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Deubiquitinating enzymes (DUBs) control the ubiquitina-

tion status of proteins in various cellular pathways.

Regulation of the activity of DUBs, which is critically

important to cellular homoeostasis, can be achieved at

the level of gene expression, protein complex formation, or

degradation. Here, we report that ubiquitination also

directly regulates the activity of a DUB, ataxin-3, a poly-

glutamine disease protein implicated in protein quality

control pathways. Ubiquitination enhances ubiquitin (Ub)

chain cleavage by ataxin-3, but does not alter its prefer-

ence for K63-linked Ub chains. In cells, ubiquitination of

endogenous ataxin-3 increases when the proteasome is

inhibited, when excess Ub is present, or when the un-

folded protein response is induced, suggesting that the

cellular functions of ataxin-3 in protein quality control are

modulated through ubiquitination. Ataxin-3 is the first

reported DUB in which ubiquitination directly regulates

catalytic activity. We propose a new function for protein

ubiquitination in regulating the activity of certain DUBs

and perhaps other enzymes.
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Introduction

Post-translational modification of proteins by ubiquitin (Ub)

regulates many cellular events. When conjugated to a pro-

tein, Ub targets it to specific subcellular compartments or to

macromolecular complexes, such as the proteasome, achiev-

ing this essentially by altering protein–protein interactions.

An 8 kDa globular protein, Ub, is covalently attached to

proteins through the concerted action of three proteins (E1–

E2–E3). The Ub-activating enzyme (E1) transfers Ub to an

E2-conjugating enzyme. Through a Ub ligase (E3), Ub is

ultimately transferred to a lysine (K) residue of either a target

protein or another Ub, forming an isopeptide bond. Proteins

can be mono-ubiquitinated (one Ub linked to a target pro-

tein), multi-mono-ubiquitinated (two or more single Ub

linked to different lysine residues of a protein) or poly-

ubiquitinated (one or more Ub chains linked to a protein).

As Ub itself contains seven lysines, different chain linkages

can be formed by the direct attachment of one Ub to another.

The best studied among these are K48-linked chains, which

target proteins for proteasomal degradation (Thrower et al,

2000). Other linkages, for example, K63-linked Ub, are im-

plicated in other processes, including DNA repair, the NFkB

pathway, Lewy body and aggresome formation, and autop-

hagy (Arnason and Ellison, 1994; Hofmann and Pickart,

1999; Deng et al, 2000; Pickart and Fushman, 2004; Chen,

2005; Lim et al, 2005; Tan et al, 2007).

Protein ubiquitination is reversed by deubiquitinating en-

zymes (DUBs). Nearly 100 DUBs are encoded by the human

genome (Nijman et al, 2005). Although relatively little is

known about most DUBs, they clearly function as more than

Ub recyclers. DUBs have important functions in numerous

cellular pathways: from DNA transcription to protein degra-

dation, from cell division to death. DUBs perform their

functions by cleaving Ub from proteins, altering the length

or type of Ub chains, or disassembling untethered Ub chains

(reviewed by Amerik and Hochstrasser, 2004; Nijman et al,

2005; Ventii and Wilkinson, 2008). DUB activity can be

regulated at the level of transcription, degradation, complex

formation, or phosphorylation (Amerik and Hochstrasser,

2004; Nijman et al, 2005; Ventii and Wilkinson, 2008; Yao

et al, 2008).

Several DUBs have been reported to be ubiquitinated

(Shen et al, 2005; Wada and Kamitani, 2006; Fernandez-

Montalvan et al, 2007; Meray and Lansbury, 2007; Todi

et al, 2007a), but whether ubiquitination of DUBs directly

regulates their activity has not been reported. The possibility

that DUB activity could be regulated by ubiquitination is

suggested by studies of other enzymes involved in Ub or

Ub-like pathways. For example, the activity of cullin-based

Ub ligases is enhanced through their modification by the Ub-

like protein Nedd8 (Parry and Estelle, 2004; Duda et al, 2008).

Ubiquitination of the E2 Cdc34 inhibits its activity (Scaglione

et al, 2007). Substrate discrimination for Ubc9, the E2 for the

Ub-like modifier SUMO, is regulated by its own SUMOylation

(Knipscheer et al, 2008). Finally, SUMOylation of the DUB

USP25 reduces its enzymatic activity by interfering with the

ability of USP25 to interact with Ub (Meulmeester et al,

2008). Here, we report that the catalytic activity of a DUB,

ataxin-3, is directly enhanced by ubiquitination.

Ataxin-3 (AT3; Figure 1A) is a DUB implicated in Ub-

dependent protein quality control (Wang et al, 2000, 2006;

Burnett et al, 2003; Doss-Pepe et al, 2003; Chai et al,

2004; Mao et al, 2005; Nicastro et al, 2005; Warrick et al,

2005; Zhong and Pittman, 2006). An important feature of

AT3 is its polyglutamine tract, which when expanded causes

the neurodegenerative disorder Spinocerebellar Ataxia Type
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3/Machado–Joseph disease (SCA3/MJD) (Kawaguchi et al,

1994; Stevanin et al, 1995a, b). Through its multiple Ub-

interacting motifs (UIMs; Figure 1A), AT3 binds both K48-

and K63-linked Ub chains, yet preferentially cleaves K63-

linked Ub chains in vitro, and is efficient at cleaving K63

linkages within short, mixed-linkage chains (Winborn et al,

2008). The UIMs are required both for this cleavage prefer-

ence and for the ability to bind Ub chains (Winborn et al,

2008).

