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Web Appendix A: Equivalence results between time-series analysis

and case-crossover design

A.1: Frequentist equivalence using full likelihood

From (5), log(LTfull(β, ν)) =
∑T

t=1 Yt

[
νt + β>X t −

∑
s∈W (t) log{1 + exp(νt + β>Xs)}

]
and then

the estimating equation for β is

UT
full(β) =

T∑
t=1

YtX t −
T∑
t=1

T∑
s=1

Yt
I(s ∈ W (t)) exp(νt + β>Xs)Xs

1 + exp(νt + β>Xs)

=
T∑
t=1

YtX t −
T∑
t=1

T∑
s=1

Ys
I(t ∈ W (s)) exp(νs + β>X t)X t

1 + exp(νs + β>X t)

=
T∑
t=1

YtX t −
T∑
t=1

X t exp(β>X t)
{ T∑

s=1

YsI(s ∈ R(t)) exp(νs)

1 + exp(νs + β>X t)

}
=

T∑
t=1

X t

{
Yt − exp(β>X t)

∑
s∈R(t)

Ys exp(νs)

1 + exp(νs + β>X t)

}
,

where R(t) is the set of days that contain day t in their reference window. For SBD and TSD but not

more generally, R(t) = W (t) (Lu and Zeger 2007). Comparing with the log-linear model estimating

equation corresponding to β derived from (7)

Ull(β) =
T∑
t=1

X t

{
Yt − exp(β>X t + St)

}
,

So, if Ŝt(ν,β) = log(
∑

s∈R(t) Ys exp(νs)/{1+exp(νs+β
>X t)}), then UT

full(β) will provide the same

estimate for β as Ull(β). Under a TSD, while the conditional likelihood approach or an equivalent
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log-linear model would only allow the risk changes abruptly among different time stratifications, the

full likelihood approach does not require such constraint because Ŝt′(ν,β) is not necessarily equal to

Ŝt(ν,β) for t′ ∈ W (t) and t′ 6= t.

A.2: Bayesian equivalence using conditional likelihood

Proof of Theorem 1: From (7),

Lll(β, St) ∝
K∏
k=1

∏
t: t∈ts(k)

{
exp(β>X t + S ′k)

}Yt
exp{− exp(β>X t + S ′k)}.

Let ϕk = exp(S ′k). The marginal posterior distribution of β derived from Lll(β, St) is

π(β |X,Y ) ∝
∫
π(β)π(S ′1, ..., S

′
K)Lll(β, St)dS

′
1 · · · dS ′K

∝ π(β)

∫ K∏
k=1

∏
t: t∈ts(k)

{
exp(β>X t + S ′k)

}Yt
exp{− exp(β>X t + S ′k)}dS ′1 · · · dS ′K

= π(β)
[ T∏
t=1

{
exp(β>X t)

}Yt] K∏
k=1

∫
ϕ−1k

∏
t: t∈ts(k)

[
ϕYtk exp{−ϕk exp(β>X t)}

]
dϕk

= π(β)
[ T∏
t=1

{
exp(β>X t)

}Yt] K∏
k=1

∫ [
ϕ
∑

t: t∈ts(k) Yt−1
k exp{−ϕk

∑
t: t∈ts(k)

exp(β>X t)}
]
dϕk

= π(β)
[ T∏
t=1

{
exp(β>X t)

}Yt] K∏
k=1

{
∑

t: t∈ts(k)

exp(β>X t)}−
∑

t∈ts(k) Yt

= π(β)
[ T∏
t=1

{
exp(β>X t)

}Yt] K∏
k=1

∏
t: t∈ts(k)

{
∑

s∈W (t)

exp(β>Xs)}−Yt

= π(β)
[ T∏
t=1

{
exp(β>X t)

}Yt] T∏
t=1

{
∑

s∈W (t)

exp(β>Xs)}−Yt

= π(β)
T∏
t=1

{ exp(β>X t)∑
s∈W (t) exp(β>Xs)

}Yt
= π(β)Lcc(β),

which is the marginal posterior distribution of β derived from Lcc(β).
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A.3: Bayesian equivalence using full likelihood

Let ys·t = ys1t + ys0t, and let Φst = exp(φst). Then

π(ν,β |X,Y ) ∝
∫
π(φ,ν,β)Lp(φ,ν,β)dφ ∝ π(ν,β)

T∏
t=1

{
exp(νt + β>X t)

}Yt
×
∫
π(φ)

T∏
s=1

T∏
t=1

[exp(φst)]
ys·t exp{− exp(φst)[1 + exp(νs + β>X t)]}dφ

= π(ν,β)
T∏
t=1

{
exp(νt + β>X t)

