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Propensity score-based diagnostics for
categorical response regression models
Philip S. Boonstra,a*† Irina Bondarenko,a Sung Kyun Park,b
Pantel S. Vokonasc,d and Bhramar Mukherjeea

For binary or categorical response models, most goodness-of-fit statistics are based on the notion of partitioning
the subjects into groups or regions and comparing the observed and predicted responses in these regions by
a suitable chi-squared distribution. Existing strategies create this partition based on the predicted response
probabilities, or propensity scores, from the fitted model. In this paper, we follow a retrospective approach,
borrowing the notion of balancing scores used in causal inference to inspect the conditional distribution of the
predictors, given the propensity scores, in each category of the response to assess model adequacy. We can use
this diagnostic under both prospective and retrospective sampling designs, and it may ascertain general forms of
misspecification. We first present simple graphical and numerical summaries that can be used in a binary logistic
model. We then generalize the tools to propose model diagnostics for the proportional odds model. We illustrate
the methods with simulation studies and two data examples: (i) a case-control study of the association between
cumulative lead exposure and Parkinson’s disease in the Boston, Massachusetts, area and (ii) and a cohort study
of biomarkers possibly associated with diabetes, from the VA Normative Aging Study. Copyright © 2013 John
Wiley & Sons, Ltd.
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1. Introduction

To check model fit and adequacy for categorical response regression models, it is common to compare
observed frequencies and estimated expected frequencies within a given partition of the covariate space.
The expected frequencies are calculated under the assumed model and compared with the observed fre-
quencies via a �2-type goodness-of-fit statistic, as in the Hosmer and Lemeshow (HL) statistics [1, 2].
These statistics use a grouping strategy based on the values of estimated response probabilities given
the predictors and compare the observed and the expected responses within the groups. Two methods
of grouping based on the estimated probabilities are discussed in [2]: (i) fixed cutpoints in the Œ0; 1�
interval or (ii) sample quantiles/deciles with equal sized groups. A disadvantage of both approaches is a
dependence on the choice of cutpoints. Tsiatis [3] suggests a score test that circumvents the problem of
HL statistics lacking discriminatory power in the region of the predictor space that gives rise to the same
estimated probability. However, this test is also dependent on the choice of partition in the exposure
space. Stukel [4] adopts a generalized logistic model framework to test the adequacy of a fitted logistic
model. le Cessie and van Houwelingen [5] address these problems by proposing a class of tests based
on smoothed residuals, while Royston [6] uses the partial sums of residuals. Hosmer et al. [7] present an
excellent overview.

Lipsitz et al. [8] generalizes the popular HL statistic proposed for a logistic regression model with
binary data to regression with c-category ordinal responses. Toledano and Gatsonis [9] gives a gener-
alization of a receiver operating characteristic curve that plots sensitivity against (1 - specificity) for
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every possible collapsing of the c categories. Kim [10] proposes a graphical method for assessing the
proportional odds assumption. All of the aforementioned methods check the overall adequacy of the
proportional odds model, but they do not give a close view of model misspecification corresponding to
specific covariates.

Lin et al. [11, 12] and Arbogast and Lin [13] develop graphical and numerical methods for assess-
ing the adequacy of the functional form of a covariate in Cox regression and the logistic regression
model using the cumulative sums of residuals. In standard linear regression models, the plot of residuals
against the explanatory variable x is often viewed as a diagnostic tool to examine model misspecification
in x. The residuals for a binary logistic model are typically defined as the difference between observed
response and the estimated probability of the response, conditional on the covariates. The plot of the
residuals versus x is difficult to interpret in such cases. Arbogast and Lin [13] recommend using cumu-
lative sums of the residuals over the covariate of interest to check for functional misspecification in x.
When the model is correctly specified, they show that the cumulative residual process converges weakly
to a zero-mean Gaussian process. Thus, they compare the observed pattern of the cumulative residuals
with simulated realizations based on the limiting Gaussian process under the null hypothesis that the
model is correctly specified. Liu et al. [14] generalize this graphical diagnostic idea to the proportional
odds model. Beyond this limited work, graphical diagnostics for ordinal data models have not gained
wider acceptance. The procedures that involve cumulative-sum-based residuals are computationally hard
to simulate from a limiting Gaussian process distribution, which restricts their use.

Simple graphical diagnostics for overall model assessment are still lacking for even binary regression
models because of the discreteness of data. Landwehr et al. [15] propose graphical tools like local mean
deviance plots, empirical probability plots, and smoothed partial residual plots for detecting model inad-
equacies for binary data. In a discussion of [15], Rubin [16] proposes that for model assessment, one
should take a retrospective view, examining the implied distribution of the covariate x in the y D 0

and y D 1 groups rather than the prospective distribution p.y D 1jx/. The fundamental idea lies in a
powerful result established by Rosenbaum and Rubin [17]: Given the true �.x/ D p.y D 1jx/, x and
y are conditionally independent. This result suggests that if O� is an adequate estimate of p.y D 1jx/,
then the observed differences between p .xj O�; y D 1/ and p .xj O�; y D 0/ may point to elements of x
that need to be adjusted in the model and also help to identify outliers. The basic idea is to enrich the
model for O� such that conditional on O� , the covariates x are independent of the outcome y. Numer-
ical tests for model adequacy can also be constructed, but easy-to-understand graphical tools are the
principal attraction of such an approach. Extending this idea of Rosenbaum and Rubin [17], which
is primarily used to balance covariates between treatment groups, we develop graphical diagnostics
for the logistic model, balancing covariates between response groups, and also extend the idea to out-
comes with more than two categories. We present graphical diagnostics for the proportional odds model,
one of the most popular models for ordinal data. The extension of propensity scores to the propor-
tional odds model is indicated in Joffe and Rosenbaum [18], who point out that a scalar balancing
score is sufficient under the proportional odds structure. The aforementioned ‘balancing score’ result
of Rosenbaum and Rubin [17] is technically extended to generalized treatment regimes, beyond the
binary case, in Imbens [19]. Lu et al. [20] apply matching in terms of the scalar balancing score to an
observational study of drug abuse. Imai and van Dyk [21] provide a general theory that covers contin-
uous, semi-continuous, and multivariate treatment (y in our notation) regimes and effectively balance
a high-dimensional covariate, x, by a low-dimensional function of the propensity scores, perhaps not
scalar. None of this work has been applied to the development of diagnostic tools. Note that unlike
the causal inference literature, we do not have any ‘treatment’ groups or a randomized trial. Rather,
we are simply exploiting the mathematical result of conditional independence as justification for our
model diagnostics.

