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ABSTRACT

Topics on threshold estimation, multistage methods and random fields

by

Atul Mallik

Co-Chairs: Moulinath Banerjee and Michael Woodroofe

This dissertation addresses problems ranging from threshold estimation in Euclidean

spaces to multistage procedures in M-estimation and central limit theorems for ran-

dom fields.

We, first, consider the problem of identifying the threshold level at which a one-

dimensional regression function leaves its baseline value. This is motivated by appli-

cations from dose-response studies and environmental statistics. We develop a novel

approach that relies on the dichotomous behavior of p-value type statistics around

this threshold. We study the large sample behavior of our estimate in two differ-

ent sampling settings for constructing confidence intervals and also establish certain

adaptive properties of our estimate.

The multi-dimensional version of the threshold estimation problem has connec-

tions to fMRI studies, edge detection and image processing. Here, interest centers on

estimating a region (equivalently, its complement) where a function is at its baseline

level. This is the region of no-signal (baseline region), which, in certain applications,

corresponds to the background of an image; hence, identifying this region from noisy

observations is equivalent to reconstructing the image. We study the computational

xi



and theoretical aspects of an extension of the p-value procedure to this setting, primar-

ily under a convex shape-constraint in two dimensions, and explore its applicability

to other situations as well.

Multi-stage (designed) procedures, obtained by splitting the sampling budget suit-

ably across stages, and designing the sampling at a particular stage based on infor-

mation about the parameter obtained from previous stages, are often advantageous

from the perspective of precise inference. We develop a generic framework for M-

estimation in a multistage setting and apply empirical process techniques to develop

limit theorems that describe the large sample behavior of the resulting M-estimates.

Applications to change-point estimation, inverse isotonic regression, classification and

mode estimation are provided: it is typically seen that the multistage procedure ac-

centuates the efficiency of the M-estimates by accelerating the rate of convergence,

relative to one-stage procedures. The step-by-step process induces dependence across

stages and complicates the analysis in such problems, as careful conditioning argu-

ments need to be employed for an accurate analysis.

Finally, in a departure from the more statistical components of the dissertation,

we consider a central limit question for random fields. Random fields – real valued

stochastic processes indexed by a multi-dimensional set – arise naturally in spatial

data analysis and image detection. Limit theorems for random fields have, therefore,

received considerable interest. We prove a Central Limit Theorem (CLT) for linear

random fields that allows sums to be taken over sets as general as the disjoint union

of rectangles. A simple version of our result provides a complete analogue of a CLT

for linear processes with a lot of uniformity, at the expense of no extra assumptions.

xii



CHAPTER 1

Introduction

A principal task in modern non-parametrics is to devise methods to solve non-

standard problems, problems in which the convergence rate of estimates is different

from
√
n. This is typically due to the parameter of interest being at the boundary or

the non-smooth nature of the model. These non-standard problems find applications

in a variety of disciplines such as genomics, astrophysics, finance, pharmacology,

environmental statistics, image processing and other related fields. Coming up with

efficient estimates and studying their properties is a major challenge in these settings.

It requires applying and extending results from empirical process theory, especially

for M-estimation methods, which forms a major portion of this dissertation. One

such non-standard problem of threshold estimation is studied in Chapter 2 of this

dissertation, extensions and variants of which are considered in detail over Chapters

3 to 5. In Chapter 6, we provide a general treatment of multi-stage procedures which

are found useful in several non-standard problems such as change-point estimation,

inverse isotonic regression and mode estimation.

In a departure from problems with statistical flavor, a part of this dissertation

addresses a central limit question from applied probability. Central limit theorems

(CLTs) answer how (normalized) partial sums of random variables behave asymptoti-

cally in a variety of settings. They are the cornerstone for doing large sample inference

1



in statistics and pose exciting challenges to the theorists. Recently, extending CLTs

for random variables to that for random fields has received considerable interest as

random fields – real valued stochastic processes indexed by a multi-dimensional set –

arise quite naturally in applications from spatial data analysis, statistical mechanics

and image processing. We approach one such problem in Chapter 7 of this disserta-

tion.

This thesis covers three broad topics based on a series of papers and articles by

us. We provide a summary of these topics in the following section.

1.1 Summary and organization of the thesis

1.1.1 Part I: Threshold estimation in various settings

Over the course of Chapters 2 to 5, we study the problem of identifying the

threshold level (equivalently, a region in higher dimensions) at which a regression

function leaves its baseline value. This problem is motivated by applications that arise

in toxicological and pharmacological dose-response studies, environmental statistics,

engineering, image processing and other related fields. In the one-dimensional setting,

we consider a data generating model of the form Y = µ(X) + ε, where µ : [0, 1] 7→ R

satisfies the property that µ(x) = τ0 for x ≤ d0 and µ(x) > τ0 for x > d0 for unknown

τ0 and d0. The interest centers around estimating the threshold level d0.

In Chapter 2, we come up with a novel approach for estimating d0 that relies on the

dichotomous behavior of certain p-values on either side of d0. We study the procedure

for two different sampling settings, one where several responses can be obtained at

a number of different covariate-levels (dose-response) and the other involving limited

number of response values per covariate (standard regression). The estimate is shown

to be consistent and its finite sample properties are studied extensively through sim-

ulations. Our approach is computationally simple and extends to the estimation of

2



the baseline value τ of the regression function, situations with heteroscedastic errors

and to time-series. We illustrate our approach on some real data applications.

This part of the thesis is based on joint work with Bodhisattva Sen, Moulinath

Banerjee and George Michailidis. It appears in our paper Mallik et al. (2011).

In Chapters 3 and 4, we further delve into the large sample properties of our

p-value based estimate in the dose–response and the standard regression settings.

The two settings require fairly different treatment and yield markedly different limit

distributions. However, they exhibit the same rate of convergence. The smoothness

of the regression function in the vicinity of the threshold plays an important role

in determining the rate of convergence. A “cusp” of order k at the threshold d0

yields an optimal rate of N−1/(2k+1), where N is the total budget. In Chapter 3, we

apply non-standard empirical process techniques such as argmin continuous mapping

in the non-unique case to show that the estimate of d0 in the dose–response setting

converges to a minimizer of a generalized compound Poisson process. Based on the

limiting behavior, we provide a recipe for constructing confidence intervals which we

study through a limited simulation study and apply to a dataset from a complex

queuing system.

The estimate for d0 in the standard regression setting is constructed via kernel

estimators which, in spite of starting with independent observations, induce depen-

dence. We address this and other intricacies of the standard regression setting in

Chapter 4, where in conjunction with standard empirical process techniques (meant

for independent and identically distributed random variables), we apply blocking ar-

guments and martingale inequalities to deduce the rate of convergence. We show

that the asymptotic distribution of the normalized estimate of the threshold is the

minimizer of an integrated and transformed Gaussian process. We study the finite

sample behavior of confidence intervals obtained through the asymptotic approxima-

tion using simulations, consider extensions to short-range dependent data, and apply

3



our inference procedure to two datasets from Chapter 3.

Chapters 3 and 4 include collaborative work with Bodhisattva Sen, Moulinath

Banerjee and George Michailidis. They appear in our articles Mallik et al. (2013a)

and Mallik et al. (2013b).

In Chapter 5, we consider the multi-dimensional version of threshold estimation

problem, i.e., we now have a regression function µ : Rd 7→ R such that µ(x) = τ0 for

x ∈ S0 and µ(x) > τ0 for x ∈ Sc0. The problem of identifying the baseline region S0

(equivalently, its complement) arises in a broad range of problems, e.g., determining

high pollution zones in a densely inhabited region, finding active regions from fMRI

studies, image processing and edge detection. The set S0 is the region of no-signal

(baseline region), which, in certain applications, corresponds to the background of

an image; hence, identifying this region from noisy observations is equivalent to re-

constructing the image. The p-value procedure for the one-dimensional case has a

natural extension to this setting but the computational and the theoretical aspects

of the problem become more involved due to complex nature of the set S0, no longer

being identified by a single point d0, and the local behavior of the function µ near the

boundary of S0. We primarily consider the case with a convex shape-constraint on S0

and a cusp type assumption on µ at the boundary of S0. We explore the applicability

of our approach to other situations as well.

This part of the thesis is based on joint work with Moulinath Banerjee and Michael

Woodroofe.

1.1.2 Part II: Multistage procedures

Multi-stage procedures involve splitting the sampling budget suitably across stages

and typically involve designing the sampling at a particular stage based on informa-

tion about the parameter obtained from previous stages. They are often found advan-

tageous from the perspective of precise inference in various non-parametric settings

4



as they typically accentuates the efficiency of the estimates by accelerating the rate

of convergence, relative to one-stage procedures. However, the step-by-step process

induces dependence across stages and complicates the analysis in such problems. In

Chapter 6, we develop a generic framework for M-estimation in a multistage set-

ting. We apply empirical process techniques and careful conditioning arguments to

develop limit theorems that describe the large sample behavior of the resulting M-

estimates. This unified approach is illustrated on a variety of problems ranging from

change-point estimation to inverse isotonic regression and mode estimation.

This part of the thesis is based on joint work with Moulinath Banerjee and George

Michailidis.

1.1.3 Part III: Random fields

As mentioned earlier, random fields are real valued stochastic processes indexed by

a multi-dimensional set which arise naturally in spatial data analysis, image detection

and related fields. We are mainly concerned with proving Central Limit Theorems

(CLT) for linear random fields where sums are taken over sets of arbitrary shape. Most

approaches in the literature rely upon the use of Beveridge–Nelson decomposition to

derive conditions for CLT when sums are taken over rectangles. In Chapter 7, we

provide a different approach that extends the CLT in Ibragimov (1962) for linear

processes to that for linear random fields without putting any extra assumptions.

In its most general form, we prove a CLT when sums of linear random fields are

considered over disjoint union of rectangles.

This part of the thesis is based on joint work with Michael Woodroofe. It appears

in our paper Mallik and Woodroofe (2011).
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Part I

Threshold estimation in various

settings
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CHAPTER 2

Threshold Estimation using p-values

In a number of applications, the data follow a regression model where the regres-

sion function µ is constant at its baseline value τ0 up to a certain covariate threshold

d0 and deviates significantly from τ0 at higher covariate levels. For example, consider

the data shown in the left panel of Fig. 2.1. It depicts the physiological response of

cells from the IPC-81 leukemia rat cell line to a treatment, at different doses; more

details are given in Section 2.2.5. The objective here is to study the toxicity in the

cell culture to assess environmental hazards. The function stays at its baseline value

for high dose levels which corresponds to the dose becoming lethal, and then takes

off for lower doses, showing response to treatment. This problem requires procedures

that can identify the change-point in the regression function, namely where it deviates

from the baseline value. The threshold is of interest as it corresponds to maximum

safe dose level beyond which cell cultures stop responding. Similar problems also

arise in other toxicological applications (Cox, 1987).

Problems with similar structure also arise in other pharmacological dose-response

studies, where µ(x) quantifies the response at dose-level x and is typically at the

baseline value up to a certain dose, known as the minimum effective dose; see Chen

and Chang (2007) and Tamhane and Logan (2002) and the references therein. In such

applications, the number of doses or covariate levels is relatively small, say up to 20,
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Figure 2.1: The three data examples. Left panel: Response of cell-cultures at different
doses. Middle panel: Logratio measurements over range. Right panel:
Annual global temperature anomalies from 1850 to 2009.

and many procedures proposed in the literature are based on testing ideas (Tamhane

and Logan, 2002; Hsu and Berger, 1999). However, in other application domains, the

number of doses can be fairly large compared to the number of replicates at each dose.

The latter is effectively the setting of a standard regression model. In the extreme

case, there is a single observation per covariate level. Data from such a setting are

shown in the middle panel of Fig. 2.1, depicting the outcome of a light detection and

ranging (LIDAR) experiment, used to detect the change in the level of atmospheric

pollutants. This technique uses the reflection of laser-emitted light to detect chemical

compounds in the atmosphere (Holst et al., 1996; Ruppert et al., 1997). The predictor

variable, range, is the distance traveled before the light is reflected back to its source,

while the response variable, logratio, is the logarithm of the ratio of received light

at two different frequencies. The negative of the slope of the underlying regression

function is proportional to mercury concentration at any given value of range. The

point at which the function falls from its baseline level corresponds to an emission

plume containing mercury and, thus, is of interest. An important difference between

these two examples is that the former provides the luxury of multiple observations at

each covariate level, while the latter does not.

Another relevant application in a time-series context is given in the right panel of
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Fig. 2.1, where annual global temperature anomalies are reported from 1850 to 2009.

The study of such anomalies, temperature deviations from a base value, has received

much attention in the context of global warming from both the scientific as well as the

general community (Melillo, 1999; Delworth and Knutson, 2000). The figure suggests

an initial flat stretch followed by a rise in the function. Detecting the advent of global

warming, which is the threshold, is of interest here. While we take advantage of the

independence of errors in the previous two datasets, this application has an additional

feature of short range dependence which needs to be addressed appropriately.

Formally, we consider a function µ(x) on [0, 1] with the property that µ(x) = τ0

for x ≤ d0 and µ(x) > τ0 for x > d0 for some d0 ∈ (0, 1). As already mentioned,

quantities of prime interest are d0 and τ0 that need to be estimated from realizations

of the model Y = µ(X) + ε. We call d0 the τ0 threshold of the function µ. Here τ0 is

the global minimum for the function µ. To fix ideas, we work only with this setting

in mind. The methods proposed can be easily imitated for the first data application

where the baseline stretch is on the right as well as for the second data application

where τ0 is the maximum.

In this generality, i.e., without any assumptions on the behavior of the function

in a neighborhood of d0, the estimation of the threshold d0 has not been extensively

addressed in the literature. In the simplest possible setting of the problem posited,

µ has a jump discontinuity at d0. In this case, d0 corresponds to a change-point for

µ and the problem reduces to estimating this change-point. Such models are well

studied; see Loader (1996), Koul et al. (2003), Pons (2003), Lan et al. (2009) and the

references therein. Results on estimating a change-point in a density can be found in

Ibragimov and Has′minskĭı (1981).

The problem becomes significantly harder when µ is continuous at d0; in particular,

the smoother µ is in a neighborhood of d0, the more challenging the estimation. If d0

is a cusp of µ of some known order k, i.e., the first k − 1 right derivatives of µ at d0
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equal 0 but the k-th does not, so that d0 is a change-point in the k-th derivative, one

can obtain nonparametric estimates for d0 using either kernel based (Müller, 1992)

or wavelet based (Raimondo, 1998) methods. If the degree of differentiability of µ at

d0 is not known, this becomes an even harder problem.

In this chapter, we develops a novel approach for the consistent estimation of d0 in

situations where single or multiple observations can be sampled at a given covariate

value. The developed nonparametric methodology relies on testing for the value of

µ at the design values of the covariate. The obtained test statistics are then used to

construct p-values which, under mild assumptions on µ, behave in markedly different

manner on either side of the threshold d0 and it is this discrepancy that is used to

construct an estimate of d0. The approach is computationally simple to implement

and does not require knowledge of the smoothness of µ at d0. In a dose-response

setting involving several doses and large number of replicates per dose, the p-values

are constructed using multiple observations at each dose. The approach is completely

automated and does not require the selection of any tuning parameter. In the case

of limited or even single observation at each covariate value, referred to as the stan-

dard regression setting, the p-values are constructed by borrowing information from

neighboring covariate values via smoothing which only involves selecting a smoothing

bandwidth. The first data application falls under the dose-response setting and the

other two examples fall under the standard regression regime. We establish consis-

tency of the proposed procedure in both settings.

An estimate of µ, say µ̂, by itself, fails to offer a satisfactory solution for estimating

d0. Naive estimates, using µ̂, may be of the form d̂(1) = sup{x : µ̂(x) ≤ τ0} or

d̂(2) = inf{x : µ̂(x) > τ0}. The estimator d̂(1) performs poorly when µ is not monotone,

and is close to τ0 at values to the far right of d0, e.g., when µ is tent-shaped. Also,

d̂(2), by itself, is not consistent and one would typically need to substitute τ0 with a

τ0 + ηn, with ηn → 0 at an appropriate rate, to attain consistency. In contrast, our
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approach does not need to introduce such exogenous parameters.

2.1 Formulation and Methodology

2.1.1 Problem Formulation

Consider a regression model Y = µ(X) + ε, where µ is a function on [0, 1] and

µ(x) = τ0 for x ≤ d0, and µ(x) > τ0 for x > d0, (2.1)

for d0 ∈ (0, 1), with an unknown τ0 ∈ R. The covariate X is sampled from a Lebesgue

density f on [0, 1] and E(ε | X = x) = 0, σ2(x) = var(ε | X = x) > 0 for x ∈

[0, 1]. We assume that f is continuous and positive on [0, 1] and µ is continuous. No

further assumptions are made on the behavior of µ, especially around d0. We have

the following realizations:

Yij = µ(Xi) + εij, i = 1, . . . , n; j = 1, . . . ,m, (2.2)

with N = m × n being the total budget of samples. The εijs are independent given

X and distributed like ε and the Xis are independent realizations from f . Also, (2.2)

with m = 1 corresponds to the usual regression setting which simply has only one

response at each covariate level.

We construct consistent estimates of d0 in dose-response and standard regression

settings. In the dose-response setting, we allow bothm and n to be large and construct

p-values accordingly. We refer to the corresponding approach as Method 1 from now

on. In the other setting, we consider the case when m is much smaller compared to n

and extend our approach through smoothing. We refer to this extension as Method 2,

which requires choosing a smoothing bandwidth. The two methods rely on the same

dichotomous behavior exhibited by the approximate p-values, although constructed
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differently.

2.1.2 Dose-Response Setting (Method 1)

We start by introducing some notation. Let Ȳi· =
∑m

i=1 Yij/m and x ∈ (0, 1) de-

note a generic value of the covariate. Let σ̂m,n ≡ σ̂ and τ̂m,n ≡ τ̂ denote the estimators

of σ(·) and τ0 respectively. For homoscedastic errors, σ̂m,n(·) is the standard pooled

estimate, i.e., σ̂2
m,n(x) ≡

∑
i,j(Yij − Ȳi·)

2/(nm − m), while for the heteroscedastic

case σ̂2
m,n(Xi) =

∑m
j=1(Yij − Ȳi·)2/(m− 1). Estimators of τ0 are discussed in Section

2.1.4. We seek to estimate d0 by constructing p-values for testing the null hypothesis

H0,x : µ(x) = τ0 against the alternative H1,x : µ(x) > τ0 at each dose Xi = x. The

approximate p-values are

pm,n(Xi) = pm,n(Xi, τ̂m,n) = 1− Φ(
√
m(Ȳi· − τ̂)/σ̂(Xi)).

Indeed, these approximate p-values would correspond to the exact p-values for the

uniformly most powerful test if we worked with a known σ, a known τ and normal

errors.

To the left of d0, the null hypothesis holds and these approximate p-values converge

weakly to a Uniform(0,1) distribution, for suitable estimators of τ0. In fact, the

distribution of pm,n(Xi)s does not even depend on Xi when Xi ≤ d0. Moreover, to

the right of d0, where the alternative is true, the p-values converge in probability to

0. This dichotomous behavior of the p-values on either side of d0 can be used to

prescribe consistent estimates of the latter. We can fit a stump, a piecewise constant

function with a single jump discontinuity, to the pm,n(Xi)s, i = 1, . . . , n, with levels

1/2, which is the mean of a Uniform (0,1) random variable, and 0 on either side

of the break-point and prescribe the break-point of the best fitting stump (in the

sense of least squares) as an estimate of d0. Formally, we fit a stump of the form
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ξd(x) = (1/2)1(x ≤ d), minimizing

M̃m,n(d) = M̃m,n(d, τ̂) =
∑
i:Xi≤d

{pm,n(Xi)− 1/2}2 +
∑
i:Xi>d

{pm,n(Xi)}2 (2.3)

over d ∈ [0, 1]. Let d̂m,n = argmind∈[0,1] M̃m,n(d). The success of our method relies

on the fact that the pm,n(Xi)s eventually show stump like dichotomous behavior. In

this context, no estimate of µ could exhibit such a behavior directly. Our procedure

can be thought of as fitting the limiting stump model to the observed pm,n(Xi)s by

minimizing an L2 norm. In fact, the expression in (2.3) can be simplified. Let

Mm,n(d) =
1

n

∑
i:Xi≤d

(pm,n(Xi)− (1/4)) .

Elementary calculations show that

d̂m,n = sargmax
d∈[0,1]

Mm,n(d).

Here, sargmax denotes the smallest argmax of the criterion function, which does not

have a unique maximum. In fact, d̂m,n corresponds to an order statistic of Xis and the

above criterion is maximized at any point between d̂m,n and the next order statistic.

Our results hold for any maximizer of the criterion; the smallest argmax is chosen

just to fix ideas. The estimate is easy to compute as it requires a simple search over

the order statistics.

In heteroscedastic models, the estimation of the error variance σ̂(·) can often

be tricky. The proposed procedure can be modified to avoid the estimation of

the error variance altogether for the construction of the p-values, as the desired

dichotomous behavior of the p-values is preserved even when we do not normal-

ize by the estimate of the variance. Thus, we can consider the modified p-values

p̃m,n(Xi) = 1 − Φ(
√
m(Ȳi· − τ̂)) and the dichotomy continues to be preserved as
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E{1− Φ(Z)} = 0.5 for a normally distributed Z with zero mean and arbitrary vari-

ance. In practice though, we recommend, whenever possible, using the normalized

p-values as they exhibit good finite sample performance.

Next, we prove the consistency of our proposed procedure when using the un-

normalized p-values. The technique illustrated here can be carried forward to prove

consistency for other variants of the procedure, e.g., when normalizing by the estimate

of the error variance, but require individual attention depending upon the assumption

of heteroscedasticity/homoscedasticity.

Theorem 2.1. Consider the dose-response setting of the problem and let d̂m,n denote

the estimator based on the non-normalized version of p-values, e.g., p̃m,n(Xi) = 1 −

Φ(
√
m(Ȳi·− τ̂)). Assume that

√
m(τ̂m,n− τ0) = op(1) as m,n→∞, i.e., given ε, η >

0, there exists a positive integer L, such that for m,n ≥ L, P (
√
m|τ̂ − τ0| > ε) < η.

Then, d̂m,n − d0 = op(1) as m,n→∞.

The proof is relegated to Section A.1 of Appendix A.

2.1.3 Standard Regression Setting (Method 2)

We now consider the case when m is much smaller than n. Let µ̂(x) = r̂(x)/f̂(x)

denote the Nadaraya–Watson estimator, where

r̂(x) =
1

nhn

n∑
i=1

Ȳi·K

(
x−Xi

hn

)
and

f̂(x) =
1

nhn

n∑
i=1

K

(
x−Xi

hn

)
,

with K being a symmetric probability density (a kernel) and hn the smoothing band-

width. We take hn = cn−β for β ∈ (0, 1). Let σ̂n(·) and τ̂n denote estimators of σ(·)

and τ0 respectively. An estimate of σ2(·) can be constructed through standard tech-

niques, e.g., smoothing or averaging the squared residuals m(Ȳi·− µ̂(Xi))
2, depending
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upon the assumption of heteroscedastic or homoscedastic errors.

For x < d0, the statistic T (x, τ0) =
√
nhn(µ̂(x) − τ0) converges to a normal

distribution with zero mean and variance Σ2(x) = Σ2(x, σ) = σ2(x)K̄2/{mf(x)}

with K̄2 =
∫
K2(u)du. The approximate p-value for testing H0,x against H1,x can

then be constructed as:

pn(x) = pn(x, τ̂n) = 1− Φ (T (x, τ̂n)/Σ(x, σ̂)) ,

where Σ2(x, σ̂) = σ̂2
n(x)K̄2/{mf̂(x)}. It can be seen that these p-values also ex-

hibit the desired dichotomous behavior. Finally, an estimate of d0 is obtained by

maximizing

Mn(d) =
1

n

∑
i:Xi≤d

{pn(Xi)− 1/4} (2.4)

over d ∈ [0, 1]. Let d̂n = sargmaxd∈[0,1] Mn(d). Under suitable conditions on τ̂n, this

estimator can be shown to be consistent when n grows large.

We have avoided sophisticated means of estimating µ(·), as our focus is on esti-

mation of d0, and not particularly on efficient estimation of the regression function.

Also, the Nadaraya–Watson estimate does not add substantially to the computational

complexity of the problem and provides a reasonably rich class of estimators through

choices of bandwidths and kernels.

In many applications, particularly with m = 1 and heteroscedastic errors, estimat-

ing the variance function σ2(·) accurately could be cumbersome. As with Method 1,

Method 2 can also be modified to avoid estimating the error variance, e.g., the estima-

tor constructed using (2.4), based on p̃n(Xi)s, with p̃n(x) = 1−Φ
(√

nhn(µ̂(x)− τ̂n)
)
.

Next, we prove consistency for the proposed procedure when we do not normalize by

the estimate of the variance. The technique illustrated here can be carried forward

to prove consistency for other variants of the procedure. We make the following
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additional assumptions.

(a) For some η > 0, the functions σ2(·) and σ(2+η)(x) ≡ E(|ε|2+η | X = x), x ∈ [0, 1],

are continuous.

(b) The kernel K is either compactly supported or has exponentially decaying tails,

i.e., for some C, D and a > 0, and for all sufficiently large x, P{|W | > x} ≤

C exp(−Dxa), where W has density K. Also, K̄2 =
∫
K2(u)du <∞.

Assumption (a) is very common in non-parametric regression settings for justifying

asymptotic normality of kernel based estimators. Also, the popularly used kernels,

namely uniform, Gaussian and Epanechnikov, do satisfy assumption (b).

Theorem 2.2. Consider the standard regression setting of the problem with m staying

fixed and n→∞. Assume that
√
nhn(τ̂n − τ0) = op(1) as n→∞. Let d̂n denote the

estimator computed using p̃n(Xi) = 1−Φ{T (Xi, τ̂n)}. Then, d̂n−d0 = op(1) as n→

∞.

The proof is given in Section A.2 of Appendix A.

Remark 2.3. The model in (2.2) incorporates situations with discrete responses.

For example, we can consider binary responses with Yijs indicating a reaction to a

dose at level Xi . We assume that the function µ(x), the probability that a subject

yields a reaction at dose x, is of the form (2.1) and takes values in (0, 1) so that

σ2(x) = µ(x)(1 − µ(x)) > 0. The results from this section as well as those from

Section 2.1.2 will continue to hold for this setting.

Remark 2.4. Our assumption of continuity of µ can be dropped and the results from

this section as well as those from Section 2.1.2 will continue to hold provided that µ

is bounded and continuous almost everywhere with respect to Lebesgue measure. This

includes the classical change-point problem where µ has a jump discontinuity at d0

but is otherwise continuous.
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2.1.4 Estimators of τ0

Suitable estimates of τ0 are required that satisfy the conditions stated in Theo-

rems 2.1 and 2.2. In a situation where d0 may be safely assumed to be greater than

some known positive η, an estimate of τ0 can be obtained by taking the average of

the response values on the interval [0, η]. The estimator would be
√
mn-consistent

and would therefore satisfy the required conditions. Such an estimator is seen to be

reasonable for most of the data applications that are considered in this chapter. In sit-

uations when such a solution is not satisfactory, we propose an approach to estimate

τ0 that does not require any background knowledge, once again using p-values.

We now construct an explicit estimator τ̂ of τ0 in the dose-response setting, as

required in Theorem 2.1, using p-values. For convenience, let

Zim(τ) = pm,n(Xi, τ) = 1− Φ
(√

m(Ȳi· − τ)/σ̂m,n(Xi)
)
.

Let τ > τ0. As m increases, for µ(Xi) < τ , Zim(τ) converges to 1 in probability,

while for µ(Xi) > τ , Zim(τ) converges to 0 in probability. For any τ < τ0, it is easy

to see that Zim(τ) always converges to 0, whereas when τ = τ0, Zim(τ) converges to

0 for Xi > d0 and E{Zim(τ)} converges to 1/2 for Xi < d0. Thus, it is only when

τ = τ0 that Zim(τ)s are closest to 1/2 for a substantial number of observations. This

suggests a natural estimate of τ0:

τ̂ ≡ τ̂m,n = argmin
τ

n∑
i=1

{Zim(τ)− 1/2}2. (2.5)

Theorem 2.5 shows that under some mild conditions and homoscedasticity,
√
m (τ̂m,n−

τ0) is op(1), a condition required for Theorem 2.1.

Theorem 2.5. Consider the same setup as in Theorem 2.1. Assume that the errors

are homoscedastic with variance σ2
0. Further suppose that the regression function µ
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satisfies:

(A) Given η > 0, there exists ε > 0 such that, for every τ > τ0,

∫
{x>d0:|µ(x)−τ |≤ε}

f(x)dx < η.

Also assume that φm, the density function of
√
mε1./σ0, converges pointwise to φ, the

standard normal density. Then
√
m (τ̂m,n − τ0) = op(1).

This proof is given in Section A.3 of Appendix A.

Remark 2.6. Condition (A) is guaranteed if, for example, µ is strictly increasing

to the right of d0 although it holds under weaker assumptions on µ. In particular,

it rules out flat stretches to the right of d0. The assumption that φm converges to

φ is not artificial, since convergence of the corresponding distribution functions to

the distribution function of the standard normal is guaranteed by the central limit

theorem.

This approach in (2.5) can also be emulated to construct estimators of τ0 for

the standard regression setting by just going through the procedure with pn(Xi, τ)s

instead of pm,n(Xi, τ)s and it is clear that this estimator is consistent. However,

the theoretical properties of this estimator, such as the rate of convergence, are not

completely known. Nevertheless, the procedure has good finite sample performance

as indicated by the simulation studies in Section 2.2. The estimator is positively

biased. This is due to the fact that a value larger than τ0 is likely to minimize the

objective function in (2.5) as it can possibly fit the p-values arising from a stretch

extending beyond [0, d0], in presence of noisy observations. The values smaller than

τ0 do not get such preference as the true function never falls below τ0.
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2.1.5 To smooth or not to smooth

The consistency of the two methods established in the previous sections justifies

good large sample performance of the procedures, but does not provide us with prac-

tical guidelines on which method to use given a real application. In dose-response

studies, it is quite difficult to find situations where both m and n are large. Typically,

such studies do not administer too many dose levels which precludes n from being

large. So, we compare the finite sample performance of the two methods for different

allocations of m and n to highlight their relative merits.

We study the performance of the two methods for three different choices of re-

gression functions. All these functions are assumed to be at the baseline value 0 to

the left of d0 ≡ 0.5. Specifically, M1 is a piece-wise linear function rising from 0 to

0.5 between d0 and 1; M2, a convex curve, grows like a quadratic beyond d0, and

reaches 0.5 at 1; M3 rises linearly with unit slope for values ranging from d0 to 0.8

and then decreases with unit slope for values between 0.8 and 1.0. So, M1 and M2

are strictly monotone to the right of d0 and exhibit increasing level of smoothness at

d0. On the other hand, M3 is tent-shaped and estimating d0 is expected to be harder

for M3 compared to M1.

For each allocation pair (m,n) and a choice of a regression function, we generate

responses {Yi1, . . . , Yim}, with Yij = µ(Xi) + εij, the εijs being independent N(0, σ2)

with σ = 0.3. The Xis are sampled from Uniform(0,1). The performance for es-

timating d0 ≡ 0.5 is studied based on root mean square error computed over 2000

replicates, assuming a known variance and a known τ0 ≡ 0. For illustrative purposes,

we use the Gaussian kernel for Method 2. It will be seen that a bandwidth of the form

hn = h0n
−1/(2k+1) is chosen as it is expected to attain the optimal rate of convergence

for estimating a cusp of order k (see also Raimondo (1998)). For M1 and M3, k = 1

while for M2, k is 2. We report the simulations for the best h0 which minimizes the

average of the root mean square errors for the sample sizes considered, over a fine
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(m,n)
M1 M2 M3

Method 1 Method 2 Method 1 Method 2 Method 1 Method 2
(0.04n−1/3) (0.08n−1/5) (0.04n−1/3)

(5 5) 0.169, 0.045 0.180, 0.096 0.202, 0.116 0.218, 0.109 0.205, 0.075 0.237, 0.143
(5 10) 0.157, 0.067 0.166, 0.091 0.218, 0.172 0.213, 0.115 0.201, 0.109 0.208, 0.124

(10 10) 0.134, 0.033 0.141, 0.056 0.190, 0.139 0.193, 0.086 0.149, 0.046 0.156, 0.069
(10 15) 0.118, 0.049 0.126, 0.052 0.187, 0.155 0.190, 0.078 0.122, 0.053 0.129, 0.058
(10 20) 0.108, 0.062 0.109, 0.046 0.185, 0.167 0.176, 0.069 0.109, 0.064 0.110, 0.049
(15 10) 0.125, 0.018 0.126, 0.040 0.177, 0.117 0.184, 0.070 0.135, 0.020 0.132, 0.046
(15 15) 0.104, 0.038 0.109, 0.040 0.172, 0.140 0.175, 0.066 0.109, 0.038 0.112, 0.038
(15 20) 0.094, 0.042 0.098, 0.038 0.170, 0.149 0.174, 0.059 0.092, 0.044 0.100, 0.036
(20 10) 0.124, 0.010 0.123, 0.029 0.165, 0.112 0.175, 0.065 0.127, 0.007 0.123, 0.039
(20 15) 0.102, 0.025 0.106, 0.025 0.162, 0.133 0.170, 0.058 0.103, 0.026 0.106, 0.027
(20 20) 0.089, 0.033 0.097, 0.023 0.159, 0.139 0.161, 0.054 0.087, 0.036 0.093, 0.027
(3 80) 0.162, 0.145 0.105, 0.080 0.269, 0.262 0.164, 0.093 0.197, 0.166 0.110, 0.083

(3 100) 0.162, 0.146 0.099, 0.077 0.270, 0.265 0.159, 0.089 0.187, 0.159 0.098, 0.074
(4 80) 0.141, 0.124 0.094, 0.069 0.248, 0.242 0.157, 0.086 0.150, 0.129 0.098, 0.068

(4 100) 0.140, 0.125 0.088, 0.063 0.249, 0.244 0.148, 0.078 0.144, 0.125 0.087, 0.063

Table 2.1: Root mean square errors and biases , the first and second entries respec-
tively, for the estimate of threshold d0 obtained using Methods 1 and 2,
for the three models with σ = 0.3 and different choices of m and n.

grid.

The root mean square errors and the biases for each allocation pair are given in

Table 2.1. Both procedures are inherently biased to the right as the p-values are not

necessarily close to zero to the immediate right of d0. When m and n are comparable,

e.g., m ≤ 15 and n ≤ 15, Method 2, which relies on smoothing, does not perform well

compared to Method 1. However, when m is much smaller than n, e.g., m = 4 and

n = 80, smoothing is efficient and Method 2 is preferred over Method 1. When both

m and n are large, both methods work well. As Method 1 does not require selecting

any tuning parameter, we recommend Method 1 in such situations.

2.1.6 Extension to Dependent Data

The global warming data falls under the standard regression setup, but involves

dependent errors. Moreover, the data arises from a fixed design setting, with observa-

tions recorded annually. Here, we discuss the extension of Theorem 2.2 in this setting.

With a fixed uniform design, we consider the model Yi,n = µ (i/n)+εi,n (i = 1, . . . , n).
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In such a model, Yi,n and εi,n must be viewed as triangular arrays. The estimator of

the regression function is

µ̃(x) =
1

nhn

n∑
i=1

Ȳi·K

(
x− i/n
hn

)
.

For each n, we assume that the process εi,n is stationary and exhibits short-range

dependence. Under Assumptions 1-5, listed in Robinson (1997), it can be shown that
√
nhn(µ̃(xk)−µ(xk)), xk ∈ (0, 1), k = 1, 2 and x1 6= x2, converge jointly in distribution

to independent normals with zero mean. In this setting, the working p-values, defined

here to be p
(1)
n (x, τ0) = 1−Φ(

√
nhn(µ̃(x)− τ0)), still exhibit the desired dichotomous

behavior. To keep the approach simple, we have not normalized by the estimate of

the variance as this would have involved estimating the auto-correlation function.

The conclusions of Theorem 2.2 can be shown to hold when d̂n is constructed using

(2.4) based on p
(1)
n (Xi, τ̂)s. Here, τ̂ is constructed via averaging the responses over an

interval that can be safely assumed to be on the left of d0, as discussed in Section 2.1.4.

2.2 Simulation Results and Data Analysis

2.2.1 Simulation Studies

We consider the same three choices of the regression function M1, M2 and M3,

as in Section 2.1.5. The data are generated for allocation pair (m,n) and a choice

of regression function, with the errors being independent N(0, σ2), where σ = 0.3.

The Xis are again sampled from Uniform(0,1). We study the performance of the two

methods when the estimates of d0 are constructed using p-values that are normalized

by their respective estimates of variances.

Firstly, we consider Method 1. In Table 2.2, we report the root mean square error

and the bias for the estimators of d0 and τ0, for different choices of m and n. For

moderate sample sizes, M3 shows greater root mean square errors in general than M1
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(m,n)
M1 M2 M3

d0 τ0 d0 τ0 d0 τ0

(5, 5) 0.255, 0.215 0.175, 0.099 0.282, 0.255 0.134, 0.060 0.312, 0.262 0.142, 0.084
(5, 10) 0.248, 0.205 0.143, 0.086 0.271, 0.223 0.102, 0.049 0.303, 0.243 0.112, 0.072

(10, 10) 0.207, 0.157 0.124, 0.067 0.246, 0.216 0.077, 0.035 0.272, 0.215 0.104, 0.069
(10, 20) 0.172, 0.139 0.090, 0.052 0.240, 0.224 0.054, 0.029 0.248, 0.198 0.086, 0.062
(10, 50) 0.136, 0.121 0.056, 0.038 0.235, 0.228 0.038, 0.027 0.186, 0.157 0.070, 0.058
(20, 50) 0.090, 0.076 0.031, 0.018 0.194, 0.187 0.025, 0.017 0.124, 0.100 0.050, 0.034

(50, 100) 0.050, 0.043 0.011, 0.007 0.152, 0.148 0.012, 0.009 0.052, 0.046 0.014, 0.009

Table 2.2: Root mean square errors and biases , the first and second entries respec-
tively, for the estimate of threshold d0 obtained using Method 1 and the
estimate of τ0 with σ = 0.3 for the three models.

and M2 as the signal is weak close to 1 for M3. For large sample sizes, the performance

of the estimate is similar for M1 and M3 and is better than that for M2, which can be

ascribed to M2 being smoother at d0. The procedure is inherently biased to the right

as p-values are not necessarily close to zero to the immediate right of d0. Further, the

estimator, on average, moves to the left with increase in m as the desired dichotomous

behavior becomes more prominent.

Next, we study the performance of Method 2. As the estimation procedure is

entirely based on {(Xi, Ȳi·)}ni=1, without loss of generality, we take m to be 1. We

again work with the Gaussian kernel with the smoothing bandwidth chosen in the

same fashion as in Section 2.1.5. In Table 2.3, we report the root mean square error

and the bias for the two estimators, for different choices of m and n. We see trends

similar to those for Method 1, across the choices of the regression functions.

2.2.2 An allocation problem

In common dose-response studies, one is given a total budget of N ≡ n×m samples

that need to be allocated to n covariate values and m replicates at each covariate value,

respectively. Intuitively, increasing the number of replicates m decreases the bias,

whereas increasing the number of values n of the covariate, decreases the variance

of the estimators. The optimal allocation occurs when the two terms are balanced,
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n
M1 M2 M3

hn = 0.1n−1/3 hn = 0.15n−1/5 hn = 0.1n−1/3

d0 τ0 d0 τ0 d0 τ0

20 0.285, 0.179 0.209, 0.105 0.290, 0.178 0.147, 0.057 0.326, 0.224 0.174, 0.084
30 0.268, 0.155 0.184, 0.094 0.268, 0.146 0.122, 0.038 0.319, 0.218 0.151, 0.074
50 0.237, 0.138 0.158, 0.080 0.244, 0.124 0.099, 0.031 0.284, 0.187 0.131, 0.069
80 0.215, 0.112 0.137, 0.066 0.222, 0.084 0.078, 0.019 0.270, 0.178 0.117, 0.068

100 0.195, 0.096 0.125, 0.053 0.216, 0.082 0.075, 0.017 0.251, 0.147 0.109, 0.061
200 0.159, 0.062 0.088, 0.035 0.191, 0.060 0.049, 0.011 0.210, 0.122 0.092, 0.053
500 0.104, 0.006 0.046, 0.014 0.164, 0.039 0.027, 0.005 0.142, 0.054 0.060, 0.025

1000 0.095, 0.004 0.031, 0.007 0.150, 0.020 0.020, 0.004 0.105, 0.021 0.039, 0.012
1500 0.085, 0.003 0.023, 0.005 0.148, 0.015 0.018, 0.003 0.088, 0.008 0.028, 0.008
2000 0.072, 0.002 0.020, 0.005 0.138, 0.007 0.015, 0.002 0.081, 0.001 0.023, 0.005

Table 2.3: Root mean square errors and biases , the first and second entries respec-
tively, for the estimate of threshold d0 obtained using Method 2 and the
estimate of τ0 with σ = 0.3 for the three models.

N
M1 M3

σ = 0.1 σ = 0.3 σ = 0.1 σ = 0.3

100 (6,17) (33,3) (8,12) (33,3)
200 (7,29) (40,5) (7,29) (67,3)

Table 2.4: Optimal allocation (m,n) pairs for a fixed total budget N = m× n

usually at a moderate value of n and m, which depends on the value of σ and the

regression function. Thus, for a fixed N , one expects that the root mean square error

exhibit a U-shape as a function of m; further, for larger σ the optimal allocation

would occur at a larger value of m.

We investigate this allocation problem for Method 1 through a simulation study

and we present the optimal allocations for models M1 and M3. The setting under

consideration is d0 = 0.5, N = 100 and 200 and σ = 0.1 and 0.3. All possible

combinations of m and n that approximately satisfy the total budget were considered.

As very small values of n are also considered, we work with a discrete uniform design

for this study. The optimal allocations are shown in Table 2.4. It can be seen that for

small σ, lots of covariate values and fewer replicates are preferred, while the situation

gets reversed for high σ. Further, qualitatively similar results, in accordance with our

observation above, are obtained for the other models. Nevertheless, a few anomalies

are present; specifically, as we are sampling from the discrete uniform design on [0, 1],
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Table 2.5: Root mean square errors for the five procedures for different choices of m
and n and models M1 and M2 when σ = 0.3.

(m,n)
M1

P1 P2 P3 P4 P5

(5, 5) 0.163 0.207 0.339 0.255 0.299
(5, 10) 0.134 0.176 0.304 0.307 0.344
(10, 10) 0.119 0.120 0.227 0.228 0.328
(10, 20) 0.092 0.079 0.191 0.265 0.295
(10, 50) 0.085 0.042 0.179 0.310 0.247
(20, 50) 0.060 0.030 0.128 0.212 0.176
(50, 100) 0.038 0.013 0.080 0.142 0.114

M2

P1 P2 P3 P4 P5

0.204 0.241 0.420 0.291 0.298
0.201 0.227 0.390 0.346 0.360
0.168 0.194 0.334 0.302 0.360
0.177 0.163 0.303 0.329 0.354
0.193 0.150 0.294 0.369 0.332
0.162 0.147 0.245 0.305 0.274
0.132 0.145 0.197 0.254 0.211

and d0 = 0.5, sometimes the optimal allocation occurs at the rather extreme value

n = 3. This is due to the fact that in that case, the covariate values are placed at

0.25, 0.5 and 0.75, and when m is large, the fitted break point d̂n is usually 0.5, the

true parameter value. Whenever this is the case, the estimation error is exactly zero,

making the observed root mean square error small. With the same budget, a larger

n, say n = 5, can also lead to 0.5 as a covariate value, but the value of m decreases

in the process thereby increasing the bias and there are more options for the fitted

break point to differ from 0.5, leading to larger root mean square errors.

2.2.3 Comparison with other procedures from dose-response setting

We now compare Method 1 to some competing procedures developed in the phar-

macological dose-response setting to identify the minimum effective dose. Most of

the methods developed in dose-response setting context are based on hypothesis test-

ing procedures. For example, Williams (1971) developed a method to identify the

lowest dose at which there is activity in toxicity studies using a closed testing pro-

cedure based on isotonic regression for a monotone dose-response relationship. Hsu

and Berger (1999) developed a step-wise confidence set approach to estimate and

make inference on the minimum effective dose. A nonparametric method based on

the Mann–Whitney statistic incorporating the step-down procedure is investigated in

Chen (1999), while Tamhane and Logan (2002) use multiple testing procedures for
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the task at hand. We compare our method with that of Williams (1971), of Hsu and

Berger (1999) and of Chen (1999), referred henceforth as P3, P4 and P5, respectively.

We compare the performance of Method 1, which we refer to as P1, with that

of P3, P4 and P5. A natural parametric procedure to estimate d0 might be to fit a

kink-type model like M1 to the observed responses and estimate d0 and the slope

of the linear segment by the least squares method. We also implement this method

and call it P2. Obviously when the true underlying regression function µ is not

a kink-model this method might not be consistent, but given a finite sample it is

often a good first approximation. Whereas, when µ is a kink-function, e.g., when we

assume the true model to be M1, this approach should clearly outperform the other

procedures. Indeed, Table 5 shows that P2 is very competitive for model M1; still

our approach P1 performs better for small sample sizes, e.g., (5, 5) and (5, 10). For

the model M2, a slight departure from the model M1, P1 mostly dominates P2, and

all the other procedures. Note that as P3, P4 and P5 are procedures that are based

on testing hypotheses, we need to specify a level α, and in the simulations reported

in this chapter, we have set α = 0.05. The choice of the α = 0.05 is purely based on

classical hypothesis testing considerations; a proper choice of the tuning parameter

is not available. Also, to implement P3–P5, we computed the cut-off values necessary

to carry out the hypothesis tests using simulation, as such tables are not available for

the different choices of m and n considered in this chapter.

Overall, P1 is very competitive, and the simplicity of our approach coupled with

its adaptivity to different types of mis-specifications, makes it a very attractive choice.

Indeed, one of the novelties of our approach lies in the fact that we treat the estimation

of d0 purely as an estimation problem and not a result of a series of hypotheses tests,

thereby avoiding the need to specify α.
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2.2.4 Some practical recommendations

Based on our simulation study, the following practical recommendations are in

order. In terms of optimal allocation under a fixed budget N , it is better for one to

invest in an increased number of covariate values n, rather than replicates m. Fur-

ther, when the sample size is reasonably large, the procedure that avoids estimating

the variance function and works with non-normalized p-values, is competitive and is

recommended in the regression settings with heteroscedastic errors and time-series.

2.2.5 Data Applications

The first data application deals with a dose-response experiment that studies the

effect on cells from the IPC-81 leukemia rat cell line to treatment with 1-methyl-3-

butylimidazolium tetrafluoroborate, at different doses measured in µM, micro mols

per liter (Ranke et al., 2004). The substance treating the cells is an ionic liquid and the

objective is to study its toxicity in a mammalian cell culture to assess environmental

hazards. The question of interest here is at what dose level toxicity becomes lethal

and cell cultures stop responding.

It can be seen from the physiological responses shown in the left panel of Fig. 2.1,

that there is a decreasing trend followed by a flat stretch. Hence, it is reasonable to

postulate a response function that stays above a baseline level τ0 until a transition

point d0 beyond which it stabilizes at its baseline level. We assume errors to be

heteroscedastic, as the variability in the responses changes with level of dose, with

more variation for moderate dose levels compared to extreme dose levels. This is

the small (m,n) case with m and n being comparable; in fact, m = n = 9. Hence

we apply Method 1 to this problem. The estimate of τ0 was constructed using the

procedure based on p-values as described in Section 2.1.4. We get τ̂ = 0.0286 with

the corresponding d̂ = 5.522 log µM , the third observation from right. We believe

that this is an accurate estimate of d0, since the cell-cultures exhibit high responses

26



at earlier dose levels and no significant signal to the right of the computed d̂.

The second example, as discussed in the introduction, involves measuring mer-

cury concentration in the atmosphere through the LIDAR technique. There are 221

observations with the predictor variable range varying from 390 to 720. As supported

by the middle panel of Fig. 2.1, the underlying response function is at its baseline

level followed by a steep descent, with the point of change being of interest. There is

evidence of heteroscedasticity and hence, we employ Method 2 without normalizing

by the estimate of the variance. It is reasonable to assume here that till the range

value 480 the function is at its baseline. The estimate of τ is obtained by taking

the average of observations until range reaches 480, which gives τ̂ = −0.0523. The

estimates d̂, computed for bandwidths varying from 5 to 30, show a fairly strong

agreement as they lie between 534 and 547, with the estimates getting bigger for

larger bandwidths. The cross-validated optimal bandwidth for regression is 14.96 for

which the corresponding estimate of d0 is 541.

The global warming data contains global temperature anomalies, measured in

degree Celsius, for the years 1850 to 2009. These anomalies are temperature devi-

ations measured with respect to the base period 1961–1990. The data are modeled

as described in Section 2.1.6. As can be seen in the right panel of Fig. 2.1, the

function stays at its baseline value for a while followed by a non-decreasing trend.

The flat stretch at the beginning is also noted in Zhao and Woodroofe (2012) where

isotonic estimation procedures are considered in settings with dependent data. The

estimate of the baseline value, after averaging the anomalies up to the year 1875, is

τ̂ = −0.3540. With the dataset having 160 observations, estimates of the threshold

were computed for bandwidths ranging from 5 to 30. The estimates varied over a

fairly small time frame, 1916–1921. This is consistent with the observation on page

2 of Zhao and Woodroofe (2012) that global warming does not appear to have begun

until 1915. The optimal bandwidth for regression obtained through cross-validation
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is 13.56, for which d̂ is 1920.

2.2.6 Extensions

Here we discuss some of the possible extensions of our proposed procedure.

Fixed design setting: Although the results in this chapter have been proven assum-

ing a random design, they can be easily extended to a fixed design setup. Consistency

of the procedures will continue to hold. Some of the these extensions, particularly in

the standard regression setting, are considered in great detail in Chapters 3 and 4.

Unequal replicates: We primarily dealt with the case of a balanced design with a

fixed number of replicates m for every dose level Xi. The case of varying number of

replicates mi can be handled analogously. In the dose-response setting, Theorem 2.1

will continue to hold provided the minimum of themis goes to infinity. In the standard

regression setting, Theorem 2.2 can also be generalized to the situation with unequal

number of replicates at different doses.

2.3 Concluding Discussion

While we have developed a novel methodology for threshold estimation and es-

tablished consistency properties rigorously, a pertinent question that remains to be

addressed is the construction of confidence intervals for d0. A natural way to ap-

proach this problem is to consider the limit distribution of our estimators for the two

settings and use the quantiles of the limit distribution to build asymptotically valid

confidence intervals. This is addressed in Chapters 3 and 4.

In this chapter, we have restricted ourselves to a univariate regression setup. Our

approach can potentially be generalized to identify the baseline region, the set on

which the function stays at its minimum, in multi-dimensional covariate spaces. This

is a special case of the edge estimation problem, a problem of considerable interest

in statistics and engineering. The p-values, constructed analogously, will continue to
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exhibit a limiting dichotomous behavior which can be exploited to construct estimates

of the baseline region. Procedures that look for a jump in the derivative of a certain

order of µ (Müller, 1992; Raimondo, 1998) do not have natural extensions to such

high dimensional settings. We address this problem in Chapter 5.
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CHAPTER 3

Asymptotics for the dose–response setting

For the model Y = µ(X) + ε with µ : [0, 1] 7→ R satisfying

µ(x)

 = τ0 for x ≤ d0

> τ0 for x > d0;
, (3.1)

we proposed novel and computationally simple procedures for estimating d0 in both

the standard regression and dose-response settings in Chapter 2. We established

consistency under mild conditions and also studied the finite sample properties of

the estimates. However, the problem of constructing CIs for d0 was not addressed.

In this chapter, we address this inference question in the dose-response setting by

deriving the asymptotic distribution of the estimator d̂m,n (see (2.3)) as m,n grow

to infinity, and demonstrating how to use the quantiles of this distribution to set

the limits of the CI. It turns out that the asymptotic behavior of the estimators

in the dose-response setting is fundamentally different from that in the standard

regression setting which we address separately in Chapter 4. The estimates in the

regression setting converge to minimizers of processes with differentiable sample paths

that can be written as transforms of Gaussian processes while, as we will see below,

those in the dose-response setting converge to the minimizers of piecewise-constant

processes with jump discontinuities. Thus, many of the tools that play a crucial role
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in standard regression setting are inapplicable in the dose-response case (see Remark

4.8 in Chapter 4).

It should be noted that the problem of estimating d0 in different models has

received much attention in the statistics literature. If µ is assumed to have a jump

discontinuity at d0, then d0 corresponds to a usual change-point for µ. Such change-

point models are very well understood; see e.g., Hinkley (1970), Korostelëv (1987),

Dümbgen (1991), Müller (1992), Korostelëv and Tsybakov (1993a), Loader (1996),

Müller and Song (1997) and the references therein. Our results, here, are developed

for the harder problem that arises when µ is continuous at d0. In particular, the

smoother the regression function in a neighborhood of d0, the greater the challenge

in estimating d0 precisely. We show that if d0 is a cusp of µ of order k (i.e., the

first k − 1 right derivatives of µ at d0 equal 0 but the k-th does not, so that d0 is a

change-point in the k-th derivative) and µ is locally monotone in a neighborhood of

d0, then d̂m,n− d0 is of order N−1/(2k+1), where N = m×n is the total budget and m

is chosen in some optimal manner (to be specified later) in terms of n.

The limit distribution of N1/(2k+1)(d̂m,n − d0) is seen to be that of an appropriate

minimizer of a jump process drifting off to infinity, that can be viewed as a generaliza-

tion of a compound Poisson process. The derivation of the asymptotic distribution is

complicated owing to the fact that the sample paths of the limit process are piecewise

constant, resulting in non-unique minimizers. Hence, the more common continuous

mapping arguments that rely on the uniqueness of the extremum of limit processes

(see e.g., Theorem 2.7 of Kim and Pollard (1990)) – a phenomenon that shows up

often with Gaussian limits and monotone transforms thereof – do not apply, and

careful modifications, which rely on the continuity of the argmin functional in spaces

of discontinuous functions, are required. In particular, the least squares estimate of

d0 (which is not unique) needs to be carefully picked. Another important challenge

lies in deriving the rate of convergence of the estimator, which requires a considerable

31



generalization of the standard rate theorems (see Theorem B.1) in the modern empir-

ical processes literature (see e.g., Theorem 3.2.5 of van der Vaart and Wellner (1996)),

and the choice of a cleverly constructed dichotomous metric on R (see Lemma B.2)

to invoke the generalization. The details are available in the proof of Theorem 3.2.

The knowledge of k is essential for constructing two-sided CIs based on these

limiting results. Although resampling approaches such as subsampling are shown

to work (in Section 3.3.2) for our problem, they do not present a solution for the

situation when k is unknown. We do end up providing a partial answer and show

that adaptive upper confidence bounds can be constructed in the k-unknown case

(Section 3.3.1).

The remainder of the chapter is organized as follows. In Section 3.1, we state the

core assumptions and the variant of the p-based estimator that is primarily studied.

The rates of convergence and the asymptotic distributions are deduced in Section 3.2,

assuming a random design setting. Their implications to constructing CIs in practical

applications, along with some auxiliary results on subsampling and adaptivity, are

discussed in Section 3.3. In Section 3.4, we discuss the large sample behavior of

the estimator of d0 in a fixed design setting. We study the finite sample coverage

performance of the CIs through simulations in Section 3.5 and discuss an application

from a complex queuing system. Some conclusion are drawn in Section 3.6. The

proofs of several technical results are provided in Appendix B.

3.1 Formulation and assumptions

For convenience, we study the problem in a random design setting with ho-

moscedastic errors. The extension to the fixed design setting is considered in Section

3.4. The expression for the estimator of d0 in fixed design setting is identical to that

in the random design with the exception that the covariate Xis would then just be

fixed design points.
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Assume the covariate X is sampled from a Lebesgue density f , X and ε are

independent, E(ε) = 0 and let σ2
0 := Var(ε) > 0. Consider data {(Xi, Yij) : 1 ≤ j ≤

m, 1 ≤ i ≤ n}, where the Xis are i.i.d. random variables distributed like X, {εij} are

i.i.d. random variables distributed like ε, the vectors {Xi} and {εij} are independent,

and

Yij = µ(Xi) + εij, 1 ≤ j ≤ m, and 1 ≤ i ≤ n. (3.2)

Here, N = m × n is the total budget and we assume m = m0n
β for some β > 0,

to incorporate the scenario that m can be ‘large’ relative to n, a feature of several

dose-response studies.

Recall that Ȳi =
∑m

i=1 Yij/m, σ̂2 =
∑

i,j(Yij − Ȳi)2/(nm− n) and the normalized

p-values are given by

pm,n(Xi) = 1− Φ(
√
m(Ȳi − τ0)/σ̂).

Let γ = 3/4 and Pn denote the empirical measure of (Xi, Ȳi), i = 1, . . . , n. With a

slight difference of notation from Chapter 2, let

Mm,n(d) ≡Mm,n(d, σ̂) = Pn
[{

Φ

(√
m(Ȳ − τ0)

σ̂

)
− γ
}

1(X ≤ d)

]
. (3.3)

As (pm,n(Xi)−1/4) = (−1)
(
Φ
(√

m(Ȳ − τ0)/σ̂
)
− γ
)
, the estimate from the criterion

(2.3) of Chapter 2 is simply

d̂m,n = sargmin
d∈[0,1]

Mm,n(d).

Here, sargmin denotes the smallest argmin. We initially study this estimate assuming

a known τ0. When τ0 is unknown, an estimate can be plugged in its place (more about

this in Section 3.5). Also, for any choice of γ ∈ (1/2, 1) in (3.3) the estimator of d0

can be shown to be consistent by calculations similar to that in the proof of 2.1 from
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Chapter 2.