AT3 is a putative neuroprotective protein that functions in

protein quality control pathways. AT3 rescues neurodegen-

eration caused by expanded polyQ proteins in Drosophila,

doing so in an activity-dependent manner (Warrick et al,

2005). AT3 has also been implicated in ER-associated degra-

dation (ERAD), where it assists in targeting proteins to the

proteasome (Wang et al, 2006; Zhong and Pittman, 2006).

When coexpressed with Ub, AT3 becomes ubiquitinated in

cells (Shoesmith Berke et al, 2005; Todi et al, 2007a), but the

functional consequences of this ubiquitination are unknown.

Here, we show that ubiquitination of AT3 enhances cleavage

of Ub chains by this DUB and that levels of ubiquitinated AT3

rise with certain cellular stressors. These results show protein

ubiquitination as a direct enhancer of enzymatic activity, and

suggest that the functions of AT3 in protein quality control

are modulated through ubiquitination.

Results

Endogenous AT3 is ubiquitinated

FLAG–AT3 becomes ubiquitinated when coexpressed with Ub

in mammalian cells (Figure 1B). To determine whether

endogenous AT3 is also ubiquitinated, we conducted strin-

gent denature/renature immunopurification of AT3 from cells

(Figure 1C). In neural M17 cells, inhibition of the proteasome

with lactacystin led to the accumulation of higher

molecular weight AT3-immunoreactive bands (Figure 1C).

Immunopurification confirmed that these bands are ubiqui-

tinated forms of AT3 (AT3-Ub), including mono-ubiquitinated

AT3 (Figure 1C). Ubiquitinated AT3 is present also under

non-stressed conditions, although at lower levels. Thus, a

fraction of AT3 is ubiquitinated in unperturbed cells under

steady-state conditions, and proteasome inhibition increases

this fraction.

Ubiquitinated AT3 cleaves Ub chains more quickly than

unmodified AT3

We hypothesized that AT3 ubiquitination might regulate its

enzymatic activity. To investigate this, we purified unmodi-

fied or ubiquitinated AT3 from transfected cells and tested

their activity in vitro (Figure 2A). Immunopurified AT3-Ub

showed markedly increased DUB activity towards K63-linked

hexa-Ub chains (K63-Ub6; Figure 2B). AT3-Ub also rapidly

and quantitatively cleaved higher molecular weight Ub chain

complexes (HMW; Figure 2B) that most likely represent

longer polymers of Ub6 chains (Winborn et al, 2008).

Mutating the catalytic cysteine at position 14 of AT3 to

alanine renders the enzyme inactive (Burnett et al, 2003;

Mao et al, 2005; Nicastro et al, 2005). Catalytically inactive,

ubiquitinated AT3 (AT3(C14A)-Ub) showed no activity to-

wards Ub chains (Figure 2B), indicating that the increased

activity of AT3-Ub is not due to the spurious co-purification of

another DUB. The major AT3-Ub species present in our

immunopurifications is mono-ubiquitinated AT3, suggesting

that a single conjugated Ub is sufficient to activate AT3

(Figure 2B).

To exclude the possibility that AT3-Ub isolated from cells

co-purifies with modulators of its enzymatic activity, we

performed similar reactions with recombinant AT3-Ub

Figure 1 Endogenous AT3 is ubiquitinated under basal conditions,
and its ubiquitination is enhanced during proteasome inhibition.
(A) Schematic of AT3 showing the N-terminal catalytic (Josephin)
domain and the C-terminal Ub-interacting motifs (UIMs) flanking
the polyglutamine tract. (B) AT3 is ubiquitinated in cells. FLAG–AT3
and HA–Ub were coexpressed in Cos7 cells. Lysates were subjected
to stringent immunopurification with anti-FLAG antibody, then
probed with anti-AT3 and anti-HA antibodies. Several high mole-
cular weight ubiquitinated AT3 (AT3-Ub) bands are recognized by
both anti-AT3 (1H9) and anti-HA antibodies. (C) Endogenous AT3 is
ubiquitinated. Left: M17 cells were treated with or without the
proteasome inhibitor lactacystin. Several higher molecular weight
AT3-Ub species present in untreated cells are enriched when the
proteasome is inhibited. Right: AT3 immunoprecipitated with poly-
clonal anti-AT3 antibody (MJD) from cells treated with lactacystin
was probed with monoclonal anti-AT3 (1H9) and anti-Ub (P4D1)
antibodies, confirming that the higher molecular weight forms of
AT3 are ubiquitinated. Asterisks: mono-ubiquitinated AT3 exists in
cells under basal conditions. AT3 doublets probably reflect allelic
differences in the CAG/polyQ repeat in M17 cells. Ctrl: polyclonal,
anti-HA antibody.
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generated in vitro using the E2 UbcH5c and the E3 CHIP.

Recombinant AT3-Ub also showed increased DUB activity

(Figure 2C). Thus, ubiquitination enhances AT3 activity

independent of potential cofactors/interactors or other types

of post-translational modification.

Whereas AT3 does not cleave homotypic tetra-Ub (Ub4)

chains efficiently, it does cleave mixed-linkage Ub4 chains

(Winborn et al, 2008). Similar to unmodified AT3, AT3-Ub

does not cleave K63-Ub4 chains but shows increased activity

towards mixed-linkage Ub4 chains (Supplementary Figure 1).

Therefore, ubiquitination enhances the activity of AT3 with-

out altering its preference for K63-Ub6 or mixed-linkage Ub4

chains.

