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Thin components made from advanced brittle glasses or

ceramics are becoming increasingly important due to the wide-
spread adoption of portable consumer products as well as

other modern electronic and medical devices. The strength of

these brittle materials is traditionally estimated from empirical

relationships relating the stress at failure to characteristic
lengths derived from the fracture surface’s topography. One

example is Orr’s relationship, rf∙Rm
1/2 = Am, which correlates

the material strength, rf, to the radius of the “mirror-mist

boundary region,” Rm, through the empirical constant, Am.
Although various studies have shown that, for flexural frac-

tures (failed in bending), Am depends on the specimen’s geom-

etry, this effect has been generally neglected by arguing that

the magnitude of Am is almost constant for thicker specimens.
However, we show that this argument cannot be applied to

thin geometries, and that by not accounting for the thickness

of the sample, the flexural strength will be grossly underesti-
mated. In this work, we introduce an expression based on an

iterative fracture mechanics algorithm which yields more accu-

rate estimates of flexural strength for thin brittle components

in bending. The accuracy of the model is validated both
through flexural strength tests on glass and by comparing our

predictions to an extensive literature survey of experimental

results.

I. Introduction

THE increasing demand for smaller and lighter devices
with a wide range of applications generates growing

interest in the manufacturing of thin brittle components, such
as glass screens, silicon chips, and ceramic resistors. For
example, boro-silicate glasses (BSGs) as thin as 0.3 mm
(Eagle™ XG slim; Corning, One Riverfront Plaza Corning,
NY) for liquid crystal displays (LCD) and alumino-silicate
glasses (ASGs) as thin as 0.5 mm (Gorilla™ 2; Corning) as
cover glasses are becoming the norm in portable consumer
products. It is also expected that the first consumer devices
to use Corning’s Willow™ Glass, a type of glass so thin
(0.1 mm) and flexible that it can be rolled onto spools, will
appear in 2013.1

The importance of thin brittle components highlights the
necessity for an adequate means to estimate fracture
strength. Unfortunately, most of the current tools are based
on outdated models obtained from testing relatively thick
bulk samples. In this manuscript, we propose and validate a
fracture mechanics method that accounts for the sample
thickness to estimate the fracture strength. Although the pro-
posed model is consistent with Orr’s equation for thick

samples, it additionally provides an accurate prediction for
thin geometries.

Our findings were validated by comparing predictions with
extensive experimental flexural strength data from BSG,
soda-lime glass (SLG) and ASG. These glasses are widely
employed in electronic consumer products including televi-
sion sets, laptop computers, smart phones, and tablets. The
proposed model also applies to other brittle materials such
as ceramics, single crystals, semicrystalline polymers, and
glass-ceramics, as the form of the expressions used in the
model’s derivation are mechanism independent.

II. The Mirror Constant

The mirror-mist constant refers to the proportionality con-
stant, Am, first described by Orr’s equation [Eq. (1)]. The
value of the mirror constant is directly related to the crack
tip’s surface morphology during catastrophic crack growth.
As cracks propagate during fracture, the surface roughness
of the tip increases, as a progressively larger surface area
is necessary to dissipate the potential strain energy stored
in the material. When the crack tip’s surface roughness
approaches the wavelength of visible light, light is scattered
by the fracture surface rather than being reflected. This opti-
cal interference effect causes the characteristic “hazy” or
“misty” appearance at the boundary of the mirror-mist
region.2 The distance from the fracture origin to this hazy
region is referred as the mirror radius, Rm. Figure 1 shows a
schematic illustration of the mirror-mist transition on the
surface of a glass fractured in flexure or bending. In
Figs. 1(a) and (c) indicate the depth and the half-width of
the crack at any given instant, respectively. The general con-
vention for samples fractured in flexure or bending is to mea-
sure the mirror radius along the free surface of the plate on
the tension side.