Our proposed graphical diagnostics, which follow Rubin’s idea, are computationally simple, as is the
motivating rationale. Further, owing to the retrospective formulation, they may be readily used under
outcome dependent sampling, for example, in a case-control study. There have been concerns regarding
the use of propensity scores in case-control or case-cohort studies for adjusting confounders [22] because
of artifactual effect modification and reduced ability to control for potential confounding factors, when
estimating treatment effects. Because treatment-effect estimation is not our goal here, those concerns do
not apply. The conditional independence result between y and x conditional on �.x/ holds in a case-
control study because the propensity score model from prospective and retrospective likelihoods differs
only through the intercept term, which does not involve x. Our proposals for model diagnostics are based
solely on this independence result and do not change for cohort versus case-control sampling.
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We organize the rest of the paper as follows. In Section 2, we review the result of Rosenbaum and
Rubin [17] for the binary logistic model and its extension to the proportional odds model. We describe
how these results lead to some proposed graphical and numerical diagnostics and present simulation
results investigating the efficacy of these diagnostics for the binary logistic and proportional odds mod-
els. In Section 3, we analyze two datasets to assess model adequacy: A logistic regression example
comes from a case-control study of Parkinson’s disease (PD) and its association with lead exposure,
and the proportional odds example originates from a cohort study of diabetes. Section 4 ends with a
discussion.

2. The balancing score and its extension

Rosenbaum and Rubin [17] prove a simple but powerful result: a binary outcome y (which is treatment
in their context) and a set of covariates x are conditionally independent given the propensity score
� D �.x/D p.y D 1jx/. This implies the following:

(1) p.x; yj�/D p.xj�/p.yj�/.
(2) p.xj�; y/D p.xj�/.
(3) p.xj�; y D 1/D p.xj�; y D 0/.

In fact, they prove a more general result. Our presentation is simpler, and our argument differs from the
original proof so as to provide insight into the subsequent extension and construction of the diagnostics.

Theorem 2 from Rosenbaum and Rubin [17]
For a binary outcome y, a set of length-p covariates x, and a function b.x/, which is the balancing
score,

x ?? yjb.x/, �.x/D h.b.x//;

for some function h.

Proof

(i) Left-hand side (LHS)) Right-hand side (RHS) We note that, in general,

f .y;xjb.x//D fY .yjx; b.x//fX .xjb.x//:

Thus, the conditional independence in the LHS of the theorem, namely f .y;xjb.x// D
fY .yjb.x//fX .xjb.x//, is equivalent to stating that

fY .yjb.x//D fY .yjx; b.x//:

Hence,

�.x/D EY Œ yjx �D

Z
yfY .yjx/ dy

D

Z
yfY .yjb.x// dy;

which, by construction, must be a function h.b.x// for some h.�/.
(ii) RHS) LHS: Consider the conditional mean of yjb.x/:

EŒ yjb.x/ �D Exjb.x/ŒEŒ yjb.x/;x � �

D Exjb.x/Œ �.x/ �; by definition:

By the condition in RHS, �.x/ D h.b.x// is a deterministic function of b.x/. Hence,
Exjb.x/Œ �.x/ �D �.x/, and

EŒ yjb.x/ �D �.x/:
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Now, as the mean of yjx determines its (conditional) distribution, we see that

fY .yjb.x//D fY .yjx; b.x//D �.x/;

and, thus, the separation property required must hold.

�

Now consider a general categorical outcome y 2 0; 1; � � � ; K. There is, in general, no scalar func-
tion of the covariates that can satisfy the aforementioned balancing score property as E.yjx/ does not
fully describe the distribution of y. The proof presented previously is very much contingent upon this
property. However, for the proportional odds or ordinal-logit model,

logit Pr.y 6 kjx/D ˛k C ˇ>x; k D 0; 1; � � � ; K � 2;

where logit.x/D log.x=Œ1�x�/. Thus, the distribution of yjx depends on x only through b.x/D ˇ>x,
that is, Pr.y D kjx/ D Pr.y D k; b.x/ D ˇ>x/, and a single balancing score determines the entire
distribution of y. It also follows that

(1) p.x; y D kjb.x//D p.xjb.x//p.yjb.x//.
(2) p.xjb.x/; y D k/D p.xjb.x//.
(3) p.xjb.x/; y D k/D p.xjb.x/; y D k0/, for all k0 ¤ k.

Remark 1
For general polytomous models, Imbens [19] defines a concept of weak dependence through general-
ized balancing scores b.k; x/ where b.k;x/ D p.y D kjx/ and shows that E.xjb.k;x/; y D k/ D
E.xjb.k;x/. This result may be used to extend the aforementioned three equalities to the multinomial
logistic model, a potentially more flexible alternative to the proportional odds model. However, no dis-
tributional independence of y and x can be deduced with a general structure of b.k;x/, and we do not
further develop this extension.