The smoothness of the function in the vicinity of d0 plays a crucial role in deter-

mining the rate of convergence. For the random design setting we make the following

assumptions.

1. The regression function µ has a cusp of order k, k being a known positive

integer, at d0, i.e., µ(l)(d0) = 0, 1 ≤ l ≤ k − 1 and µ(k)(d0+) > 0, where µ(l)(·)

denotes the lth derivative of µ. Also, the k-th derivative, µ(k)(x) is assumed to

be continuous and bounded for x ∈ (d0, d0 + ζ0] for some ζ0 > 0.

2. The errors ε possess a continuous positive density on a (finite or infinite) interval.

3. The design density f for the dose-response setting is assumed to be continuous

and positive on [0, 1].

Remark 3.1. Some words of explanation on why we address the asymptotics for

a random design, as opposed to fixed design, are in order. It turns out that there

is no limit distribution in this problem when the Xis are the grid-points of a non-

random grid, say, the uniform grid of size n, on the domain of the covariate. See

Remark 3.7 for a more technical explanation of this issue. Moreover, note that our

data application (see Section 3.5) does come from a random design.

3.2 Main Results

We state and prove results on the limiting behavior of the estimator d̂m,n discussed

in Section 3.1. Results on the variants of the procedure discussed in Chapter 2 follow

similarly and are stated without proofs in Section 3.2.3. The results in this section

are developed for γ ∈ (1/2, 1) and a known τ0. It will be seen in Section 3.3.3 that

τ0 can be estimated at a sufficiently fast rate; consequently, even if τ0 is unknown,

appropriate estimates can be substituted in its place to construct the p-values that are
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instrumental to the methods of this chapter, without changing the limit distributions.

Without loss of generality, we take τ0 ≡ 0, as one can work with (Yij−τ0)s ((Yi−τ0)s)

in place of Yijs (Yis).

3.2.1 Rate of convergence

As m = m0n
β, we consider the asymptotics in the dose-response model as n→∞.

Let Pn denote the measure induced by (Ȳ , X) and

Mm,n(d) = Mm,n(d, σ0) = Pn

[{
Φ

(√
mȲ

σ0

)
− γ
}

1(X ≤ d)

]
.

The process Mm,n is the population equivalent of Mm,n defined in (3.3) and can be

simplified as follows. Let

Z1n =
1√
mσ0

m∑
j=1

ε1j (3.4)

and Z0 be a standard normal random variable independent of Z1ns. Then

E

[
Φ

(√
mȲ1

σ0

)∣∣∣∣X1 = x

]
= E

[
Φ

(√
mµ(x)

σ0

+ Z1n

)]
= E

[
E

[
1

(
Z0 <

√
mµ(x)

σ0

+ Z1n

)∣∣∣∣Z1n

]]
= P

[
Z0 − Z1n√

2
<

√
mµ(x)√

2σ0

]
= Φn

(√
mµ(x)√

2σ0

)
,(3.5)

where Φn denotes the distribution function of (Z0 − Z1n)/
√

2. Then, by integrating

with respect to the density of X, it can be shown that

Mm,n(d) =


(Φn(0)− γ)F (d), d ≤ d0,

(Φn(0)− γ)F (d0) +

d∫
d0

[
Φn

(√
mµ(x)√

2σ0

)
− γ
]
f(x)dx, d > d0.
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Let dm,n = sargmind∈(0,1)Mm,n(d). We first study the behavior of dm,n which satisfies

Φn

(√
mµ(dm,n)√

2σ0

)
= γ.

Let Φ−1
n be the left continuous inverse of Φn. By Assumptions 1 and 2, we get

µ(k)(ζn)

k!
(dm,n − d0)k =

√
2σ0Φ−1

n (γ)√
m

, (3.6)

where ζn is some point between d0 and dm,n. As n→∞, the right-hand side (RHS)

of the above display goes to zero. So, dm,n → d0. Also, Φn converges point wise to Φ

and the convergence holds for their inverse functions too. Hence,

dm,n = d0 +

[
k!
√

2σ0Φ−1(γ)

µ(k)(d0+)

]1/k

m−1/(2k) + o(m−1/(2k)). (3.7)

This shows that dm,n−d0 = O(m−1/(2k)) = O(n−β/(2k)). In a sense, d̂m,n, is estimating

dm,n instead of d0, and hence, its rate of convergence to d0 can be expected to be at

most of order n−β/(2k). Moreover, d̂m,n is one of the order statistics of Xis and hence,

can only be close to d0 up to an order 1/n. We next provide a formal statement of

the rate of convergence of d̂m,n.

Theorem 3.2. Let α = min (1, β/(2k)). Then,

nα(d̂m,n − d0) = m
− α

1+β

0 N
α

1+β (d̂m,n − d0) = OP (1).

Remark 3.3. The function µ may not satisfy Assumption 1 for any k ∈ Z and

can still take off at d0, e.g., µ(1)(x) = exp(−1/(x − d0))1(x > d0) and µ(2)(x) =

exp(−1/(x − d0)2)1(x > d0) are two such infinitely differentiable functions with a

singularity at d0. By calculations almost identical to those for deriving (3.7), it can

be shown that dm,n − d0 = O
(
(log(n))−1/i

)
when µ = µ(i), i = 1, 2. Hence, we do not

36



expect a universal rate of convergence for d̂m,n when µ is infinitely differentiable at d0

and adhere to Assumption 1.

The proof is given in Section B.1 of Appendix B. The optimal rate corresponds to

α = 1. In terms of the total budget, the best possible rate is achieved when β = 2k.

In that case, N1/(2k+1)(d̂m,n − d0) = OP (1). For, β < 2k, the rate of convergence is

nβ/(2k) or Nβ/{2k(1+β)}.

Remark 3.4. The rate N−/1(2k+1) is not surprising as it appears in inverse function

estimation: for example, if h is a smooth monotone function, the isotonic regression

estimate of x0 := h−1(θ0), where θ0 is a fixed point in the range of h, converges at

rate S−1/(2k+1) (S being sample size) under the assumption that f is (at least) k-times

differentiable at x0, f (k)(x0) 6= 0 and f (l)(x0) = 0 for 1 ≤ l < k, which is the exact

analogue of the ‘cusp assumption’ on d0 above. We expect this rate to be minimax,

even though a formal proof appears difficult and is outside the scope of this discussion;

see Section 3.6 for more details.

3.2.2 Asymptotic Distribution

We now deduce the asymptotic distribution of d̂m,n for different choices of β,

starting with β = 2k. Note that n(d̂m,n − d0) = sargmint∈R V̂n(t) where

V̂n(t) = n {Mm,n (d0 + t/n, σ̂)−Mm,n(d0, σ̂)} . (3.8)

We deduce the limit of V̂n and then apply a special continuous mapping theorem to

obtain the asymptotic distribution of d̂m,n.

To state the limiting distribution, we introduce the following notation. Let

{ν+(t) : t ≥ 0} and {ν−(t) : t ≥ 0} be two independent homogeneous Poisson pro-

cesses with same intensity f(d0) but with RCLL (right continuous with left limits)

and LCRL (left continuous with right limits) paths, respectively. Let {Si}i≥1 denote
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the arrival times for the process ν+. Further, let {Zi}i≥1 and {Ui}i≥1 be indepen-

dent sequences of i.i.d. N(0, 1)’s and i.i.d. U(0, 1)’s respectively which are, moreover,

independent of the processes ν+ and ν−. Define V (t) as:

V (t) =



ν+(t)∑
j=1

(
Φ

(√
m0 µ

(k)(d0+)

k!σ0

Skj + Zj

)
− γ
)
, t ≥ 0,

ν−(−t)∑
j=1

(γ − Uj) , t < 0,

(3.9)

where sum over a null set is taken to be zero. We will show that V̂n converges weakly

to V as processes in D(R), the space of càdlàg functions (right continuous having

left limits) on R equipped with the Skorokhod topology; see Lindvall (1973) for more

details on D(R). Moreover, the asymptotic distribution of d̂m,n will be characterized

by a minimizer of the process V . The limiting process V does not possess a unique

minimizer as it stays at any level it attains for an exponential amount of time. Hence,

the usual argmin (argmax) continuous mapping theorem (see for example Theorem

3.2.2 of van der Vaart and Wellner (1996)) does not suffice for deducing the limiting

distribution; we also need to show the convergence of the involved jump processes

(Lan et al., 2009, pp. 1760–1762).

For convenience, we state a consequence of Lemmas 3.1, 3.2 and 3.3 from Lan et al.

(2009) which provides a version of the argmin (argmax) continuous mapping theorem

required in our setting. Let S denote the class of piecewise constant functions in

D(R) that are continuous at every integer point, assume the value 0 at 0, and possess

finitely many jumps on every compact interval [−C,C], where C > 0 is an integer.

Note that S is a closed subset of D(R). Also, define the pure jump process, g̃, (of

jump size 1) corresponding to the function g ∈ D(R), as the piecewise constant right

continuous function with left limits, such that for any s > 0, g̃(s) counts the number

of jumps of the function g in the interval [0, s], while for s < 0, g̃(s) counts the number
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of jumps in the set (s, 0). We have the following result.

Theorem 3.5. Let Vn, n ≥ 0, be processes in D(R) such that Vn ∈ S, with probability

1. Also, let Jn, n ≥ 0, denote the corresponding jump processes and (ξsn, ξ
l
n), n ≥ 0, be

the smallest and largest minimizers for Vn. Suppose that:

(i) (Vn, Jn) converges weakly to (V0, J0) as processes in D[−C,C]×D[−C,C], for

each positive integer C.

(ii) No two flat stretches of V0(t), t ∈ [−C,C], have the same height a.s., for each

positive integer C.

(iii)
{

(ξsn, ξ
l
n), n ≥ 0

}
is OP (1).

Then (ξsn, ξ
l
n)

d→ (ξs0, ξ
l
0), where

d→ denotes convergence in distribution.

Note that V̂n ∈ S with probability 1. For t ∈ R, let the function sgn(t) denote

the sign of t. Also, let Jn denote the jump process corresponding to V̂n(t). Then,

Jn(t) = sgn(t)
n∑
i=1

[
1

(
Xi ≤ d0 +

t

n

)
− 1 (Xi ≤ d0)

]
.

Further, let J be the jump process associated with V (t), i.e., J(t) = ν+(t)1(t ≥

0) + ν−(−t)1(t < 0). We have the following result.

Theorem 3.6. Let β = 2k and V̂n and V be as defined in (3.8) and (3.9) respectively.

Then, the conditions (i), (ii) and (iii) of Theorem 3.5 are satisfied for Vn = V̂n and

V0 = V with Jn and J being the corresponding jump processes. As a consequence,

n(d̂m,n − d0)
d→ sargmin

t∈R
V (t).

The proof involves establishing finite dimensional convergence using characteristic

functions and justifying a moment condition (see Billingsley (1968, pp. 128)) to prove

asymptotic tightness. It is available in Section B.2.
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Remark 3.7. The counts
∑

i≤n 1(Xi ∈ (d0, d0 + t/n]) account for the Poisson process

that arises in the limit. If the Xis were drawn from a fixed uniform design, these

counts would not converge. Hence, a fixed design setup does not yield a limiting dis-

tribution for the underlying processes, and consequently for d̂m,n, in the dose-response

setting. This fact was also observed in the change point setting of Lan et al. (2009,

pp. 1766).

The limiting random variable sargmint∈R V (t) is continuous by virtue of the fact

that the probability of a jump at a particular point for a Poisson process is zero. Its

distribution depends upon the parameters m0, µ(k)(d0+), σ0, f(d0) and γ. It is clear

from the expression for V (see (3.9)) that a larger m0, a larger µ(k)(d0+) or a smaller

σ0 will skew the limiting distribution more to the left. For the sake of completeness,

we state the asymptotics for other choices of β. When β > 2k, the derivation of the

limiting distribution is similar to that of Theorem 3.6 and is outlined in Section B.3

of Appendix B.

Proposition 3.8. Let β > 2k. Also, let
{
ν+

1 (t) : t ≥ 0
}

and
{
ν−1 (t) : t ≥ 0

}
be two

independent homogeneous Poisson processes with same intensity f(d0) but with RCLL

and LCRL paths respectively. Let
{
Ūi
}
i≥1

be a sequence of i.i.d. U(0, 1)s which is

independent of {ν+
1 , ν

−
1 }. Define V̄ (t) as:

V̄ (t) =


(1− γ)ν+

1 (t), t ≥ 0,

ν−1 (−t)∑
j=1

(
γ − Ūj

)
, t < 0,

where sum over a null set is taken to be zero. Then, n(d̂m,n−d0)
d→ sargmint∈R V̄ (t) =

sargmint≤0 V̄ (t) .

The case β < 2k yields a markedly different result from the above two scenarios:

we do not get a non-degenerate limiting distribution any longer as the normalized
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estimator converges to a constant. The proof is given in Section B.4 of Appendix B.

Proposition 3.9. Choose β < 2k. Let

Ĥn(t) = nβ/(2k)

{
Mm,n

(
d0 +

t

nβ/(2k)
, σ̂

)
−Mm,n(d0, σ̂)

}

and

c(t) =


(

1
2
− γ
)
f(d0)t, t ≤ 0

f(d0)

t∫
0

{
Φ

(√
m0 µ

(k)(d0+)√
2k!σ0

uk
)
− γ
}
du, t > 0.

Then, for any L > 0,

sup
t∈[−L,L]

|Ĥn(t)− c(t)| P→ 0, (3.10)

and

nβ/(2k)(d̂m,n − d0)
P→ argmin

t∈R
{c(t)} =

(√
2 k! σ0 Φ−1(γ)
√
m0 µ(k)(d0+)

)1/k

.

3.2.3 Limit distributions for variants of the procedure

The rates of convergence and asymptotic distributions can be obtained similarly

for the variants of the procedure that were discussed in Chapter 2. In what follows,

we state the limiting distributions, without proofs, for one of the variants that was

studied in detail in Chapter 2.

For heteroscedastic errors, the non-normalized version of the procedure (p-values

are not normalized by the estimate of the variance), yields the following limiting

distribution.

Proposition 3.10. Consider the dose-response setting with heteroscedastic errors,

i.e., σ2
0(x) = Var(ε | X = x) need not be identically σ0 but is assumed to be continuous

and positive. Let

d̃m,n = sargmin
d∈(0,1)

Pn
[{

Φ
(√

m(Ȳ − τ0)
)
− γ
}

1(X ≤ d)
]
,
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with m = m0n
2k. Let {ν+(t) : t ≥ 0} and {ν−(t) : t ≥ 0} be two independent homoge-

neous Poisson processes with same intensity f(d0) but with RCLL and LCRL paths,

respectively. Let {Si}i≥1 denote the arrival times for the process ν+. Further, let{
Z

(1)
i

}
i≥1

and
{
Z

(2)
i

}
i≥1

be independent sequences of i.i.d. N(0, σ2
0(d0))’s. Define

Ṽ (t) as:

Ṽ (t) =



ν+(t)∑
j=1

{
Φ

(√
m0 µ

(k)(d0+)

k!
Skj + Z

(1)
j

)
− γ
}
, t ≥ 0,

ν−(−t)∑
j=1

{
γ − Φ(Z

(2)
j )
}
, t < 0,

Then, n(d̃m,n − d0)
d→ sargmint∈R Ṽ (t).

3.3 Construction of CIs

As the form of the limit distribution depends upon the allocation of the total

budget N between m and n and may involve k, the construction of CIs requires some

care. Consider, first, the case that k is assumed known. Writing m = m0 n
β, we can

set β = 2k, the optimal choice in terms of the total budget, to solve for m0, and

then construct a CI for d0 using the result in Theorem 3.6. This requires estimating

nuisance parameters like f(d0), σ0 and µ(k)(d0+), of which the last is the hardest to

estimate. Note that we have already estimated σ0 in order to construct d̂m,n, while

the design density at d0 can be estimated using f̂(d̂m,n), where f̂ is a standard kernel

density estimate of f . As far as µ(k)(d0+) is concerned, observe that

µ(x) = µ(k)(d0+)(x− d0)k/k! + o((x− d0)k)

for x > d0. An estimate of µ(k)(d0+) can, therefore, be obtained by fitting a lo-

cal polynomial to the right of d̂m,n that involves the k-th power of the covariate.
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Specifically, an estimate of ξ0 ≡ µ(k)(d0+)/k! is:

ξ̂ = argmin
ξ

n∑
i=1

{Ȳi − ξ(Xi − d̂m,n)k}21(Xi ∈ (d̂m,n, d̂m,n + bn])

=

∑
Ȳi(Xi − d̂m,n)k1(Xi ∈ (d̂m,n, d̂m,n + bn])∑
(Xi − d̂m,n)2k1(Xi ∈ (d̂m,n, d̂m,n + bn])

,

where bn ↓ 0 and nb2k+1
n → ∞. The condition nb2k+1

n → ∞ is typical for estimating

the k-th derivative at a known fixed point; see e.g., Gasser and Müller (1984), Härdle

and Gasser (1985). The following lemma, whose proof is given in Section B.5 of

Appendix B, justifies the consistency of this estimate for the optimal choice of β,

thereby providing a way to construct CIs by imputing this estimate in the limiting

distribution.

Proposition 3.11. Let β = 2k. Then ξ̂
P→ ξ0.

Remark 3.12. The estimate ξ̂ is effectively a kernel estimate with the smoothing

kernel being uniform on (0, 1]. Alternative consistent estimators of ξ can be obtained

using other one sided kernels. To fix ideas, we only use the above mentioned estimate

in the chapter.

3.3.1 Adaptive upper confidence bounds

Note that the above inference strategy is not adaptive to the order of smoothness,

k, at d0. While we have not been able to develop an adaptive method for two-sided

CIs, we are able to propose a strategy for one-sided honest CIs for d0 (which are

also of consequence in applications) that avoids knowledge of k. For example, if d0

represents the minimal effective dose in a pharmacological setting, practitioners would

be naturally interested in finding an upper confidence bound for d0. The following

result, whose proof follows along the same lines as that of Proposition 3.8, is our

starting point for building such CIs.
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Proposition 3.13. Consider the dose-response setting with homoscedastic errors and

normalized p–values and define dm,n = sargmin0≤d≤d0 Mm,n(d), so that dm,n ≤ d̂m,n =

sargmin0≤d≤1 Mm,n(d). Then, for any β > 0,

n (dm,n − d0)⇒d sargmin
t≤0

ν−(t)∑
j=1

(γ − Uj) ,

where Uj’s and ν− are as in Theorem 3.6.

In fact the above result does not require m to grow as a power of n. The condition

min(m,n)→∞ suffices. Note that the limit distribution above is concentrated on the

negative axis (as it must, since dm,n ≤ d0) and does not depend upon k. Simulating

its quantiles requires just an estimate of f(d0). Let Kα be its α’th quantile. Then,

lim
n→∞

P (d0 ≤ dm,n −Kα/n) = 1− α .

Now, dm,n is obviously unknown, but dm,n ≤ d̂m,n which is known. It follows easily

that:

lim inf
n→∞

P (d0 ≤ d̂m,n −Kα/n) ≥ 1− α .

An essentially honest level 1− α upper confidence bound for d0 is therefore given by

[0, d̂m,n − Kα/n]. For an asymptotic allocation where β > 2k, by Proposition 3.8,

the limit distributions of dm,n and d̂m,n coincide. Hence, these conservative upper

confidence bounds are in a sense, minimally conservative, as they are exact for the

situation β > 2k.

3.3.2 Subsampling

As an alternative to using the limit distribution, subsampling can be used to

construct CIs for the case β ≥ 2k. Let qn be a sequence of integers such that qn/n→ 0

and qn →∞. A subsample is constructed by selecting qn many Xis and ln = bqnm/nc
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response values at each selected Xi. The subsamples are denoted by S1, . . . ,SNn ,

where Nn =
(
n
qn

) [(
m
ln

)]qn
. Let d̂n,qn,j denote the estimate of d0 based on Sj, j =

1, . . . , Nn. Let Gn,β denote the distribution of n(d̂m,n − d0). For β ≥ 2k, Gn,β

converges weakly to a continuous limiting distribution, say Gβ. The approximation

to Gn,β, based on subsampling, is given by

Ln,q(x) = Ln,q(x, β) =
1

Nn

Nn∑
j=1

1
[
qn(d̂n,qn,j − d̂m,n) ≤ x

]
.

The following result justifies the use of subsampling in constructing CIs for d0.

Proposition 3.14. Let β ≥ 2k. If qn/n→ 0 and qn →∞ then:

(i) supx |Ln,q(x, β)−Gβ(x)| P→ 0.

(ii) P [cn,q,α/2 ≤ n(d̂m,n − d0) ≤ cn,q,1−α/2] → 1 − α, where cn,q,ξ =

inf {x : Ln,q(x) ≥ ξ}.

The proof follows along the lines of that of Theorem 15.7.1 in Lehmann and

Romano (2005). The details are provided in Section B.6 of Appendix B. The usual

bootstrap methodology is not expected to be consistent.

3.3.3 The case of an unknown τ0

While our results have been deduced under the assumption of a known τ0, in real

applications τ0 is generally not known. In this situation, quite a few extensions are

possible. If d0 can be safely assumed to be larger than some η, then a simple averaging

of the observations below η would yield a
√
mn-consistent estimator of τ0. If a proper

choice of η is not available, one can obtain an initial estimate of τ0 using the method

proposed in Section 2.1.4 of Chapter 2, compute d̂m,n and then average the responses

from, say, [0, cd̂m,n], c ∈ (0, 1), to obtain an estimate of τ0, which will also be
√
mn-

consistent. Note that this leads to an iterative procedure which we discuss in more
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detail in Section 3.5.1. Using a
√
mn-consistent estimate of τ0, say τ̂ , so that the Y is

are centered around τ̂ in the p-values, it can be shown that all the asymptotic results

encountered earlier stay unchanged. A brief sketch of the following result is given in

Section B.7.

Proposition 3.15. Let d̂m,n now denote the smallest minimizer of

Mm,n(d, σ̂, τ̂) = Pn
[{

Φ

(√
m(Ȳ − τ̂)

σ̂

)
− γ
}

1(X ≤ d)

]
,

where
√
mn (τ̂ − τ0) = Op(1). For m = m0n

β and α as defined in Theorem 3.2, we

have nα(d̂m,n − d0) = OP (1). Also, when β = 2k,

n(d̂m,n − d0)
d→ sargmin

t∈R
V (t),

where the process V is as defined in (3.9).

A similar extension of Proposition 3.13 is valid as well.

3.4 Fixed design setting

As mentioned in Section 3.1, the estimation procedure does not change when we

move over from the random design setting to the fixed design setting. For example,

with a model of the form

Yij = µ

(
i

n

)
+ εij, 1 ≤ i ≤ n, 1 ≤ j ≤ m,

where εijs are independent and identically distributed with mean 0 and variance σ2
0,

an estimate for d0, based on non-normalized p-values, is given by

d̂FDm,n = sargmin
d∈(0,1)

Mm,n(d),
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where

MFD
m,n(d) =

1

n

n∑
i=1

{
Φ
(√

mȲi
)
− γ
}

1

(
i

n
≤ d

)
.

Here, τ0 is assumed known and taken to be zero without any loss of generality. The

following result, whose proof is outlined in Section B.8 of Appendix B, shows that

d̂FDm,n attains the same rate of convergence as its counterpart in the random design

setting.

Proposition 3.16. For m = m0n
β and α as defined in Theorem 3.2, we have

nα(d̂FDm,n − d0) = OP (1).

As mentioned in Remark 3.7, there is no limit distribution available in this setting

as the sums of the form
∑

i[1 (i/n ≤ d0 + t/n)−1 (i/n ≤ d0)], t ∈ R, do not converge.

However, the asymptotic distributions obtained in the random design setup can be

used for setting approximate CIs for d0 in such cases. Section 5.1.2 of Lan et al.

(2007) investigated this issue through simulations in the related setting of a change-

point regression model where the quantiles of the limit distribution (of the least

squares estimate of the change-point) in a uniform random design setting were used

for constructing CIs for the change-point when the data were generated from a uniform

fixed design setting. The CIs obtained were seen to have comparable lengths to those

for data generated from the random setting but were prone to over-coverage, and were

therefore honest in the fixed design setting. A similar phenomenon was observed in

our problem.
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3.5 Data analysis

3.5.1 Simulations

We consider the underlying regression function as µ(x) = [2(x − 0.5)]1(x >

0.5), x ∈ [0, 1], the curve M1 from Chapter 2. This function is at its baseline value 0

up to d0 = 0.5 and then rises to 1. The errors are assumed to be normally distributed

with mean 0 and standard deviation σ0 = 0.1. We work with γ = 3/4 as extreme

values of γ (close to 0.5 or 1) tend to cause instabilities. We study the coverage per-

formance of the approximate CIs obtained from the limiting distributions with the

nuisance parameters estimated.

We generate samples for different choices of m and n, under µ. The covariate X is

sampled from U(0, 1). For estimation, the factor m0 is chosen so that the allocation

between m and n is optimum. We assume τ0 to be unknown and get its initial estimate

through the p-value based approach proposed in Chapter 2 (see (2.5)). An iterative

scheme is then implemented where we use this initial estimator of τ0 to compute d̂m,n,

re-estimate τ0 by averaging the responses for which X lies in [0, 0.9d̂m,n] and proceed

thus. On average, the estimates stabilize within 5 iterations. Firstly, we compare the

distribution of n(d̂m,n − d0) for m = n = 500 data points over 5000 replications with

the deduced asymptotic distribution. The Q-Q plot, shown in the left panel of Figure

3.5.1, reveals considerable agreement between the two distributions. In Table 3.1 we

provide the estimated coverage probabilities of the CIs over 5000 replications for the

model µ constructed by imputing estimates of the nuisance parameters (as discussed

in Section 3.3) in the limiting distribution. The limiting process V was generated over

a compact set incorporating the fact that d0 ∈ (0, 1) and consequently n(d̂m,n−d0) ∈

[n(d̂m,n−1), nd̂m,n]. The smoothing bandwidth for estimating µ(k)(d0+) was chosen to

be 5(n/ log n)−1/(2k+1). The coverage performance is not very sensitive to the choice

of this bandwidth as long as it is reasonably wide. The approximate CIs exhibit
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Figure 3.1: Q-Q plot under µ when m = n = 500 over 5000 replications (left plot),
and the plot of all the response for the data from the queuing system
(right plot).

over-coverage for small samples but have close to the desired nominal coverage level

as the sample size increases. As discussed in Section 3.3.1, upper confidence bounds

m n
90% CI 95% CI

T E T E

5 5 0.966 (0.704) 0.860 (0.637) 0.973 (0.764) 0.940 (0.696)
10 10 0.941 (0.454) 0.944 (0.473) 0.970 (0.553) 0.970 (0.568)
15 10 0.924 (0.451) 0.939 (0.472) 0.966 (0.552) 0.966 (0.564)
10 15 0.914 (0.322) 0.935 (0.338) 0.961 (0.408) 0.961 (0.428)
15 15 0.913 (0.320) 0.931 (0.345) 0.959 (0.406) 0.961 (0.435)
20 20 0.910 (0.243) 0.913 (0.254) 0.955 (0.312) 0.960 (0.326)
25 25 0.908 (0.195) 0.910 (0.202) 0.951 (0.252) 0.959 (0.259)
30 30 0.903 (0.163) 0.893 (0.167) 0.951 (0.211) 0.953 (0.215)
50 50 0.901 (0.100) 0.900 (0.100) 0.950 (0.128) 0.951 (0.130)

Table 3.1: Coverage probabilities and lengths of two-sided CIs (in parentheses) using
the true parameters (T) and the estimated parameters (E) for different
sample sizes.

can be constructed without the knowledge of k. We provide coverage probabilities

and average lengths of the CIs [0, d̂m,n −Kα/n], for α = 0.05 and 0.10 in Table 3.2.

The only parameter to estimate for computing the quantile Kα is f(d0) which, as

mentioned earlier, is computed by evaluating a kernel estimate of f at the point d̂m,n.

As expected, the CIs are conservative but are close to the desired confidence level
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for large m and n, with their average length converging towards 0.5 (length of the

interval [0, d0]).

m n
90% CI 95% CI

T E T E

5 5 0.951 (0.834) 0.956 (0.865) 0.970 (0.927) 0.971 (0.930)
10 10 0.955 (0.747) 0.978 (0.753) 0.990 (0.851) 0.993 (0.857)
15 10 0.962 (0.747) 0.978 (0.750) 0.990 (0.849) 0.992 (0.855)
10 15 0.933 (0.665) 0.955 (0.672) 0.972 (0.748) 0.991 (0.754)
15 15 0.921 (0.657) 0.959 (0.669) 0.966 (0.741) 0.990 (0.751)
20 20 0.920 (0.618) 0.943 (0.627) 0.962 (0.680) 0.986 (0.690)
25 25 0.921 (0.594) 0.934 (0.598) 0.960 (0.644) 0.972 (0.649)
30 30 0.915 (0.579) 0.935 (0.584) 0.960 (0.620) 0.971 (0.626)
50 50 0.913 (0.548) 0.933 (0.551) 0.958 (0.573) 0.970 (0.576)

Table 3.2: Coverage probabilities and lengths of one-sided adaptive CIs (in parenthe-
ses) using the true parameters (T) and the estimated parameters (E) for
different sample sizes.

3.5.2 Complex queuing system

We consider a complex queuing system comprising multiple classes of customers

waiting at infinite capacity queues and a set of processing resources modulated by an

external stochastic process. This data is preferred over the toxicology data in Chap-

ter 2 from the perspective of large sample inference. The system employs a resource

allocation (scheduling) policy that decides at every time slot which customer class to

serve, given the state of the modulating rate process and the backlog of the various

queues. In Bambos and Michailidis (2004), a low complexity policy was introduced

and its maximum throughput properties established. This canonical system captures

the essential features of data/voice transmissions in a wireless network, in multi-

product manufacturing systems, and in call centers (for more details see Bambos and

Michailidis (2004)). An important quantity of interest to the system’s operator is the

average delay of jobs (over all classes), which constitutes a key performance metric

of the quality of service offered by the system. The average delay of the jobs in a
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two-class system as a function of its loading under the optimal policy, for a small

set of loadings is shown in the right panel of Figure 3.5.1. These responses were

obtained through simulation, since for such complex systems analytic calculations

of delays are intractable. More specifically, ten replicates of the response (average

delay) were obtained based on 5,000 events per class by simulating the system under

consideration and after accounting for a burn-in period of 2,000 per class in order to

ensure that it reached its stationary regime. The means per loading, Ȳis, are shown

in the left panel of Figure 3.5.2. The system operator is interested in identifying

the loading beyond which the average delay starts increasing from its initial baseline

value. Starting with an initial estimate of τ0, the iterative approach discussed in the
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Figure 3.2: Plot of the average responses Ȳi (left panel) and the estimated p-values
(right panel) for the data from the queuing system.

previous sub-section yields the final estimates to be d̂m,n = 0.1165 and τ̂ = 2.5230,

assuming homoscedastic errors. The estimated p-values are plotted in the right panel

of Figure 3.5.2 which illustrates the dichotomy in the behavior of the p-values – they

are uniformly distributed to the left of d̂m,n, and close to zero beyond d̂m,n. Taking

k to be 1, and using the methodology described in the previous sub-section, the 90%

and 95% CIs for the threshold turn out to be [0.1051, 0.1276] and [0.1031, 0.1301], re-

spectively. Also, the adaptive upper 90% and 95% confidence bound for the threshold

turn out to be 0.1348 and 0.1371, respectively. From the system’s operator point of
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view the average delay of jobs exhibits a markedly increasing trend beyond a loading

of 13%.

3.6 Conclusion

We conclude with a discussion of some open problems that can provide avenues

for further investigation into this problem.

Adaptivity. We have provided a comprehensive treatment of the asymptotics

of a p-value based procedure to estimate the threshold d0 at which an unknown

regression function µ takes off from its baseline value, with the aim of constructing

CIs for d0. We have assumed knowledge of the order of the ‘cusp’ of µ at d0, which

we need to achieve the optimal rate of convergence (and construct the corresponding

CIs), though not for consistency. When k is unknown, we have been able to construct

adaptive one-sided CIs. However, constructing two-sided adaptive CIs remains a

hard open problem and will be a topic of future research.

Resampling. A natural alternative to using the limit distribution (with estimated

nuisance parameters) to construct CIs for d0 would be to use bootstrap/resampling

methods. Drawing from results obtained in similar change-point and non-standard

problems (see e.g., Sen et al. (2010); Seijo and Sen (2011)) it is very likely that the

usual bootstrap method will be inconsistent in our setup. However, model based

bootstrap procedures have recently been studied in the change-point context and

have been shown to work (Seijo and Sen, 2011). Similar ideas may work for our

problem as well, but a thorough understanding of such bootstrap procedures is

beyond the scope of this chapter. Subsampling has been proven to be consistent in

our setting, but its finite sample properties were seen to be rather dismal.
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CHAPTER 4

Asymptotics for the standard regression setting

In this chapter, we address the inference problem for the p-value procedure in

the standard regression or simply the regression setting, i.e, we study the asymptotic

properties of d̂n arising out of a variant of criterion (2.4) from Chapter 2 and use these

results to construct asymptotically valid CIs for the threshold, both in simulation set-

tings and for two key motivating examples from Chapter 2. The problem, which falls

within the sphere of non-regular M-estimation is rather hard, and involves non-trivial

applications of techniques from modern empirical processes, as well as results from

martingale theory and the theory of Gaussian processes. Along the way, we also de-

duce results on the large sample behavior of a kernel estimator at local points (see

Lemma 4.4 and Proposition 4.13) that are of independent interest. In most of the

literature, kernel estimates are considered at various fixed points and are asymptot-

ically independent (Csörgő and Mielniczuk, 1995a,b; Robinson, 1997). Hence, they

do not admit a functional limit. However, these estimates, when considered at local

points, deliver an invariance principle; see Lemma 4.4 and the proof of Proposition

4.13.

As in the dose-response setting from Chapter 3, we show that the smoothness of

the function in the vicinity of d0 determines the rate of convergence of our estima-

tor: for a “cusp” of order k at d0, the best possible rate of convergence turns out

53



to be n−1/(2k+1). The limiting distribution of an appropriately normalized version of

the estimator is that of the minimizer of the integral of a transformed Gaussian pro-

cess. The limiting process is new, and while the uniqueness of the minimizer remains

unclear (and appears to be a interesting nontrivial exercise in probability), we can

bypass the lack of uniqueness and still provide a thorough mathematical framework

to construct honest CIs. Under the assumption of uniqueness, which appears to be

a very reasonable conjecture based on extensive simulations, we establish auxiliary

results to construct asymptotically exact CIs as well.

The chapter is organized thus: we briefly recall the variant of the estimation

procedure that we study in a fixed design setting and state the core assumptions in

Section 4.1. In a fixed design, the resulting kernel estimates can be shown to be

m-dependent, a feature that helps us in establishing the rate of convergence. The

rate of convergence and the asymptotic distribution of the estimated threshold, along

with some auxiliary results for constructing CIs, are deduced in Sections 4.2.1 and

4.2.2 assuming a known τ0. Asymptotic results for the other variants of the procedure

are discussed in Section 4.2.3 and extensions of these results to the situation with an

unknown τ0 are presented in Section 4.3. We study the coverage performance of the

resulting CIs through simulations in Section 4.4. The applicability of our approach to

short-range dependent data is the content of Section 4.5. We implement our procedure

to two data examples in Section 4.6. Some concluding remarks are drawn in Section

4.7. The proofs of several technical results are available in Appendix C.

4.1 The Method

Consider the uniform fixed design regression model of the form:

Yi = µ

(
i

n

)
+ εi, 1 ≤ i ≤ n, (4.1)
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with εis i.i.d. having variance σ2
0. Although we suppress the dependence on n, Yi and

εi must be viewed as triangular arrays. Let K be a symmetric probability density

(kernel) and hn = h0n
−λ denote the smoothing bandwidth, for some λ ∈ (0, 1), h0 > 0.

With a slightly different notation from Chapter 2, let

µ̂(x) =
1

nhn

n∑
i=1

YiK

(
x− i/n
hn

)
(4.2)

denote an estimate of µ. Let

Mn(d) =
1

n

n∑
i=1

[
Φ

(√
nhn

(
µ̂

(
i

n

)
− τ0

))
− γ
]

1

(
i

n
≤ d

)
. (4.3)

Then, an estimate of d0, based on a non-normalized p-value criterion as in (2.4) of

Chapter 2, is given by

d̂n = sargmin
d∈[0,1]

Mn(d),

where sargmin denotes the smallest argmin of the criterion function as earlier. Ana-

lyzing this method is useful in illustrating the core ideas while avoiding some of the

tedious details encountered in analyzing the normalized p-value based estimate.

Remark 4.1. As in Chapter 3, we first study the above method assuming a known τ0.

When τ0 is unknown, a plug-in estimate can be substituted in its place (more about

this in Section 4.3). Also, for any choice of γ ∈ (1/2, 1) in (4.3), the estimator of d0

is consistent. The proof follows along the lines of arguments for the proof of Theorem

2.2 in Chapter 2.

Throughout this chapter, we make the following assumptions.

1. Assumptions on µ:

(a) µ is continuous on [0, 1]. We additionally assume that µ is Lipschitz con-

tinuous of order α1 with α1 ∈ (1/2, 1].
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(b) µ has a cusp of order k, k being a known positive integer, at d0, i.e.,

µ(l)(d0) = 0, 1 ≤ l ≤ k − 1, and µ(k)(d0+) > 0, where µ(l)(·) denotes the

l-th derivative of µ. Also, the k-th derivative, µ(k)(x) is assumed to be

continuous and bounded for x ∈ (d0, d0 + ζ0] for some ζ0 > 0.

2. The error ε possesses a continuous positive density on an interval.

3. Assumptions on the kernel K:

(a) K is a symmetric probability density.

(b) K(u) is non-increasing in |u|.

(c) K is compactly supported, i.e., K(x) = 0 when |x| ≥ L0, for some L0 > 0.

(d) K is Lipschitz continuous of order α2 with α2 ∈ (1/2, 1].

As a consequence of these assumptions, µ and K are bounded, K̄2 =
∫
K2(u)du <∞

and E|W |k < ∞, where W has density K. Also, both µ and K are Lipschitz con-

tinuous of order α = min(α1, α2). These facts are frequently used in the chapter.

Common kernels such as the Epanechnikov kernel and the triangular kernel conve-

niently satisfy the assumptions mentioned above. The results in the next section are

developed for a γ ∈ (1/2, 1) (cf. Remark 4.1) and a known τ0. It will be seen in

Section 4.3 that τ0 can be estimated at a sufficiently fast rate; consequently, even if

τ0 is unknown, appropriate estimates can be substituted in its place to construct the

p-values that are instrumental to the methods of this chapter, without changing the

limit distributions. Without loss of generality, we take τ0 ≡ 0 in the next section, as

one can work with (Yi − τ0)s in place of Yis.

Comparison with existing approaches. Under the above assumptions, d0 is a

‘change-point’ in the k-th derivative of µ. Our procedure for estimating this change-

point relies on the discrepancy of p-values, the construction of which requires a kernel-

smoothed estimate (or if one desires, local polynomial estimate) of µ. The estimation
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of a change-point in the derivative of a regression function has been studied by a num-

ber of authors using kernel-based strategies. However, the approaches in these papers

are quite different from ours and more importantly, our problem cannot be solved

by these methods without making stronger model assumptions than those above. In

Müller (1992), the change-point is obtained by direct estimation of the k-th derivative

(k corresponds to ν in that paper) on either side of the change-point via one-sided ker-

nels and measuring the difference between these estimates. In contrast, our approach

does not rely on derivative estimation. We use an ordinary kernel function to con-

struct a smooth estimate of µ which is required for the point wise testing procedures

that lead to the p-values. In fact, a consistent estimate that attains the same rate

of convergence as our current estimate could have been constructed using a simple

regressogram estimator with an appropriate bin-width, in contrast to the approach in

Müller (1992) which uses a k–times differentiable kernel. Müller (1992) also assumes

that the k-th derivative of the regression function is at least twice continuously differ-

entiable at all points except d0 – see, pages 738–739 of that paper – which is stronger

than our continuity assumption on µ(k) (1(b) above). Cheng and Raimondo (2008)

develop kernel methods for optimal estimation of the first derivative building on an

idea by Goldenshluger et al. (2006), which is followed up in the context of dependent

errors by Wishart and Kulik (2010), and Wishart (2009), but these papers do not

consider the case k > 1. We also note that our method is fairly simple to implement.

4.2 Main Results

We consider the model stated in (4.1) with homoscedastic errors and uniform fixed

design, and study the limiting behavior of d̂n which minimizes (4.3). Results on the

variant of the procedure discussed in Chapter 2 follow analogously and are stated in

Section 4.2.3.
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4.2.1 Rate of convergence

We start by fixing some notations. Let the variance of the statistic
√
nhnµ̂(x) be

denoted by

Σ2
n(x) = Σ2

n(x, σ0) = Var(
√
nhnµ̂(x)) =

σ2
0

nhn

n∑
i=1

K2

(
x− i/n
hn

)
. (4.4)

Note that this converges to Σ2(x) = σ2
0K̄

2 with K̄2 =
∫
K2(u)du. We first consider

the population equivalent of Mn, given here by Mn(d) = E {Mn(d)}, and study the

behavior of its smallest argmin. Recall that τ0 is taken to be zero without loss of

generality. Let

Zin =
1√
nhn

n∑
l=1

εlK

(
i/n− l/n

hn

)
,

for i = 1, . . . , n, and Z0 be a standard normal random variable independent of Zin’s.

Also, let

µ̄(x) =
1

nhn

n∑
l=1

µ

(
l

n

)
K

(
x− l/n
hn

)
. (4.5)

Note that
√
nhnµ̂(i/n) =

√
nhnµ̄(i/n) + Zin and Var(Zin) = Σ2(i/n) with Σ(·) as in

(4.4). We have

E
[
Φ
(√

nhnµ̂(i/n)
)]

= E
[
Φ
(√

nhnµ̄(i/n) + Zin

)]
= E

[
1
(
Z0 ≤

√
nhnµ̄(i/n) + Zin

)]
= Φi,n

( √
nhnµ̄(i/n)√
1 + Σ2

n(i/n)

)
, (4.6)

where Φi,n denotes the distribution function of (Z0 − Zin) /
√

1 + Σ2
n(i/n). Hence,

Mn(d) =
1

n

n∑
i=1

{
Φi,n

( √
nhnµ̄(i/n)√
1 + Σ2

n(i/n)

)
− γ

}
1

(
i

n
≤ d

)
.
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For L0hn ≤ i/n ≤ 1−L0hn, Φi,n’s and Σn(i/n)’s do not vary with i. We denote them

by Φ̃n and Σ̃n for convenience. Using Corollary C.2 and (C.1) from Appendix C, Σ̃n

converges to σ0

√
K̄2. Also, for such i’s, any η > 0 and sufficiently large n,

1

nhnΣ̃2
n

n∑
l:|l−i|≤L0nhn

E

[
ε2lK

2

(
(i− l)/n

hn

)
1

(
|εl|K ((i− l)/(nhn))
√
nhnΣ̃n(l/n)

> η

)]

is bounded by

2 d2L0nhne ‖K‖2
∞

nhn(σ2
0K̄

2)
E

[
ε211

(
2‖K‖∞

nhn(σ0

√
K̄2)
|ε1| > η

)]
,

which converges to zero. Hence, by Lindeberg–Feller CLT, Zin/Σ̃n and consequently,

Φ̃n converge weakly to Φ. In fact, for any i, we can also show that Φi,n converges

weakly to Φ.

Let dn = sargmindMn(d). As mentioned earlier, sargmin denotes the smallest

argmin of the objective function Mn which does not have a unique minimizer. The

following lemma provides the rate at which dn converges to d0.

Lemma 4.2. Let νn = min(h−1
n , (nhn)1/2k). Then νn(dn − d0) = O(1).

Proof. It can be shown by arguments analogous to proof of Theorem 2.2 from Chapter

2 that (dn − d0) is o(1). As d0 is an interior point of [0,1], dn ∈ (L0hn, 1− L0hn) and

corresponds to a local minima of Mn for sufficiently large n, i.e., dn satisfies

Φ̃n

√nhnµ̄(dn)√
1 + Σ̃2

n

 ≤ γ and Φ̃n

√nhnµ̄(dn + 1/n)√
1 + Σ̃2

n

 > γ. (4.7)

By Pólya’s theorem, Φ̃n converges uniformly to Φ. Consequently,

0 ≤
√
nhnµ̄(dn) ≤ Φ−1(γ)

√
1 + σ2

0K̄
2 + o(1). (4.8)
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Note that µ̄(x) = 0 for x < d0 − L0hn and Φ̃n(0) converges to Φ(0) = 0.5 < γ.

So, if dn < d0, then for (4.7) to hold, dn + 1/n + L0hn > d0 for large n and thus

h−1
n (dn − d0) = O(1) which gives the result. Also, when d0 < dn ≤ d0 + L0hn, the

result automatically holds. So, it suffices to consider the case dn > d0 + L0hn.

Let un(x, v) = (1/hn)µ (v)K ((x− v)/hn) for x ∈ [0, 1] and v ∈ R. By Lemma

C.1 from Appendix C,

∣∣∣∣∣∣µ̄(dn)−
1∫

0

un(dn, v)dv

∣∣∣∣∣∣ = O

(
1

(nhn)α

)
.

By a change of variable,
∫ 1

0
un(dn, v)dv =

∫ L0

−L0
µ(dn + uhn)K(u)du for large n. As

dn > d0+L0hn, the first part of the integrand, µ(dn+uhn), is positive for u ∈ [−L0, L0].

Let [−L1, L1] be an interval where K is positive. Such an interval exists due to as-

sumptions 4(a) and 4(b). Hence,
∫ L1

−L1
µ(dn+uhn)K(u)du = 2L1µ(dn+ξnhn)K(ξn) ≤∫

un(dn, v)dv, where ξn is some point in [−L1, L1]. Using Taylor expansion around

d0, µ(dn + ξnhn) =
{
µ(k)(ζn)/k!

}
(dn + ξnhn − d0)k, for some ζn lying between d0 and

dn + ξnhn. By (4.8), we get

2L1
µ(k)

k!
(ζn)(dn + ξnhn − d0)kK(ξn) = O((nhn)−1/2).

As dn → d0, µ(k)(ζn) converges to µ(k)(d0+), which is positive. Also, as ξn ∈ [−L1, L1],

K(ξn) is bounded away from zero, and thus (dn + ξnhn− d0) = O((nhn)−1/2k), which

yields the result.

As d̂n is, in fact, estimating dn, its rate of convergence for d0 can at most be ν−1
n .

Fortunately, ν−1
n turns out to be the exact rate of convergence of d̂n.

Theorem 4.3. Let νn be as defined in Lemma 4.2. Then νn(d̂n − d0) = Op(1).

The proof is given in Section C.1 of Appendix C. It involves coming up with an

appropriate distance ρn based on the behavior of Mn near d0 (Lemma C.3) and then
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establishing a modulus of continuity bound for Mn −Mn with respect to ρn. As the

summands that constitute Mn are dependent, the latter cannot be handled directly

through VC or bracketing results (Theorems 2.14.1 or 2.14.2 of van der Vaart and

Wellner (1996)); rather, we require a blocking argument followed by an application

of Doob’s inequality to the blocks.

The optimal rate is attained when h−1
n ∼ (nhn)1/(2k) and corresponds to hn =

h0n
−1/(2k+1) and νn = n1/(2k+1). We now deduce the asymptotic distribution for this

particular choice of bandwidth.

4.2.2 Asymptotic Distribution

With hn = h0n
−1/(2k+1), we study the limiting behavior of the process

Zn(t) = h−1
n [Mn(d0 + thn)−Mn(d0)] , t ∈ R, (4.9)

where Mn is defined in (4.3). The process Zn(t) is minimized at h−1
n (d̂n− d0). At the

core of the process Zn(t) lies the estimator µ̂, computed at local points d0 + thn. Let

Wn(t) =
√
nhnµ̂(d0 + thn) (4.10)

and Bloc(R) denote the space of locally bounded functions on R, equipped with the

topology of uniform convergence on compacta. We have the following lemma on the

limiting behavior of Wn.

Lemma 4.4. There exists a Gaussian process W (t), t ∈ R, with almost sure contin-

uous paths and drift

m(t) = E(W (t)) =
h
k+1/2
0 µ(k)(d0+)

k!

t∫
−∞

(t− v)kK (v) dv

and covariance function Cov(W (t1),W (t2)) = σ2
0

∫
K(t1 + u)K(t2 + u)du such that
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the process Wn(·) converges weakly to W (·) in Bloc(R).

The proof is given in Section C.2 of Appendix C. For brevity, −
∫ x
y

is written as∫ y
x

whenever x > y.

Theorem 4.5. For hn = h0n
−1/(2k+1) and t ∈ R, the process Zn(t) converges weakly

to the process Z(t) =
∫ t

0
[Φ (W (y))− γ] dy in Bloc(R).

Proof. Split Zn(t) as In(t) + IIn(t), where

In(t) =
1

nhn

n∑
i=1

[{
Φ
(√

nhnµ̂(i/n)
)
− γ
}

×
{

1

(
i

n
≤ d0 + thn

)
− 1

(
i

n
≤ d0

)}]

− 1

hn

d0+thn∫
d0

(
Φ
(√

nhnµ̂(x)
)
− γ
)
dx

and IIn = h−1
n

∫ d0+thn
d0

(
Φ
(√

nhnµ̂(x)
)
− γ
)
dx. Fix T > 0 and let t ∈ [−T, T ]. Using

arguments almost identical to those for proving Lemma C.1 in Appendix C, we have

|In(t)| ≤
∑
|d0−i/n|
≤Thn

(i+1)/n∫
i/n

1

hn

∣∣∣Φ(√nhnµ̂(i/n)
)
− Φ

(√
nhnµ̂(x)

)∣∣∣ dx
+O

(
1

nhn

)
+

γ

nhn
(bn(d0 + thn)c − bn(d0)c)− γt,

where the O(1/(nhn)) factor accounts for the boundary terms. Using the fact that

x − 1 ≤ bxc ≤ x + 1, the term (γ/(nhn))(bn(d0 + thn)c − bn(d0)c) − γt is bounded

by 2γ(1/(nhn) + T/n) which goes to zero. The sum of integrals in the above display
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is further bounded by

d2Tnhne
nhn

sup
|x−y|<1/n

x,y∈[d0−Thn,d0+Thn]

∣∣∣Φ(√nhnµ̂(x)
)
− Φ

(√
nhnµ̂(y)

)∣∣∣
≤ d2Tnhne

2πnhn
sup

|u−v|<1/(nhn)
u,v∈[−T,T ]

|Wn(u)−Wn(v)| .

The above display goes in probability to zero due to the asymptotic equicontinuity

of the process Wn and hence the term In converges in probability to zero uniformly

in t over compact sets. Further, we have

IIn(t) = h−1
n

d0+thn∫
d0

(
Φ
(√

nhnµ̂(x)
)
− γ
)
dx

=

t∫
0

[
Φ
(√

nhnµ̂(d0 + yhn)
)
− γ
]
dy

=

t∫
0

[Φ (Wn(y))− γ] dy.

As the mapping W (·) 7→
∫ ·

0
Φ(W (y))dy from Bloc(R) to Bloc(R) is continuous, using

Lemma 4.4, the term IIn converges weakly to the process
∫ t

0
[Φ (W (y))− γ] dy, t ∈ R.

This completes the proof.

A conservative asymptotic CI for d0 can be obtained using the following result.

Theorem 4.6. The process Z(t) goes to infinity almost surely (a.s.) as |t| → ∞.

Moreover, let ξs0 and ξl0 denote the smallest and the largest minimizers of the process

Z. Also, let csα/2 and cl1−α/2 be the (α/2)th and (1 − α/2)th quantiles of ξs0 and ξl0

respectively. For hn = h0n
−1/(2k+1), we have

lim inf
n→∞

P [csα/2 < h−1
n (d̂n − d0) < cl1−α/2] ≥ 1− α.
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Note that ξs0 and ξl0 are indeed well defined by continuity of the sample paths of

Z and the fact that Z(t) goes to infinity as |t| → ∞. Also, they are Borel measurable

as, say for ξs0, the events [ξs0 ≤ a] and the measurable event [inft≤a Z(t) ≤ inft>a Z(t)]

are equivalent for any a ∈ R. Hence csα/2 and cl1−α/2 are well defined. The proof of

the result is given in Section C.3 of Appendix C.

A minimum of the underlying limiting process lies in the set {y : Φ (W (y)) = γ}.

As any fixed number has probability zero of being in this set, the distributions of ξs0

and ξl0 are continuous. The process {W (y) : y ∈ R} has zero drift for y < −L0 and is

therefore stationary to the left of −L0. Hence, it must cross γ infinitely often implying

that Z has multiple local extrema. On the other hand, simulations strongly suggest

that Z has a unique argmin though a theoretical justification appears intractable

at this point. The issue of the uniqueness of the argmin of a stochastic process

has mostly been addressed in context of Gaussian processes (Lifshits, 1982; Kim

and Pollard, 1990; Ferger, 1999), certain transforms of compound Poisson processes

(Ermakov, 1976; Pflug, 1983) and set-indexed Brownian motion (Müller and Song,

1996). These techniques do not apply to our setting; in fact, an analytical justification

of the uniqueness of the minimizer of Z appears non-trivial. As the simulations

provide strong evidence in support of a unique argmin, we use the following result for

constructing CIs in practice.

Theorem 4.7. Assuming that the process Z has a unique argmin, we have

h−1
n (d̂n − d0)

d→ argmin
t∈R

{Z(t)},

for hn = h0n
−1/(2k+1).

Remark 4.8. As deduced in Chapter 3, the limit distribution in the dose-response

setting is governed by the minimizer of a generalized compound Poisson process, in

contrast to the integral of a transformed Gaussian process that appears in the stan-
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dard regression setting. The appearance of a markedly different transformed Gaussian

process is an outcome of the local spatial averaging of responses needed to construct

the p-values in the absence of multiple replications.

Note that when the argmin is unique, Theorem 4.6 and Theorem 4.7 yield the

same CI. The proof of Theorem 4.7 is a direct application of the argmin(argmax)-

continuous mapping theorem; see Kim and Pollard (1990, Theorem 2.7) or van der

Vaart and Wellner (1996, Theorem 3.2.2).

4.2.3 Limit distributions for variants of the procedure

The rates of convergence and asymptotic distributions can be obtained similarly

for most of the variants of the procedure that were discussed in Chapter 2. In what

follows, we state the limiting distributions for some of these variants.

Results analogous to Theorem 4.6 can be shown to hold in the setting with het-

eroscedastic errors, i.e., Var(εi) = σ2
0(i/n), where σ2

0(·) is a positive continuous func-

tion. The process Z has the same form as in Theorem 4.6 apart from the fact that the

σ2
0 involved in the covariance kernel of the process W that appears in the definition

of Z is replaced by σ2
0(d0). When normalized p-values are used to estimate d0, we

have the following form for the limiting distribution; an outline of its proof is given

in Section C.4 of Appendix C.

Proposition 4.9. Consider the setting with homoscedastic errors and covariates sam-

pled from the fixed uniform design, as discussed in Section 4.1. Let σ̂ be an estimate

of σ0 such that
√
n(σ̂ − σ0) = Op(1) and let d̂1

n denote the estimate obtained from

minimizing

M̃n(d) ≡ M̃n(d, σ̂)

=
1

n

n∑
i=1

{
Φ

(√
nhn(µ̂(i/n)− τ0)

Σn(i/n, σ̂)

)
− γ
}

1

(
i

n
≤ d

)
.
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Let hn = h0n
−1/(2k+1) and W 1(t), t ∈ R, be a Gaussian process with drift

E(W 1(t)) =
h
k+1/2
0 µ(k)(d0+)

k!σ0

√
K̄2

t∫
−∞

(t− v)kK (v) dv

and covariance function Cov(W 1(t1),W 1(t2)) = (K̄2)−1
∫
K(t1 + u)K(t2 + u)du. Let

Z1(t) =
∫ t

0
{Φ(W 1(y))− γ}dy, for t ∈ R. If σ̂ is a

√
n-consistent estimate of σ0, then

h−1
n (d̂1

n − d0) is Op(1). For Z1 possessing a unique argmin a.s., we have

h−1
n (d̂1

n − d0)
d→ argmin

t∈R
Z1(t).

When the covariate is sampled from a random design with heteroscedastic errors,

the result extends as follows for the estimate based on non-normalized p-values. Recall

from Chapter 2 that such an estimator of d0 has the form

d̃n = sargmin
d∈(0,1)

Pn
[{

Φ
(√

nhn(µ̃(X)− τ0)
)
− γ
}

1(X ≤ d)
]
, (4.11)

where µ̃ is the Nadaraya-Watson estimator, i.e.,

µ̃(x) =
Pn[Y K ((x−X)/hn)]

Pn[K ((x−X)/hn)]
.

We have the following result on the limiting distribution of d̃n.

Proposition 4.10. Consider the setting with covariates sampled from a random de-

sign with design density f and heteroscedastic errors. The variance function σ2
0(x) =

Var(ε | X = x) is assumed to be continuous and positive. Let hn = h0n
−1/(2k+1) and

W̃ (t), t ∈ R, be a Gaussian process with drift

E(W̃ (t)) =
h
k+1/2
0 µ(k)(d0+)

k!

t∫
−∞

(t− v)kK (v) dv
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and covariance function Cov(W̃ (t1), W̃ (t2)) =
σ2
0(d0)

f(d0)

∫
K(t1 + u)K(t2 + u)du. Let

Z̃(t) =
∫ t

0
{Φ(W̃ (y)) − γ}dy, for t ∈ R. For d̃n defined as in (4.11), assume that

h−1
n (d̃n − d0) is Op(1). For Z̃ possessing a unique argmin a.s., we have

h−1
n (d̃n − d0)

d→ argmin
t∈R

Z̃(t).

