treatment options need to be evaluated. Therefore, we consider extensions of the BMW propensity score matching
method to allow for studies with three or more arms. In this article, we propose three approaches to extend the BMW design

to clinical trials with more than two arms and evaluate the property of the extended design in simulation studies.
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1. Introduction and Motivating Example

The balance match weighted (BMW) design introduced in
Xu and Kalbfleisch (2010) applies the optimal full matching
with constraints technique to a randomized study, and aims
to minimize the mean squared error (MSE) of the treatment
effect estimator. This approach involves considering several
(M) randomizations of the participating units into the two
treatment arms. With each randomization, the optimal full
matching with constraint is used in order to identify the best
blocking for that randomization. The randomization and cor-
responding full matching that leads to the smallest total dis-
tance is then selected. The distance measure used for the
matching was based on estimated propensity scores, as has
been proposed in observational studies (Rosenbaum and Ru-
bin, 1984; Rosenbaum, 2002; Hansen, 2004), but other dis-
tance measures could have been used. A simulation study
demonstrated good MSE properties for the BMW design as
compared to other approaches in the literature.

Repeating randomization to achieve better covariate bal-
ance between treatment groups has previously been proposed.
Cox (2009) suggests “re-randomizing, say, 20 times and choos-
ing the design with most balance.” Rubin (2008) recommends
re-randomizing treatment allocation when the one obtained
has substantial potential for conditional bias given the ob-
served covariate values, and continuing to do so until satisfied.
Morgan and Rubin (2012) propose a re-randomization proce-
dure suggesting, for example, a balance criterion to be applied
to treatment and control covariate means, and then repeat-
edly randomizing until the criterion is met. The BMW design,
however, performs multiple (say M) randomizations, and se-
lects the one that leads to the best matching. This avoids the
setting of a criterion in advance and also takes advantage of
matching with potential gains in robustness.
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Cluster randomized trials, in which social units are selected
as the units of randomization, have been increasingly used
in the past three decades to evaluate the effects of interven-
tions at a community level. In such studies, there are typically
rather few participating units and often several variables that
describe the properties of these units. Further, the units avail-
able for randomization and study are generally known in ad-
vance of the trial and there is the opportunity to balance the
design with respect to these variables. A trial of this type,
the INSTINCT trial (Scott et al., 2012) motivated our inter-
est in this problem, and led to Xu and Kalbfleisch (2010) as
well as this extension. This trial investigated the effect of a
multifaceted educational program directed at hospital emer-
gency departments in enhancing the appropriate use of tis-
sue plasminogen activator (tPA) in the treatment of ischemic
stroke. Twenty-four hospitals were randomized to interven-
tion or control using blocking to achieve a degree of balance.
Various covariates characterized the participating hospitals
and raised the question as to how best to account for this
diversity in the design.

In some instances, more complex treatment programs are
evaluated in cluster randomized trials. For example, a drug
may be applied at different dosage levels or a factorial de-
sign might be used to compare simultaneously two treatment
strategies. In such cases, the BMW design, which was intro-
duced for two treatment groups, needs to be extended. In a
two-arm BMW design, the problem of finding the best block-
ing can be reduced to solving a standard combinatorial opti-
mization problem for which fast algorithms exist (Rosenbaum,
2002). However, the problem of obtaining an optimal match-
ing with three or more groups has been shown to be a NP
(non-deterministic polynomial time) complete problem. The
most notable characteristic of such problems is that the time
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required to solve them using any currently available algorithm
increases very quickly as the size of the problem grows, and
in many instances, it is not possible to determine the opti-
mal solution even for relatively small problems. For exam-
ple, consider a small study with m subjects in each of three
arms. The number of possible matchings into block of size
m is (m!)? which is 576 when m = 4; 4,518,400 when m = 6,
and 1.317 x 10*® when m = 10. Enumeration of these match-
ings quickly becomes impossible. In order to circumvent this
problem, we develop some ad hoc approaches which may not
lead to the optimal tripartite matching, but to solutions that
are close to optimum. Although the balance achieved by us-
ing our approach is not completely optimal, it is typically
close to optimal which we establish by carrying out compar-
isons with the true optimum in samples of size m = 6. Fur-
ther, with larger sample sizes, we find that the results of this
approach compare favorably to approximate solutions based
on an integer programming formulation implemented with a
commercial software package.

The problem of matching with three or more groups also
arises in observational studies. For example, in assessing the
effect of an experimental factor, some investigators use a sec-
ond control group in an effort to detect the hidden biases in
the unobserved covariates (Seltser and Sartwell, 1965; Chang
et al., 1997; Wells et al., 1997; Bo and Rosenbaum, 2004).
Campbell (2009) argues for this approach noting that al-
though matching can adjust the differences in observed covari-
ates, bias may still exist due to some unobserved covariates;
comparison with two distinct control groups offers some pro-
tection since the control groups may differ from each other
substantially on the unobserved covariates. Bo and Rosen-
baum (2004) considered this situation and proposed an algo-
rithm to match three groups into balanced incomplete blocks
of size two. One drawback of the incomplete block design is
that the direct comparison of treatments A and B only oc-
curs in a subset of the blocks. This approach is potentially
much less efficient than approaches that match in blocks of
size three.

The rest of the article is organized as follows. Notation, the
three matched designs (incomplete blocks of size two, asym-
metric and symmetric tripartite matching) and the analysis
models are presented in Sections 2 and 3. Section 4 gives re-
sults of a simulation study comparing the performance of the
3-arm BMW design based on different matching algorithms
with one another as well as with the completely randomized
design. Section 5 further extends the BMW design to more
than three arms and considers, in particular an application to
a 2 x 2 factorial design. A case study is outlined in Section
6, and Section 7 considers aspects of the statistical analysis
of the BMW design, including a discussion of randomization
tests. The article concludes with some discussion in Section 8.