2.1. Graphical summaries

To present our proposed graphical diagnostics for model misspecification in a concrete fashion, consider
the following generating model for binary outcomes:

logit Pr.y D 1jx/D ˛C ˇ1x1C ˇ2x2C ˇ3x3C ˇ4x
2
1 C ˇ5x1x2: (2.1.1)

The linear predictor, ˇ>x, is the balancing score, which shares a 1-1 correspondence with the propen-
sity score, � D Pr.y D 1jx/. Theorem 2 implies that y is independent of x given ˇ>x. Suppose
we estimate the balancing score of (2.1.1) assuming ˇ4 D ˇ5 D 0 in the fitted model. Theorem 2
is satisfied only when this assumption is true in the generating model. If ˇ4 ¤ 0 or ˇ5 ¤ 0, then
p.xj�; y D 1/¤ p.xj�; y D 0/, meaning there will be residual association between y and x. Consider
next two generating models for ordinal outcomes

logit Pr.y � kjx/D ˛k C ˇ1x1C ˇ2x2C ˇ3x3; k D 0; : : : ; K � 2; (2.1.2)

Pr.y D kjx// expf˛k C ˇ1kx1C ˇ2x2C ˇ3x3g; k D 0; : : : ; K � 2: (2.1.3)

Here, only for (2.1.2) is ˇ>x the balancing score, and, in this case, the extension of Theorem 2
to ordinal outcomes implies that y is independent of x given ˇ>x. The linear predictor is not
a balancing score in (2.1.3) for two reasons: (i) the data are generated from a multinomial logit
model, which automatically violates the proportional odds assumption, and (ii) ˇ1k depends on k.
Note that for each model, the probability of falling in category K � 1 is constrained for iden-
tifiability purposes. If we estimate the balancing score assuming (2.1.2) but the data are gener-
ated according to (2.1.3), there will be residual association between each y and x conditional on
Ǒ>x. Based on these conclusions, we propose two graphical diagnostics for model misspecification.
Figures 1 and 2 present representative plots for binary and ordinal outcomes, respectively, which we
now describe:
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Figure 1. The Scatterplot Diagnostic (top row) and Residual Density Diagnostic (bottom row) for three simu-
lated datasets, one for each column, of size n D 500 generated from (2.1.1). For all three columns, ˇ1 D 0:5,
ˇ2 D 1:0, ˇ3 D �0:5, ˛ is such that Pr.y D 1/ D 0:5, and the fitted model assumes ˇ4 D ˇ5 D 0. In the first
column, ˇ4 D ˇ5 D 0, and the curves corresponding to y D 0 and y D 1 are approximately collinear because the
fitted model matches the generating model. In the second and third columns, ˇ4 D 0:5 and ˇ5 D 0:5, respectively,

and so the functional form is violated in the fitted model.

Scatterplot Diagnostic. Grouping by the response y, plot the individual components of x versus Ǒ>x
and annotate with a locally weighted scatterplot smoothing (LOWESS) curve for each group. In a
model with sufficiently good fit, the conditional independence result gives that the distribution of x
at each value of Ǒ>x should be ‘similar’. The LOWESS curve summarizes the degree of similarity
between groups and allows for simple comparisons between models to assess relative improvement
of model fit. The first row of Figure 1 gives examples of this for three simulated datasets of size
500. In each, we plot x1 against Ǒ>x, coming from fitting (2.1.1) and assuming ˇ4 D ˇ5 D 0. In
all cases, ˇ1 D 0:5, ˇ2 D 1:0, and ˇ3 D �0:5, and ˛ is such that Pr.y D 1/ D 0:5. In the first
column, ˇ4 D ˇ5 D 0, and the two lines corresponding to y D 0 or y D 1 are approximately
collinear. As the effect of x1 changes in the quadratic term (ˇ4 D 0:5, the second column) or upon
inclusion of an interaction term (ˇ5 D 0:5, the third column), the LOWESS curves separate. The
first row of Figure 2 presents this same diagnostic for the case of ordinal outcomes. We gener-
ated two datasets of size 500, one each from (2.1.2) and (2.1.3), estimated ˇ>x in both, assuming
(2.1.2), and compared LOWESS curves of x1 by Ǒ>x for each level of y. The figure’s caption gives
the true coefficient values. In the second column, where the generating model is (2.1.3), the curve
for the y D 1 group is shifted down compared to the other groups.

Residual Density Diagnostic. Plot the kernel density estimate (KDE) of the residuals corresponding to
the regression of each component of x on Ǒ>x, grouping by the response y. Models with good
fit should result in plots in which the KDE curves for different values of y are similar in shape
and location.

Copyright © 2013 John Wiley & Sons, Ltd. Statist. Med. 2014, 33 455–469
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Figure 2. The Scatterplot Diagnostic (top row) and Residual Density Diagnostic (bottom row) for two simulated
datasets, one for each column, of size nD 500 generated from (2.1.2) and (2.1.3), respectively. In both columns,
the fitted model is (2.1.2). The true parameter values are as follows: ˇ2 D �0:5, ˇ3 D �0:5, ˇ3 D �0:5, and
˛0 and ˛1 are such that Pr.y D 0/ D Pr.y D 1/. In the first column, ˇ1 D 0:5, and the fitted model matches
the generating model, so the curves corresponding to each group are approximately collinear. In the second col-
umn, ˇ10 D 0:5, ˇ11 D 1:0, and the fitted model does not match the generating model, so Ǒ>x is not the

balancing score.

The second row of Figure 1 presents these plots for the binary outcome model. When ˇ4 D 0:5 or
ˇ5 D 0:5, one of the groups has a taller mode, and the other group has heavier tails. The second
row of Figure 2 gives the same diagnostic for the case of ordinal outcomes, where we see a location
shift in the KDE between groups.

These diagnostics are heuristic. Data-specific idiosyncracies, such as sample size or the bandwidth of
the curves, will affect whether the plots indicate model misspecification. Each column in Figures 1 and
2 represents a single dataset, so specific qualities of these plots are not representative. Additionally,
interpretation of results is up to the analyst, and these plots should be used in conjunction with other
model-checking techniques, in particular the numerical tests we propose next. Rather than linear regres-
sion, a more flexible non-linear model, for example, a generalized additive model [23], may be used
to create these residual plots, as long as the resulting estimated propensity score is conditioned upon.
Such less-parametric approaches may offer statistically better transformations at a cost of interpretabil-
ity. We restrict ourselves to normal linear regression to illustrate how the proposed graphical diagnostics
may indicate a need for improvement of the proposed model and to preserve interpretability. The afore-
mentioned simulated examples simply show that the graphical diagnostics exhibit differences between
response groups when the fitted propensity score model differs from the true generating model. We fur-
ther explain the graphical diagnostics in the real data examples, for which the true generating models
are unknown.