A sketch of the proof is given in Section C.5 of Appendix C.

4.3 The case of an unknown τ0

Although most of the results have been deduced under the assumption of a known

τ0, in real applications τ0 is generally not known. In this situation, one would need

to impute an estimate of τ0 in the objective function to carry out the procedure. It

can be shown that the rate of convergence and the limit distribution does not change

as long as we have a
√
n-consistent estimator of τ0. The following result makes this

formal; its proof is given in Section C.6 of Appendix C.

Proposition 4.11. Let d̂n now denote the minimizer of

Mn(d, τ̂) =
1

n

n∑
i=1

[
Φ

(√
nhn

(
µ̂

(
i

n

)
− τ̂
))
− γ
]

1

(
i

n
≤ d

)
,

where
√
n(τ̂ − τ0) = Op(1) and hn = h0n

−1/(2k+1). Then h−1
n (d̂n − d0) is Op(1).

Assuming that the process Z defined in Theorem 4.5 has a unique argmin, we have

h−1
n (d̂n − d0)

d→ argmin
t∈R

{Z(t)}.

Quite a few choices are possible for estimating τ0. If d0 can be safely assumed

to be larger than some η, then a simple averaging of the observations below η would

yield a
√
n-consistent estimator of τ0. If a proper choice of η is not available, one
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can obtain an initial (consistent) estimate of τ0 using the method proposed in Section

2.1.4 of Chapter 2 (see (4.12)), compute d̂n and then average the responses from,

say, [0, cd̂n], c ∈ (0, 1), to obtain a
√
n-consistent estimator of τ0. This leads to an

iterative procedure which we discuss in more detail in Section 4.4. In what follows,

we justify that such an estimate of τ0 is indeed
√
n-consistent.

Lemma 4.12. Let 0 < c < 1. For any consistent estimator d′n of d0, define

τ̂ :=
1

bncd′nc

n∑
i=1

Yi1

(
i

n
≤ cd′n

)
.

We have
√
n(τ̂ − τ0) = Op(1).

Proof. Note that for T > 0 and 0 < κ < min(c, (1− c))d0,

P
[√
n|τ̂ − τ | > T

]
≤ P

[√
n|τ̂ − τ | > T, κ < cd′n < d0 − κ

]
+P [d′n − d0 < (κ− cd0)/c]

+P [d′n − d0 > ((1− c)d0 − κ)/c] .

The second and the third term on the right side of the above display both converge

to zero. Also,

E
[
n(τ̂ − τ)21 (κ < cd′n < d0 − κ)

]
= nE

 1

bncd′nc

bncd′nc∑
i=1

εi

2

1 (κ < cd′n < d0 − κ)


≤ n

(nκ− 1)2
E

 sup
a≤d0−κ

bnac∑
i=1

εi

2
≤ 4n

(nκ− 1)2
E

bn(d0−κ)c∑
i=1

εi

2 ≤ 4n(n(d0 − κ) + 1)σ2
0

(nκ− 1)2
.

Here, the penultimate step followed from Doob’s inequality. Hence,
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E [n(τ̂ − τ)21 (κ < cd′n < d0 − κ)] = O(1). Thus, by Chebyshev’s inequality,

P
[√
n|τ̂ − τ | > T, κ < cd′n < d0 − κ

]
≤ O(1)/T 2

which can be made arbitrarily small by choosing T large. This completes the proof.

4.4 Simulations

We consider three choices for the underlying regression function µk(x) = [2(x −

0.5)]k1(x > 0.5), x ∈ [0, 1], k = 1, 2 and µ3(x) = [(x − 0.5) + (1/5) sin(5(x − 0.5)) +

0.3 sin(100(x− 0.5)2)]1(x > 0.5). All these functions are at their baseline value 0 up

to d0 = 0.5. The functions µ1 (linear) and µ2 (quadratic) both rise to 1 while µ3

exhibits non-isotonic sinusoidal behavior after rising at d0. The right derivative at

d0, a factor that appears in the limiting process Z, is the same for µ1 and µ3. The

functions are plotted in the upper left panel of Figure 4.1. The functions µ1 and µ2

are paired up with normally distributed errors having mean 0 and standard deviation

σ0 = 0.1, while the noise added with µ3 is from a t-distribution with 5 degrees of

freedom, scaled to have the standard deviation σ0. The three models, µ1 with normal

errors, µ2 with normal errors and µ3 with t-distributed errors, are referred to by the

name of their regression functions only. We work with γ = 3/4 as extreme values of

γ (close to 0.5 or 1) tend to cause instabilities.

We construct the estimate of d0 using the normalized p-values as they exhibit

better finite sample performance and study the coverage performance of the ap-

proximate CIs obtained from the limiting distributions with estimated nuisance pa-

rameters. The error variance σ2
0 is estimated in a straightforward manner using

σ̂2 = (1/n)
∑

i{Yi − µ̂(i/n)}2. More sophisticated estimates of the error variance are

also available (Gasser et al., 1986; Hall et al., 1990) but we avoid them for the sake of
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simplicity. We use the Epanechnikov kernel for constructing the estimate of µ. For

moderate samples, the bad behavior of kernel estimates near the boundary affects

the coverage performance. In order to correct for this, we only consider the terms

between hn to 1− hn in our objective function, i.e., for d ∈ (hn, 1− hn),

Mn(d, τ0) =
1

n

∑
hn≤ i

n
≤1−hn

{
Φ

(√
nhn(µ̂(i/n)− τ0)

Σn(i/n, σ̂)

)
− γ
}

1

(
i

n
≤ d

)
.

The asymptotic distribution of the minimizer of this restricted criterion function

still has the same form as in Proposition 4.9. A good choice for h0 in the optimal

bandwidth hn = h0n
−1/(2k+1) can be obtained through minimizing the MSE of µ̂(d0).

Standard calculations shown that

Bias(µ̂(d0)) =
µ(k)(d0+)

k!
hknE[W k1(W > 0)] + o(hkn) +O

(
1

(nhn)α

)
, and

Var(µ̂(d0)) =
σ2

0

nhn
K̄2 + o

(
1

nhn

)
,

where W has density K. The MSE is minimized at hn = hopt0 n−1/(2k+1) where

hopt0 =

[
σ2

0K̄
2(k!)2

2k{µ(k)(d0+)E[W k1(W > 0)]}2

]−1/(2k+1)

.

This bandwidth goes to 0 at the right rate needed for estimating d0. Moreover,

efficient estimation of µ in the vicinity of d0 is likely to aid in estimating d0. Hence,

we advocate the use of this choice of h0 for our procedure.

With the above mentioned choice of h0, we compare the distribution of h−1
n (d̂n −

d0) for n = 1000 data points over 5000 replications with the deduced asymptotic

distribution. As τ0 is assumed unknown, we implement an iterative scheme. We
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obtain an initial estimate of τ0 using the method prescribed in Chapter 2, i.e.,

τ̂init = argmin
τ̃∈R

∑{
Φ

(√
nhn(µ̂(i/n)− τ̃)

Σn(i/n, σ̂)

)
− 1

2

}2

. (4.12)

This estimate of τ0, based on hopt0 , is used to compute d̂n. We re-estimate τ0 by

averaging the responses for which i/n ∈ [0, 0.9d̂n] and proceed thus. The Q-Q plots are

shown in Figure 4.1 which show considerable agreement between the two distributions.

(a) Regression Functions (b) Q-Q plot under µ1

(c) Q-Q plot under µ2 (d) Q-Q plot under µ3

Figure 4.1: The three regression functions and Q-Q plots for the normalized estimate
h−1
n (d̂n − d0) computed with n = 1000 over 5000 replications.

Next, we explore the coverage performance of the CIs constructed by imputing

estimates of the nuisance parameters in the limiting distribution. Computing h0

requires the knowledge of the k-th derivative of µ at d0 which we also need to generate

from the limit process. To estimate µ(k)(d0+), first observe that µ(x) = µ(k)(d0+)(x−

d0)k/k! + o((x− d0)k) for x > d0. Hence, an estimate of µ(k)(d0+) can be obtained by
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fitting a k-th power of the covariate to the right of d̂n. More precisely, an estimate of

ξ0 ≡ µ(k)(d0+)/k! is given by

ξ̂ = argmin
ξ

n∑
i=1

{Yi − ξ(i/n− d̂n)k}21(i/n ∈ (d̂n, d̂n + bn])

=

∑
Yi(i/n− d̂n)k1(i/n ∈ (d̂n, d̂n + bn])∑
(i/n− d̂n)2k1(i/n ∈ (d̂n, d̂n + bn])

,

where bn ↓ 0 and nb2k+1
n → ∞. For the optimal hn, this provides a good estimate of

ξ0.

We include this in our iterative method where we start with an arbitrary choice

of h0 and compute τ̂init. We use τ̂init to compute d̂n and µ̂(k)(d0+). The pa-

rameter µ̂(k)(d0+) is estimated using a reasonably wide smoothing bandwidth bn,

bn = 5(n/ log n)−1/(2k+1). These initial estimates are used to compute the next level

estimate of h0 using the expression for hopt0 . We re-estimate τ0 by averaging the

responses for which i/n ∈ [0, 0.9d̂n] and proceed thus. On average, the estimates sta-

bilize within 7 iterations. The coverage performance over 5000 replications is given

below in Table 4.1. The approximate CIs mostly exhibit over-coverage for moderate

sample sizes for µ1 and µ3 but converge to the desired confidence levels for large n.

Also, the limiting distribution is same under models µ1 and µ3 which is evident from

the coverages and the length of CIs for large n.

4.5 Dependent data

We briefly discuss the extension to dependent data in this section. Our problem

is relevant to applications from time series models (see Section 4.6) where it is not

reasonable to assume that the errors εi’s are independent. A model of the form (4.1)

can be assumed here with the exception that the errors now arise from a station-

ary sequence {. . . ε−1, ε0, ε1, . . .} and exhibit short-range dependence in the sense of
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n
90% CI 95% CI

T E T E

30 0.949 (0.462) 0.961 (0.614) 0.989 (0.588) 0.987 (0.659)
50 0.943 (0.420) 0.951 (0.539) 0.971 (0.547) 0.978 (0.625)
100 0.921 (0.357) 0.939 (0.448) 0.965 (0.483) 0.972 (0.559)
500 0.914 (0.218) 0.922 (0.258) 0.961 (0.299) 0.965 (0.346)
1000 0.907 (0.173) 0.911 (0.197) 0.955 (0.237) 0.959 (0.265)
2000 0.900 (0.137) 0.903 (0.153) 0.951 (0.188) 0.954 (0.205)

µ1

n
90% CI 95% CI

T E T E

30 0.957 (0.544) 0.849 (0.651) 0.992 (0.624) 0.899 (0.665)
50 0.948 (0.539) 0.876 (0.615) 0.973 (0.620) 0.908 (0.627)
100 0.933 (0.519) 0.883 (0.602) 0.964 (0.617) 0.917 (0.616)
500 0.917 (0.415) 0.889 (0.477) 0.962 (0.548) 0.934 (0.555)
1000 0.907 (0.385) 0.894 (0.424) 0.957 (0.511) 0.944 (0.525)
2000 0.904 (0.350) 0.899 (0.384) 0.951 (0.471) 0.948 (0.490)

µ2

n
90% CI 95% CI

T E T E

30 0.960 (0.461) 0.968 (0.620) 0.992 (0.590) 0.994 (0.672)
50 0.949 (0.424) 0.959 (0.541) 0.977 (0.548) 0.982 (0.630)
100 0.925 (0.358) 0.941 (0.472) 0.970 (0.482) 0.976 (0.539)
500 0.915 (0.218) 0.925 (0.304) 0.961 (0.299) 0.966 (0.348)
1000 0.906 (0.173) 0.914 (0.199) 0.954 (0.237) 0.958 (0.264)
2000 0.901 (0.138) 0.904(0.154) 0.950 (0.188) 0.954 (0.204)

µ3

Table 4.1: Coverage probabilities and length of the CI (in parentheses) using the true
parameters (T) and the estimated parameters (E) for different sample sizes
under µ1, µ2 and µ3.
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Robinson (1997). As with (4.1), the dependence of Yi’s and εi’s on n is suppressed

but they must be viewed as triangular arrays. The extension to this setting would

work along the following lines. The estimate of µ with dependent errors still has

the same form as (4.2). With additional assumptions (Assumptions 1–5 of Robinson

(1997)), it is guaranteed that
√
nhn(µ̂(xi)− µ(xi)), xi ∈ (0, 1) and x1 6= x2, converge

jointly in distribution to independent normals with zero mean – a fact that justifies

the consistency of our p-value based estimates in this setting. Hence, d̂n, defined

using (4.3), can still be used to estimate the threshold. The limiting distribution

would be of the same form as in Lemma 4.4 but with a different scaling factor that

appears in the covariance function of the process W . We outline the form of the

limiting distribution below. The technical details are more involved in the sense of

tedium but the approach in deriving the limiting distribution remains the same at

the conceptual level.

To precisely state the limiting distribution, let ρ(i, j) = ρ(i − j) denote the co-

variance between εi and εj and let ψ denote the underlying spectral density defined

through the relation σ2
0ρ(l) =

∫ π
−π ψ(u) exp(ılu)du, l ∈ Z. Let W̄ be a Gaussian

process with drift m(·) (defined in Lemma 4.4) and covariance function

Cov(W̄ (t1), W̄ (t2)) = 2πψ(0)

∫
K(t1 + u)K(t2 + u)du.

It is not uncommon for the spectral density at zero, ψ(0) = (2π)−1σ2
0

∑
j∈Z ρ(j), to

appear in settings with short range dependence (Robinson, 1997; Anevski and Hössjer,

2006).

Proposition 4.13. Consider the setup of (4.1) with the errors now exhibiting short-

range dependence as discussed above. Assume that for hn = h0n
−1/(2k+1), the resulting

estimate d̂n obtained using (4.3) satisfies h−1
n (d̂n − d0) = Op(1) and that the process
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Z̄(t) =
∫ t

0
[Φ(W̄ (y))− γ]dy, t ∈ R has a unique minimum a.s. Then

h−1
n (d̂n − d0) = argmin

t∈R
Z̄(t).

The proof is outlined in Section C.7 of Appendix C.

An illustration of the above phenomenon is shown through a Q-Q plot (Figure

4.2), where we generate εi’s from an AR(1) model εi = 0.25εi−1+zi. Here, zis are mean

0 normal random variables with variance 0.0094 so that εi’s have variance (0.1)2. The

Q-Q plot shows considerable agreement between the empirical quantiles, obtained

from samples of size n = 1000, with the theoretical quantiles.

Figure 4.2: Regression setting with dependent errors: Q-Q plot under µ1.

4.6 Data Analysis

We now apply our procedure to two interesting examples from Chapter 2.

The first data set involves measuring concentration of mercury in the atmosphere

through a LIDAR experiment which has a visible evidence of heteroscedasticity. The

observed covariates can be considered to have arisen from a random design and the

threshold d0 corresponds to the distance at which there is a sudden rise in the con-

centration of mercury. We employ the non-normalized variant of our procedure (see

Proposition 4.10) which is suited for heteroscedastic settings. It is reasonable to as-

sume here that the function is at its baseline till range value 480. The estimate of τ0
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is obtained by taking the average of observations until range reaches 480, which gives

τ̂ = −0.0523. The estimate d̂n is obtained through the iterative approach described

in Section 4.4. The expression for the approximate bias of the Nadaraya-Watson

estimator turns out to be the same as that for the fixed design kernel estimator

at d0 while the approximate variance turns out to be (σ2
0K̄

2)/(nhnf(d0)) and the

optimal value of h0 is adjusted accordingly. The limiting distribution, as well as

the optimal h0, involves the parameter σ0(d0), which we estimate using σ̂(d̂n) where

σ̂2(x) = [Pn(Y − µ̂(X))2K ((x−X)/hn)] / [PnK ((x−X)/hn)] .

The estimate d̂n has an inherent bias which is a recurring feature in boundary

estimation problems. A simple but effective way to reduce this bias is to subtract

the median of the limiting distribution with imputed parameters, say q̂0.5, from our

crude estimate, after proper normalization (so that the limiting median is zero).

More precisely, d̂n − n−1/(2k+1)q̂0.5 is our final estimate. Assuming k to be 1, the

resulting estimate of d0 is 551.05 which appears reasonable (see Figure 2.1 of Chapter

2). Moreover, the CIs are [550.53, 555.17] and [549.75, 557.82] for confidence levels of

90% and 95%, respectively, which also seem reasonable.

Our second data set, which comes from the last example in Chapter 2, involves

the measurement of annual global temperature anomalies, in degree Celsius, over

the years 1850 to 2009. The depiction of the data (see Figure 2.1 of Chapter 2)

suggests a trend function which stays at its baseline value for a while followed by

a nondecreasing trend. We follow the approach of Wu et al. (2001) and Zhao and

Woodroofe (2012), and model the data as having a non-parametric trend function

and short-range dependent errors. The flat stretch at the beginning is also noted

in Zhao and Woodroofe (2012), where isotonic estimation procedures are considered

in settings with dependent data. They also provide evidence for the errors to be

arising from a lower order auto-regressive process. A comprehensive approach would

incorporate a cyclical component as well (Schlesinger and Ramankutty, 1994), which
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we do not pursue here.

The estimate of the baseline value, after averaging the anomalies up to the year

1875, is τ̂ = −0.3540. Using this estimate of τ0, we employ our procedure with non-

normalized p-values (see (4.3)) in this example with the optimal h0 chosen through an

iterative approach. Constructing the CI involves estimating an extra parameter ψ(0)

for which we use the estimates computed in Wu et al. (2001, pp. 800) (the parameter

σ2 estimated in that paper is precisely 2πψ(0)). Assuming k to be 1, the estimate of

the threshold d0 after bias correction, which signifies the advent of global warming,

turns out to be 1912. The CIs are [1908, 1917] and [1906, 1919] for confidence levels

90% and 95% respectively. This is compatible with the observation on page 2 of Zhao

and Woodroofe (2012) that global warming does not appear to have begun until 1915.

4.7 Conclusion

Adaptivity. As was the case with the dose-response setting, we can come with an

adaptive approach that yields (one-sided) upper confidence intervals for d0 when k

is unknown. Also, when k is unknown, ideas from multiscale testing procedures for

white noise models (Dümbgen and Spokoiny, 2001; Dümbgen and Walther, 2008)

can conceivably be used to develop adaptive procedures in our model. This is a hard

open problem and a topic for future research.

Minimaxity. The estimators studied in this chapter attain the convergence

rate of n−1/(2k+1). This leads to a natural question as to whether this is the best

possible rate of convergence. When µ is monotone increasing, d0 is precisely µ−1(τ0),

where µ−1 is the right continuous inverse of µ. Wright (1981) (Theorem 1) shows

that the rate of convergence of the isotonic least squares estimate µ at a point,

x0, where the first k − 1 derivatives vanish but the kth does not, is precisely

n−k/(2k+1). A slightly more general result establishing a process convergence is
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stated in Fact 1 of Banerjee (2009). Using this in conjunction with the techniques

for the proof of Theorem 1 in Banerjee and Wellner (2005), it can be deduced

that the rate of convergence of the isotonic estimate of µ−1 at µ(x0) is n−1/(2k+1),

which matches the rate attained by our approach. Hence, we expect this rate to be

minimax in our setting. We note that this rate is not the same as the faster rate

min(n−2/(2k+3), n−1/(2k+1)) obtained in Neumann (1997) for a change-point estimation

problem in a density deconvolution model and also observed in the convolution white

noise models of Goldenshluger et al. (2006) and Goldenshluger et al. (2008). These

models are related to our setting; e.g., Problem 1 in Goldenshluger et al. (2008)

is a Gaussian white noise model where the underlying regression function also has

a cusp of a known order at an unknown point of interest. The convolution white

noise model considered in Goldenshluger et al. (2006) (Problem 2 in Goldenshluger

et al. (2008)) is equivalent to this problem for a particular choice of the convolution

operator; see Goldenshluger et al. (2006, pp. 352–353) and Goldenshluger et al.

(2008, pp. 790–791) for more details. Besides these being white noise models, they

differ from our setting through an additional smoothness condition (Goldenshluger

et al., 2006, pp. 354–355), which translates, in our setting, to assuming that µ(k) is

Lipschitz outside any neighborhood of d0, an assumption not made in this chapter.

Hence, Neumann’s rate need not be minimax for our setting. The faster rate of

Neumann (1997) was also observed for k = 1 in Cheng and Raimondo (2008) but

once again under the assumption that the derivative of the regression function is at

least twice differentiable away from the change-point, again an assumption not made

for this approach.
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CHAPTER 5

Baseline zone estimation in two-dimensions

In this Chapter, we address the two-dimensional version of the threshold esti-

mation problem from Chapter 2. In particular, we consider a model of the form

Y = µ(X) + ε, where µ is a function on [0, 1]2 such that

µ(x) = τ0 for x ∈ S0, and µ(x) > τ0 for x /∈ S0 (5.1)

and τ0 is unknown. The covariate X may arise from a random or a fixed design

setting and we assume that ε has mean zero with finite positive variance σ2
0. Interest

centers on estimating the baseline region S0 beyond which the function deviates from

its baseline value. There are several practical motivations behind detecting S0 (or

Sc0) which can be thought of as the region of no-signal. For example, in several

fMRI studies, one seeks to detect regions of brain activity from cross sectional two-

dimensional images. Here, S0 corresponds to the region of no-activity in the brain

with Sc0 being the region of interest. In the two dimensional version of LIDAR (light

detection and ranging) experiments used for measuring concentration of pollutants

in the atmosphere, interest often centers on finding high/low pollution zones (see,

for example, Wakimoto and McElroy (1986)); in such contexts, S0 would be the

zone of minimal pollution. In dose-response studies, patients may be put on multiple

(interacting) drugs (see, for example, Geppetti and Benemei (2009)), and it is of
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interest to find the dosage levels (∂S0) at which the drugs starts being effective.

The question of detecting S0 is also related to the edge detection problem which

involves recovering the boundary of an image. In edge detection, µ corresponds to the

image intensity function with Sc0 being the image and S0 the background. A number

of different algorithms in the computer science literature deal with this problem,

though primarily in situations where µ has a jump discontinuity at the boundary of

S0; see Qiu (2007) for a review of edge detection techniques. With the exception of

work done by Korostelëv and Tsybakov (1993b), Mammen and Tsybakov (1995) and

a few others, theoretical properties of such algorithms appear to have been rarely

addressed. In fact, the study of theoretical properties of such estimates is typically

intractable without some regularity assumption on S0; for example, Mammen and

Tsybakov (1995) discuss minimax recovery of sets under smoothness assumption on

the boundary.

In this chapter, we approach the problem from the point of view of a shape-

constraint (typically obtained from background knowledge) on the baseline region.

We assume that the region S0 is a closed convex subset of [0, 1]2 with a non-empty

interior (and therefore, positive Lebesgue measure) and restrict ourselves to the more

difficult problem where µ is continuous at the boundary. Convexity is a natural shape

restriction to impose, not only because of analytical tractability, but also as convex

boundaries arise naturally in several application areas: see, Wang et al. (2007), Ma

et al. (2010), Stahl and Wang (2005) and Goldenshluger and Spokoiny (2006) for a

few illustrative examples. In the statistics literature, Goldenshluger and Zeevi (2006)

provide theoretical analyses of a convex boundary recovery method in a white noise

framework. While this has natural connections to our problem, we note that they

impose certain conditions (see Definitions 2 and 3 of Goldenshluger and Zeevi (2006)

and the associated discussions), which restricts the geometry of the set of interest, G,

beyond convexity. Hence, their results, particularly on the rate of convergence, are
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difficult to compare to the ones obtained in our problem. Further, they estimate G

through its support function which needs to be estimated along all directions. It is

unclear whether an effective algorithm can be devised to adopt this procedure in a

regression setting.

Our problem also has connections to the level-sets estimation problem since Sc0

is the “level-set” {x : µ(x) > τ0} of the function µ. However, because τ0 is at the

extremity of the range of µ, the typical level-set estimate {x : µ̂(x) > τ0}, where µ̂ is

an estimate of µ, does not perform well unless µ has a jump at ∂S0 (a situation not

considered in this chapter). Moreover, this plug-in approach does not account for the

pre-specified shape of the level-set. We note that the shape-constrained approach to

estimate level-sets has received some attention in the literature, e.g., Nolan (1991)

studied estimating ellipsoidal level-sets in the context of densities, Hartigan (1987)

provided an algorithm for estimating convex contours of a density, and Tsybakov

(1997) and Cavalier (1997) studied “star-shaped” level-sets of density and regression

functions respectively. All the above approaches are based on an “excess mass”

criterion (or its local version) that yield estimates with optimal convergence rates

(Tsybakov, 1997). It will be seen later that our estimate also recovers the level-set of

a transform of µ, but at a level in the interior of the range of the transform. More

connections in this regard are explored in Section 5.4.

In this chapter, we extend the p-value based approach from Chapter 2. The

extension is fairly involved, even from a computational perspective (see Section 5.1.1).

The smoothness of µ at its boundary again plays a critical role in determining the

rate of convergence of our estimate: for a regression function which is “p-regular”

(formally defined in Section 5.2) at the boundary of the convex baseline region, our

estimate converges at a rate N−2/(4p+3) in the dose–response setting, N being the

total budget. This coincides with the minimax rate of a related level-set estimation

problem; see Polonik (1995, Theorem 3.7) and Tsybakov (1997, Theorem 2). The
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analogue of the estimate in the regression setting converges at the slightly slower rate

of N−1/(2p+2). The difference in the two rates is due to the bias introduced from the

use of kernel estimates in the regression setting. A more technical explanation is given

in Remark 5.15. It should be pointed out that our convergence rates are very different

from the analogous problem in the density estimation scenario which corresponds to

finding the support of a multivariate density. Faster convergence rates (Härdle et al.,

1995) can be obtained in density estimation due to the simpler nature of the problem:

namely, there are no realizations from outside the support of the density.

The main contributions of this chapter are the following. We extend a novel and

computationally simple p-value approach to estimate baseline sets in two dimensions

and deduce consistency and rates of convergence of our estimate in the two aforemen-

tioned settings. Our approach falls at the interface of edge detection and level-set

estimation problem as it detects the edge set (Sc0) through a level-set estimate (see

Section 5.4). The proofs require heavy-duty applications of non-standard empiri-

cal processes and, along the way, we deduce results which may be of independent

interest. For example, we apply a blocking argument which leads to a version of Ho-

effding’s inequality for m-dependent random fields, which is then further extended to

an empirical process inequality. This should find usage in spatial statistics and is po-

tentially relevant to approaches based on m-approximations that answer the central

limit question for dependent random fields and their empirical process extensions; see

Rosén (1969), Bolthausen (1982) and Wang and Woodroofe (2013) for some work on

m-dependent random fields and m-approximations. While we primarily address the

situation where the baseline set is convex, in the presence of efficient algorithms, our

approach is extendible beyond convexity (see Section 5.4).

The rest of the chapter is arranged as follows: we briefly describe the estimation

procedure in the two settings in Section 5.1. Barring µ and S0, notations are not

carried forward from the dose-response setting to the regression setting unless stated
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otherwise. We list our assumptions in Section 5.2. We justify consistency and deduce

an upper bound on the rate of the convergence of our procedure (assuming a known τ0)

for the dose-response and regression settings in Sections 5.3.1 and 5.3.2 respectively.

Situations with an unknown τ0 are addressed in Section 5.3.3. We explore extensions

to non-convex baseline regions and connections with level-set estimation in Section

5.4.

5.1 Estimation Procedure

In this section, we extend the non-normalized variant of the p-value procedure

from Chapter 2. The two versions of the procedure, the normalized and the non-

normalized one, exhibit similar fundamental features such as the same dichotomous

separation over S0 and Sc0, and identical rates of convergence. The non-normalized

version is notationally more tractable and avoids a few routine justifications required

for the normalized version.

5.1.1 Dose-Response Setting

Consider a model of the form

Yij = µ(Xi) + εij, j = 1, . . . ,m, i = 1, . . . , n.

Here m = mn = m0n
β for some β > 0, with N = m× n being the total budget. The

covariate X is sampled from a distribution F with Lebesgue density f on [0, 1]2 and

ε is independent of X, has mean 0 and variance σ2
0.

Let Ȳi· =
∑m

j=1 Yij/m and τ̂ is some suitable estimate of µ (to be discussed later).

Following the approach from Chapter 2, an estimate of S0 can be constructed by
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minimizing

Mn(S) = Pn
{

Φ
(√

m(Ȳ − τ̂)
)
− γ
}

1S(X),

where Pn denotes the empirical measure on {Ȳi·, Xi}i≤n and γ = 3/4.

The class of sets over which Mn is minimized should be chosen carefully as very

large classes would give uninteresting discrete sets while small classes may not provide

a reasonable estimate of S0. As we assumed S0 to be convex, we minimize Mn over S,

the class of closed convex subsets of [0, 1]2. Let Ŝn = argminS∈SMn(S). The estimate

Ŝn can be computed by an adaptation of a density level-set estimation algorithm

(Hartigan, 1987) which we state below. Note that if a closed convex set S? minimizes

Mn, the convex hull of {Xi : Xi ∈ S?, 1 ≤ i ≤ n} also minimizes Mn. Hence, it

suffices to reduce our search to convex polygons whose vertices belong to the set of

Xi’s. There could be 2n such polygons. So, an exhaustive search is computationally

expensive.

Computing the estimate. We first find the optimal polygon (the convex polygon

which minimizes Mn) for each choice of X as its leftmost vertex. We use the following

notation. Let this particular X be numbered 1, and let the Xi’s not to its left be

numbered 2, 3, ..., r. The axes are shifted so that 1 is at the origin and the coordinates

of point i are denoted by zi. The line segment azi+(1−a)zj, (0 ≤ a ≤ 1) is written as

[i, j]. Assume that 1, ..., r are ordered so that the segments [1, i] move counterclockwise

as i increases and so that i ≤ j if i ∈ [1, j]. Polygons will be built up from triangles

for 1 < i < j ≤ r; ∆ij is the convex hull of (1, i, j) excluding [1, i]. Note that the

segment [1, i] is excluded from ∆ij in order to combine triangles without overlap. The
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Figure 5.1: Notation for constructing the convex set estimate. An arbitrary vertex
is numbered 1, and those not to its left are numbered 2, 3, . . . , 8 in a
counterclockwise manner. The triangle ∆78 excludes the line segment
[1, 7]. The optimal polygon (with measure M67) with successive vertices
6, 7 and 1 is depicted as the convex polygon with vertices 1,4,6 and 7.

quadrilateral with vertices at 1, i, j, k for i < j < k ≤ r is convex if

Dijk =

∣∣∣∣∣∣∣∣∣∣
z′i 1

z′j 1

z′k 1

∣∣∣∣∣∣∣∣∣∣
≥ 0

Let M1j be the value of Mn on the line segment [1, j]. Further, for 1 < j <

k ≤ r, let Mjk denote the minimum value of Mn among closed convex polygons with

successive counterclockwise vertices j, k and 1. Note that all such convex polygons

contain the triangle ∆jk and hence, Mn(∆jk), Mn measure of ∆jk, is a common

contributing term to the Mn measure of all such polygons. This simple fact forms

the basis of the algorithm. It can be shown that

Mjk = Mi∗j + Mn(∆jk), (5.2)
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Figure 5.2: An illustration of the procedure in the dose-response setting with m = 10
and n = 100. The set S0 is a circle centered at (1,−1) with radius 1.

where i∗ = I(k, j) is chosen to minimize Mij over vertices i with i < j, Dijk ≥ 0, i.e,

i∗ = I(k, j) = argmin
i:i<j,Dijk>0

Mij. (5.3)

Note that i∗ could possibly be 1, in which case Mjk is simply the Mn measure of the

triangle formed by j, k and 1 (including the contribution of line segment [1, j]).

One way to construct an optimal polygon with leftmost vertex 1 is to find the

minimum among Mjk, 1 ≤ j < k, where Mjk’s are computed recursively using 5.2 and

5.3. Hence, one optimal polygon with leftmost vertex 1 has vertices il, i2, . . . , is = 1,

where either s = 1 or Mi2i1 = min1≤j<kMjk, i3 = I(i1, i2), i4 = I(i2, i3), . . . , 1 = is =

I(is−2, is−1). Once this is done for each choice of X as the leftmost vertex, the final

estimate Ŝn is simply the one with the minimum Mn value among these n constructed

polygons.

There are minor modifications to this algorithm which reduce the over-all imple-

mentation to O(n3) computations; see Hartigan (1987, Section 3) for more details.
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5.1.2 Regression Setting

Consider a model of the form

Ykl = µ(xkl) + εkl,

with xkl = (uk, vl), uk = k/m, vl = l/m, k, l ∈ {1, . . . ,m}. The total number

of observations is thus n = m2. The errors εkls are independent with mean 0 and

variance σ2
0. Here, µ is as defined earlier and we seek to estimate S0 = µ−1(0).

Let

µ̂(x) =
1

nh2
n

∑
k,l

YklK

(
x− xkl
hn

)
denote the estimator of µ, with K being a probability density (kernel) on R2 and hn

the smoothing bandwidth. We take hn = h0n
−β for β < 1/2 and K to be the

2-fold product of a symmetric one-dimensional compact kernel, i.e., K(x1, x2) =

K0(x1)K0(x2), where K0 is a symmetric probability density on R with K0(x) = 0

for |x| ≥ L0. Note that (the normalized) µ̂ is asymptotically normal and the limiting

variance of
√
nh2

nµ̂(x) is Σ2 = σ2
0

∫
u∈R2 K

2(u)du > 0 and hence, the multiple
√
nh2

n

is used (instead of
√
nhn) to construct the p-values. Let τ̂ is a suitable estimate of

τ0. We can estimate S0 by minimizing

Mn(S) =
1

n

∑
k,l:xkl∈In

{
Φ
(√

nh2
n(µ̂(xkl)− τ̂)

)
− 3

4

}
1S(xkl) (5.4)

=
1

n

∑
k,l:xkl∈In

W̃kl1S(xkl)

with W̃kl = Φ
(√

nh2
nµ̂(xkl)

)
− γ and γ = 3/4. To avoid the bad behavior of the

kernel estimator at the boundary, the sums are restricted to design points in In =

[L0hn, 1−L0hn]2. With S being the class of closed convex subsets of [0, 1]2 as defined

earlier, let Ŝn = argminS∈SMn(S).
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The estimate can be computed using the algorithm stated at the end of Section

5.1.1

5.2 Notations and Assumptions

We adhere to the setup of Sections 5.1.1 and 5.1.2, i.e., we assume the errors to be

independent and homoscedastic and consider random and fixed designs respectively

for the dose-response and regression settings. A fixed design in the regression setting

provides a simpler platform to illustrate the main techniques. In particular, it allows

to treat the kernel estimates as an m′–dependent random field which facilitates in

obtaining probability bounds on our estimate; see Section 5.3.2. Also, a random

design in the dose–response setting permits the use of empirical process techniques

developed for i.i.d. data ((Ȳi, Xi)’s are i.i.d.). However, we note here that the dose-

response model in a fixed (uniform) design setting can be addressed by taking an

approach similar (and in fact, simpler due to the absence of smoothing) to that for

the regression setting. The results on the rate of convergence of our estimate of S0 are

identical for the random design and the fixed uniform design dose-response models.

Let λ denote the Lebesgue measure. The precision of the estimates is measured

using the metrics

dF (S1, S2) = F (S1∆S2) and d(S1, S2) = λ(S1∆S2)

for the dose–response and the regression settings respectively. The two metrics arise

naturally in their respective settings as Xi’s have distribution F (in the dose–response

setting) and the empirical distribution of the grid points in the regression setting

converges to the Uniform distribution on [0, 1]2.

For simplicity, we assume τ0 to be known. It can be shown that our results would

extend to case where we impute a
√
mn (dose-response)/

√
n (regression) estimate of
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τ (more on this in Section 5.3.3). We summarize the assumptions below:

1. The function µ is continuous on [0, 1]2. For the standard regression setting, we

additionally assume that µ is Lipschitz continuous of order 1 .

2. The function µ is p-regular at ∂S0, i.e., for some κ0, C0, C1 > 0 and for all x /∈ S0

such that ρ(x, S0) < κ0,

C0ρ(x, S0)p ≤ µ(x)− τ0 (5.5)

Here ρ is the `∞ metric in R2 (for convenience).

3. S0 = µ−1(τ0) is convex. For some ε0 > 0, , S0 ⊂ [ε0, 1− ε0]2 and λ(S0) > 0.

4. The design density f for the dose-response setting is assumed to be continuous

and positive on [0, 1]2.

5. Assumptions on the kernel K(x) = K0(x1)K0(x2), x = (x1, x2), for the standard

regression setting:

(a) K0 is a symmetric probability density.

(b) K0 is compactly supported, i.e., K0(x) = 0 when |x| ≥ L0, for some L0 > 0.

(c) K is Lipschitz continuous of order 1.

Note that by uniform continuity of µ and compactness of [0, 1]2, inf{µ(x) :

d(x, S0) ≥ κ0} > τ0. For a fixed p, τ0, κ0, δ0 > 0, we denote the class of func-

tions µ satisfying assumptions 1, 2, 3 and

inf{µ(x) : d(x, S0) ≥ κ0} − τ0 > δ0 (5.6)

by Fp = Fp(p, τ0, κ0, δ0).
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Remark 5.1. It can be readily seen that if the regularity assumption in (5.5) holds

for a particular p, it also holds for any p̃ > p as well. We assume that we are working

with the smallest p such that (5.5) is satisfied (the set of values p̃ such that (5.5)

holds for a fixed µ, C0 and κ0 is a closed set and is bounded from below whenever it

is non-empty). In level-sets estimation theory, analogous two-sided conditions of the

form

C0ρ(x, S0)p ≤ |µ(x)− τ0| < C1ρ(x, S0)p

are typically assumed (see Tsybakov (1997, Assumptions (4) and (4’)), Cavalier

(1997, Assumption (4))). This stronger condition restricts the choice of p. How-

ever, we note here that the left inequality plays a more significant role as it provides

a lower bound on the amount by which µ(x) differs from τ0 in the vicinity of ∂S0.

Some results in a density level-set estimation problem with a slightly weaker analogue

of the left inequality can be found in Polonik (1995). The upper bound (right inequal-

ity) is seen to be useful for establishing adaptive properties of certain density level-set

estimates (Singh et al., 2009).

5.3 Consistency and Rate of Convergence

5.3.1 Dose-response setting

As τ0 is known, we take τ0 = 0 without loss of generality. Recall that Mn(S) =

Pn
{

Φ
(√

mȲ
)
− γ
}

1S(X). Let Pm denote the measure induced by (Ȳ , X) and

Mm(S) = Pm
[{

Φ
(√

mȲ
)
− γ
}

1S(X)
]
.

The process Mm acts as a population criterion function and can be simplified as

follows. Let

Z1m =
1√
mσ0

m∑
j=1

ε1j (5.7)
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and Z0 be a standard normal random variable independent of Z1ms. Then

E
[
Φ
(√

mȲ1

)∣∣X1 = x
]

= E
[
Φ
(√

mµ(x) + σ0Z1m

)]
= E

[
E
[
1
(
Z0 <

√
mµ(x) + σ0Z1m

)∣∣Z1m

]]
= P

[
Z0 − σ0Z1m√

1 + σ2
0

<

√
mµ(x)√
1 + σ2

0

]
= Φm

(√
mµ(x)√
1 + σ2

0

)
,

where Φm denotes the distribution function of (Z0 − σ0Z1m)/
√

1 + σ2
0. By Pólya’s

theorem, Φm converges uniformly to Φ as m→∞. Hence, it can be seen that

lim
m→∞

E
[
Φ
(√

mȲ1

)∣∣X1 = x
]

=
1

2
1S0(x) + 1Sc0(x).

By the Dominated Convergence Theorem, Mm(S) converges to M(S), where

M(S) = MF (S) =

∫
S

(
1

2
1S0(x) + 1Sc0(x)− γ

)
F (dx)

= (1/2− γ)F (S0 ∩ S) + (1− γ)F (Sc0 ∩ S). (5.8)

Note that S0 minimizes the limiting criterion function M(S). An application of the

argmin continuous mapping theorem (van der Vaart and Wellner, 1996, Theorem

3.2.2) yields the following result on the consistency of Ŝn

Theorem 5.2. Assume S0 to be a closed convex set and the unique minimizer of

M(S). Then supS∈S |Mn(S)−M(S)| and dF (Ŝn, S0) converge in outer probability to

zero for any γ ∈ (0.5, 1).

Remark 5.3. We end up proving a stronger result. The consistency is established

in terms of the Hausdorff metric which implies consistency with respect to dF . More-

over, we do not require m to grow as m0n
β, β > 0 for consistency. The condition

min(m,n) → ∞ suffices. Also, the result extends to higher dimensions as well, i.e.,

when µ is a function from [0, 1]d 7→ R and S0 = µ−1(0) is a closed convex subset of
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[0, 1]d, then the analogous estimate is consistent. However an efficient way to compute

the estimate is not immediate.

The proof is given in Section D.1 of Appendix D.

We now proceed to deducing the rate of convergence of dF (Ŝn, S0). For this, we

study how small the difference (Mn−M) is and how M behaves in the vicinity of S0.

We split the difference (Mn −M) into (Mn −Mm) and (Mm −M) and study them

separately. The term Mn −Mm involves an empirical average of centered random

variables, efficient bounds on which are derived using empirical process inequalities.

We start with establishing a bound on the non-random term (Mm−M) in the vicinity

of S0. To this end, we first state a fact that gets frequently used in the proofs that

follow. For any δ > 0, let Sδ = {x : ρ(x, S) < δ} and δS = {x : ρ(x, Sc0) ≥ δ} denote

the δ-fattening and δ-thinning of the set S. There exists a constant c0 > 0 such that

for any S ∈ S,

λ(Sδ\δS) ≤ c0δ and consequently, F (Sδ\δS) ≤ c̃0δ, (5.9)

with c̃0 = ‖f‖∞c0 (‖f‖∞ <∞, by Assumption 4). For a proof of the above, see, for

example, Dudley (1984, pp. 62–63). We now address the non-random term (Mm−M).

Lemma 5.4. For any δ > 0, an ↓ 0 and S ∈ S such that F (S4S0) < δ,

|(Mm −M)(S)− (Mm −M)(S0)| ≤ |Φm(0)− 1/2|δ + min(c̃0an, δ)

+

∣∣∣∣∣Φm

(
C0

√
mapn√

1 + σ2
0

)
− 1

∣∣∣∣∣ δ
+

∣∣∣∣∣Φm

( √
mδ0√

1 + σ2
0

)
− 1

∣∣∣∣∣ δ.

92



Proof. Note that

Mm(S)−Mm(S0) = Pm

[{
Φm

(√
mµ(x)√
1 + σ2

0

)
− γ

}
{1S(x)− 1S0(x)}

]
and

M(S)−M(S0) =

∫ {
(1/2)1S0(x) + 1Sc0(x)− γ

}
{1S(x)− 1S0(x)}F (dx).

Hence, the expression |(Mm −M)(S)− (Mm −M)(S0)| is bounded by

∫
x∈(S0∩S)

∣∣∣∣Φm (0)− 1

2

∣∣∣∣F (dx) +

∫
x∈(Sc0∩S)

∣∣∣∣∣Φm

(√
mµ(x)√
1 + σ2

0

)
− 1

∣∣∣∣∣F (dx). (5.10)

Note that the first term is bounded by |Φm(0) − 1/2|δ. Further, let Sn = {x :

ρ(x, S0) ≥ an}. Using (5.9), F (Scn\S0) ≤ c̃0an. Also, as an ↓ 0, an < κ0 for sufficiently

large n. Thus, for x ∈ Sn,

µ(x) ≥ min(ρ(x, S0)p, δ0) ≥ min(apn, δ0),

using (5.5) and (5.6). Hence, the second sum in (5.10) is bounded by

F (Scn\S0) +

∫
x∈(Sn∩S)

∣∣∣∣∣Φm

(√
mµ(x)√
1 + σ2

0

)
− 1

∣∣∣∣∣F (dx) ≤ min(c̃0an, δ)

+

∫
x∈(Sn∩S)

{∣∣∣∣∣Φm

(
C0

√
mapn√

1 + σ2
0

)
− 1

∣∣∣∣∣+

∣∣∣∣∣Φm

( √
mδ0√

1 + σ2
0

)
− 1

∣∣∣∣∣
}
F (dx).

As F (Sn ∩ S) < δ, we get the result.

To control Mn−Mm, we rely on a version of Theorem 5.11 of van de Geer (2000).

The result in its original form is slightly general. In their notation, it involves a bound

on a special metric ρK(·) (see van de Geer (2000, equation 5.23)) which, in light of

Lemma 5.8 of van de Geer (2000), can be controlled by bounding the L2-norm in the

case of bounded random variables. This yields the consequence stated below. Here,
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HB denotes the entropy with respect to bracketing numbers.

Theorem 5.5. Let G be a class of functions such that supg∈G ‖g‖∞ ≤ 1. For some

universal constant C > 0, let C2, C3, R and N > 0 satisfy the following conditions:

R ≥ sup
g∈G
‖g‖L2(P ),

N ≥ C2

R∫
0

H
1/2
B (u,G, L2(P ))du ∨R

C2
2 ≥ C2(C3 + 1) and

N ≤ C3

√
nR2.

Then

P ∗
[
sup
g∈G
|Gn(g)| > N

]
≤ C exp

[
−N2

C2(C3 + 1)R2

]
,

where P ∗ denotes the outer probability.

We have the following proposition on the rate of convergence of Ŝn.

Proposition 5.6. When β > 0,

P ∗
(
dF (Ŝn, S0) > δn

)
→ 0

for δn = K1 max{n−2/3,m−1/(2p)}, where K1 > 0 is some constant.

Proof. Let kn be the smallest integer such that 2kn+1δn ≥ 1. For 0 ≤ k ≤ kn, let

Sn,k =
{
S : S ∈ S, 2kδn < dF (S, S0) ≤ 2k+1δn

}
. As Ŝn is the minimizer for Mn,

P ∗
(
dF (Ŝn, S0) > δn

)
≤

kn∑
k=0

P ∗
(

inf
A∈Sn,k

Mn(A)−Mn(S0) ≤ 0

)
.
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The sum on the right side is bounded by

kn∑
k=0

P ∗

(
sup
A∈Sn,k

|(Mn −M)(S)− (Mn −M)(S0)| > inf
A∈Sn,k

(M(S)−M(S0))

)
. (5.11)

For c(γ) = min(γ − 1/2, 1− γ) > 0,

M(S)−M(S0) = (γ − 1/2)(F (S0)−F (S0 ∩ S)) + (1− γ)F (Sc0 ∩ S) ≥ c(γ)F (S4S0),

and hence, (5.11) is bounded by

kn∑
k=0

P ∗

(
sup
A∈Sn,k

|(Mn −Mm)(S)− (Mn −Mm)(S0)| > c(γ)2k−1δn

)

+
kn∑
k=0

P ∗

(
sup
A∈Sn,k

|(Mm −M)(S)− (Mm −M)(S0)| ≥ c(γ)2k−1δn

)
. (5.12)

Note that Mm −M is a non-random process and hence, each term in the second

sum is either 0 or 1. We now show that the second sum in the above display is

eventually zero. For this, we apply Lemma 5.4. Note that

sup
A∈Sn,k

|(Mm −M)(S)− (Mm −M)(S0)|

≤ |Φm(0)− 1/2|2k+1δn + min(c̃0an, 2
k+1δn)

+

∣∣∣∣∣Φm

(
C0

√
mapn√

1 + σ2
0

)
− 1

∣∣∣∣∣ 2k+1δn +

∣∣∣∣∣Φm

( √
mδ0√

1 + σ2
0

)
− 1

∣∣∣∣∣ 2k+1δn

≤ 4

[
|Φm(0)− 1/2|+

∣∣∣∣∣Φm

( √
mδ0√

1 + σ2
0

)
− 1

∣∣∣∣∣
]

2k−1δn

+

[
2c̃0an
δn

+ 4

∣∣∣∣∣Φm

(
C0

√
mapn√

1 + σ2
0

)
− 1

∣∣∣∣∣
]

2k−1δn. (5.13)

Hence, it suffices to show that the coefficient of 2k−1δn in the above expression is
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smaller than c(γ). To this end, fix 0 < η < c(γ)/8. For large m,

|Φm(0)− 1/2|+
∣∣∣∣Φm

(√
mδ0/

√
1 + σ2

0

)
− 1

∣∣∣∣ ≤ η.

Choose cη such that an = cηm
−1/(2p) >

[
Φ−1
m (1− η)

√
1 + σ2

0/(C0

√
m)
]1/p

. For large

n, the coefficient of 2k−1δn in (5.13) is then bounded by

8η +
c̃0cη
K1

< c(γ),

for K1 > (c̃0cη)/(c(γ)− 8η). Hence, each term in the second sum of (5.12) is zero for

a suitably large choice of the constant K1. Note that the first term in (5.12) can be

written as

kn∑
k=0

P ∗

(
sup
A∈Sn,k

∣∣Gngm(Ȳ )1A4S0(X)
∣∣ > c(γ)2k−1δn

√
n

)
, (5.14)

where gm(y) = Φ (
√
my) − γ. We are now in a position to apply Theorem 5.5 to

each term of (5.14). In the setup of Theorem 5.5, N = c(γ)2k−1δn
√
n. The con-

cerned class of functions is Gn,k = {gm(Ȳ )1B(X) : B = A4S0, B ∈ Sn,k}. Note that

‖gm1B‖L2(P ) ≤ [E1B(X)]1/2 ≤ (2k+1δn)1/2. So we can pick R = Rn,k = (2k+1δn)1/2.

As Sn,k ⊂ S, N[ ](u, {A4S0 : A ∈ Sn,k}, L2(P )) ≤ (N[ ](u,S, L2(P )))2 for any u > 0.

Also, starting with a bracket [fL, fU ] for {A4S0 : A ∈ Sn,k} containing B with

‖fU − fL‖L2(P ) ≤ u, we can obtain brackets for the class Gn,k using the inequality

Φ
(√

my
)
fL − γfU ≤ gm(y)1B(x) ≤ Φ

(√
my
)
fU − γfL.

As ‖gm‖∞ ≤ 1,

‖(Φ
(√

my
)
fU − γfL)− (Φ

(√
my
)
fL − γfU)‖L2(P ) ≤ u.
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Hence, HB(u,Gn,k, L2(P )) ≤ HB(u,S, L2(P )). Using the fact that in dimension

d, HB(u,S, L2(P )) = log(N[ ](u,S, L2(P ))) ≤ A0u
−(d−1) for d ≥ 2 (see Bronštĕın

(1976)), we get

HB(u,Gn,k, L2(P )) ≤ A0u
−1

for some constant A0 > 0 (depending only on the design distribution). The conditions

of Theorem 5.5 then translate to

2k−1c(γ)δn
√
n ≥ 2C2 max(A0, 1)(2k+1δn)1/4

C2
2 ≥ C2(C3 + 1) and

c(γ)2k−1δn
√
n ≤ C3

√
n2k+1δn.

It can be seen that forK1 ≥ 29(C2 max(A0, 1)/c(γ))4/3, C3 = c(γ)/4 and C2 =
√

5C/2,

these conditions are satisfied, and hence, we can bound (5.14) by

kn∑
k=0

C exp

{
−2k−3c2(γ)δnn

C2(C3 + 1)

}

As δn & n−2/3 (the symbol & is used to denote the corresponding ≥ inequality holding

up to some finite positive constant), the term δnn diverges to ∞ as n → ∞. Hence,

the above display converges to zero. This completes the proof.

Remark 5.7. The result also holds for values of δn larger than the one prescribed

above. Hence, the above result also gives consistency though it requires m to grow as

m0n
β. In terms on the total budget, choosing β = 4p/3 corresponds to the optimal

rate. In this case, δn is of the order n−2/3 or N−2/(4p+3). This is the minimax rate

obtained for a related density level set problem in Tsybakov (1997, Theorem 2) (see

also Polonik (1995, Theorem 3.7)).

Note that the bounds deduced for the two sums in (5.12) depend on µ only through
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p and δ0, e.g., the exponential bounds from Theorem 5.5 depend on the class of

functions only through their entropy and norm of the envelope which do not change

with µ. Hence, we have the following result which is similar in flavor to the upper

bounds deduced for level-set estimates in Tsybakov (1997).

Corollary 5.8. For the choice of δn given in Proposition 5.6,

lim sup
n→∞

sup
µ∈Fp

E∗µ

[
δ−1
n d(Ŝn, S0)

]
<∞. (5.15)

Here, Eµ is the expectation with respect to the model with a particular µ ∈ Fp. The

other features of the model such as error distribution and the design distribution do

not change.

Proof. Note that

E∗µ

[
δ−1
n d(Ŝn, S0)

]
≤ 1 +

∑
k≥0,2kδn≤1

2k+1P ∗
(

2k < δ−1
n d(Ŝn, S0) ≤ 2k+1

)
≤ 1 +

∑
k≥0,2kδn≤1

2kP ∗
(

inf
A∈Sn,k

Mn(A)−Mn(S0) ≤ 0

)
.

The probabilities P ∗
(
infA∈Sn,k Mn(A)−Mn(S0) ≤ 0

)
can be bounded in an identical

manner to that in the proof of the above Proposition and hence, we get

sup
µ∈Fp

E∗µ

[
δ−1
n d(Ŝn, S0)

]
≤ 1 +

kn∑
k=0

C2k+1 exp

{
−2k−3c2(γ)δnn

C2(C3 + 1)

}
.

As δnn→∞, the right side of the above is bounded and hence, we get the result.

5.3.2 Regression Setting

With τ0 = 0, recall that

Mn(S) =
1

n

∑
k,l:xkl∈In

{
Φ
(√

nh2
nµ̂(xkl)

)
− γ
}

1S(xkl).
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For any fixed γ ∈ (1/2, 1), it can be shown that Ŝn is consistent for S0, i.e., d(Ŝn, S0)

converges in probability to zero.

Theorem 5.9. Assume S0 to be a closed convex set and the unique minimizer of

M(S), where

M(S) = (1/2− γ)λ(S0 ∩ S) + (1− γ)λ(Sc0 ∩ S).

Then, supS∈S |Mn(S) −M(S)| converges in probability to zero and Ŝn is consistent

for S0 in the sense that d(Ŝ, S0) converges in probability to zero for any γ ∈ (0.5, 1).

As was the case in the dose-response setting (see Remark 5.3), a more general

result holds and is proved in Section D.2 of Appendix D.

We now deduce a bound on the rate of convergence of Ŝn (for a fixed γ ∈ (1/2, 1)).

We first consider the population equivalent of Mn, given here by M̄n(S) = E{Mn(S)}

which can be simplified as follows. Let

Zkl =
1√
nh2

n

n∑
k′,l′:xkl∈In

εk′l′K

(
xkl − xk′l′

hn

)
,

for k = 1, . . . , n, and Z0 be a standard normal random variable independent of Zin’s.

For notational simplicity,
∑

k,l (equivalently,
∑

k′,l′) is used to denote a sum over the

set {k, l : xkl ∈ In} unless stated otherwise. Also, let

µ̄(x) =
1

nh2
n

∑
k′,l′

µ(xk′l′)K

(
x− xk′l′
hn

)
and Σ2

n(x) =
1

nh2
n

∑
k′,l′

σ2
0K

2

(
x− xk′l′
hn

)
.

(5.16)

Note that
√
nh2

nµ̂(xkl) =
√
nh2

nµ̄(xkl) + Zkl and Var(Zkl) = Σ2
n(xkl). We have

E
[
Φ
(√

nh2
nµ̂(xkl)

)]
= E

[
Φ
(√

nh2
nµ̄(xkl) + Zkl

)]
= E

[
1
(
Z0 ≤

√
nh2

nµ̄(xkl) + Zkl

)]
= Φkl,n

( √
nh2

nµ̄(xkl)√
1 + Σ2

n(xkl)

)
,
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where Φkl,n denotes the distribution function of (Z0 − Zkl) /
√

1 + Σ2
n(xkl). For xkl ∈

In, Σ2
n(xkl) and Φkl,n do not vary with k and l and hence, we denote them by Σ̃2

n and

Φ̃n for convenience. We get

M̄n(S) = E{Mn(S)} =
1

n

∑
k,l

Φ̃n

√nh2
nµ̄(xkl)√

1 + Σ̃2
n

− γ
 1S(xkl). (5.17)

Also, for xkl ∈ In, any η > 0 and sufficiently large n,

1

nh2
nΣ̃2

n

∑
k′,l′

ρ(xkl,xk′l′ )≤L0mhn

E

[
ε2k′l′K

2

(
xkl − xk′l′

hn

)
1

(
|εk′l′ |K ((xkl − xk′l′)/hn)√

nh2
nΣ̃n

> η

)]

is bounded by

2 d2L0mhne2 ‖K‖2
∞

nh2
n(σ2

0K̄
2)

E

[
ε2111

(
2‖K‖∞

nh2
n(σ0

√
K̄2)
|ε11| > η

)]
,

which converges to zero. Hence, by Lindeberg–Feller central limit theorem, Zkl/Σ̃n

and consequently, Φ̃n converge weakly to Φ. Further, by Pólya’s theorem, Φ̃n con-

verges uniformly to Φ as n→∞, a fact we use in the proof of Lemma 5.10.

We now consider the distance d(Ŝn, S0), the rate of convergence of which is driven

by the behavior of how small the difference Mn −M is and how M behaves in the

vicinity of S0. We split the difference Mn−M into Mn− M̄n and M̄n−M and study

them separately. We first derive a bound on the distance between M̄n and M .