We next compared the kinetics of DUB activity of AT3-Ub

with unmodified AT3. AT3-Ub prepared in vitro cleaved K63-

Ub6 chains much more rapidly than unmodified AT3: reac-

tion products were detectable within 10 min and went to

completion by 6 h (Figure 3). The major reaction products

were tetra-, tri-, and di-Ub (Figure 3) even in reactions

extending for 20 h (Figure 2). The fact that both AT3 and

AT3-Ub cleave longer chains into smaller chains rather than

into mono-Ub (Figures 2 and 3) suggests that AT3 ubiquitina-

tion enhances activity towards K63-Ub6 chains without

affecting the manner in which it cleaves.

AT3-Ub prepared in vitro comprises a ladder of ubiquiti-

nated species (Figures 2C and 3), suggesting that AT3 mono-

ubiquitination may not be the only activating post-transla-

tional event. Therefore, we compared the activity of AT3-Ub

prepared with wild-type UbcH5c, which can form poly-Ub

chains, with AT3-Ub prepared with UbcH5c(S22R), which

only mono-ubiquitinates substrates because it cannot extend

Ub chains (Brzovic et al, 2006). AT3-Ub prepared either way

was more active than unmodified AT3 (Supplementary Figure 2).

Together, these data show that AT3 activity is enhanced by

ubiquitination and that mono-ubiquitination of AT3 is sufficient

for activation.

UIMs are not necessary for increased AT3 activity by

ubiquitination

The UIMs of AT3 serve at least two functions: they mediate

high-affinity binding to Ub chains and restrict the types of

chains that can be cleaved by AT3. Whereas normal AT3

prefers cleaving K63 linkages, AT3 with mutated UIMs

cleaves K63 and K48 linkages approximately equally well

(Winborn et al, 2008). Considering this important function of

UIMs in modulating the ability of AT3 to bind and cleave Ub

chains, we hypothesized that an intramolecular interaction

between UIMs and Ub conjugated to AT3 might underlie AT3

activation by ubiquitination. We investigated this possibility

with AT3 mutated at conserved residues in each UIM (A-G/

S-D; denoted as AT3(UIM*)). These mutations eliminate

the ability of AT3 to bind Ub chains with high affinity

(Supplementary Figure 3).

The extent of activation of AT3(UIM*)-Ub towards K63

chains was less robust than that observed with AT3(WT)-Ub

(Figure 4A). In contrast, AT3(UIM*)-Ub showed strong

Figure 2 Ubiquitinated AT3 shows enhanced catalytic activity. (A) Diagram of preparation and immunoprecipitation of unmodified and
ubiquitinated FLAG–AT3 from Cos7 cells transfected as indicated. (B) Ubiquitinated AT3 immunopurified from cells cleaves K63-Ub6 chains
more rapidly than does unmodified AT3. AT3(WT), AT3(WT)-Ub, or catalytically inactive AT3-Ub (AT3(C14A)-Ub) (50 nM) were incubated
with K63-Ub6 chains (250 nM). HMW: high molecular weight Ub species. Bottom: membrane was stripped and probed with anti-AT3 antibody.
(C) AT3 ubiquitinated in vitro cleaves K63-Ub6 chains more quickly than does unmodified AT3. Anti-AT3 blot shows GST–AT3 species used in
reactions.
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enhancement of activity towards penta-Ub K48 chains

(K48-Ub5; Figure 4B). Intriguingly, the pattern of activation

towards K63 versus K48 chains is reversed for AT3(WT)-Ub

and AT3(UIM*)-Ub: AT3(WT)-Ub shows greater enhance-

ment of K63 chain cleavage, whereas AT3(UIM*)-Ub shows

greater enhancement of K48 chain cleavage (Supplementary

Figure 4). Thus, although the UIMs are required for prefer-

ential cleavage of homotypic K63 chains by AT3 (Winborn

Figure 3 Accelerated cleavage of K63-Ub6 chains by AT3-Ub. Left: untagged AT3 or AT3-Ub (ubiquitinated in vitro) was incubated with K63-
Ub6 chains for the indicated times. Anti-AT3 blot shows AT3 species used in reactions. Right: time-course of Ub reaction product appearance,
determined by semi-quantification of western blots as shown on the left. Means±standard deviations (s.d.), N¼ 5. Asterisks: statistically
significant difference at Po0.001.

Figure 4 The UIMs of AT3 are not necessary for activation by ubiquitination. (A) Ubiquitinated, UIM-mutated AT3 shows enhanced activity
towards K63-Ub6 chains. Left: wild-type (AT3(WT)) or UIM-deficient AT3 (AT3(UIM*)) was ubiquitinated in vitro, then incubated with K63-
Ub6 chains. Right: semi-quantitative representation of western blot results as on the left. Means±s.d.; N¼ 6. (B) AT3(UIM*)-Ub cleaves K48-
Ub5 chains more quickly than AT3(UIM*). Left: AT3 species were incubated with K48-Ub5 chains. Right: semi-quantitative representation of
four independent experiments. Means±s.d. Anti-AT3 blots show GST–AT3 species used in reactions in (A) and (B).
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et al, 2008), they are not necessary for activation of AT3 by

ubiquitination.

To examine which domains of AT3 are sufficient for

ubiquitination-dependent activation, we studied the effect

of ubiquitination on the activity of the isolated Josephin

domain. The Josephin domain alone (denoted as AT3(J))

comprises amino acids 1–182 and excludes all UIMs.

Although AT3(J)-Ub was not activated towards K63-Ub6

chains (Figure 5A), it cleaved K48-Ub5 chains more rapidly

than unmodified Josephin domain (Figure 5B). These results

support the conclusion that UIMs are not necessary for

activation of AT3 by ubiquitination.