2.2. Numerical tests

The concept of a balancing score also suggests numerical tests for detecting model misspecification. Let
O� D f O�1; : : : ; O�ng be the vector of estimated propensity scores from an initial fitted model, for example,
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one with only main effects for each component of x. Let R` denote the interval
�
O�Œ20.`�1/�; O�Œ20`�

�
,

` D 1; : : : ; 5, where O�Œp� is the pth sample percentile of O�. Also define Z i D
h
Z>i1;Z

>
i2;Z

>
i3

i>
,

where Z i1 D Œ1; I f O�i 2R2g ; I f O�i 2R3g ; I f O�i 2R4g ; I f O�i 2R5g�
>, Z i2 D I fyi D 0g and

Z i3 D Z i1 � Z i2, i D 1; : : : ; n. Rosenbaum and Rubin [24] fit a two-way ANOVA (two outcomes
� five quintiles) on the j th covariate, j D 1; : : : ; p, to look for differences in covariate distributions
across response categories, conditional on the propensity score quintile. The mean of the j th covariate
in the i th observation from the ANOVA model is given by

EŒxij jZ i �D ı
>
j Z i ; (2.2.1)

where the coefficients ıj D
h
ı>j1; ı

>
j2; ı

>
j3

i>
correspond to the elements of Z i . Rosenbaum and

Rubin [24] compute the F -statistics for the null hypotheses testing the main or interaction effects,
respectively, H0j W ıj2 D 0 or H0j W ıj3 D 04, j D 1; : : : ; p, and inspect the five-number summary
(minimum, three quartiles, maximum) of the size-p set of F -statistics. The propensity score model is
then enriched, for example, with interaction and quadratic effects, thereby modifying Z i and yielding
smaller F -statistics. This process is repeated, each time plotting the new F -statistics until they are small
enough, as determined by visual inspection. Our proposed diagnostic builds on this idea: For a given
propensity score O�, formally test the coefficients in (2.2.1). Because inference on ıj2 alone in the pres-
ence of interaction effects is difficult to interpret, we propose to test either the interaction effects alone,
H0j W ıj3 D 04, or the main and interaction effects simultaneously,H0j W fıj2 D 0g\fıj3 D 04g. There
are p such null hypotheses, corresponding to each of p covariates. A simple testing strategy goes as
follows. First, conduct a multiple response test of every null hypothesis as an overall diagnostic. That is,
add the p log-likelihoods from individually regressing the j th covariate fxij gi on fZ igi , and conduct a
single composite test. If this test is rejected, then follow up with covariate-specific tests to find the likely
source of misspecification. We summarize the two numerical tests of functional misspecification of the
covariates as follows:

INT H0 W ı13 D ı23 D � � � D ıp3 D 04 (test interactions only)
JOINT H0 W fı12 D ı22 D � � � D ıp2 D 0g \ fı13 D ı23 D � � � D ıp3 D 04g (test interactions and

main effects).

Remark 2
We derive these parametric tests, which may be viewed as numerical analogs to the graphical Scat-
terplot Diagnostic, under the assumption of a normal linear model, which may be inadequate, even
after an appropriate transformation of the covariate. An alternative would be a nonparametric testing
approach using residuals, which is a numerical analog to the Residual Density Diagnostic. Define
r ij D xij � OEŒxij jZ i1�, that is, the residuals from fitting a regression of the j th covariate to the
categorical linear predictor. If balance is achieved, then the residual vector r i D fr i1; r i2; : : : ; r ipg>

should not depend on yi . A nonparametric multiple response ANOVA would formally test for equal-
ity of the location, and the Kolmogorov–Smirnov or Kuiper [25] tests would test for equality of the
full residual distribution. We found these to have little power to detect functional misspecification
and do not consider them further. For completeness, we describe the competing approaches to our
proposed methods.

HL [1] This is a standard goodness-of-fit test for models with binary outcomes. Given the vector of
propensity scores, O�, construct the quantile intervals R` as discussed in the beginning of this sec-
tion. The number of quantiles need not be 5; we use G D 10 for all analyses, and any G satisfying

G > dim
�
Ǒ
�
C 1 may be used, where dim

�
Ǒ
�

is the number of parameters in the model. Define

o1` D
P
i2R`

yi , o0` D
P
i2R`

1 � yi , e1` D
P
i2R`

O�i , and e0` D
P
i2R`

1 � O�i . Compare the

test statistic CG D
P1
kD0

PG
`D1.ok`�ek`/

2=ek` to a �2 distribution with degrees of freedomG�2
to find the appropriate p-value.

LIPSITZ [8] This extends HL for models with K > 2 ordinal outcomes. First, derive a score, O�i ,
for each observation. Following the authors’ suggestion, we use O�i D

PK�1
kD0 k

OPr.yi D k/.
Again, similar to the aforementioned construction of the R` regions, find the G quantiles of
the O�i ’s, and define indicators Iig D 1 f O�i 2 quantile gg, g D 2; : : : ; G. Finally, fit the model,
logit Pr.yi 6 k/D ˛k Cˇ>xi C

PG
gD2 Iig�g , and test H0 W �2 D � � � D �G D 0 using a likelihood
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Table I. Logistic regression – functional misspecification of covariates. Rejection rates from
10,000 simulated datasets of size 500 generated by (2.1.1).