2. Methods

Suppose that N subjects are available for study and consider
a randomization Z = (Zy, ..., Zy)T into three treatment as-
signments A, B, C, where Z; = 1, 2 or 3 if subject i is assigned
to A, B, or C, respectively. We consider balanced designs
in which N/3 subjects are assigned to each treatment and
suppose that each of the possible N!/[(N/3)!]* assignments is
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equally likely to be chosen. It is convenient to define the ran-
domsets A={i:Z =1},B={i: Z; =2},andC={i: Z; = 3}.
Suppose further that associated with subject i, there is an ob-
served vector of covariates, X; = (X1, ..., X,;)T with X;; =1,
fori=1,...,N.

For any two subjects, i and j, we assume that a distance
measure, D(i, j) > 0, has been specified that measures the dis-
cordance between the covariates associated with those sub-
jects. Specifically, we suppose that D(i, j) > 0 specifies the
distance. In this article, we utilize a distance measure that is
based on the estimated propensity score given the randomiza-
tion of subjects to the three treatment groups. However, other
distance measures could be used such as the Mahalanobis dis-
tance suggested by Greevy et al. (2004). In order to reduce
imbalance in the between-group comparisons due to chance
correlations between the X’s and the treatment assignment,
we consider matching subjects into blocks in such a way as
to minimize the between subject distances within blocks. We
consider three approaches for carrying out this matching with
three groups, and later consider extensions to more than three
groups.

This proposed design generalizes the two-arm BMW design
introduced in Xu and Kalbfleisch (2010). In the two-arm de-
sign with specified parameter k and M, study subjects are first
randomized to two treatment groups and the matrix of dis-
tances is created. The optimal full matching with constraint
k is then obtained (Olsen, 1997; Hansen, 2004) and the to-
tal distance A recorded. The process is repeated M times
and the randomization yielding the minimum total distance
A =min(Aqg, Ay, ..., Apy) is selected.

In the proposed three arm BMW design, we need to match
across three treatments. Otherwise it is identical to the two
armed design and is described as follows:

Step 1. Randomize one third of the N subjects to each
treatment groups A, B, and C.

Step 2. Obtain the matching of the subjects into blocks
that leads to the minimum total distance, A, between subjects
within blocks.

Step 3. Repeat the above two steps M times and choose the
randomization (and corresponding matching) with minimum
total distance A* = min(Aj, Ag, ..., Ay).

In Sections 2.1 and 2.2, we consider three methods of
matching that can be used in this design. In Section 2.3, we
discuss distance measures and propose in particular a distance
measure based on propensity score matching, and in Section
2.4, we discuss an integer programming formulation of the
tripartite matching problem.

2.1.

If the three treatment comparisons, A with B, A with C, and
B with C, are equally important, then Bo and Rosenbaum
(2004) suggest an incomplete block design with matched pairs;
thus they propose blocks of size two with one third of the
N/2 blocks assigned at random to each of the three treatment
comparisons. Given sets A, B, C, we consider the collection
P4 pc of all possible matchings of size (pi2, pis, p23), for
which there are pi, pairs of the form A x B, p;3 pairs of the
form A x C and p3 pairs of the form B x C, where all the pairs
are disjoint and pi2, p13, p2s are specified constants. In this
A x B is the Cartesian product set {(i, j) : i € A, j € B}. Let

Incomplete Block Design with Disjoint Pairs
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w € M be one pair of a particular matching M € Py pc, we
measure the quality of M as Ay =" . D(w). An optimal
incomplete block matching minimizes A v over all M € P4 pc.
If this minimum is finite, then the optimal matching problem
is feasible; otherwise, it is infeasible. In our application of a
randomized experiment, we select p12 = p13 = pag = N/6.

Bo and Rosenbaum (2004) show that the solution to this
optimal matching problem can be related to the solution of
an equivalent nonbipartite matching problem that is easily
solved. Let ® denote the collection of all possible matchings
of the set AJBJC={1,2,..., N} into N/2 disjoint pairs,
and define the distance measure,

D) = { D(i. j).

00,

lf Z,‘ == Z],

where i, j=1,...,N. Let M € & be a matching. The total
distance of M is defined as Ay =) ., D*(@). The optimal
nonbipartite matching problem is to minimize A, over ®.
A nonbipartite matching M is called feasible, if Ay < 00. Bo
and Rosenbaum (2004) (Claim 1) proved that P is an optimal
nonbipartite matching with A(P) < 400 if and only if P is
also an optimal, feasible tripartite matching into incomplete
blocks as described above.

2.2.  Tripartite Matchings with Matched Triples

We propose matching three groups in triples instead of bal-
anced incomplete blocks, which has the advantage of a di-
rect comparison of all treatments within each block. The op-
timal tripartite matching is very difficult to obtain and is
commented on further in Section 2.4. However, we suggest
an alternative approach that builds on the bipartite match-
ings described in Xu and Kalbfleisch (2010) and yields nearly
optimal matched triples.

Suppose first that the comparisons A with B, A with C,
and B with C are equally important. Given sets A, B, C, we
consider the collection ® 4 p of all possible matchings of size
myg from A x B, ®4¢ of matchings of size my3 from A x C,
and ®p ¢ of matchings of size ma3z from B x C. In this, mia,
my3, and mas are fixed; in the present application with N/3
in each group, we consider myo = my3 = mag = N/3.

The quality of M € ®, p is measured by the total dis-
tance, A(M) =3 _ D(®). An optimal pair matching cor-
responds to the minimum distance A% ; = minyeq, , A(M).
Let M4 5 be an optimal matching so that A% ;, = A(M ).
Similarly, by considering the set of all matchings in ® 4 and
®pc, we can determine their respective optimal matchings
and corresponding minimum distances; in an obvious nota-
tion, this gives A% . = A(M ) and Ag . = A(Mp), respec-
tively. Given the optimal pair matchings, M 4p and Mpc,
the subjects in A are also paired with those in C through
their individual matchings with B. Let M . represent this
induced matching. In this case, we refer to B as the refer-
ence group; the corresponding tripartite matching is denoted
by Mpg and the minimum total distance with B as refer-
ence is A, = A%+ Af o+ ZweM;C D(w). Similarly, with
A and C as reference groups, the optirhal tripartite matchings
are denoted by M4 and M, with respective minimum total
distances, A}, = A%+ A%+ Z‘”E/"%c D(w) and A}, =
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Alige T A% T ZweM; , D(w). The reference group associ-

ated with the smallest total distance, min{A}, , Al Aly,}is
the optimal reference group, and the corresponding matching
is referred to as the optimal symmetric tripartite matching.

