
The oligomeric state of CtBP determines its role as
a transcriptional co-activator and co-repressor of
Wingless targets

Chandan Bhambhani1, Jinhee L Chang1,
David L Akey2 and Ken M Cadigan1,*
1Department of Molecular, Cellular and Developmental Biology,
University of Michigan, Ann Arbor, MI, USA and 2Life Sciences Institute,
University of Michigan, Ann Arbor, MI, USA

C-terminal-binding protein (CtBP) is a well-characterized

transcriptional co-repressor that requires homo-dimeriza-

tion for its activity. CtBP can both repress and activate

Wingless nuclear targets in Drosophila. Here, we examine

the role of CtBP dimerization in these opposing processes.

CtBP mutants that cannot dimerize are able to promote

Wingless signalling, but are defective in repressing

Wingless targets. To further test the role of dimerization

in repression, the positions of basic and acidic residues

that form inter-molecular salt bridges in the CtBP dimer-

ization interface were swapped. These mutants cannot

homo-dimerize and are compromised for repression.

However, their co-expression leads to hetero-dimerization

and consequent repression of Wingless targets. Our results

support a model where CtBP is a gene-specific regulator of

Wingless signalling, with some targets requiring CtBP

dimers for inhibition while other targets utilize CtBP

monomers for activation of their expression. Functional

interactions between CtBP and Pygopus, a nuclear protein

required for Wingless signalling, support a model where

monomeric CtBP acts downstream of Pygopus in activa-

ting some Wingless targets.
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Introduction

Wnt/b-catenin signalling has crucial roles in many aspects of

embryonic development and adult homeostasis (Cadigan and

Nusse, 1997; Logan and Nusse, 2004; Clevers, 2006; Cadigan,

2008). Misregulation of this pathway is causal for several

different cancers and other diseases (Giles et al, 2003;

MacDonald et al, 2009). This pathway is activated by a highly

conserved group of secreted glycolipoproteins called Wnts,

which promote the stabilization and nuclear translocation of

cytosolic b-catenin (Kikuchi et al, 2006; Cadigan and Peifer,

2009; MacDonald et al, 2009). Members of the T-cell factor

(TCF)/lymphoid enhancer factor-1 family of transcription

factors are major nuclear binding partners of b-catenin.

Given the widespread importance of Wnt/b-catenin signal-

ling in normal and pathological states, elucidating how the

pathway regulates target gene expression through TCFs

remains an important goal in furthering our understanding

of Wnt biology.

In the absence of Wnt signalling, several different modes

of regulation operate to repress target gene expression.

Although b-catenin is constantly synthesized, it is also

constitutively subjected to phosphorylation by a protein

complex, which includes Axin, adenomatous polyposis coli

(APC), casein kinase I and glycogen synthase kinase 3.

Phosphorylated b-catenin is then ubiquitinated and subjected

to proteosome-mediated degradation (Kikuchi et al, 2006;

Kennell and Cadigan, 2009). b-Catenin that escapes this

destruction is prevented from binding to TCFs by several

factors, which bind to either TCF or b-catenin and/or promote

nuclear efflux of b-catenin (Takemaru et al, 2003; Hamada

and Bienz, 2004; Parker et al, 2007). These factors serve to set

the threshold of nuclear b-catenin needed to affect gene

regulation. Finally, many Wnt transcriptional targets are

repressed in the absence of signalling by TCFs in conjunction

with co-repressors. TCF-mediated recruitment of b-catenin to

Wnt-regulated elements (WREs) causes a ‘transcriptional

switch’ of TCF from a repressor to an activator, turning on

Wnt target gene expression (Cadigan and Peifer, 2009;

Mosimann et al, 2009).

Many factors have been reported to contribute to TCF-

mediated repression of WREs in the absence of signalling and

TCF-mediated activation of WREs upon stimulation of the

pathway. Negative regulators include the co-repressor TLE/

Groucho, the transcriptional repressor Kaiso and the Brahma

and ACF chromatin remodelling complexes (Cavallo et al,

1998; Roose et al, 1998; Collins and Treisman, 2000; Park

et al, 2005; Liu et al, 2008). These factors are either physically

displaced or somehow counteracted upon b-catenin binding

to TCFs (Daniels and Weis, 2005; Parker et al, 2007; Liu et al,

2008). b-Catenin then recruits many co-activators to WREs,

for example, the Legless (Lgs)–Pygopus (Pygo) complex to

the N-terminal transactivation domain of b-catenin, and CBP/

p300 and Paraformbin/Hyrax to the b-catenin’s C-terminal

transactivation domain (Hecht et al, 2000; Stadeli and Basler,

2005; Mosimann et al, 2006; Li et al, 2007).

C-terminal-binding protein (CtBP) is another factor that

has been shown to have important roles in modulating the

Wnt/b-catenin pathway. Overexpression of CtBP can inhibit

Wnt signalling (Brannon et al, 1999; Valenta et al, 2003;

Hamada and Bienz, 2004; Fang et al, 2006). Consistent with

CtBP acting as a transcriptional co-repressor in many contexts

(Turner and Crossley, 2001; Chinnadurai, 2007), CtBP has

been reported to bind directly to TCFs (Brannon et al, 1999;
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Valenta et al, 2003). However, more recent reports have been

unable to find a detectable interaction (Hamada and Bienz,

2004; Valenta et al, 2006). Instead, a CtBP–APC complex was

shown to bind to b-catenin, and prevent its interaction with

TCF4, thus blocking Wnt target gene activation (Hamada and

Bienz, 2004; Sierra et al, 2006).

Our laboratory has previously shown that in Drosophila

cells, CtBP is required for repression of several Wingless (Wg,

a fly Wnt) targets. CtBP is enriched at the WREs of one of

these targets, in a similar pattern as TCF (Fang et al, 2006).

However, CtBP recruitment to these WREs is not dependent

on TCF (Fang et al, 2006). In addition, several Wg targets

were not repressed by CtBP, but instead required CtBP for

maximal activation by the pathway. CtBP was recruited to the

WRE of one of these targets in a TCF and Armadillo (Arm, the

fly b-catenin)-dependent manner (Fang et al, 2006).

Furthermore, a Gal4–Arm fusion requires CtBP for activation

of a UAS-luc reporter and Gal4–Arm can recruit CtBP to the

reporter gene chromatin (Fang et al, 2006). Thus, CtBP

contributes to both aspects of the TCF transcriptional switch,

in a gene-specific manner.