Setting Main effects Rejection rates

Quadratic, interaction effects Pr.Y D 1/ ˇ1 ˇ2 ˇ3 INT JOINT LIPSITZ HL

0.50 0.50 0.00 0.00 0.12 0.12 0.05 0.05
0.10 0.50 0.00 0.00 0.09 0.07 0.07 0.05

Type 1 error 0.50 0.50 0.50 �0.50 0.10 0.05 0.06 0.05
ˇ4 D 0, ˇ5 D 0 0.10 0.50 0.50 �0.50 0.09 0.05 0.08 0.05

0.50 0.50 1.00 �0.50 0.10 0.06 0.06 0.05
0.10 0.50 1.00 �0.50 0.09 0.09 0.06 0.05

0.50 0.50 0.00 0.00 0.94 0.89 0.92 0.92
0.10 0.50 0.00 0.00 0.23 0.14 0.25 0.18

Power 0.50 0.50 0.50 �0.50 0.64 0.53 0.13 0.12
ˇ4 D 0:5, ˇ5 D 0 0.10 0.50 0.50 �0.50 0.08 0.04 0.08 0.05

0.50 0.50 1.00 �0.50 0.39 0.30 0.07 0.06
0.10 0.50 1.00 �0.50 0.07 0.08 0.06 0.04

0.50 0.50 0.00 0.00 1.00 0.99 0.95 0.95
0.10 0.50 0.00 0.00 0.39 0.27 0.33 0.27

Power 0.50 0.50 0.50 �0.50 0.81 0.75 0.20 0.18
ˇ4 D 1, ˇ5 D 0 0.10 0.50 0.50 �0.50 0.08 0.04 0.08 0.05

0.50 0.50 1.00 �0.50 0.57 0.49 0.11 0.09
0.10 0.50 1.00 �0.50 0.06 0.06 0.06 0.04

0.50 0.50 0.50 �0.50 0.34 0.22 0.15 0.14
Power 0.10 0.50 0.50 �0.50 0.27 0.18 0.09 0.05
ˇ4 D 0, ˇ5 D 0:5 0.50 0.50 1.00 �0.50 0.35 0.26 0.13 0.11

0.10 0.50 1.00 �0.50 0.36 0.31 0.08 0.05

0.50 0.50 0.50 �0.50 0.83 0.72 0.38 0.36
Power 0.10 0.50 0.50 �0.50 0.64 0.53 0.11 0.08
ˇ4 D 0, ˇ5 D 1 0.50 0.50 1.00 �0.50 0.85 0.77 0.42 0.38

0.10 0.50 1.00 �0.50 0.84 0.80 0.17 0.17

ratio test statistic. UnderH0, the test statistic will asymptotically follow a �2 distribution withG�1
degrees of freedom. As with HL, we use G D 10 for all analyses in this paper. Related to LIPSITZ is
the Score test [26], which tests whether the parameters corresponding to different cumulative logits
are the same. This is provided by PROC LOGISTIC in SAS but is liberal in its rejection rates [27].

We evaluated the operating characteristics of these tests via a small simulation study, described in three
parts as follows.

2.3. Simulation design

2.3.1. Logistic regression – functional misspecification of covariates. For binary outcomes, we gener-
ated datasets of size 500 from (2.1.1). Each covariate was independently drawn from a standard normal
distribution. We chose values of ˇ to satisfy either null, that is, ˇ4 D ˇ5 D 0, or non-null scenarios.
The intercept ˛ was such that Pr.y D 1/ D 0:5 or Pr.y D 1/ D 0:1, marginalized over the covariates.
For each ˛ and ˇ, empirical rejection rates from 10,000 datasets were recorded to simulate the type
I error or power of each test. We give the results in Table I. JOINT has slightly inflated type I error
(0.05 to 0.12), and INT more so (0.09–0.12). LIPSITZ, while designed for ordinal outcomes, may be
applied to logistic regression as a special case; the LIPSITZ test statistic is approximately equal in distri-
bution to the HL test statistic, although HL appears to be the only test with exactly nominal type I error.
JOINT has favorable power properties compared to LIPSITZ and HL, despite only slightly inflated type
I error.
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Table II. Ordinal regression – functional misspecification of covariates. Rejection rates from 10,000
simulated datasets of size 500 generated by (2.1.2).

Setting Main effects Rejection rates

Quadratic, interaction effects Pr.Y D 1/ Pr.Y D 2/ ˇ1 ˇ2 ˇ3 INT JOINT LIPSITZ

0.33 0.33 0.50 0.00 0.00 0.12 0.13 0.06
0.30 0.60 0.50 0.00 0.00 0.11 0.12 0.05

Type 1 error 0.33 0.33 0.50 0.50 �0.50 0.10 0.07 0.05
ˇ4 D 0, ˇ5 D 0 0.30 0.60 0.50 0.50 �0.50 0.10 0.07 0.06

0.33 0.33 0.50 1.00 �0.50 0.13 0.11 0.06
0.30 0.60 0.50 1.00 �0.50 0.10 0.11 0.06

0.33 0.33 0.50 0.00 0.00 0.96 0.93 0.98
0.30 0.60 0.50 0.00 0.00 0.98 0.99 0.99

Power 0.33 0.33 0.50 0.50 �0.50 0.68 0.65 0.17
ˇ4 D 0:5, ˇ5 D 0 0.30 0.60 0.50 0.50 �0.50 0.89 0.90 0.31

0.33 0.33 0.50 1.00 �0.50 0.42 0.42 0.08
0.30 0.60 0.50 1.00 �0.50 0.71 0.75 0.11

0.33 0.33 0.50 0.00 0.00 1.00 1.00 0.98
0.30 0.60 0.50 0.00 0.00 1.00 1.00 0.99

Power 0.33 0.33 0.50 0.50 �0.50 0.89 0.86 0.29
ˇ4 D 1, ˇ5 D 0 0.30 0.60 0.50 0.50 �0.50 0.99 0.98 0.63

0.34 0.33 0.50 1.00 �0.50 0.68 0.66 0.11
0.30 0.60 0.50 1.00 �0.50 0.95 0.96 0.28

0.33 0.33 0.50 0.50 �0.50 0.33 0.28 0.21
Power 0.30 0.60 0.50 0.50 �0.50 0.25 0.23 0.24
ˇ4 D 0, ˇ5 D 0:5 0.33 0.33 0.50 1.00 �0.50 0.36 0.35 0.18

0.30 0.60 0.50 1.00 �0.50 0.19 0.24 0.21

0.33 0.33 0.50 0.50 �0.50 0.82 0.78 0.54
Power 0.30 0.60 0.50 0.50 �0.50 0.75 0.77 0.74
ˇ4 D 0, ˇ5 D 1 0.33 0.33 0.50 1.00 �0.50 0.85 0.85 0.58

0.30 0.60 0.50 1.00 �0.50 0.56 0.67 0.77

2.3.2. Ordinal regression – functional misspecification of covariates. Here, we used the generating
model given by

logit Pr.y 6 kjx/D ˛k C ˇ1x1C ˇ2x2C ˇ3x3C ˇ4x21 C ˇ5x1x2; k D 0; 1; (2.3.1)

which is a more general version of (2.1.2). We used the same choices of ˇ as in the binary case and
chose ˛0 and ˛1 to achieve Pr.y D 0/ D Pr.y D 1/ D 1=3 or Pr.y D 0/ D 0:1 and Pr.y D 1/ D 0:3.
We give the results in Table II. All methods have some type I error inflation, INT having the most (0.10–
0.13), followed by JOINT (0.07–0.13), and finally LIPSITZ. Although the type I error inflation makes a
direct power comparison difficult, in some cases; for example, when ˇ4 D 0:5 and ˇ5 D 0, JOINT has a
considerable power advantage over LIPSITZ.