The strength of brittle materials is often estimated using
well-established empirical relationships such as Orr’s
equation.3 Orr showed that the magnitude of stress at failure,
rf, is linearly correlated with the inverse of the square root
of the mirror radius:

rf ¼ Amffiffiffiffiffiffiffi
Rm

p (1)

Figure 2 shows a plot of the average mirror constant, Am,
versus the thickness, H, of glass specimens as obtained by
flexural strength tests conducted by various authors.
Although the thickness of the sample is not accounted for in
Eq. (1), the plot strongly suggests that a correlation might
exist between Am and the thickness H.

For the last half century, ceramists have tested and corre-
lated the flexural strength of brittle materials with the corre-
sponding lengths of the mirror radii, Rm, resulting in a rich
literature. Generally, the mirror constant, Am, is computed
by fitting a linear function between the strength of the mate-
rial and the inverse of the square root of the mirror radius as
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originally proposed by Orr.3 However, various authors4,5

noted that by introducing an additional fitting constant, Dr0,
to Eq. (1), an improved fit to the experimental flexural
strength data is obtained:

rf ¼ Amffiffiffiffiffiffiffi
Rm

p þ Dro (2)

The addition of the term Dro has often been justified by
attributing it to “residual stresses” at the surface of the tested
sample. Interestingly, Dro is almost always reported as a
positive term, indicating “tension.” Nonetheless, the presence
of tension stresses at the glass surface is inconsistent with the
glass-forming process which predicts compressive stresses at
the surface prior to annealing. We propose an alternative
explanation where the mirror constant, Am, is a function of
the sample thickness and the term Dro corresponds to the
residual surface stress only in the case of thick specimens.

(1) The Mirror Constant’s Magnitude
In the past, various studies showed that the magnitude of the
mirror constant, Am, is related to material properties as well
as the dimensions of the sample. For instance, Mecholsky
et al.6 gives an equation for the mirror constant relating its
value to the critical stress intensity of the material, KIc, the
ratio of the initial flaw radius to the mirror radius, co/Rm,
and the shape factor for the initial flaw, Y0. Mecholsky
et al.,7 also showed that for thick samples the ratio co/Rm is
almost equal to the fractal number, D*. Hence, based on
these two works:

Am ¼ Yoffiffiffi
2

p KIC

co=Rmð Þ1=2
¼ Yoffiffiffi

2
p Y0

Y0m

� �1=4 KIC

D�1=2 (3)

The fractal number, D*, in Eq. (3) describes the degree of
tortuosity of the fracture surface and its value is relatively
constant. The term Y0/Y0m is the ratio of the shape factor of
the initial flaw over the crack’s shape factor at the onset of
the mist region. As shape factors are related to the geometry
of the sample, it follows that the mirror constant, Am, must
also depend on the glass thickness, H.

III. Stress Intensity and Mist Formation

The quasi-static stress intensity factor (SIF), KI, is generally
defined as the product of the far-field stress multiplied by the
square root of the crack depth, a, times the shape factor Y, a
term introduced to account for the uneven stress distribution
at the crack boundary. The shape factor, Y, is a function of
the crack’s shape, the sample’s geometry, and distribution of
the stress field applied to the specimen. Shape factors for sta-
tic loading have been computed by various authors for
numerous crack shapes and loading scenarios.8 The value of
the shape factor at the onset of the mirror, Y0m, is of partic-
ular interest, as various authors9 suggest that mist formation
is linked to a particular value of the SIF, KIm. Hence, the
quasi-static SIF at the onset of the mist region can be
expressed as follows:

KIm ¼ Y0mrf
ffiffiffiffiffiffi
am

p
(4)

The term am in Eq. (4) refers to the depth of the crack at the
instant when the half-width of the crack is equal to the mir-
ror radius, Rm. Note that although the mist appears at Rm,
no mist is necessarily present at am, as the stress intensity is
not constant along the crack front.7 Combining Eqs. (4) and
(1), we obtain a relationship describing Am as a function of
KIm, the geometric factor Y0m, and the square root of the
ratio Rm/am:

Am ¼ KIm

Y0m

ffiffiffiffiffiffiffi
Rm

am

r
(5)

As it will be shown in later in this study, Eq. (5) provides
the means to estimate the value of the SIF at the onset of
the mist region, KIm.