The CtBP family of proteins all contain a conserved central

domain with high homology to NADþ/NADH-dependent

dehydrogenases (Kumar et al, 2002; Nardini et al, 2003).

Dehydrogenase activity has been detected in recombinant

human CtBP1 (hCtBP1) (Kumar et al, 2002; Balasubramanian

et al, 2003; Achouri et al, 2007) but the role of catalytic

function in the transcriptional activity of CtBP is controver-

sial. Mutations in the catalytic site compromise co-repressor

activity (Kumar et al, 2002; Zhang and Arnosti, 2011),

although not in all contexts (Phippen et al, 2000;

Grooteclaes et al, 2003; Sutrias-Grau and Arnosti, 2004;

Mani-Telang et al, 2007; Kuppuswamy et al, 2008). The

catalytic activity of CtBP is crucial for a complete rescue of

CtBP mutants in Drosophila (Zhang and Arnosti, 2011).

However, the role of CtBP in potentiating the activity of

Gal4–Arm in fly cells does not require dehydrogenase activity

(Fang et al, 2006).

Another important factor that can affect the transcriptional

activity of the CtBP family of proteins is their quaternary

structure. In cells, CtBP is thought to exist in an equilibrium

between monomers (Kim et al, 2005; Zhao et al, 2009),

homo-dimers and possible higher order structures

(Balasubramanian et al, 2003; Shi et al, 2003; Thio et al,

2004; Kim et al, 2005; Mani-Telang et al, 2007; Kuppuswamy

et al, 2008; Zhao et al, 2009). Dimerization is stimulated by

NADþ/NADH binding (Kumar et al, 2002; Balasubramanian

et al, 2003; Kim et al, 2005; Kuppuswamy et al, 2008; Nardini

et al, 2009), but mutations in NADþ -binding domain do not

abolish dimerization in all cases (Thio et al, 2004; Mani-

Telang et al, 2007). When crystallized, mammalian CtBP

proteins exist as dimers, and the dimerization interface has

been well defined (Kumar et al, 2002; Nardini et al, 2003).

Mutations in the dimerization interface have been shown to

reduce the function of CtBP as a co-repressor in several

contexts (Kumar et al, 2002; Kuppuswamy et al, 2008; Zhao

et al, 2009).

In this report, we examine whether dimerization of CtBP

has a role in mediating the Wg/Wnt transcriptional switch

in fly cells. Mutant forms of CtBP that cannot dimerize are

still able to activate Wg targets, but are no longer capable

of repression. However, co-expression of different mono-

meric forms of CtBP that can hetero-dimerize restores the

repression activity. We conclude that CtBP dimers act in

repression of Wg targets while CtBP monomers function in

transcriptional activation of Wg targets. In the activation

of Wg targets, functional interactions between CtBP and

pygo in cell culture and the developing fly wing support a

model where monomeric CtBP acts downstream of Pygo to

activate transcription. In addition to gaining a better under-

standing of how CtBP functions in the Wg/Wnt pathway, the

tools developed in this study to uncouple CtBP activation and

repression in Wg signalling can be utilized to explore the

requirement of CtBP oligomerization in other contexts where

CtBP has important biological roles.

Results

Monomeric CtBP activates Wg signalling in flies

CtBP is thought to exist in an equilibrium between mono-

meric (Kim et al, 2005; Zhao et al, 2009), homo-dimeric and

possibly higher ordered homo-oligomeric complexes (Kumar

et al, 2002; Balasubramanian et al, 2003; Nardini et al, 2003;

Shi et al, 2003; Thio et al, 2004; Kim et al, 2005; Mani-Telang

et al, 2007; Kuppuswamy et al, 2008; Zhao et al, 2009).

While the native oligomeric state has mostly been determined

for mammalian CtBP proteins, the entire dehydrogenase

domain of fly CtBP is highly conserved (e.g. fly CtBP and

hCtBP1 domains are 72% identical with 84% similarity).

Nearly all of the residues making inter-molecular contact in

the hCtBP1 homo-dimers are identical in fly CtBP (Kumar

et al, 2002). This information was utilized to construct a fly

CtBP protein that should not be able to dimerize, and thus

remain monomeric.

There are several different isoforms of fly CtBP predicted to

express proteins containing 383, 386, 476 and 479 residues

(Poortinga et al, 1998; Nibu et al, 1998b; Sutrias-Grau and

Arnosti, 2004). The short and long isoforms differ in their

C-termini, downstream of the dehydrogenase domain.

A minigene expressing a CtBP short isoform under the control

of its endogenous regulatory elements can complement the

CtBP mutant phenotype (Zhang and Arnosti, 2011). We have

previously shown that both short and long isoforms can

activate Wg/Arm-dependent transcription (Fang et al,

2006). Hence, a short isoform (383 aa) was used for all

subsequent experiments in this report.

To generate a monomeric CtBP, four conserved residues,

previously shown to be important for hCtBP1 self-association

(Kumar et al, 2002), were mutated in fly CtBP. The resulting

CtBP variant is referred to as CtBPMono. The C134Y and

N138R substitutions should result in steric and electrostatic

hindrance, hence preventing homo-dimerization and the

R141A and R142A mutations should disrupt inter-molecular

salt bridges and hydrogen bonds as predicted for hCtBP1

(Kumar et al, 2002). The normal equilibrium between mono-

mers and dimers in wild-type CtBP (CtBPWT) should be

dramatically shifted to the monomeric state for CtBPMono

(Figure 1A).

To test if the mutations in CtBPMono abolished its ability to

self-associate, differentially tagged CtBP forms were co-trans-

fected in the Drosophila hemocyte-derived cell line Kc167

(Kc) and assayed for binding using co-immunoprecipitation

(co-IP). While CtBPWT-Flag could co-IP CtBPWT-HA, it was not

able to pull-down CtBPMono-HA (Figure 1B). Mutations also
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disrupted the ability of CtBPMono to homo-oligomerize as

judged by this assay (Figure 1B). These results demonstrate

that CtBPMono cannot dimerize, resulting in a ‘forced mono-

mer’ version of CtBP.