}Yt T∏
s=1

T∏
t=1

∫
Φys·t−1
st exp{−Φst[1 + exp(νs + β>X t)]}dΦst

= π(ν,β)
T∏
t=1

{
exp(νt + β>X t)

}Yt T∏
s=1

T∏
t=1

{ 1

1 + exp(νs + β>X t)

}ys·t
= π(ν,β)

T∏
t=1

{
exp(νt + β>X t)

}Yt T∏
s=1

T∏
t=1

{ 1

1 + exp(νs + β>X t)

}ysI(s∈R(t))

= π(ν,β)
T∏
t=1

{
exp(νt + β>X t)

}Yt T∏
t=1

T∏
s=1

{ 1

1 + exp(νt + β>Xs)

}ytI(s∈W (t))

= π(ν,β)
T∏
t=1

[{
exp(νt + β>X t)

}Yt ∏
s∈W (t)

{ 1

1 + exp(νt + β>Xs)

}yt]

= π(ν,β)
T∏
t=1

[ exp(νt + β>X t)∏
s∈W (t){1 + exp(νt + β>Xs)}

]Yt
= π(ν,β)LTfull(ν,β)

Web Appendix B: Computational details for Bayesian inference

B.1: Metropolis-Hastings within Gibbs algorithm

Sampling of β under conditional likelihood formulation: We take conditional likelihood (3) under the

shared exposure as an example. For mutually independent normal priors β ∼ N(µβ, σ
2
βIp), the joint

posterior distribution of β = (β1, ..., βp)
> is not a standard distribution. Let π(θ | ·) denote the

full conditional distribution as a function of θ given the data and all other parameters. The posterior

distribution π(β |X,Y ) can be obtained using a Gibbs sampler through the following full conditional
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distributions,

π(βr| ·) = exp
{
− (βr − µβr)2

2σ2
βr

} T∏
t=1

{ exp(βrXtr)∑
s∈W (t) exp(β>Xs)

}Yt
, r = 1, ..., p.

To sample from π(βr | ·), we followed these steps of a Metropolis-Hastings algorithm:

• Step 1. Start with initial value β(0) = (β
(0)
1 , ..., β

(0)
p )>.

• Step 2. For r = 1, ..., p, at the k-th iteration with the current value as β(k) = (β
(k)
1 , ..., β

(k)
r−1,

β
(k−1)
r , ..., β

(k−1)
p )>. Generate a new value β∗r from a candidate density g(βr) and replace β(k)

r by

β∗r with probability min
{

1, π(β
∗
r |·)g(β

(k−1)
r )

π(β
(k−1)
r |·)g(β∗r )

}
. We chose the candidate density g(βr) as the prior

density π(βr). Since the full conditional density π(βr | ·) ∝ π(βr)L(βr | ·), the acceptance

probability reduces to min
{

1, L(β∗r |·)
L(β

(k−1)
r |·)

}
. β(k)

r , 1, ..., p, is updated accordingly.

• Step 3. Run the chain with 10,000 iterations.

Sampling of ν and β under full likelihood formulation: We take full likelihood model LTfull(β,ν) (5)

under the shared exposure as an example. To sample from the posterior distribution of ν and β, we

adopted a componentwise Metropolis-Hastings algorithm. The full conditional distributions used are:

π(βr| ·) ∝ exp
{
− (βr − µβr)2

2σ2
βr

} T∏
t=1

{ exp(βrXtr)∏
s∈W (t)[1 + exp(νt + β>Xs)]

}yt
, r = 1, ...., p.

π(νt| ·) ∝
{ 1∏

s∈W (t)[1 + exp(νt + β>Xs)]

}yt
×

{ α

T − 1 + α

exp(µyt +
y2t σ

2

2
)

√
2πσ2

× exp
[
− (νt − µ− ytσ2)2

2σ2

]
+

exp(ytνt)

T − 1 + α

T∑
s=1, s 6=t

I(νs = νt)
}
,

At each iteration, we first update the value of β similarly as described above, and then move on to

the cycle for ν with the updated value of β substituted. Particularly, given current values of β, ν is

updated in the following way:

• Step 1. As a metropolis-Hastings step, ν∗t was drawn from the candidate distribution of π(νt |

ν−t), namely from α
T−1+αN(µ, σ2) + 1

T−1+α
∑T

s=1, s 6=t I(νs = νt). In particular, one either get
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a distinct value for ν∗t from the normal component with probability α
T−1+α or get a draw of ν∗t

with equal probability from the current set of the (T − 1) entries of ν−t. We adopt the algorithm

in to generate observations from this candidate density.