IV. Crack Evolution Model

The value of the mirror constant, Am, is a function of the
crack shape at the onset of the mist region as shown in
Eq. (3). To calculate the mirror constant, Am, the crack
shape during fast-growth first needs to be calculated and sub-
sequently used to evaluate the shape factor, Y0m. We employ
a numerical algorithm based on fracture mechanics principles
to estimate the evolution of the crack shape as it propagates
into a sample of constant thickness, H. A schematic block
diagram describing the steps involved in this iterative crack
evolution model is shown in Fig. 3. The algorithm used in
this work combines both the works of Dwivedi and Green10

for subcritical crack growth with the work of Sharon and
Fineberg11 for fast propagating cracks.

The evolution of the crack shape can be divided into two
distinct regimes, depending on the factors driving the growth:
the subcritical range is driven by environmental factors such
as moisture, whereas the fast crack range is driven by the
strain energy release rate. The evolution of the crack shape
in both regimes can be determined from a marching time
numerical algorithm provided that the stress profile, the ini-
tial geometry of the specimen, and the crack tip velocity are

Fig. 2. Average mirror constant versus the thickness of the glass
plates, H, as reported by various authors.

Fig. 1. Schematic view of mirror-mist radius, Rm, for a typical
flexural fracture surface.
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known. In the proposed model the tested samples are mono-
tonically loaded in bending. The original flaw therefore ini-
tially propagates in the subcritical growth range until KI

reaches the critical value for the material, KIc. As soon as
KI = KIc, the crack is assumed to be driven by the strain
energy release rate.

The crack growth model for subcritical crack growth has
been developed and validated by Dwivedi and Green.10 The
crack velocity for the subcritical crack growth region can be
described by the equation:

v ¼ ms
KI

KIc

� �n

for KI\KIc (6)

In this study, n = 20 and vs = 0.26 mm/s, based on typical
SLG values reported by Dwivedi et al.10

For fast propagating cracks, the crack tip velocity, v, cor-
relates with the square of the critical SIF over the local
SIF10,11 [Eq. (7)], where cR represents the Raleigh speed.
Observations by numerous authors indicate that the speed of
the crack tip practically only reaches a maximum speed, vmax,
of less than half its theoretical cR value. Hence, the velocity
of the crack tip can be approximated by the equation:

v ¼ cR 1� K2
Ic

K2
Id

� �
for v\vmaxð� cR=2Þ (7)

Equation 7 is a variation of Freund12 equation of motion
where the SIF instead of the energy release rate is used in
the computation of the crack speed. The term KId in Eq. (7)
stands for the dynamic SIF. KId is related to the static SIF
using test data for SLG reported by Sharon and Fineberg.11

The values of cR and vmax used in this work are also based
on the experimental data reported by Sharon et al.,11 i.e.,
cR = 3300 m/s, and vmax = 1550 m/s. Quinn5 and Swartz13

also report similar values.
For the fast crack regime, the Newman and Raju8 equa-

tions are used to determine the quasi-static shape factor at
the crack’s tip along the principal axis (i.e., Y0 and Y90).
These values are then used to calculate the corresponding
dynamic SIF. Based on this SIF calculation, the extensions
of the crack along the principal axes of the elliptical crack

are computed as Da = v90∙DT and Da = v90∙DT, respectively,
where the crack speed is obtained based on either Eqs. (6))
or (7) depending on whether the crack is propagating in the
subcritical range (KI < KIc) or in the fast crack range
(KI ≥ KIc). For the fracture of brittle plates in bending, the
crack shape is assumed semielliptical until the crack front
reaches the depth a = 0.8∙H. Experiments conducted by Sher-
man and Be’ery.14 on SLG plates indicate that, for flexural
tests, the crack does not grow into the depth direction as
a = 0.8∙H, but rather propagates longitudinally while main-
taining a constant crack front shape.