Sometimes investigators may have two or more treatment
options to compare against a common control. In this case,
the matching can focus on balancing the covariate differences
between each treatment group and the control. Suppose that
group C is the control or reference group. As defined above,
we can determine the optimal pair matchings M 4 ¢ and Mpc;
these can be combined to obtain the optimal asymmetric tri-
partite matching given the reference group C, which minimizes
the distance measure

Aj\/lc = Aiuc + AjMB.C' (1)

Note that the distance between the corresponding members
of Aand B, ) .+ D(w), is not included in (1) since the
A.B

adjustment of the covariate imbalance between the two treat-
ment groups A and B is not of primary interest.

2.3.

The matchings described above can be carried out using any
measure of distance between the subjects available for the ex-
periment. In our presentations here, we make use of a propen-
sity score distance that is a generalization of that used in Xu
and Kalbfleisch (2010). Other measures of distance (e.g., Ma-
halanobis distance) could also be used.

The method of propensity score matching has been widely
used in observational studies to control for bias (Rosenbaum
and Rubin, 1984; Gu and Rosenbaum, 1993; Ming and Rosen-
baum, 2000; Rosenbaum, 2002; Hansen, 2004). Rosenbaum
and Rubin (1984) proved that treatment assignment and the
observed covariates are conditionally independent given the
propensity score, which implies that adjustment for the scalar
propensity score is sufficient to remove bias due to all ob-
served covariates. Although the true propensity score is typ-
ically known from the randomization scheme in randomized
experiments, matching on the estimated score may still have
some substantial advantages. Indeed, it has been shown that
matching based on an estimated propensity score has advan-
tage over the use of the true propensity score (Robins, Mark,
and Newey, 1992).

Again, let Z;, i=1,...,n be the random assignment of
the N subjects to the three treatment groups. Although we
know that Pr(Z; =1) =1/3,t=1,2, 3, is independent of the
X;, we can nonetheless consider the extent to which X; is
predictive of the observed randomization z = (z1, ..., zy). For
this purpose, we consider a baseline category model

Choice of Distance Measure

8 = Pr(Z; =11X,)
expfel X;}

- , 2
1 + exp{aT X;} + exp{al X;} @

where t=1,2,3, o = (0[11,...,0(1,-)T, and oy =
(et21,...,a9,)T are regression coefficients, and a3 =0,
so that the third group is regarded as the reference. This
model applied to the observed randomization yields estimates



952

a1, &> and a corresponding estimate, 8, of the propensity
score that individual i is assigned to group ¢, t =1, 2, 3. The
Euclidean distance between the estimated propensity scores
for subject i and subject j is

D(i, j) = \/(Sn - 3/1)2 + @2 - S1‘2)2 + (3,-3 - SjS)Q’ (3)

and we refer to this as the generalized propensity score
distance.

2.4.  Integer Programming Formulation of the Tripartite
Matching

The asymmetric tripartite matching design given a reference
group is an optimal design since both component parts are
optimal and this design can be computed efficiently. The sym-
metric tripartite matching, however, is typically not an opti-
mal solution, but rather a solution that is approximately op-
timum. In fact, the problem that we are attempting to solve
can be simply formulated as an integer programming prob-
lem, and such problems have been extensively studied. Let
Dy = D(i, j) + D(j, k) + D(i, k) and W;3 = 1if ijk is a block in
the design and W3 = 0 otherwise. Under the constraints that
each individual in every set is matched once and only once,
the optimal tripartite matching of the sets A, B, C into blocks
of three corresponds to the solution of the following problem:

Minimize Z Z Z Wiik Dijk.,

ieA jeB keC

Subject to ZZ Wi =1, keC;

ieA jeB

YD Wyu=1,jeB;

icA keC

DD Wp=lie;

jeB keC

where Wi € {0, 1} for all i, j, k. This very simple mathemat-
ical formulation is deceptive, however, in that its solution
is computationally very difficult unless N is very small.
A discussion of this and related problems can be found,
for example, in Bandelt, Crama, and Spieksma (1994) and
Burkard, Dell’Amico, and Martello (2009).

There are a number of commercial software packages that
address integer programming problems such as this, and these
also typically lead to approximate solutions. We compare this
alternative approach with the symmetric tripartite matching
in Section 4.

3. Assessment of the BMW Designs

For assessment purposes, we consider the following linear
model: let Y represent the response and suppose that con-
ditional on a given treatment assignment Z and an r-vector
of covariates X,

Y=a+BI1(Z=1)+pI(Z=2)+y "X +e, (4)
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where I(-) is the indicator function, B; and By are the treat-
ment effects with Z = 3 as reference, y = (y1, ..., y,)T repre-
sents the confounding effects, € ~ N(0, 0?) is the error, and
cov(X) = X. It is further assumed that X and e are mutually
independent.

(1) Pooled Samples. Under model (4), the common treat-
ment effect estimators obtained from the completely
randomized design and ignoring X are Bipool = Y4 —

yC? :32.1:)001 = yB - yC and ,33,p001 = yA - yl% respectively,
where Y5 =3 x Y, o vi/N for G=A, B, C. The condi-

tional expectation for Bi pool is

E[El,poollH] = ﬁl + yT(XA - XC)’ (5)

where H={X;,Z,i=1,2,..., N} and  Xg =
3 x Zieg X;/N for G= A, B,C. The mean squared
error for El,pool is

2

~ — [ p— - 60
MSE(B1,pool/H) = ¥ (X4 — Xe)(Xu — Xe) Ty + —,

N
(6)
~ T — — 602
MSE(,Bl,pool) =Y COV(XA — XC))/ + 7
6 T 6 2
= -— E - . 7
Ny ZV o (7

From (7), the MSE is comprised of two parts: the first
is due to the conditional bias in (6) arising from the
imbalance in the observed covariates X; and the second
is the conditional variance of By po01. The properties of
the estimator /,8\2_p001 and /ﬁ\g‘pool are similar.