To test the role of dimerization in regulating Wg signalling,

transgenic lines were constructed containing CtBPWT or

CtBPMono under the control of the Gal4/upstream activating

sequence (UAS) inducible promoter. These CtBPs can then be

expressed in any fly tissue for which a Gal4 driver line is

available (Phelps and Brand, 1998). We previously reported

that overexpression of CtBP, via nearby insertion of a P[GSV]

element (Toba et al, 1999) could suppress a small eye

phenotype caused by overstimulation of Wg signalling in

the developing eye (Fang et al, 2006). Consistent with these

results, several P[UAS-CtBPWT] lines were able to suppress

the small eye phenotype caused by GMR-Gal4-dependent

expression of a stabilized form of Arm (Arm*) (Figure 2A

and B). Thus, CtBP antagonizes Wg signalling downstream of

Arm stabilization in this assay. In stark contrast, misexpres-

sion of CtBPMono caused a significant enhancement of the

GMR-Gal4::UAS-arm* small eye phenotype (Figure 2A and

C), suggesting that CtBP monomers promote Wg signalling in

this context.

Wg signalling also has a significant role in defining the

wing margin that originates from the dorsal/ventral (D/V)

boundary of the wing imaginal disc. Antagonism of Wg

signalling in this tissue leads to a loss of the wing margin,

causing notches in the adult wing (Phillips and Whittle, 1993;

Couso et al, 1994). To assay the role of CtBPMono in

Wg-directed wing margin formation, a sensitized genetic

background was created by misexpression of Pygo at the

anterior/posterior (A/P) boundary of the wing disc using

Patched-Gal4 (Ptc-Gal4) (Figure 2D–F). Although Pygo is

known to positively regulate Wg signalling (Belenkaya

et al, 2002; Kramps et al, 2002; Parker et al, 2002;

Thompson et al, 2002), misexpression of Pygo antagonizes

Wg signalling, possibly due to disruption of the stoichiometry

of a protein complex (Parker et al, 2002).

In the Ptc-Gal4::UAS-Pygo background employed in this

assay, over 80% of the adult wings displayed notches. These

notches were categorized into two groups based on their size.

Small notches had loss of wing margin only between the L3

and L4 veins (see Figure 2E). Big notches extended beyond

these veins (see Figure 2F). Co-expression of CtBPMono sig-

nificantly suppressed the loss of wing margin caused by

Pygo, with a dramatic reduction in the frequency of big

notches (Figure 2G). These data provide another line of

evidence supporting a positive role for CtBPMono in the

regulation of Wg signalling.

To further test the role of CtBPMono in Wg signalling,

expression of a Distalless enhancer trap line (Dll-lacZ) was

monitored. In larval third instar wing imaginal discs, Dll-lacZ

is activated by Wg in a broad domain centred on the D/V

boundary of the presumptive wing blade (Zecca et al, 1996;

Neumann and Cohen, 1997) (Figure 3A). Transgenic flies

carrying UAS-CtBPWT or UAS-CtBPMono transgenes were

crossed to a Engrailed-Gal4 (En-Gal4) driver, leading to

expression of transgenes in the posterior half of the disc

(Figure 3E and H). Lines expressing CtBPWT and CtBPMono at

similar levels resulted in an enhancement in the Dll-lacZ

expression (Figure 3D, F, G and I; Supplementary Figure

S1). These results provide additional support for positive

regulation of the Wg pathway by CtBPMono.

CtBP monomers promote activation of Wg targets in Kc

cells and CtBP acts downstream of Pygo in activating

transcription

We have previously shown that the expression of the genes

CG6234 and naked cuticle (nkd) is activated by Wg signalling

in Kc cells (Fang et al, 2006). In the absence of signalling,

CtBP and TCF act in parallel to repress nkd expression, but

CtBP is not required for activation of nkd expression by Wg

signalling (Fang et al, 2006). In contrast, CtBP repression of

CG6234 in the absence of signalling is minimal, but CtBP is

required for maximal activation of CG6234 upon Wg stimula-

tion (Fang et al, 2006).

To test whether the positive regulation of CG6234 by CtBP

is occurring at the transcriptional level, a reporter gene

containing a minimal WRE from this target gene was exam-

ined. Figure 4A shows the location of a minimal WRE

(539 bp) derived from a previously reported 2.2 kb WRE

(Fang et al, 2006; see Materials and methods), which is

comparatively more responsive to Wg signalling (data not

shown).

The CG6234 WRE reporter was highly activated by expres-

sion of Arm* in a TCF-dependent manner (Figure 4B). RNAi-

mediated depletion of CtBP also caused a dramatic reduction

in activation of the CG6234 WRE reporter (Figure 4B).

Consistent with the data for CG6234 transcripts (Fang et al,

2006), there was still residual activation of the CG6234 WRE
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Figure 1 Conserved residues in the dimerization interface are
required for self-association of CtBP. (A) Cartoon illustrating the
equilibrium between monomers and dimers of CtBPWT and how
four mutations in the dimerization interface in CtBPMono shift the
equilibrium to monomers. (B) CtBPMono cannot associate with itself
or CtBPWT. A Flag-tagged version of CtBPWT can co-IP CtBPWT-HA
(top panel, lane 3). No signal was observed if CtBPWT-HA was left
out of the transfection (lane 1). In contrast to CtBPWT, CtBPMono-HA
did not co-IP with CtBPWT-Flag (lane 5) or CtBPMono-Flag (lane 7).
The Flag-tagged forms of CtBPWT or CtBPMono were pulled down
with a similar efficiency (lanes 1, 3, 5 and 7, bottom panel). Inputs
(15% of total) for each co-IP are shown in lanes 2, 4 and 6.

CtBP oligomeric state regulates Wingless targets
C Bhambhani et al

&2011 European Molecular Biology Organization The EMBO Journal VOL 30 | NO 10 | 2011 2033



reporter by Arm* in CtBP RNAi-treated cells (Figure 4B).

These data suggest that CtBP acts in parallel with other co-

activators, which are recruited by Arm for activation of

CG6234 WRE reporter.

To test the role of CtBP dimerization in promoting

Wg-mediated transcriptional activation of the CG6234 WRE

reporter, a CtBP gene replacement strategy was employed.

Endogenous CtBP was depleted using dsRNA corresponding

to the 50UTR of CtBP. These cells were then transfected with

the reporter, plus transgenes expressing CtBPWT or CtBPMono.

These CtBP transgenes contained a heterologous 50 UTR, so

they were not targeted by the CtBP RNAi. Activation of the

CG6234 WRE reporter by Wg-conditioned media was then

assayed. Transfection of CtBPMono rescued the CtBP RNAi

defect to a similar level as seen with CtBPWT transfection

(Figure 4C; compare the second and third groups). A similar

rescue of CG6234 WRE reporter activation by CtBPMono was

observed when the Wg pathway was stimulated by expres-

sion of Arm* (Figure 4D). CtBPMono was expressed at similar

levels as CtBPWT in these experiments (Figure 4D and data

not shown). These results demonstrate that CtBPMono is

capable of substituting for endogenous CtBP to promote

activation of the CG6234 WRE reporter.