A final remark should be made about how the formation
of mist and corresponding length of the mirror radius, Rm,
was determined in our numerical algorithm. Various authors
suggested that the mist forms at the crack tip as the SIF
reaches KIm. For convenience in the numerical code, we cal-
culated the onset of the mist region based on the velocity of
the crack tip rather than KIm. Based on Eq. (7), the value of
KIm uniquely defines the velocity of the crack tip, vm, at the
onset of the mist, and hence the two criteria are equivalent.
In particular, for a value of the mist SIF, KIm = 2.3 MPa�m1/2

and KIc = 0.75 MPa�m1/2, the velocity of the crack as mist
forms is predicted by Eq. (7) as vm � 0.5 cR, which is consis-
tent with the reported velocity at the onset of the mist region
from previous studies.15

V. Four-Point Bending Tests

To determine the appropriate value of the mirror constant
Am for thin glasses, four-point bending (4PTB) tests were
carried out on thin rectangular glass samples. After all sam-
ples had been tested, the fracture surface for each sample
was inspected by optical microscopy and the dimension of
the mirror radius, Rm, determined according to ASTM
C1256.16 4PTB tests were conducted on ASG (140 samples
each 0.98 mm thick, 28 samples each 0.69 mm thick) and
BSG (35 samples each 0.71 mm thick and 12 samples each
0.32 mm thick). Neither edge treatment nor annealing was
performed on the samples prior to testing. The test setup and
loading rate (1.1 � 0.1 MPa/s), as well as the fixture dimen-
sions were selected based on recommendations outlined in
ASTM Standard C158-02.17 All tests were carried out on an
Instron universal pull tester with a load cell resolution of
0.01 N. As prescribed by ASTM C158-02, the flexural
strength was computed as follows:

rf ¼ 3Ld

bH2
(8)

where L describes the breaking load, d is the moment arm or
distance between adjacent supports and loading edges, b is the
width of the specimen, and H is the thickness of the specimen.
All samples that broke at the rollers were rejected. Equation (8)
is valid for small displacements only. For large displacement
corrections are generally applied to predict the correct stress at
failure. For instance, ASTM Standard D790-0218 considers
what correction should be applied to the stress equation if the
beam experiences large deflections (greater than 10% of the
support span). In this work, the fracture strength was com-
puted by finite element analysis software to include the nonlin-
ear effects due to the large deflections.

VI. Results

In an effort to better understand the relationship between the
mirror radius and the flexural strength of a material frac-
tured in bending, a numerical fracture mechanics model that
incorporates sample thickness dependence to predict the mist
formation was developed. In this section, we describe
the results obtained from testing thin BSG and ASG by
4PTB tests, and augment our experimental data with results

Fig. 3. Block diagram for crack shape evolution algorithm.
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collated from the literature. Overall, the data analyzed
include mirror radii and flexural strength measurements from
glass specimens with thicknesses ranging from 0.3 to 38 mm.
Table I compares the fitting constants computed using Orr’s
equation to our proposed fit for the results obtained from
various experimental studies.

To understand the effects of sample thickness, simulations
based on the crack evolution algorithm are carried out for
various values of H and initial flaw sizes. For each simula-
tion, a pair of flexural strength and mirror radius is obtained.
Repeating this process for a broad set of flaw sizes condi-
tions allows us to obtain trends relating the strength of the
glass to the inverse of the square root of the mirror radius
for various values of H. The data obtained is found to col-
lapse onto a one single curve described by Eq. (9):

rf ¼
KIm 2:02� 1:20 exp �0:459 Rm

H

� �� �
ffiffiffiffi
R

p
m

¼ Amd Rm=Hð Þffiffiffiffi
R

p
m

(9)

The numerator of Eq. (9) defines a “dynamic” mirror coeffi-
cient, Amd, which, unlike Am in Orr’s equation, is a function
of the ratio between the mirror radius and the thickness of
the sample. In the spirit of including the effects of residual
stresses, a constant Drd, analogous to Dro of Eq. (2) was
added to Eq. (9):

rf ¼ AmdðRm=HÞffiffiffiffi
R

p
m

þ Drd (10)