(2) Matched Samples. Under model (4), estimating the
treatment effect for the matched sample involves com-
putation of the average of the within-pair differences.

(i) The incomplete block (ICB) design results in a set
M3 of N/6 pairs from A x C, M5 of N/6 pairs from
A x B and Mss of N/6 pairs from B x C. Let y 4,5 =
6 x Z(i,j)e/vllg Yi/ N and yei3 =6 x E(i,j)e/vtlg yi/N
be respectively the mean response of A treated and
C treated subjects in the matching M3. Then, in an
obvious notation, the treatment effect estimator of A
versus C is B°7 = %(yms —Yes) + %[(ymz = Ypi2) +
(¥g23 — Yea3)], which has conditional expectation

—~ 1 . _
E| {CB”'Q =B+ gVT[Z(XAIS - Xc13)
+ (XA12 — Xp12) + (Xpas — KC23)}3

where X 13 = 6 E(i»j)EMB X;/N, is the average of the
covariates of subjects in treatment group A in the
matching M3, etc. The mean squared error is

1 _ _ _ _
MSE(E{CB) = §VTCOV* [2(X413 — Xc13) + (Xa12—Xp12)

2

_ — 8o
+(Xp23 — Xc23)]y + N (8)
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The estimators of B;CB and BéCB have similar proper-
ties. Note that “Cov*” refers to the covariance matrix
under the BMW sampling scheme for the ICB design.
(ii) The asymmetric and symmetric tripartite matching
design (ATM and STM) with matched triples lead
to a set Mia3 of N/3 matched triples from A x B x
C. As before, let 35 =3 x Y, _.vi/N for G=A, B,C.
The treatment effect estimator comparing A with C
from the asymmetric and symmetric designs are g2™

and E?TM7 respectively, where /,B\fTM = E?TM =y,
Ye and
BSTM T X X 6o
MSE(B;™ ") =y Cov* (X4 — X¢)y + N 9)

with a similar equation for MSE(BATM),

The formulas (7)—(9) are quite similar. The calcu-
lations in (7), however, are straightforward, whereas
for (8) and (9), because of Cov*, the expressions must
be evaluated by simulation as in the next section. The
BMW design essentially chooses a randomization and
post randomization stratification in order to achieve
good balance between the treatment groups. In doing
this, it reduces the bias in the conditional treatment
effect estimators and, as a consequence, reduces the
bias term in the mean squared error. Note that with
the ATM and STM designs, the variance term in the
MSE is still 662/N as in (9). The ICB design, on the
other hand, reduces the bias of the estimator but, as
(8) shows, the incomplete blocking has the effect of in-
creasing the variance term to 862/N. Therefore, it is to
be expected that the ICB design can be less efficient
than the pooled design when the confounding effects
are small. The marginal MSEs for these estimators are
evaluated by simulation in the next section.

4. Simulation Results

In order to assess the performance of the BMW design based
on each of these three matching algorithms, we compared
them to one another and to the completely randomized de-
sign in a simulation study. In doing so, we considered a wide
variety of settings and, for each setting, estimated the mean
squared error of treatment effect estimators based on 1000
replications.

4.1.  Structure of the Simulation and Results
For the ith subject, we generated a set of r covariates X; =
(Xi1,....Xi)T, i=1,2,..., N, where the covariates were

drawn independently from various distributions as described
below. Given a randomization of N/3 subjects to each of the
three treatment groups, the responses were generated from
the model (4) with @ = 0 and & ~ N0, 1). In the simulations,
we considered the following:

® B; = B2 = 0.5. Note that the results do not depend on the
choice of B.

® yi=y j=1,...,r,wherey =0.5,1.0, 1.5. If the covariates
follow symmetric distributions, the results do not depend
on the signs of the components of y.
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® r =4 where: (i) X1, X2, X3, X4 i Bernoulli(0.5) ; or (ii)

X1, X5 = Bernoulli(0.5) ; X3, X4 =<' N(0,0.25).
® N =24 or 36, and M = 100.

Table 1 presents the MSEs for the ATM, STM, and ICB
designs. Since the STM and ICB designs are symmetric in all
treatment effect estimators, we only show the percent reduc-
tion in MSE in B; for those methods. With the ATM design,
however, there is symmetry in the estimates of 1 and fBs,
but the estimate of the contrast, B p = B1 — B2, is different.
Therefore, we report results for Bl and BA B

The three-arm BMW designs typically provide important
gains in efficiency by reducing the MSE of the treatment effect
estimators as compared to the completely randomized design.
This is especially so for the STM and ATM designs.

The BMW designs based on ICB or STM can be applied
to situations when the three pairwise comparisons are deemed
equally important. The STM design, however, is substantially
more effective than the ICB design in reducing MSE. This is
especially the case when the confounding effects are mod-
erate (e.g., ¥y = 0.5 or 1.0). For example, if N =36 and the
common confounding effect is y = 0.5, the estimated treat-
ment effect, B, from the ICB design is less efficient (reduction
in MSE = —12.3%) than the completely randomized design.
The extra blocks created by the ICB design lead to a loss of
efficiency, and this limitation arises especially when the con-
founding effects are not too strong. In this case, the increase
in variance outweighs the bias reduction. On the other hand,
our proposed symmetric tripartite matching algorithm uti-
lizes all the subjects assigned to each treatment group in the
direct comparisons and, at the same time, reduces the bias by
efficiently matching the subjects into triples.

Simulation results for the ATM design are similar to those
for the STM design. As expected, we observe some gain in
efficiency in estimating the AC and BC comparisons as com-
pared to the STM though, as Table 1 illustrates, the gains are
relatively small. Similarly there are relatively small reductions
in the efficiency of estimating the AB comparison.

The effects of study size N on the performance of the BMW
design is examined in Table 1, which presents the results N =
36 and N = 24. These reveal that the performance of the ICB
design is poorer with smaller sample size, whereas the STM
and ATM designs have similar efficiency gains for the sample
sizes considered.