AT3 activation by ubiquitination does not occur in trans

AT3 has been reported to self-associate in cells (Todi et al,

2007a) and in vitro (Ellisdon et al, 2006). It is thus possible

that activation of AT3 by ubiquitination depends on homo-

meric interactions between AT3 proteins. To explore this

possibility, we prepared unmodified and ubiquitinated

forms of catalytically inactive AT3 (AT3(C14A)) to test in

DUB assays with AT3(WT). AT3(C14A) or AT3(C14A)-Ub

was mixed with unmodified, wild-type AT3 at equimolar

concentrations, then incubated with K63-Ub6 chains.

AT3(WT) activity towards K63-Ub6 was not enhanced by

the presence of AT3(C14A)-Ub, indicating that activation

most likely occurs in cis (Figure 5C). Moreover, as both AT3

and AT3-Ub fractionate identically by size-exclusion chroma-

tography (Supplementary Figure 5), ubiquitination of AT3

does not appear to lead to a major change in AT3 tertiary

structure. AT3 runs as an elliptical protein (Chow et al, 2006),

enabling us to use size-exclusion chromatography to detect

large conformational changes. This method, however, cannot

detect conformational changes occurring at a domain or

subdomain level.

Activity of pathogenic AT3 is also enhanced by

ubiquitination

PolyQ expansion in AT3 causes the neurodegenerative dis-

ease SCA3/MJD. Disease protein context and the normal

cellular functions of the implicated protein are important

factors in the selective, progressive neurodegeneration seen

in polyQ diseases (reviewed by Gatchel and Zoghbi, 2005;

Todi et al, 2007b; Williams and Paulson, 2008). Therefore,

understanding how AT3 function is affected by polyQ expan-

sion may provide clues to pathogenesis. Expanded AT3 binds

and cleaves Ub chains similarly to normal AT3 in vitro

(Burnett et al, 2003; Chai et al, 2004; Winborn et al, 2008).

In cells, however, expanded AT3 (AT3(Q80)) leads to accu-

mulation of ubiquitinated proteins, probably through an

indirect mechanism (Winborn et al, 2008). Given both in-

creased AT3 activity when it is ubiquitinated and the fact that

AT3(Q80) becomes ubiquitinated when coexpressed with Ub

(Todi et al, 2007a; and data not shown), we investigated the

ability of AT3(Q80)-Ub to cleave K63 and K48 chains.

Expanded AT3-Ub prepared in vitro showed enhanced activ-

ity towards both K63 and K48 chains (Figure 6A). This

enhancement did not differ from that of wild-type AT3-Ub

(Figure 6B). Thus, polyQ expansion in AT3 does not appre-

ciably alter activation by ubiquitination in vitro.

Ubiquitination of AT3 increases with certain stressors

As AT3 is implicated in Ub-dependent protein quality control

(Wang et al, 2000, 2006; Doss-Pepe et al, 2003; Chai et al,

2004; Warrick et al, 2005; Zhong and Pittman, 2006), we

investigated whether perturbations in protein homoeostasis

alter ubiquitination of endogenous AT3. In M17 (Figure 1C)

and Cos7 cells (Figure 7A), levels of AT3-Ub increased during

proteasome inhibition. Ub overexpression also led to higher

levels of AT3-Ub (Figure 7A). Jointly inhibiting the protea-

some and overexpressing Ub did not further increase AT3

ubiquitination, suggesting a saturation point for endogenous

AT3 ubiquitination. Proteasome inhibition led to higher levels

of conjugated Ub, whereas Ub overexpression increased

levels of both conjugated and non-conjugated Ub

(Figure 7A), suggesting that the ubiquitination status of

AT3 functions as a feedback sensor of the overall levels of

conjugated Ub in the cell.

Ubiquitination of endogenous AT3 also increased when the

unfolded protein response (UPR) was induced by DTT,

although DTT did not appreciably alter levels of conjugated

Ub (Figure 7B). In contrast, acute or prolonged heat shock did

not affect AT3 ubiquitination or Ub levels in Cos7 (Figure 7C),

293, or M17 cells (data not shown). Taken together, these

data suggest a physiological function of AT3 ubiquitination

during some, but not all, stressors.

Lastly, we investigated AT3 ubiquitination in brain lysates

from transgenic mice expressing normal (AT3(Q15)) or

pathogenic AT3 (AT3(Q84)) driven by the prion promoter

(Cemal et al, 2002). Mice expressing AT3(Q84) show motor

anomalies as early as 6 weeks of age (Cemal et al, 2002;

and our unpublished data). AT3(Q84) was consistently more

heavily ubiquitinated than AT3(Q15) in mice aged 4–12

months (Figure 7D). Importantly, this ubiquitinated

AT3(Q84) is in the soluble fraction of brain lysates, indicating

that it is not sequestered into inclusions. These data suggest

that ubiquitination of expanded AT3 may be involved in

SCA3/MJD pathogenesis.

Discussion

We have established that the catalytic activity of a disease-

related DUB, AT3, is directly enhanced by ubiquitination.

Although ubiquitination increases the enzymatic activity of

AT3, it does not alter its preference for cleaving certain Ub

linkages in vitro. The N-terminal half of AT3 containing the

catalytic Josephin domain is sufficient for ubiquitination-

dependent activation, although the C-terminal UIMs that

are known to bind and restrict the types of Ub chains cleaved

by AT3 are not necessary for this phenomenon (Figure 8).