CtBP has previously been shown to be required for activa-

tion of Gal4–Arm*-dependent activation of a UAS-luc reporter

(Fang et al, 2006). Both CtBPWT and CtBPMono had no effect

on UAS-luc when co-expressed with Gal4DBD (Gal4 DNA-

binding domain). However, both CtBP forms dramatically

enhanced the ability of Gal4–Arm* to activate UAS-luc

(Figure 4E). Taken together with the data from Figure 4D,

these results indicate that like CtBPWT, CtBPMono is function-

ing downstream of Arm to activate Wg transcriptional targets.

Arm contains at least two domains that contribute to

activation of gene expression, a N-terminal and a C-terminal

transactivation domain (Hecht et al, 1999; Stadeli and Basler,

2005; Fang et al, 2006). CtBP is recruited by the N-terminal

domain of Arm for transcriptional activation (Fang et al,

2006). The N-terminal domain of Arm binds to Lgs, which

serves as an adaptor to recruit Pygo to the TCF–Arm complex

(Kramps et al, 2002). In order to explore a possible connec-

tion between CtBP and Pygo in activating transcription, we

tested the ability of a Gal4–Pygo fusion protein to activate the

UAS-luc reporter when endogenous CtBP was depleted. The

activation of UAS-luc reporter by Gal4–Pygo was markedly

reduced in cells treated with CtBP RNAi (Figure 4F). Gal4–

Pygo has previously been shown to activate transcription

independently of Arm and Lgs (Stadeli and Basler, 2005),

suggesting that CtBP acts downstream of Pygo to activate Wg

target gene expression.

CtBP dimerization is required for its antagonistic role

in Wg signalling in Kc cells

We have previously identified three WREs in the nkd locus,

two upstream of the nkd transcriptional start site (nkd-UpE1

and nkd-UpE2) and one in the first intron of nkd (nkd-IntE)

(Chang et al, 2008). While reporters for all three WREs were
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Figure 2 CtBPMono positively regulates Wg signalling in fly tissues. (A–C) Adult eyes of GMR-Gal4::UAS-Arm* flies containing no transgene
(A), UAS-CtBPWT (B) or UAS-CtBPMono (C). The reduction in the fly eye size caused by Arm* expression is suppressed by co-expression CtBPWT

and is enhanced by CtBPMono. (D–F) Representative adult wings from Ptc-Gal4::UAS-Pygo flies that either lack a notch, or contain a small notch
(between the L3 and L4 vein) or big notch (between the L2 and L5 vein) due to antagonism of Wg signalling. (G) The effect of CtBPMono on the
frequency of the Ptc-Gal4::UAS-Pygo-dependent notches. CtBPMono causes a marked reduction in the frequency and size of the wing notches.
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derepressed upon depletion of CtBP, the nkd-UpE1 reporter

consistently exhibited the largest response (Supplementary

Figure S2). In addition, TCF knockdown also caused dere-

pression of nkd-UpE1, while having no effect on nkd-UpE2 or

nkd-IntE (Supplementary Figure S2). Therefore, nkd-UpE1

(Figure 5A) was used for all subsequent experiments to

assay the role of CtBP oligomers in regulating this nkd

WRE. Similar to nkd mRNA (Fang et al, 2006), simultaneous

knockdown of CtBP and TCF resulted in a far greater dere-

pression of nkd-UpE1 reporter activity than with either factor

alone (Figure 5B). TCF has already been shown to be

enriched at the UpE1 WRE (Chang et al, 2008). As judged

by chromatin IP (ChIP), CtBP was also enriched at the nkd-

UpE1 (Supplementary Figure S3), supporting a direct role for

CtBP in repression of this WRE.

To test if dimerization of CtBP was required for inhibition

of Wg targets in the absence of signalling, the ability of

CtBPMono to repress the nkd-UpE1 reporter was assayed.

This was done using a similar gene replacement strategy as

described in Figure 4. As expected, transiently expressed

CtBPWT was able to repress the nkd-UpE1 in the absence of

signalling. Strikingly, CtBPMono was unable to perform this

function (Figure 5C). CtBPMono sometimes caused greater

derepression of nkd-UpE1 than the control (Figure 5C), pos-

sibly due to a weak dominant negative effect on CtBP

repressive activity, but this effect was not always observed

(see Figure 6D). Mutations that abolish self-association of

CtBP, while having no affect on its ability to promote Wg

signalling, severely disrupt its ability to repress Wg target

gene expression in the absence of signalling.

The approach described above is similar to that used in

several other studies to provide evidence that CtBP dimeriza-

tion is required for transcriptional repression (Kumar et al,

2002; Kuppuswamy et al, 2008; Zhao et al, 2009), that is,

correlating loss of dimerization with loss of CtBP activity.

However, this approach cannot rule out that the mutations

disrupting homo-dimerization also affect other aspects of

CtBP function. To provide a more convincing demonstration

of the importance of CtBP self-association in antagonizing

Wg signalling, monomeric versions of CtBP were created that

cannot homo-dimerize, yet possess the ability to hetero-

dimerize with each other. If dimerization is essential for

repression by CtBP, then the monomeric forms should not

be able to repress Wg targets but co-expression of these

complementary monomeric forms should reconstitute dimer-

ization and hence the repressive function of CtBP.

The strategy for engineering complementary monomeric

forms of CtBP required identifying the salt bridges in the CtBP

dimer and then switching the positions of the acidic and basic

residues forming the salt bridge. Such inter-molecular salt

bridge swaps have been previously used to show interaction

or self-association of various proteins (Xiao et al, 1999; Watt

et al, 2001; Venkatachalan and Czajkowski, 2008). Using the

structural information of the highly conserved hCtBP1, two
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Dll-lacZ CtBP Merge

B C

D E F

G H I

Figure 3 CtBPMono positively regulates the Wg reporter Dll-lacZ in vivo. (A–I) Confocal images of third instar wing imaginal discs stained for
Dll-lacZ (A, D, G) and CtBP (B, E, H) expression from animals containing En-Gal4 with no transgene (A–C), UAS-CtBPWT (D–F) or UAS-
CtBPMono (G–I). En-Gal4 drives CtBPWT or CtBPMono expression at similar levels in the posterior compartment of the disc (B, E and H; white
arrows in A, D and G mark the A/P boundary). Expression of either CtBPWT or CtBPMono enhances the expression of Dll-lacZ (see white
arrowheads).
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salt bridges (E126–R173 and E127–R171) formed by con-

served residues were targeted for a swap. CtBPBasic contains

E126R and E127R substitutions, while CtBPAcidic has R173E

and R171E alterations. When expressed on their own,

CtBPBasic and CtBPAcidic should be monomeric but have the

ability to form CtBPBasic/CtBPAcidic hetero-dimers when co-

expressed (Figure 6A).