• Step 2. Set the new value of νt to ν∗t , with acceptance probability min
{

1,
L(ν∗t |·)
L(ν
′
t |·)

}
, where ν ′t is

the current working value of νt.

• Step 3. Repeat steps 1-2 5 times and consider the last of these updates of νt as the value of ν(k)t ,

say at the k-th iteration.

• Step 4. Repeat steps 1-3 for all ν(k)t for t = 1, ..., T . One complete iteration of the Markov chain

consists of the foregoing updates for both the parameters β and ν. Given current values of β(k)

and ν(k), we can go to the next iteration for β(k+1) and ν(k+1). We run the chain with 10,000

iterations.

B.2: Prior choices under the simulation study

Assume the informative prior on β has the form β ∼ N(µβ, σ
2
β). According to the ad-hoc prior

eliciting strategy described in section 6 for the DAMAT study, when β∗ = 0.1 we a priori postulated a

95% confidence interval (1.02, 1.15) for exp(β), and solved for the approximated values of (µβ, σβ) as

(0.05, 0.02). Thus our informative prior was chosen asN(0.08, 0.032) when β∗ = 0.1. Similarly, when

β∗ = 1 we presumed a 95% confidence interval (0.4, 1.2) for exp(β) and deduced the corresponding

informative prior β ∼ N(0.8, 0.22). To complete the hierarchy, we have used α ∼ Gamma(2, 0.1);

G0 ∼ N(µ, σ2), µ ∼ N(0, 10) and σ−2 ∼ Gamma(4, 1) in all our simulations.

B.3: Construction of power priors for the DAMAT study data example

Asthma risk has been associated with PM2.5/PM10 in many studies using both time-series and case-

crossover designs. Among recent papers, an Alaskan study (Chimonas et al., 2007) found that a 10

µgm−3 increase in PM10 was associated with a 0.6% (95% CI: 0.1%, 1.3%) increase in outpatient
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asthma visits, and a 1.8% (95% CI: 0.6%, 3.0%) increase in inhaled quick-relief mediation prescrip-

tions. In Rio de Janeiro (Moura et al., 2009), a 10 µgm−3 increase of PM10 was found to be associated

with 6.7% (95% CI: 1.8%, 11.5%) increase for bronchial obstruction. In two Idaho cities (Ulirsch et

al., 2007), a 24.3 µgm−3 increase in PM10 was associated with 4.3% increase for respiratory disease.

In the Detroit Medicaid population (Li et al., 2011), we found a 3-7% increase in asthma risks for a 9.2

µgm−3 increase in PM2.5. Larger effects were found when only the warmer season was considered

(Villeneuve et al., 2007). These results are converted in terms of risk ratios in the following table.

More detailed reviews can be found in Li et al. (2011).

Study Risk Ratios∗

Chimonas et al., 2007 1.006, 1.018

Moura et al., 2009 1.065

Ulirsch et al., 2007 1.017

Li et al., 2011 1.03-1.09

∗ Risk ratios exp(β̂PM2.5
) and exp(β̂PM10

) corresponding to 10 µgm−3 increase in PMx concentrations

Based on these studies where different cohorts, statistical models, and variant asthma outcomes

were used, we have a belief that the asthma-PM2.5 association is in general modest with an odds

ratio ranging (1.01-1.09) for a 10 µgm−3 increase in PM2.5 (if we assume that effect of PM10 has

no substantial difference from that of PM2.5). In our DAMAT data analysis section, we constructed a

presumed 95% confidence interval (1.01,1.09) based on the above information, and took the prior mean

to be the center (µβ = [log(1.09) + log(1.01)]/2 = 0.05) and the prior standard deviation to be one-

fourth the width of the interval (σβ = [log(1.09)−log(1.01)]/4 = 0.02), i.e., βPM2.5 ∼ N(0.05, 0.022).

For the power priors, suppose we observedD0 in terms of summary statistics from previous studies,

e.g. the MLEs β̂k’s with variance σ̂2
β̂k

’s. We assume the sampling distribution of β̂k is normal, namely,

β̂k|β ∼ N(β, σ̂2
β̂k

), k = 1, ..., K. Assuming the studies were independent and equally weighted, then

L(β|D0) ∝
K∏
k=1

exp(−(β − β̂k)2

2σ̂2
β̂k

).
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In particular, we consideredK = 3 prior studies having small, modest and strong effect sizes (β̂1, β̂2, β̂3) =

(0.02, 0.05, 0.08) with (σ̂2
β̂1
, σ̂2

β̂2
, σ̂2

β̂3
) = (0.02, 0.02, 0.03) respectively, to reflect PM2.5-asthma asso-

ciation (change in asthma risk for a 10 µgm−3 increase in PM2.5) based on the evidence in a recent

review paper (Li et al. 2011). L(β|D0) is then described by the product of the three independent

normal likelihoods.