In mammalian cells, the fraction of endogenous AT3 that is

ubiquitinated under normal conditions increases when the

proteasome is inhibited, when excess conjugated Ub is pre-

sent, or when the UPR is induced. Our results show that

ubiquitination of a DUB can directly regulate its enzymatic

properties, and suggest that activation of AT3 by this post-

translational modification serves a function in the cellular

response to certain stressors.

Ubiquitination as a regulator of enzymatic activity

It makes biological sense that DUB activity would be regu-

lated through feedback mechanisms tied to Ub-dependent

pathways. Regulation of activity has been reported for some

Ataxin-3 is activated by ubiquitination
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DUBs at various levels, including transcription (upregula-

tion), phosphorylation (downregulation), interaction with

single proteins (activation or inhibition), incorporation into

complexes (upregulation or downregulation), or proteasomal

degradation (inactivation) (reviewed by Nijman et al, 2005;

Ventii and Wilkinson, 2008; Yao et al, 2008). In addition,

Figure 5 Ubiquitination of the Josephin domain enhances cleavage of K48-linked Ub chains. (A) Ubiquitination of the Josephin domain does
not enhance activity towards K63-Ub6 chains. Left: Josephin domain of AT3 (AT3(J)) was ubiquitinated in vitro and incubated with K63-Ub6
chains. Right: semi-quantitative representation of experiments conducted as on the left. Means±s.d.; N¼ 3. (B) Left: ubiquitinated Josephin
domain has enhanced activity towards K48-Ub5 chains. Right: semi-quantitative representation of experiments conducted as on the left.
Means±s.d.; N¼ 5. Asterisks: statistically significant difference at Po0.01. GST-tagged and untagged Josephin domain proteins yield similar
results. (C) AT3 activation by ubiquitination does not occur in trans. AT3 species were prepared in vitro. Catalytically inactive AT3
(AT3(C14A)), either unmodified or ubiquitinated, was incubated with wild-type AT3 (AT3(WT)) and K63-Ub6 chains. Anti-AT3 blot shows
GST–AT3 species used in reactions. Results representative of three independent experiments are shown.
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USP1, a DUB that functions in DNA repair, inactivates itself

through cleavage upon ultraviolet irradiation (Huang et al,

2006). Cleavage of USP7, which functions in apoptosis, is

accomplished by caspase 3 (Vugmeyster et al, 2002). Here,

we report for the first time that ubiquitination of a DUB

directly regulates its activity.

Among the nearly 100 DUBs expressed in humans, at

least six are known to be ubiquitinated: USP4, USP6, USP7,

UCH-L1, AT3, and Josephin 1 (Shen et al, 2005; Wada and

Kamitani, 2006; Fernandez-Montalvan et al, 2007; Meray

and Lansbury, 2007; Todi et al, 2007a; and our unpublished

data). At least five additional DUBs contain UIMs, a Ub-

binding domain that often promotes ubiquitination of the

host protein (Klapisz et al, 2002; Oldham et al, 2002; Polo

et al, 2002; Shekhtman and Cowburn, 2002; Miller et al,

2004). Therefore, we anticipate that the ability of cells to

control DUB function through ubiquitination will extend

beyond AT3 to other DUBs. Modulation of DUB activity

most likely will prove to be complex and tailored to the

pathways in which the particular DUB participates.

Physiological function of ubiquitinated AT3

AT3 has been implicated in diverse cellular pathways of

protein quality control. In cooperation with Valosin

Containing Protein/p97, AT3 regulates ERAD substrate traf-

ficking to the proteasome. In Drosophila, AT3 rescues neuro-

degeneration from expanded polyQ proteins in an activity-

and proteasome-dependent manner (Wang et al, 2000, 2006;

Doss-Pepe et al, 2003; Chai et al, 2004; Warrick et al, 2005;

Zhong and Pittman, 2006). Building off these reports, we

investigated changes in the ubiquitination levels of endogen-

ous AT3 when the proteasome is impaired, when excess Ub is

present, or when the UPR is induced. In each case, we

observed an increase in levels of AT3-Ub, suggesting a

physiological function of ubiquitinated AT3 during some

stressors. AT3 binds both K48- and K63-linked Ub chains,

but it preferentially cleaves K63-linked Ub chains, and is

efficient at cleaving K63 linkages within mixed-linkage chains

(Winborn et al, 2008). AT3 ubiquitination increases its activ-

ity, but does not alter the preference of AT3 for K63 linkages.

Therefore, during certain types of stress, particularly those

associated with perturbations in Ub chain homoeostasis, we

propose that AT3 activity is upregulated through ubiquitina-

tion, thus helping to restore homoeostasis quickly. The fact

that AT3-Ub levels do not increase during heat shock argues

that this post-translational modification may not be part of a

general response to proteotoxic stress.

We favour the view that increased levels of AT3-Ub when

the proteasome is inhibited do not simply reflect AT3-Ub

being a substrate for proteasomal degradation. When AT3-Ub

is incubated in vitro with proteasome fractions, it is rapidly

deubiquitinated by proteasome-associated DUBs, but the now

unmodified AT3 is only slowly degraded (Todi et al, 2007a).

This suggests that although AT3-Ub is readily deubiquitinated

by proteasome-associated DUBs, it is not a favoured substrate

for proteasomal degradation. Thus, it is possible that protea-

some perturbation leads to accumulation of ubiquitinated

proteins in cells, exceeding the capacity of proteasome-asso-

ciated DUBs to rapidly deubiquitinate proteins, including

AT3-Ub. The resultant increase in AT3-Ub (and correspond-

ingly increased DUB activity) may help to restore Ub-

dependent protein homoeostasis. Once homoeostasis is

reestablished, AT3-Ub levels would be lowered by protea-

some-associated DUBs.