As expected, co-expression of CtBPBasic and CtBPAcidic led

to association of these molecules at levels similar to those

seen with CtBPWT (Supplementary Figure S4; Figure 6B, lane

2). Co-expression of differentially tagged versions of

CtBPAcidic did not result in an appreciable co-IP (Figure 6B,

lane 1). Assaying self-association of CtBPBasic was compli-

cated by the fact that the V5-tagged version of this protein

was somewhat unstable when expressed with a Flag-tagged

CtBPBasic (Figure 6C, lane 1). Stability was greatly increased

by co-expression with CtBPAcidic (Figure 6C, lane 2). Although

V5-tagged CtBPAcidic was more readily expressed, it also

appeared to be more stable in the presence of the comple-

mentary CtBPBasic (Figure 6C, lanes 3 and 4). In contrast to

the V5-tagged proteins, the Flag-tagged versions were rela-

tively stable when expressed under all conditions (Figure 6C).

Taken together, these data demonstrate that the CtBPAcidic and

CtBPBasic mutants function as predicted, being unable to

homo-dimerize but capable of efficient hetero-dimerization.

When tested for their ability to rescue the derepression of

the nkd-UpE1 reporter in cells depleted of endogenous CtBP,

neither CtBPAcidic nor CtBPBasic were able to provide signifi-

cant repressive activity, similar to the original CtBPMono

mutant (Figure 6D). Remarkably, co-expression of CtBPBasic
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and CtBPAcidic restored the inhibition of nkd-UPE1 in the

absence of signalling, to a similar extent as observed

with CtBPWT. These data provide compelling evidence that

self-association is required for the function of CtBP as a

co-repressor of a Wg transcriptional target.

CtBP dimerization is required for its ability to inhibit

wing margin formation

To extend the findings summarized in Figures 5 and 6 to fly

tissues, the ability of CtBPWT and CtBPMono to affect develop-

ment of the wing was examined. Expression of CtBPWT at the

A/P boundary of the wing disc using the Decapentaplegic-

Gal4 (Dpp-Gal4) driver gave rise to a high frequency of wing

notches (Table I). Expression of CtBP had no effect on the

expression of Wg (Supplementary Figure S5). This phenotype

is consistent with a reduction in Wg signalling at the

presumptive wing margin. In contrast, expression of

CtBPMono never resulted in wing notching (Table I). These

data provide further support for a model where CtBP self-

association is required for the ability of CtBP to antagonize

events downstream of Wg expression in the wing primordium.

To confirm that CtBP dimerization was required for inhibi-

tion of wing margin formation, CtBPBasic and CtBPAcidic

transgenes were also tested for a wing phenotype when

misexpressed using Dpp-Gal4 (Table I). Flies containing two

UAS transgenes each were generated in the following combi-

nations: Acidic/Acidic, Basic/Basic or Acidic/Basic. While

expression of both complementary combinations (Acidic1/

Basic1 or Acidic2/Basic2) resulted in significant wing notch-

ing, Acidic1/Acidic2 or Basic1/Basic2 combinations did not

(Table I). Immunostaining with CtBP antisera was performed

to ensure that comparisons were made with CtBP variant

proteins expressed at similar levels (Supplementary Figure

S5). The CtBP Acidic1/Basic1 and Acidic1/Acidic2 back-

grounds were expressed at similar levels, while the Basic1/

Basic2 and Acidic2/Basic2 combinations were expressed

at slightly lower levels (Supplementary Figure S5). As with

CtBPWT and CtBPMono, Wg expression at the presumptive

margin was not affected by any of the Acidic/Basic combina-

tions (Supplementary Figure S5). These results indicate that

dimerization of CtBP is required for antagonism of Wg

signalling during wing margin formation.

A monomeric pool of CtBP in Kc cells

To assess the distribution of the monomeric and oligomeric

pool of CtBP in cultured Kc cells, the association of V5-tagged

CtBPWT (WT V5) and Flag-tagged CtBPWT (WT Flag) was

examined. Excess WT Flag was expressed, in order to drive

most of the WT V5 into a heteromeric complex (Figure 7A,

lanes 9–12). As expected, WT V5 was found to associate with

WT Flag (Figure 7A, lanes 5–8). In addition, there was a

considerable amount of WT V5 present in the FLAG immu-

nodepleted supernatants, even when a 10-fold higher level of

WT Flag was expressed (Figure 7A, lane 4). This suggests the

existence of a substantial monomeric pool of CtBP.

In order to exclude the possibility that the non-precipitated

WT V5 CtBP was in a homo-oligomeric state, a similar

immunodepletion was performed using V5-tagged CtBPAcidic

(Acidic V5) and Flag-tagged version of CtBPBasic (Basic Flag)

(Figure 7B). These CtBP mutants are unable to form homo-

oligomers (Figure 6B). An increasing dose of Basic Flag was

expressed (Figure 7B, lanes 9–12), and found to associate

with Acidic V5 (Figure 7B, lanes 5–8). As was found with WT

CtBPs, there was a substantial amount of Acidic V5 in the

immunodepleted supernatants, even when 10-fold higher

Basic Flag was expressed (Figure 7B, lane 4). These data

support the view that a significant pool of CtBP is present as

monomers in Kc cells.

Discussion

The oligomeric state of CtBP determines its effect on

Wg signalling

CtBP is well known for its role as a co-repressor for many

transcription factors (Turner and Crossley, 2001; Chinnadurai,

2007; Kuppuswamy et al, 2008). It is also known to antag-

onize Wnt/b-cat signalling, possibly by binding to some TCFs

(Brannon et al, 1999; Valenta et al, 2003) or by acting with
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CtBP oligomeric state regulates Wingless targets
C Bhambhani et al

&2011 European Molecular Biology Organization The EMBO Journal VOL 30 | NO 10 | 2011 2037



APC to divert b-catenin away from TCF (Hamada and Bienz,

2004; Sierra et al, 2006). In Drosophila Kc cells, we have

previously shown that CtBP works in parallel with TCF to

repress expression of the Wg target nkd in the absence of

signalling (Fang et al, 2006). In addition, we found that CtBP

was required for activation of several Wg targets in cultured

cells and fly tissues (Fang et al, 2006). Our data indicate that

CtBP can both repress and activate the Wg pathway in a

gene-specific manner.