Table I shows that for all the data considered, the mirror
constant, Am, ranges from 1.14 to 2.23 MPa�m1/2, whereas
KIm ranges from 1.77 to 2.81 MPa�m1/2. Based on the data
available, it was found that KIm = 2.29 � 0.15 MPa�m1/2

(N = 213) resulted in the best fit for SLG, KIm =
2.38 � 0.19 MPa�m1/2 for BSG (N = 331), KIm = 2.30 � 0.15
for ASG glass (N = 168), and KIm = 2.11 � 0.14 MPa�m1/2

for flint glass (N = 13). The SIF at the onset of the mist
region, KIm, is found to be independent of the specimen’s
thickness H. Conversely, the magnitude of the mirror con-
stant, Am, generally increases as H increases, as shown in
Fig. 2.

In addition, the residual stresses obtained using Eq. (10),
Drd, are often negative (i.e., compression), whereas Orr’s
relationship predicts positive values (i.e., tension) for Dro in
all cases. The average residual stresses predicted by Orr’s
relationship based on the data analyzed is about 20 MPa,
whereas using the proposed model the average value is
approximately �6 MPa. Finally, the residual stress based on
Orr’s model, Dro, increases as H decreases, whereas no cor-
relation is found between Drd and H. The “residual stresses”
predicted by Orr’s relationship therefore appear, for the most
part, to be a mismatch artifact caused by the simplified fit-
ting equation.

Figure 4 shows a plot for Amd/KIm versus Rm/H for over
770 fractured specimens obtained both from the litera-
ture3,9,12,19,20,20–29 and tests conducted by the authors. It
should be noted that Zaccaria and Overend30 data for flint
glass flexural strength was omitted in the plot as well as in
the calculations of KIm. As Zaccaria’s manuscript did not
report the fixture span used in their 4PTB, it was not possi-
ble to independently verify whether a corrections for large
deflection in the fracture strength calculations should have
been applied to this set of data. In this analysis, mirror radii
larger than 20% of the sample’s width are omitted as the
crack-evolution model described in the previous section
assumes an infinite sample width and finite sample thickness.
SLG, ASG, and BSG are all shown on the same plot as the
values of KIm are similar for the three cases. For reference,
Fig. 4 also shows the trend from the numerical algorithm

Table I. Summary of Fitting Constants and Test Conditions for Flexural Strength Data on Boro-Silicate (BSG), Soda-Lime

(SLG), Alumino–Silicate (ASG), and Flint Glass

Author Glass type H (mm)

Orr’s equation Proposed fit

Samples tested Test conditionsAm (MPa√m) Drο (MPa) KIm (MPa√m) Drd (MPa)

Dugnani BSG 0.3 1.19 88.0 2.18 � 0.16 �0.7 35 4PBT
Dugnani BSG 0.7 1.37 31.6 2.26 � 0.12 �21.4 12 4PBT
Dugnani ASG 0.7 1.14 35.0 1.88 � 0.05 �12.1 28 4PTB
Gulati19 BSG 0.9 1.94 11.9 2.63 � 0.08 �25.5 32 RoR
Dugnani ASG 1.0 1.48 34.1 2.37 � 0.15 �15.6 140 4PTB
Ruggero20 SLG 1.0 1.41 15.0 2.06 � 0.12 �22.7 41 4PTB, annealed
Choi and Gyekenyesi21 SLG 1.5 1.52 13.4 1.77 � 0.27 0.0 12 RoR, annealed
Mecholsky et al.22 SLG 2.0 1.31 18.4 2.34 � 0.16 �19.5 22 4PTB
Gaume and Pelletier23 SLG 2.2 1.47 19.5 1.90 � 0.17 0.0 24 4PTB
Mecholsky and Rice24 BSG/Silicate 2.5 2.13 8.7 2.62 � 0.43 �6.9 21 RoR
Zacaria and Overend30 Flint Glass 3.0 1.37 11.0 n/a n/a 33 4PTB
Kerper and Scuderi25 BSG 4.1 1.85 16.6 2.48 � 0.16 �2.4 22 Flexure, rods
Schwartz13 SLG 4.8 1.84 10.3 2.53 � 0.19 �9.3 25 4PTB, annealed
Kirchner and Conway26 SLG 4.8 1.88 10.1 1.88 2.7 2 Flexure, rods
Kirchner and Kirchner9 Flint 5.0 1.88 25.0 2.09 � 0.16 26.3 25 Flexure, rods
Quinn27 BSG 5.3 1.98 9.6 2.60 � 0.12 �5.0 45 RoR, Annealed
Kirchner and Kirchner9 Flint 6.0 1.68 24.7 2.16 � 0.10 11.2 13 Flexure, rods
Kerper and Scuderi25 BSG 6.1 2.00 7.0 2.51 � 0.16 0.3 20 Flexure, rods
Orr3 SLG 6.4 2.01 4.1 2.81 � 0.05 �12.8 46 RoR
Gaume and Pelletier23 SLG 7.9 1.92 6.9 2.22 � 0.29 0.0 25 4PTB
Kerper and Scuderi25 BSG 9.9 1.78 8.1 2.17 � 0.14 4.9 25 Flexure, rods
Shand28 BSG 11.6 2.23 35.1 2.59 � 0.19 0.0 19 4PTB, annealed