Ubiquitination of AT3 could also regulate its functional

associations with Ub ligases. AT3 interacts with at least three

Ub ligases: E4B (Matsumoto et al, 2004), Hrd1 (Wang et al,

2006), and CHIP (KMS and HLP, manuscript in preparation).

The interaction of AT3 with Ub ligases probably serves a

function beyond merely targeting AT3 for degradation.

Indeed, AT3 may exert an effect as a Ub chain editor within

Ub ligase complexes. As AT3 is ubiquitinated by CHIP during

ubiquitination cycles of model substrates (KMS and HLP,

manuscript in preparation), we propose that AT3 ubiquitination

Figure 6 Expanded (pathogenic) AT3 is also activated by ubiquitination. (A) Recombinant, expanded AT3 (AT3(Q80)) was ubiquitinated
in vitro, then incubated with the indicated Ub chains. AT3(Q80)-Ub shows greater enhancement of activity towards K63-Ub6 chains. (B) Normal
and expanded AT3 show similar enhancement in activity when ubiquitinated. Results in (A) and (B) are each representative of three
independent experiments. Anti-AT3 blots show GST–AT3 species used in reactions.
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serves in part to upregulate its DUB activity so as to facilitate

Ub chain editing when Ub is conjugated to proteins.

The detrimental effects of expanded (i.e., pathogenic)

AT3 on the nervous system were established before the

cellular functions of this disease protein became recognized

(Kawaguchi et al, 1994; Stevanin et al, 1995a, b). As with

other polyQ disease proteins, the mechanism by which

pathogenic AT3 causes neurodegeneration is still poorly

understood. What has become increasingly clear is the im-

portance of protein context to polyQ disease pathogenesis.

Studies of ataxin-1 (the disease protein in Spinocerebellar

Ataxia Type 1) have shown that the relative abundance of

specific ataxin-1 macromolecular complexes differs in normal

and disease states (Lam et al, 2006; Bowman et al, 2007; Lim

et al, 2008). How polyQ expansion affects protein–protein

Figure 7 Levels of ubiquitinated endogenous AT3 are enhanced by certain stressors. (A) The fraction of endogenous AT3 ubiquitinated under
basal conditions is enhanced by proteasome inhibition or by increasing Ub levels. Left: top blot shows Cos7 cells treated with lactacystin
(10mM; 10 h), or transfected with HA–Ub and treated as indicated. Bottom blot shows the same cell lysates loaded in 4–20% SDS–PAGE gel to
probe for conjugated and non-conjugated Ub. All lanes are from the same exposure of the same blot. Right: AT3 was immunoprecipitated from
Cos7 cells treated with lactacystin. Endogenous AT3-Ub bands are detected by both anti-AT3 and anti-Ub antibodies, confirming the identity of
HMW AT3 species on the left as AT3-Ub. Representative results from four independent experiments are shown. (B) Induction of the unfolded
protein response transiently leads to higher levels of ubiquitinated endogenous AT3. Treatment of Cos7 or 293 cells with the UPR inducer, DTT
(5mM), for the indicated times leads to the appearance of a higher molecular AT3 band consistent with ubiquitinated AT3. AT3 doublets in 293
cells most likely reflect allelic differences in CAG/polyQ repeat length. Representative results from at least three independent experiments are
shown. (C) Heat shock does not alter the levels of ubiquitinated endogenous AT3. Cos7 cells were heat-shocked briefly (left) or for a prolonged
time (right). Hsp70 levels confirmed induction of the heat shock response in treated cells. Representative results from at least three independent
experiments are shown. Equal protein was loaded in (A–C). (D) Pathogenic AT3 is more heavily ubiquitinated than unexpanded AT3 in brain
lysates from transgenic mice expressing normal (AT3(Q15)) or expanded (AT3(Q84)) AT3. Left: AT3(Q84) is more heavily ubiquitinated than
AT3(Q15). Asterisk: endogenous AT3. AT3(Q15) mice express the protein more highly than the AT3(Q84) mice. Right: stringent immunopur-
ification of 12-month-old AT3(Q84)-expressing brains shows that the HMW bands in left (AT3(Q84)-Ub) are ubiquitinated AT3.

Figure 8 Effects of protein domains on catalytic properties of AT3.
Ubiquitination of the Josephin domain is sufficient for activation.
Although the UIMs are not necessary for AT3 activation by ubiqui-
tination, they confer Ub linkage preference to the catalytic domain.
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interactions for AT3 is still unknown. Thus far, expanded

AT3 has behaved similarly to non-pathogenic AT3 in vitro

(Burnett et al, 2003; Chai et al, 2004; Winborn et al, 2008).

Likewise, in this study, polyQ expansion in AT3 did not alter

activation by ubiquitination. We should stress, however, that

although we do not notice differences in these in vitro assays,

expanded AT3 could differ in its activity towards endogenous

substrates. Indeed, pathogenic AT3 was shown to be less able

than wild-type AT3 to reduce conjugated Ub levels in cells

overexpressing Ub (Winborn et al, 2008).

We also observed increased ubiquitination of pathogenic

AT3 in a mouse model of SCA3/MJD, suggesting that ex-

panded AT3 ubiquitination is linked to pathogenesis in SCA3/

MJD. Catalytically active AT3 is neuroprotective against toxic

proteins in flies, and expanded AT3 retains this neuroprotec-

tive function (Warrick et al, 2005). As ubiquitinated AT3 has

enhanced catalytic activity, it is possible that in SCA3/MJD

mice, expanded AT3 ubiquitination contributes to neuronal

protection. Future studies investigating whether AT3 ubiqui-

tination is necessary for maintenance of cellular homoeosta-

sis will address this and other possibilities.