In the implementation of the BMW design, we have used
M = 100. To gain some insight as to whether this choice is
adequately large, we carried out a series of simulations in
which we first generated Y;, X; for N = 24 subjects based on
the model (4) with r =1, X ~ N(0, 0.25) and ¢ ~ N(0, 1). We
then applied the BMW design with M = 100 repeatedly for
100 times on these same 24 subjects. Each time, we obtained
a new “optimal” symmetric tripartite matching and for each
such matching, we evaluated the covariate imbalance X, —
Xc, X5 — Xc, and X4 — Xg, at the optimum. These variables
have mean 0, and the standard deviations were 7.33E—05,
6.95E—05, and 5.33E—05, respectively. As indicated in section
3, the BMW design reduces the MSE of the treatment effect
estimator through a reduction in the conditional bias of the
estimator. We repeated these calculations many times and



954 Biometrics, December 2013
Table 1
Percent reductions in the MSE of treatment effect estimator for the BMW designs based on incomplete blocks(ICB),
symmetric tripartite matching (STM), and asymmetric tripartite matching (ATM), and compared to a completely
randomized design (CR)
MSE percent reduction (%)
MSE ICB vs CR STM vs CR ATM vs CR
14 M (CR) B1 = Bac B1 = Pac B1 or Ba Bag = p1 — B2
N =24
X1, X9, X3, X4 S, Bernoulli(0.5)
(0.5, 0.5, 0.5, 0.5) 100 0.312 ~11.95 15.52 15.23 15.42
(1.0, 1.0, 1.0, 1.0) 100 0.487 18.05 37.02 38.18 34.58
(1.5, 1.5, 1.5, 1.5) 100 0.806 40.20 53.61 55.56 47.96
X1, X2 %! Bernoulli(0.5); X3, X4 '~ N(0,0.25)
(0.5, 0.5, 0.5, 0.5) 100 0.288 —19.11 10.12 10.36 9.14
(1.0, 1.0, 1.0, 1.0) 100 0.403 7.11 28.74 29.38 27.28
(1.5, 1.5, 1.5, 1.5) 100 0.600 29.24 44.37 45.44 42.23
N =36
Xl, XQ, X3, X4 l;'l\"d Bernoulli(0.5)
(0.5, 0.5, 0.5, 0.5) 100 0.207 —12.34 15.35 15.89 13.43
(1.0, 1.0, 1.0, 1.0) 100 0.326 18.95 37.61 38.45 36.18
(1.5, 1.5, 1.5, 1.5) 100 0.535 40.93 54.63 55.52 51.39
X1, X2 ' Bernoulli(0.5); X5, X4 =<' N(0,0.25)
(0.5, 0.5, 0.5, 0.5) 100 0.193 —18.17 10.64 10.99 9.59
(1.0, 1.0, 1.0, 1.0) 100 0.268 8.38 28.53 29.37 26.71
(1.5, 1.5, 1.5, 1.5) 100 0.417 33.95 47.11 48.53 43.57

Sample size N = 24 and 36 subjects. Number of replications = 1000.

found that this summary is typical of the results seen. This
suggests that M = 100 is large enough for implementing the
BMW design in the cases considered here.

4.2.  Ewvaluating STM

In order to evaluate how close STM is to the true optimal
tripartite matching, we performed a simulation study to com-
pare them for a small sample size of 18 = 3 x 6, for which an
exact solution can be obtained. We generated the response
from

Yi=p1(Z;=1)+B1(Z; =2)+yX;i+&, i=1,2,...,18,

(10)
where X; "~ N0, 0.25) and ¢; o M0, 1). We used a dynamic
programming algorithm in Matlab to search for the optimal
tripartite matching. Even with this relatively small sample
size, the calculations to obtain the true optimum matching is
extensive, taking approximately 10 minutes for a single CPU
to search for the optimal solution on each simulation. We used
a cluster of CPUs to conduct 1000 simulations and for each
simulated sample, we apply the STM with M = 100 and true
optimal tripartite matching method, respectively.

The minimum distances obtained by the STM and optimal
tripartite matching are very close. The distribution of the
difference in minimum distances obtained from the two algo-
rithms based on the 1000 simulation runs has a maximum of

2.73 x 10792, mean of 8.56 x 1074, median of 2.51 x 1079,
minimum of 0. The average MSE of the treatment effect esti-
mator is 0.33 for both approaches. This suggests that the pro-
posed STM design leads to results that are nearly optimal, at
least for the sample size N = 18. More extensive simulations
with larger sample sizes would be interesting, but would re-
quire more efficient methods than those currently available to
obtain the true optimum matching.

As an alternative to STM, we also investigated the use
of the commercial optimization software, Gurobi 5.0 (Bixby,
Gu, and Rothberg, 2010), to solve the integer programming
formulation as described in Section 2.4. It should be noted
that Gurobi and other such software only gives an approx-
imate solution to such problems, again because of the com-
putational burden of obtaining exact results. We compared
STM with the solution that Gurobi gave in 100 examples,
where each example has N = 24. With the default searching
algorithm and default stopping criterion specified in Gurobi,
the software leads to very similar results to those obtained
from STM. In 58 of the 100 examples, STM with M = 100
yields smaller total distances than Gurobi. The distribution
of the difference in minimum distances obtained from the two
algorithms based on the 100 examples has a maximum of 0.46,
a mean and median of —0.013, and minimum of —0.47. This
investigation suggests that the STM leads to competitive so-
lutions and has the clear advantage that it does not require
specialized software.
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Table 2
Percent reductions in the MSE of the treatment effect estimator for the symmetric quadripartite matching (SQM) and
asymmetric quadripartite matching (AQM), compared to a completely randomized design (CR) for a 2 x 2 factorial
experiment

% MSE reduction (MSE)

AQM versus CR

MSE (CR) SQM versus CR
Y M B2 B2 B1 B2
(0.5, 0.5, 0.5, 0.5) 100 0.116 9.2% (0.105) 8.8% (0.106) 8.9% (0.105)
(1.0, 1.0, 1.0, 1.0) 100 0.166 26.7% (0.122) 28.6% (0.118) 25.4% (0.120)
(1.5, 1.5, 1.5, 1.5) 100 0.245 39.6% (0.148) 40.8% (0.145) 39.7% (0.147)

Sample size N =40 subjects. Number of replications = 1000. We consider four confounding covariates, X1, X2, X3, and X4, where

iid iid
X1, X2 "~ Bernoulli(0.5); X3, X4~ N(0, 0.25).