Lemma 5.10. There exist a positive constant c1 such that for any an ↓ 0, δ > 0 and
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λ(S4S0) < δ,

∣∣(M̄n −M)(S)− (M̄n −M)(S0)
∣∣ ≤ |Φ̃n(0)− 1/2|δ + min(c0an, δ)

+

∣∣∣∣∣Φ̃n

(√
nh2

nC0(an − 2L0hn)p

2
√

1 + Σ2

)
− 1

∣∣∣∣∣ δ
+

∣∣∣∣∣Φ̃n

( √
nh2

nδ0

2
√

1 + Σ2

)
− 1

∣∣∣∣∣ δ + c1hn.

(5.18)

Proof. Let Binkl = {x = (x1, x2) : k/m ≤ x1 < (k+1)/m, l/m ≤ x2 < (l+1)/m}.

Recall that

M(S)−M(S0)

=

∫ {
(1/2)1S0(x) + 1Sc0(x)− γ

}
{1S(x)− 1S0(x)} dx

=
∑

0≤k,l≤(m−1)

∫
Binkl

{
(1/2)1S0(x) + 1Sc0(x)− γ

}
{1S(x)− 1S0(x)} dx

=
∑

0≤k,l≤(m−1)

 ∫
Binkl∩(S0∩Sc)

{
1

2
− γ
}
dx+

∫
Binkl∩(Sc0∩S)

{1− γ} dx


=

∑
k,l:xkl∈In

 ∫
Binkl∩(S0∩Sc)

{
1

2
− γ
}
dx+

∫
Binkl∩(Sc0∩S)

{1− γ} dx

+ e(1)
n .

Here, e
(1)
n is the remainder term arising out of replacing the sum of all choices of k

and l to sum over {(k, l) : xkl ∈ In}. As the integrands in the above sum are bounded

by 1, |e(1)
n | ≤ λ([0, 1]2\In) = O(hn). Also,

M̄n(S)− M̄n(S0) =
1

n

∑
k,l

{
Φ̃n

( √
nh2

nµ̄(xkl)√
1 + Σ2

n(xkl)

)
− γ

}
{1S(xkl)− 1S0(xkl)}

=
∑
k,l

∫
x∈Binkl

{
Φ̃n

( √
nh2

nµ̄(xkl)√
1 + Σ2

n(xkl)

)
− γ

}
{1S(xkl)− 1S0(xkl)} dx.
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Consequently,

(M̄n −M)(S)− (M̄n −M)(S0)

=
∑
k,l

∫
x∈Binkl∩(S0∩Sc)

(
Φ̃n

( √
nh2

nµ̄(xkl)√
1 + Σ2

n(xkl)

)
− 1

2

)
dx

+
∑
k,l

∫
x∈Binkl∩(Sc0∩S)

(
Φ̃n

( √
nh2

nµ̄(xkl)√
1 + Σ2

n(xkl)

)
− 1

)
dx

+e(2)
n , (5.19)

where e
(2)
n , the contribution of the terms at ∂(S0 ∩ S) along with e

(1)
n , is bounded by

|e(1)
n |+

∑
k,l:Binkl∩∂(S0∩S)6=φ

∫
Binkl

2dx.

This is further bounded by 2λ({x : ρ(x, ∂S0) < 2/m}) + 2λ({x : ρ(x, ∂S) < 2/m})

which is at most 2c0(2/m) + 2c0(2/m) = 8c0/m using (5.9) (λ{x : ρ(x, ∂S) < α} ≤

λ(Sα\αS) for any α > 0). Hence, for some c̃1 > 0,

|e(2)
n | ≤ O(hn) + 8c0/m ≤ c̃1hn.

This contribution is accounted for in the last term of (5.18).

We now study the contribution of the other terms in the right side of (5.19). Note

that the integrand in the first sum in the right side of (5.19) is precisely (Φ̃n(0)−1/2)

whenever Binkl ⊂(L0hn) S0 as µ̄(xkl) is zero. As the integrand is also bounded by 1,

the first sum in the right side of (5.19) is then bounded by

|Φ̃n(0)− 1/2|δ + λ((S0\(L0hn)S0) ∩ S) ≤ |Φ̃n(0)− 1/2|δ + min(c0L0hn, δ).

Choosing c1 = c̃1 + c0L0, the second term on the right side of the above display is

also accounted for in the last term in (5.18). Further, let Sn = {x : ρ(x, S0) > an}.
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Note that λ(Scn\S0) ≤ c0an using (5.9). Hence, the second sum in (5.19) is bounded

by

∫
Scn\S0

1dx+
∑
k,l

∫
x∈Binkl∩(Scn∩S)

∣∣∣∣∣Φ̃n

( √
nh2

nµ̄(xkl)√
1 + Σ2

n(xkl)

)
− 1

∣∣∣∣∣ dx
≤ min(c0an, δ) +

∑
k,l

∫
x∈Binkl∩(Sn∩S)

∣∣∣∣∣Φ̃n

( √
nh2

nµ̄(xkl)√
1 + Σ2

n(xkl)

)
− 1

∣∣∣∣∣ dx,
To bound the second term in right side of the above, note that as xkl ∈ In,

µ̄(xkl) = E [µ(xkl + hnZn)]

 1

nh2
n

∑
r,s:|r|,|s|≤L0mhn

K
(( r

m
,
s

m

)) ,

where Zn is a discrete random variable supported on {(r/m, s/m) : |r|, |s| ≤ L0mhn}

with mass function P [Zn = (r/m, s/m)] ∝ K ((r/m, s/m)). Hence, the argument of

Φ̃n can be written as

√
nh2

nE [µ(xkl + hnZn)]

∑
r,s:|r|,|s|≤L0mhn

K ((r/m, s/m))

nh2
n

√
1 + Σ̃2

n

Note that ∑
r,s:|r|,|s|≤L0mhn

K ((r/m, s/m))

nh2
n

√
1 + Σ̃2

n

=
1√

1 + Σ2
+ o(1),

uniformly in k and l for xkl ∈ S ∪ S0. For xkl ∈ Sn ∩ S0 and an < κ0, when

ρ(xkl + hnZn, S0) < κ0, by triangle inequality,

µ(xkl + hnZn) ≥ C0ρ(xkl + hnZn)p ≥ C0(ρ(xkl, S0)− ρ(xkl, xkl + hnZn))p.

As ρ(xkl, xkl + hnZn) ≤ 2L0hn,

µ(xkl + hnZn) > C0(an − 2L0hn)p.
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On the other hand, when ρ(xkl + hnZn, S0) ≥ κ0, µ(xkl + hnZn) > δ0. Consequently,

for xkl ∈ Sn ∩ S0, we get

∣∣∣∣∣Φ̃n

( √
nh2

nµ̄(xkl)√
1 + Σ2

n(xkl)

)
− 1

∣∣∣∣∣ ≤
∣∣∣∣∣Φ̃n

(√
nh2

nC0(an − 2L0hn)p

2
√

1 + Σ2

)
− 1

∣∣∣∣∣
+

∣∣∣∣∣Φ̃n

( √
nh2

nδ0

2
√

1 + Σ2

)
− 1

∣∣∣∣∣ .
As λ(Sn ∩ S) < δ, we get the result.

We now consider the term Mn(S) − M̄n(S). With W̃kls as defined in (5.4), let

Wkl = W̃kl − E{W̃kl}. Then

Mn(S)− M̄n(S) =
1

n

∑
k,l

Wkl1S(xkl).

For notational ease, we define Wkl ≡ 0 whenever xkl /∈ In. As the kernel K is

compactly supported, Wkl is independent of all Wk′l′s except for those in the set

{Wk′l′ : (k′, l′) ∈ (1, . . . ,m}2, ρ((k, l), (k′, l′)) ≤ 2L0mhn}. The cardinality of this set

is at most m′ = 16L2
0nh

2
n. Hence, {Wkl}1≤k,l≤m is an (

√
m′/2)-dependent random

field. For

ki = i+ k
⌈√

m′
⌉
, lj = j + l

⌈√
m′
⌉

and rij =
∑

k,l:1≤ki,lj≤m

1, (5.20)

let

d̃n(S1, S2) = d̃n(1S1 , 1S2)

=

 max
1≤i,j≤d√m′e

 1

rij

∑
k,l:1≤ki,lj≤m

(1S1(xkilj)− 1S2(xkilj))
2


1/2

and ‖S‖n = ‖1S‖n = d̃n(S, φ). Then, the following relation holds.
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Lemma 5.11. For sufficiently large n,

P

(
1

n

∣∣∣∣∣∑
k,l

Wkl1S(xkl)

∣∣∣∣∣ ≥ a

)
≤ 2 exp

[
− na2

16m′‖S‖2
n

]
.

The proof is given in Section D.3 of Appendix D. In fact, such a result holds

for general (bounded) (
√
m′/2)-dependent random fields {Vkl : 1 ≤ k, l ≤ m} with

|Vkl| ≤ 1 and weights g(xkl) (instead of 1S(xkl)’s) as long as n/m′ → ∞, i.e., it can

be shown that

P

(
1

n

∣∣∣∣∣∑
k,l

Vklg(xkl)

∣∣∣∣∣ ≥ a

)
≤ 2 exp

[
− na2

16m′‖g‖2
n

]
. (5.21)

Moreover, we can generalize the above to a probability bound on the maxima of an

empirical process.

Theorem 5.12. Let G denote a class of weight functions g : {xkl : 1 ≤ k, l ≤ m} 7→ R

and H denote the entropy of this class with respect to covering numbers and the metric

d̃n. Assume supg∈G ‖g‖n ≤ R. Let Vkls be random variables with |Vkl| ≤ 1 such that

the inequality (5.21) holds for all g ∈ G. Then, there exists a universal constant

C > 0 such that all δ1 > δ2 ≥ 0 satisfying

√
n/m′(δ1 − δ2) ≥ C

 R∫
δ2/8

H1/2(u,G, d̃n)du ∨R

 , (5.22)

we have

P ∗

[
sup
g∈G

∣∣∣∣∣ 1n∑
k,l

Vklg(xkl)

∣∣∣∣∣ ≥ δ

]
≤ C exp

[
−n(δ1 − δ2)2

Cm′R2

]
.

The above result states that the supremum of weighted average of (bounded)

(
√
m′/2)-dependent random fields, where weights belong to a given class, has sub-

gaussian tails. As mentioned earlier, we expect this to be useful in m-approximation

approaches that are used for deriving limit theorems for dependent random variables
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and to obtain their empirical process extensions. Here, we use it to control the

centered empirical averages Mn − M̄n. The proof of the above result is outlined in

Section D.4 of Appendix D.

We are now in a position to deduce a bound on the rate of convergence of d(Ŝn, S0).

Proposition 5.13. Let νn = max
{
hn, (nh

2
n)−1/(2p)

}
. For some K1 > 0, and δn =

K1νn, P ∗
(
d(Ŝn, S0) > δn

)
→ 0 as n→∞.

Proof. Let kn be the smallest integer such that 2kn+1δn ≥ 1.For 0 ≤ k ≤ kn, let

Sn,k =
{
S : S ∈ S, 2kδn < d(S, S0) ≤ 2k+1δn

}
. As, Ŝn is the minimizer for Mn,

P ∗
(
d(Ŝn, S0) > δn

)
≤

kn∑
k=0

P ∗
(

inf
A∈Sn,k

Mn(A)−Mn(S0) ≤ 0

)
.

The sum on the right side can be written as:

kn∑
k=0

P ∗

(
sup
A∈Sn,k

|(Mn −M)(S)− (Mn −M)(S0)| > inf
A∈Sn,k

(M(S)−M(S0))

)
. (5.23)

For c(γ) = min(γ − 1/2, 1− γ), M(S)−M(S0) ≥ c(γ)λ(S4S0), and hence (5.24) is

bounded by

kn∑
k=0

P ∗

(
sup
A∈Sn,k

∣∣(Mn − M̄n)(S)− (Mn − M̄n)(S0)
∣∣ > c(γ)2k−1δn

)

+
kn∑
k=0

1

[
sup
A∈Sn,k

∣∣(M̄n −M)(S)− (M̄n −M)(S0)
∣∣ ≥ c(γ)2k−1δn

]
. (5.24)

We first apply Lemma 5.10 to the second sum in the above display. Note that

sup
A∈Sn,k

∣∣(M̄n −M)(S)− (M̄n −M)(S0)
∣∣

≤ |Φ̃n(0)− 1/2|2k+1δn + min(hn, 2
k+1δn)

+

∣∣∣∣∣Φ̃n

(√
nh2

nC0(an − 2L0hn)p

2
√

1 + Σ2

)
− 1

∣∣∣∣∣ 2k+1δn
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+

∣∣∣∣∣Φ̃n

( √
nh2

nδ0

2
√

1 + Σ2

)
− 1

∣∣∣∣∣ 2k+1δn + c1hn

≤ 4

[
|Φ̃n(0)− 1/2|+

∣∣∣∣∣Φ̃n

( √
nh2

nδ0

2
√

1 + Σ2

)
− 1

∣∣∣∣∣
]

2k−1δn

+

[
2c0an + c1hn

δn
+ 4

∣∣∣∣∣Φ̃n

(√
nh2

nC0(an − 2L0hn)p

2
√

1 + Σ2

)
− 1

∣∣∣∣∣
]

2k−1δn.

Fix 0 < η < c(γ)/8. For large n, |Φ̃n(0)− 1/2|+ c1/(
√
nδn) < η. Choose cη such that

an = cηνn >
[
2Φ̃−1

n (1− η)
√

1 + Σ2/(C0

√
nh2

n)
]1/p

+ (2L0)hn. Then the coefficient of

2k−1δn in the above display is bounded by

8η +
2c0cη + c1

K1

< c(γ),

when K1 > (2c0cη + c1)/(c(γ) − 8η). Hence, for a suitably large choice of K1 each

term in the second sum of (5.24) is zero.

We now apply Theorem 5.12 to each term in the first sum of (5.24). For this we

use the following claim to obtain a bound on the entropy of the class Sn,k.

Claim A. We claim that supS1,S2∈S |d̃
2
n(S1, S2) − λ(S14S2)| = O(hn) and that

H(u, {B4S0 : B ∈ Sn,k}, d̃n) ≤ A1(u − c2hn)−1 for constants c2 > 0 and A1 > 0.

We first use the above claim to prove the result. As a consequence of Claim A,

supA∈{B4S0:B∈Sn,k} ‖A‖n ≤ Rn,k := (2k+1δn+c3hn)1/2, for some c3 > 0. Using Theorem

5.12 with δ1 = c(γ)2k−1δn, δ2 = 8c2hn, we arrive at the condition

√
n/m′(c(γ)2k−1δn − 8c2hn) & (Rn,k + c4hn)1/2 ∨Rn,k,

for some c4 > 0. As δn & νn, this translates to (2k−1c(γ))4δ3
n & (2k + c5)h4

n for some

c5 > 0. This holds for all k when δ & h
4/3
n which is true as δn & hn. Hence, we can
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bound the first sum in (5.24) by

kn∑
k=0

5C exp

[
−
n
(
c(γ)2k−1δn − 8c2hn

)2

Cm′(2k+1δn + c3hn)1/2

]
. (5.25)

Consequently, the display in (5.25) is bounded by

∞∑
k=0

5C exp

[
−
(
c(γ)2k−1 − c6

)2
δn

Ch2
n(2k+1 + c7)

]
,

for some constants c6, c7 > 0. As δn/h
2
n & h−1

n →∞, we get the result.

Proof of Claim A. Note that d̃2(S1, S2) = d̃2(S14S2, φ) =

max1≤i,j≤d√m′eQ
ij
n (S14S2), where Qij

n is the discrete uniform measure on the

points {xkilj : ki = i + k
⌈√

m′
⌉
≤ m, lj = j + l

⌈√
m′
⌉
≤ m}. Note that

each Qij
n approximates Lebesgue measure at resolution of rectangles of length

m/m′ = O(hn). The rectangles that intersect with the boundary of a set S account

for the difference |Qij
n (S) − λ(S)|. As argued in the proof of Lemma 5.10, the error

supS∈S maxi,j |Qij(S) − λ(S)| ≤ λ({x : ρ(x, ∂S) < O(hn)}, which is O(hn) using

(5.9).

To see that H(u, {B4S0 : B ∈ Sn,k}, d̃n) ≤ A1(u − c2hn)−1, first, note that

H(u, {B4S0 : B ∈ Sn,k}, d̃n) ≤ H(u,S, d̃n). For any convex set S, it can be shown

from arguments analogous to those in the proof for Lemma 5.10 that for some c2 > 0,

max
1≤i,j≤d√m′e

Qij(Sδ\δS) ≤ λ(S(δ+c2hn)\(δ+c2hn)S) ≤ c0(δ + c2hn).

If S1, . . . , Sr are the center of the Hausdorff balls with radius δ that cover S (see (D.1)

in Appendix D for a definition of Hausdorff distance dH), then [δSi, S
δ
i ], i ≤ r form

brackets that cover S. The sizes of these brackets are (c0(δ + c2hn))1/2 in terms of
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the distance d̃n. Hence,

H((c0(δ + c2hn))1/2,S, d̃n) ≤ HB((c0(δ + c2hn))1/2,S, d̃n) ≤ H(δ,S, dH).

Letting u = c0(δ+c2hn))1/2 and using the fact that H(δ,S, dH) . δ−1/2 we get Claim

A.

As was the case with Corollary 5.8, Proposition 5.13 extends to the following

result in an identical manner.

Corollary 5.14. For the choice of δn given in Proposition 5.13,

lim sup
n→∞

sup
µ∈Fp

E∗µ

[
δ−1
n d(Ŝn, S0)

]
<∞. (5.26)

Remark 5.15. The best rate at which the distance d(Ŝn, S0) goes to zero corresponds

to hn ∼ (nhn)−1/(2p) which yields νn ∼ hn = h0n
−1/2(p+1). This is slower than the rate

we deduced in the dose-response setting in terms of the total budget (N−2/(4p+3)). The

difference in the rate from the dose-response setting is accounted for by the bias in

the smoothed kernel estimates. The regression setting is approximately equivalent to a

dose-response model having (2L0hn)−2 (effectively) independent covariate observations

and n(2L0hn)2 (biased) replications. These replications correspond to the number of

observations used to compute µ̂ at a point. If we compare Lemmas 5.4 and 5.10,

these biased replications add an additional term of order hn which is absent in the

dose-response setting. This puts a lower bound on the rate at which the set S0 can be

approximated. In contrast, the rates coincide for the dose-response and the regression

settings in the one-dimensional case; see Chapters 3 and 4. This is due to the fact

that in one dimension, the bias to standard deviation ratio (hn/(1/
√
nh)) is of smaller

order compared to that in two dimensions (hn/(1/
√
nh2)) for estimating µ̂. In a

nutshell, the curse of dimensionality kicks in at dimension 2 itself in this problem.
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5.3.3 Extension to the case of an unknown τ0

While we deduced our results under the assumption of a known τ0, in real appli-

cations τ0 is generally unknown. As was the case with the one-dimensional problem,

quite a few extensions are possible in this situation. For example, in dose-response

setting, if S0 can be safely assumed to contain a positive F -measure set U , then a

simple averaging of the Ȳ values realized for X’s in U would yield a
√
mn-consistent

estimator of τ0. If a proper choice of U is not available, one can obtain an initial

estimate of τ0 in the dose–response setting as

τ̂init = argmin
τ∈R

Pn
[
Φ
(√

m(Ȳ − τ)
)
− 1

2

]2

.

This provides a consistent estimate of τ0 under mild assumptions. A
√
mn-consistent

estimate of τ0 can then be found by using τ̂init to compute Ŝn and then averaging

the Ȳ value for the X’s realized in δŜn for a small δ > 0. Note that this leads to an

iterative procedure where this new estimate of τ is used to update the estimate of

Ŝn. It can be shown that the rate of convergence remains unchanged if one imputes

a
√
mn-consistent estimate of τ0. A brief sketch of the following result is given in

Section D.5.

Proposition 5.16. Let Ŝn now denote the minimizer of

Mn(S, τ̂) = Pn
[{

Φ
(√

m(Ȳ − τ̂)
)
− γ
}

1S(X)
]
,

where
√
mn (τ̂ − τ0) = Op(1). For m = m0n

β and δn as defined in Proposition 5.6,

we have P
(
d(Ŝn, Sn) > δn

)
→ 0.

In the regression setting as well, an initial consistent estimate of τ0 can be com-

puted as

τ̂init = argmin
τ∈R

1

n

∑
k,l

[
Φ
(√

nh2
n(µ̂(xkl)− τ)

)
− 1

2

]2
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which can then be used to yield a
√
n-consistent estimate of τ0 using the iterative

approach mentioned above. We have the following result for the rate of convergence

of Ŝn in the regression setting.

Proposition 5.17. Let Ŝn now denote the minimizer of

Mn(S, τ̂) =
1

n

∑
k,l

[{
Φ
(√

nh2
n(µ̂(xkl)− τ̂)

)
− γ
}

1S(X)
]
,

where
√
n (τ̂ − τ0) = Op(1). For δn as defined in Proposition 5.13,

P
(
d(Ŝn, Sn) > δn

)
→ 0.

The proof is outlined in Section D.6 of Appendix D.

5.4 Discussion

Extensions to non-convex baseline sets. Although we essentially address the situ-

ation where the baseline set is convex for dimension d = 2, our approach extends past

convexity and the two-dimensional setting in presence of an efficient algorithm and

for suitable collection of sets. For example, let S̃ denote such a collection of subsets

of [0, 1]d sets such that

S̃n = argmin
S∈S̃

Mn(S)

is easy to compute. Here, µ is a real-valued function from [0, 1]d and S0 = µ−1(τ0) is

assumed to belong to the class S̃. Then the estimator S̃n has the following properties

in the dose-response setting.

Proposition 5.18. Assume that S0 is the unique minimizer (up to F -null sets) of

the population criterion function MF defined in (5.8). Then dF (S̃n, S0) converges in

probability to zero. Moreover, assume that there exists a constant c̄ > 0 such that
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F (Sε\εS) ≤ c̄ε for any ε > 0 and S ∈ S̃, and

HB(u, S̃, L2(P )) . u−r for some r < 2.

Then, P
(
dF (S̃n, S0) > δ̃n

)
converges to zero where δ̃n = K1 max(n−2/(2+r),m−1/(2p))

for some K1 > 0.

The proof follows along lines identical to that for Proposition 5.6. Note that the

relation of the type F (Sε\εS) ≤ c̄ε was needed to derive Lemma 5.4. This assumption

simply rules out the sets with highly irregular or non-rectifiable boundaries. Also,

the dependence of the rate on the dimension typically comes through r which usually

grows with d. A similar result can be established in the regression setting as well.

Connection with level-set approaches. Note that minimizing Mn(S) in the dose-

response setting is equivalent to minimizing

M̃n(S) = Mn(S)− 1

2

N∑
i=1

(
1

4
− pm,n(Xi)

)
=

n∑
i=1

1/4− pm,n(Xi)

2
[1(Xi ∈ S)− 1(Xi ∈ Sc)] .

This form is very similar to an empirical risk criterion function that is used in Wil-

lett and Nowak (2007, equation (7)) in the context of a level-set estimation pro-

cedure. It can be deduced that our baseline detection approach ends up finding

the level set Sm = {x : E [pm,n(x)] > 1/4} from i.i.d. data {pm,n(Xi), Xi}ni=1 with

0 ≤ pm,n(Xi) ≤ 1. As m → ∞, Sm’s decrease to S0, which is the target set. Hence,

any level-set approach could be applied to transformed data {pm,n(Xi), Xi}ni=1 to yield

an estimate for Sm which would be consistent for S0. Moreover, a similar connec-

tion between the two approaches can be made for the regression setting, however

the i.i.d. flavor of the observations present in the dose-response setting is lost as

{pn(xkl)}1≤k,l≤m are dependent. While the algorithm from Willett and Nowak (2007)
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can be implemented to construct the baseline set estimate, it is far from clear how

the theoretical properties would then translate to our setting given the dependence of

the target function E [pm,n(x)] on m in the dose-response setting and the dependent

nature of the transformed data in the regression setting.

In Scott and Davenport (2007), the approach to the level set estimation problem,

using the criterion in Willett and Nowak (2007), is shown to be equivalent to a cost-

sensitive classification problem. This problem involves random variables (X, Y,C) ∈

Rd×{0, 1}×R, where X is a feature, Y a class and C is the cost for misclassifying X

when the true label is Y . Cost sensitive classification seeks to minimize the expected

cost

R(G) = E(C 1(G(X) 6= Y )), (5.27)

where G, with a little abuse of notation, refers both to a subset of Rd and G(x) =

1(x ∈ G). With C = |γ − Y | and Ỹ = 1(Y ≥ γ), the objective of the cost-sensitive

classification, based on (X, Ỹ , C), can be shown to be equivalent to minimizing the

excess risk criterion in Willett and Nowak (2007). So, approaches like support vector

machines (SVM) and k-nearest neighbors (k-NN), which can be tailored to solve the

cost-sensitive classification problem (see Scott and Davenport (2007)), are relevant

to estimating level sets, and thus provide alternative ways to solve the baseline set

detection problem. Since the loss function in (5.27) is not smooth, one might prefer to

work with its surrogates. Some results in this direction can be found in Scott (2011).

Adaptivity. We have assumed knowledge of the order of the regularity p of µ at

∂S0, which is required to achieve the optimal rate of convergence, though not for

consistency. The knowledge of p dictates the allocation between m and n in the

dose-response setting and the choice of the bandwidth hn in the regression setting

for attaining the best possible rates. When p is unknown, the adaptive properties of

dyadic trees (see Willett and Nowak (2007) and Singh et al. (2009)) could conceivably

be utilized to develop a near-optimal approach. However, this is a hard open problem
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and will be a topic of future research.
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Part II

Multi-stage procedures
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CHAPTER 6

A generic approach to multistage procedures

Multi-stage procedures, obtained by splitting the sampling budget suitably across

stages, and designing the sampling at a particular stage based on information about

the parameter obtained from previous stages, have received some attention in recent

times (Lan et al., 2009; Tang et al., 2011; Belitser et al., 2013). They are found

advantageous over their one-stage counterparts from the perspective of inference. For

example, Lan et al. (2009) considered the problem of estimating the change point

d0 from a regression model Y = f(X) + ε with f(x) = α01(x ≤ d0) + β01(x > d0),

α0 6= β0 and showed that a two-stage estimate converges to d0 at a rate much faster

(almost n times) than the estimate obtained from a one-stage approach. In a non-

parametric isotonic regression framework, Y = r(X)+ ε with r monotone, Tang et al.

(2011) achieve a
√
n-rate of convergence (seen usually in parametric settings) for

estimating thresholds d0 of type d0 = r−1(t0) (for a fixed known t0) by doing a linear

approximation at the second stage of sampling. This is a marked improvement over

the usual one-stage estimate which converges at the rate n1/3. Further, Belitser et al.

(2013) considered the problem of estimating the location and size of the maximum

of a multivariate regression function, where they avoided the curse of dimensionality

through a two-stage procedure.

In the problems mentioned above, a common (multistage) sampling scheme was
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implemented which we state below.

1. In the first stage, utilize a fixed portion of the design budget to obtain an initial

estimate, say, of the location d0 and the nuisance parameters present in the

model.

2. Sample the second stage design points in a shrinking neighborhood around the

first stage estimator and use the earlier estimation approach (or a different one

that leverages on the local behavior of the regression function in the vicinity of

d0) to obtain the final estimate of d0 in this “zoomed-in” neighborhood.

This type of an approach adds an extra level of complication as the second stage data

is no longer i.i.d. This is due to the dependence of the design points on the first stage

estimate of d0. Moreover, in several cases, the second stage estimates are usually

constructed by minimizing (or maximizing) a related empirical process sometimes

over a random set based on the first stage estimates. In the problems mentioned

above, these intricacies were addressed using fairly different theoretical tools starting

from first principles. However, in a variety of problems similar in flavor to those

mentioned above, a unified approach is possible which we develop in this chapter.

In this chapter, we extend empirical process results originally developed for the

i.i.d. setting to situations with dependence of the nature discussed above. In particu-

lar, we establish general results for deriving rate of convergence, proving tightness of

empirical process and deducing limiting distribution in general multi-stage problems

(see Section 6.1). We implement our results on problems from change-point analysis

(Section 6.2), inverse isotonic regression (Section 6.3), classification (Section 6.3.1)

and mode estimation (Section 6.4).

Our results are also relevant to situations where certain extra/nuisance parameters

are estimated from separate data and argmax/argmin functionals of the empirical

process acting on functions involving these estimated parameters are considered. We
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note here that van der Vaart and Wellner (2007) considered similar problems where

they provided sufficient conditions for replacing such estimated parameters by their

true values, in the sense that supd∈D

∣∣∣Gn(fd,θ̂ − fd,θ0)
∣∣∣ converges in probability to zero.

Here, Gn =
√
n(Pn−P ), with Pn denoting the empirical measure, fd,θ are measurable

functions indexed by (d, θ) ∈ D×Θ and θ̂ denotes a suitable estimate of the nuisance

parameter θ0. We show that a result of the above form does not generally hold for

our examples, (see Proposition 6.7), but the final limit distribution still has a form

with estimated nuisance parameters replaced by their true values.

6.1 Formulation and general results

A typical two-stage procedure involves estimating certain parameters, say a vector

θn, from the first stage sample. Let θ̂n denote this first stage estimate. Based on

θ̂n, a suitable sampling design is chosen to obtain the second stage estimate of the

parameter of interest d0 by minimizing (or maximizing) a criterion function Mn(d, θ̂n)

over domain Dθ̂n ⊂ D, i.e.,

d̂n = argmin
d∈Dθ̂n

Mn(d, θ̂n). (6.1)

We denote the domain of optimization for a generic θ by Dθ. We will impose more

structure on Mn as and when needed. We start with a general theorem about

deducing the rate of convergence of d̂n arising from such criterion. In what fol-

lows, Mn is typically a population equivalent of the criterion function Mn, e.g.,

Mn(d, θn) = E [Mn(d, θn)], which is at its minimum at the parameter of interest

d0 or at a quantity dn asymptotically close to d0.

Theorem 6.1. Let {Mn(d, θ), n ≥ 1} be stochastic processes and {Mn(d, θ), n ≥ 1}

be deterministic functions, indexed by d ∈ D and θ ∈ Θ. Let dn ∈ D, θn ∈ Θ and

d 7→ ρn(d, dn) be a measurable map from D to [0,∞). Let d̂n be a (measurable) point
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of minimum of Mn(d, θ̂n) over d ∈ Dθ̂n ⊂ D, where θ̂n is a random map independent

of the process Mn(d, θ). For each τ > 0 and some κn > 0 (not depending on τ),

suppose that the following hold:

(a) There exists a sequence of sets Θτ
n in Θ such that P [θ̂n /∈ Θτ

n] < τ .

(b) There exist constants cτ > 0, Nτ ∈ N such that for all θ ∈ Θτ
n, d ∈ Dθ with

ρn(d, dn) < κn, and n > Nτ ,

Mn(d, θ)−Mn(dn, θ) ≥ cτρ
2
n(d, dn). (6.2)

Also, for any δ ∈ (0, κn) and n > Nτ ,

sup
θ∈Θτn

E∗ sup
ρn(d,dn)<δ,

d∈Dθ

|(Mn(d, θ)−Mn(d, θ))− (Mn(dn, θ)−Mn(dn, θ))|

≤ Cτ
φn(δ)√
n
, (6.3)

for a constant Cτ > 0 and functions φn (not depending on τ) such that δ 7→

φn(δ)/δα is decreasing for some α < 2.

Suppose that rn satisfies

r2
n φn

(
1

rn

)
.
√
n,

and P
(
ρn(d̂n, dn) ≥ κn

)
converges in probability to zero, then rn ρn(d̂n, dn) = Op(1).

Further, if the assumptions in part (b) of the above theorem hold for all sequences

κn > 0 in the sense that there exist constants cτ > 0, Cτ > 0, Nτ ∈ N such that

for all θ ∈ Θτ
n, d ∈ Dθ, δ > 0 and n > Nτ , (6.2) and (6.3) hold, then justifying the

convergence of P
(
ρn(d̂n, dn) ≥ κn

)
to zero is not necessary.

A version of this result involving a fixed κn ≡ κ > 0 also holds where Nτ is allowed

to depend on κ. The proof uses shelling arguments similar to those in the proof of
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Theorem 3.2.5 in van der Vaart and Wellner (1996). It is given in Section E.1 of

Appendix E. An intermediate step to applying the above result involves justifying

the convergence of P
(
ρn(d̂n, dn) ≥ κn

)
to zero. As mentioned in the result, if the

assumptions in part (b) of the above theorem hold for all sequences κn > 0, then

justifying this condition is not necessary. This is the case with most of the examples

that we study in this chapter. The following result is used otherwise.

Lemma 6.2. Let Mn, Mn and ρn be as defined in Theorem 6.1. For any fixed τ > 0,

let

cτn(κn) = inf
ρn(d,dn)≥κn,d∈Dθ

{Mn(d, θ)−Mn(dn, θ)}

Suppose that

sup
θ∈Θτn

P

(
2 sup
d∈Dθ
|Mn(d, θ)−Mn(d, θ)| ≥ cτn(κn)

)
→ 0. (6.4)

Then, P
(
ρn(d̂n, dn) ≥ κn

)
converges to zero .

Condition (6.4) requires cτn(κn) to be positive (eventually) which ensures that dn

is the unique minimizer of Mn(d, θ) over the set d ∈ Dθ. The proof is given in Section

E.2 of Appendix E.

The conclusion of Theorem 6.1, rn ρn(d̂n, dn) = Op(1), typically leads to a result

of the form sn(d̂n − dn) = Op(1), sn → ∞. Once such a result has been established,

the next step is to study the limiting behavior of the local process

Zn(h, θ̂n) = vn

[
Mn

(
dn +

h

sn
, θ̂n

)
−Mn

(
dn, θ̂n

)]

for a properly chosen vn. Note that

sn(d̂n − dn) = argmin
h:dn+h/sn∈Dθ̂n

Zn(h, θ̂n).
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Note that Zn can be defined in such a manner so that the right hand side is the

minimizer of Zn over the entire domain. To see this, let Dθ̂n = [an(θ̂n), bn(θ̂n)], say

(in one dimension). If we extend the definition of Zn to the entire line by defining

Zn(h, θ̂n) =

 Zn(sn(bn(θ̂n)− dn)) for h > sn(bn(θ̂n)− dn) and

Zn(sn(an(θ̂n)− dn)) for h < sn(an(θ̂n)− dn),
(6.5)

then, clearly:

sn(d̂n − dn) = argmin
R

Zn(h, θ̂n) .

In p dimensions, define Zn outside of the real domain, the translated D̂θ̂n
, to be

the supremum of the process Zn on its real domain. Then the infimum of Zn over

the entire space is also the infimum over the real domain. Such an extension then

allows us to apply the argmin continuous mapping theorem (Kim and Pollard, 1990,

Theorem 2.7) to arrive at the limiting distribution of sn(d̂n − dn).

In our examples and numerous others, Zn can be expressed as an empirical process

acting on a class of functions changing with n, indexed by the parameter h over which

the argmax/argmin functional is applied and by the parameter θ which gets estimated

from the first stage data, e.g.,

Zn(h, θ) =
1√
n

n∑
i=1

fn,h,θ(Vi) = Gnfn,h,θ + ζn(h, θ). (6.6)

Here, Vi ∼ P are i.i.d. random vectors, Gn =
√
n(Pn − P ) and ζn(h, θ) =

√
nPfn,h,θ

with Pn denoting the empirical measure induced by Vis. The parameter θ could be

multi-dimensional and would account for the nuisance/design parameters which are

estimated from the first stage sample. Moreover, fn’s need not have zero mean and

√
nPfn,h,θ could possibly contribute to the drift of the limiting process. First, we

provide sufficient conditions for the asymptotic tightness of the processes Zn(h, θ̂n).
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Theorem 6.3. Let θ̂n be a random variable taking values in Θ which is independent

of the process Zn defined in (6.6). As in Theorem 6.1, let there exist a (non-random)

set Θτ
n ⊂ Θ such that P [θ̂n /∈ Θτ

n] < τ , for any fixed τ > 0. For each θ ∈ Θ, let

Fn,θ = {fn,h,θ : h ∈ H} with measurable envelopes Fn,θ. Let H be totally bounded with

respect to a semimetric ρ̃. Assume that for each τ, η > 0 and every δn → 0,

sup
θ∈Θτn

PF 2
n,θ = O(1), (6.7)

sup
θ∈Θτn

PF 2
n,θ1

[
Fn,θ > η

√
n
]
→ 0 (6.8)

sup
θ∈Θτn

ρ̃(h1,h2)<δn

P (fn,h1,θ − fn,h2,θ)2 → 0 and (6.9)

sup
θ∈Θτn

ρ̃(h1,h2)<δn

|ζn(h1, θ)− ζn(h2, θ)| → 0. (6.10)

Assume, for δ > 0, Fn,δ = {fn,h1,θ̂ − fn,h2,θ̂ : ρ̃(h1, h2) < δ} is suitably measurable

(explained below), for each θ ∈ Θτ
n, F2

n,θ,δ = {(fn,h1,θ − fn,h2,θ)
2 : ρ̃(h1, h2) < δ} is

P -measurable, and

sup
θ∈Θτn

∞∫
0

sup
Q

√
logN

(
u‖Fn,θ‖L2(Q),Fn,θ, L2(Q)

)
du <∞ (6.11)

or

sup
θ∈Θτn

∞∫
0

√
logN[ ]

(
u‖Fn,θ‖L2(P ),Fn,θ, L2(P )

)
du <∞ (6.12)

Then, the sequence {Zn(h, θ̂n) : h ∈ H} is asymptotically tight in l∞(H). Here, N[ ]()

and N() denote the bracketing and covering numbers respectively and the supremum

in (6.11) is taken over all discrete probability measures Q.

The measurability required for the class Fn,δ is in the following sense. For any
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vector {e1, . . . , en} ∈ {−1, 1}n, the map

(V1, V2, . . . , Vn, θ̂, e1, . . . , en) 7→ sup
gn,θ̂∈Fn,δ

∣∣∣∣∣ 1√
n

n∑
i=1

eign,θ̂(Vi)

∣∣∣∣∣ (6.13)

is assumed to be jointly measurable. This is very much in the spirit of the P -

measurability assumption made for Donsker results involving covering numbers (e.g.,

van der Vaart and Wellner (1996, Theorem 2.5.2)) and can be justified readily in

many applications.

We prove the above result assuming (6.11). The proof follows the road map of that

for Theorems 2.5.2 and 2.11.1 of van der Vaart and Wellner (1996) and is outlined in

Section E.3 of Appendix E.

In our examples, the form of the limit process does not depend on the weak limit

of the first stage estimates, and can be derived using the following lemma.

Lemma 6.4. Consider the setup of Theorem 6.3. Additionally, assume that for any

τ > 0,

1. The covariance function

Cn(h1, h2, θ) = Pfn,h1,θfn,h2,θ − Pfn,h1,θPfn,h2,θ

converges pointwise to C(h1, h2) on H×H, uniformly in θ, θ ∈ Θτ
n.

2. The functions ζn(h, θ) converges pointwise to a function ζ(h) on H, uniformly

in θ, θ ∈ Θτ
n.

Let Z(h) be a Gaussian process with drift ζ(·) and covariance kernel C(·, ·). Then,

the process Zn(·, θ̂n) converges weakly to Z(·) in `∞(H).

We prove a stronger result where we allow for the limit distribution of the first

stage estimates to affect the limit process Z. The proof is given in Section E.4 of

Appendix E.
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In our applications, the process Zn(h, θ̂n) is defined for h in a Euclidean space, say

H̃ = Rp and Theorem 6.1 is used to show that ĥn := sn(d̂n−dn), which assumes values

in H̃, is Op(1). The process Zn is viewed as living in Bloc(Rp) = {f : Rp 7→ R : f is

bounded on [−L,L]p for any L > 0}, the space of locally bounded functions on Rp.

To deduce the limit distribution of ĥn, we first show that for a Gaussian process

Z(h) in Cmin(Rp) = {f ∈ Bloc(Rp) : f possesses a unique minimum and f(x)→∞ as

‖x‖ → ∞}, the process Zn(h, θ̂n) converges to Z(h) in Bloc(Rp). This is accomplished

by showing that on every [−L,L]p, Zn(h, θ̂n) converges to Z(h) on `∞([L,L]p), using

Theorem 6.3 and Lemma 6.4. An application of the argmin continuous mapping

theorem (Theorem 2.7) of Kim and Pollard (1990) now yields the desired result, i.e.,

ĥn
d→ argminh∈Rp Z(h).

Next, we summarize what has been discussed above to provide a generic approach

to multi-stage problems.

Rate of convergence.

1. With θ̂n denoting the first stage estimate, identify the second stage criterion

as a bivariate function Mn(d, θ̂n) and its population equivalent Mn(d, θ̂n). A

useful choice for Mn is Mn(d, θ) = E [Mn(d, θ)]. The non-random process Mn

is at its minimum at dn which either equals the parameter of interest d0 or is

asymptotically close to it.

2. Arrive at ρn(d, dn) using (6.2) which typically involves a second order Taylor

expansion when Mn is smooth. The distance ρn is typically some function of

the Euclidean metric.

3. Justify the convergence P
(
ρn(d̂n, dn) ≥ κn

)
to zero using Lemma 6.2 if needed

and derive a bound on the modulus of continuity as in (6.3). This typically

requires VC or bracketing arguments such as Theorem 2.14.1 of van der Vaart

and Wellner (1996). With suitably chosen Kτ , Θτ
n can be chosen to be shrinking
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sets of type [θn −Kτ/n
ν , θn +Kτ/n

ν ], when a result of the type nν(θ̂n − θn) =

Op(1) holds. Such choices typically yield efficient bounds for (6.3).

4. Derive the rate of convergence using Theorem 6.1.

Limit Distribution.

5. Express the local process Zn as an empirical process acting on a class of functions

and a drift term (see (6.6)).

6. Use Theorem 6.3 and Lemma 6.4 to derive the limit process Z and apply argmin

continuous mapping to derive the limiting distribution of d̂n.

The following sections illustrate applications of the above results.

6.2 Change-point model with fainting signal

We consider a change-point model of the form Y = mn(X) + ε, where

mn(x) = αn1[x ≤ d0] + βn1[x ≥ d0]

for an unknown d0 ∈ (0, 1) and βn − αn = c0n
−ξ, c0 > 0 and ξ < 1/2. The errors

ε are independent of X and have mean 0 and variance σ2. In contrast with the

change-point model considered in Lan et al. (2009), the signal in the model βn − αn

decreases with n. A similar model with decreasing signal was studied in Müller and

Song (1997). We assume that the experimenter has the freedom to choose the design

points to sample from but has a fixed budget n. We apply the following two-stage

approach.

1. At stage one, sample n1 = pn covariate values, (p ∈ (0, 1)), from a uniform

design on D = [0, 1] and, from the obtained data, (Y
(1)
i , X

(1)
i )n1

i=1, estimate αn,
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βn and d0 by

θ̂n1 =
(
α̂, β̂, d̂1

)
= argmin

α,β,d

n1∑
i=1

[
(Y

(1)
i − α)21

[
X

(1)
i ≤ d

]
+ (Y

(1)
i − β)21

[
X

(1)
i > d

]]
.

These are simply the least squares estimates.

2. For K > 0 and γ > 0, sample the remaining n2 = (1 − p)n covariate-response

pairs {Y (2)
i , X

(2)
i }, where

Y
(2)
i = αn1[X

(2)
i ≤ d0] + βn1[X

(2)
i ≥ d0] + εi

and Xi’s are sampled uniformly from the interval Dθ̂n1 = [d̂1 − Kn1
−γ, d̂1 −

Kn1
−γ]. Obtain an updated estimate of d0 by

d̂2 = argmin
d∈Dθ̂n

n2∑
i=1

[
(Y

(2)
i − α̂)21

[
X

(2)
i ≤ d

]
+ (Y

(2)
i − β̂)21

[
X

(2)
i > d

]]
. (6.14)

Here, γ is chosen such that P
(
d0 ∈ [d̂1 −Kn1

−γ, d̂1 −Kn1
−γ]
)

converges to 1. Intu-

itively, this condition compels the second stage design interval to contain d0 with high

probability. This is needed as the objective function relies on the dichotomous be-

havior of the regression function on either side of d0 for estimating the change-point.

If the second stage interval does not include d0 (with high probability), the stretch of

the regression function mn observed (with noise) is simply flat, thus failing to provide

information about d0.

In Bhattacharya and Brockwell (1976) and Bhattacharya (1987), similar models

were studied in a one-stage fixed design setting. By a minor extension of their results,

it can be shown that n1
ν(d̂1 − d0) = Op(1) for ν = 1− 2ξ,

√
n1(α̂− αn) = Op(1) and

√
n1(β̂ − βn) = Op(1). Hence, any choice of γ < ν suffices.
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For simplicity, we assume that the experimenter works with a uniform random

design at both stages. An extension to designs with absolutely continuous positive

densities supported on an interval is straightforward.

The expression in (6.14) can be simplified to yield

d̂2 = argmin
d∈Dθ̂n1

Mn2(d, θ̂) (6.15)

where for θ = (α, β, µ) ∈ R3,

Mn2(d, θ) =
sgn(β − α)

n2

n2∑
i=1

(
Y

(2)
i − α + β

2

)(
1
[
X

(2)
i ≤ d

]
− 1

[
X

(2)
i ≤ d0

])

with Xi ∼ Uniform[µ−Kn1
−γ, µ+Kn1

−γ], θ̂n = (α̂, β̂, d̂1) and sgn denoting the sign

function. We take Mn2(d, θ) = E [Mn2(d, θ)] to apply Theorem 6.1, which yields the

following result on the rate of convergence of d̂2.

Theorem 6.5. For d̂2 defined in (6.15) and η = 1 + γ − 2ξ

nη(d̂2 − d0) = Op(1).

Proof. As n1, n2 and n are of the same order, we deduce bounds in terms of n

only. For notational ease, we first consider the situation where d ≥ d0. Recall that

θ = (α, β, µ). Also, let

Θτ
n1

=

[
αn −

Kτ√
n1

, αn +
Kτ√
n1

]
×
[
βn −

Kτ√
n1

, βn +
Kτ√
n1

]
×[

d0 −
Kτ

n1
ν
, d0 +

Kτ

n1
ν

]
,

(6.16)

where Kτ is chosen such that P
(
θ̂n1 ∈ Θτ

n1

)
> 1 − τ . For θ ∈ Θτ

n1
, β − α ≥

c0n
−ξ − 2Kτ/

√
n1. As ξ < 1/2, sgn(β − α) = 1 for n > N

(1)
τ := (2Kτ/(

√
pc0))2/(2−ξ).
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Also, for x > d0, mn(x) = βn and thus,

Mn2(d, θ) = Pn2 [gn2,d,θ(V )]

where for V = (U, ε), U ∼ Uniform[−1, 1],

gn2,d,θ(V ) =

(
βn + ε− β + α

2

)
1
[
µ+Kn−γ1 U ∈ (d0, d]

]
=

(
βn + ε− β + α

2

)
1

[
U ∈

(
d0 − µ
Kn−γ1

,
d− µ
Kn−γ1

]]
.

Consequently, for n > N
(1)
τ ,

Mn2(d, θ) =
1

2

(
βn −

β + α

2

)
λ

(
[−1, 1] ∩

(
d0 − µ
Kn−γ1

,
d− µ
Kn−γ1

])
.

As γ < ν, d0 ∈ Dθ for all θ ∈ Θτ
n1

, for n > N
(2)
τ := (1/p)(Kτ/K)1/(ν−γ) and hence,

the intervals

{(
(d0 − µ)/(Kn−γ1 ), (d− µ)/(Kn−γ1 )

]
: d > d0, d ∈ Dθ, θ ∈ Θτ

n1

}
are all contained in [−1, 1] for large n. Therefore, for n > N

(3)
τ := max(2N

(1)
τ , N

(2)
τ ),

Mn2(d, θ) =
1

2

(
βn −

β + α

2

)
d− d0

Kn−γ1

.

Note that Mn2(d0, θ) = 0 for all θ ∈ R3. Further, let ρ2
n(d, d0) = nγ−ξ|d− d0|. Then,

for n > N
(3)
τ ,

Mn2(d, θ)−Mn2(d0, θ) ≥
(
βn −

βn + αn
2

− Kτ√
n1

)
d− d0

2Kn−γ1

=

(
βn − αn

2
− Kτ√

n1

)
d− d0

2Kn−γ1
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=

(
c0n
−ξ

2
− Kτ√

n1

)
d− d0

2Kn−γ1

≥ cτρ
2
n(d, d0), (6.17)

for some cτ > 0 (depending on τ through Kτ ). The last step follows from the fact

that ξ < 1/2. Also, the above lower bound can be shown to hold for the case d > d0

as well. Further, to apply Theorem 6.1, we need to bound

sup
θ∈Θτn1

E∗ sup
|d−d0|<nξ−γδ2,

d∈Dθ

√
n2 |(Mn2(d, θ)−Mn2(d, θ))− (Mn2(d0, θ)−Mn2(d0, θ))| .

(6.18)

Note that for d > d0, the expression in | · | equals (1/
√
n2)Gn2gn2,d,θ. The class of

functions Fδ,θ = {gn2,d,θ : 0 ≤ d − d0 < nξ−γδ2, d ∈ Dθ} is VC with index at most 3

and is enveloped by

Mδ,θ(V ) =

(
|ε|+ βn − αn

2
+

Kτ√
n1

)
1

[
U ∈

[
d0 − µ
Kn1

−γ ,
d0 − µ+ δ2nξ−γ

Kn1
−γ

]]
.

Note that

E [Mδ,θ(V )]2

=
1

2
E

[(
|ε|+ βn − αn

2
+

Kτ√
n1

)2
]
λ

[
[−1, 1] ∩

[
d0 − µ
Kn1

−γ ,
d0 − µ+ δ2nξ−γ

Kn1
−γ

]]

≤ 1

2
E

[(
|ε|+ βn − αn

2
+

Kτ√
n1

)2
]
λ

[
d0 − µ
Kn1

−γ ,
d0 − µ+ δ2nξ−γ

Kn1
−γ

]
≤ C2

τ

nξ−γδ2

n−γ
= C2

τn
ξδ2,

where Cτ is positive constant (it depends on τ through Kτ ). Further, the uniform

entropy integral for Fδ,θ is bounded by a constant which only depends upon the
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VC-indices, i.e., the quantity

J(1,Fδ,θ) = sup
Q

1∫
0

√
1 + logN(u‖Mδ,θ‖Q,2,Fδ,θ, L2(Q))du

is bounded, where N(·) denotes the covering number; see Theorems 9.3 and 9.15 of

Kosorok (2008) for more details. Using Theorem 2.14.1 of van der Vaart and Wellner

(1996),

E∗ sup
0≤d−d0<nξ−γδ2

d∈Dθ

|Gn2gn2,d,θ| ≤ J(1,Fδ,τ )‖Mδ,θ‖2 ≤ Cτn
ξ/2δ. (6.19)

Note that this bound does not depend on θ and can be shown to hold for the case

d ≤ d0 as well. Hence, we get the bound φn(δ) = nξ/2δ on the modulus of continuity.

For n > N
(3)
τ , (6.17) holds for all d ∈ Dθ, and (6.19) is valid for all δ > 0. Hence, we

do not need to justify consistency with respect to ρn. For rn = n1/2−ξ/2, the relation

r2
nφn(1/rn) ≤

√
n is satisfied. Consequently, r2

n(nγ−ξ(d̂n − d0)) = nη2(d̂n − d0) =

Op(1).

To deduce the limit distribution of d̂2, consider the process

Zn2(h, θ) =
1

nξ2

n2∑
i=1

(
Y

(2)
i − α+ β

2

)(
1
[
X

(2)
i ≤ d0 + hn−η

]
− 1

[
X

(2)
i ≤ d0

])
(6.20)

with X
(2)
i ∼ Uniform[µ−Kn1

−γ, µ+Kn1
−γ]. Note that

nη(d̂2 − d0) = argmin
h

Zn2(h, θ̂).

It is convenient to write Zn2 as

Zn2(h, θ) = Gn2fn2,h,θ(V ) + ζn2(h, θ), (6.21)
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where ζn2(h, θ) =
√
n2Pfn2,h,θ(V ) and

fn2,h,θ(V ) = n
1/2−ξ
2

(
mn(µ+ UKn−γ1 ) + ε− α + β

2

)
×(

1
[
µ+ UKn−γ1 ≤ d0 + hn−η

]
− 1

[
µ+ UKn−γ1 ≤ d0

])
.

This is precisely the form of the local process needed for Theorem 6.3. We next use

it to deduce the weak limit of the process Zn2(h, θ̂).

Theorem 6.6. Let B be a standard Brownian motion on R and

Z(h) =

√
(1− p)1−2ξpγ

2K
σB(h) +

(1− p)1−ξpγ

2K

c0

2
|h|.

Then, the sequence of stochastic process Zn2(h), h ∈ R are asymptotically tight and

converge weakly to Z(t).

Proof. For any L > 0, we start by justifying the conditions of Theorem 6.3 to

prove tightness of the process Zn2(h, θ̂n1), for h ∈ [−L,L]. For sufficiently large n,

the set {h : d0 + h/nη ∈ Dθ} contains [−L,L] for all θ ∈ Θτ
n1

and hence, it is not

necessary to extend Zn2 (equivalently, fn2,h,θ) as done in (6.5). Further, for a fixed

θ ∈ Θτ
n1

(defined in (6.16)), an envelope for the class of functions {fn2,h,θ : |h| ≤ L}

is given by

Fn2,θ(V ) = n
1/2−ξ
2

(
βn − αn

2
+

Kτ√
n1

+ |ε|
)
×

1
[
µ+ UKn−γ1 ∈ [d0 − Ln−η, d0 + Ln−η]

]
.

Note that

PF 2
n2,θ

. n1−2ξ

((
βn − αn

2
+

Kτ√
n1

)2

+ σ2

)
2Ln−η

2Kn−γ1

As η = 1+γ−2ξ, the right hand side is O(1). Moreover, the bound is uniform in θ, θ ∈

Θτ
n1

. Let K0 be a constant (depending on τ) such that K0 ≥ (βn − αn)/2 +Kτ/
√
n1.
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Then, for t > 0, PF 2
n2,θ

1[Fn2,θ >
√
n2t] is bounded by

n1−2ξP
(
(K0 + |ε|)21

[
µ+ UKn−γ1 ∈ [d0 − Ln−η, d0 + Ln−η]

]
×

1
[
n1/2−ξ(K0 + |ε|) >

√
n2t
])

As ε and U are independent, the above is bounded up to a constant by

P (K0 + |ε|)21
[
(K0 + |ε|) > √pnξt

]
which goes to zero. This justifies condition (6.7) and (6.8) of Theorem 6.3. Let

ρ̃(h1, h2) = |h1 − h2|. For any L > 0, the space [−L,L] is totally bounded with

respect to ρ̃. For h1, h2 ∈ [−L,L] and θ ∈ Θτ
n1

, we have

P (fn2,h1,θ − fn2,h2,θ)
2 . n1−2ξ |h1 − h2|n−η

2Kn−γ1

E [K0 + |ε|]2 .

The right side is bounded up to a constant by |h1 − h2| for all choices of θ, θ ∈ Θτ
n1

.

Hence, condition (6.9) is satisfied as well. Condition (6.10) can be justified in a manner

mentioned later. Further, the class of functions {fn2,h,θ : |h| ≤ L} is VC of index at

most 3 with envelope Fn2,θ. Hence, it has a bounded entropy integral with the bound

only depending on the VC index of the class (see Theorems 9.3 and 9.15 of Kosorok

(2008)) and hence, condition (6.11) is also satisfied. Also, the measurability condition

(6.13) can be shown to hold by approximating Fn2,δ = {fn2,h1,θ−fn2,h2,θ : |h1−h2| < δ}

(defined in Theorem 6.3) by the countable class involving only rational choices of h1

and h2. Note that the supremum over this countable class is measurable and it agrees

with supremum over Fn2,δ. Thus Gn2fn2,h,θ̂
is tight in l∞([−L,L]).
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Next, we apply Lemma 6.4 to deduce the limit process. Note that for θ ∈ Θτ
n1

and |h| ≤ L,

ζn2(h, θ) = n1−ξ
2

(
αn1(h ≤ 0) + βn1(h > 0)− α + β

2

)
hn−η

2Kn−γ1

= (1− p)1−ξ
(
αn1(h ≤ 0) + βn1(h > 0)− α + β

2

)
hnξ

2Kp−γ

=
(1− p)1−ξpγnξ

2K
h

(
αn1(h ≤ 0)− βn1(h > 0) +

αn + βn
2

)
+Rn.

The remainder term Rn in the last step accounts for replacing α + β by αn + βn in

the expression for ζn2 and is bounded (uniformly in θ ∈ Θτ
n1

) up to a constant by

nξL (|αn − α|+ |βn − β|) = O(nξ−1/2).

As ξ < 1/2,
√
n2Pfn2,h,θ converges uniformly to |h|

(
(1− p)1−ξpγc0

)
/(4K). Condition

(6.10) can be justified by calculations parallel to the above. Further, Pfn2,h,θ =

ζn2(h, θ)/
√
n2 converges to zero (uniformly) and hence, the covariance function of the

limiting Gaussian process (for h1, h2 > 0) is given by

lim
n→∞

Pfn2,h1,θfn2,h1,θ

= lim
n→∞

n1−2ξ
2

[(
αn1(h ≤ 0) + βn1(h > 0)− α + β

2

)2

+ σ2

]
h1 ∧ h2n

−η

2Kn−γ1

=
(1− p)1−2ξpγσ2

2K
(h1 ∧ h2).