In this report, we provide a dramatic example of this

differential regulation of Wg-mediated transcription by CtBP

using WRE reporter constructs. While CtBP is required for

silencing the nkd-UpE1 reporter in the absence of signalling

(Figures 5 and 6), depletion of CtBP results in a significant

reduction of the CG6234 WRE reporter activation upon Wg

stimulation (Figure 4). Since both these WREs are directly

activated by TCF–Arm (Fang et al, 2006; Chang et al, 2008),

these results indicate that additional sequence information

must exist in these elements that influence CtBP’s relation-

ship with TCF and Arm. Our findings that CtBP is required for

activation of a simple UAS-luc reporter by Gal4–Arm* and

Gal4–Pygo fusion proteins (Fang et al, 2006; Figure 4E and F),

suggests that activation by CtBP might be the default state for

the Wg pathway.

How can CtBP both promote and repress transcription of

Wg targets? Our data demonstrate that the quaternary state of

the CtBP protein determines its role as an activator and

repressor. CtBP mutants that cannot homo-dimerize are un-

able to repress nkd-UpE1 expression (Figures 5C and 6D) or
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Table I CtBPAcidic/Basic antagonizes Wg signalling during wing
development

Dpp-Gal44UAS-CtBP (1C) Notches (%)

WT (27) 50.2
Acidic1/Basic1 (27) 43.6
Acidic2/Basic2 (27) 36.0
Acidic1/Acidic2 (27) 0.0
Basic1/Basic2 (29) 0.0
Mono (29) 0.0

Percentage of notched wings (n4100 for each genetic background)
upon co-expression of CtBP trangenes using Dpp-Gal4. Flies were
reared at 27 or 291C to equalize the level of CtBP expression. Two
versions of CtBPBasic and CtBPAcidic (1 and 2) were used, so that the
transgene copy number was equal when comparing Acidic/Acidic,
Basic/Basic and Acidic/Basic wings.
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inhibit wing margin formation (Table I). However, co-expres-

sion of complimentary monomeric CtBP mutants that can

hetero-dimerize restores CtBP repression activity in both

these readouts (Figure 6D and Table I). This provides a

compelling argument that self-association of CtBP is required

for its ability to antagonize Wg transcriptional targets.

In contrast to targets where CtBP inhibits Wg signalling,

monomeric CtBP can rescue the loss of Wg activation of the

CG6234 WRE reporter in Kc cells depleted of endogenous

CtBP (Figure 4C and D). In addition, CtBP monomers en-

hance an Arm-induced small eye phenotype (Figure 2C), can

rescue a weak loss of Wg signalling defect in the fly wing

(Figure 2G) and activate the Wg target Dll-lacZ (Figure 3;

Supplementary Figure S1). Taken together, our data strongly

support a model where CtBP monomers activate and CtBP

dimers repress the Wg pathway in a gene-specific manner.

Normal or monomeric CtBP promote expression of UAS-

luc, CG6234-luc and Dll-lacZ (Figures 3 and 4). In contrast,

wild-type or hetero-dimeric CtBP represses the nkd-UpE1

reporter while monomeric CtBP cannot (Figures 5 and 6).

The situation for CtBP’s action on eye size in a GMR-Arm*

genetic background is more complicated, with WT

CtBP suppressing the reduction in eye size (Figure 2B)

while monomeric CtBP enhances the GMR-Arm*-induced

small eye phenotype (Figure 2C). The same is true for the

wing margin, where monomeric CtBP can rescue the loss

of wing margin caused by a reduction in Wg signalling

(Figure 2D–G), while WT CtBP promotes wing notching

(Table I). We suspect that unlike other Wg readouts, where

either the activation or repressing function of CtBP is domi-

nant, in the GMR-Arm* eye and at the wing margin, both

activities are prevalent, with the repressive function winning

out in oligomeric CtBP expression and the activation function

with monomeric CtBP.

Mechanism of CtBP action on Wg signalling

Why is dimerization required for repression by CtBP? CtBPs

have been shown to bind to many transcriptional repressors and

some interactions require the dimerization of CtBP (Turner and

Crossley, 2001; Kumar et al, 2002; Balasubramanian et al, 2003;

Chinnadurai, 2007; Kuppuswamy et al, 2008). Although homo-

dimerization is dispensable for interaction of CtBP with some

factors, it is clearly required for the function of CtBP as a potent

co-repressor in complex with those factors (Kuppuswamy et al,

2008; Zhao et al, 2009). CtBPs have also been shown to associate

with several chromatin-modifying enzymes, which have crucial

roles in transcriptional repression (Shi et al, 2003; Kuppuswamy

et al, 2008; Zhao et al, 2009). A recent report provides good

evidence that in the case of repression of E-Cadherin by the

repressor ZEB, human CtBP2 dimers act as adaptors between

ZEB and histone deacetylase 2 (HDAC2) (Zhao et al, 2009).

Binding of ZEB and HDAC2 to CtBP monomers was mutually

exclusive, necessitating the need for CtBP dimerization to form

the ZEB–CtBP–HDAC2 complex (Zhao et al, 2009). It is possible

that this mechanism is also operating in the silencing of nkd

expression in Kc cells, though further work is required to identify

the binding partners of CtBP in this system.

In the case of activation, we have previously shown that

CtBP functionally interacts with the N-terminal transactiva-

tion domain of Arm (Fang et al, 2006). This domain of Arm is

bound by Lgs, which is in a complex with Pygo to promote

transcriptional activation (Kramps et al, 2002; Stadeli and

Basler, 2005; Li et al, 2007). Here, we extend our under-

standing of the mode of action of CtBP in activating Wg

targets by demonstrating that CtBP substantially contributes

to transcriptional activation by a Gal4–Pygo fusion protein

(Figure 4F). Since Gal4–Pygo acts downstream of Arm and

Lgs in activating transcription (Stadeli and Basler, 2005), our

results indicate that CtBP acts downstream of Pygo.

The requirement of CtBP for Pygo activity is interesting in

light of the genetic interaction data between pygo and mono-

meric CtBP in the developing wing. Overexpression of pygo

causes notches in the wing margin, which is partially rescued

by expression of monomeric CtBP (Figure 2D–G). Expression

of pygo blocks Wg signalling in several contexts (Parker et al,

2002), presumably by disrupting the stoichiometry of a Lgs–

Pygo–unknown factor(s) complex (i.e. shifting the equili-

brium to Lgs–Pygo and Pygo–unknown factor hetero-di-

mers). The data in Figure 2D–G are consistent with a model

where expression of monomeric CtBP shifts the equilibrium

back to a trimeric, Lgs–Pygo–CtBP complex, which can

promote activation of Wg targets in the wing margin.