5. The BMW Design in Trials with Four or
More Arms

The BMW design can be further extended to trials with four
or more arms. With four arms, we can apply an asymmetric
quadripartite matching (AQM) design that generalizes the
ATM design when there is a predefined reference group; al-
ternatively, the STM design can be extended to a symmetric
quadripartite matching (SQM) design when these four groups
are to be compared in a symmetric way. On the other hand,
Bo and Rosenbaum (2004) noted that the nonbipartite match-
ing algorithm that gives rise to the incomplete block design
for three arms does not extend to four or more treatments.

Traditional designs in cluster randomized trials have gen-
erally studied the effect of one variable at a time. In many
instances, however, there may exist two or more factors,
and then it is inefficient to study each variable individually.
Table 2 summarizes a simulation study for a 2 x 2 factorial
design (four treatment groups) with N = 40 subjects to com-
pare treatment E with its control E and treatment F with its
control F. The model generating the data is additive with no
interaction between the treatments and g, and By represent
the respective treatment main effects; the additive error term
is N(0, 1). Each point in the simulation corresponds to 1000
replications. Both the SQM design and the AQM design are
considered; in the AQM, the group EF is taken as the refer-
ence. There were four covariates with distributions defined in
Table 2.

6. Planning a 2 x 2 Factorial Design for tPA
Usage in Stroke

In this section, we consider the use of the generalized BMW
design in planning a hypothetical cluster randomized trial
that would be a follow up to the INSTINCT trial discussed
in Section 1. This trial would be, designed to investigate the
effectiveness of an educational program and a promotional
campaign administered to hospital emergency departments
with the aim of enhancing the appropriate use of tPA ther-
apy for ischemic stroke patients. With treatments arranged in
a factorial structure, this would provide a confirmatory study
for the original trial with respect to the education program,
but also allow a separate investigation of the second factor.
Twenty four hospitals are recruited and are to be randomized

to four experimental groups EC, EC, EC, EC, where E refers
to the education program and C refers to the promotional
campaign. The primary outcome is the frequency of appropri-
ate tPA use in each hospital. The cluster-level factors thought
to be strongly associated with the outcome consist of stroke
volume (low vs. high), population density (urban vs. rural) as
well as age and gender mix. We choose M = 100 in proposing
a design for the tPA study.

We randomly assigned the 24 hospitals to the four ex-
perimental groups EC, EC, EC,EC, and estimate the sample-
based probability of being assigned to each group for every
hospital. The hospitals were then optimally matched by us-
ing the asymmetric quadripartite algorithm with group EC as
the predefined reference group, which gave a minimum total
FEuclidean distance of 4.65. We then randomized the hospitals
an additional 99 times and recorded the minimum distance
measures for each time. The 86th randomization produced the
smallest distance as A}, = A} vere T BMzese T AMueze =
1.80. The corresponding BMW design is presented in Table
3, showing the matches of each group with the control group
EC. This leads to six quadruples assigning subjects to treat-
ments, the first group being 5, 6, 2, 17, the second being 9,
20, 3, 18, etc.

When the comparisons among the four groups are
equally important, we might adopt the symmetric quadri-
partite matching algorithms to assign the 24 hospitals
to the experimental groups and search for the optimal
solution of the quadripartite matching with respect to
the optimal reference group for each randomization. This
process was repeated 100 times and among those, the 55th
randomization produced the smallest total Euclidean dis-
tance Al =Aly, . FAMa 0 T Ahgege T Z“’EMZC,EE D(w) +
E%M%Ea D(w) + ZweMZCEa D(w) = 4.93; for that random-
ization, group EC was selected as the optimal reference
group. Table 3 also shows the results produced by the BMW
design based on quadripartite matching algorithm.

7. Some Comments on Analysis Issues

Although this article is primarily about design, it is useful to
include some comments on the statistical analysis. There is
much literature that proposes the use of the randomization
distribution as opposed to parametric (e.g., Gaussian)
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Table 3
Optimal matched blocks for the asymmetric and symmetric quadripartite matching for the 2 x 2 factorial design in the case
study
Strata 1D X1 Xo X3 X4 1D X1 Xo X3 X4
Asymmetric quadripartite matching algorithm (AQM)

EC EC
1 5 0.19 0.13 0 1 17 0.24 0.12 1 0
2 9 0.14 0.06 1 1 18 0.09 0.05 1 1
3 10 0.26 0.18 1 0 8 0.22 0.14 0 0
4 13 0.13 0.09 0 0 15 0.10 0.06 0 0
5 21 0.18 0.14 0 1 16 0.10 0.07 1 1
6 22 0.30 0.17 1 0 7 0.24 0.19 0 1

EC EC
1 6 0.19 0.07 0 0 17 0.24 0.12 1 0
2 20 0.08 0.06 1 1 18 0.09 0.05 1 1
3 1 0.15 0.13 0 0 8 0.22 0.14 0 0
4 14 0.13 0.07 0 0 15 0.10 0.06 0 0
5 23 0.11 0.07 1 1 16 0.10 0.07 1 1
6 19 0.25 0.15 1 1 7 0.24 0.19 0 1

EC EC
1 2 0.17 0.11 1 0 17 0.24 0.12 1 0
2 3 0.13 0.06 1 1 18 0.09 0.05 1 1
3 11 0.22 0.14 1 0 8 0.22 0.14 0 0
4 4 0.12 0.06 0 1 15 0.10 0.06 0 0
5 12 0.07 0.06 1 1 16 0.10 0.07 1 1
6 24 0.23 0.16 0 1 7 0.24 0.19 0 1

Symmetric quadripartite matching algorithm (SQM)