Analogous results can be established for other choices of (h1, h2) ∈ [−L,L]2. Also,

the above convergence can be shown to be uniform in θ by a calculation similar to

that done for ζn2 . This justifies the form of the limit Z. Hence, we get the result.

Comparison with results from van der Vaart and Wellner (2007). As mentioned

earlier, van der Vaart and Wellner (2007) derived sufficient conditions to prove results
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of the form supd∈D

∣∣∣Gn(fd,θ̂ − fd,θ0)
∣∣∣ p→ 0, where {fd,θ : d ∈ D, θ ∈ Θ} is a suitable

class of measurable functions and θ̂ is a consistent estimate of θ0. If such a result

were to hold in the above model, the derivation of the limit process would boil down

to working with the process {Gnfd,θ0 : d ∈ D}, which is much simpler to work with.

However, we show below that for h 6= 0,

Tn2 := (Zn2(h, αn, βn, d̂1)− Zn2(h, αn, βn, d0)) (6.22)

does not converge in probability to zero, let alone the supremum of the above over h

in compact sets and hence, the results in van der Vaart and Wellner (2007) do not

apply.

Proposition 6.7. Let π2
0 := σ2pγ(1 − p)1−2ξ|h|/K and Tn2 be as defined in (6.22).

Then, for h 6= 0, Tn2 converges to a normal distribution with mean 0 and variance

π2
0.

The proof is given in Section E.5 of Appendix E. We now provide the limiting

distribution of d̂2.

Theorem 6.8. The process Z possesses a unique tight argmin almost surely and for

λ0 = (8Kσ2)/(c2
0(1− p)pγ),

nη(d̂2 − d0)
d→ argmin

h
Z(h)

d
= λ0 argmin

v
[B(v) + |v|] .

Remark 6.9. We considered a uniform random design for sampling at both stages.

The results extend readily to other suitable designs. For example, if the second stage

design points are sampled as X
(2)
i = d̂1 + ViKn

−γ
1 , where Vi’s are i.i.d. realizations

from a distribution with a positive continuous density ψ supported on a compact set

containing an interval around zero, it can be shown that d̂2 attains the same rate of

convergence. The limit distribution has the same form as above with λ0 replaced by

134



λ0/ψ(d0).

Proof. As Var(Z(t) − Z(s)) 6= 0, uniqueness of the argmin follows immediately

from Lemma 2.6 of Kim and Pollard (1990). Also, Z(h) → ∞ as |h| → ∞ almost

surely. This is true as Z(h) = |h| [σ2B(h)/|h|+ c/2] with B(h)/|h| converging to zero

almost surely as |h| → ∞. Consequently, Z ∈ Cmin(R) with probability one and the

unique argmin of Z is tight. An application of argmin continuous mapping theorem

(Kim and Pollard, 1990, Theorem 2.7) then gives us distributional convergence. By

dropping a constant multiple, it can be seen that

argmin
h

Z(h) = argmin
h

[
σB(h) +

√
(1− p)pγ

2K

c0

2
|h|

]
.

As σ
√
λ0 =

√
((1− p)pγ)/(2K)(c0λ0)/2, by the rescaling property of Brownian mo-

tion,

argmin
h

[
σB(h) +

√
(1− p)pγ

2K

c0

2
|h|

]

= λ0 argmin
v

[
σB(λ0v) +

√
(1− p)pγ

2K

c0

2
|λ0||v|

]
d
= λ0 argmin

v

[
σ
√
λ0B(v) +

√
(1− p)pγ

2K

c0

2
λ0|v|

]
= λ0 argmin

v
[B(v) + |v|] .

The result follows.

Optimal allocation. The interval from which the covariates are sampled at

the second stage is chosen such that the change-point d0 would be contained in

the prescribed interval with high probability, i.e., we pick K and γ such that

P
(
d0 ∈ [d̂1 −Kn1

−γ, d̂1 −Kn1
−γ]
)

converges to 1. But, in practice for a fixed n,

a suitable choice would be

Kn1
−γ ≈

Cτ/2

n1−2ξ
1
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with Cτ/2 being the (1− τ/2)th quantile of the limiting distribution of n1−2ξ
1 (d̂1− d0)

which is symmetric around zero. As argminv [B(v) + |v|] is a symmetric random

variable, the variance of (d̂2 − d0) would then be (approximately) smallest when

λ0

nη
=

8Kσ2

c2
0(1− p)pγnη

=
8σ2Cτ/2

c2
0(1− p)pγnηn1−γ−2ξ

1

=
8σ2Cτ/2

c2
0(1− p)p1−2ξn2(1−2ξ)

is at its minimum. This yields the optimal choice of p to be popt = (1−2ξ)/(2(1−ξ)).

6.3 Inverse isotonic regression

In this section, we consider the problem of estimating the inverse of a monotone

regression function at a pre-specified point t0 using multi-stage procedures. Responses

(Y,X) are obtained from a model of the form Y = r(X) + ε, where r is a monotone

function on [0,1] and the experimenter has the freedom to choose the design points.

It is of interest to estimate the threshold d0 = r−1(t0) for some t0 in the interior of

the range of r with r′(d0) > 0. The estimation procedure is summarized below:

1. At stage one, sample n1 = p×n covariate values uniformly from [0, 1] and, from

the data, (Y
(1)
i , X

(1)
i )n1

i=1, obtain the isotonic regression estimate r̂n1 of r (see

Robertson et al. (1988, Chapter 1)) and, subsequently, an estimate d̂1 = r̂−1
n1

(t0)

of d0.

2. For K > 0 and γ > 0, sample the remaining n2 = (1 − p)n covariate-response

pairs {Y (2)
i , X

(2)
i }

n2
i=1, where

Y
(2)
i = r(X

(2)
i ) + εi, X

(2)
i ∼ Uniform[d̂1 −Kn−γ1 , d̂1 +Kn−γ1 ].

Obtain an updated estimate d̂2 = r̂−1
n2

(d0) of d0, where r̂n2 is the isotonic regres-
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sion estimate based on {Y (2)
i , X

(2)
i }i≤n2 . Also r̂−1

n2
is the right continuous inverse

of r̂n2 .

This procedure has been empirically studied in Tang et al. (2013). Here, we rigor-

ously establish the limiting properties of d̂2. The parameter γ is chosen such that

P
(
d0 ∈ [d̂1 −Kn−γ1 , d̂1 +Kn−γ1 ]

)
converges to 1. As n1/3(d̂1 − d0) = Op(1) (see, for

example, Tang et al. (2011, Theorem 2.1)), any choice of γ < 1/3 suffices.

The switching relationship (Groeneboom, 1985, 1989) is useful in studying the

limiting behavior of r̂n2 through M-estimation theory. It simply relates the estimator

r̂n2 to the minima of a tractable process as follows. Let

V 0(x) =
1

n2

n2∑
i=1

Y
(2)
i 1

[
X

(2)
i ≤ x

]
and G0(x) =

1

n2

n2∑
i=1

Y
(2)
i 1

[
X

(2)
i ≤ x

]
.

For θ̂n1 = d̂1 and any d ∈ [θ̂n1−Kn
−γ
1 , θ̂n1−Kn

−γ
1 ], the following (switching) relation

holds with probability one:

r̂n2(d) ≤ t ⇔ argmin
x∈[θ̂n1−Kn

−γ
1 ,θ̂n1−Kn

−γ
1 ]

{V 0(x)− tG0(x)} ≥ X
(2)
(d) , (6.23)

where X
(2)
(d) is the last covariate value X

(2)
i to the left of d and the argmin denotes the

smallest minimizer if there are several. As r̂−1
n2

is the right continuous inverse of r̂n2 ,

r̂n2(d) ≤ t⇔ d ≤ r̂−1
n2

(t) and hence, using (6.23) at t = t0 = r(d0), we get

d̂2 = r̂−1
n2

(t0) ≥ d ⇔ argmin
x∈[θ̂n1−Kn

−γ
1 ,θ̂n1−Kn

−γ
1 ]

{V 0(x)− r(d0)G0(x)} ≥ X
(2)
(d) . (6.24)

Let

x̂ = argmin
x∈[θ̂n1−Kn

−γ
1 ,θ̂n1−Kn

−γ
1 ]

{V 0(x)− r(d0)G0(x)}.

Note that both x̂ and d̂2 are order statistics of X (r̂n2(·) and V 0(·) − r(d0)G0(·) are

piecewise constant functions). In fact, it can be shown using (6.24) twice (once at
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d = d̂2 and the second time with d being the order statistic to the immediate right of

d̂2) that they are consecutive order statistics with probability one. Hence,

d̂2 = x̂+Op

(
(2Kn−γ1 )

log n2

n2

)
= x̂+Op

(
log n

n1+γ

)
. (6.25)

The Op term in the above display corresponds to the order of the maximum of the

differences between consecutive order statistics (from n2 realizations from a uniform

distribution on an interval of length 2Kn−γ1 ). We will later show that n(1+γ)/3(x̂−d0) =

Op(1). As n(1+γ)/3 = o(n1+γ/ log n), it suffices to study the limiting behavior of x̂ to

arrive at the asymptotic distribution of d̂2. To this end, we start with an investigation

of a version of the process {V 0(x)− r(d0)G0(x)} at the resolution of the second stage

“zoomed-in” neighborhood, given by

Vn2(u) = Pn2(Y
(2) − r(d0))1

[
X(2) ≤ d0 + un−γ2

]
.

For Dθ̂n1 =
[
nγ2(θ̂n1 −Kn

−γ
1 ), nγ2(θ̂n1 +Kn−γ1 )

]
,

û := nγ2(x̂− d0) = argmin
u∈Dθ̂n1

Vn2(u).

Further, let U ∼ Uniform[−1, 1] and V = (U, ε). Note that X(2) = θ̂n1 + UKn−γ1 and

Y (2) = r(θ̂n1 + UKn−γ1 ) + ε. Let

gn2,u,θ(V ) = nγ2
(
r(θ + UKn−γ1 ) + ε− r(d0)

)
×(

1
[
θ + UKn−γ1 ≤ d0 + un−γ2

]
− 1

[
θ + UKn−γ1 ≤ d0

])
.

Also, let

Mn2 (u, θ) = Pn2 [gn2,u,θ(V )] .
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Then, û = argminu∈Dθ̂n1
Mn2

(
u, θ̂n1

)
. Let Mn2(u, θ) = Pgn2,u,θ which, by monotonic-

ity of r, is non-negative. Also, let θ0 = d0 and Θτ
n1

= {θ : |θ − θ0| ≤ Kτn
−1/3
1 } where

Kτ is chosen such that P
(
θ̂n1 ∈ Θτ

n1

)
> 1− τ for τ > 0. As γ < 1/3, 0 is contained

in all the intervals Dθ, θ ∈ Θτ
n1

(equivalently, d0 ∈ [θ−Kn−γ1 , θ+Kn−γ1 ]), eventually.

Note that Mn2(0, θ) = 0. Hence, 0 is a minimizer of Mn2(·, θ) over Dθ for each θ ∈ Θτ
n.

The process Mn2 is a population equivalent of Mn2 and hence, û estimates 0. We have

the following result for the rate of convergence of û.

Theorem 6.10. Assume that r is continuously differentiable in a neighborhood of d0

with r′(d0) 6= 0. Then, for α = (1− 2γ)/3, nα2 û = Op(1).

The proof is given in Section E.6 of Appendix E. Next, we derive the limiting

distribution of d̂2 by studying the limiting behavior of ŵ = nα2 û. Let fn2,w,θ =

n2
1/6−4γ/3gn2,wn

−α
2 ,θ, ζn2(w, θ) =

√
n2Pfn2,w,θ and

Zn2(w, θ) = Gn2fn2,w,θ + ζn2(w, θ).

Then, nα2 û = ŵ = argminw:n−α2 w∈Dθ̂n1
Zn2(w, θ̂n1). We have the following result for the

weak convergence of Zn2 .

Theorem 6.11. Let B be a standard Brownian motion on R and

Z(w) = σ

√
pγ

2K(1− p)γ
B(w) +

(
p

1− p

)γ
r′(d0)

4K
w2.

The processes Zn2(w, θ̂n1) are asymptotically tight and converge weakly to Z. Further,

n(1+γ)/3(d̂2 − d0)
d→
(

8σ2K

(r′(d0))2pγ(1− p)

)1/3

argmin
w
{B(w) + w2}. (6.26)

The proof is given in Section E.7 of Appendix E. As was the case with the

change-point problem, extensions of the above result to non-uniform random designs
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are possible as well. Also, the proportion p can be optimally chosen to minimize

the limiting variance of the second stage estimate. More details on this and related

implementation issues can be found in Tang et al. (2013, Section 2.4).

6.3.1 Application to a classification problem

In this section, we study a non-parametric classification problem where we show

that a multi-stage procedure yields a better classifier in the sense of approaching the

misclassification rate of the Bayes classifier.

Consider a model Y ∼ Ber(r(X)), where r(x) = P (Y = 1 | X = x) is a function

on [0, 1] and the experimenter has freedom to choose the design distribution (distri-

bution of X). Interest centers on using the training data {Yi, Xi}ni=1, obtained from

an experimental design setting, to develop a classifier that predicts Y at a given real-

ization X = x. A classifier f is a simply a function from [0, 1] to {0, 1} which provides

a decision rule; assign x to the class f(x). The misclassification rate or the risk of a

classifier f is given by

R(f) = P [Y 6= f(X)] .

As R(f) = E [P [Y 6= f(X) | X]] which equals

E [1 [f(X) = 0] r(X) + 1 [f(X) = 1] (1− r(X))] ,

it is readily shown that R(f) is at its minimum for the Bayes classifier f ∗(x) =

1 [r(x) ≥ 1/2]. Note that the Bayes classifier cannot be computed simply from the

data as r(·) is unknown. It is typical to evaluate the performance of a classifier f

by comparing its (asymptotic) risk to that of the Bayes classifier which is the best

performing decision rule in terms of R(·).

We study the above model under the shape-constraint that r(·) is monotone. In

this setting, r−1(1/2) can be estimated in an efficient manner through the multi-
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stage procedure spelled out in Section 6.3. Let d̂2 = r̂−1
n2

(1/2) denote the second

stage estimate. In contrast with Section 6.3, we now have a binary regression model

with the underlying regression function being monotone. It is noted here that the

asymptotic results for d̂2 in this model parallel those for a heteroscedastic isotonic

regression model (note that Var(Y | X) = r(x)(1 − r(x))) and can be established in

analogous manner. For example, it can be shown that

n(1+γ)/3(d̂2 − d0)
d→
(

8Kr(d0)(1− r(d0))

(r′(d0))2pγ(1− p)

)1/3

argmin
w
{B(w) + w2}, (6.27)

where d0 = r−1(1/2). Here, the variance σ2 in Theorem 6.11 gets replaced by Var(Y |

X = d0) = r(d0)(1− r(d0)).

Now, an efficient classifier can be constructed as

f̂(x) = 1 [r̂n2(x) ≥ 1/2] = 1
[
x ≥ d̂2

]
.

We study the limiting risk of this classifier with that for the Bayes rule f ∗. To fix

ideas, we define R(·) with respect to the first stage design distribution which we take

to be uniform on [0, 1] for simplicity. Note that the Bayes classifier is invariant of the

design distribution and hence, a valid classifier to compare with.

We have the following result on the misclassification rate of f̂ . Here, R(f̂) is

interpreted as R(f) computed at f = f̂ .

Theorem 6.12. Assume that r is continuously differentiable in a neighborhood of d0

with r′(d0) 6= 0. Then,

n2(1+γ)/3(R(f̂)−R(f ∗))
d→

(
8Kr(d0)(1− r(d0))√

r′(d0)pγ(1− p)

)2/3 [
argmin

w
{B(w) + w2}

]2

.

This is a significant improvement over the corresponding single stage procedure,

the procedure that is equivalent to working with the first-stage classifier f̃ = 1[x ≥ d̂1]
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(d̂1 is the first stage estimate) whose risk approaches the Bayes risk at the rate n
2/3
1 .

Theorem 6.13. Assume that r is continuously differentiable in a neighborhood of

d0 = r−1(1/2). Then,

n
2/3
1 (R(f̃)−R(f ∗))

d→

(
4r(d0)(1− r(d0))√

r′(d0))

)2/3 [
argmin

w
{B(w) + w2}

]2

.

We prove Theorem 6.12 below. The proof of Theorem 6.13 follows along the same

lines starting from the limit distribution of d̂1.

Proof of Theorem 6.12. Note that for f(x) = 1 [x ≥ a]

R(f) =

a∫
0

r(x)dx+

1∫
a

(1− r(x))dx =

1∫
0

(1− r(x))dx+

a∫
0

(2r(x)− 1)dx.

For notational ease, we use
∫ d
c

to denote −
∫ c
d

whenever c > d. Then, by a change of

variable,

n2(1+γ)/3(R(f̂)−R(f ∗)) = n(1+γ)/3

d̂2∫
d0

2(r(x)− 1/2)dx

= n(1+γ)/3

(n(1+γ)/3(d̂2−d0))∫
0

2(r(d0 + hn−(1+γ)/3)− r(d0))dh.

By Skorokhod’s representation theorem, a version of n(1+γ)/3(d̂2−d0), say ξn(ω), con-

verges almost surely to a tight random variable ξ(ω) which has the same distribution

as the random variable on right side of (6.27). As r is continuously differentiable in

a neighborhood of d0 = r−1(1/2), there exists δ0 > 0, such that |r′(x)| < 2r′(d0),

whenever |x−d0| < δ0. Hence, for a τ > 0 and a fixed ω, there exist Nω,τ,δ0 ∈ N, such

that |ξn(ω)− ξ(ω)| < τ and (|ξ(ω)| + τ)n−(1+γ)/3 < δ0 whenever n > Nω,τ,δ0 . Hence,
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for n > Nω,τ,δ0 ,

n(1+γ)/3

ξn(ω)∫
0

2(r(d0 + hn−(1+γ)/3)− r(d0))dh

= n(1+γ)/3

ξn(ω)∫
0

2(r(d0 + hn−(1+γ)/3)− r(d0))1 [|h| ≤ |ξ(ω)|+ τ ] dh

=

ξn(ω)∫
0

(2r′(d?h)h)1 [|h| ≤ |ξ(ω)|+ τ ] dh,

where d?h is an intermediate point between d0 and d0 + hn−(1+γ)/3. Note that

r′(d?h) converges (pointwise in h) to r′(d0). As the integrand is bounded by

4r′(d0)h1 [|h| ≤ |ξ(ω)|+ τ ] which is integrable, by the dominated convergence the-

orem, the above display then converges to r′(d0)ξ2(ω). Consequently,

P

n(1+γ)/3

ξn∫
0

2(r(d0 + hn−(1+γ)/3)− r(d0))dh6→r′(d0)ξ2

 ≤ P (ξn 6→ξ) = 0.

Thus, we get the result.

6.4 A mode estimation problem

Consider a model of the form Y = m(X) + ε in an experimental design setting

where m(x) = m̃(|x − d0|) with m̃ : [0,∞) 7→ R being a monotone decreasing func-

tion. Consequently, the regression function m is unimodal and symmetric around d0.

Interest centers on estimating the point of maximum d0 ∈ (0, 1) which can be thought

of as a target or a source emanating signal isotropically in all directions. We assume

that m̃′(0) < 0. We propose the following two-stage approach.

1. At stage one, sample n1 = pn (p ∈ (0, 1)) covariate values uniformly from
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[0, 1] and, from the obtained data, (Y
(1)
i , X

(1)
i )n1

i=1, estimate d0 by d̂1 =

argmaxd∈(b,1−b) Mn1(d), where

Mn1(d) = Pn1Y
(1)1

[
|X(1) − d| ≤ b

]
, (6.28)

where the bin-width b > 0 is sufficiently small so that [d0 − b, d0 + b] ⊂ (0, 1).

Note that the estimate is easy to compute as the search for the maximum of

Mn1 can be restricted to points d such that either d − b or d + b is a design

point.

2. For K > b > 0 and γ > 0, sample the remaining n2 = (1−p)n covariate-response

pairs {Y (2)
i , X

(2)
i }, where

Y
(2)
i = m(X

(2)
i ) + ε

(2)
i , X2

i ∼ Uniform[d̂1 −Kn1
−γ, d̂1 +Kn1

−γ].

Obtain an updated estimate of d0 by

d̂2 = argmax
d∈Dθ̂n1

Mn2(d), where

Mn2(d) = Pn2Y
(2)1

[
|X(2) − d| ≤ bn−γ1

]
, (6.29)

θ̂n1 = d̂1 and Dθ̂n1 = [θ̂n1− (K− b)n−γ1 , θ̂n1 + (K− b)n−γ1 ]. Here, γ is chosen such that

P
(
d0 ∈ [d̂1 − (K − b)n1

−γ, d̂1 + (K − b)n1
−γ]
)

converges to 1. It will be shown that

n1
1/3(d̂1 − d0) = Op(1). Hence, any choice of γ < 1/3 suffices.

The single stage approach is adapted from the shorth procedure (see, for exam-

ple, Kim and Pollard (1990, Section 6)) originally developed to find the mode of a

symmetric density. The limiting behavior of the first stage estimate is derived next.
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Theorem 6.14. We have n1
1/3(d̂1 − d0) = Op(1) and

n1
1/3(d̂1 − d0)

d⇒
(a
c

)2/3

argmax
{
B(h)− h2

}
(6.30)

where a =
√

2(m2(d0 + b) + σ2) and c = −m′(d0 + b) > 0.

Remark 6.15. The symmetry of the function m around d0 is necessary. If m were

not symmetric, our procedure (at the first stage), which reports the center of the bin

(with width 2b) having the maximum average height as the estimate of d0, need not

be consistent. For example, when m(x) = exp(−a1|x − d0|) for x ≤ d0, and m(x) =

exp(−a2|x−d0|) for x > d0, (a1 6= a2), elementary calculations show that the expected

criterion function, E [Mn1(d)] is minimized at d∗ = d0 + (a1 − a2)b/(a1 + a2) 6= d0

and that d̂1 is a consistent estimate of d∗.

The proof follows from application of standard empirical process results and is

outlined in Section E.8. For the second stage, we get the following result.

Theorem 6.16. We have n2
(1+γ)/3(d̂2 − d0) = Op(1) and

n(1+γ)/3(d̂2 − d0)
d→
(

4K(m2(d0) + σ2)

(m′(d0+))2pγ(1− p)

)1/3

argmax
{
B(h)− h2

}
(6.31)

Remark 6.17. It is critical here to work with a uniform design for this problem.

The uniform design at each stage ensures that the population criterion function is

maximized at the true parameter d0. In fact, if a non-flat random design is used at

the second stage with design distribution symmetric at d̂1, it can be shown that d̂2

can not converge at a rate faster than n1/3 as it effectively ends up estimating an

intermediate point between d0 and d̂1. Further, if a non-flat design is used at the first

stage, it can be shown that d̂1 need not be consistent for d0.

Remark 6.18. Root finding algorithms (Robbins and Monro, 1951) and their ex-

tensions (Kiefer and Wolfowitz, 1952) provide a classical approach for locating the
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maximum of the a regression function in an experimental design setting. However,

due to the non-smooth nature of our problem (m not being differentiable at d0), d0 is

no longer the solution to the equation m′(d) = 0, and hence, these algorithms do not

apply to our setting.

The proof is given in Section E.9 of Appendix E. As was the case with the change-

point and the inverse isotonic regression problem, an optimal choice for the proportion

p exists that minimizes the limiting variance of the second stage estimate. As before,

K and γ are chosen in practice such that

Kn1
−γ ≈

Cτ/2

n
1/3
1

,

with Cτ/2 being the (1− τ/2)th quantile of the limiting distribution of n
1/3
1 (d̂1 − d0).

The variance of (d̂2 − d0) would be (approximately) at its minimum when

1

n(1+γ)/3

(
4K(m2(d0) + σ2)

(m′(d0+))2pγ(1− p)

)1/3

≈ 1

n4/9

(
4Cτ/2(m2(d0) + σ2)

(m′(d0+))2p1/3(1− p)

)1/3

is at its minimum. Equivalently, p1/3(1− p) needs to be at its maximum. This yields

the optimal choice of p to be popt ≈ 0.25.

6.5 Conclusions

Negative examples and possible solutions. In this chapter, we considered examples

where multistage procedures accentuated the efficiency of the M-estimates by acceler-

ating the rate of convergence. However, this is not a universal phenomenon. In most

regular parametric problems, where the estimates exhibit a
√
n-rate of convergence,

acceleration to a faster rate is not possible. Also, in the mode estimation problem

considered in this chapter, it can be shown that if the regression function is smooth at

d0, i.e., m′(d0) = 0, the second stage estimate converges at a slower rate than the first
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stage estimate. This is due to the fact that the function appears almost flat in the

(second stage) zoomed-in neighborhood and our criterion that simply relies on find-

ing the bin with maximum average height is not able to capture the local quadratic

nature of the function in this shrinking neighborhood. In such a situation quite a

few extensions are possible. Working with a symmetric (non-flat) design centered

at the first stage estimate, which affects the population criterion function favorably

in this setting (in contrast with Remark 6.17), an n1/3-rate of convergence can be

maintained for the second stage estimate. Alternatively, one can fit a quadratic curve

(which is the local nature of the regression function m, provided m′′(d0) 6= 0) at the

second stage which is expected to accelerate the rate of convergence. Some work in

this direction can be found in Hotelling (1941). As mentioned earlier, similar phe-

nomena were observed in Tang et al. (2011), where they constructed a
√
n-consistent

estimate by doing a linear approximation at the second stage of sampling to estimate

the inverse of a monotone regression function. We note here that unlike our settings,

the shrinking neighborhood chosen in Tang et al. (2011) was not required to contain

d0 with high probability. This is due to the fact that their criterion function leverages

on the linear approximation of regression function and can extrapolate to estimate

d0. Hence, the acceleration in the rate (or the lack of it) turns out to be a feature

of the model as well as the method. Further, as mentioned in Remark 6.18, Kiefer-

Wolfowitz procedure (Kiefer and Wolfowitz, 1952) can also be used to estimate the

location of the maximum of the regression function in this smooth m setting with

m′(d0) = 0.

Pooled data. In certain models, it is preferred, at least from the perspective of

reducing the limiting variance, to pool the data across stages to obtain the final

estimates. For example, in change-point models where regression function is linear

on either side of the threshold, e.g., m(x) = (α0+α1x)1(x ≤ d0)+(β0+β1x)1(x > d0),

αi 6= βi, i = 1, 2, it is recommended to estimate at least the slope parameters using
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the pooled data. This is due to the fact that slopes are better estimated when the

design points are far apart. It is far from clear whether a generic formulation is

possible to approach such multistage procedures as the nature of the dependence gets

more convoluted.
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Part III

Random fields
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CHAPTER 7

A central limit theorem for linear random fields

Random fields have attracted a lot of attention especially in modeling spatially

correlated data. They are encountered in several applications from geo-spatial statis-

tics, environmental statistics, human brain mapping, and image processing (e.g., see

Cressie (1991); Ivanov and Leonenko (1989)). Limit theorems for random fields have

motivated a number of papers. They have been studied under different settings.

In this chapter, we are mainly interested in Central Limit Theorems (CLT) for

linear random fields. In the paper by Phillips and Solo (1992), it was demonstrated

that the so-called Beveridge-Nelson decomposition (BND) presents a simple method

for proving limit theorems for sums of values of linear processes. This has been

exploited in several papers to decompose partial sums of linear random fields into

a partial sum of independent components and a remainder term which can be dealt

more readily. Using this technique, Marinucci and Poghosyan (2001) proved IP for

partial sums of linear random fields with independent innovations over rectangles as

well as a strong approximation result for the same by a Gaussian random field. This

was further generalized for dependent innovations by Ko et al. (2008). Paulauskas

(2010) used BND to obtain sufficient conditions for CLT and strong laws for the

partial sums of linear random fields as well as their squares summed over sets such

as rectangles and squares. Using BND seems to give weak limit results at the price
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of a simpler proof.

Our approach to the problem does not rely upon the use of BND. We provide suf-

ficient conditions for CLT to hold for linear random fields based upon a criterion that

arises naturally starting from the Lindberg-Feller condition. The approach requires

innovations to be independent and does not deliver a functional version. However, we

allow sums to be taken over sets as general as the disjoint union of rectangles. Also,

our result in its simpler form extends a CLT for linear processes (Ibragimov, 1962)

to that for linear random fields with no extra conditions.

We formulate the problem in a two-dimensional setting in Section 7.1. The results

presented in this chapter can be easily extended to d-dimensional, linear random fields,

d ≥ 1. Notational ease restricts us to illustrate the techniques for d = 2 only. In

Section 7.2, we deduce fundamental criteria for CLT to hold when sums are taken

over general shapes. Simpler conditions are derived in Section 7.3 which ensure a

CLT for linear random fields when sums are taken over finite union of rectangles.

7.1 Formulation

Consider a two-dimensional, linear random field, say

Xj,k =
∑
r∈Z

∑
s∈Z

ar,sξj−r,k−s =
∑
r∈Z

∑
s∈Z

aj+r,k+sξ−r,−s,

where ar,s, r, s ∈ Z, are square summable, ξr,s, r, s ∈ Z, are i.i.d. with mean 0

and unit variance, and Z denotes the integers. It is convenient to regard the array

a = (ar,s : r, s ∈ Z) as an element of `2(Z2). Let F denote the common distribution

function of the ξr,s and (Ω,A, P ) the probability space on which they are defined. If

Γ is a finite subset of Z2, let

S = S(a,Γ) =
∑

(j,k)∈Γ

Xj,k
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and

σ2 = σ2(a,Γ) = E(S2),

and suppose that σ2 > 0. (Of course, S depends on ω ∈ Ω too, but this dependence is

suppressed. As indicated, dependence on a and Γ will only be displayed when needed

for clarity.) Then

S =
∑
r∈Z

∑
s∈Z

br,sξ−r,−s,

where

br,s = br,s(a,Γ) =
∑

(j,k)∈Γ

aj+r,k+s,

and

σ2 =
∑
r∈Z

∑
s∈Z

b2
r,s,

assumed to be positive. Let Φ denote the standard normal distribution and

G(z) = G(z; a,Γ, F ) = P

[
S

σ
≤ z

]
, z ∈ R.

Sufficient conditions for G to be close to Φ are developed.

7.2 Generalities

Let

ρ = ρ(a,Γ) = max
r,s∈Z

|br,s|
σ

. (7.1)

Interest in ρ stems from the following:

Proposition 7.1. Let H denote a class of distribution functions for which

∫
R

xH{dx} = 0,

∫
R

x2H{dx} = 1, for all H ∈ H, (7.2)
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lim
c→∞

sup
H∈H

∫
|x|>c

x2H{dx} = 0; (7.2)

Then ∀ ε > 0, ∃ δ = δε,H, depending only on ε and H for which

d(G,Φ) := sup
z
|G(z)− Φ(z)| ≤ ε (7.3)

for all F ∈ H for all arrays a and finite regions Γ ⊂ Z2 for which ρ ≤ δ.

Proof: Let ˆ denote Fourier transform (characteristic function), so that F̂ (t) =∫
R e

ıtxF{dx}, and

L(η) =
1

σ2

∑
r,s∈Z

∫
|br,sx|>ησ

|br,sx|2F{dx}

for η > 0. Then, for any η > 0, |Ĝ(t) − Φ̂(t)| ≤ η|t|3 + t2L(η) + t4 exp(t2)ρ2 for all

t ∈ (0,
√

2/ρ) from the proof of the Central Limit Theorem for independent summands

(Billingsley, 1995, pp. 359-361) and

sup
z
|G(z)− Φ(z)| ≤ 1

π

T∫
−T

∣∣∣∣∣Ĝ(t)− Φ̂(t)

t

∣∣∣∣∣ dt+
24

π
√

2πT
(7.4)

≤ ηT 3

3
+

1

2
T 2L(η) +

1

2
eT

2

(T 2 − 1)ρ2 +
24

T

for any T ∈ (0,
√

2/ρ) by the smoothing inequality (Feller, 1971, pp. 510-512). Given

ε > 0, let Tε = 96/ε and ηε = 3ε/(4T 3
ε ). Then the left side of (7.4) is at most

1

2
T 2
ε L(ηε) +

1

2
eT

2
ε (T 2

ε − 1)ρ2 +
1

2
ε,

provided ρ <
√

2/Tε. Next, let J(c) = supH∈H
∫
|x|>c x

2H{dx} for c > 0, so that

J(c)→ 0 as c→∞ by (7.2); and let J#(z) = inf{c > 0 : J(c) ≤ z} for z > 0. Then

L(η) ≤ 1

σ2

∑
r∈Z

∑
s∈Z

b2
r,s

∫
|x|>η/ρ

x2F{dx} ≤ J

(
η

ρ

)
,
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and δ = min
(√

2/Tε,
√
ε/(2 exp(T 2

ε )(T 2
ε − 1)), ηε/J

#(T−2
ε ε/2)

)
has the desired prop-

erties.

Next, let

‖a‖p =

[∑
r,s∈Z

|ar,s|p
] 1
p

≤ ∞

for 1 ≤ p ≤ 2. Thus, ‖a‖2 is assumed to be finite and ‖a‖p may be finite for some

value of p < 2. In terms of ‖a‖p there is a simple bound on ρ,

ρ ≤ ‖a‖p(#Γ)
1
q

σ
, (7.5)

where q denotes the conjugate, 1/p + 1/q = 1 and #Γ denotes the cardinality of Γ.

In particular, ρ ≤ ‖a‖1/σ. This leads to:

Corollary 7.2. Let H be as in Proposition 1. If ‖a‖1 < ∞, then ∀ ε > 0, ∃ κ =

κε,H > 0 for which (7.3) holds whenever σ ≥ κ‖a‖1 and F ∈ H.

Proof: For δ as per Proposition 1, let κ = 1/δ. The result is then a consequence

of the proposition and the fact that ρ ≤ ‖a‖1/σ.

An immediate consequence of the above result is the following.

Corollary 7.3. Let ‖a‖1 <∞ and Γn be a sequence of finite subsets of Z2 such that

σ(a,Γn)→∞ as n→∞. Then the distributions of S(a,Γn)/σ(a,Γn) converge to Φ.

Remark 7.4. Our result does not put any restrictions the shape of the sets Γn but

it requires #Γn → ∞ (as a consequence of σ(a,Γn) → ∞). In Paulauskas (2010),

a similar theorem is shown to hold for rectangles, i.e., Γn = {(j, k) : 1 ≤ j ≤

M(n), 1 ≤ k ≤ N(n)}, with min(M(n), N(n))→∞. But it was not resolved whether

a CLT would hold with the weaker condition #Γn → ∞. In particular, our result

provides a CLT when Γns are effectively “one-dimensional”, e.g., M(n) ≡ 1 and

N(n)→∞.

154



7.3 Union of Rectangles

We specialize our results to Γ being a union of finitely many discrete rectangles.

To bound ρ, suppose that the maximum in (7.1) occurs when r = r0 and s = s0, say

|br0,s0| = max
r,s
|br,s|,

and let ∆bu,v = bu,v − bu,v−1 − bu−1,v + bu−1,v−1 for (u, v) ∈ Z2. Then

br0+r,s0+s − br0,s0+s − br0+r,s0 + br0,s0 =

r0+r∑
u=r0+1

s0+s∑
v=s0+1

∆bu,v (7.6)

for r, s ≥ 1. Let

Qm,n =
m∑
r=1

n∑
s=1

r0+r∑
u=r0+1

s0+s∑
v=s0+1

|∆bu,v| =
r0+m∑
r=r0+1

s0+n∑
s=s0+1

(r − r0)(s− s0)|∆br,s| (7.7)

for m,n ≥ 1. Since br0,s0 = −br0+r,s0+s + br0,s0+s + br0+r,s0 +
∑r0+r

u=r0+1

∑s0+s
v=s0+1 ∆bu,v,

we have |br0,s0| ≤ |br0,s0+s|+ |br0+r,s0|+ |br0,s0|+
∑r0+r

u=r0+1

∑s0+s
v=s0+1 |∆bu,v| for all r, s ≥ 1

and, therefore,

mn|br0,s0| ≤
m∑
r=1

n∑
s=1

(|br0+r,s0+s|+ |br0,s0+s|+ |br0+r,s0 |) +Qm,n

for all m,n ≥ 1. Here

m∑
r=1

n∑
s=1

|br0+r,s0+s| ≤
√
mn

√√√√ m∑
r=1

n∑
s=1

b2
r0+r,s0+s ≤

√
mnσ,

and similarly,
∑m

r=1

∑n
s=1 |br0,s0+s| ≤ m

√
nσ and

∑m
r=1

∑n
s=1 |br0+r,s0| ≤

√
mnσ. So,

mn|br0,s0| ≤
√
mnσ +m

√
nσ +

√
mnσ +Qm,n. That is,

ρ =
|br0,s0|
σ
≤ (

2√
m

+
2√
n

) +
Qm,n

mnσ
, (7.8)
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for any m,n ≥ 1. The first two terms can be made small by taking m and n large.

Thus, the issue is Qm,n. Suppose now that Γ can be written as the union of ` non-

empty pairwise mutually exclusive rectangles, i.e.,

Γ =
⋃̀
i=1

{(j, k) : M i ≤ j ≤M i, N i ≤ k ≤ N i}. (7.9)

Proposition 7.5. If Γ is of the form (7.9), then

ρ ≤ 20

(√
`‖a‖2

σ

) 1
5

+
8
√
`‖a‖2

σ
. (7.10)

Proof: In this case br,s =
∑`

i=1 b
(i)
r,s, where b

(i)
r,s =

∑M i

j=M i

∑N i

k=N i
aj+r,k+s, ∆br,s =∑`

i=1 ∆b
(i)
r,s, and ∆b

(i)
r,s = ar+M i,s+N i

− ar+M i,s+N i
− ar+M i,s+N i

+ ar+M i,s+N i
. So,

Qm,n ≤ mn
m∑
r=1

n∑
s=1

∑̀
i=1

(|ar+M i,s+N i
− ar+M i,s+N i

− ar+M i,s+N i
+ ar+M i,s+N i

|)

≤ 4(mn)2
√
`‖a‖2,

by Schwartz’ Inequality, and

ρ ≤ (
2√
m

+
2√
n

) +
4mn
√
`‖a‖2

σ
,

for any m,n ≥ 1. Letting m = n = d(σ/
√
`‖a‖2)

2
5 e, the least integer that exceeds

(σ/
√
`‖a‖2)

2
5 , leads to (7.10).

When specialized to (intersections of) rectangles (with Z2), we have the following

result.

Corollary 7.6. Let H be as in Proposition 7.1 and let Rκ be the collection of pairs

(a,Γ) for which ‖a‖2 > 0, Γ is a finite rectangle, and σ(a,Γ) ≥ κ‖a‖2. Then, as

κ→∞, the distributions of S/σ converge to Φ uniformly with respect to (a,Γ) ∈ Rκ
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and F ∈ H.

This provides a complete analogue of Ibragimov’s theorem (Ibragimov, 1962), with

a lot of uniformity. Next, we give a convenient formulation which, like Corollary 7.3,

provides a CLT with a weak condition (#Γn → ∞) on the growth of rectangles Γn,

defined below.

Corollary 7.7. Let Γn = {(j, k) : 1 ≤ j ≤M(n), 1 ≤ k ≤ N(n)} for M(n), N(n) ≥

1. If σ(a,Γn)→∞ as #Γn →∞, then the distributions of S(a,Γn)/σ(a,Γn) converge

to Φ.

157



APPENDICES

158



APPENDIX A

Proofs for Chapter 2

We start with establishing an auxiliary result that is used in the subsequent de-

velopments.

Theorem A.1. Let T be an indexing set and {Mτ
n : τ ∈ T }∞n=1 a family of real-

valued stochastic processes indexed by h ∈ H. Also, let {M τ : τ ∈ T } be a family of

deterministic functions defined on H, such that each M τ is maximized at a unique

point h(τ) ∈ H. Here H is a metric space and denote the metric on H by d. Let ĥτn

be a maximizer of Mτ
n. Assume further that:

(a) supτ∈T suph∈H |Mτ
n(h)−M τ (h)| = op(1), and

(b) for every η > 0, c(η) ≡ infτ infh/∈Bη(h(τ)) [M τ (h(τ)) −M τ (h)] > 0, where Bη(h)

denotes the open ball of radius η around h.

Then, (i) supτ d(ĥτn, h(τ)) = op(1). Furthermore, if T is a metric space and

h(τ) is continuous in τ , then (ii) ĥτnn − h(τ0) = op(1), provided τn converges to τ0.

In particular, if the Mτ
ns themselves are deterministic functions, the conclusions of

the theorem hold with the convergence in probability in (i) and (ii) replaced by usual

non-stochastic convergence.

Proof. We provide the proof in the case when H is a sub-interval of the real line, the

case that is relevant for our applications. However, there is no essential difference in
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generalizing the argument to metric spaces - euclidean distances simply need to be

replaced by the metric space distance and open intervals by open balls.

Given η > 0, we need to deal with P ∗ (supτ∈T |ĥτn − h(τ)| > η), where P ∗

is the outer probability. The event An,η ≡ {supτ∈T |ĥτn − h(τ)| > η} implies

that for some τ , ĥτn /∈ (h(τ) − η, h(τ) + η) and therefore M τ (h(τ)) − M τ (ĥτn) ≥

infh/∈(h(τ)−η,h(τ)+η) [M τ (h(τ))−M τ (h)] . This is equivalent to

M τ (h(τ))−M τ (ĥτn) + Mτ
n(ĥτn)−Mτ

n(h(τ))

≥ inf
h/∈(h(τ)−η,h(τ)+η)

[M τ (h(τ))−M τ (h)] + Mτ
n(ĥτn)−Mτ

n(h(τ)).

Now, Mτ
n(ĥτn) −Mτ

n(h(τ)) ≥ 0 and the left side of the above inequality is bounded

above by

2 ‖Mτ
n −M τ‖H ≡ 2 sup

h∈H
|Mτ

n(h)−M τ (h)| ,

implying that 2‖Mτ
n−M τ‖H ≥ infh/∈(h(τ)−η,h(τ)+η) [M τ (h(τ))−M τ (h)] which, in turn,

implies that 2 supτ∈T ‖Mτ
n−M τ‖H ≥ infτ∈T infh/∈(h(τ)−η,h(τ)+η) [M τ (h(τ))−M τ (h)] ≡

c(η) by definition. Hence An,η ⊂ {supτ∈T ‖Mτ
n −M τ‖H ≥ c(η)/2}. By assumptions

(a) and (b), P ∗ (supτ∈T ‖Mτ
n − M τ‖H ≥ c(η)/2) goes to 0 and therefore so does

P ∗(An,η).

Remark A.2. We will call the sequence of steps involved in deducing the inclusion:

{
sup
τ∈T
|ĥτn − h(τ)| > η

}
⊂
{

sup
τ∈T
‖Mτ

n −M τ‖H ≥ c(η)/2

}
,

as generic steps. Very similar steps will be required again in the proofs of the theorems

to follow. We will not elaborate those arguments, but refer back to the generic steps

in such cases.
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A.1 Proof of Theorem 2.1

To exhibit the dependence on the baseline value τ0 (or its estimate), we use nota-

tions of the form Mn(d, τ0) and d̂m,n(τ0). For convenience, let T (m)(Xi) =
√
m(Ȳi·−τ0)

and Zim(τ0) = p̃m,n(Xi, τ0) = 1 − Φ(T (m)(Xi)). As m changes, the distribution of

Zim(τ0) changes, and so we effectively have a triangular array {(Xi, Zim(τ0))}ni=1 ∼

Pm, say. Using empirical process notation, Mm,n(d, τ0) ≡ Pn,m{Z1m(τ0)−1/4}1(X1 ≤

d), where Pn,m denotes the empirical measure of the data. Firstly, we find the limiting

process for Mm,n(d, τ0). Define Mm(d) ≡ Pm{Z1m(τ0)− 1/4}1(X1 ≤ d) where Mm(d)

can be simplified as

Mm(d) =

d∫
0

{νm(x)− 1/4}f(x)dx, (A.1)

where νm(x) = E[Zim(τ0) | Xi = x]. Observe that for Xi = x, as m → ∞, T (m)(x)

converges in distribution to N(0, σ2(x)) for x ≤ d0 and T (m)(x) =
√
m{Ȳi· − µ(x)}+

√
m(µ(x)− τ0)→∞, in probability, for x > d0. Thus, νm(x)→ ν(x) for all x ∈ [0, 1],

where ν(x) = (1/2)1(x ≤ d0). Let M(d) be the same expression for Mm(d) in (A.1)

with νm(x) replaced by ν(x), e.g., M(d) =
∫ d

0
{ν(x) − 1/4}f(x)dx. Observe that for

c = (1/4)
∫ d0

0
f(x)dx, M(d) ≤ c for all d, and M(d0) = c. Also, it is easy to see that d0

is the unique maximizer ofM(d). Now, the difference |Mm(d)−M(d)|, can be bounded

by
∫ 1

0
|νm(x)− ν(x)|f(x)dx which goes to 0 by the dominated convergence theorem.

As the bound does not depend on d, we get ‖Mm−M‖∞ → 0, where ‖·‖∞ denotes the

supremum. By Theorem A.1, dm = arg maxd∈[0,1] Mm(d) → arg maxd∈[0,1]M(d) = d0

as m→∞. It would now suffice to show that (d̂m,n(τ̂)− dm) is op(1).

Fix ε > 0 and consider the event {|d̂m,n(τ̂) − dm| > ε}. Since dm maximizes Mm

and d̂m,n(τ̂) maximizes Mm,n(·, τ̂), by arguments analogous to the generic steps in
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the proof of Theorem A.1, we have:

|d̂m,n(τ̂)− dm| > ε⇒ ‖Mm,n(·, τ̂)−Mm(·)‖∞ ≥ ηm(ε)/2 ,

where ηm(ε) = infd∈(dm−ε,dm+ε)c{Mm(dm)−Mm(d)}.

We claim that there exists η > 0 and an integer M0 such that ηm(ε) > η > 0 for

all m ≥M0. To see this, let us bound Mm(dm)−Mm(d) below by −2‖Mm−M‖∞+

M(dm)−M(d). As ‖Mm−M‖∞ → 0 as m→∞, it is enough to show that there exists

η > 0 such that for all sufficiently large m, infd∈(dm−ε,dm+ε)c{M(dm) −M(d)} > η.

We split M(dm) − M(d) into two parts as {M(d0)−M(d)} + {M(dm)−M (d0)}.

Notice that by the continuity of M(·), the second term goes to 0. To handle the

first term, notice that M(d) is a continuous function with a unique maximum at

d0. There exists M0 ∈ N such that for all m > M0, we have (d0 − ε/2, d0 + ε/2) ⊂

(dm − ε, dm + ε) as dm → d0. So, for m > M0, infd∈(dm−ε,dm+ε)c{M(d0) −M(d)} ≥

infd∈(d0−ε/2,d0+ε/2)c{M(d0)−M(d)}. As M(d0)−M(d) is continuous, this infimum is

attained in the compact set [0, 1]∩ (d0− ε/2, d0 + ε/2)c and is strictly positive. Thus,

a positive choice for η, as claimed, is available.

The claim yields,

Pm(|d̂m,n(τ̂)− dm| > ε) (A.2)

≤ Pm(‖Mm,n(·, τ̂)−Mm,n(·, τ0)‖∞ > η/4) + Pm(sup
l≥n
‖Mm,l(·, τ0)−Mm‖∞ > η/4).

For the first term, notice that, ‖Mm,n(·, τ̂) − Mm,n(·, τ0)‖∞ ≤ maxi≤n |Zim(τ̂) −

Zim(τ0)|. This is bounded above by

sup
u∈R

∣∣Φ (u)− Φ
(
u+
√
m(τ̂ − τ0)

)∣∣ .
As supu∈R |Φ (u)− Φ (u+ a)| = 2Φ (|a|/2)− 1, for a ∈ R, ‖Mm,n(·, τ̂)−Mm,n(·, τ0)‖∞
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is bounded by {2Φ (
√
m|τ̂ − τ0|/2)− 1}, which goes in probability to zero.

To show that the last term in (A.2) goes to zero, consider the class of functions

F ≡ {fd(x, z) ≡ (z − 1/4)1(x ≤ d)|d ∈ [0, 1]} with the envelope F (x, z) = 1. The

class F is formed by multiplying a fixed function z 7→ (z − 1/4) with a bounded

Vapnik-Chervonenkis classes of functions {1(x ≤ d) : 0 ≤ d ≤ 1} and therefore

satisfies the entropy condition in the third display on page 168 of van der Vaart and

Wellner (1996). It follows that F satisfies the conditions of Theorem 2.8.1 of van der

Vaart and Wellner (1996) and is therefore uniformly Glivenko–Cantelli for the class

of probability measures {Pm}, i.e.,

sup
m≥1

Pm(sup
n≥k
‖Mm,n(·, τ0)−Mm(·)‖∞ > ε)→ 0

for every ε > 0 as k → ∞. Thus, we get P (|d̂m,n(τ̂) − dm| > ε) → 0 as m,n → ∞ .

This completes the proof of the theorem.

A.2 Proof of Theorem 2.2

Recall that T (x, τ0) =
√
nhn(µ̂(x)− τ0). The following standard result from non-

parametric regression theory is useful in proving Theorem 2.2. The proof follows, for

example, from the results in Section 2.2 of Bierens (1987).

Lemma A.3. Assume that µ(·) and σ2(·) is continuous on [0, 1]. is continuous on

[0,1]. We then have:

(i) For 0 < x, y < d0 and x 6= y,

 T (x, τ0)

T (y, τ0)

→ N


 0

0

 ,

 K̄2σ2(x)/(mf(x)) 0

0 K̄2σ2(y)/(mf(y))


 ,

in distribution.
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(ii) For d0 < z < 1, T (z, τ0)→∞ in probability.

We now prove Theorem 2.2. Let ν(x) and M(d) be as defined in proof of The-

orem 2.1, e.g., ν(x) = (1/2)1(x ≤ d0). For notational convenience, let Zi(τ0) =

p̃n(Xi) = 1 − Φ(T (Xi, τ0)). We eventually show that ‖Mn(·, τ̂) − M(·)‖∞ con-

verges to 0 in probability and then apply argmax continuous mapping theorem to

prove consistency. By calculations similar to those in the proof of Theorem 2.1,

‖Mn(·, τ̂)−Mn(·, τ0)‖ ≤ {2Φ
(√

nhn|τ̂ − τ0|/2
)
− 1}, which converges to 0 in proba-

bility. So, it suffices to show that ‖Mn(·, τ0)−M(·)‖∞ converges to 0 in probability.

We first establish marginal convergence. We have

E [Φ(T (X1, τ0))|X1 = x] (A.3)

= E

[
Φ

(
(nhn)−1/2 [(µ(x)− τ0 + ε1)K(0) +

∑n
i=2(Yi − τ0)K (h−1

n (x−Xi))]

(nhn)−1 [K(0) +
∑n

i=2 K (h−1
n (x−Xi))]

)]
.

The first term, both in the numerator and the denominator of the argu-

ment, is asymptotically negligible and thus, the expression in (A.3) equals

E[Φ(T (x, τ0) + op(1))]. Using Lemma A.3, this converges to 1 − ν(x),

by definition of weak convergence. As Zi(τ0) = 1 − Φ(T (Xi, τ0)), we

get E [Mn(d, τ0)] = E[E {Z1(τ0) − 0.25}1(X1 ≤ d)|X1] which converges

to M(d). Further, var(Mn(d, τ0)) = n−1var [{Z1(τ0)− 0.25}1(X1 ≤ d)] +

n−1(n− 1)cov [{Z1(τ0)− 0.25}1(X1 ≤ d), {Z2(τ0)− 0.25}1(X2 ≤ d)] . The first

term in this expression goes to zero as |Z1(τ0)| ≤ 1. For y 6= x,

by calculations similar to (A.3), E [Z1(τ0)Z2(τ0)|X1 = x,X2 = y] =

E [Φ (T (x, τ0) + op(1)) Φ (T (y, τ0) + op(1))]. Using Lemma A.3, T (x, τ0) and

T (y, τ0) are asymptotically independent. Thus, by taking iterated expectations, it

can be shown that

cov [{Z1(τ0)− 0.25}1(X1 ≤ d), {Z2(τ0)− 0.25}1(X2 ≤ d)]
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converges to 0. This justifies pointwise convergence, e.g., Mn(d, τ̂0) −M(d) = op(1),

for d ∈ [0, 1]. Further, as |Zi(τ̂)− 1/4| ≤ 1, for d1 < d < d2, we have

E [|{Mn(d, τ0)−Mn(d1, τ0)}{Mn(d2, τ0)−Mn(d, τ0)}|]

≤ E

[{
1

n

n∑
i=1

1(Xi ∈ (d1, d])

}{
1

n

n∑
i=1

1(Xi ∈ (d, d2])

}]

= E

[
1

n2

∑
i 6=j

1(Xi ∈ (d1, d])1(Xj ∈ (d, d2])

]

=
1

n2

∑
i 6=j

F ((d1, d])F ((d, d2])

=
n(n− 1)

n2
F ((d1, d])F ((d, d2]).

Note that the terms in the sum on the right side with i = j are zero as (d1, d]

and (d, d2] are disjoint. Further, the expression on the right side is bounded by

‖f‖2
∞ (d−d1)(d2−d) ≤ ‖f‖2

∞ (d2−d1)2. As f is continuous on [0, 1], ‖f‖∞ <∞. Thus,

the processes {Mn(·, τ0)}n≥1 are tight in D[0, 1] using Theorem 15.6 in Billingsley

(1968). So, Mn(·, τ0) converges weakly to M as processes in D[0, 1]. As the limiting

process is degenerate and the map x(·) 7→ supd∈[0,1] |x(d)| is continuous, by continuous

mapping, we get ‖Mn(·, τ0) −M(·)‖ converges in probability to zero. As d0 is the

unique maximizer of the continuous function M(·) and d̂n(τ̂) is tight as d̂n(τ̂) ∈ [0, 1].

Hence, by argmax continuous mapping theorem in van der Vaart and Wellner (1996),

we get the result.

A.3 Proof of Theorem 2.5

We start with some notation. Let W
(i)
m ≡

√
mεi,·/σ0 (i = 1, . . . , n), and consider

our data as: {Xi,W
(i)
m }(i = 1, . . . , n). The variableW

(i)
m has density φm(·). Let Pn,m(·)

denote the empirical measure of these observables and Pm the joint law of {X1,W
(1)
m }.

Let σ0 denote the true variance of εij, and let σ denote any such generic value. For
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a fixed σ > 0 and h ∈ R define, with a slight abuse of notation, Zσ
im(h) = 1 −

Φ
(
(
√
m(Y i· − τ0)− h)/σ

)
= 1 − Φ ([

√
m(µ(Xi)− τ0)− h+

√
mεi,·]/σ) ,Mσ

n,m(h) =

n−1
∑n

i=1 {Zσ
im(h)− 1/2}2 = Pn,m {Zσ

1m(h)− 1/2}2 , and note that

ĥσ̂m,n = arg min
h

Mσ̂
n,m(h) ≡

√
m(τ̂ σ̂m,n − τ0),

where σ̂ = σ̂m,n. Let hσm = arg minhM
σ
m(h) where

Mσ
m(h) = Pm

[
1/2− Φ

[
[
√
m(µ(X1)− τ0)− h+ σ0W

(1)
m ]/σ

]]2
=

1∫
0

 ∞∫
−∞

{
1/2− gσ,hm (x, y)

}2
φm(y)dy

 pX(x)dx,

with gσ,hm (x, y) = Φ [[
√
m(µ(x)− τ0)− h+ σ0y]/σ].

Let ε, ξ > 0 be given. We want to show that P (|ĥσ̂m,n − 0| > ε) ≤ ξ for all large m

and n.We bound the quantity of interest as

P (|ĥσ̂m,n − 0| > ε) ≤ P (|ĥσ̂m,n − hσ̂m| > ε/2) + P (|hσ̂m − 0| > ε/2). (A.4)

We employ the following steps to complete the proof of the theorem:

Step 1: Establish that there exists δ0 > 0 and M0 > 0 such that |σ − σ0| ≤ δ0 and

m ≥M0 implies |hσm−0| < ε/2. Notice that as σ̂ is a consistent estimator of σ0, there

exists M1 such that for all m,n ≥M1 > 0, P (|σ̂m,n− σ0| ≤ δ0) ≥ 1− ξ/3. Therefore,

using Step 1, P (|hσ̂m − 0| > ε/2) ≤ ξ/3 for m ≥ max(M0,M1).

Step 2: The first term on the right side in (A.4) is bounded by P (|ĥσ̂m,n − hσ̂m| >

ε/2, |σ̂ − σ0| ≤ δ0) + P (|σ̂ − σ0| > δ0) ≤ P
(

sup|σ−σ0|≤δ0 |ĥ
σ
m,n − hσm| > ε/2

)
+ ξ/3 for

all n,m ≥ max(M0,M1). Therefore, it is enough to show that for some M , possibly
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depending on ε,

sup
m≥M

P

(
sup

|σ−σ0|≤δ0
|ĥσm,n − hσm| > ε/2

)
→ 0, as n→∞. (A.5)

Proof of Step 1: We study the behavior of Mσ
m(h) as m→∞. Note that gσ,hm (x, y)→

Φ ((−h+ σ0y)/σ), if x ≤ d0, and 1 if x > d0, as m→∞. Therefore, Mσ
m(h) converges

point–wise, by the dominated convergence theorem along with Scheffe’s theorem, to

Mσ(h), where

Mσ(h) = cσ1 (h)

d0∫
0

pX(x)dx+
1

4

1∫
d0

pX(x)dx < 1/4, (A.6)

with cσ1 (h) =
∫∞
−∞ [1/2− Φ ((−h+ σ0y)/σ)]2 φ(y)dy. To see this, observe that∫∞

−∞

{
1/2− gσ,hm (x, y)

}2
φm(y)dy, which is uniformly bounded by a positive constant

for all m and x, can be decomposed as

∞∫
−∞

{
1/2− gσ,hm (x, y)

}2
φ(y)dy +

∞∫
−∞

{
1/2− gσ,hm (x, y)

}2 {φm(y)− φ(y)}dy,

where the first term converges to c1(h) for x ≤ d0 and to 1/4 for x > d0. The

second term converges to 0 by Scheffe’s theorem for all x ∈ [0, 1]. The convergence

of Mσ
m(h) now directly follows from the dominated convergence theorem. Let hσ =

arg minMσ(h) for h ∈ R.