The Lgs–Pygo complex is generally required for Wg signal-

ling throughout fly development (Belenkaya et al, 2002;

Parker et al, 2002; Thompson et al, 2002). In Kc cells, Pygo

is required for activation of both CG6234 and nkd by Wg

signalling (Parker and Cadigan, unpublished data). This

suggests that there are other factors involved to explain

why only a subset of Wg targets require CtBP for activation.

In addition, Pygo has also been demonstrated to regulate
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some Wg targets in the absence of signalling, suggesting a

possible link with CtBP in this context (de la Roche and

Bienz, 2007; Mieszczanek et al, 2008).

Regulation of the oligomeric state of CtBP

Several studies have demonstrated that CtBP can self-associ-

ate (Kumar et al, 2002; Balasubramanian et al, 2003; Nardini

et al, 2003; Shi et al, 2003; Thio et al, 2004; Kim et al, 2005;

Mani-Telang et al, 2007; Kuppuswamy et al, 2008; Zhao et al,

2009). However, the presence of a monomeric pool has not

been as extensively demonstrated (Kim et al, 2005; Zhao

et al, 2009). To assess the distribution of monomers versus

oligomers of CtBP, differentially tagged forms of CtBP were

expressed. Even a 10-fold higher dose of CtBP-Flag could not

completely co-immunoprecipitate CtBP-V5 (Figure 7A), indi-

cating that a significant pool of CtBP-V5 is present as mono-

mers or homo-dimers. Because similar results were obtained

using CtBPBasic and CtBPAcidic-tagged forms (Figure 7B),

which prevent homo-oligomerization, our data support a

model where monomeric and homo-oligomeric pools of

CtBP are present in Kc cells.

CtBPs are highly homologous to NADþ/NADH-dependent

dehydrogenases and can bind NADH with high affinity (Fjeld

et al, 2003). However, the role of co-factor based differential

regulation of CtBP oligomerization is controversial. An in-

crease in the NADþ/NADH levels stimulates dimerization of

mammalian CtBPs (Kumar et al, 2002; Balasubramanian

et al, 2003; Thio et al, 2004; Kim et al, 2005). Mutations in

the NADþ/NADH-binding site of CtBPs abolish or reduce

oligomerization (Kumar et al, 2002; Thio et al, 2004;

Kuppuswamy et al, 2008; Nardini et al, 2009), although

NADþ binding is not always essential for dimerization of

CtBP (Mani-Telang et al, 2007). In the case of the short

isoform of fly CtBP, mutations in the NAD-binding cleft

(G181V, G183V) make the protein highly unstable in Kc

cells (Bhambhani and Cadigan, unpublished data). A more

stable NAD cleft mutant (D204N) has nuclear localization

defects and is unable to rescue CtBP mutant flies (Zhang

and Arnosti, 2011). This precludes any functional studies to

test if the NADþ/NADH ratio might affect its role in regulat-

ing Wg targets.

Does stimulation by Wg influence the oligomeric state of

CtBP? In the absence of Wnt signalling, TCF acts with many

other co-repressors to silence target gene expression. This

repression is then counteracted by Arm/b-cat binding to TCF

(Parker et al, 2007; Mosimann et al, 2009). Given the fact that

CtBP dimers repress some Wg targets and CtBP monomers

promote the Wg-dependent activation of some targets, it is

tempting to speculate that Wg signalling causes a conversion

of CtBP dimers to monomers. However, we have been unable

to detect any difference in CtBP self-association with or

without pathway activation in our co-IP assay (Supplemen-

tary Figure S6). Perhaps a more sensitive assay is required to

detect changes in the oligomeric state upon Wg signalling.

An alternative to the Wg pathway influencing the oligo-

meric state of CtBP is a model where a pool of CtBP mono-

mers and dimers exists in the cell in equilibrium (Figure 7).

These pools might be differentially recruited to Wg targets by

selective protein–protein interactions. In the case of CtBP

monomers, this recruitment to WRE is predicted to require

Arm. Although Wg signalling does not appear to influence

the overall CtBP concentration in fly tissues (Fang et al,

2006), protein–protein interactions may cause changes in

the monomer–dimer ratio on the WRE chromatin.

The role of CtBP oligomerization in other systems

The reagents and methodology described in this report can be

applied to other systems where CtBP has important roles in

regulating gene expression. For example, loss of CtBP1 and

CtBP2 in the mouse results in loss of posterior structures in

the embryo, a phenotype that has many similarities to Wnt3a

mutants (Hildebrand and Soriano, 2002). This suggests that

mammalian CtBPs also have a positive role in Wnt signalling.

However, it is also possible that the phenotype is indirect,

that is, CtBP represses a negative regulator of the Wnt path-

way. Similar to fly CtBP, if murine CtBP monomers also have

a positive role in regulating Wg targets, then a gene knockin

of monomeric mCtBP1 or mCtBP2 should rescue the defect in

posterior structures of CtBP knockouts.

In fly embryogenesis, loss of CtBP results in dramatic

disruption of segmentation, due to defects in the striped

pattern of the primary pair rule genes (Poortinga et al,

1998; Nibu et al, 1998a; Strunk et al, 2001). Many of these

defects can be explained by the requirement of CtBP to bind

to gap gene transcription factors (e.g. Kr) and promote

repression (Nibu et al, 1998a; Keller et al, 2000; Nibu and

Levine, 2001; Strunk et al, 2001; Struffi et al, 2004). However,

there are aspects of the CtBP mutant phenotype (e.g. loss of

pair rule stripes (Poortinga et al, 1998; Nibu et al, 1998a) and

genetic interactions (Poortinga et al, 1998; Phippen et al,

2000) that suggest that CtBP may have a positive role in

regulating transcription. Testing whether CtBPMono can rescue

aspects of the CtBP segmentation phenotype may help

determine whether CtBP has a direct role in activating trans-

cription in regulatory hierarchies beyond the Wg pathway.

Materials and methods

Drosophila cell culture
Kc167 cell culture and RNAi-mediated knockdown were performed
as reported previously (Fang et al, 2006). Cells (106/ml) were
soaked in 10mg dsRNA for 4 days, before seeding for transfections.
Primers for dsRNA synthesis have been described elsewhere (Fang
et al, 2006). Transient transfections were performed using Fugene 6
(Roche Applied Science) as per the manufacturer’s instructions.