EC EC
1 3 0.13 0.06 1 1 2 0.17 0.11 1 0
2 5 0.19 0.13 0 1 24 0.23 0.16 0 1
3 8 0.22 0.14 0 0 17 0.24 0.12 1 0
4 14 0.13 0.07 0 0 9 0.14 0.06 1 1
5 16 0.10 0.07 1 1 20 0.08 0.06 1 1
6 21 0.18 0.14 0 1 1 0.15 0.13 0 0

EC EC
1 11 0.22 0.14 1 0 10 0.26 0.18 1 0
2 4 0.12 0.06 0 1 6 0.19 0.07 0 0
3 22 0.30 0.17 1 0 19 0.25 0.15 1 1
4 15 0.10 0.06 0 0 18 0.09 0.05 1 1
5 23 0.11 0.07 1 1 12 0.07 0.06 1 1
6 7 0.24 0.19 0 1 13 0.13 0.09 0 0

X1, percent of females greater than 65 years old among all females in the census tract (%); X2, percent of males greater than 65 years
old among all males in the census tract (%); X3, stroke volume (low vs. high); X4: population density (urban vs. rural). M = 100.

distribution-based analyses. These ideas go back to Fisher
(1926). Randomization based procedures are particularly
relevant when the experimental units are highly correlated as
in agricultural trials or when, as in ESP trials, the modeling
of individual responses is difficult or impossible. Repeated
randomization, as we propose here, improves the covariate
balance across treatment groups and leads to more pre-
cise estimates of treatment effects. Traditional Gaussian
distribution-based parametric approaches that do not take
the repeated randomization into account result in overly
conservative statistical inferences. Randomization-based
inference, however, is still valid. Morgan and Rubin (2012)
also discuss this point.

In what follows, we examine a randomization approach to
inference in a simple BMW design with two arms and match-
ing into pairs, so that one member of each pair is in each
treatment group. This is not because this simple structure is
needed to carry out the tests; randomization tests are gener-
ally straightforward to execute. But the nested simulations re-
quired to assess the properties of the randomization approach
make this simpler framework useful. We also expect that re-
sults found in this case would extend at least qualitatively to
more complicated situations.

We suppose that there are N units and that the random
vector (Wi, ..., Wy) denotes the selected randomization
with W; =1 or 0 indicating the assignment of unit i and
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let Si,...,Sy2 denote the N/2 (random) matched pairs.
Let Wopsisi=1,...,N and Sopsii =1,..., N/2 denote the
corresponding observed values. By analogy with the linear
model when it looks to be approximately appropriate, we
might select the paired ¢ statistic given by

;T
84/ N2

where S, is the sample variance of the N/2 pair differences.
Although not strictly necessary, it is convenient to suppose
that unit i has two potential outcomes, y;(1) and y;(0)
depending on whether it is assigned to group 1 or group O.
The observed outcome values are then

Yobs.i = Yi(1)Wops,i + yi(0)(1 = Wobs.i) (11)
and from this, we can obtain the observed value T,s of the
t-statistic.

A randomization test of the sharp null hypothesis of no
treatment effect at the individual level (i.e., y;(1) = y;(0) for
each subject i) can then be obtained. Under this hypothesis,
the vector of observed outcomes Y5 remains fixed for every
treatment assignment. We create the appropriate reference
distribution by repeating the BMW design a large number B
times. Each time, the subjects are randomized to two groups
M =100 times and the optimal randomization Wy, ..., Wy
and corresponding pairs are determined; this gives rise to a
value of the T statistic. The proportion of the B trials that
result in a T statistic that is at least as large as T,,s provides
an estimate of the exact one tailed p-value corresponding to
the randomization test. A two sided p-value is obtained in the
usual way by taking twice the minimum tail area.

Size and Power of the randomization test based on the
BMW design can be evaluated with simulations. We report
the results of such simulations here for treatment effects,
B=0,0.5,0.7,1.0 in the linear model

Y=BZ+yXi+yXs+e¢ (12)

with confounding variables X, % Bernoulli (0.5), X» A
N(0,0.25) and random error & S N0, 1). We repeat the fol-

lowing steps 1000 times:

(i) Simulate data X;, X, generate 100 randomizations, ap-
ply the BMW design to obtain the observed randomiza-
tion W,p,s and associated pairs.

(ii) Generate the observed values of Yz according to the
model (12) for each value of B and compute the test
statistic Tops(B)-

(iii) For each Yg, carry out the randomization test as de-
scribed in the previous paragraph and compute the asso-
ciated p-values, Pg.

For a tests of size 0.05, the estimated power for each value of
B is the proportion of values Pg that are less than or equal to
0.05. For comparison, we also perform the randomization test
for the completely randomized design and for a variation of
the design proposed by Morgan and Rubin (2012), which we
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Table 4
Powers of designs and analysis strategies: randomization test
for BMW design; paired t-test for BMW; randomization test
for CR design; two sample t-test for CR; randomization test
for ME&R design; two sample t test for MESR design

Type of test Power of a one-tailed 5% test

=00 B=05 B=07 p=1.0
BMW randomization  0.047 0.335 0.533 0.792
BMW paired ¢ test 0.029 0.269 0.458 0.755
CR randomization 0.041 0.258 0.380 0.637
CR 2 sample ¢ 0.047 0.276 0.436 0.670
M&R randomization 0.049 0.377 0.563 0.839
M&R 2 sample ¢ 0.019 0.224 0.403 0.711

denote M&R. In the M&R design, we choose M randomiza-
tions and then select the one that gives the smallest Maha-
lanobis distance between the means of the X variables in the
two samples. In addition, the size and power of the standard
normal analysis strategies for these three designs are evalu-
ated. The results are summarized in Table 4.

By design, the randomization tests based on the BMW
design, the completely randomized design and Morgan and
Rubin’s design all lead to correct one-sided type I error
(except for the discreteness) of 5%. When the treatment effect
is relatively large (e.g., B = 0.7 or 1.0), however, the BMW
and M&R designs yield substantially larger powers than the
completely randomized design. The randomization test based
on the M&R design appears slightly more powerful than the
BMW design.