We claim that there exists δ′ > 0, such that sup|σ−σ0|≤δ′ suph∈R |Mσ
m(h)−Mσ(h)| →

0 as m → ∞. In course of justifying this claim, we will write Φ(x) (1 − Φ(x)) as

Φ (1− Φ)(x) for notational convenience. Choose δ′ such that 0 < δ′ < σ0. Let η > 0

be given. Note that Mσ
m(h)−Mσ(h) = Aσ,hm

∫ d0
0
pX(x)dx+

∫ 1

d0
Bσ,h
m (x)pX(x)dx, where

Aσ,hm =

∞∫
−∞

[1/2− Φ ((−h+ σ0y)/σ)]2 (φm − φ)(y)dy and
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Bσ,h
m (x) =

∞∫
−∞

{
1/2− gσ,hm (x, y)

}2
φm(y)dy − 1/4.

To simplify notation, denote the set {(σ, h) : |σ − σ0| ≤ δ′, h ∈ R} by C. Then,

sup
C
|Mσ

m(h)−Mσ(h)| ≤ FX(d0) sup
C
|Aσ,hm |+ sup

C

1∫
d0

|Bσ,h
m (x)| pX(x) dx .

Now, supC |Aσ,hm | ≤
∫∞
−∞ |φm − φ|(y)dy → 0 by Scheffe’s theorem, and

|Bσ,h
m (x)| ≤

∞∫
−∞

|φm − φ|(y)dy + sup
C

∣∣∣∣∣∣
∞∫

−∞

{
1/2− gσ,hm (x, y)

}2
φ(y)dy − 1/4

∣∣∣∣∣∣
= o(1) + sup

C

∞∫
−∞

Φ (1− Φ)
(
(
√
m(µ(x)− τ0)− h+ σ0y)/σ

)
φ(y)dy .

Also,

sup
C

1∫
d0

|Bσ,h
m (x)| pX(x) dx

=

sup
C≤0

1∫
d0

|Bσ,h
m (x)| pX(x) dx

 ∨
sup
C>0

1∫
d0

|Bσ,h
m (x)| pX(x) dx

 ,

where C≤0 and C>0 are defined analogously to C, but with h varying over (−∞, 0] and

(0,∞), respectively. For each x > d0,

sup
C≤0

∞∫
−∞

Φ (1− Φ)
(
(
√
m(µ(x)− τ0)− h+ σ0y)/σ

)
φ(y)dy

is easily seen to be dominated by

sup
|σ−σ0|≤δ′

∞∫
−∞

(1− Φ)
[
[
√
m(µ(x)− τ0) + σ0y]/σ

]
φ(y)dy,
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which goes to 0 as m→∞. It follows readily that the first term on the right side of

the last display is o(1). It remains to deal with the second. To this end, for λ, h > 0,

define Dλ,h
m = {d0 < x ≤ 1 : |µ(x) − (τ0 + h/

√
m)| ≤ λ}. Given η > 0, there exists

λ ≡ λ(η) > 0, not depending on h > 0, such that
∫
Dλ,hm

pX(x) dx < η by Assumption

(A) of Theorem 3 in the paper. Then,

sup
C>0

∣∣∣∣∣∣
1∫

d0

Bσ,h
m (x)pX(x)dx

∣∣∣∣∣∣
≤ sup

C

∣∣∣∣∣∣∣
∫

Dλ,hm

Bσ,h
m (x)pX(x)dx

∣∣∣∣∣∣∣+ sup
C>0

∣∣∣∣∣∣∣
∫

[d0,1]−Dλ,hm

Bσ,h
m (x)pX(x)dx

∣∣∣∣∣∣∣
≤ η + o(1)

+ sup
C>0

∫
[d0,1]−Dλ,hm

∞∫
−∞

Φ(1− Φ)

[√
m(µ(x)− τ0 − hm−1/2) + σ0y

σ

]
φ(y)dy pX(x)dx .

The last term in the above display is readily seen to be bounded by

1∫
d0

∞∫
−∞

sup
|σ−σ0|≤δ′

max

{
Φ

(
−
√
mλ+ σ0y

σ

)
, (1− Φ)

(√
mλ+ σ0y

σ

)}
φ(y)dy pX(x)dx

which can be made less than η for large m. It follows that

supC>0

∫ 1

d0
|Bσ,h

m (x)| pX(x) dx < 3 η for all sufficiently large m and the claim follows.

Next, we claim that there exists there exists δ0 > 0 and M0 > 0 such that

for all σ with |σ − σ0| ≤ δ0 and m ≥ M0, |hσm − 0| < ε/2. This is proved by

a direct application of Theorem A.In that theorem, take n to be m, T to be the

set |σ − σ0| ≤ δ′ and H to be R. Also, Mτ
n is now −Mσ

m and M τ is now −Mσ.

We will show that −Mσ is uniquely maximized at a point, say hσ, and also that

inf |σ−σ0|≤δ′ inf |h−hσ |>η{Mσ(h) − Mσ(hσ)} > 0 for every η > 0, whence, by by the

previous claim, it will follow that sup|σ−σ0|≤δ′ |h
σ
m−hσ| converges to 0 with increasing

m. But, as will also be seen, hσ equals 0 for all σ and hence the claim follows with

169



δ0 taken to be δ′.

From the form of Mσ(h) (see (A.6)) it suffices to show that

inf
|σ−σ0|≤δ′

inf
|h−hσ |>η

{cσ1 (h)− cσ1 (hσ)} > 0,

where hσ is the unique point at which cσ1 is minimized. We now make some change

of variables to facilitate the ensuing argument. Define λ = σ/σ0 and s = h/σ0. Then

|σ − σ0| ≤ δ′ ⇔ |λ − 1| ≤ δ
′′

(for some δ
′′
< 1) and Φ((−h + σ0 y)/σ) = Φ(λ−1(y −

s)). Defining c̃λ1(s) =
∫∞
−∞ [1/2− φ(λ−1(y − s))]2 φ(y) dy , it suffices to show that

inf |λ−1|≤δ′′ inf |s−sλ|≥η/σ0 {c̃λ1(s) − c̃λ1(sλ)} > 0 where sλ is the unique minimizer of c̃λ1 .

It is easy to see that c̃λ1(s) = E [1/2− Φ(λ−1(Z − s))]2 where Z is a standard normal

random variable. By the symmetry of Z about 0, it follows easily that c̃λ1(s) = c̃λ1(−s).

Furthermore c̃λ1(s) is strictly increasing for s > 0, and is therefore strictly decreasing

for s ≤ 0, showing that 0 is the unique minimizer of c̃λ1 . Hence sλ = 0 for all λ,

showing that hσ = 0 for all σ. Thus,

inf
|λ−1|≤δ′′

inf
|s−sλ|≥η/σ0

{c̃λ1(s)− c̃λ1(sλ)} = inf
|λ−1|≤δ′′

{c̃λ1(η/σ0)− c̃λ1(0)} .

Since c̃λ1(η/σ0) − c̃λ1(0) is continuous and positive for each λ, its infimum on the set

|λ− 1| ≤ δ
′′
, which must be achieved, is positive.

Proof of Step 2: Consider the class of functions F∞ ≡ ∪mFm where Fm ≡

{fh,σ(x,w) ≡ [1/2−Φ(
√
m(µ(x)−τ0)/σ+h/σ+wσ0/σ)]2| τ ∈ R, σ ∈ [σ0−δ0, σ0+δ0]}.

This is a subclass of the large class of functions G = {gα,β,γ(x,w) ≡ [1/2−Φ(αµ(x) +

βw + γ)]2| (α, β, γ) ∈ R3}. The class {αµ(x) + βw + γ} as (α, β, γ) varies in

R3 forms a finite dimensional vector space of measurable functions and is there-

fore a Vapnik–Chervonenkis class. Hence, 1/2 − Φ(αµ(x) + βw + γ), being their

bounded monotone transformation, is a bounded Vapnik–Chervonenkis class and

consequently, so is F∞. Thus, F∞ satisfies the entropy condition in the third dis-
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play on Page 168 of van der Vaart and Wellner (1996) and therefore the conditions

of Theorem 2·8·1 of van der Vaart and Wellner (1996) and is uniformly Glivenko–

Cantelli for the class of probability measures {Pm}, i.e., for any given ζ > 0,

supm≥1 Pm(supk≥n ‖Mσ
m,k −Mσ

m‖F∞>ζ)→ 0 as n→∞ and therefore,

sup
m≥1

Pm

(
sup
k≥n
‖Mσ

m,k −Mσ
m‖Fm > ζ

)
→ 0 as n→∞. (A.7)

Next, using generic steps, we can show that sup|σ−σ0|≤δ0 |ĥ
σ
m,n−hσm| > ε/2⇒ ‖Mσ

m,n−

Mσ
m‖Fm ≥ ηm(ε/2) where ηm(ε) = inf |σ−σ0|≤δ0 inf |h−hσm|>ε/2{M

σ
m(h)−Mσ

m(hσm)}.

Next, we claim that there exists η > 0 and an integer M̃ such that ηm(ε) ≥ η > 0

for all m ≥ M̃ . To see this, note that by the previous claim, for all sufficiently large

m, uniformly for σ ∈ [σ0 − δ0, σ0 + δ0], we have [hσm − ε/2, hσm + ε/2]c ⊂ [−ε/4, ε/4]c.

We conclude, that for all sufficiently large m,

ηm(ε) ≥ η̃m(ε) ≡ inf
|σ−σ0|≤δ0

inf
|h−0|>ε/4

{Mσ
m(h)−Mσ

m(hσm)} .

For h and σ such that |h−0| > ε/4 and |σ−σ0| ≤ δ0, we can boundMσ
m(h)−Mσ

m(hσm) =

(Mσ
m−Mσ)(h)−Mσ

m(hσm)+Mσ(h) ≥ − sup|h−0|>ε/4 |(Mσ
m−Mσ)(h)|−Mσ

m(0)+Mσ(h)

further from below by

− sup
|σ−σ0|≤δ0

sup
|h|>ε/4

|(Mσ
m −Mσ)(h)| − sup

|σ−σ0|≤δ0
|(Mσ

m −Mσ)(0)|

+ inf
|σ−σ0|≤δ0

inf
|h|>ε/4

{Mσ(h)−Mσ(0)}.

As sup|σ−σ0|≤δ0 sup|h−0|>ε/4 |(Mσ
m−Mσ)(h)| → 0 and sup|σ−σ0|≤δ0 |(M

σ
m−Mσ)(0)| → 0

as m → ∞, and η = inf |σ−σ0|≤δ0 inf |h−0|>ε/4{Mσ(h) −Mσ(0)}/2 > 0, it follows that

for all large m, η̃m(ε) ≥ η > 0; therefore, for all sufficiently large m, say m ≥ M̃ ,

ηm(ε) ≥ η > 0. This completes the proof of the claim.
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Hence, for all m ≥ M̃ ,

sup
m≥M̃

Pm

(
sup

|σ−σ0|≤δ0
|ĥσm,n − hσm| > ε/2

)

≤ sup
m≥M̃

Pm

{
sup
k≥n
‖Mσ

m,n −Mσ
m‖Fm > ηm(ε)/2

}
≤ sup

m≥M̃
Pm

(
sup
k≥n
‖Mσ

m,k −Mσ
m‖Fm > η/2

)

and (A.5) follows from (A.7).
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APPENDIX B

Proofs for Chapter 3

We first state a result which is useful in deriving the rate of convergence of our

estimators. As earlier, we readily use the notations ‘ .’ and ‘ &’ to imply that the

corresponding inequalities (< and >) hold up to some positive constant multiple.

We use E∗ to denote the outer expectation with respect to the concerned probability

measure.

Theorem B.1. Let {Mn(d, σ), n ≥ 1} be stochastic processes and {Mn(d, σ), n ≥ 1}

be deterministic functions, indexed by d ∈ Θ and σ ∈ Σ. Let dn ∈ Θ, σ0 ∈ Σ and

κ > 0 be arbitrary, and d 7→ ρn(d, dn) be an arbitrary map from Θ to [0,∞). Let d̂n

be a point of minimum of Mn(d, σ̂n), where σ̂n is random. For each ε > 0, suppose

that the following hold:

(a) There exists a sequence of sets Un,ε in Σ which contain σ0 and P [σ̂n /∈ Un,ε] < ε.

(b) For all sufficiently large n, 0 < δ < κ, and d such that ρn(d, dn) < κ,

Mn(d, σ0)−Mn(dn, σ0) & ρ2
n(d, dn),

E∗ sup
ρn(d,dn)<δ
σ∈Un,ε

|(Mn(d, σ)−Mn(d, σ0))− (Mn(dn, σ)−Mn(dn, σ0))| ≤ Cε
φn(δ)√

n
,
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for a constant Cε > 0 and functions φn (not depending on ε) such that δ 7→

φn(δ)/δα is decreasing for some α < 2.

Suppose that rn satisfies

r2
n φn

(
1

rn

)
.
√
n,

and ρn(d̂n, dn) converges to zero in probability; then rn ρn(d̂n, dn) = OP (1).

This theorem puts together the results in Theorem 3.2.5 in van der Vaart and

Wellner (1996) and Theorem 5.2 in Banerjee and McKeague (2007).

B.1 Proof of Theorem 3.2

The following lemma gives the explicit distance function ρn that is used in proving

Theorem 3.2.

Lemma B.2. Fix η > 0. Let the map d 7→ ρ2
n(d, dm,n) from (0, 1) to [0,∞) be

K1

[
|d− d0| 1 (d < d0) +

∣∣∣d− dm,n − η

m1/(2k)

∣∣∣ 1(d > dm,n +
η

m1/(2k)

)]
,(B.1)

for some K1 > 0. Then K1 and κ > 0 can be chosen such that for sufficiently large

n and ρn(d, dm,n) < κ, we have

Mm,n(d)−Mm,n(dm,n) ≥ ρ2
n(d, dm,n).

Using this lemma, we first give a proof of Theorem 3.2. Note that
√
mn(σ̂−σ0) =

OP (1). So, given ε > 0, there exists Lε > 0 such that P [
√
mn|σ̂ − σ0| ≤ Lε] > 1− ε.

Let Un,ε = [σ1, σ2] = [σ0 − Lε/
√
mn, σ0 + Lε/

√
mn] and let Gn denote the empirical

process, i.e., Gn =
√
n(Pn − Pn). For κ as in Lemma B.2, 0 ≤ δ < κ, and ρn as
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defined in (B.1), consider the expression

E∗ sup
ρn(d,dm,n)<δ

σ∈Un,ε

√
n|(Mm,n(d, σ)−Mm,n(d, σ0))− (Mm,n(dm,n, σ)−Mm,n(dm,n, σ0))|

≤ E∗ sup
ρn(d,dm,n)<δ

σ∈Un,ε

√
n|(Mm,n(d, σ)−Mm,n(dm,n, σ))− (Mm,n(d, σ)−Mm,n(dm,n, σ))|

+ sup
ρn(d,dm,n)<δ

σ∈Un,ε

√
n|(Mm,n(d, σ)−Mm,n(dm,n, σ))− (Mm,n(d, σ0)−Mm,n(dm,n, σ0))|

≤ E∗ sup
|d−dm,n|<δ2/K1+Am−1/2k

σ∈Un,ε

∣∣∣∣Gn

[(
Φ

(√
mȲ

σ

)
− γ
)

(1(X ≤ d)− 1(X ≤ dm,n))

]∣∣∣∣
+
√
n sup
|d−dm,n|<δ2/K1+Am−1/2k

σ∈Un,ε

∣∣∣∣Pn [{Φ

(√
mȲ

σ

)
− Φ

(√
mȲ

σ0

)}
(1(X ≤ d)− 1(X ≤ dm,n))

]∣∣∣∣ .
The first term in the above display involves an empirical process acting on

a class of functions, say F . This class F is a product of two VC classes,

{(Φ (
√
m ·/σ)− γ) : σ ∈ Un,ε} and {1(· ≤ d) − 1(· ≤ dm,n) : |d − dm,n| < δ2/K1 +

Am−1/2k}, each with VC-index at most 3. Also, an envelope for this class is given by

G(x) = 1
[
x ∈ (dm,n − δ2/K1 − Am−1/(2k), dm,n + δ2/K1 + Am−1/(2k))

]
with (PnG

2)1/2 .
√

2(δ2/K1 + Am−1/(2k)). Hence, the uniform entropy integral for F

is bounded by a constant which only depends upon the VC-indices, i.e., the quantity

J(1,F) = sup
Q

1∫
0

√
1 + logNC(ε‖G‖Q,2,F , L2(Q))dε

is bounded, where NC(·) denotes the covering number; see Theorems 9.3 and 9.15 of

Kosorok (2008) for more details. Using Theorem 2.14.1 of van der Vaart and Wellner
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(1996), we have

E∗ sup
|d−dm,n|<δ2/K1+Am−1/2k

σ∈Un,ε

∣∣∣∣Gn

[(
Φ

(√
mȲ

σ

)
− γ
)

(1(X ≤ d)− 1(X ≤ dm,n))

]∣∣∣∣

≤ J(1,F)(PnG
2)1/2 .

√
2(δ2/K1 + Am−1/(2k)).

Note that for σ ∈ Un,ε = [σ1, σ2], we have

∣∣∣∣Φ(√mȲσ
)
− Φ

(√
mȲ

σ0

)∣∣∣∣ ≤ ∣∣∣∣Φ(√mȲσ1

)
− Φ

(√
mȲ

σ2

)∣∣∣∣ .
Hence, by using the fact that Φ is Lipschitz of order 1, for sufficiently large n, we get

√
n sup
|d−dm,n|<δ2/K1+Am−1/2k

σ∈Un,ε

∣∣∣∣Pn [{Φ

(√
mȲ

σ

)
− Φ

(√
mȲ

σ0

)}
(1(X ≤ d)− 1(X ≤ dm,n))

]∣∣∣∣
≤
√
nPn

[∣∣∣∣Φ(√mȲσ1

)
− Φ

(√
mȲ

σ2

)∣∣∣∣ |G(X)|
]

≤
√
n

[
Pn

∣∣∣∣Φ(√mȲσ1

)
− Φ

(√
mȲ

σ2

)∣∣∣∣2
] 1

2

(PnG
2)

1
2

.
√
nm

σ2 − σ1

σ2σ1
(EȲ 2)1/2

√
2(δ2/K1 +Am−1/(2k))

.
4Lε
σ2

0

(EȲ 2)1/2
√

2(δ2/K1 +Am−1/(2k)).

As E(Ȳ 2) = (1/m)E{µ(X)}2 + σ2
0 is bounded, we have

E∗ sup
ρn(d,dm,n)<δ

σ∈Un,ε

√
n|(Mm,n(d, σ)−Mm,n(d, σ0))− (Mm,n(dm,n, σ)−Mm,n(dm,n, σ0))|

≤ Cεφn(δ),(B.2)

for some Cε > 0 and φn(δ) =
√
δ2 +m−1/(2k). Also, ρ2

n(d, dm,n) ≤ K1(|d− d0|+ |d0 −

dm,n − ηm−1/(2k)|)→ 0, if |d− d0| → 0. So, ρn(d̂m,n, dm,n) converges in probability to
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zero by consistency of d̂m,n. Then by Theorem B.1, the rate of convergence, say rn,

satisfies

r2
nφ

(
1

rn

)
.
√
n ⇒ r2

n + r4
nm
−1/(2k) ≤ n

⇒ r2
n . n ∧

√
n1+β/(2k). (B.3)

With α = min (1, β/(2k)) = min (1, 1/2 + β/(4k), β/(2k)), r2
n = nα satisfies

(B.3). As m−1/(2k) . n−α, we also have nα(dm,n + ηm−1/(2k) − d0) = O(1). So,

nαρ2
n(d̂m,n, dm,n) = OP (1) ⇒ nα(d̂m,n − d0) = OP (1). As m0n

1+β = N , we get the

result.

Proof of Lemma B.2. Let ε > 0 be chosen such that µ is increasing on (d0, d0 + ε).

Let f0 = infd:|d−d0|<ε f(d) > 0. For d ∈ (d0 − ε, d0 + ε),

Mm,n(d)−Mm,n(dm,n) ≥ 1(d < d0)f0 [(Φn(0)− γ) (d− d0) +Mm,n(d0)−Mm,n(dm,n)]

+ 1(d ≥ d0)f0

d∫
dm,n

[
Φn

(√
mµ(x)√

2σ0

)
− γ
]
dx

≥ 1(d < d0)f0 [|Φn(0)− γ| |d− d0|]

+ 1(d ≥ d0)f0

d∫
dm,n

[
Φn

(√
mµ(x)√

2σ0

)
− γ
]
dx.

Recall that from (3.7),

dm,n = d0 +

[
k!
√

2σ0Φ−1(γ)

µ(k)(d0+)

]1/k

m−1/(2k) + o(m−1/(2k)). (B.4)

Hence, for sufficiently large n, dm,n + ηm−1/(2k) < d0 + ε. For such large n’s and

d ∈ (dm,n + ηm−1/(2k), d0 + ε), we have:

Mm,n(d)−Mm,n(dm,n) ≥ f0

d∫
dm,n

[
Φn

(√
mµ(x)√

2σ0

)
− γ
]
dx
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≥ f0

d∫
dm,n+ηm−1/(2k)

[
Φn

(√
mµ(x)√

2σ0

)
− γ
]
dx

≥ f0 (d− (dm,n + ηm−1/(2k)))

[
Φn

(√
mµ(dm,n + ηm−1/(2k))√

2σ0

)
− γ

]
. (B.5)

Next, we show that [Φn

(√
mµ(dm,n + ηm−1/(2k))/(

√
2σ0)

)
−γ] is bounded away from

zero. By Pólya’s theorem, Φn converge uniformly to Φ. So, for sufficiently large n,

Φn

(√
mµ(dm,n + ηm−1/(2k))√

2σ0

)
− γ

= Φn

(√
mµ(dm,n + ηm−1/(2k))√

2σ0

)
− Φn

(√
mµ(dm,n)√

2σ0

)
>

1

2

[
Φ

(√
mµ(dm,n + ηm−1/(2k))√

2σ0

)
− Φ

(√
mµ(dm,n)√

2σ0

)]
.

As Φ
(√

mµ(dm,n)/(
√

2σ0)
)

converges to γ ∈ (0, 1),
√
mµ(dm,n) is O(1). Hence, it

suffices to show that the difference
√
m{µ(dm,n + ηm−1/(2k)) − µ(dm,n)} is bounded

away from zero. With ζ̃n being some point between d0 and dm,n + ηm−1/(2k) and ζn

as defined in (3.6), we have

√
m{µ(dm,n + ηm−1/(2k))− µ(dm,n)}

=

√
m

k!
{µ(k)(ζ̃n)(dm,n + ηm−1/(2k) − d0)k − µ(k)(ζn)(dm,n − d0)k}

>

√
mµ(k)(ζ̃n)

k!
[(dm,n + ηm−1/(2k) − d0)k − (dm,n − d0)k]

+

√
m

k!
[µ(k)(ζ̃n)− µ(k)(ζn)](dm,n − d0)k

>
µ(k)(d0+)ηk

k!
+ o(1).

Hence, we can choose a positive constant K0 such that

[
Φn

(√
mµ(dm,n + ηm−1/(2k))/(

√
2σ0)

)
− γ
]
> K0
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for all sufficiently large n and thus, from (B.5) we get

Mm,n(d)−Mm,n(dm,n) ≥ f0K0 (d− (dm,n + ηm−1/(2k))) (B.6)

for d ∈ (dm,n + ηm−1/(2k), d0 + ε). Also, |Φn(0)− γ| > (1/2) |1/2− γ|, for large n.

Choose K1 = 1
2
f0 min [K0, |γ − 1/2|] in (B.1). Then,

[ρn(d, dm,n) < κ] = [d0, dm,n + ηm−1/(2k)] ∪ [d < d0, |d− d0| < κ2/K1]

∪[d > dm,n + ηm−1/(2k), |d− dm,n − ηm−1/(2k)| < κ2/K1]

⊂ [|d− dm,n| < κ2/K1 + Am−1/(2k)].

Here, A is a fixed constant chosen such that A > max(η,m−1/(2k)(dm,n − d0)), for

all sufficiently large n; this follows from (3.7). Let κ be chosen such that κ2/K1 +

2Am−1/(2k) < ε for all sufficiently large n. As |d0 − dm,n| < Am−1/(2k), this gives

[ρn(d, dm,n) < κ] ⊂ (d0−ε, d0 +ε). Thus, for large n and d such that [ρn(d, dm,n) < κ],

using the definition of ρn and relations (B.4) and (B.6), we have the desired result.

B.2 Proof of Theorem 3.6

In order to deduce the limit of the process V̂n (see (3.8)), we first prove a lemma

that allows us to work with σ0 instead of σ̂.

Lemma B.3. Let Vn(t) = n{Mm,n (d0 + t/n, σ0) − Mm,n(d0, σ0)}. Then, for any

L > 0,

sup
t∈[−L,L]

|V̂n(t)− Vn(t)| P→ 0,

where
P→ denotes convergence in probability.
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Proof. For all t ∈ [−L,L], we have

|V̂n(t)− Vn(t)|

=

∣∣∣∣∣
n∑
i=1

{
Φ

(√
mȲi
σ̂

)
− Φ

(√
mȲi
σ0

)}(
1

(
Xi ≤ d0 +

t

n

)
− 1 (Xi ≤ d0)

)∣∣∣∣∣
≤ sup

y∈R

∣∣∣∣Φ(√myσ̂
)
− Φ

(√
my

σ0

)∣∣∣∣ n∑
i=1

1

(
Xi ∈

[
d0 −

L

n
, d0 +

L

n

])
≤ sup

u∈R

∣∣∣∣Φ (u)− Φ

(
σ̂

σ0

u

)∣∣∣∣ n∑
i=1

1

(
Xi ∈

[
d0 −

L

n
, d0 +

L

n

])
.

Also, σ 7→ supu∈R |Φ (u)− Φ (uσ/σ0)| can be shown to be continuous; in fact, a

closed form expression can be obtained by taking derivatives. It can be seen that for

a ∈ (0,∞),

sup
u∈R
|Φ (u)− Φ (au)| =

 0, a = 1,∣∣∣Φ(√2 log a
a2−1

)
− Φ

(
a
√

2 log a
a2−1

)∣∣∣ , a 6= 1.

This can be shown to be continuous at 1 by elementary calculations. Thus the first

term in the bound for |V̂n(t) − Vn(t)| converges in probability to 0. Moreover, the

remaining term is a Binomial random variable (Bin(n, F (d0 +L/n)− F (d0 −L/n)))

which converges weakly to the Poisson distribution with parameter 2Lf(d0). Thus

by Slutsky’s theorem, we obtain the desired result.

We now continue with the proof of Theorem 3.6. We first prove that (V̂n, Jn)

converges weakly to (V, J) as processes in D[−C,C] × D[−C,C], for each positive

integer C. By Lemma B.3, it suffices to show that (Vn, Jn) converges weakly to

(V, J).

To justify the finite dimensional convergence of (Vn, Jn) to (V, J), first on [0,∞),

let 0 = t0 ≤ t1 < t2 < . . . < tl. By Cramér-Wold device, it suffices to show that the
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characteristic function of

(Vn(t1), Jn(t1), Vn(t2)− Vn(t1), Jn(t2)− Jn(t1), . . . , Vn(tl)− Vn(tl−1), Jn(tl)− Jn(tl−1))

converges to that of

(V (t1), J(t1), V (t2)− V (t1), J(t2)− J(t1), . . . , V (tl)− V (tl−1), J(tl)− J(tl−1)) .

We illustrate this derivation for l = 2, the extension to larger ls following in a

straightforward manner. For (ci, di) ∈ R2, i = 1, 2, consider the expression

E [exp [ı (c1Vn(t1) + d1Jn(t1) + {c2(Vn(t2)− Vn(t1)) + d2(Jn(t2)− Jn(t1))})]] . (B.7)

As t0 = 0, note that

c1Vn(t1) + d1Jn(t1) + c2(Vn(t2)− Vn(t1)) + d2(Jn(t2)− Jn(t1))

=
n∑
j=1

2∑
i=1

{
ciΦ

(√
mȲj
σ0

)
− ciγ + di

}
1

(
Xj ∈

(
d0 +

ti−1

n
, d0 +

ti
n

])
.

The above summands are independent for different js and hence, (B.7) equals

[
E

[
exp

[
ı

2∑
i=1

{
ciΦ

(√
mȲ1

σ0

)
− ciγ + di

}
1

(
X1 ∈

(
d0 +

ti−1

n
, d0 +

ti
n

])]]]n
.

Let Z1n be as defined in (3.4) and Z ∼ N(0, 1). Taking iterated expectations (by first

conditioning on X1), the above display equals (1 + ξn/n)n, where

ξn = n

2∑
i=1

d0+ti/n∫
d0+ti−1/n

[
E

[
exp

(
ı

{
ciΦ

(√
mµ(x)

σ0
+ Z1n

)
− ciγ + di

})]
− 1

]
f(x)dx

=

2∑
i=1

ti∫
ti−1

[[
E

(
ci exp

(
ıs

{
Φ

(√
m0 µ

(k)(d0+)

k!σ0
uk + o(1) + Z1n

)
− ciγ + di

}))
− 1

]
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×f
(
d0 +

u

n

)]
du.

The o(1) term appearing in the above expression does not depend on u as

sup
(d0,d0+ζ0)

|µ(k)(x)| <∞

by Assumption 1. As Z1n + o(1) converges weakly to Z and exp(ı·) is bounded, ξn

converges to f(d0)ξ0 where

ξ0 =
2∑
i=1

ti∫
ti−1

[
E

(
exp

(
ıs

{
Φ

(√
m0 µ

(k)(d0+)

k!σ0

uk + Z

)
− γ
}))

− 1

]
du.

So, the expression in (B.7) converges to exp (f(d0)ξ0). This is precisely the character-

istic function of (V (t1), J(t1), V (t2)− V (t1), J(t2)− J(t1)) evaluated at (c1, d1, c2, d2).

To see this, first note that (V (t1), J(t1)) and (V (t2)− V (t1), J(t2)− J(t1)) are inde-

pendent by virtue of the fact that the arrival times of events occurring over disjoint

sets are independent for a Poisson process. Further, let Wj be i.i.d. U(0, t), for j ≥ 1,

which are independent of {Zj}j≥1 and ν+. Using the order statistic characterization

of the arrival times of a Poisson process,

E
[
exp (ı {c1V (t1) + d1J(t1)}) |ν+(t1)

]
(B.8)

= E

exp

ν+(t)∑
j=1

ı

(
c1Φ

(√
m0 µ

(k)(d0+)

k!σ0

Skj + Zj

)
− c1γ + d1

)∣∣∣∣∣∣ ν+(t1)


= E

exp

ν+(t)∑
j=1

ı

(
c1Φ

(√
m0 µ

(k)(d0+)

k!σ0

W k
j + Zj

)
− c1γ + d1

)∣∣∣∣∣∣ ν+(t1)


=

[
E exp

(
ı

(
c1Φ

(√
m0 µ

(k)(d0+)

k!σ0

W k
1 + Z1

)
− c1γ + d1

))]ν+(t1))

=

[
g(c1, d1, 0, t1) + t1

t1

]ν+(t1)

,

182



where for 0 ≤ s < t,

g(c1, d1, s, t) =

t∫
s

[
E

(
exp

(
ı

{
c1Φ

(√
m0 µ

(k)(d0+)

k!σ0

uk + Z

)
− c1γ + d1

}))
− 1

]
du.

Note that the relation in (B.8) holds even when ν+(t) is 0. Thus,

E [exp (ı {c1V (t1) + d1J(t1)})] = exp(f(d0)g(c1, d1, 0, t1)).

Similarly, it can be deduced that

E [exp (ı {c2(V (t2)− V (t1)) + d2(J(t2)− J(t1))})] = exp(f(d0)g(c2, d2, t1, t2)).

Using the independence between (V (t1), J(t1)) and (V (t2)− V (t1), J(t2)− J(t1)), we

get that the limit of (B.7) is indeed the characteristic function of

(V (t1), J(t1), V (t2)− V (t1), J(t2)− J(t1)) .

Hence, finite dimensional convergence of (Vn, Jn) to (V, J) on [0,∞] follows from Lévy

continuity theorem. The finite dimensional convergence on the entire domain can be

deduced analogously.

Next, we complete the proof of weak convergence of (Vn, Jn) to (V, J) by showing

asymptotic tightness. For t1 < t < t2 and sufficiently large n,

E[|Jn(t)− Jn(t1)||Jn(t2)− Jn(t)|]

= E

[
n∑
i=1

n∑
j=1

1

(
Xi ∈

(
d0 +

t1
n
, d0 +

t

n

])
1

(
Xj ∈

(
d0 +

t

n
, d0 +

t2
n

])]

= n(n− 1)E

[(
X1 ∈

(
d0 +

t1
n
, d0 +

t

n

])
1

(
X2 ∈

(
d0 +

t

n
, d0 +

t2
n

])]
≤ 2 ‖f‖2

∞ (t− t1)(t2 − t) ≤ 2 ‖f‖2
∞ (t2 − t1)2,
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where ‖f‖∞ < ∞ by Assumption 2. The above relation shows that the condition

stated for tightness in Theorem 15.6 of Billingsley (1968, pp. 128) is satisfied and

hence, the process Jn is asymptotically tight. As |Vn(t) − Vn(t1)| ≤ |Jn(t) − Jn(t1)|,

the process Vn is asymptotically tight. As both the marginal processes are tight,

(Vn, Jn) is tight and hence, condition (i) of Theorem 3.5 is satisfied.

Moreover, no two flat stretches of V (t), t ∈ [−C,C], have the same

height (w.p. 1). To see this, let AC denote this event and define Ri =∑i
j=1

(
Φ
(√

m0 µ
(k)(d0+)/(k!σ0)Skj + Zj

)
− γ
)

when i > 0, and Ri =
∑−i

j=1 (γ − Uj)

when i < 0, and R0 = 0. For non-negative integers n1 and n2, n1 + n2 > 0, we have

P [Ri = Rl|ν+(C) = n1, ν
−(C) = n2] = 0 for n1 ≥ i > l ≥ −n2. This is because given

ν+(C) = n1 and ν−(C) = n2, the arrival times for Sjs are the order statistics from

U(0, C) and thus Ri −Rl is a continuous random variable. Now,

P [AC |ν+(C) = n1, ν
−(C) = n2]

= 1− P

[ ⋃
n1≥i>l≥−n2

[Ri = Rl]

∣∣∣∣∣ ν+(C) = n1, ν
−(C) = n2

]
= 1.

Also, P [AC |ν+(C) = 0, ν−(C) = 0] = 1. Hence,

P [AC ] = E[P [AC |ν+(C), ν−(C)]] = 1.

Further, let ĥl = n(d̂m,n − d0) and ĥu denote the smallest and largest minimizers

of V̂n(t), respectively. Using Theorem 3.2, (ĥl, ĥu) is OP (1). Also, let hl and hu

denote the smallest and largest minimizers for V (t). As V (0) = 0 and V (t) → ∞

as |t| → ∞ w.p. 1, we get (hl, hu) = OP (1). To see that V (t) → ∞ as |t| → ∞

a.s., note that
∑n

j=1(γ − Uj)/n → γ − 1
2
> 0 and ν−(−t) → ∞, a.s. So, we get

V (t) → ∞ as t → ∞ a.s. Also, choose ε > 0 and ηε > 0 such that γ + ε < 1 and

EΦ[ηε + Z1] = Φ[ηε/
√

2] = γ + ε. Then by the SLLN,
∑n

j=1(Φ[ηε + Zj]− γ)/n → ε

a.s. As Sj → ∞ and ν+(t) → ∞ a.s., we get lim inft→∞{V (t)/ν+(t)} ≥ ε a.s. Thus
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V (t) → ∞ as |t| → ∞ w.p. 1. Hence, by applying Theorem 3.5 we get the desired

result.

B.3 Proof of Proposition 3.8

The proof of Proposition 3.8 follows along the same lines as that of Theorem 3.6.

Here, we briefly justify the form of the limiting distribution. By calculations analogous

to those used for simplifying (B.7), it can be shown that for t > 0, E(exp(ıcVn(t))) =(
1 + ξ̄n/n

)n
, where

ξ̄n =

t∫
0

[{
E

(
exp

(
ıc

{
Φ

(√
mµ(d0 + u/n)

σ0

+ Z1n

)
− γ
}))

− 1

}
×f
(
d0 +

u

n

)]
du

→ f(d0)

t∫
0

[exp (ıc {1− γ})− 1] du = f(d0){exp(ıc(1− γ))− 1}t.

The above convergence uses the fact
√
mµ(d0 + u/n)/σ0 → ∞ for u > 0, which can

be justified through a k-th order Taylor expansion of µ around d0. The limit here is

precisely the characteristic function of V̄ (t). Hence, the one-dimensional marginals

of Vn converge to that of V̄ on the positive half line. The remainder of the proof is

almost identical to that for Theorem 3.6.

B.4 Proof of Proposition 3.9

For proving Proposition 3.9, we first prove the following lemma to justify imputing

σ0 in place of σ̂ in the local processes.

Lemma B.4. Consider the case when β < 2k. Let

Hn(t) = nβ/(2k)
{
Mm,n

(
d0 + t/nβ/(2k), σ0

)
−Mm,n(d0, σ0)

}
.
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Then, for any L > 0,

sup
t∈[−L,L]

|Ĥn(t)−Hn(t)| P→ 0.

Proof. For t ∈ [−L,L],

|Ĥn(t)−Hn(t)|

= nβ/(2k)−1

∣∣∣∣∣
n∑
i=1

{
Φ

(√
mȲi
σ̂

)
− Φ

(√
mȲi
σ0

)}
×(

1

(
Xi ≤ d0 +

t

nβ/(2k)

)
− 1 (Xi ≤ d0)

)∣∣∣∣
≤ nβ/(2k)−1 sup

y∈R

∣∣∣∣Φ(√myσ̂
)
− Φ

(√
my

σ0

)∣∣∣∣×
n∑
i=1

1

(
Xi ∈

[
d0 −

L

nβ/(2k)
, d0 +

L

nβ/(2k)

])

≤ sup
u∈R

∣∣∣∣Φ (u)− Φ

(
σ̂

σ0

u

)∣∣∣∣
{
nβ/(2k)−1

n∑
i=1

1

(
Xi ∈

[
d0 −

L

nβ/(2k)
, d0 +

L

nβ/(2k)

])}
.

As in the proof of Lemma B.3, the first term goes in probability to zero. As for the

second term,

Var

[
nβ/(2k)−1

n∑
i=1

1

(
Xi ∈

[
d0 −

L

nβ/(2k)
, d0 +

L

nβ/(2k)

])]

= n2(β/(2k)−1)n Var

[
1

(
Xi ∈

[
d0 −

L

nβ/(2k)
, d0 +

L

nβ/(2k)

])]
= n2(β/(2k)−1)n O(n−

β
k ) = O(n−1)→ 0,

and

E

[
nβ/(2k)−1

n∑
i=1

1

(
Xi ∈

[
d0 −

L

nβ/(2k)
, d0 +

L

nβ/(2k)

])]

= n(β/(2k)−1)n E

[
1

(
Xi ∈

[
d0 −

L

nβ/(2k)
, d0 +

L

nβ/(2k)

])]
= n(β/(2k)−1)n O(n−β/(2k)) = O(1).
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Thus the second term is O(1) + oP (1). Hence, we get the result.

We use a version of the Arzela-Ascoli theorem in several proofs and thus we state

it below for convenience.

Theorem B.5 (Arzela-Ascoli). Let fn be a sequence of continuous functions defined

on a compact set [a, b] such that fn converge pointwise to f and for any δn ↓ 0

sup|x−y|<δn |fn(x)− fn(y)| converges to 0. Then supx∈[a,b] |fn(x)− f(x)| converges to

zero.

We now continue with the proof of Proposition 3.9. Using Lemma B.4, for proving

(3.10), it would suffice to show that

sup
t∈[−L,L]

|Hn(t)− c(t)| P→ 0. (B.9)

Let

cn(t) = E{Hn(t)} = nβ/(2k)

d0+tn−β/(2k)∫
d0

E

[{
Φ

(√
mȲ

σ0

)
− γ
}∣∣∣∣X = x

]
f(x)dx.

For x < 0 and given X = x, Φ
(√

mȲ
σ0

)
d→ U(0, 1). Hence, by the dominated conver-

gence theorem (DCT), cn(t)→
(

1
2
− γ
)
f(d0)t, for t ≤ 0. For t > 0, we have:

cn(t) = nβ/(2k)

d0+tn−β/(2k)∫
d0

E

[{
Φ

(√
mȲ

σ0

)
− γ
}∣∣∣∣X = x

]
f(x)dx

= nβ/(2k)

d0+tn−β/(2k)∫
d0

{
Φ

(√
mµ(x)√

2σ0

)
− γ
}
f(x)dx

=

t∫
0

{
Φ

(√
mµ(d0 + u/nβ/(2k))√

2σ0

)
− γ
}
f
(
d0 +

u

nβ/(2k)

)
du
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=

t∫
0

{
Φ

(√
m0 µ

(k)(d0+)√
2k!σ0

uk + o(1)

)
− γ
}
f
(
d0 +

u

nβ/(2k)

)
du

→ f(d0)

t∫
0

{
Φ

(√
m0 µ

(k)(d0+)√
2k!σ0

uk
)
− γ
}
du, by DCT.

Hence, cn(t) → c(t). In fact, this convergence is uniform on any compact set. To

see this, note that |cn(t)− cn(s)| ≤ ‖f‖∞|t− s|. So, cns are equicontinuous and thus

by Arzela-Ascoli, the convergence is uniform on [−L,L] for every L > 0. Further, let

H̃n(t) = n1/2−β/(4k)(Hn(t)− cn(t)). Then, for t1 < t < t2,

E|H̃n(t)− H̃n(t1)|2|H̃n(t2)− H̃n(t)|2 = E |H̃n(t)− H̃n(t1)|2 E |H̃n(t2)− H̃n(t)|2

= Var

[
nβ/(4k)

{
Φ

(√
mȲ

σ0

)
− γ
}

1

(
X1 ∈

(
d0 +

t1
nβ/(2k)

, d0 +
t

nβ/(2k)

])]
×

Var

[
nβ/(4k)

{
Φ

(√
mȲ

σ0

)
− γ
}

1

(
X1 ∈

(
d0 +

t

nβ/(2k)
, d0 +

t2
nβ/(2k)

])]
≤ nβ/(2k)E

[{
Φ

(√
mȲ

σ0

)
− γ
}

1

(
X1 ∈

(
d0 +

t1
nβ/(2k)

, d0 +
t

nβ/(2k)

])]2

×

nβ/(2k)E

[{
Φ

(√
mȲ

σ0

)
− γ
}

1

(
X1 ∈

(
d0 +

t

nβ/(2k)
, d0 +

t2
nβ/(2k)

])]2

≤ ‖f‖2
∞ (t− t1)(t2 − t) ≤ ‖f‖2

∞ (t2 − t1)2.

So, by Theorem 15.6 of Billingsley (1968, pp. 128), H̃ is tight in D(R). As β < 2k,

(Hn(t) − cn(t))
d→ 0 and hence Hn(t)

d→ c(t) as processes in D(R). As the limiting

process in degenerate and x(·) 7→ supt∈[−L,L] |x(t)| is continuous, we get (B.9).

Moreover the limit process, c(t), is continuous and has a unique minimum. Also,

nβ/(2k)(d̂m,n − d0) is OP (1). Thus, by the argmin continuous mapping, we obtain the

desired result.
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B.5 Proof of Proposition 3.11

We first show that

1

nh2k+1
n

g1(d̂m,n, hn) =
f(d0)

2k + 1
+ oP (1),

where

g1(d, h) =
n∑
i=1

(Xi − d)2k1(Xi ∈ (d, d+ h]).

Note that h
−(2k+1)
n (d̂m,n − d0) = oP (1). Fix δ > 0. Then P [|d̂m,n − d0| < δ h2k+1

n ]

converges to 1. On the set [|d̂m,n − d0| < δ h2k+1
n ],

g1(d0 − δh2k+1
n , hn + 2δh2k+1

n ) ≥ g1(d̂m,n, hn) ≥ g1(d0 + δh2k+1
n , hn − 2δh2k+1

n ). (B.10)

So, it suffices to show that the above two bounds converge in probability to

f(d0)/(2k + 1). Note that

E

[
1

nh2k+1
n

g1(d0 + δh2k+1
n , hn − 2δh2k+1

n )

]

=
n

nh2k+1
n

d0+hn−δh2k+1
n∫

d0+δh2k+1
n

(x− d0 − δh2k+1
n )2kf(x)dx

=
1

h2k+1
n

1−δh2kn∫
0

(uhn)2kf(d0 + δh2k+1
n + uhn)hndu

= f(d0)

1∫
0

u2kdu+ o(1) =
f(d0)

2k + 1
+ o(1),

and

Var

[
1

nh2k+1
n

g1(d0 + δh2k+1
n , hn − 2δh2k+1

n )

]
=

n

(nh2k+1
n )2

Var
[
(X1 − d0 − δh2k+1

n )2k1(X1 ∈ (d0 + δh2k+1
n , d0 − δh2k+1

n + hn])
]
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≤ n

(nh2k+1
n )2

E
[
(X1 − d0 − δh2k+1

n )4k1(X1 ∈ (d0 + δh2k+1
n , d0 − δh2k+1

n + hn])
]

≤ n

(nh2k+1
n )2

(hn − 2δh2k+1
n )4k+1(f(d0) + o(1)) =

O(1)

nhn
→ 0.

Thus,

1

nh2k+1
n

g1(d0 + δh2k+1
n , hn − 2δh2k+1

n ) =
f(d0)

2k + 1
+ oP (1).

The treatment of the upper bound in (B.10) is similar. Next, let g2(d, h) =
∑
Ȳi(Xi−

d)k1(Xi ∈ (d, d + h]). As the k-th derivative of µ is bounded in (d0, d0 + ζ) for

sufficiently small ζ, we have

E

[
1

nh2k+1
n

g2(d0, hn)

]
=

n

nh2k+1
n

d0+hn∫
d0

µ(x)(x− d0)kf(x)dx

=
1

h2k+1
n

1∫
0

µ(d0 + uhn)(uhn)kf(d0 + δh2k+1
n + uhn)hndu

=
1

h2k+1
n

1∫
0

(ξ(uhn)k + o((uhn)k))(uhn)kf(d0 + δh2k+1
n + uhn)hndu

= ξ
f(d0)

2k + 1
+ o(1), by DCT.

Also, by similar calculations,

Var

[
1

nh2k+1
n

g2(d0, hn)

]
≤ n

(nh2k+1
n )2

E
[
Ȳ1(X1 − d0)k1(X1 ∈ (d0, d0 + hn])

]2
=

n

(nh2k+1
n )2

E
[{
µ2(X1) + σ2

0/(m0n
2k)
}

(X1 − d0)2k1(X1 ∈ (d0, d0 + hn])
]

≤ O(1)

nhn
+

nσ2
0

c(nh2k+1
n )2n2k

O(h2k+1
n )→ 0.
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So, (1/(nh2k+1
n ))g2(d0, hn) = ξ(f(d0)/(2k + 1)) + oP (1). To conclude the final result,

we need to show that

1

nh2k+1
n

{
g2(d̂m,n, hn)− g2(d0, hn)

}
= oP (1).

Let M0 = supd∈(d0,d0+ζ) µ(d), which is finite for sufficiently small ζ. On the set

[|d̂m,n − d0| < δh2k+1
n ], and for large n,

∣∣∣g2(d̂m,n, hn)− g2(d0, hn)
∣∣∣

≤ sup
|d−d0|<δh2k+1

n

∣∣∣∣ 1

nh2k+1
n

{g2(d, hn)− g2(d0, hn)}
∣∣∣∣

≤ sup
|d−d0|<δh2k+1

n

n∑
i=1

[
|Ȳi|(Xi − d)k − (Xi − d0)k|1(Xi ∈ (d0, d0 + hn] ∩ (d, d+ hn])

+ |Ȳi|(Xi − d ∧ d0)k1(Xi ∈ (d0, d0 + hn]∆(d, d+ hn])
]

≤ sup
|d−d0|<δh2k+1

n

n∑
i=1

[
|Ȳi|k(Xi − d0 + δh2k+1

n )k−1|d− d0|1(Xi ∈ (d0, d0 + hn])

+ |Ȳi|(Xi − d0 − δh2k+1
n )k

{
1(|Xi − d0| ≤ δh2k+1

n )+

1(|Xi − d0 − hn| ≤ δh2k+1
n )

}]
= O(h3k

n )
n∑
i=1

|Ȳi|1(Xi ∈ (d0, d0 + hn])

+ O(hkn)
n∑
i=1

|Ȳi|{1(|Xi − d0| ≤ δh2k+1
n ) + 1(|Xi − d0 − hn| ≤ δh2k+1

n )}

≤ O(h3k
n )

n∑
i=1

(M0 + |ε̄i|)1(Xi ∈ (d0, d0 + hn])

+ O(hkn)
n∑
i=1

(M0 + |ε̄i|){1(|Xi − d0| ≤ δh2k+1
n ) + 1(|Xi − d0 − hn| ≤ δh2k+1

n )}

≤ O(h3k
n )OP (nhn) +O(hkn)OP (nh2k+1

n ) = oP (nh2k+1
n ).

The last inequality follows from the fact that (1/(nhn))
∑n

i=1(M0 + |ε̄i|)1(Xi ∈

(d0, d0 + hn]) converges in probability to M0f(d0), which can be justified by com-

puting the limiting means and variances. This completes the proof.
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B.6 Proof of Proposition 3.14

For ε > 0 and x ∈ R, let

Un(x) = Un(x, β) =
1

Nn

Nn∑
j=1

1
[
qn(d̂n,qn,j − d0) ≤ x

]

and En = [qn|d̂n − d0| ≤ ε]. As qn/n → 0 and n(d̂n − d0) = OP (1), P (En) → 1.

Moreover, on the set En,

Un(x− ε) ≤ Ln,q(x) ≤ Un(x+ ε).

Hence, to show pointwise convergence (in probability) of Ln,q(·, β) to Gβ(·), it suf-

fices to show that Un(x, β)
P→ Gβ(x). Note that E [Un(x)] = Gn,β(x) → Gβ(x).

So, it suffices to show that Var(Un(x)) → 0. To this end, let sn = bn/qnc. For

j = 0, . . . , (sn − 1), let Rn,qn,j be the statistic d̂qn computed from the data set

(Xqnj+1, Y(qnj+1) 1, . . . , Y(qnj+1) ln ; . . . ;Xqnj+qn , Y(qnj+qn) 1, . . . , Y(qnj+qn) ln) and

Ūn(x) =
1

sn

sn∑
j=1

1 [qn(Rn,qn,j − d0) ≤ x] .

Ūn(x) has the same expectation as Un(x), but its summands are independent. Also

each summand lies between 0 and 1, and hence has a variance bounded above by 1/4.

Let X(i)s denote the ordered Xis and Y[i](j)s be their ordered concomitants, i.e.,Y[i](j)s

are the replications at X(i)s and Y[i](j) ≤ Y[i](j+1), j = 1, . . . (m − 1). It can be seen

that

Un(x) = E
[
Ūn(x)|X(i), Y[i](j), 1 ≤ i ≤ n, 1 ≤ j ≤ m

]
.

So, by the Rao-Blackwell theorem, Var(Un(x)) ≤ Var(Ūn(x)) ≤ 1/(4sn) → 0 as

sn = bn/qnc → ∞ and thus Un(x, β)
P→ Gβ(x) for x ∈ R. The uniform convergence

in probability and (ii) follow from arguments for Theorem 15.7.1 in Lehmann and
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Romano (2005), given the pointwise convergence shown above.

B.7 Proof of Proposition 3.15

We first justify that the rate of convergence of d̂m,n remains unchanged when we

impute a
√
mn-consistent estimator of τ0. Recall that

Mm,n(d, σ, τ) = Pn
[{

Φ

(√
m(Ȳ − τ)

σ

)
− γ
}

1(X ≤ d)

]
.

As in the proof of Theorem 3.2, we need to bound the expression

E∗ sup
ρn(d,dm,n)<δ

(σ,τ)∈Vn,ε

√
n|{Mm,n(d, σ, τ)−Mm,n(d, σ0, τ0)}−{Mm,n(dm,n, σ, τ)−Mm,n(dm,n, σ0, τ0)}|,

where Mm,n(d, σ, τ) = E[Mm,n(d, σ, τ)], and Vn,ε = [σ0 − Lε/
√
mn, σ0 + Lε/

√
mn] ×

[τ0 − Lε/
√
mn, τ0 + Lε/

√
mn] is a set with Lε chosen in such a way that P [(σ̂, τ) ∈

Vn,ε] > 1− ε, for ε > 0. Following the proof of Theorem 3.2, the above display can be

bounded by

E∗ sup
ρn(d,dm,n)<δ

(σ,τ)∈Vn,ε

∣∣Gn

[{
Φ
(√
m(Ȳ − τ)/σ

)
− γ
}
{1(X ≤ d)− 1(X ≤ dm,n)}

]∣∣
+
√
n sup

ρn(d,dm,n)<δ√
mn|σ−σ0|<Lε

∣∣Pn [{Φ
(√
m(Ȳ − τ0)/σ

)
− Φ

(√
m(Ȳ − τ0)/σ0

)}
×

{1(X ≤ d)− 1(X ≤ dm,n)}]|

+
√
n sup
ρn(d,dm,n)<δ

(σ,τ)∈Vn,ε

∣∣Pn [{Φ
(√
m(Ȳ − τ)/σ

)
− Φ

(√
m(Ȳ − τ0)/σ

)}
×

{1(X ≤ d)− 1(X ≤ dm,n)}]| .

The first term involves empirical process acting on a class of functions with VC-

index at most 3 while the second term appears in the proof of Theorem 3.2. These

two terms can be dealt in the same manner as in that proof. For the third term,
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note that |Φ
(√

m(Ȳ − τ)/σ
)
−Φ

(√
m(Ȳ − τ0)/σ

)
| ≤ supu |Φ (u+

√
m(τ0 − τ)/σ)−

Φ (u) | which equals |Φ (
√
m(τ0 − τ)/2σ) − Φ (−

√
m(τ0 − τ)/2σ) |. As Φ is Lipschitz

of order 1, this is further bounded above by
√
m|τ0 − τ |/σ. Hence, for sufficiently

large n, the third term in the above display is bounded by

2(Lε/σ0) sup
ρn(d,dm,n)<δ

Pn|1(X ≤ d)− 1(X ≤ dm,n)|.

Hence, this term has the same order as φn(·) appearing in (B.2), in the proof of

Theorem 3.2. The rest of the argument is identical to the proof for the known τ0 case

and thus, we end up with the same rate of convergence.

To justify that the limiting distributions also stay the same, note that n(d̂m,n−d0)

is a minimizer of the process n{Mn(d0 + t/n, σ̂, τ̂) −Mn(d0, σ̂, τ0)}, t ∈ R. But by

arguments analogous to the proof of Lemma B.3, the difference supt∈[−L,L] n|Mn(d0 +

t/n, σ̂, τ̂) −Mn(d0 + t/n, σ̂, τ0)| is
√
m(τ̂ − τ0)/σ̂ × OP (1), which goes in probability

to zero for any L > 0. Hence, the limiting distribution is not affected as long as we

have a
√
mn-consistent estimate of τ0.

B.8 Proof of Proposition 3.16

For notational convenience, we denote MFD
m,n(d) by MFD

n (d) (as m is a function of

n). Let Φn be as defined in Section 3.2.1 and

MFD
n (d) = E

[
MFD

n (d)
]

=
1

n

n∑
i=1

{
Φn

(√
m µ(i/n)√

1 + σ2
0

)
− γ

}
1 (i/n ≤ d) .

The expression on the right side follows from calculations almost identical to (3.5).

Let dFDn = sargmind∈[0,1]M
FD
n (d). To prove Proposition 3.16, we use Theorem 3.2.5

of van der Vaart and Wellner (1996) (see also Theorem 3.4.1) which requires coming
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up with a non-negative map d 7→ ρn(d, dFDn ) such that

MFD
n (d)−MFD

n (dFDn ) & ρ2
n(d, dFDn ).

Then a bound on the modulus of continuity with respect to ρn is needed, i.e.,

E

[
√
n sup
ρn(d,dFDn )<δ

|(MFD
n −MFD

n )(d)− (MFD
n −MFD

n )(dFDn )|

]
. φn(δ),

where the map δ 7→ φn(δ)/δα is decreasing for some α < 2. The rate of convergence

is then governed by the behavior of φn. We start with the following choice for ρn.

Lemma B.6. Let η > 0. Let d 7→ ρn(d, dFDn ) be a map from (0, 1) to [0,∞) such that

ρ2
n(d, dFDn ) = (1/n) {| bndc − bnd0c |1(d ≤ d0)

+ | bndc −
⌊
n(dFDn + ηm−1/(2k))

⌋
|1(d > dFDn + ηm−1/(2k))

}
.

Then η and κ > 0 can be chosen such that for sufficiently large n and ρn(d, dFDn ) < κ,

we have

Mn(d)−Mn(dFDn ) & ρ2
n(d, dFDn ).

Also, (dFDn − d0) = O(m−1/(2k)).