7



Web Appendix C: Supplementary figures and tables

(a) non-localizable designs

(b) time-stratified design

Appendix Figure 1. Referent time selections for case-crossover designs.
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Appendix Table 1. Risk ratios of acute asthma events corresponding to a 10 µgm−3 increase in PM2.5

in the DAMAT study, using data in year 2006 only (T = 365).

TSDa

Frequentist MLEa 95% CIa

Conditional likelihood 1.043 (0.983, 1.107)
TSLLa 1.043 (0.983, 1.107)
Full likelihood REMa (T) 1.041 (0.981, 1.105)

Bayesian (prior 1)b Bayesa 95% HPDa

Conditional likelihood 1.042 (0.982, 1.095)
TSLL 1.042 (0.982, 1.096)
Full likelihood DPb (T) 1.040 (0.980, 1.093)

Bayesian (prior 2) Bayes 95% HPD
Conditional likelihood 1.049 (1.017, 1.085)
TSLL 1.049 (1.018, 1.086)
Full likelihood DP (T) 1.050 (1.020, 1.088)

Bayesian (power prior 1) Bayes 95% HPD
Conditional likelihood 1.040 (1.010, 1.068)
TSLL 1.040 (1.010, 1.068)
Full likelihood DP (T) 1.041 (1.011, 1.070)

Bayesian (power prior 2) Bayes 95% HPD
Conditional likelihood 1.059 (1.019, 1.098)
TSLL 1.059 (1.020, 1.099)
Full likelihood DP (T) 1.060 (1.021, 1.102)

Bayesian (power prior 3) Bayes 95% HPD
Conditional likelihood 1.040 (1.008, 1.075)
TSLL 1.040 (1.008, 1.074)
Full likelihood DP (T) 1.041 (1.010, 1.076)

Bayesian (power prior 4) Bayes 95% HPD
Conditional likelihood 1.058 (1.007, 1.100)
TSLL 1.058 (1.008, 1.101)
Full likelihood DP (T) 1.060 (1.012, 1.106)

a TSD: time-stratified design; TSLL: time-stratified log-linear; REM: ran-
dom effects model; MLE: maximum likelihood estimate (penalized pseudo-
likelihood for REM); CI: confidence interval; Bayes: Bayes estimates in terms
of posterior mean; HPD: highest posterior density.

b DP (T): Dirichlet process prior DP (α,G0) on the random intercepts ν in
LTfull(β,ν) is used, where prior distribution α ∼ Gamma(0.5, 0.1) is cho-
sen. Prior 1: βPM2.5 ∼ N(0, 102); Prior 2: βPM2.5 ∼ N(0.05, 0.022); Power
prior 1: a0 = 0.5; Power prior 2: a0 = 1.0; Power prior 3: a0 ∼ Beta(20, 20)
with mean 0.50 and variance 0.08; Power prior 4: a0 ∼ Beta(50, 1) with
mean 0.98 and variance 0.02.
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Appendix Table 2. Posterior distributions derived under full likelihood LTfull(β,ν) with six different
prior distributions on ν as a sensitivity analysis, under a time-stratified case-crossover design for the
DAMAT study.

βPM2.5 α Number of clusters
Priorsb Meana SDa Mediana Mean SD Median Mean SD Median
prior A 0.059 0.016 0.058 1.00 0.00 1.00
prior B 0.058 0.016 0.058 238.64 13.22 238
prior G1 0.058 0.016 0.058 0.08 0.12 0.04 1.09 0.33 1
prior G2 0.058 0.015 0.057 0.34 0.27 0.28 1.43 0.80 1
prior G3 0.058 0.016 0.058 0.08 0.11 0.04 1.06 0.27 1
prior G4 0.058 0.016 0.058 5.62 1.82 5.34 15.50 7.45 14

a posterior mean, standard deviation and median.
b Dirichlet process prior DP (α,G0) on ν in LTfull(β,ν). The base prior setting on G0 was

used as described in section 6; the priors on α was varied as follows.
prior A: νt = ν∗ for t = 1, ..., 1096, where ν∗ ∼ N(0, 102); prior B: νt

iid∼ N(0, 102);
prior G1: α ∼ Gamma(0.5, 0.1); prior G2: α ∼ Gamma(2, 0.2);
prior G3: α ∼ Gamma(10, 0.5); prior G4: α ∼ Gamma(20, 1).
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