2.3.3. Ordinal regression – violation of the proportional odds assumption. The final simulation we
conducted looked at the tests’ behavior in the presence of a violation to the proportional odds assump-
tion of an ordinal regression. To achieve this, we generated the data from an underlying model given
by (2.1.3). We give the results in Table III. To be clear, the proportional odds assumption is violated
regardless of whether ˇ10 D ˇ11, and we refer back to Table II for type I error properties. We chose
˛0 and ˛1 so that Pr.y D 0/ D Pr.y D 1/ D 1=3 or Pr.y D 0/ D 0:1 and Pr.y D 1/ D 0:3. We
also emphasize that this is a scenario for which our proposed numerical tests are ill suited, namely
a structural violation to the underlying probability of falling within each category rather than a vio-
lation to the functional form of the covariates, and a more general goodness-of-fit approach, like
LIPSITZ, may be better suited here. In fact, none of the methods has acceptable power properties
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Table III. Ordinal regression – violation of proportional odds assumption. Rejection rates
from 10,000 simulated datasets of size 500 generated by (2.1.3).

Main effects Rejection rates

Setting Pr.Y D 1/ Pr.Y D 2/ ˇ10 ˇ11 ˇ2 ˇ3 INT JOINT LIPSITZ

0.33 0.33 0.50 0.50 0.00 0.00 0.10 0.12 0.06
0.30 0.60 0.50 0.50 0.00 0.00 0.10 0.11 0.06

Power 0.33 0.33 0.50 0.50 �0.50 �0.50 0.10 0.09 0.16
0.30 0.60 0.50 0.50 �0.50 �0.50 0.10 0.07 0.07
0.33 0.34 0.50 0.50 �1.50 �0.50 0.12 0.16 0.82
0.30 0.60 0.50 0.50 �1.50 �0.50 0.10 0.10 0.37

0.33 0.33 0.50 0.75 0.00 0.00 0.11 0.26 0.11
0.30 0.60 0.50 0.75 0.00 0.00 0.13 0.17 0.06

Power 0.33 0.33 0.50 0.75 �0.50 �0.50 0.10 0.28 0.25
0.30 0.60 0.50 0.75 �0.50 �0.50 0.10 0.13 0.10
0.33 0.33 0.50 0.75 �1.50 �0.50 0.13 0.38 0.86
0.30 0.60 0.50 0.75 �1.50 �0.50 0.09 0.15 0.47

0.33 0.33 0.50 1.00 0.00 0.00 0.13 0.50 0.17
0.30 0.60 0.50 1.00 0.00 0.00 0.15 0.28 0.08

Power 0.33 0.33 0.50 1.00 �0.50 �0.50 0.10 0.77 0.32
0.30 0.60 0.50 1.00 �0.50 �0.50 0.10 0.29 0.14
0.33 0.34 0.50 1.00 �1.50 �0.50 0.13 0.87 0.87
0.30 0.60 0.50 1.00 �1.50 �0.50 0.09 0.39 0.56

All rejection rates in this table correspond to power because the data are generated from a
multinomial logistic model, which automatically violates the proportional odds assumption.

when ˇ10 D ˇ11. INT has small power in all cases, but JOINT has more power than LIPSITZ when
ˇ11 � ˇ10 D 0:5

3. Data analysis

3.1. A case-control study of Parkinson’s disease and cumulative lead exposure

We analyze data from a case-control study in the Boston, Massachusetts, area conducted from 2003–
2007 that explores association between lifetime cumulative lead exposure and PD [28]. PD is a complex
disease for which environmental determinants have been hypothesized to be particularly important. The
primary hypothesis of the study is that the risk of PD increases with increased lifetime exposure to heavy
metals, including lead. As a biomarker for cumulative lead exposure, the study used measurements of
lead levels in the tibia bone assessed with a K-shell X-ray fluorescence (KXRF) technique. Cases were
recruited from four movement disorder clinics in the Boston area. Controls included family, in-laws, and
friends of cases, as well as responders to community advertisements and eligible subjects in the Harvard
Cooperative Program on Aging, a registry of elderly volunteer research subjects. In the original study,
controls and self-reported cases from the Normative Aging Study were also included; here, we do not
include those subjects. After removing individuals with missing covariates or KXRF measurements that
had large uncertainty, 300 cases and 194 controls were included in the present analysis. We illustrate
how the graphical and numerical diagnostic tests proposed in previous sections incrementally change
between models we consider, beginning with a logistic model that uses continuous values of tibia lead
measurements and ending with the actual model presented in the paper by Weisskopf et al. [28], which
uses categorized tibia lead measurements.