We first provide the proof of Proposition 3.16 using Lemma B.6. Using the

above lemma, there exists A < ∞ such that for sufficiently large n and any δ > 0,

{ρn(d, dFDn ) < δ} ⊂ {|d− dFDn | < A(δ2 + n−α)}. Consider the case d > dFDn and let

U(i, d) =

{
Φ
(√

mȲi
)
− Φn

(√
mµ(i/n)√

1 + σ2
0

)}
1
(
dFDn < i/n ≤ d

)
.

Note that E {U(i, d)} = 0 and for 1 ≤ i 6= j ≤ n, U(i, d) and U(j, d) are indepen-

dent. Also, S(i, d) := (MFD
n −MFD

n )(d)− (MFD
n −MFD

n )(dFDn ) = (1/n)
∑

i U(i, d), a
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normalized sum of (bndc −
⌊
ndFDn

⌋
) non-zero independent terms, is a martingale in

d, d ≥ dFDn , with right continuous paths. As |U(·, d)| ≤ 1, E{U2(·, d)} is at most 1.

Using Doob’s inequality, we get

E

[
sup

0≤d−dFDn <A(δ2+n−α)

√
n|S(i, d)|

]
≤
√
n
{
ES2(i, dFDn + A(δ2 + n−α))

}1/2

=
1√
n

[∑
i≤n

E{U2(i, dFDn + A(δ2 + n−α))}

]1/2

. (δ2 + n−α)1/2.

A similar bound can be established for the case d ≤ dFDn . Hence, we get

E

[
√
n sup
ρn(d,dFDn )<δ

|(MFD
n −MFD

n )(d)− (MFD
n −MFD

n )(dFDn )|

]
. φn(δ),

where φn(δ) = (δ2 +n−α)1/2. The function φn(·) and ρn(·, dFDn ) satisfy the conditions

of Theorem 3.2.5 of van der Vaart and Wellner (1996). Hence, the rate of convergence,

say rn, satisfies

r2
nφn

(
1

rn

)
.
√
n ⇒ (r2

n + r4
nn
−α) . n.

Note that r2
n = nα satisfies the above relation and therefore nαρ2

n(d̂n, d
FD
n ) is OP (1).

Consequently, we get nα(d̂n − d0) = OP (1).

Proof of Lemma B.6. Since µ(x) = 0 for x ≤ d0, note that dFDn > d0 for sufficiently

large n. As Φn(0) converges to 1/2, it can be seen that for large n and d ≤ d0,

Mn(d)−Mn(dFDn ) ≥ Mn(d)−Mn(d0)

=
n∑
i=1

{γ − Φn(0)}1
(
d <

i

n
≤ d0

)
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≥ 1

2

(
γ − 1

2

)
{bndc − bnd0c} /n. (B.11)

Next, we show that

Φn

(√
mµ(dFDn + η/nα)√

1 + σ2
0

)
− γ > K0, (B.12)

for sufficiently large n and some K0 > 0. It can be shown that dFDn converges to d0.

Hence, dFDn is not a boundary point of the interval [1/n, 1] for large n; it corresponds

to a local minimum of Mn, i.e,

Φn

(√
mµ(dFDn )/

√
1 + σ2

0

)
≤ γ < Φn

(√
mµ(dFDn + 1/n)/

√
1 + σ2

0

)
.

Thus, Φn(
√
mµ(dFDn )/

√
1 + σ2

0) converges to γ and consequently,

√
mµ(dFDn )/

√
1 + σ2

0 and m−1/(2k)(dn − d0) are O(1). Thus, it suffices to show

that
√
m(µ(dFDn + η/νn)−µ(dFDn )) is bounded away from zero to justify (B.12). This

can be shown in an identical manner as in the proof of Lemma B.2.

Choose κ > 0 such that µ is non-decreasing in (d0, d0 + κ). For sufficiently large

n, dFDn + ηm−1/(2k) + 1/n < d0 + κ and hence,

Mn(d)−Mn(dFDn ) ≥ Mn(d)−Mn(d0 + ηm−1/(2k))

≥
∑

d0+ηm−1/(2k)≤i/n≤d

{
Φn

(√
mµ(i/n)/

√
1 + σ2

0

)
− γ
}

≥ K0(bndc −
⌊
n(dFDn + ηm−1/(2k))

⌋
)/n. (B.13)

Using (B.11) and (B.13), we get the result.
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APPENDIX C

Proofs for Chapter 4

We start with proving a few auxiliary results that are repeatedly used in the

proofs. Recall that K and µ are Lipschitz continuous of order α ∈ (1/2, 1]. Let

un(x, v) = (1/hn)µ (v)K ((x− v)/hn) for x ∈ [0, 1] and v ∈ R.

Lemma C.1. For µ̄(·) as in (4.5), we have

sup
x∈[0,1]

∣∣∣∣∣∣µ̄(x)−
1∫

0

un(x, v)dv

∣∣∣∣∣∣ = O

(
1

(nhn)α

)
.

Proof. Note that µ̄(x) = (1/n)
∑

i un(x, i/n) and un(x, v) = 0 whenever |x − v| ≥

L0hn. Moreover, the difference between

µ̄ (x)−
1∫

0

un(x, v)dv

and ∑
1≤i≤n

|x−i/n|≤L0hn

(i+1)/n∫
i/n

{un(x, i/n)− un(x, v)}dv
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is at most
1/n∫
0

|un(x, v)|dv +

x−L0hn+1/n∫
x−L0hn

|un(x, v)|dv

which is bounded by (1/n) supx,v un(x, v) ≤ ‖µ‖∞‖K‖∞/(nhn). Hence,

∣∣∣∣∣∣µ̄ (x)−
1∫

0

un(x, v)dv

∣∣∣∣∣∣
≤ O

(
1

nhn

)
+

∑
1≤i≤n

|x−i/n|≤L0hn

(i+1)/n∫
i/n

|un(x, i/n)− un(x, v)|dv.

For v1, v2 ∈ R, hn|un(x, v1) − un(x, v2)| ≤ |µ(v1) − µ(v2)|K ((x− v1)/hn) +

|µ (v2) ||K ((x− v1)/hn) − K ((x− v2)/hn) |. As K and µ are Lipschitz continuous

of order α, |un(x, v1)− un(x, v2)| . 1/h1+α
n |v1 − v2|α. Also, the cardinality of the set

{i : 1 ≤ i ≤ n, |x − i/n| ≤ L0hn} is at most 2L0nhn + 2 and therefore, the above

display is further bounded (up to a positive constant multiple) by

O

(
1

nhn

)
+

∑
1≤i≤n

|x−i/n|≤L0hn

(i+1)/n∫
i/n

|i/n− v|α

h1+α
n

dv ≤ O

(
1

nhn

)
+

2L0nhn + 2

(α + 1)(nhn)1+α
,

which is O (1/(nhn)α). Here, the final bound does not depend on x and thus, we get

the desired result.

Note that the above result holds for generic functions µ and K, satisfying as-

sumptions 1(a), 4(c) and 4(d). Letting µ(x) ≡ σ2
0 and substituting K2 for K, we

get:

Corollary C.2. Let zn(x, v) = (σ2
0/hn)K2 ((x− v)/hn) . Then,

sup
x∈[0,1]

∣∣∣∣∣∣Σ2
n (x)−

1∫
0

zn(x, v)dv

∣∣∣∣∣∣ = O

(
1

(nhn)α

)
.
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As a consequence, when i/n ∈ [L0hn, 1− L0hn],

Σ2
n (i/n) =

1∫
0

zn(i/n, v)dv + o(1)

= σ2
0 min

j

i/(nhn)∫
(i−n)/(nhn)

K2(u)du+ o(1)

= σ2
0K̄

2 + o(1). (C.1)

C.1 Proof of Theorem 4.3

To prove Theorem 4.3, we use Theorem 3.2.5 of van der Vaart and Wellner (1996)

(see also Theorem 3.4.1) which requires coming up with a non-negative map d 7→

ρn(d, dn) such that

Mn(d)−Mn(dn) ≥ ρ2
n(d, dn).

Then a bound on the modulus of continuity with respect to ρn is needed, i.e.,

E

[
√
n sup
ρn(d,dn)<δ

|(Mn(d)−Mn(dn))− (Mn(d)−Mn(dn))|

]
(C.2)

= E

[
√
n sup
ρn(d,dn)<δ

|(Mn −Mn)(d)− (Mn −Mn)(dn)|

]
. φn(δ),

where the map δ 7→ φn(δ)/δα is decreasing for some α < 2. The rate of convergence

is then governed by the behavior of φn. We start with the following choice for ρn.

Lemma C.3. Fix η > 2L0 > 0. Let d 7→ ρn(d, dn) be a map from (0, 1) to [0,∞)

such that

ρ2
n(d, dn) = (K1/n) {| bndc − bn(d0 − L0hn)c |1(d ≤ d0 − L0hn)

+| bndc − bn(dn + η/νn)c |1(d > dn + η/νn)} ,
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for some K1 > 0. Then K1 and κ > 0 can be chosen such that for sufficiently large

n and ρn(d, dn) < κ, we have

Mn(d)−Mn(dn) ≥ ρ2
n(d, dn).

We first provide the proof of Theorem 4.3 using Lemma 4.2. By the above Lemma,

there exists A <∞ such that for sufficiently large n and any δ > 0, {ρn(d, dn) < δ} ⊂

{|d− dn| < δ2/K1 + A/νn + 2/n}. Let d > dn and

U(i, d) =

{
Φ
(√

nhn(µ̂(i/n))
)
− Φi,n

(√
nhn(µ̄(i/n))√
1 + Σ2

n(i/n)

)}

×1

(
dn <

i

n
≤ d

)

where µ̂ is defined in (4.5). By (4.6), E {U(i, d)} = 0. Also, for 1 ≤ i, j ≤ n,

U(i, d) and U(j, d) are independent whenever |i − j| ≥ 2L0nhn. Let ji1 = i and

jil = jil−1 + d2L0nhne. Then,

S(i, d) := (1/n)
∑
l:jil≤n

U(jil , d),

a sum of at most d(d− dn)/(2L0hn)e non-zero independent terms, is a martingale in

d, d ≥ dn, with right continuous paths. As |U(·, d)| ≤ 1, E{U2(·, d)} is at most 1.

Using Doob’s inequality, we get

E

 sup
|d−dn|<δ2/K1+A/νn+2/n

d≥dn

|S(i, d)|


≤

{
ES2(i, dn + δ2/K1 + A/νn + 2/n)

}1/2

=
1

n

∑
l:jil≤n

E{U2(jil , dn + δ2/K1 + A/νn + 2/n)}

1/2
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≤ 1

L0nh
1/2
n

(δ2/K1 + A/νn + 2/n)1/2.

As (Mn −Mn)(d)− (Mn −Mn)(dn) =
∑d2L0nhne−1

i=1 S(i, d), for sufficiently large n,

E

[
√
n sup
ρn(d,dn)<δ,d>dn

|(Mn −Mn)(d)− (Mn −Mn)(dn)|

]

≤ E

√n sup
|d−dn|<δ2/K1+A/νn+2/n

d≥dn

|(Mn −Mn)(d)− (Mn −Mn)(dn)|


≤
√
n(2L0nhn)

1

L0nh
1/2
n

(δ2/K1 + A/νn + 2/n)1/2 . φn(δ), (C.3)

where φn(δ) =
√
nhn(δ2 + ν−1

n +n−1)1/2. This bound can also be shown to hold when

d ≤ dn. Also, φn(·) and ρn(·, dn) satisfy the conditions of Theorem 3.2.5 of van der

Vaart and Wellner (1996). Hence, the rate of convergence, say rn, satisfies

r2
nφn

(
1

rn

)
.
√
n ⇒ nhn(r2

n + r4
n/νn + r4

n/n) . n.

Note that r2
n = νn satisfies the above relation and therefore νnρ

2
n(d̂n, dn) is Op(1).

Consequently, we get νn(d̂n − d0) = Op(1).

Proof of Lemma C.3. Since µ̄(x) = 0 for x < d0−L0hn, note that dn > d0−L0hn

for sufficiently large n. As Φi,n(0) converges to 1/2 uniformly in i, it can be seen that

for large n and d ≤ d0 − L0hn,

Mn(d)−Mn(dn) ≥ Mn(d)−Mn(d0 − L0hn)

=
n∑
i=1

{γ − Φi,n(0)}1
(
d <

i

n
≤ d0 − L0hn

)
≥ 1

2

(
γ − 1

2

)
{bndc − bn(d0 − L0hn)c} /n. (C.4)
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Next, we show that

Φ̃n

√nhnµ̄(dn + η/νn)√
1 + Σ̃2

n

− γ > K0, (C.5)

for sufficiently large n and some K0 > 0. Using (4.7), note

that Φ̃n

(√
nhnµ̄(dn)/

√
1 + Σ̃2

n(dn)

)
converges to γ and consequently,

√
nhnµ̄(dn)/

√
1 + Σ̃2

n(dn) is O(1). As Σ2
n(dn) is also O(1), it suffices to show

that
√
nhn(µ̄(dn + η/νn) − µ̄(dn)) is bounded away from zero. To show this, note

that by Lemma C.1,

√
nhn(µ̄(dn + η/νn)− µ̄(dn))

=

L0∫
−L0

√
nhn {µ(dn + η/νn + uhn)− µ(dn + uhn)}K(u)du+ o(1).

Choose κ > 0 such that µ is non-decreasing in (d0, d0 + 3κ). For sufficiently large

n, dn + η/νn + L0hn < d0 + 3κ, and hence, the integrand in the above display is

non-negative. With L1 such that Kmin = inf{K(x) : x ∈ [−L1, L1]} > 0, the above

display is bounded from below by

2L1Kmin

√
nhn(µ(dn + η/νn − L1hn)− µ(dn + L0hn)).

As η > 2L0, note that dn + η/νn − L1hn > dn + L0hn > d0. With ζ
(1)
n and ζ

(2)
n being

some points in (d0, dn + η/νn − L1hn) and (d0, dn + L0hn) respectively, we have

√
nhn{µ(dn + η/νn − L0hn)− µ(dn + L0hn)}

=

√
nhn
k!
{µ(k)(ζ(1)

n )(dn + η/νn − L1hn − d0)k − µ(k)(ζ(2)
n )(dn + L0hn − d0)k}

>

√
nhnµ

(k)(ζ
(1)
n )

k!
[(dn + η/νn − L1hn − d0)k − (dn + L0hn − d0)k]
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+

√
nhn
k!

[µ(k)(ζ(1)
n )− µ(k)(ζ(2)

n )](dn + L0hn − d0)k

>
√
nhn

[{
µ(k)(d0+) + o(1)

}
(η/νn − 2L0hn)k

k!
+ o(1)(dn − d0 + L0hn)k

]
.

Using Lemma 4.2, (dn−d0) is O(1/νn) and hence, the above display is further bounded

from below by √
nhn
νkn

[
µ(k)(d0+)

k!
(η − 2L0)k + o(1)

]
.

As
√
nhn/ν

k
n ≥ 1, (C.5) holds.

Further, as the kernel K(u) is non-increasing in |u|, µ̄ is non-decreasing in (d0, d0+

2κ). For d ∈ (dn + η/νn, d0 + 2κ),

Mn(d)−Mn(dn) ≥ Mn(d)−Mn(d0 + η/νn)

≥
∑

d0+η/νn≤i/n≤d

{
Φi,n

(√
nhnµ̄(i/n)/

√
1 + Σ2

n(i/n)
)
− γ
}

≥ K0(bndc − bn(dn + η/νn)c)/n. (C.6)

Using Lemma 4.2, there exists A0 <∞ such that for sufficiently large n, νn|d0−dn| ≤

A0, and hence {ρn(d, dn) < κ} ⊂ {|d− d0| < κ2/K1 +A/νn + 2/n} ⊂ {|d− d0| < 2κ},

where A = 2 max(η, L0, A0). Letting K1 = (1/2) min(γ − 1/2, K0) and using (C.4)

and (C.6), we get the desired result.

C.2 Proof of Lemma 4.4

In order to prove Lemma 4.4, we first justify a few auxiliary results required to

prove the tightness of Wn. Recall that

Wn(t) =
√
nhnµ̂(d0 + thn).
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Let ε̄n(·) be such that ε̄n(t) = Wn(t)−
√
nhnµ̄(d0 + thn), i.e.,

ε̄n(t) =
1√
nhn

n∑
i=1

εiK

(
d0 − i/n
hn

+ t

)
. (C.7)

Lemma C.4. The processes
√
nhnε̄n(d0 + thn), t ∈ R, are asymptotically tight in

C(R).

Proof. As the kernel K is Lipschitz of order α > 1/2, there exists a constant C0 > 0,

such that |K(t)−K(s)| ≤ C0|t− s|α. Fix T > 0. For s, t ∈ [−T, T ], we have

E [ε̄n(t)− ε̄n(s)]2

=
1

nhn

n∑
i=1

σ2
0

∣∣∣∣K (d0 − i/n
hn

+ t

)
−K

(
d0 − i/n
hn

+ s

)∣∣∣∣2
=

1

nhn

n∑
i=1

σ2
0

∣∣∣∣K (d0 − i/n
hn

+ t

)
−K

(
d0 − i/n
hn

+ s

)∣∣∣∣2
=

1

nhn

∑
|d0−i/n|<(L0+T )hn

σ2
0

∣∣∣∣K (d0 − i/n
hn

+ t

)
−K

(
d0 − i/n
hn

+ s

)∣∣∣∣2
≤ 4(L0 + T + 1)σ2

0C
2
0 |t− s|2α.

Since α > 1/2, the result is a consequence of Theorem 12.3 of Billingsley (1968, pp.

95).

We use a version of the Arzela-Ascoli theorem to prove the next result and thus

we state it below for convenience.

Theorem C.5 (Arzela-Ascoli). Let fn be a sequence of continuous functions defined

on a compact set [a, b] such that fn converge pointwise to f and for any δn ↓ 0

sup|x−y|<δn |fn(x)− fn(y)| converges to 0. Then supx∈[a,b] |fn(x)− f(x)| converges to

zero.

Lemma C.6. The sequence of functions
√
nhnµ̄(d0 + thn) converges to m(t), uni-

formly over compact sets in R.
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Proof. The pointwise convergence is evident from Lemma 4.4. To justify the uniform

convergence, let z̄n(x, t) = (1/hn)µ(x)K((d0 − x)/hn + t). By arguments similar to

those for Lemma C.1, |z̄n(x, t) − z̄n(y, t)| . 1/h1+α
n |x − y|α and consequently, for

t ∈ [−T, T ],

∣∣∣∣µ̄(d0 + thn)−
∫
z̄n(x, t)dx

∣∣∣∣
≤ O

(
1

nhn

)
+

∑
1≤i≤n

|dn−i/n|≤(L0+T )hn

|i/n− x|α

h1+α
n

dx = O

(
1

(nhn)α

)
.

As the above bound does not depend on t and α > 1/2, for s, t ∈ [−T, T ], and δ > 0,

sup
|t−s|<δ

∣∣∣√nhnµ̄(d0 + thn)−
√
nhnµ̄(d0 + shn)

∣∣∣
= sup

|t−s|<δ

∣∣∣∣∣∣
√
nhn

∞∫
−∞

{z̄n(x, t)− z̄n(x, s)}dx

∣∣∣∣∣∣+ o(1)

≤
√
nhn

∞∫
−∞

µ(d0 + uhn) |K (t− u)−K (s− u)| du+ o(1)

≤
√
nhn

L0+T∫
0

µ(k)(ζu)

k!
(uhn)k |K (t− u)−K (s− u)| du+ o(1),

where ζu is some intermediate point between d0 and d0 + uhn. The k-th derivative

of µ is bounded on (d0, d0 + (L0 + T )hn) for sufficiently large n and hkn
√
nhn equals

h
k+1/2
0 . As K is uniformly continuous, the above display goes to zero as δ → 0 by

DCT. Hence, by the Arzela–Ascoli theorem we get the desired result.

We now continue with the proof of Lemma 4.4. For (ai, ti) ∈ R2, i = 1, . . . l, we

have ∑
i,j

aiajCov(W (ti),W (tj)) =

∫ {∑
i

aiK(ti + u)

}2

du ≥ 0.

Hence, the defined covariance function is non-negative definite and by Kolmogorov
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consistency, the Gaussian process W exists.

Let r(h) =
{∫

K(h+ u)K(u)du
}
/K̄2 denote the correlation function of W . For

W to have a continuous modification, by Hunt’s theorem (e.g., see Cramér and Lead-

better (1967, pp. 169–171)), it suffices to show that r(h) is 1−O((log(h))−δ) for some

δ > 3 as h→ 0. Note that the kernel K is Lipschitz continuous of order α and hence,

we have

|(1− r(h))(log(h))δ| =

∣∣∣∣∣∣h
α(log(h))δ∫
K2(u)du

 L0∫
−L0

(K(u)−K(h+ u))

hα
K(u)du

∣∣∣∣∣∣
.

1∫
K2(u)du

∣∣hα(log(h))δ
∣∣→ 0.

Thus, W has a continuous modification. Next, we justify weak convergence of the

process Wn to W .

As a consequence of Lemma C.4 and C.6, the process Wn is asymptotically tight.

To justify finite dimensional convergence, it suffices to show that:

 Wn(t1)

Wn(t2)

 d→

 W (t1)

W (t2)

 , (C.8)

where t1, t2 ∈ R. Let xj = d0 + tjhn, j = 1 and 2. Then,

µ̄(xj) =
√
nhn


1∫

0

1

hn
µ (x)K

(
xj − x
hn

)
dx+O

(
1

(nhn)α

)
=

√
nhn

d0/hn+tj∫
(d0−1)/hn+tj

µ(d0 + (tj − v)hn)K (v) dv + o (1)

=
√
nhn

tj∫
(d0−1)/hn+tj

µ(k)(d+
0 )

k!

(
(tj − v)k hkn + o(hkn)

)
K (v) dv + o(1)

207



= h
k+1/2
0

µ(k)(d0+)

k!

 tj∫
−∞

(tj − v)kK (v) dv + o(1)

+ o(1) = m(tj) + o(1).

The last step follows from DCT as the k-th derivative of µ is bounded in a right

neighborhood of d0 and
∫
|v|kK(v)dv <∞. Moreover,

E [ε̄n(xj)] = 0,

V ar [ε̄n(xj)] = Σ2
n(xj)→ σ2

0K̄
2,

and, by a change of variable,

Cov [ε̄n(x1), ε̄n(x2)]

= Cov

[
1√
nhn

∑
εiK ((x1 − i/n)/hn)

Σn(x1)
,

1√
nhn

∑
εiK ((x2 − i/n)/hn)

Σn(x2)

]
= σ2

0

∫
K(t1 + u)K(t2 + u)du+ o(1).

Also,

maxiK
2 ((xj − i/n)/hn)∑

K2 ((xj − i/n)/hn)
≤ ‖K‖2

∞

nhn(K̄2 + o(1))
→ 0.

Hence, the Lindeberg–Feller condition is satisfied for ε̄n(xj)s and by the Cramér-Wold

device, (C.8) holds. This justifies the finite dimensional convergence and hence, we

have the result.

C.3 Proof of Theorem 4.6

In order to prove Theorem 4.6, an ergodic theorem and Borell’s inequality are

found useful, which are stated below for convenience. For the proofs of the two

results, see, for example, Cramér and Leadbetter (1967, pp. 147), and (Adler and

Taylor, 2007, pp. 49–53), respectively. Also, we use Theorem 3 from Ferger (2004)

which we state below as well.
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Theorem C.7. Consider a real continuous second order stationary process ξ(t) with

mean 0 and correlation function R(t). If

1

T

T∫
0

R(t)dt = O

(
1

T a

)

for any a > 0, then ξ satisfies the law of large numbers, i.e., T−1
∫ T

0
ξ(t)dt converges

a.s. to zero as T →∞.

Theorem C.8 (Borell’s inequality). Let ξ be a centered Gaussian process, a.s.

bounded on a set I. Then E {supu∈I ξ(u)} <∞ and for all x > 0,

P

{
sup
u∈I

ξ(u)− E
(

sup
u∈I

ξ(u)

)
> x

}
≤ exp

(
−x2

2σ2
I

)
,

where σ2
I = supu∈I Var {ξ(u)}.

Theorem C.9 (Ferger (2004)). Let Vn, n ≥ 0, be stochastic processes in D(R),

defined on a common probability space (Ω,A, P ). Let ξn be a Borel-measurable mini-

mizer of Vn. Suppose that:

(i) Vn converges weakly to V0 in D[−C,C] for each C > 0.

(ii) The trajectories of V0 almost surely possess a smallest and a largest minimizer

ξs0 and ξl0 respectively, which are Borel measurable.

(iii) The sequence ξn is uniformly tight.

Then for every x ∈ X,

P [ξl0 < x] ≤ lim inf
n→∞

P∗[ξn < x] ≤ lim sup
n→∞

P ∗[ξn ≤ x] ≤ P [ξs0 ≤ x].

Here, X = {x ∈ R : P [V0 is continuous at x] = 1}.
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We now continue with the proof of Theorem 4.6. Let

W0(t) = W (t)−m(t).

This is a mean zero stationary process and thus, so is the process D(t) = Φ (W0(t))−

1/2 with correlation function R(t), say. As, K is supported on [−L0, L0], W (t1) and

W (t2) are independent whenever |t1 − t2| ≥ 2L0 and hence R(t) = 0 for t > 2L0.

So, (1/t)
∫ t

0
R(y)dy = O(1/t) as |t| → ∞ and therefore, by Theorem C.7, Z1(t) =

(1/t)
∫ t

0
D(y)dy → 0 a.s. as |t| → ∞. For t < 0, we write Z(t) as

Z(t) = t

Z1(t) + (1/2− γ) + (1/t)

t∫
0

{Φ (W (t))− Φ (W0(t))} dy

 .
When t < −L0, m(t) = 0, which gives W (t) = W0(t) and hence the third term in the

above display goes to zero and Z(t)→∞ a.s. as t→ −∞. For t > 0, fix M > 0 and

j be a positive integer. Then

P

[
inf

t∈[j,j+1]
W (t) < M

]
≤ P

[
inf

t∈[j,j+1]
W0(t) + inf

t∈[j,j+1]
m(t) < M

]
= P

[
sup

t∈[j,j+1]

(−W0(t)) > m(j)−M

]
,

as inft∈[j,j+1] m(t) = m(j). By Borell’s inequality, the above probability is

bounded by exp
[{
−m(n)− L0 − E supt∈[j,j+1](−W0(t))

}2
]
, where by stationar-

ity, E supt∈[j,j+1](−W0(t)) = E supt∈[0,1](−W0(t)) which is finite, again due to

Borell’s inequality. Also, it can be seen that m(j) & (j − L0)k and hence∑
j≥1 P

[
supt∈[j,j+1](−W0(t)) > m(j)−M

]
< ∞. Using Borel–Cantelli lemma, we

get P [lim inft→∞W (t) > M ] = 1. As M can be made arbitrarily large, we get that

W (t) diverges to ∞ a.s. as t→∞ and consequently so does Z(t).

Note that Zn (defined in (4.9)) converges weakly to Z in Bloc(R) and consequently,
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in D(R) as well. Moreover, Z has continuous sample paths with probability 1. As

Z(t)→∞ when |t| → ∞, ξs0 and ξl0 are well defined and Borel measurable. Further,

recall that h−1
n (d̂n − d0), the smallest argmin of the process Zn(·), is determined by

the ordering of finitely many random variables and hence, is measurable. Also, by

Theorem 4.3, it is Op(1). Hence, conditions (i), (ii) and (iii) of Theorem C.9 are

satisfied with Vn = Zn and V0 = Z, and thus,

lim inf
n→∞

P [csα/2 < h−1
n (d̂n − d0) < cl1−α/2] ≥ lim inf

n→∞
P [h−1

n (d̂n − d0) < cl1−α/2]

− lim sup
n→∞

P [h−1
n (d̂n − d0) ≤ csα/2]

≥ 1− α.

Hence, we get the desired result.

C.4 Outline of the proof of Proposition 4.9

We assume the rate of convergence for the proof as it is a consequence of arguments

similar to that for the proof of Proposition 4.11 (see Section C.6).

To see that we end up with the given limiting distribution, recall that for τ0 = 0,

d̂1
n = sargmin

d∈[0,1]

1

n

n∑
i=1

{
Φ

(√
nhnµ̂(i/n)

Σn(i/n, σ̂)

)
− γ
}

1

(
i

n
≤ d

)
.

Thus, the form of the limit distribution is dictated by the asymptotic behavior of the

local process

Z1
n(t) =

1

nhn

n∑
i=1

{
Φ

(√
nhnµ̂(i/n)

Σn(i/n, σ̂)

)
− γ
}(

1

(
i

n
≤ d0 + thn

)
− 1

(
i

n
≤ d0

))
.

Proceeding as we did in the proof of Theorem 4.5, Z1
n can be split into I1

n(t) + II1
n(t),
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where

II1
n(t) = h−1

n

d0+thn∫
d0

(
Φ

(√
nhnµ̂(x)

Σn(x, σ̂)

)
− γ
)
dx (C.9)

and the contribution of I1
n(t) = Z1

n(t)− II1
n(t) can be shown to converge to zero. By

a change of variable, II1
n can be written as

II1
n(t) =

t∫
0

[
Φ

(
Wn(y)

Σn(d0 + yhn, σ̂)

)
− γ
]
f(d0 + yhn)dy,

where, Wn is as defined in (4.10). This term differs from its analogue for Method 2

(see (4.3)) through the normalizing factor Σn(d0 + yhn, σ̂) which converges in prob-

ability to σ0

√
K̄2. The tightness of the ratio process Wn(y)/Σn(d0 + yhn, σ̂) can be

established through calculations similar to those in the proof of Lemma 4.4. Hence,

by a Slutsky-type argument, we get that

h−1
n (d̂1

n − d0)
d→ argmin

t∈R

t∫
0

{
Φ

(
W (y)

σ0

√
K̄2

)
− γ
}
dy,

for hn = h0n
−1/(2k+1). Note that the process on the right side of the above display is

precisely Z1. This completes the proof.

C.5 Outline of the proof of Proposition 4.10

Here, we provide a brief outline of the proof to convince the reader about the form

of the limiting distribution. Note that this is dictated by the asymptotic behavior of

the local process

Z̃n(t) = Pn
[{

Φ
(√

nhnµ̃(X)
)
− γ
}

(1(X ≤ d0 + thn)− 1(X ≤ d0))
]
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that arises out of the criterion in (4.11) (with τ0 = 0). As in the proof of Theorem

4.5, Z̃n can be split into Ĩn(t) + ĨIn(t), where

ĨIn(t) = h−1
n

d0+thn∫
d0

(
Φ
(√

nhnµ̃(x)
)
− γ
)
f(x)dx (C.10)

and the contribution of Ĩn(t) = Z̃n(t) − ĨIn(t) can be shown to go to zero. By a

change of variable, ĨIn can be written as

ĨIn(t) =

t∫
0

[
Φ
(
W̃n(y)

)
− γ
]
f(d0 + yhn)dy,

where W̃n(y) =
√
nhnµ̃(d0 + yhn). The process W̃n can be shown to converge weakly

to the process W̃ by an imitation of the arguments in the proof of Lemma 4.4. Also,

f(d0 + yhn) converges to f(d0) > 0. Consequently

h−1
n (d̃n − d0)

d→ argmin
t∈R

{
f(d0)Z̃(t)

}
= argmin

t∈R

{
Z̃(t)

}
.

C.6 Proof of Proposition 4.11

Recall that

Mn(d, τ̃) =
1

n

n∑
i=1

[
Φ

(√
nhn

(
µ̂

(
i

n

)
− τ̃
))
− γ
]

1

(
i

n
≤ d

)

and Mn(d, τ̃) = E[Mn(d, τ̃)]. We make the dependence on the parameter τ explicit

for the analysis. Here Mn(d, τ̂) is interpreted as Mn(d, τ̃) computed at τ̃ = τ̂ . Now,

we extend the proof of Theorem 4.3 to show that the rate of convergence remains the

same.

Rate of convergence. As
√
n(τ̂ − τ0) = Op(1), for any ε > 0, there exists Vε/2 > 0

such that P
[√
n|τ̂ − τ0| < Vε/2

]
> 1 − ε. To show that the rate of convergence does
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not change, we need to derive a bound on

E

[
√
n sup
ρn(d,dn)<δ

|(Mn(d, τ̂)−Mn(d, τ̂))− (Mn(dn, τ0)−Mn(dn, τ0))|

]

having the same order as φn(δ) (see (C.2) and (C.3)). A relaxation is possible due to

Theorem B.1 of Appendix B. For each ε > 0, it suffices to find a bound of the form

E

[
√
n sup
ρn(d,dn)<δ

|(Mn −Mn)(d, τ̂)− (Mn −Mn)(dn, τ0)|1(Un,ε)

]
≤ Cεφn(δ), (C.11)

where P [Un,ε] > 1− ε and Cε > 0; see Banerjee and McKeague (2007, Theorem 5.2).

For Un,ε = [τ̂ ∈ [τ0 − Vε/2/
√
n, τ0 + Vε/2/

√
n]], the left side of the above display can

be bounded by

E

[
√
n sup
ρn(d,dn)<δ,|τ̃−τ0|<Vε/2/

√
n

|(Mn −Mn)(d, τ̃)− (Mn −Mn)(dn, τ0)|

]

≤ E

[
√
n sup
ρn(d,dn)<δ

|(Mn −Mn)(d, τ0)− (Mn −Mn)(dn, τ0)|

]

+E

√n sup
ρn(d,dn)<δ,

|τ̃−τ0|<Vε/2/
√
n

|(Mn(d, τ̃)−Mn(d, τ0))− (Mn(dn, τ̃)−Mn(dn, τ0))|

.
The first term on the right side is precisely the term dealt in the case of a known τ0

(see (C.2)). As for the second term, note that by the Lipschitz continuity of Φ,

|(Mn(d, τ̃)−Mn(d, τ0))− (Mn(dn, τ̃)−Mn(dn, τ0))|

≤ 1

n

n∑
i=1

{∣∣∣∣Φ(√nhn

(
µ̂

(
i

n

)
− τ̃
))
− Φ

(√
nhn

(
µ̂

(
i

n

)
− τ0

))∣∣∣∣
×
∣∣∣∣1( in ≤ d

)
− 1

(
i

n
≤ dn

)∣∣∣∣}
.

√
nhn|τ̃ − τ0|

| dnde − dndne |
n

.
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Thus, we have

E

√n sup
ρn(d,dn)<δ,

|τ̃−τ0|<Vε/2/
√
n

|(Mn(d, τ̃)−Mn(d, τ0))− (Mn(dn, τ̃)−Mn(dn, τ0))|


.
√
n

√
nhnVε/2√

n
(δ2 + 2/n) . Vε/2φn(δ),

for δ < 1 and large n. Hence, the expression in (C.11) has the same bound φn(·) (up

to a different constant) and thus, we get the same rate of convergence.

Limit distribution. Recall from (4.9) that

Zn(t) = Zn(t, τ0) = h−1
n [Mn(d0 + thn, τ0)−Mn(d0, τ0)] .

To show that the limiting distribution of d̂n remains the same, it suffices to show that

sup
t∈[−T,T ]

|Zn(t, τ̂)− Zn(t, τ0)| (C.12)

converges in probability to zero, for any T > 0. Again by the Lipschitz continuity of

Φ,

|Zn(t, τ̂)− Zn(t, τ0)|

=
1

nhn

∣∣∣∣∣
n∑
i=1

{
Φ

(√
nhn(µ̂

(
i

n

)
− τ̂)

)
− Φ

(√
nhn(µ̂

(
i

n

)
− τ0)

)
×
(

1

(
i

n
≤ d0 + thn

)
− 1

(
i

n
≤ d0

))}∣∣∣∣
.

1

nhn

∣∣∣∣∣
n∑
i=1

√
nhn|τ̂ − τ0|

(
1

(
i

n
≤ d0 + Thn

)
− 1

(
i

n
≤ d0

))∣∣∣∣∣
≤ hn

(Tnhn + 2)

nhn

√
n|τ̂ − τ0|.
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As the above bound is uniform in t ∈ [−T, T ] and
√
n(τ̂ − τ0) is Op(1), the expression

in (C.12) converges in probability to zero and hence, we get the desired result.

C.7 Proof of Proposition 4.13

Given what has been done earlier for proving results from Section 4.2.2, it suffices

to show that the process ε̄n(t), defined in (C.7), converges weakly to a mean zero

Gaussian process having the covariance function of W̄ in the setup of Section 4.5. As

Wn(t) =
√
nhnµ̄(d0 + thn) + ε̄n(t), Lemma C.6 then justifies the weak convergence of

Wn to W̄ . The statement and the proof of Lemma 4.4 relies on the i.i.d. assumption

only through the convergence of Wn’s and the form of their limit. Hence, it would

follow that the process Zn (defined in (4.9)) converges to Z̄. The result then follows

from applying the argmin continuous mapping theorem as in proving Theorem 4.7.

We start by showing the covariance function of the process ε̄n converges to that

of W̄ . For t1, t2 ∈ R, let xj = d0 + tjhn, j = 1, 2. We have

Cov(ε̄n(t1), ε̄n(t2)) =
σ2

0

nhn

∑
l,j

ρ(l − j)K
(
x1 − l/n
hn

)
K

(
x2 − j/n

hn

)
.

As σ2
0ρ(l − j) =

∫ π
−π ψ(u) exp(ı(l − j)u)du, the above expression reduces to

1

nhn

π∫
−π

ψ(u)K̂x1(u)K̂x2(−u)du,

where for x, u ∈ R, K̂x(u) =
∑

jK(h−1{x− j/n})eıju. Under short range depen-

dence, Assumption 1 of Robinson (1997) requires ψ to be an even non-negative func-

tion which is continuous and positive at 0. Using this assumption, it can be shown
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that the difference between the above display and

ψ(0)

nhn

π∫
−π

K̂x1(u)K̂x2(−u)du

goes to zero by calculations almost identical to those in Robinson (1997, pp. 2061–

2062). As
∫ π
−π exp(ı(l− j)u)du = 2πδlj, with δlj being the Kronecker delta, the above

expression equals

2πψ(0)

nhn

∑
l,j

δljK

(
x1 − l/n
hn

)
K

(
x2 − j/n

hn

)
.

Following the arguments identical to that in the proof of Lemma 4.4, this expression

can be shown to converge to the covariance function of W̄ . What remains now is

the justification of the asymptotic normality of finite dimensional marginals of ε̄n and

proving tightness.

Justifying asymptotic normality of the finite dimensional marginals of ε̄n requires

showing the asymptotic normality of any finite linear combination of marginals of ε̄n

and then applying the Cramér-Wold device. Given the convergence of the covariances,

it suffices to prove that for (cr, tr) ∈ R, 1 ≤ r ≤ R ∈ N,

1
√
vn

∑
r≤R

cr ε̄n(tr)
d→ N(0, 1), (C.13)

where v2
n = Var

(∑
r≤r cr ε̄n(tr)

)
. The left hand side equals

∑
iwinεi where

win =
1√
nhnvn

∑
r≤R

crK

(
d0 − i/n
hn

+ tr

)
.

As in (Robinson, 1997, Assumption 2), we assume εi’s to be a linear process with

martingale innovations and square summable coefficients, i.e, there is a sequence of

martingale differences uj, j ∈ Z adapted to Fj = σ{uk : k ≤ j} with mean 0 and
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variance 1, such that

εi =
∞∑

j=−∞

αjui−j,

∞∑
j=−∞

α2
j <∞. (C.14)

To show asymptotic normality, we justify conditions (2.3) and (2.6) from Robinson

(1997). The condition (2.3) is just a normalization requirement which holds in our

case as the variance of the left hand side of (C.13) is 1. The condition (2.6) of

Robinson (1997) is about justifying the existence of a positive-valued sequence an

such that as n→∞,

∑
i

w2
in

∑
|j|>an

α2
j

1/2

+ max
1≤i≤n

|win|
∑
|j|≤an

|αj| → 0. (C.15)

For an such that an →∞ and nhn/an →∞,
∑
|j|>an α

2
j = o(1), due to (C.14). Also,

by Cauchy-Schwartz,
∑
|j|≤a |αj| = O(

√
an). By the compactness of the kernel and the

fact that vn = O(1),
∑

iw
2
in = O(1). As the kernel K is bounded, max1≤i≤n |win| =

O
(
1/
√
nhn

)
. Hence, the left hand side of (C.15) is o(1) + O

(√
an/nhn

)
which is

o(1). This shows convergence of the finite dimensional marginals.

For tightness, recall that for t ∈ [−T, T ]

ε̄n(t) =
1√
nhn

∑
i:|d0−i/n|≤(L0+T )hn

εiK

(
d0 − i/n
hn

+ t

)
.

We have

E [ε̄n(t1)− ε̄n(t2)]2 =
1

nhn

π∫
−π

ψ(u)(K̂x1(u)− K̂x2(u))(K̂x1(−u)− K̂x2(−u))du

As ψ is a bounded function, the above expression is bounded up to a constant, due
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to Cauchy-Schwartz, by

1

nhn

π∫
−π

|K̂x1(u)− K̂x2(u)|2du.

As K̂x1(u) =
∑

jK ((x1 − j/n)/hn) eıju,

|K̂x1(u)− K̂x2(u)|2 . nhn|t1 − t2|2α

due to Lipschitz continuity of K. Hence,

E [ε̄n(t1)− ε̄n(t2)]2 . |t1 − t2|2α

The tightness follows from Theorem 12.3 of Billingsley (1968, pp. 95).
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APPENDIX D

Proofs for Chapter 5

D.1 Proof of Theorem 5.2

Here, we establish consistency with respect to the (stronger) Hausdorff metric,

dH(S1, S2) = max

[
sup
x∈S1

ρ(x, S2), sup
x∈S2

ρ(x, S1)

]
. (D.1)

Moreover, we would only require min(m,n) → ∞ instead of taking m to be of the

form m0n
β, β > 0.

To exhibit the dependence on m, we will denote Mn by Mm,n. Recall that

Mm(S) = E [Mm,n(S)] converges to M(S) for each S ∈ S. Also, Var(Mm,n(S)) =

(1/n)Var
(
(Φ(
√
mȲ1)− γ)1S(X)

)
≤ 1/n which converges to zero. Hence, Mm,n(S)

converges in probability to M(S) for any S ∈ S, as min(m,n)→∞.

The space (S, dH) is compact (Blaschke Selection theorem) and M is a continuous

function on S. The desired result will be a consequence of argmin continuous mapping

theorem (van der Vaart and Wellner, 1996, Theorem 3.2.2) provided we can justify
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that supS∈S |Mm,n(S)−M(S)| converges in probability to zero. To this end, let

M1
m,n(S) = Mm,n(S) + Pnγ1X(S) = PnΦ

(√
mȲ

)
1S(X)

and M1(S) = M(S) + Pγ1X(S). Note that

sup
S∈S
|Mm,n(S)−M(S)| ≤ γ sup

S∈S
|(Pn − P )(S)|+ sup

S∈S
|M1

m,n(S)−M1(S)|.

The first term in the above expression converges in probability to zero (Ranga Rao,

1962). As for the second term, note that M1
m,n(S) converges in probability to

M1(S) for each S and M1
m,n is monotone in S, i.e., M1

m,n(S1) ≤ M1
m,n(S2) when-

ever S1 ⊂ S2. As the space (S, dH) is compact, there exist S(1), . . . , S(l(δ)) such that

supS∈S min1≤l≤l(δ) dH(S, S(l)) < δ, for any δ > 0. Hence,

sup
S∈S
|M1

m,n(S)−M1(S)|

= max
1≤l≤l(δ)

sup
dH(S,S(l))<δ

|M1
m,n(S)−M1(S)|

≤ 2 max
1≤l≤l(δ)

sup
dH(S,S(l))<δ

|M1
m,n(S)−M1(S(l))|

≤ 2 max
1≤l≤l(δ)

max(|M1
m,n(δ(S(l)))−M1(S(l))|, |M1

m,n((S(l))δ)−M1(S(l))|).

The right side in the above display converges in probability to

2 max1≤l≤l(δ)[max(|M1(δ(S(l))) − M1(S(l))|, |M1((S(l))δ) − M1(S(l))|)] can be

made arbitrarily small by choosing small δ (as M1 is continuous). Also, as the map

S 7→ dF (S, S0) from (S, dH) to R is continuous, we have consistency in the dF metric

as well. This completes the proof.
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D.2 Proof of Theorem 5.9

In light of what has been derived in the proof of Theorem 5.2, it suffices to show

that Mn(S) converges in probability to M(S). Note that,

E
[
Φ
(√

nh2
nµ̂(xkl)

)]
= Φ̃n

( √
nh2

nµ̄(xkl)√
1 + Σ2

n(xkl)

)
.

For x ∈ {(x1, x2) : k/m ≤ x1 < (k + 1)/m, l/m ≤ x2 < (l + 1)/m}, let

f̂n(x) = W̃kl and fn(x) = E
[
f̂n(x)

]
= Φ̃n

( √
nh2

nµ̄(xkl)√
1 + Σ2

n(xkl)

)
− γ.

Then M̄n(S) =
∫
S
fn(x)dx. For any fixed x in the interior of the set S0, fn(x) = Φ̃n(0)

for sufficiently large n which converges to 1/2. As µ is continuous, for any fixed x /∈ S0,

µx,δx = inf{µ(y) : ρ(x, y) < δx} > 0 for some δx > 0. Hence fn(x) ≥ Φ(
√
nh2

nµx,δx)

converges to 1. Also, |fn(x)| ≤ 1 and hence, M̄n(S) converges to M(S) by DCT.

Moreover,

Var(Mn(S)) ≤ 1

n2

∑
k,l,k′,l′

Cov
(
f̂n(xk,l), f̂n(xk′,l′)

)
.

As |f̂n(xk,l)| ≤ 1, and f̂n(xk,l) and f̂n(xk′,l′) are independent whenever min{|k−k′|, |l−

l′|} > 2L0mhn, we have

∑
k′,l′

Cov
(
f̂n(xk,l), f̂n(xk′,l′)

)
. (mhn)2 = nh2

n,

for any fixed k and l. Hence, Var(Mn(S))is bounded (up to a constant) by n(nh2
n)/n2

which converges to zero. Hence, Mn(S) converges in probability to M(S), which

completes the proof.
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D.3 Proof of Lemma 5.11

The sum
∑

k,lWkl1S(xkl) can be written as
∑

1≤i,j≤d√m′eRi,j where for kis and ljs

defined as in (5.20), each block

Ri,j =
∑

k,l:1≤ki,lj≤m

Wkilj1S(xkilj) (D.2)

is a sum of rij many independent random variables with

⌊
m/
⌈√

m′
⌉⌋2

≤ rij ≤
⌈
m/
⌈√

m′
⌉⌉2

.

As m/
√
m′ →∞,

n/(2m′) ≤ rij ≤ 2n/m′, (D.3)

for large n, a fact we use frequently in the proofs. Note that
∑

1≤i,j≤d√m′e rij = n

and hence, by convexity of exp(·),

exp

(
1

n

∑
1≤k,l≤m

Wkl1S(xkl)

)
≤

∑
1≤i,j≤d√m′e

rij
n

exp

(
Rij

rij

)
.

As |Wkl1S(xkl)| ≤ 1S(xkl),

P

(
1

n

∑
k,l

Wkl1S(xkl) ≥ a

)
≤

∑
1≤i,j≤d√m′e

rij
n
E exp

(
λRij

rij
− λa

)
and

E exp

(
λRij

rij

)
≤ exp

 λ2

8r2
ij

∑
k,l:1≤ki,lj≤m

(
1S(xkilj)

)2

 .

The second bound in the above display is simply the one used in proving Hoeffd-

ing’s inequality for independent sequences (Hoeffding, 1963, equation (4.16)). Con-
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sequently,

P

(
1

n
|
∑
k,l

Wkl1S(xkl) ≥ a

)

≤ e−λa exp

 λ2

8(n/2m′)2
max

1≤i,j≤d√m′e

 ∑
k,l:1≤ki,lj≤m

1S(xkilj)

 .

Choosing

λ =
a(n/m′)

max1≤i,j≤d√m′e
[
(1/rij)

∑
k,l:1≤ki,lj≤m 1S(xkilj)

]
and paralleling the above steps to bound P

(
(1/n)

∑
k,lWkl1S(xkl) ≤ a

)
, we get

P

(
1

n

∣∣∣∣∣∑
k,l

Wkl1S(xkl)

∣∣∣∣∣ ≥ a

)

≤ 2 exp

− na2

16m′max1≤i,j≤d√m′e
[
(1/rij)

∑
k,l:1≤ki,lj≤m 1S(xkilj)

]
 .

Using the definition of d̃n, the result follows.

D.4 Proof of Theorem 5.12

Let S = min{s ≥ 1 : 2−sR ≤ δ2/2}. By means of condition (5.22), we can choose

C to be a constant large enough so that

√
n/m′(δ1 − δ2) ≥ 48

S∑
s=1

2−sRH1/2(2−sR,G, d̃n) ∨ (1152 log 2)1/2(4m′)R.

We denote the class of functions G by {gθ : θ ∈ Θ} for convenience. Let {gsj}Nsj=1 be

a minimal 2−sR-covering set of S̃, s = 0, 1, . . .. So, Ns = N(2−sR, S̃, d̃n). For, any

θ ∈ Θ, let gsθ denote approximation of gθ from the collection {gsj}Nsj=1. As |Wkl| ≤ 1,
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applying Cauchy-Schwartz to each block Ri,j defined in (D.2) and using (D.3) yields

∣∣∣∣∣ 1n∑
k,l

Vkl(gθ(xkl)− gSθ (xkl))

∣∣∣∣∣ ≤ 2d̃n(gθ, g
S
θ ) ≤ δ2.

Hence, it suffices to prove the exponential inequality for

P

(
max

j=1,...,Ns

∣∣∣∣∣ 1n∑
k,l

Vklg
S
j (xkl)

∣∣∣∣∣ ≥ δ1 − δ2

)
.

Next, we use a chaining argument. Note that gSθ =
∑S

s=1(gsθ − gs−1
θ ). By triangle

inequality,

d̃n(gsθ, g
s−1
θ ) ≤ d̃n(gsθ, gθ) + d̃n(gθ, g

s−1
θ ) ≤ 3(2−sR).

Let ηs be positive numbers satisfying
∑

s≤S ηs ≤ 1. Then,

P ∗

(
sup
θ∈Θ

∣∣∣∣∣ 1n
S∑
s=1

∑
k,l

Vkl(g
s
θ(xkl)− gs−1

θ (xkl))

∣∣∣∣∣ ≥ δ1 − δ2

)

≤
S∑
s=1

P ∗

(
sup
θ∈Θ

∣∣∣∣∣ 1n∑
k,l

Vkl(g
s
θ(xkl)− gs−1

θ (xkl))

∣∣∣∣∣ ≥ (δ1 − δ2)ηs

)

≤
S∑
s=1

2 exp

[
2H(2−sR, S̃, d̃n)− n(δ1 − δ2)2η2

n

9(16m′)2−2sR2

]
. (D.4)

We choose ηs to be

ηs =
6
√

16m′2−sRH1/2(2−sR, S̃, d̃n)√
n(δ1 − δ2)

∨ 2−s
√
s

8
.

The rest of the argument is identical to that Lemma 3.2 of van de Geer (2000). It

can be shown that
∑

s≤S ηs ≤ 1. Moreover, the above choice of ηs guarantees

H(2−sR, S̃, d̃n) ≤ n(δ1 − δ2)2η2
s

36(16m′2)2−2sR2
.
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Hence the bound in (D.4) is at most

s∑
s=1

2 exp

[
− n(δ1 − δ2)2η2

s

18(16m′)2−2sR2

]
.

Next, using ηs ≤ 2−s
√
s/8 and that n(δ1 − δ2

2)/(1152(16m′)R2) ≥ log(2), it can be

shown that the above display is bounded above by

∞∑
s=1

2 exp

[
− n(δ1 − δ2)2s

1152(16m′)R2

]
≤ 2

(
1− exp

[
− n(δ1 − δ2)2

1152(16m′)R2

])−1

exp

[
− n(δ1 − δ2)2s

1152(16m′)R2

]
≤ 4 exp

[
− n(δ1 − δ2)2s

1152(16m′)R2

]
.

This completes the proof.

D.5 Proof of Proposition 5.16

Note that
√
mn(τ̂ − τ0) = OP (1). So, given α > 0, there exists Lα > 0 such that

for Vn,α = [τ0 − Lα/
√
mn, τ0 + Lα/

√
mn], P [τ̂ ∈ Vn,α] > 1− α. Let Ŝn(τ) denote the

estimate of S0 based on Mn(S, τ). Then,

P ∗
[
d(Ŝn(τ̂), S0) > δn

]
≤ P ∗

[
d(Ŝn(τ̂), S0) > δn, τ̂ ∈ Vn,α

]
+ α.

Following the arguments for the proof of Proposition 5.6, the outer probability on the

right side can be bounded by

kn∑
k=0

P ∗
(

inf
A∈Sn,k

Mn(A, τ̂)−Mn(S0, τ̂) ≤ 0, τ̂ ∈ Vn,α
)
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The is further bounded by:

kn∑
k=0

P ∗

 sup
A∈Sn,k,
τ∈Vn,α

|(Mn(S, τ)−M(S))− (Mn(S0, τ)−M(S0))| > inf
A∈Sn,k

(M(S)−M(S0))

 .

(D.5)

As before, M(S)−M(S0) ≥ c(γ)F (S4S0), and hence, (D.5) is bounded by

kn∑
k=0

P ∗

 sup
A∈Sn,k,
τ∈Vn,α

|(Mn −Mm)(S, τ)− (Mn −Mm)(S0, τ)| > c(γ)2kδn/3


+

kn∑
k=0

1

 sup
A∈Sn,k,
τ∈Vn,α

|(Mm(S, τ)−Mm(S, τ0))− (Mm(S0, τ)−Mm(S0, τ0))| ≥ c(γ)2kδn/3


+

kn∑
k=0

1

[
sup

A∈Sn,k
|(Mm −M)(S, τ0)− (Mm −M)(S0, τ0)| ≥ c(γ)2kδn/3

]
.

(D.6)

The third term can be shown to be zero for sufficiently large n in the same manner

as in the proof of Proposition 5.6. Note that the first term can be written as

kn∑
k=0

P ∗

(
sup

A∈Sn,k,τ∈Vn,α

∣∣Gngn,τ (Ȳ )1A4S0(X)
∣∣ > c(γ)2k−1δn

√
n/3

)
, (D.7)

where gn,τ (y) = Φ (
√
m(y − τ))−γ. We are now in a position to apply Theorem 5.5 to

each term of (D.7). In the setup of Theorem 5.5, N = 2k−1δn
√
n and the concerned

class of functions is Gn,k = {gn,τ (Ȳ )1B(X) : B = A4S0, A ∈ Sn,k, τ ∈ Vn,α}. For

B ∈ {A4S0 : A ∈ Sn,k}, ‖gn,τ1B‖L2(P ) ≤ [E1B(X)]1/2 ≤ (2k+1δn)1/2. So, we can

choose R = Rn,k = (2k+1δn)1/2. Also,

HB(u, {A4S0 : A ∈ Sn,k}, L2(P )) ≤ A0u
−1,

for some constant A0 > 0. To bound the entropy of the class of functions Tn =

{gn,τ (·) : τ ∈ Vn,α}, let τ0 − Lα/
√
mn = t0 < t1 < . . . < trn = τ0 + Lα/

√
mn be such
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that |ti − ti−1| ≤ u/
√
m, for u > 0. Note that rn ≤ 4Lαu/

√
n. As Φ is Lipschitz

continuous of order 1 (with Lipschitz constant bounded by 1),

|gn,τ (ȳ)− gn,τi(ȳ)| ≤
√
m|τ − τi| ≤ u,

for τ ∈ [τi, τi+1]. Hence,

HB(u, Tn, L2(P )) ≤ A1 log(u/
√
n),

for some constant A1 > 0 and for small u > 0. As the class Gn,k is formed by product

of the two classes Sn,k and Tn, the bracketing number for Gn,k is bounded above by,

HB(u,Gn,k, L2(P )) ≤ A0u
−1 + A1 log(u/

√
n) ≤ A2u

−1.

In light of the above bound on the entropy, the first term in (D.6) can be shown to

go to zero by arguing in the same manner as in the proof of Proposition 5.6.

For the second term in (D.6), note that |Φ
(√

m(Ȳ − τ)
)
− Φ

(√
m(Ȳ − τ0)

)
| ≤

√
m|τ0 − τ |. Hence,

|(Mm(S, τ)−Mm(S, τ0))− (Mm(S0, τ)−Mm(S0, τ0))|

=
∣∣Pm [{Φ

(√
m(Ȳ − τ)

)
− Φ

(√
m(Ȳ − τ0)

)}
{1S(X)− 1S0(X)}

]∣∣
≤
√
m|τ0 − τ | |Pm |1S(X)− 1S0(X)|| .

Thus, the second term in (D.6) is bounded by

2(Lα/
√
n) sup

S∈Sn,k
Pm|1S(X)− 1S0(X)| ≤ Lα2k+2δn/

√
n.

This is eventually smaller that c(γ)2kδn/3 and hence, each term in the second sum of

(D.6) is eventually zero. As α is arbitrary, we get the result.
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D.6 Proof of Proposition 5.17

Note that
√
n(τ̂ − τ0) = OP (1). So, given α > 0, there exists Lα > 0 such that for

Vn,α = [τ0−Lα/
√
n, τ0 +Lα/

√
n], P [τ̂ ∈ Vn,α] > 1−α. Let Ŝn(τ) denote the estimate

of S0 based on Mn(S, τ). We have,

P ∗
[
d(Ŝn(τ̂), S0) > δn

]
≤ P ∗

[
δn < d(Ŝn(τ̂), τ̂ ∈ Vn,α

]
+ α.