rods
Ball et al.29 SLG 12.5 1.80 1.4 2.11 � 0.11 0.3 16 3PTB, annealed
Kerper and Scuderi25 BSG 19.1 1.87 7.1 2.13 � 0.27 8.4 63 Flexure, rods
Kerper and Scuderi25 BSG 25.4 1.98 6.9 2.53 � 0.17 2.2 39 Flexure, rods
Kerper and Scuderi25 BSG 38.1 1.77 9.1 2.28 � 0.25 4.8 39 Flexure, rods

December 2013 Flexural Strength by Fractography 3911



described by Eq. (10). The data from the literature and the
predictions from our model are in excellent agreement. The
large spread of the strength/mirror radius is associated with
the variation in the strength due to the statistical nature of
strength in brittle materials.

Figure 5 shows a plot of the predicted flexural strength
based on Eq. (10) versus 1/√Rm for H =0.25, 0.5, 1, 2.5 mm
and H ? ∞ for a value of KIm = 2.3 MPa�m1/2. Also on the
same plot are shown data from selected flexural strength tests
conducted on samples with thicknesses ranging from 0.3 to
38.1 mm. The experimental trend is in good agreement with
the behavior predicted by Eq. (10). It is clear that, for
thicker glasses (i.e., H > 2.5 mm), Eq. (10) and Orr’s equa-
tion (H ? ∞) yield almost identical predictions.

VII. Discussion

In this section, we provide a method for estimating the val-
ues of KIm for isotropic brittle materials based on tensile test
data. In addition, we also discuss the limitations of Orr’s
equation and give recommendations regarding the broader
applicability of the proposed model [Eq. (10)].

(1) Estimating KIm

The proposed expression for flexural strength prediction
shown in Eq. (10) can be easily implemented as long as the
value of KIm for the material considered is known. However,
for most brittle materials, this parameter is not readily

available in the literature. Nonetheless, Eq. (5) provides a
relatively simple way to estimate KIm for brittle, isotropic
materials.

For a thick plate (i.e., am << H) in bending, or for any
sample tested in tension, the most likely shape of the initial
flaw after subcritical crack growth is ao/co = 0.85 as shown
by Dwivedi et al.10 A survey conducted on numerous frac-
tured ASG samples31 also confirmed that a0/c0 � 0.8. For
tensile tests on large specimens (or flexural tests on thick
samples), the shape of the flaw will not change substantially
during growth; hence, KIm can be estimated from Eq. (5),
assuming am/Rm = 0.85 and Y0m � 1.3. This yields a simple
expression for estimating KIm:

KIm � 1:2 � Am;T (11)

Am,T in Eq. (11) refers to the mirror constant obtained from
tension tests, which are more common in the literature. For
instance, using the value Am,T = 1.72 � 0.28 MPa�m1/2 for
SLG32 and Am,T = 1.9 MPa�m1/2 for BSG,33 KIm can be esti-
mated as 2.1 MPa�m1/2 (SLG) and 2.3 MPa�m1/2 (BSG).