Apart from normalized continuous tibia lead measurements (in �g/g), denoted as ‘Tibia’ in the model,
the other covariates used were ‘Age’ (centered, in years), smoking status (in pack-years of smoking,
‘Pack-Yr’), education (‘Educ’; high school graduate or less, some college or college degree, or post-
graduate degree), ‘Race’ (white/non-white), ‘Sex’, and ascertainment location (‘Loc’; BU D Boston
University Medical Center, BW D Brigham and Women’s Hospital, BI D Beth Israel Deaconess Med-
ical Center, or HV D Harvard Vanguard Medical Associates). Following the original paper, separate
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Figure 3. (a) The Scatterplot Diagnostic for two models applied to the Parkinson’s disease case-control study.
Covariate values are on the y-axes, the linear predictor Ǒ>x is on each x-axis, and the data are grouped by case
status. (b) The Residual Density Diagnostic for two models applied to the Parkinson’s disease case-control study.
Each panel is a kernel density estimate of the residuals from regressing the continuous covariates on the linear

predictor Ǒ>x, grouped by case status.

fixed effects for each of the four clinics account for potential heterogeneity between locations, and the
controls ascertained from the general community are treated as coming from BU. A logistic model with
linear terms is

logit Pr.PDD 1jcovariates/

D ˛C ˇTIBTibiaC ˇAGEAgeC ˇPKYRPack-YrC ˇED1fEducD Collegeg C ˇED2fEducD Postgrad.g

C ˇRACfRaceDWhiteg C ˇSEXfSexD Femaleg C ˇLOC.BUfLocD BUg

C ˇLOC.BWfLocD BWg C ˇLOC.HVfLocD HVg

� ˛C ˇTIBTibiaC ˇAGEAgeC �>W : (3.1.1)
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Table IV. Regression coefficients with tests of significance (top) and numerical tests of functional misspeci-
fication (bottom) for three models fit to the Parkinson’s disease case-control data.

Parameter estimate (p-value)

Model ˇTIB.�g=g/ ˇTIB.Q2 ˇTIB.Q3 ˇTIB.Q4 ˇAGE.yr/ ˇAGESQ.yr2/

(3.1.1) 0.024 (0:049) �0.049 .< 10�4/
(3.1.2) 0.025 (0:047) �0.051 .< 10�4/ �0.002 (0.045)
(3.1.3) 0.179 (0.576) 0.299 (0.343) 0.529 (0.107) �0.049 .< 10�4/ �0.002 (0.060)

Test statistic (degrees of freedom, p-value) for testing functional misspecification

Model HL LIPSITZ INT JOINT

(3.1.1) 5.9 .8; 0:659/ 9.1 .9; 0:431/ 19.4 .8; 0:013/ 19.7 .10; 0:032/
(3.1.2) 4.5 .8; 0:808/ 7.2 .9; 0:616/ 5.4 .8; 0:716/ 5.5 .10; 0:853/
(3.1.3) 7.7 .8; 0:464/ 7.9 .9; 0:543/ 4.8 .8; 0:781/ 5.1 .10; 0:885/

The coefficients ˇTIB.Q2, ˇTIB.Q3, and ˇTIB.Q4 correspond to the effects of 2nd, 3rd, and 4th quartiles of the categorized
measurements of ‘Tibia’ relative to the 1st quartile.

We focus our analysis on the continuous covariates ‘Tibia’ and ‘Age’, and the remaining covariates
are hereafter collectively called W . We give the graphical diagnostics corresponding to the models
we consider in Figure 3. Table IV lists estimates of ˇTIB and ˇAGE with p-values corresponding to
the Wald test statistic. In the initial model as described previously, ǑTIB D 0:024 .p D 0:049/, and
Ǒ

AGE D�0:049 .p < 10
�4/. Thus, controlling for age andW , increased lead exposure seems to increase

the odds of PD.
Also in Table IV are the numerical diagnostic tests for this initial model with linear terms of age and

tibia. HL and LIPSITZ have non-significant p-values, respectively, p D 0:659 and p D 0:431, while
the INT and JOINT statistics are significant, with p D 0:013 and p D 0:032. Covariate specific tests
from INT and JOINT, which are not given in the table, suggest a lack of fit for ‘Age’. This is somewhat
supported by the Scatterplot Diagnostic, given in the first column of Figure 3(a), in which younger cases
tend to have larger values of the linear predictor, Ǒ>x, causing the dashed line to drop at the right of
the panel. To a lesser degree, the Residual Density Diagnostic (first column, Figure 3(b)) also suggests
misspecification of ‘Age’. Because ǑAGE D�0:049 implausibly suggests a monotone decrease in risk of
PD with age, we add a quadratic term, yielding the following model:

logit Pr.PDD 1jcovariates/D ˛C ˇTIBTibiaC ˇAGEAgeC ˇAGESQAge2C �>W : (3.1.2)

From Table IV, the effect of ‘Tibia’ is about the same, as is the first-order term for ‘Age’. However,
the quadratic term is negative, �0:002 (p D 0:045). Thus, fixing all other covariates, the risk of PD
is estimated to increase until about age 55. The p-values for HL, LIPSITZ, INT, and JOINT are, respec-
tively, 0:808, 0:616, 0:716, and 0:853, and the results from INT and JOINT suggest improved overall fit
of the covariates. From the second column of Figure 3(a), younger cases no longer have disproportion-
ately large values of Ǒ>x, although there may be some remaining lack of fit suggested by several older
controls having small values of Ǒ>x. The Residual Density Diagnostic (second column, Figure 3(b)) is
insensitive to the added quadratic term and shows little change from model (3.1.1).

The actual model presented in [28] differs from (3.1.2) in representing the effect of ‘Tibia’; we now
modify (3.1.2) to match with the model for ‘Tibia’ as presented in [28]. Specifically, we replace the
continuous measurements with a four-level categorical variable, where the levels are determined by the
empirical quartiles. The model is

logit Pr.PDD 1jcovariates/D˛C ˇTIB.Q2TibiaQ2C ˇTIB.Q3TibiaQ3

C ˇTIB.Q4TibiaQ4C ˇAGEAgeC ˇAGESQAge2C �>W : (3.1.3)

From the corresponding rows in Table IV, this modification yields results very similar to those of (3.1.2),
suggesting that the categorization is not needed from a model-fit perspective. All numerical diagnostic
tests are still non-significant (Table IV), but the differences in p-values between models should not be
used for model selection purposes. The graphical diagnostics in the third columns of Figure 3(a and b) are
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minimally changed from the second column. This is consistent with INT and JOINT previously pointing
to ‘Age’, rather than ‘Tibia’, as the source of covariate misspecification.