In contrast to the randomization test, standard analyses
based on the student t are conservative when applied to the
BMW and M&R designs that involve repeated randomiza-
tions. For example, the paired t-test applied to the BMW
design yields a true type one error rate of 2.9%, and the two
sample t test for M&R design results in an even more con-
servative value of 1.9%. On the other hand, the two sample t
test produces valid inferences when applied to the completely
randomized design. In our experience, the standard paramet-
ric procedures are always conservative, but more so with the
M&R design than with the BMW design. This is discussed
further below.

We can also consider tests of the hypothesis g = By for a
given By, which we interpret as specifying that y;(1) = y;(0) +
Bo for all i. This can be reduced to the previous case of testing
B = 0 by subtracting By from the observed values of Y in the
treatment group Z = 1. Having done this, the test proceeds
as before and gives rise to a (two tailed) p-value which we
denote by SL(Bp) with SL standing for “significance level.”
A 95% confidence interval based on the randomization test is
given by {Bo : SL(Bo) = 5%}.

The randomization test based on the BMW design for more
than two arms can be conducted in a similar way. Typically,
the underlying reference set of the randomization test is very
large. For example, if N = 30, there are ( 30 ) = 1.55 x 108

15,15
or (1038‘10) = 5.55 x 1012 possible results of a randomization



958

to two or three groups, respectively. In either case, the refer-
ence set is very large compared to M = 100. It is interesting
to note that an ‘exact’ solution of the optimization problem
(with M = 00) would yield a nearly deterministic design if the
covariates are continuous and there would not be a sufficiently
large reference set to carry out a randomization test.

Some insights into the inaccuracy of the parametric anal-
yses can be obtained through an artificial but instructive ex-
ample. Suppose that a large number of units are available,
all with the model (12) applying, and an experiment is to be
conducted that involves selecting N units and assigning them
to two treatment groups. In this case, it is possible to achieve
near perfect balance in both the M&R and the BMW designs.

The MER approach. In this case, we can obtain a design
in which the treatment and control sample means of the
confounding variables are exactly equal. That is (X, X}) =
(X$, X5), where superscripts ¢ and ¢ are being used to iden-
tify treatment and control groups. In this case, it is easy to see
that ¥, — Y. = & — &, has variance 462/N. On the other hand,
the usual pooled estimate of the variance used in the two
sample ¢ statistic would estimate 4(y?var(X1) + y3var(Xs) +
02)/N. The resulting two sample # statistic would be too small
by a factor o,/ [y2var(X;) + y2var(X,) + 02]°°
substantially conservative inference.

The BMW approach. This would lead to a design in which
there is a perfect matching of the confounding variables within
each pair. In this extreme case, the paired ¢ statistic would be
exactly correct.

Of course there will not be an exact matching in either case
and the parametric analysis in the BMW design would also
be somewhat conservative. It is worth noting, however, that
the BMW approach would be expected to be less conservative
and would be more robust to mis-specification of the model.
In particular, it would lead to a correct parametric inference
in the extreme case of this example even if the dependence
of the response on the covariates were not linear. The M&R
design, on the other hand, could have very poor properties if
the relationship is substantially nonlinear.

, resulting in a

8. Conclusions and Discussions

It was an observational study with three groups that mo-
tivated the incomplete block design of Bo and Rosenbaum
(2004), and with some adjustments, the proposed symmetric
and asymmetric tripartite matchings might also be used in
this context. One aspect of observational studies is that it
may not be simple to control the size of the exposure groups
and some imbalance may be present. One approach in this
case would be to take the smallest group as defining the num-
ber of blocks, and use repeated randomizations to select items
for matching from the other groups. One might, for example,
use full matching techniques that match each subject of the
reference group to one or more (say up to two or three) in
each of the other groups. Options in this area are currently
under investigation.

If one has resources to do a trial on only a small number
N of experimental units, but there is a much larger number
of units from which to choose, it would be possible to extend
these ideas to incorporate first a random selection of N units
to be used followed by the BMW design on the chosen units.
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This process could then be replicated to find a good subset of
units to use as a good randomization and matching of them.

Alternative methods have been proposed for adjusting for
covariate imbalances. One approach proposed by Greevy et al.
(2004) involves matching in order to minimize the total Ma-
halanobis distance between subjects in the two treatment
groups. Xu and Kalbfleisch (2010) compared the performance
of the BMW design with this and other approaches in the
two-arm trial and found that the BMW design generally out-
performed the alternative methods. As noted earlier, the Ma-
halanobis distance could be used in place of the propensity
score distance in the BMW design. It may also be possible
to combine discrepancy measures (e.g., propensity based and
Mahalanobis) in some way to achieve a better match than
either achieves separately.

More work is needed on analysis issues. The randomiza-
tion distribution certainly presents one option, although it is
highly computational. The matched pairs parametric analy-
sis might also be considered if the design has resulted in a
fairly close matching of X values. It is conservative, but not
severely so, at least in the situations we have investigated.
A detailed simulation study would be very useful to examine
analysis strategies. It would also be interesting to investigate
whether there are simple methods of correcting the paramet-
ric analyses to account for the reduced variation induced by
the repeated randomizations in the BMW and M&R designs.

One alternative to the repeated randomization approach in
the BMW design is to adjust post hoc in a regression model for
the effects of important covariates. This works reasonably well
provided the model is correct and the number of covariates is
not too large. A large advantage of the BMW design is the
simplicity of the treatment effect estimator, which is expressed
as a difference in two means. It should also be noted that the
BMW design retains the advantage of balancing on average
over unmeasured confounders since each subject is equally
likely to be randomized to each treatment.

The proposed BMW and the M&R designs both involve
repeated randomization. The BMW design also makes use of
a post randomization matching, which has potential gains in
robustness against nonlinear dependence on the covariates as
the example at the end of Section 7 indicates. In the context
of cluster randomized trials, the blocking of the experimental
units is important since the trial can be coordinated within
blocks and so, for example, temporal effects can be controlled
by entering study units in pairs at the same time.
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