AT3 regulation by ubiquitination

Our results indicate that ubiquitination of the isolated

Josephin domain is sufficient to enhance its activity.

Ubiquitination could enhance AT3 activity through at least

two possibilities. First, if unmodified AT3 normally interacts

with Ub chains in a manner that aligns chains so that the

catalytic site has poor access to isopeptide bonds, AT3

ubiquitination could improve Ub chain presentation to the

catalytic site. Ubiquitination could also directly alter the

conformation of the catalytic site on the Josephin domain,

effectively increasing its ability to cleave isopeptide bonds.

The results of our size-exclusion chromatography, which

argue against large conformational changes in AT3 upon

ubiquitination, do not exclude smaller conformational

changes occurring at a sub-domain level. The solution struc-

ture of the Josephin domain has been resolved (Mao et al,

2005; Nicastro et al, 2005). Therefore, identifying where AT3

is ubiquitinated in cells and in vitro, and which of its 15

lysines is important for activation, should offer structural

insight into how AT3 is activated.

Although UIMs are dispensable for ubiquitination-depen-

dent activation of AT3, they do confer upon AT3 a preference

for K63 linkages. Unlike wild-type AT3, AT3 with mutated

UIMs cleaves K48 and K63 linkages approximately equally

well (Winborn et al, 2008). In the current studies, however,

AT3-Ub with mutated UIMs showed more robust activation

towards K48 than K63 linkages. Perhaps the catalytic site has

an inherent preference for K48 linkages, which is altered by

the UIMs in the full protein. In this case, ubiquitination of

AT3 in the absence of UIMs would be expected to enhance its

activity more significantly towards this preferred substrate.

This model is supported by our results with the isolated

Josephin domain, which when ubiquitinated showed activa-

tion towards K48- but not K63-linked Ub.

The enhanced activity of ubiquitinated Josephin domain is

not as pronounced as that of ubiquitinated wild-type AT3

(e.g., compare Figures 3 and 5). Although we have ruled out

the UIMs as necessary for ubiquitination-dependent activa-

tion of AT3, this by no means excludes their importance to

the overall activity of AT3. Indeed, the marked activation of

ubiquitinated wild-type AT3 may reflect the manner in which

UIMs present isopeptide bonds to the catalytic site. It is also

possible that full-length AT3 and the isolated Josephin do-

main are ubiquitinated at different lysines, with each having

a different effect on activation. Knowing where AT3 is

ubiquitinated and understanding the function of the UIMs

in presenting Ub chains to its catalytic site should help our

understanding of overall AT3 activity and its enhancement by

ubiquitination.

Summary

The functional diversity of DUBs must be achieved through a

combination of structural elements, modulatory protein do-

mains, specific protein–protein interactions, and post-transla-

tional modifications. DUBs contain various protein motifs

and interact with distinct partners that assign DUBs to

specific pathways, confer substrate selectivity, and regulate

enzymatic activity. We suggest that direct regulation of

enzymatic activity by ubiquitination further refines the cel-

lular functions of certain DUBs. In the case of AT3, enhance-

ment of activity through ubiquitination may constitute a feed-

forward regulatory process that helps to restore Ub-depen-

dent homoeostasis. Ubiquitination could also serve as a direct

enhancer of activity in other classes of enzymes.

Materials and methods

Constructs
Recombinant proteins are expressed in pGEX-4T1, pGEX-6P1, and
pET28a vectors. FLAG-AT3 is expressed in pVETL (Todi et al, 2007a;
Winborn et al, 2008). To inactivate UIMs, conserved alanine and
serine residues of each UIM were mutated into glycine and aspartic
acid residues, respectively (QuickChange Mutagenesis; Stratagene).
Constructs for UbcH5c(WT) and UbcH5c(S22R) are Addgene
plasmids 12643 and 12644.

Antibodies
The following antibodies were used: rabbit polyclonal anti-Ub
(1:500; Dako); mouse monoclonal anti-Ub (1:500; P4D1; Santa Cruz
Biotech); mouse monoclonal anti-AT3 (1:1000; 1H9; provided by Dr
Yvan Trottier); rabbit polyclonal anti-MJD (1:40 000; Paulson et al,
1997); rabbit polyclonal anti-HSP70 (1:1000; StressGen); rabbit
polyclonal anti-HA (1:500; Y11; Santa Cruz Biotech); goat poly-
clonal anti-GST (1:10 000; GE Healthcare); peroxidase-conjugated,
goat anti-rabbit, goat anti-mouse, and rabbit anti-goat secondary
antibodies (1:15 000; Jackson Immunoresearch).

Cellular treatments, transfections, and protein extraction
For proteasome inhibition, lactacystin (Boston Biochem) was used
at a final concentration of 10–20 mM in regular cell media. For UPR
induction, DTT (Sigma-Aldrich) was used at a final concentration of
5mM in regular media. Heat shocking was conducted at 39 or 411C.
Cells were transfected using Lipofectamine-PLUS (Invitrogen). For
western blotting, cells were lysed in 951C Laemmli buffer with
100 mM DTT, boiled for 5 min, sonicated, centrifuged, and loaded
on 4–20, or 10% SDS–PAGE gels.