(2) The Mirror Behavior
Figure 4 shows a plot of the “dynamic” mirror coefficient,
Amd, normalized by KIm versus the ratio Rm/H. Amd has two
asymptotic values corresponding to “infinitely small” and
“infinitely large” values of H. The first part of our discussion
focuses on the expected asymptotic behavior of Amd for the
two cases of very thin and very thick specimens. Two differ-
ent approaches can be used to calculate the behavior of the
mirror coefficient in these limiting cases.

The first approach used to investigate the behavior for the
dynamic mirror constant, Amd, employs Eq. (5). For the infi-
nitely thick sample case, we expect the crack aspect ratio at
the onset of the mirror region, Rm/am � 1.25 and hence
Y0m = 1.3. Substituting into Eq. (5), and assuming an aver-
age value of KIm = 2.4 MPa�m1/2 for SLG and BSG, the
dynamic mirror coefficient Amd � 2.1 as H ? ∞. This value
is in good agreement with reported values for the mirror
constant found in the literature for tests in tension
indicating Am,T = 1.72 MPa�m1/2 (SLG)32 and 1.9 MPa�m1/2

(BSG).33 For thin samples, the effective crack’s aspect ratio
Rm/am is ~3.125 based on observations made by Sherman
et al.10 and hence Y0m � 1.1. Substituting into Eq. (5) yields
the dynamic mirror coefficient Amd = 3.3 as H ? 0. These
analytical asymptotic values based on Eq. (5) are in reason-
able agreement with the values expected from the crack evo-
lution model.

A second approach to estimate the value of the dynamic
mirror coefficient, Amd, for the case of a thick sample is using
Eq. (3). As for thick samples Eq. (10) trends to Orr’s equa-
tion because Am = Amd as H ? ∞, it follows that Eq. (3) can
be used to study the asymptotic behavior of the mirror coeffi-
cient. Taking the limit of Eq. (3) for an infinitely thick sam-
ple, the mirror constant, Am, can be expressed as follows:

lim
H!1

Am ¼ lim
H!1

Amd ¼ KIC
Y0ffiffiffi

2
p

co=Rmð Þ1=2
� KICY0ffiffiffiffiffiffiffiffiffi

2D�p (12)

For an infinitely thick sample, the most likely shape for the
initial flaw after subcritical crack growth is a/c = 0.85, as
shown by Dwivedi et al.,10 corresponding to Y0 � 1.3. Vari-
ous studies estimate the fractal exponent D* for SLG7 (D*
= 0.08), BSG7,34 (D* = 0.07–0.10) and ASG7 (D* = 0.08). In
all cases, only thick samples were considered in the estima-
tion of D*. Assuming a value for the critical strength inten-
sity factor KIc = 0.7–0.75 MPa�m1/2 for BSG, SLG, and
ASG, it follows based on Eq. (11) that Amd|H ? ∞ = 2.0–
2.6 MPa�m1/2. This range is in agreement with the prediction

Fig. 4. Am/KIm versus Rm/H for N = 770 glass samples fractured in
bending.

Fig. 5. Expected glass strength versus 1/√Rm for H = 0.25, 0.5,
1.0, and 2.5 mm, and H ? ∞ (solid lines, KIm = 2.3 MPa�m1/2). Also
shown are flexural strength data for H = 0.3, 0.9, 1, and 38.1 mm.
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of Eq. (5). More accurate measurements for D* would be
required to improve the estimate. Since D* are similar for
the types of glass considered, based on Eqs. (10) and (12),
we should also expect KIm to have similar magnitudes. This
observation is consistent with the results from the previous
section, which indicate almost identical values of KIm for the
types of glass considered.