Plasmids and reporter assays
pAcCtBPshort with 2x Flag tags at the C-terminus (kindly provided
by Dr D Arnosti) was used for all rescue assays. Site-directed
mutagenesis of pAcCtBPshort (hereafter referred to as CtBPWT) was
used to introduce mutations in the dimerization interface to
generate CtBPMono (C134Y, N138R, R141A, R142A), CtBPBasic

(E126R, E127R) and CtBPAcidic (R171E, R173E). The C-terminal
HA-tagged versions were generated by replacing the 2x Flag tags of
pAcCtBPshort by 4x HA tags. The C-terminal V5-tagged versions
were created by cloning the CtBPWT and mutant cDNAs into the
KpnI and NotI sites of pAC 5.1 V5-His (Invitrogen). pGL3nkd-UpE1,
pAcArm*, pAcGal4DBD, pAcGal4Arm*, pUAS-luc and pActinlacZ
constructs have been described elsewhere (Fang et al, 2006; Chang
et al, 2008). pACGal4Pygo was constructing by cloning the dPygo
ORF (815 amino acids) into the KpnI and XhoI sites of pACGal4DBD.
pGL3CG6234 minimal WRE (CG6234 WRE), a 539-bp fragment, was
generated using PCR-based subcloning of a 617-bp region (�3220 to
�2603 relative to the CG6234 transcription start site) from the
previously described pCG6234 (Fang et al, 2006). Deletion of the
region (�2603 to �1465) and an internal 80 bp deletion (�2860 to
�2781) led to B4.5-fold increase in the activation of the WRE by
Arm* in cell culture assays, and hence this reporter was used
thereafter. For transgenic lines, cDNAs for the CtBPWT and mutants
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with two C-terminal flag tags were subcloned into pUAST vector
using the KpnI and XbaI sites.

CG6234 WRE and nkd-UpE1 reporter assays were performed by
transiently transfecting 10–50 ng of the reporter and 150–500 ng
CtBP expression plasmids in 2.5�105 cells/well. The CG6234 WRE
was activated using 100 ml of Wg-CM (derived from stable pTubWg
S2 cells kindly provided by Dr R Nusse) or 50–100 ng of Arm*. For
assays with pUAS-luc, 10 ng of the reporter and 5 ng of Gal4Arm*
was used with 500 ng to 1mg of the CtBP constructs. CtBPMono

protein was less stable compared with CtBPWT and to achieve equal
expression levels, two times more of the CtBPMono plasmid was
transfected compared with CtBPWT in all assays. For all reporter
assays, 5 ng of pAcLacZ was transfected for normalization
and pAC5.1 (Invitrogen) or Gal4DBD to control for DNA amounts.
Luciferase and LacZ assays were performed as described (Fang
et al, 2006).

Drosophila genetics
Transgenic UAS-CtBP lines were generated using the injection
facility at BestGene Inc. (Chino Hills, CA). w1118, GMR-Gal4, Ptc-
Gal4, Dpp-Gal4, En-Gal4 and Dll-lacZ were obtained from Bloo-
mington Stock Center. CtBP transgenes were analysed for their
effect on the small eye phenotype of P[GMR-Gal4] P[GMR-Arm*]
flies as described previously (Cadigan et al, 2002; Parker et al,
2002). Experiments with Ptc-Gal4, GMR-Gal4 and En-Gal4 were
carried out at 251C and Dpp-Gal4 at 27 or 291C.

Immunoblots, immunostains and image quantification
For western blot analysis, anti-Flag (1:2500, Sigma), anti-V5
(1:5000, Invitrogen), anti-HA (1:1000, Roche) and anti-Tubulin
(1:4000, Sigma) were used followed by HRP-conjugated anti-mouse
or anti-rat IgG (Jackson Immunochemicals). Signal was detected
using ECL kit (Amersham). Immunostaining of wing imaginal discs
was performed as described previously (Fang et al, 2006) using anti-
LacZ (1:1000, Abcam), anti-Wg (1:100) and anti-CtBP (1:1000).
Alexa 488- and Cy3-conjugated secondary antibodies were obtained
from Molecular Probes and Jackson Immunochemicals. Samples
were examined using a Leica triple channel confocal microscope
DM6000B-CS and processed using Adobe Photoshop 8.0.

For image quantification, total pixel intensity was determined
using the Volocity Software 5.0 (Perkin-Elmer) after background
subtraction. A region at the D/V boundary with the Dll-lacZ
expression was selected in the anterior and posterior of the wing
imaginal disc (Supplementary Figure S1). The mean pixel intensity
of the posterior was normalized to the anterior.

Co-IP and ChIP
For co-IPs, 6–10�106 Kc cells were seeded with 1 mg pAcCtBP/106

cells for 3 days before harvesting. Cells were resuspended in lysis

buffer (150 mM NaCl, 50 mM HEPES, pH 7.9, 1% CHAPS, 10%
glycerol, 0.1 mM EDTA with complete mini-EDTA free protease
inhibitor cocktail, (Roche) and sonicated thrice on ice in pulses of
6 s. An alternate lysis protocol was used for experiments in Figure 7.
Cells were resuspended in lysis buffer (100 mM potassium
phosphate (pH 7.8), 0.2% Triton X-100, 0.1 mM EDTA with
complete mini-EDTA free protease inhibitor cocktail, (Roche) and
incubated at 41C for 1 h. Lysates were pre-cleared using Protein A/G
sepharose beads. Total protein concentration was measured using
the DC protein assay (Bio-Rad). Lysates corresponding to 3 mg total
protein was used for each IP. In all, 15% of this lysate was saved as
input. The remainder was incubated with 5mg primary antibody for
2 h at 41C followed by incubation with Protein A/G sepharose beads
for 30 min at 41C. The antibody–antigen complexes were washed
four times with lysis buffer and eluted in 60 ml of Laemmli sample
buffer for western blot analysis. Results shown are representative of
at least two independent experiments.

ChIP analysis was performed as described previously (Fang et al,
2006). Briefly 3�106 cells and 10ml of anti-CtBP antisera were used
for every pull down and precipitated DNA subject to quantitative
RT–PCR. Data are expressed as a percent of the input DNA. Specific
primer pairs for the UPE and ORF correspond to N#1 and N#0 in the
nkd locus as reported elsewhere (Fang et al, 2006; Chang et al,
2008).

Supplementary data
Supplementary data are available at The EMBO Journal Online
(http://www.embojournal.org).
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