Remark 3
An alternative to the aforementioned numerical tests would be to look at numerical summaries that
are often used to check covariate balance via descriptive statistics. One can compute standardized bias
estimates within the five propensity score quintiles. For each covariate and each quintile, calculate the
difference in mean values for that covariate between cases and controls falling in that stratum, and divide
by the estimated standard deviation of the mean difference, exactly as in a studentized two-sample pooled
t -statistic. The main advantage of this approach over the aforementioned testing procedures is that it is
less dependent on sample size. But it is difficult to integrate into a single test or numeric summary. Table
S1 in the Supporting Information‡ gives standardized biases for ‘Tibia’ and ‘Age’. In agreement with
our analysis, there is no clear change between models for ‘Tibia’, but there is a significant drop in bias
for ‘Age’ between models (3.1.1) and (3.1.2).

3.2. Normative Aging Study

The Normative Aging Study (NAS) is a multidisciplinary longitudinal study of aging in men established
by the Veteran’s Administration in 1963. NAS subjects have reported for medical examination every
3–5 years. Although the study records data on a wide spectrum of variables, including several health-
related measures, dietary and behavioral exposures, exposure to certain metals in their environment,
and psychosocial events, our analysis focuses on exploring the relationship of fasting blood glucose
(FBG) with two markers of systemic inflammation, namely white blood cell count (WBC, 103=mm3)
and blood levels of C-reactive protein (CRP, mg/L), after controlling for age (y). The measurements
were taken between January 2000 and December 2004; in cases where multiple measurements were
available on the same subject, we consider only the last complete observation available. The data con-
tain observations on 682 men in the age range of 48–93 years. FBG was categorized into three categories
according to established diagnostic criteria for diabetes [29], with values less than 110 mg/dl defined as
normal (FBG D 1), those between 110 and 126 mg/dl, inclusive, defined as impaired fasting glucose
(FBG D 2), and those exceeding 126 mg/dl defined as diabetes (FBG D 3). It has been suggested that
oxidative stress-induced inflammatory response increases insulin resistance, resulting in hyperglycemia
or elevated levels of FBG, which in turn causes further oxidative stress [30]. Inflammation is known to
be a risk factor for diabetes [31]. WBC count and CRP levels may be viewed as biomarkers of systemic
inflammation and thus could potentially be associated with FBG levels, leading to this analysis. We
posited the model

logit Pr.FBG6 kjcovariates/D ˛k C ˇAGEAgeC ˇ`WBC log.WBC/C ˇ`CRP log.CRP/; k D 0; 1:
(3.2.1)

Note that both WBC and CRP are log-transformed. Fitting the model, we have Ǒ`WBC D �0:615 .p D

0:024/ and Ǒ`CRP D �0:081 .p D 0:195/. Thus, WBC and CRP are associated with increased levels
of FBG, and Ǒ`WBC is significant using size 0:05. Age was not found to be significantly associated with
FBG levels. LIPSITZ, INT, and JOINT had p-values, respectively, of 0.294, 0.727, and 0.906. Based on
recommendations by Agresti [27], we also evaluated the proportional odds assumption by collapsing the
FBG categories and inspecting the coefficients from the logistic models corresponding to the two possi-
ble collapsings. The signs and effect sizes of the coefficient estimates were consistent, which would be
expected under the proportional odds assumption.

The graphical diagnostics are in Figure 4. From the Scatterplot Diagnostic, there does appear to be a
lack of collinearity between LOWESS curves, particularly in log.CRP/; however, this is driven by a few
influential observations with extreme values of the linear predictor, and we did not view this as indicative
of systemic misspecification. Similarly, the Residual Density Diagnostic indicates agreement between
the distributions of residuals. Several outliers in the data may warrant further investigation. Based on
these and our interpretation of the graphical diagnostics, we did not fit additional models.

These case studies highlight the utility of our graphical and numerical diagnostics as a supplement
to, rather than replacement of, existing strategies for evaluating model fit and the subjectivity of their
application. These tests provide an initial assessment of model misspecification. In these analyses, the

‡Supporting information may be found in the online version of this article.
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Figure 4. (a) The Scatterplot Diagnostic applied to the Normative Aging Study (NAS) cohort. Covariate values
are on the y-axes, the linear predictor Ǒ>x is on each x-axis, and the data are grouped by fasting blood glucose
(FBG) categories. The lack of collinearity of the LOWESS curves on the edges of the plots is driven by a few
influential observations. (b) The Residual Density Diagnostic applied to the NAS cohort. Each panel is a kernel
density estimate of the residuals from regressing the continuous covariates on the linear predictor Ǒ>x, grouped

by FBG categories.

goal is not to obtain large p-values but rather p-values that are not small, and this should additionally be
supported by the graphical diagnostics, as INT and JOINT do not always maintain nominal type I error. In
the PD case-control study, the p-values for INT and JOINT improved after introducing a quadratic term
for ‘Age’, as did the collinearity of the LOWESS curves in the Scatterplot Diagnostic. In contrast, the
p-values from HL and LIPSITZ never suggested model misspecification. The added quadratic term was
motivated by scientific rationale rather than a particular aspect of the diagnostic tests; in other words,
our diagnostics are useful for detecting general model misspecification but, when used in isolation, not
necessarily remedies thereof. In the NAS example, the first model we fit was considered adequate. How-
ever, the diagnostics could have been used to compare (3.2.1) to a model with un-transformed CRP and
WBC levels. For brevity, we do not include this comparison.

4. Discussion

Simple graphical tools for categorical response regression models are lacking. Following the suggestion
of Rubin [16], in this paper, we use the balancing score to develop visual model diagnostics for categor-
ical data models. The visual summaries are informative about a global model misspecification, not just
covariate misspecification. Thus, this breadth is both a strength and weakness because it also means the
visual summaries cannot point to the specific nature of the misspecification, for example, a functional or
link misspecification. As a by-product, we also examine certain tests that have been used to check covari-
ate balance in treatment groups for the purpose of identifying the source of model misspecification. The
tests and diagnostics developed in the paper may serve as simple tools to discern misspecification in
ordinal models. Further research is warranted to provide insight into the form of misspecification and
derive targeted solutions to alleviate the poor fit.
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