Figure 5 shows that Orr’s equation can accurately describe
the behavior of the system for thick glasses in bending (i.e.,
H > 2.5 mm). Nonetheless, Orr’s equation becomes more
and more inaccurate for H < 2.5 mm, especially for larger
values of Rm. Equations (13) and (14) give the first and
second derivatives of Eq. (10) with respect to (1/√Rm):

orf

oð1= ffiffiffiffiffiffiffi
Rm

p Þ ¼

KIm 2:02� 1:2 exp �0:459
Rm

H

� �
� 1þ 0:918

Rm

H

	 
� �

(13)

o2rf

oð1= ffiffiffiffiffiffiffi
Rm

p Þ2 ¼� 1:016
Rm

H

ffiffiffiffi
R

p
m exp �0:459

Rm

H

� �
�

0:918
Rm

H� 1

	 
 (14)

The first derivative [Eq. (13)] can be thought of as the local
value of the mirror constant for a given glass thickness and
mirror radius. Near the origin of the axes (i.e., for 1/√Rm ? 0)
the slope of the curve is the steepest and its magnitude has a
value of 2.02KIm. The slope decreases as 1/√Rm increases up
until the inflection point (i.e., second derivative equals zero) is
reached. Past the inflection point, the slope of the curve slowly
increases and its value tends to the asymptotic value of
0.81KIm.

As seen in Fig. 5, most of the strength data available from
the literature fall in the region past the inflection point where
the slope of the strength versus 1/√Rm is almost constant. In
this region, a linear fit as the one proposed by Orr’s equation
generally describes the behavior of the curve but it inevitably
results in a positive intercept with the ordinate axis. This
effect is more obvious for thinner samples. As expected,
thicker samples require a higher positive intercept with the
ordinate axis when fitted using Orr’s equation. All data ana-
lyzed are in the range Rm/H < 7, as the literature does not
report experimental results for very thin, low strength
glasses.

To obtain the value of the inflection point, Eq. (14) can be
set equal to zero, which leads to the equation, Rm = 1.089H.
For values of 1/√Rm to the right of the inflection point (i.e.,
Rm < 1.089H) the slope of the strength versus 1/√Rm curve
changes gradually and Orr’s equation might be used accu-
rately as long as the intercept Dro is either kept small
(H < 2.5 mm) or is known from testing. For approximate
values of the mirror radius such that Rm > 5 � (1.089H), the
slope of the curve changes dramatically as shown in Fig. 5.
It follows that flexural strength data in the approximate
range 1.089H < Rm < 5 � (1.089H) are likely to fit Orr’s lin-
ear equation rather poorly. A typical flexural strength of
70 MPa corresponds to a mirror radius of ~0.75 mm, and
falls in the nonlinear range of the strength versus 1/√Rm

curve for values of H between 0.15 and 0.75 mm.

VIII. Conclusions

In this study, we show that the radius of the mirror region
obtained from brittle bending fractures is a function of the
sample thickness, H. A new relationship to estimate the flex-
ural strength of samples using fractographic measurements

that include the effect of H is proposed. This has important
implications for modern devices in a wide range of industries,
where advanced brittle materials in thin geometries are
becoming increasingly common.

Although previous models based on Orr’s equation are
reasonably accurate for H > 2.5 mm, it is found that for
H < 2.5 mm the linear fit suggested by Orr needs to be offset
by a phenomenological stress fitting constant, Dro, which is
not compatible with stress states typically observed in thin
components; although our approach does not necessarily
require such adjustments, an analogous Drd term that better
represents the underlying residual stress can be included if
desired. In this work, we also describe a simple method for
estimating KIm in brittle isotropic materials based on tradi-
tional tension tests that are more readily available in the
literature.

Our approach is based on a general fracture mechanics
crack evolution framework that is applicable to any brittle
system. As an example to verify the validity of our model,
we applied it to data available from flexural strength tests on
SLG, ASG, and BSG. Flexural data from SLG, ASG, and
BSG indicate that a single fitting parameter, i.e., the static
SIF at the onset of the mist region, KIm, can be used to rea-
sonably predict the strength of glass based on the mirror
radius measurements.
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