Immunopurification and protein preparation
Stringent denature/renature AT3 immunopurification from cells
was conducted as described previously (Todi et al, 2007a). Briefly,
one 10 cm dish per experimental group was lysed in RIPA buffer
(20 mM Tris, 150 mM NaCl, 0.1% SDS, 0.5% deoxycholic acid, 1%
Nonidet P-40, pH 7.4) with protease inhibitors (PI; Sigma-Aldrich),
denatured for 30 min in 1% SDS, then renatured in 4.5% Triton
X-100 for 30 min. Lysates were then incubated with antibody for 2 h
at 41C, rinsed 4� with RIPAþPI and eluted with Laemmli buffer
and boiled for a short time. Anti-AT3 (MJD) antibody used for IPs
was cross-linked to protein A beads (Sigma-Aldrich) using 0.2 M
triethanolamine.
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Protein isolated from Cos7 cells for DUB reactions was collected
by lysing cells in RIPAþPI. For unmodified AT3, cells were
transfected with FLAG–AT3. Lysates from four 10 cm dishes per
experiment were incubated in bead-bound anti-FLAG antibody for
2 h at 41C, rinsed 5� with RIPAþPI, 3� with DUB reaction buffer
(50 mM HEPES, 0.5 mM EDTA, 1 mM DTT, 0.1 mg/ml ovalbumin,
pH 7.5), retained on beads, and used for reactions. We have not
observed FLAG–AT3 ubiquitination in the absence of coexpressed
Ub. To prepare AT3-Ub, cells were transfected with FLAG–AT3 and
HA–Ub. FLAG–AT3 was isolated as above. AT3 was eluted using
3� FLAG peptide (Sigma-Aldrich), incubated with bead-bound
anti-HA antibody (2 h; Dako) to isolate AT3-Ub, rinsed 5� with
RIPAþPI and 3� with DUB reaction buffer, and retained on beads
for reactions. For quantification, a subset of the protein was eluted
from beads using Laemmli buffer and quantified using serial
dilutions and silver staining. Recombinant protein was prepared as
described previously (Todi et al, 2007a; Winborn et al, 2008).
Recombinant protein was eluted using reduced glutathione or
PreScission Protease (GE Healthcare), and quantified using serial
dilutions, Coomassie staining, and UV spectrophotometer (Nano-
Drop; Thermo Scientific).

Brain lysate preparation
Flash-frozen brains from YAC transgenic mice expressing AT3(Q15)
or AT3(Q84) (Cemal et al, 2002) were homogenized in RIPAþPI,
sonicated, and ultracentrifuged. For western blotting, supernatants
were supplemented with 1% final SDS and 100 mM DTT, boiled,
and loaded on 10% SDS–PAGE gels. Stringent immunopurification
was conducted as outlined above.

Ubiquitination reactions
GST-bound AT3 was ubiquitinated in vitro using 1 mM CHIP (E3),
8 mM UbcH5c (E2), 0.16mM E1 (Boston Biochem), 50mM Ub, 4.5mM
MgCl2, and 4.5mM ATP in kinase reaction buffer (50 mM TRIS,
50 mM KCl, 0.2 mM DTT, pH 7.5) for 2 h at 371C. AT3 that was not
ubiquitinated underwent the same treatment, without Ub or ATP/
MgCl2. AT3 and AT3-Ub were purified using glutathione sepharose
beads (GE Healthcare), and retained on beads, or eluted in DUB
reaction buffer (PreScission Protease; GE Healthcare). Protein was
quantified using Coomassie staining and UV spectrophotometer.

Deubiquitination reactions
All DUB reactions were continuous reactions. Protein was
quantified before use with UV spectrophotometer and/or serial
dilutions and silver or Coomassie staining. Ub chains (250 nM;
Boston Biochem) were incubated with AT3 species (50–100 nM)
in DUB reaction buffer at 371C. Fractions were collected at the

indicated times in 2% Laemmli, 100 mM DTT, and boiled for 1 min.
Samples were loaded in 4–20, 10, or 15% SDS–PAGE gels.

Western blotting and quantification
Western blotting was conducted as described previously (Todi et al,
2007a; Winborn et al, 2008). Blots were imaged using autoradio-
graphy film (Kodak) or VersaDoc 5000 MP (Bio-Rad). For semi-
quantification, images were collected exclusively using VersaDoc
5000 MP below-saturation levels, and quantified with Quantity One
(Bio-Rad). Background was subtracted equally among lanes.
Reaction products were added and divided by the sum of all bands
(e.g.,

P
(Ub5, Ub4, Ub3, Ub2, Ub1)/

P
(Ub6, Ub5, Ub4, Ub3, Ub2,

Ub1) for Ub6 chains). Two-tailed Student’s t-test was used for
statistical analyses.

Ub chain binding assay
Binding assays were conducted as described previously (Winborn
et al, 2008). Briefly, GST–AT3 species (250 nM) were incubated
with 250 nM Ub3-7 chains (Boston Biochem) for 30 min at 41C
to minimize proteolysis. Unbound supernatant fractions were re-
moved and added to loading buffer. Beads were washed four times
with buffer A (20 mM HEPES, 120 mM NaCl, 10% glycerol, 1%
Triton X-100, pH 7.4) supplemented with 0.1% Nonidet P-40.
Proteins were eluted with loading buffer.

Size exclusion chromatography
A volume of 100 ml of sample containing 2 mg of purified,
recombinant AT3 or AT3-Ub were separated at 251C on a Superdex
200 HR 10/30 column (Amersham) in U buffer (50 mM Tris (pH
7.5), 50 mM KCl, 0.2 mM DTT) with a flow rate of 1.0 ml/min and a
fraction size of 1 ml. Gel filtration standards (Bio-Rad) were used to
predict apparent molecular weight.

Supplementary data
Supplementary data are available at The EMBO Journal Online
(http://www.embojournal.org).
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