Following the arguments for the proof of Proposition 5.13, the first term can be

bounded by

∑
k≥0,2kδn≤1

P ∗
(

inf
A∈Sn,k

Mn(A, τ̂)−Mn(S0, τ̂) ≤ 0, τ̂ ∈ Vn,α
)

This is at most

kn∑
k=0

P ∗

 sup
A∈Sn,k,
τ∈Vn,α

|(Mn(S, τ)−M(S))− (Mn(S0, τ)−M(S0))| > inf
A∈Sn,k

(M(S)−M(S0))

 .

(D.8)

Note that M(S)−M(S0) ≥ c(γ)λ(S4S0) as earlier, and hence (D.8) is bounded by

kn∑
k=0

P ∗

 sup
A∈Sn,k,
τ∈Vn,α

|(Mn(S, τ)−M(S))− (Mn(S0, τ)−M(S0))| > c(γ)2kδn

 .

Moreover,

|(Mn(S, τ)−M(S))− (Mn(S0, τ)−M(S0))|

≤ |(Mn(S, τ0)−M(S))− (Mn(S0, τ0)−M(S0))|

+
∣∣(Mn(S, τ)−M(S, τ0))− (Mn(S0, τ)−M(S0, τ0))

∣∣ .
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By the Lipschitz continuity of Φ, we have

∣∣(Mn(S, τ)−M(S, τ0))− (Mn(S0, τ)−M(S0, τ0))
∣∣

≤
√
nh2

n|τ − τ0|

[
1

n

∑
k,l

|1S(xkl)− 1S0(xkl)|

]

≤
√
nh2

n|τ − τ0|
[
λ(S4S0) +O

(
1√
n

)]
.

Here, the last step follows from calculations similar to those in the proof of Lemma

5.10. Consequently, for sufficiently large n,

sup
A∈Sn,k,
τ∈Vn,α

∣∣(Mn(S, τ)−M(S, τ0))− (Mn(S0, τ)−M(S0, τ0))
∣∣

≤ (2Lα)hn

[
2k+1δn +O

(
1√
n

)]
<
c(γ)

2
2kδn.

Hence,

kn∑
k=0

P ∗

 sup
A∈Sn,k,
τ∈Vn,α

|(Mn(S, τ)−M(S))− (Mn(S0, τ)−M(S0))| > c(γ)2kδn


≤

kn∑
k=0

P ∗

 sup
A∈Sn,k,
τ∈Vn,α

|(Mn(S, τ0)−M(S))− (Mn(S0, τ0)−M(S0))| > c(γ)

2
2kδn

 .

The above is a probability inequality based on the criterion with known τ0. This can

be shown to go to zero by calculations identical to those in the proof of Proposition

5.13. As α > 0 is arbitrary, we get the result.
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APPENDIX E

Proofs for Chapter 6

E.1 Proof of Theorem 6.1

Note that if κnrn = O(1), i.e., there exists C > 0, such that κnrn ≤ C for all n,

then

P
(
rnρn(d̂n, dn) ≥ C

)
= P

(
rnκnρn(d̂n, dn) ≥ Cκn

)
≤ P

(
ρn(d̂n, dn) ≥ κn

)
,

which converges to zero. Therefore, the conclusion of the theorem is immediate when

κnrn = O(1). Hence, we only need to address the situation where κnrn →∞.

For a fixed realization of θ̂ = θ, we use d̂n(θ) to denote our estimate, so that

d̂n = d̂n(θ̂n). For any L > 0,

P
(
rnρn(d̂n(θ̂n), dn) ≥ 2L

)
≤ P

(
rnκn > rnρn(d̂n(θ̂n), dn) ≥ 2L, θ̂n ∈ Θτ

n

)
+P

(
ρn(d̂n(θ̂n), dn) ≥ κn

)
+ τ. (E.1)
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The second term on the right side goes to zero. Further,

P
(
rnκn > rnρn(d̂n(θ̂n), dn) ≥ 2L, θ̂n ∈ Θτ

n

)
= E

[
P
(
rnκn > rnρn(d̂n(θ̂n), dn) ≥ 2L | θ̂n

)
1
[
θ̂n ∈ Θτ

n

]]
≤ sup

θ∈Θτn

P
(
rnκn > rnρn(d̂n(θ), dn) ≥ 2L

)
. (E.2)

Let Sj,n = {d : 2j ≤ rnρn(d, dn) < min(2j+1, κnrn)} for j ∈ Z. If rnρn(d̂n(θ), dn) is

larger than 2L for a given positive integer L (and smaller than κnrn), then d̂n(θ̂n) is

in one of the shells Sj,n’s for j ≥ L. By definition of d̂n(θ), the infimum of the map

d 7→Mn(d, θ)−Mn(dn, θ) over the shell containing d̂n(θ) (intersected with Dθ) is not

positive. For θ ∈ Θτ
n,

P
(
rnκn > rnρn(d̂n(θ), dn) ≥ 2L

)
≤

∑
j≥L,2j≤κnrn

P ∗
(

inf
d∈Sj,n∩Dθ

Mn(d, θ)−Mn(dn, θ) ≤ 0

)
.

For every j involved in the sum, n > Nτ and any θ ∈ Θτ
n, (6.2) gives

inf
2j/rn≤ρn(d,dn)<min(2j+1,κnrn)/rn,d∈Dθ

Mn(d, θ)−Mn(dn, θ) ≥ cτ
22j

r2
n

. (E.3)

Also, for such a j, n > Nτ and θ ∈ Θτ
n,

P ∗
(

inf
d∈Sj,n∩Dθ

Mn(d, θ)−Mn(dn, θ) ≤ 0

)
≤ P ∗

(
inf

d∈Sj,n∩Dθ
[(Mn(d, θ)−Mn(d, θ))− (Mn(dn, θ)−Mn(dn, θ))]

≤ − inf
d∈Sj,n∩Dθ

Mn(d, θ)−Mn(dn, θ)

)
≤ P ∗

(
inf

d∈Sj,n∩Dθ
[(Mn(d, θ)−Mn(d, θ))− (Mn(dn, θ)−Mn(dn, θ))] ≤ −cτ

22j

r2
n

)
≤ P ∗

(
sup

d∈Sj,n∩Dθ
|(Mn(d, θ)−Mn(d, θ))− (Mn(dn, θ)−Mn(dn, θ))| ≥ cτ

22j

r2
n

)
.
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For n > Nτ , by Markov inequality and (6.3), we get

sup
θ∈Θτn

∑
j≥L,2j≤κnrn

P ∗
(

inf
d∈Sj,n∩Dθ

Mn(d, θ)−Mn(dn, θ) ≤ 0

)

≤ Cτ
∑

j≥L,2j≤κnrn

φn(min(2j+1, rnκn)/rn)r2
n

cτ
√
n22j

. (E.4)

Note that φn(cδ) ≤ cαφn(δ) for every c > 1. As κnrn →∞, there exists N̄ ∈ N, such

that κnrn > 1. Hence, for L > 0 and n > max(N̄ ,Nτ ), the above display is bounded

by

Cτ
cτ

∑
j≥L,2j≤κnrn

min(2j+1, rnκn)2−2j ≤ Cτ
cτ

∑
j≥L,2j≤κnrn

2(j+1)α−2j,

by the definition of rn. For any fixed η > 0, take τ = η/3 and choose Lη > 0 such

that the sum on the right side is less than η/3. Also, there exists Ñη ∈ N such that

for all n > Ñη ∈ N,

P
(
ρn(d̂n(θ̂n), dn) ≥ κn

)
< η/3.

Hence, for n > max(N̄ ,Nη/3, Ñη),

P
(
rnρn(d̂n(θ̂n), dn) > 2Lη

)
< η,

by (E.1) and (E.4). Thus, we get the result when conditions (6.2) and (6.3) hold for

some sequence κn > 0.

Further, note that if the conditions in part (b) of the theorem hold for all sequences

κn > 0, following the arguments in (E.1) and (E.2), we have

P
(
rnρn(d̂n(θ̂n), dn) > 2L

)
≤ sup

θ∈Θτn

P
(
rnρn(d̂n(θ), dn) > 2L

)
+ τ.

Moreover, the bounds in (E.3) and (E.4) hold for all j ≥ L and n > Nτ . Hence, we

do not need address the event P
(
ρn(d̂n(θ̂n), dn) ≥ κn

)
in (E.1) separately and thus,
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the result follows.

E.2 Proof of Lemma 6.2

Note that Mn(d̂n(θ̂n), θ̂n) − Mn(dn, θ̂n) is not positive by definition of d̂n(θ̂n).

Hence,

P
[
ρn(d̂n(θ̂n), dn) ≥ κn, θ̂n ∈ Θτ

n

]
≤ E

[
P
[
ρn(d̂n(θ̂n), dn) ≥ κn | θ̂n

]
1
[
θ̂n ∈ Θτ

n

]]
≤ sup

θ∈Θτn

P
[
2ρn(d̂n(θ), dn) ≥ κn

]
≤ sup

θ∈Θτn

P
[
Mn(d̂n(θ), θ)−Mn(dn, θ) ≥ cτn(κn)

]
≤ sup

θ∈Θτn

P
[
Mn(d̂n(θ), θ)−Mn(dn, θ)−

(
Mn(d̂n(θ), θ)−Mn(dn, θ)

)
≥ cτn(κn)

]
≤ sup

θ∈Θτn

P

[
2 sup
d∈Dθ
|Mn(d, θ)−Mn(d, θ)| ≥ cτn(κn)

]
.

As the probability in right side converges to zero and τ > 0 is arbitrary, we get the

result.

E.3 Proof of Theorem 6.3

As sum of tight processes is tight, it suffices to show tightness of ζn(·, θ̂n) and

Gnfn,·,θ̂n separately. To justify tightness of the process ζn, we need to bound

P ∗

[
sup

ρ̃(h1,h2)<δn

∣∣∣ζn(h1, θ̂n)− ζn(h2, θ̂n)
∣∣∣ > t

]
,

for δn ↓ 0 and t > 0. The above display is bounded by

P ∗

[
sup

ρ̃(h1,h2)<δn

∣∣∣ζn(h1, θ̂n)− ζn(h2, θ̂n)
∣∣∣ > t, θ̂n ∈ Θτ

n

]
+ P [θ̂n /∈ Θτ

n]
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≤ 1

 sup
θ∈Θτn

ρ̃(h1,h2)<δn

|ζn(h1, θ)− ζn(h2, θ)| > t

+ τ.

By (6.10), the above can be made arbitrarily small for large n and hence, the process

ζn(·, θ̂n) is asymptotically tight.

We justify tightness of the process {Gnfn,h,θ̂ : h ∈ H} when (6.11) holds. The

proof under the condition on bracketing numbers follows along similar lines. Consider

the expression

P ∗

[
sup

ρ̃(h1,h2)<δn

∣∣∣Gn(fn,h1,θ̂n − fn,h2,θ̂n)
∣∣∣ > t

]
,

for δn ↓ 0 and t > 0. Let ei, i ≥ 1 denote Rademacher random variables independent

of V ’s and θ̂. Following the arguments for the proof of the symmetrization lemma for

probabilities, Lemma 2.3.7 of van der Vaart and Wellner (1996), for sufficiently large

n, the above display can be bounded by

4P ∗

[
sup

ρ̃(h1,h2)<δn

∣∣∣∣∣ 1√
n

n∑
i=1

ei(fn,h1,θ̂(Vi)− fn,h2,θ̂(Vi))

∣∣∣∣∣ > t

4

]
. (E.5)

The only difference from the proof of the cited lemma is that the arguments are to

be carried out for fixed realizations of Vi’s and θ̂ (and then outer expectations are

taken) instead of just Vi’s. Further, from the measurability assumption, the map

(V1, V2, . . . , Vn, θ̂, e1, . . . , en) 7→ sup
ρ̃(h1,h2)<δn

∣∣∣∣∣ 1√
n

n∑
i=1

ei(fn,h1,θ̂(Vi)− fn,h2,θ̂(Vi))

∣∣∣∣∣
is jointly measurable. Hence, the expression in (E.5) is a probability. Let Qn denote

the marginal distribution of θ̂n. Then,

4P

[
sup

ρ̃(h1,h2)<δn

∣∣∣∣∣ 1√
n

n∑
i=1

ei(fn,h1,θ̂(Vi)− fn,h2,θ̂(Vi))

∣∣∣∣∣ > t

4

]

= 4

∫
P

[
sup

ρ̃(h1,h2)<δn

∣∣∣∣∣ 1√
n

n∑
i=1

ei(fn,h1,θ(Vi)− fn,h2,θ(Vi))

∣∣∣∣∣ > t

4

]
Qn(dθ)
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≤ 4 sup
θ∈Θτn

P

[
sup

ρ̃(h1,h2)<δn

∣∣∣∣∣ 1√
n

n∑
i=1

ei(fn,h1,θ(Vi)− fn,h2,θ(Vi))

∣∣∣∣∣ > t

4

]
+ τ

For a fixed θ ∈ Θτ
n, let Fn,θ,δn = {fn,h1,θ− fn,h2,θ : ρ̃(h1, h2) < δn}. For g ∈ Fn,θ,δn , the

sum
∑n

i=1 eig(Vi) (given Vis) is sub-Gaussian and hence, by chaining, Corollary 2.2.8

of van der Vaart and Wellner (1996), the above display can be bounded by

16

t
sup
θ∈Θτn

E

ξn(θ)∫
0

√
logN (u,Fn,θ,δn , L2(Pn))du, (E.6)

with

ξ2
n(θ) = sup

g∈Fn,θ,δn
‖g‖2

L2(Pn) = sup
g∈Fn,θ,δn

[
1

n

n∑
i=1

g2(Vi)

]
.

The integrand in (E.6) can be bounded using the inequality N(u,F2
n,θ,δn

, L2(Pn)) ≤

N2(u/2,Fn,θ, L2(Pn)). By a change of variable, the expression in (E.6) is then

bounded by:

16

t
sup
θ∈Θτn

E

‖Fn,θ‖L2(Pn)

ξn(θ)/‖Fn,θ‖L2(Pn)∫
0

sup
Q

√
logN

(
u‖Fn,θ‖L2(Q),F2

n,θ,δn
, L2(Q)

)
du

 .
(E.7)

By Cauchy-Schwartz inequality, the expectation above is bounded by the product of

E
[
‖Fn,θ‖2

L2(Pn)

]1/2

and

E
 ξn(θ)/‖Fn,θ‖L2(Pn)∫

0

sup
Q

√
logN

(
u‖Fn,θ‖L2(Q),F2

n,θ,δn
, L2(Q)

)
du


2

1/2

.

By dominated convergence, it can then be shown that the expression in (E.6) goes to

zero provided supθ∈Θτn
E‖Fn,θ‖2

L2(Pn) is O(1) and supθ∈Θτn
P ∗
[
ξn(θ)/‖Fn,θ‖L2(Pn) > η

]
goes to zero for any η > 0. Note that E‖Fn,θ‖2

L2(Pn) = PF 2
n,θ which is uniformly

bounded in θ using (6.7). Moreover, the envelopes Fn,θ can be chosen bounded away
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from zero without disturbing the assumptions of the theorem (Fn,θ ∨ 1 is also an

envelope). Hence, it suffices to show that supθ∈Θτn
E∗ξn(θ)2 converges to zero. Note

that

E∗ξn(θ)2 ≤ E∗ sup
g∈Fn,θ,δn

|(Pn − P )g2|+ sup
g∈Fn,θ,δn

|Pg2|

By (6.9), the second term on the right side goes to zero uniformly in θ ∈ Θτ
n. By the

symmetrization lemma for expectations, Lemma 2.3.1 of van der Vaart and Wellner

(1996), the first term on the right side is bounded by

2E∗ sup
g∈F2

n,θ,δn

∣∣∣∣∣ 1n
n∑
i=1

eig(Vi)

∣∣∣∣∣
Note that Gn,θ = (2Fn,θ)

2 is an envelope for the class F2
n,θ,δn

. By con-

dition (6.8), there exists a sequence of numbers ηn ↓ 0 (slowly enough)

such that supθ∈Θτn
PF 2

n,θ1
[
F 2
n,θ > ηn

√
n
]

converges to zero. Let F2
n,θ,δn,ηn

={
g1[g ≤ nη2

n] : g ∈ F2
n,θ,δn

}
. Then, the above display is bounded by:

2E∗ sup
g∈F2

n,θ,δn,ηn

∣∣∣∣∣ 1n
n∑
i=1

eig(Vi)

∣∣∣∣∣+ 4P ∗Gn,θ1
[
Gn,θ > nη2

n

]
The second term in the above display goes to zero (uniformly in θ) by (6.8). By

the P -measurability of the class F2
n,θ,δn,ηn

, the first term in the above display is an

expectation. For u > 0, let Gu be a minimal u-net in L1(Pn) over F2
n,θ,δn,ηn

. Note that

cardinality of Gu is N(u,F2
n,θ,δn,ηn

, L1(Pn)) and that

2E∗ sup
g∈F2

n,θ,δn,ηn

∣∣∣∣∣ 1n
n∑
i=1

eig(Vi)

∣∣∣∣∣ ≤ 2

n
E∗ sup

g∈Gu

∣∣∣∣∣
n∑
i=1

eig(Vi)

∣∣∣∣∣+ u.

Also, supg∈F2
n,θ,δn,ηn

|g| ≤ nη2
n. Now, by arguments similar to those in the proof of

Theorem 2.4.3 of van der Vaart and Wellner (1996), the first term on the right side
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is bounded (up to a constant multiple) by

E
η2
nn

n

√
1 + logN(u,F2

n,θ,δn,ηn
, L1(Pn)) ≤ η2

n

√
1 + 2 sup

Q
logN(u,Fn,θ, L2(Q)).

As ηn converges to zero (uniformly in θ) and u is arbitrary, we get the result.

E.4 Proof of Lemma 6.4

Here, we prove a more general result which also applies to situations where the

limit distribution of the first stage estimate can appear in the limit process. We state

the result below.

Lemma E.1. For a generic θ, let ∆θ = nν(θ − θn). Consider the setup of Theorem

6.3. Additionally, assume that

1. ∆θ̂n
= nν(θ̂n − θn) converges in distribution to a random vector ξ.

2. For any τ > 0, the covariance function

Cn(h1, h2,∆θ) = Pfn,h1,θn+n−ν∆θ
fn,h2,θn+n−ν∆θ

− Pfn,h1,θn+n−ν∆θ
Pfn,h2,θn+n−ν∆θ

converges pointwise to C(h1, h2,∆θ) on H×H, uniformly in ∆θ, θ ∈ Θτ
n.

3. For any τ > 0, the functions ζn(h, θn+n−ν∆θ) converges pointwise to a function

ζ(h,∆θ) on H, uniformly in ∆θ, θ ∈ Θτ
n.

4. The limiting functions C(h1, h2,∆θ) and ζ(h,∆θ) are continuous in ∆θ.

Let Z(h, ξ) be a stochastic process constructed in the following manner. For a partic-

ular realization ξ0 of ξ, generate a Gaussian process Z(h, ξ0) (independent of ξ) with

drift ζ(·, ξ0) and covariance kernel C(·, ·, ξ0). Then, the process Zn(·, θ̂n) converges

weakly Z(·, ξ) in `∞(H).
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For notational ease, we assumed each element of the vector θ̂n converges at the

same rate (nν). The extension to the general situation where different elements of

θ̂n have different rates of convergence is immediate. Also, note that condition 4 is

redundant when the functions C and ζ do not depend on ∆θ.

Proof. In light of Theorem 6.3, we only need to establish the finite dimensional

convergence. Given the independence of vectors Vis with θ̂n, the drift process ζn(·, θ̂n)

is independent of the centered process (Zn − ζn)(·, θ̂n) given θ̂n. Hence, it suffices to

show the finite dimensional convergence of these two processes separately. On the set

θ̂ ∈ Θτ
n,

|ζn(h, θn + n−ν∆θ̂n
)− ζ(h, ξ)| ≤ sup

θ∈Θτn

|ζn(h, θn + n−ν∆θ)− ζ(h,∆θ)|

+|ζ(h,∆θ̂n
)− ζ(h, ξ)|.

In light of conditions 3 and 4, an application of Skorokhod representation theorem

then ensures the convergence of finite dimensional marginals of ζn(·, θn + n−ν∆θ̂n
)

to that of the process ζ(·, ξ). To establish the finite dimensional convergence of the

centered process Zn − ζn, we require the following result that arises from a careful

examination of the proof of the Central Limit Theorem for sums of independent zero

mean random variables (Billingsley, 1995, pp. 359 - 361).

Theorem E.2. For n ≥ 1, let {Xi,n}ni=1 be independent and identically distributed

random variables with mean zero and variance σ2
n > 0. Let Sn = (1/

√
n)
∑

i≤nXi,n,

Fn be the distribution function of Sn and for κ > 0,

Ln(κ) = E
[
X2

1,n1
[
|X1,n| > κ

√
n
]]

Then, for any t ∈ R with |σnt| ≤
√

2n, we have

|F̂n(t)− Φ̂(σnt)| ≤ κσ2
n|t|3 + t2Ln(κ) +

σ4
nt

4 exp(σ2
nt

2)

n
(E.8)
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Here ˆ denotes characteristic function, so that Φ̂(t) =
∫
R e

ıtxΦ{dx}.

We now prove Lemma E.1. Let k ≥ 1, c = (c1, . . . ck) ∈ Rk, h = (h1, . . . , hk) ∈ Rk

and for ∆θ = nν(θ − θn),

Tn(∆θ) = Tn(h, c,∆θ) =
∑
j≤k

cjGnfn,hj ,θn+n−ν∆θ
.

Note that

π2
n(∆θ) = Var(Tn(∆θ)) = Var

(∑
j≤k

cjfn,hj ,θn+n−ν∆θ

)
.

converges uniformly in ∆θ, θ ∈ Θτ
n, to

π2
0(∆θ) :=

∑
j1,j2

cj1cj2C(hj1 , hj2 ,∆θ).

By Lévy continuity theorem, it suffices to show that the characteristic function

(c1, . . . ck) 7→ E exp
[
ıTn(∆θ̂n

)
]

converges to E exp [ıπ0(ξ)Z], where Z is a standard normal random variable indepen-

dent of ξ and ∆θ̂n
. Note that

∣∣E exp
[
ıTn(∆θ̂n

)
]
− E exp [ıπ0(ξ)Z]

∣∣ ≤ ∣∣E exp
[
ıTn(∆θ̂n

)
]
− E exp

[
ıπn(∆θ̂n

)Z
]∣∣

+
∣∣E exp

[
ıπn(∆θ̂n

)Z
]
− E exp [ıπ0(ξ)Z]

∣∣ .
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The right side is further bounded (up to 4ε) by

sup
θ∈Θτn

|E exp [ıTn(∆θ)]− E exp [ıπn(∆θ)Z]|

+ sup
θ∈Θτn

|E exp [ıπn(∆θ)Z]− E exp [ıπ0(∆θ)Z]|

+
∣∣E exp

[
ıπ0(∆θ̂n

)Z
]
− E exp [ıπ0(ξ)Z]

∣∣ .
(E.9)

The second term in the above display is precisely supθ∈Θτn
| exp(−π2

n(∆θ)/2) −

exp(−π2
0(∆θ)/2)| which converges to zero. The third term converges to zero by con-

tinuous mapping theorem. To control the first term, we apply Theorem E.2. Let

Ln(κ,∆θ) = P

[∑
j≤k

cj(fn,hj ,θn+n−ν∆θ
− Pfn,hj ,θn+n−ν∆θ

)

]2

×

1

[∣∣∣∣∣∑
j≤k

cj(fn,hj ,θn+n−ν∆θ
− Pfn,hj ,θn+n−ν∆θ

)

∣∣∣∣∣ > √nκ
]]

.

Then, by Theorem E.2, the first term in (E.9) is bounded by

sup
θ∈Θτn

[
κπ2

n(∆θ) + Ln(κ,∆θ) +
π4
n(∆θ) exp(π2

n(∆θ))

n

]

whenever supθ∈Θτn
|πn(∆θ)| ≤ 2

√
n, which happens eventually as the right side is O(1).

To see this, note that

∣∣∣∣∣∑
j≤k

cjfn,hj ,θn+n−ν∆θ

∣∣∣∣∣ ≤ 2kmax
j

(|cj| ∨ 1)Fn,θ. (E.10)

Then, by (6.7), supθ∈Θτn
|πn(∆θ)| ≤ 2kmaxj(|cj| ∨ 1) supθ∈Θτn

PF 2
n,θ = O(1). Further,

using (E.10),

Ln(κ,∆θ) ≤
(

2kmax
j

(|cj| ∨ 1)

)2

P

[[
F 2
n,θ + PF 2

n,θ

]
1

[
F >

√
nκ

maxj(|cj| ∨ 1)
− PFn,θ

]]
,
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which converges to zero uniformly in θ ∈ Θτ
n due to conditions (6.7) and (6.8). Hence,

lim sup
n→∞

sup
θ∈Θτn

|E exp [ıTn(∆θ)]− E exp [ıπn(∆θ)Z]| ≤ κ lim sup
n→∞

sup
θ∈Θτn

π2
n(∆θ).

As supθ∈Θτn
π2
n(∆θ) = O(1) and κ > 0 is arbitrary, we get the result.

E.5 Proof of Proposition 6.7

We show that the result holds for h > 0. The case h < 0 can be shown analogously.

In what follows, the dependence on h is suppressed in the notations for convenience.

To start with, note that ξn = nν(d̂1− d0) is Op(1) and it converges in distribution

to a tight random variable ξ with a continuous bounded density on R. In particular,

P
[
|ξn| < δ, |ξn| > Kδ/2

]
converges to P

[
|ξ| < δ, |ξ| > Kδ/2

]
≤ Cδ, for some C > 0.

For u ∈ R, let F u
n2

denote the distribution function of Tn2(u), where

Tn2(u) = Zn2(h, αn, βn, d0 + un−ν)− Zn2(h, αn, βn, d0).

Also, let π2
n2

:= π2
n2

(u) = Var[Tn2(u)]. Conditional on ξn = u, Tn2 is distributed as

Tn2(u). Also, let ˆ denote characteristic function, so that Φ̂(t) =
∫
R e

ıtxΦ{dx}. By

Lévy continuity theorem, it suffices to show that for any t ∈ R,

E [exp (ıtTn2)]− Φ̂(tπ0)

converges to zero. Note that

∣∣∣E [exp (ıtTn2)]− Φ̂(tπ0)
∣∣∣ =

∣∣∣E [E [exp (ıtTn2)− Φ̂(tπ0)
∣∣∣ ξn]]∣∣∣

= sup
δ≤|u|≤Kδ/2

∣∣∣F̂ u
n2

(t)− Φ̂(tπ0)
∣∣∣+ 2P

[
|ξ| < δ, |ξ| > Kδ/2

]
= sup

δ≤|u|≤Kδ/2

∣∣∣F̂ u
n2

(t)− Φ̂(tπn2(u))
∣∣∣

242



+ sup
δ≤|u|≤Kδ/2

∣∣∣Φ̂(tπn2(u))− Φ̂(tπ0)
∣∣∣+ Cδ. (E.11)

We first show that πn2(u) converges to π0 uniformly over u, δ ≤ |u| ≤ Kδ/2 which will

ensure that the second term on the right side of the above display converges to zero.

To show this, note that

Tn2(u)

=
1

nξ2

n2∑
i=1

(
βn − αn

2
+ εi

)[
1
[
UiKn1

−γ ∈ (−un−ν ,−un−ν + hn−η]
]

−1
[
UiKn1

−γ ∈ (0, hn−η]
]]

=
1

nξ2

n2∑
i=1

(
βn − αn

2
+ εi

)[
1
[
UiKp

−γ ∈ (−un−ν+γ,−un−ν+γ + hn−ν ]
]

−1
[
UiKp

−γ ∈ (0, hn−ν ]
]]
.

Hence, πn2 can be simplified as

π2
n2

(u) = Var[Tn2(u)]

=
n2

n2ξ
2

E
[
((βn − αn)/2− ε)

[
1
[
UKp−γ ∈ (−un−ν+γ,−un−ν+γ + hn−ν ]

]
−1
[
UKp−γ ∈ (0, hn−ν ]

]]]2
=

n2

n2ξ
2

E
[(

(βn − αn)2/4 + σ2
)
×

1
[
UKp−γ ∈ (−un−ν+γ,−un−ν+γ + hn−ν ]4(0, hn−ν ]

]]
.

For n > N1 = (h/|δ|)1/ν , the sets (−un−ν+γ,−un−ν+γ + hn−ν ] and (0, hn−ν ] are

disjoint and hence,

π2
n2

(u) =
n2

n2ξ
2

(
c2

0

4
n−2ξ + σ2

)[
2hn−ν

2Kp−γ

]
= π2

0 + C̃n−2ξ, (E.12)

where C̃ = c2
0(1−p)1−2ξh/(4K). Consequently, π2

n2
(u) converges to π2

0 uniformly over

u.
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Next, we apply Theorem E.2 to show that the first term in (E.11) converges to

zero. Write Tn2(h) as (1/
√
n2)
∑

i≤n2
Ri,n2(u), where

Ri,n2(u) = n
1/2−ξ
2

(
βn − αn

2
+ εi

)[
1
[
UiKp

−γ ∈ (−un−ν+γ,−un−ν+γ + hn−ν ]
]

−1
[
UiKp

−γ ∈ (0, hn−ν ]
]]
.

As γ < ν, the intervals (−un−ν+γ,−un−ν+γ +hn−ν ] and (0, hn−ν ] are both contained

in [−Kp−γ, Kp−γ] for n > N2 = max
{

(Kδ/2/Kp
−γ)1/(ν−γ), (h/Kp−γ)1/ν

}
and have

the same Lebesgue measure hn−ν . Hence, E[Tn2(u)] = E[Ri,n2(u)] = 0 for n > N1.

Thus Tn2(u) is a normalized sum of mean zero random variables. Let

Ln2(κ, u) = E
[
Ri,n2(u)21 [|Ri,n2(u)| >

√
n2κ]

]
. (E.13)

Using Theorem E.2, for any κ > 0, n2 > max(N1, N2) and |πn2(u)t| ≤
√

2n2 (which

holds eventually) we have

|F̂ u
n2

(t)− Φ̂(πn2(u)t)| ≤ κπ2
n2

(u)|t|3 + t2Ln2(κ, u) +
π4
n2

(u)t4 exp(π2
n2

(u)t2)

n2

(E.14)

As supδ≤|u|≤Kδ/2 πn2(u) = O(1) and κ is arbitrary, it suffices to show that

sup
δ≤|u|≤Kδ/2

Ln2(κ, u)

converges to zero. Using the expression for πn2 in (E.12), we have

Ln2(κ, u)

≤ n2

n2ξ
2

E
[
ε2
[
1
[
UKp−γ ∈ (−un−ν+γ,−un−ν+γ + hn−ν ]4(0, hn−ν ]

]]
×

1
[
n

1/2−ξ
2 |ε| >

√
n2κ
]]

+ C̃n−2ξ

. n−2ξ + E ε21
[
|ε| > κnξ2

]
,
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which converges to zero uniformly in u. Hence, the first term in right side of (E.11)

converges to zero. As δ > 0 is arbitrary, we get the result.

E.6 Proof of Theorem 6.10

We derive bounds in terms of n (n1, n2 and n have the same order). Firstly,

note that 0 ∈ Dθ, for all θ ∈ Θτ
n1

, whenever n > N
(1)
τ := (1/p)(Kτ/K)3/(1−3γ).

Further, as r′(d0) > 0 and r′ is continuously differentiable, there exists δ0 > 0 such

that |r′(x) − r′(d0)| < r′(d0)/2 (equivalently, r′(d0)/2 < r′(x) < 3r′(d0)/2) for x ∈

[d0 − δ0, d0 + δ0]. As u ∈ Dθ and θ ∈ Θτ
n1

, |d0 + un−γ2 | < Kτn
−1/3
1 + Kn−γ1 < δ0 for

n > N
(2)
τ,δ0

:= (1/p)((Kτ + K)/δ0)1/γ. Hence, for n > N
(3)
τ,δ0

:= max(N
(1)
τ , N

(2)
τ,δ0

), by a

change of variable,

Mn2(u, θ) = nγ2

 d0+un−γ2∫
d0

(r(t)− r(d0))
nγ1
2K

dt


≥ nγ2

 d0+un−γ2∫
d0

r′(d0)

2
(t− d0)

nγ1
2K

dt

 & u2 =: ρ2
n2

(u, 0).

Using Theorem 6.1, we need to bound

sup
θ∈Θτn

E∗ sup
|u|≤δ,u∈Dθ

|(Mn2(u, θ)−Mn2(u, θ))− (Mn2(0, θ)−Mn2(0, θ))| (E.15)

Recall that Mn2(0, θ) = Mn2(0, θ) = 0. Also,

√
n|Mn2(u, θ)−Mn2(u, θ)| = |Gn2gn2,u,θ|
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The class of functions Fδ,θ = {gn2,u,θ : |u| ≤ δ, u ∈ Dθ} is a VC class of index at most

3, with a measurable envelope (for n > N
(3)
τ,δ0

)

Mδ,θ = nγ2(2‖r‖∞ + |ε|)×

1
[
UKn−γ1 ∈

[
d0 − θ − δn−γ2 , d0 − θ + δn−γ2

]]
.

Note that

E [Mδ,θ]
2 . nγ2P

[
UKn−γ1 ∈

[
d0 − θ − δn−γ2 , d0 − θ + δn−γ2

]]
. δ.

Further, the uniform entropy integral for Fδ,θ is bounded by a constant which only

depends upon the VC-indices, i.e., the quantity

J(1,Fδ,θ) = sup
Q

1∫
0

√
1 + logN(u‖Mδ,θ‖Q,2,Fδ,θ, L2(Q))du

is bounded. Using Theorem 2.14.1 of van der Vaart and Wellner (1996), we have

E∗ sup
|u|≤δu∈Dθ

nγ2 |Gn2gn2,u,θ| . J(1,Fδ,θ)‖Mδ,θ‖2 . δ1/2.

Note that this bound is uniform in θ ∈ Θτ
n. Hence, a candidate for φn(·) to apply

Theorem 6.1 is φn(δ) = δ1/2. The sequence rn = n(1−2γ)/3 satisfies the conditions

r2
nφn(1/rn) ≤ √n2. As a consequence, rnû = Op(1).

E.7 Proof of Theorem 6.11

We outline the main steps of the proof below. Note that

fn2,w,θ = n
1/6−γ/3
2 (r(θ + UKn−γ1 ) + ε− r(d0))×(
1
[
θ + UKn−γ1 ≤ d0 + wn

−(α+γ)
2

]
− 1

[
θ + UKn−γ1 ≤ d0

])
.
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For any L > 0, we use Theorem 6.3 to justify the tightness of Zn2(w, θ̂n1) for w ∈

[−L,L]. For sufficiently large n, the set {w : w/nα2 ∈ Dθ} contains [−L,L] for all

θ ∈ Θτ
n1

and hence, it is not necessary to extend Zn2 (equivalently, fn2,w,θ) as done in

(6.5). For a fixed θ ∈ Θτ
n1

and an envelope for {fn2,w,θ : w ∈ [−L,L]} is given by

Fn2,θ(V ) = n
1/6−γ/3
2 (2‖r‖∞ + |ε|)1

[
θ + UKn−γ1 ∈ [d0 − Ln−(α+γ)

2 , d0 + Ln
−(α+γ)
2 ]

]
.

Further, PF 2
n,θ . n1/3−2γ/3n−α = O(1). Also,

P
[
F 2
n2,θ

1[Fn2,θ >
√
n2t]

]
. Eε21

[
2‖r‖∞ + |ε| >

√
n2n

−1/6+γ/3t
]
,

which goes to zero (uniformly in θ) as E [ε2] <∞. Hence, conditions (6.7) and (6.8)

of Theorem 6.3 are verified. With ρ̃(w1, w2) = |w1 − w2|, conditions (6.9) and (6.10)

can be justified by elementary calculations. We justify (6.10) below. For −L ≤ w2 ≤

w1 ≤ L and sufficiently large n (such that (Kτn
−1/3
1 + Ln

−(1+γ)/3
2 ) < min(Kn−γ1 , δ0)

with δ0 as defined in the proof of Theorem 6.10), a change of variable and boundedness

of r′ in a δ0-neighborhood of d0 yields

|ζn2(w1, θ)− ζn2(w2, θ)| ≤ n
2/3−γ/3
2

d0+w1n
−(1+γ)/3
2∫

d0+w2n
−(1+γ)/3
2

(r(s)− r(d0))
nγ1
2K

ds

= n
1/3−2γ/3
2

w1∫
w2

(r(d0 + tn
−(1+γ)/3
2 )− r(d0))

nγ1
2K

ds

.
3r′(d0)

4
(w1 − w2)2.

The above bound does not involve θ and converges to zero when |w1 − w2| goes to

zero. Hence, condition (6.10) holds.

Further, for a fixed θ, the class {fn2,w,θ : w ∈ [−L,L]} is VC of index at most 3

with envelope Fn,θ. Hence, the entropy condition in (6.11) is satisfied. The measur-
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ability condition (6.13) can be readily justified as well. Hence, the processes Zn2 are

asymptotically tight for w in any fixed compact set.

For a fixed θ ∈ Θτ
n, w ∈ [0, L] and sufficiently large n, ζn2(w, θ) equals

n
2/3−γ/3
2

d0+wn
−(1+γ)/3
2∫

d0

(r(s)− r(d0))
nγ1
2K

ds

=
(1− p)2/3−γ/3pγn2/3+2γ/3

2K

d0+wn
−(1+γ)/3
2∫

d0

(r(s)− r(d0))ds

=
(1− p)2/3−γ/3pγn1/3+γ/3

2K(1− p)(1+γ)/3

w∫
0

(r(d0 + tn
−(1+γ)/3
2 )− r(d0))dt

=
(1− p)−γpγ

2K

r′(d0)

2
w2 + o(1).

This convergence is uniform in θ by arguments paralleling those for justifying condi-

tion (6.10).

Note that Pfn2,w,θ = ζn2(w, θ)/
√
n2 converges to zero. Hence, for a fixed θ ∈ Θτ

n

and w1, w2 ∈ [0, L], L > 0, the covariance function of Zn2 eventually equals (up to an

o(1) term which does not depend on θ due to a change of variable)

P [fn2,w1,θfn2,w2,θ]

= n
1/3−2γ/3
2

(w1∧w2)n
−(1+γ)/3
2∫

0

[
σ2 + (r(d0 + s)− r(d0))2

] nγ1
2K

ds

=
pγn1/3+γ/3

2K(1− p)−1/3+2γ/3
×

(w1∧w2)n
−(1+γ)/3
2∫

0

[
σ2 + (r(d0 + s)− r(d0))2

]
ds

=
pγ

2K(1− p)γ

(w1∧w2)∫
0

[
σ2 + (r(d0 + tn

−(1+γ)/3
2 )− r(d0))2

]
ds
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=
pγ

2K(1− p)γ
(w1 ∧ w2)σ2 + o(1).

This justifies the form of the limit process Z. Note that the process Z ∈ Cmin(R) with

probability one (using argmin versions of Lemmas 2.5 and 2.6 of Kim and Pollard

(1990)) and it possesses a unique argmin almost surely which is tight (the Chernoff

random variable). An application of argmin continuous mapping theorem (Kim and

Pollard, 1990, Theorem 2.7) along with (6.25) and rescaling arguments gives us the

result.

E.8 Proof of Theorem 6.14

Let M(d) = P
[
Y (1)1

[
|X(1) − d| < b

]]
. For F (t) =

∫ t
0
m(x+ d0)dx, we have

M(d) = F (d− d0 + b)− F (d− d0 − b).

Note that M ′(d) = 0 implies m(d+ b) = m(d− b) which holds for d = d0. Hence, d0

maximizes M(·). Also, note that M ′′(d0) = m′(d0 + b)−m′(d0− b) = 2m′(d0 + b) < 0.

For d in a small neighborhood of d0 (such that d+b > d0 and 2m′(d+b) ≤ m′(d0 +b)),

we get

M(d)−M(d0) ≤ −|m′(d0 + b)|(d− d0)2.

Note that we derived an upper bound here as our estimator is an argmax (instead

of an argmin) of the criterion Mn1 . Hence, the distance for applying Theorem 3.2.5

of van der Vaart and Wellner (1996) can be taken to be ρ(d, d0) = |d − d0|. The

consistency of d̂1 with respect to ρ can be deduced through standard Glivenko-Cantelli

arguments and an application of argmax continuous mapping theorem (van der Vaart

and Wellner, 1996, Corollary 3.2.3). For sufficiently small δ > 0, consider the modulus
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of continuity

E∗ sup
|d−d0|<δ

√
n1|(Mn1 −M)(d)− (Mn1 −M)(d0)|

= E∗ sup
|d−d0|<δ

∣∣Gn1Y
(1)
{

1
[
|X(1) − d| ≤ b

]
− 1

[
|X(1) − d0| ≤ b

]}∣∣
An envelope for the class of functions Fδ = {gd(x, y) =

y {1 [|x− d| ≤ b]− 1 [|x− d0| ≤ b]} : |d− d0| < δ} is given by

Fδ(X
(1), ε) = (‖m‖∞ + |ε|)1

[
|X(1) − d0| ∈ [b− δ, b+ δ]

]
.

Note that ‖Fδ‖2 . δ1/2. Further, the uniform entropy integral for Fδ is bounded by

a constant which only depends upon the VC-indices, i.e., the quantity

J(1,Fδ) = sup
Q

1∫
0

√
1 + logN(u‖Fδ‖Q,2,Fδ, L2(Q))du

is bounded. Using Theorem 2.14.1 of van der Vaart and Wellner (1996), we have

E∗ sup
|d−d0|<δ

√
n1|(Mn1 −M)(d)− (Mn1 −M)(d0)| . J(1,Fδ)‖Fδ‖2 . δ1/2.

Hence, a candidate for φn(δ) in Theorem 3.2.5 of van der Vaart and Wellner (1996)

is φn(δ) = δ1/2. This yields n
1/3
1 (d̂1 − d0) = Op(1). Next, consider the local process,

Zn1(h) = n
2/3
1 Pn1Y

(1)
[
1
[
|X(1) − (d0 + hn

−1/3
1 )| < b

]
− 1

[
|X(1) − d0| < b

]]
.

Note that

E [Zn1(h)] = n
2/3
1

{
M(d0 + hn

−1/3
1 )−M(d0)

}
=

M ′′(d0) + o(1)

2
(hn

−1/3
1 )2n

2/3
1
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= m′(d0 + b)h+ o(1) = −ch+ o(1).

Let G(t) =
∫ t

0
m2(d0 + x)dx. Then,

Var(Zn1(h))

=
n

4/3
1

n2
1

Var
[
Y (1)

[
1
[
|X(1) − (d0 + hn

−1/3
1 )| < b

]
− 1

[
|X(1) − d0| < b

]]]
= n

1/3
1 E

[
(Y (1))2

[
1
[
|X(1) − (d0 + hn

−1/3
1 )| < b

]
− 1

[
|X(1) − d0| < b

]]2
]

+o(1)

= n
1/3
1

[
G(b+ hn

−1/3
1 )−G(b) +G(−b+ hn

−1/3
1 )−G(−b) + 2σ2hn

−1/3
1

]
= (m2(d0 + b) +m2(d0 − b) + 2σ2)h+ o(1)

= 2(m2(d0 + b) + σ2)h+ o(1) = a2h+ o(1).

The limiting covariance function can be derived in an analogous manner and the

tightness of the process follows from an application of Theorem 2.11.22 of van der

Vaart and Wellner (1996) involving routine justifications. An application of argmax

continuous mapping theorem (van der Vaart and Wellner, 1996, Theorem 3.2.2) gives

n
1/3
1 (d̂1 − d0)

d→ argmax
{
aB(h)− ch2

}
.

By rescaling arguments, we get the result.

E.9 Proof of Theorem 6.16

Rate of convergence. As γ < 1/3, for all θ ∈ Θτ
n1

= [θ0 −Kτn
−1/3
1 , θ0 + Kτn

−1/3
1 ],

d0 ∈ Dθ, whenever n > N
(1)
τ := (1/p)(Kτ/(K − b))3/(1−3γ). For d ∈ Dθ, the set

{u : |θ + uKn−γ1 − d| ≤ bn−γ1 } ⊂ [−1, 1]. Hence, by a change of variable,

Mn2(d, θ) := E [Mn2(d, θ)]
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=
1

2

1∫
−1

m(θ + uKn−γ1 )1
[
|θ + uKn−γ1 − d| ≤ bn−γ1

]
du

=
1

2

∫
R

m(θ + uKn−γ1 )1
[
|θ + uKn−γ1 − d| ≤ bn−γ1

]
du

=
nγ1
2K

∫
R

m(x)1
[
|x− d| ≤ bn−γ1

]
dx

=
nγ1
2K

d+bn−γ1∫
d−bn−γ1

m(x)dx.

Let

Fn(d) =

d+bn−γ1∫
d−bn−γ1

m(x)dx.

Note that F ′n(d) = m(d+ bn−γ1 )−m(d− bn−γ1 ). Also,

F ′′n (d) = m′(d+ bn−γ1 )−m′(d− bn−γ1 )

= m′(d+ bn−γ1 ) +m′(2d0 − d+ bn−γ1 ),

whenever d 6= d0 ± bn−γ1 . Here, the last step follows from the anti-symmetry of

m′ around d0 (but not at d0). Further, as −m′(d0+) > 0 and m̃ is continuously

differentiable in a neighborhood of 0, there exists δ0 > 0 such that |m′(x)−m′(d0+)| <

−m′(d0+)/2 (equivalently, 3m′(d0+)/2 < m′(x) < m′(d0+)/2) for x ∈ (d0, d0 + δ0].

For d ∈ Dθ and θ ∈ Θτ
n1

, |d ± bn−γ1 − d0| < Kτn
−1/3
1 + Kn−γ1 < δ0 for n > N

(2)
τ,δ0

:=

(1/p)((Kτ +K)/δ0)1/γ. Let ρ2
n(d, d0) = nγ1(d−d0)2. For n > N

(3)
τ,δ0

:= max(N
(1)
τ , N

(2)
τ,δ0

)

and ρn(d, d0) < κn := bn
−γ/2
1 (so that d0 ∈ [d− bn−γ1 , d+ bn−γ1 ]),

F ′′n (d) = m′(d+ bn−γ1 ) +m′(2d0 − d+ bn−γ1 )

≤ 2(−m′(d0+)/2) = m′(d0+) = −|m′(d0+)|.
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Consequently, by a second order Taylor expansion,

Mn2(d, θ)−Mn2(d0, θ) =
nγ1
2K

[Fn(d)− Fn(d0)]

≤ − nγ1
2K

|m′(d0+)|
2

(d− d0)2

. −nγ1(d− d0)2 = (−1)ρ2
n(d, d0).

Again, an upper bound is deduced here as we are working with an argmax estimator.

Claim A. We claim that P
[
ρn(d̂n, d0) ≥ κn

]
converges to zero. We first use the

claim to prove the rate of convergence. To apply Theorem 6.1, we need to bound

sup
θ∈Θτn1

E∗ sup
|d−d0|<n−γ/21 δ

d∈Dθ

√
n2 |(Mn2(d, θ)−Mn2(d, θ))− (Mn2(d0, θ)−Mn(d0, θ))| .

(E.16)

Note that

√
n2 ((Mn2(d, θ)−Mn2(d, θ))− (Mn2(d0, θ)−Mn(d0, θ))) = Gn2gn2,d,θ(V ),

where

gn2,d,θ(V ) =
[
m(θ + UKn−γ1 ) + ε

]
×[

1
[
|θ + UKn−γ1 − d| < bn−γ1

]
− 1

[
|θ + UKn−γ1 − d0| < bn−γ1

]]
.

The class of functions Fδ,θ = {gn2,d,θ : |d− d0| < n
−γ/2
1 δ, d ∈ Dθ} is VC with index at

most 3 and has a measurable envelope

Mδ,θ(V )

= (‖m‖∞ + |ε|)×[
1
[
bn−γ1 − (d0 + n

−γ/2
1 δ) < θ0 + UKn−γ1 < bn−γ1 − (d0 − n−γ/21 δ)

]
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+1
[
−bn−γ1 − (d0 + n

−γ/2
1 δ) < θ0 + UKn−γ1 < −bn−γ1 − (d0 − n−γ/21 δ)

]]
.

Note that E [Mδ,θ(V )]2 . n−γ/2δ. Hence, the uniform entropy integral for Fδ,θ is

bounded by a constant which only depends upon the VC-indices, i.e., the quantity

J(1,Fδ,θ) = sup
Q

1∫
0

√
1 + logN(u‖Mδ,θ‖Q,2,Fδ,θ, L2(Q))du

is bounded. Using Theorem 2.14.1 of van der Vaart and Wellner (1996), we have

E∗ sup
|d−d0|<n−γ/21 δ

d∈Dθ

|Gn2gn2,d,θ| ≤ J(1,Fδ,θ)‖Mδ,θ‖2 . nγ/4δ1/2.

The above bound is uniform in θ ∈ Θτ
n1

. Hence, a candidate for φn to apply Theorem

6.1 is φn2(δ) = nγ/4δ1/2. This yields n(1+γ)/3(d̂2 − d0) = Op(1).

Proof of Claim A. Note that ρn(d, d0) ≥ κn ⇔ |d − d0| ≥ bn−γ1 . Also, for such

d ∈ Dθ, the bin (d − bn−γ1 , d + bn−γ1 ) does not contain d0 and is either completely

to the right of d0 or to the left (regions where m is continuously differentiable). In

particular, for such d’s with d > d0 and n > N
(3)
τ,δ0

,

F ′n(d) = m(d+ bn−γ1 )−m(d− bn−γ1 ) ≤ −(|m′(d0+)|/2)(2bn−γ1 ) = −|m′(d0+)|bn−γ1 .

As a consequence,

Mn2(d, θ)−Mn2(d0 + bn−γ1 , θ) ≤ (nγ1/2K)(−(|m′(d0+)|bn−γ1 )|d− (d0 + bn−γ1 )|) ≤ 0,

(E.17)
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for d > d0 + bn−γ1 . Also, for n > N
(3)
τ,δ0

,

Mn2(d0 + bn−γ1 , θ)−Mn2(d0, θ) =
nγ1
2K

 d0+2bn−γ1∫
d0

m(x)dx− 2

d0+bn−γ1∫
d0

m(x)dx


=

nγ1
2K

 d0+2bn−γ1∫
d0+bn−γ1

m(x)dx−
d0+bn−γ1∫
d0

m(x)dx


=

nγ1
2K

d0+bn−γ1∫
d0

(m(x+ bn−γ1 )−m(x))dx

≤ nγ1
2K

d0+bn−γ1∫
d0

(m′(d0)/2)bn−γ1 )dx ≤ −|m
′(d0)|b2

4K
n−γ1 .

(E.18)

Using (E.17) and (E.18),

cτn(κn) = sup
θ∈Θτn

sup
ρn(d,dn)≥κn,d>d0

d∈Dθ

{Mn2(d, θ)−Mn2(d0, θ)}

≤ sup
θ∈Θτn

sup
ρn(d,dn)≥κn,d>d0

d∈Dθ

{
Mn2(d, θ)−Mn2(d0 + bn−γ1 , θ)

}
+ sup

θ∈Θτn

sup
ρn(d,dn)≥κn,d>d0

d∈Dθ

{
Mn2(d0 + bn−γ1 , θ)−Mn2(d0, θ)

}
. −n−γ.

Note that an upper bound is derived as we are working with argmax type estimators

instead of argmins. The same upper bound can deduced for the situation d < d0.

Further, Mn2(d, θ)−Mn2(d, θ) = (Pn2 − P )g̃n2,d,θ, where

g̃n2,d,θ(V ) =
[
m(θ + UKn−γ1 ) + ε

]
1
[
|θ + UKn−γ1 − d| < bn−γ1

]
.
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The class of functions Gn2,θ = {g̃n2,d,θ : d ∈ Dθ} is VC of index at most 3 and is

enveloped by the function

Gn2(V ) = (‖m‖∞ + |ε|)

with ‖Gn2‖L2(P ) = O(1). Further, the uniform entropy integral for Gn2,θ is bounded

by a constant which only depends upon the VC-indices, i.e., the quantity

J(1,Gn2,θ) = sup
Q

1∫
0

√
1 + logN(u‖Gn2‖Q,2,Gn2,θ, L2(Q))du

is bounded. Using Theorem 2.14.1 of van der Vaart and Wellner (1996),

E∗ sup
Gn2,θ
|Gn2 g̃n2,d,θ| . J(1,Gn2,θ)‖Gn2‖2 = O(1), (E.19)

where the O(1) term does not depend on θ (as the envelope Gn2 does not depend on

θ). Consequently, by Markov inequality,

sup
θ∈Θτn1

P

[
2 sup
d∈Dθ
|Mn(d, θ)−Mn(d, θ)| > −cτn(κn)

]
≤ O(1)√

nn−γ
.

As γ < 1/3 < 1/2, the right side converges to zero. Hence, Claim A holds.

Limit distribution. For deriving the limit distribution, let

Zn2(h, θ) = Gn2fn2,h,θ(V ) + ζn2(h, θ),

where ζn2(h, θ) =
√
n2P [fn2,h,θ(V )] and

fn2,h,θ(V ) = n
1/6−γ/3
2 (g

n2,d0+hn
(1+γ)/3
2 ,θ

(V )− gn2,d0,θ(V )).
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Further, the asymptotic tightness of processes of the type

√
n2Gn2(m(θ + UKn−γ1 ) + ε)1

[
d0 − bn−γ1 < θ + UKn−γ1 ≤ d0 + hn

−(1+γ)/3
2 + bn−γ1

]
(E.20)

can be established by arguments analogous to those in the proof of Theorem 6.11. As

indicators with absolute values can be split as

1 [|a1 − a2| ≤ a3] = 1 [a1 − a2 ≤ a3]− 1 [a3 < a1 − a2|] ,

the process Zn2 can be broken into process of the form (E.20). As the sum of tight

processes is tight, we get tightness for the process Zn2 . Further,

ζn2(h, θ) = n
1/2+1/6−γ/3
2

[
Mn2(d0 + hn

−(1+γ)/3
2 , θ)−Mn2(d0, θ)

]
.

Fix L > 0. For h ∈ [−L,L] and θ ∈ Θτ
n1

, both d0 + hn
(1+γ)/3
2 and d0 lie in the set Dθ

and hence,

ζn2(h, θ) = n
2/3−γ/3
2

nγ1
2K

[
Fn(d0 + hn

−(1+γ)/3
2 )− Fn(d0)

]
.

Note that

F ′′n (d0 + hn
−(1+γ)/3
2 ) = m′(d0 + hn

−(1+γ)/3
2 + bn−γ1 )−m′(d0 + hn

−(1+γ)/3
2 − bn−γ1 ).

For any h ∈ [−L,L], d0 ∈ [d0 + hn
−(1+γ)/3
2 − bn−γ1 , d0 + hn

−(1+γ)/3
2 − bn−γ1 ] eventually

and hence, F ′′n (d0 + hn
−(1+γ)/3
2 ) = 2m′(d0+) + o(1). Consequently,

ζn2(h, θ) =
pγn

2/3+2γ/3
2

2K(1− p)γ
F ′′n (d0 + o(1))

2
h2n

−2(1+γ)/3
2

= − pγ

(1− p)γ
|m′(d0+)|

2K
h2 + o(1).
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Note that the above convergence is uniform in θ ∈ Θτ
n1

(due to a change of variable

allowed for large n). Next, we justify the form of the limiting variance function

for simplicity. The covariance function can be deduced along to same lines in a

notationally tedious manner. As P [fn2,h,θ(V )] = ζn2(h, θ)/
√
n converges to zero, for

θ ∈ Θτ
n1

and h ∈ [0, L], the variance of Zn2(h) eventually equals (up to an o(1) term)

P
[
f2
n2,h1,θ

]
=

n
1/3−2γ/3
2

2Kn−γ1

∫
R

(
σ2 +m2(x)

) [
1
[
|x− d0 + hn

−(1+γ)/3
2 | ≤ bn−γ1

]
− 1

[
|x− d0| ≤ bn−γ1

]]2
dx.

Note that

[
1
[
|x− (d0 + hn

−(1+γ)/3
2 )| ≤ bn−γ1

]
− 1

[
|x− d0| ≤ bn−γ1

]]2

= 1
[
d0 + bn−γ1 < x ≤ d0 + hn

−(1+γ)/3
2 + bn−γ1

]
+1
[
d0 − bn−γ1 < x ≤ d0 + hn

−(1+γ)/3
2 − bn−γ1

]
.

Further,

n
1/3−2γ/3
2 nγ1

2K

∫
R

(
σ2 +m2(x)

)
1
[
d0 + bn−γ1 < x ≤ d0 + hn

−(1+γ)/3
2 + bn−γ1

]
dx

=
pγn

1/3+γ/3
2

2K(1− p)γ
(σ2 +m2(d0) + o(1))hn

−(1+γ)/3
2

=
pγ

2K(1− p)γ
(σ2 +m2(d0))h+ o(1).

Hence, the process Zn2 converges weakly to the process

Z(h) =

√
pγ

K(1− p)γ
(m2(d0) + σ2)B(h)− pγ

(1− p)γ
|m′(d0+)|

2K
h2.

Note that Z ∈ Cmin(R) with probability one. By rescaling arguments, the result

follows.
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Csörgő, S. and Mielniczuk, J. (1995b). Nonparametric regression under long-range
dependent normal errors. Ann. Statist., 23(3):1000–1014.

Delworth, T. and Knutson, T. (2000). Simulation of early 20th century global warm-
ing. Science, 287:2246–2250.

Dudley, R. M. (1984). A course on empirical processes. In École d’été de probabilités
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Härdle, W. and Gasser, T. (1985). On robust kernel estimation of derivatives of
regression functions. Scand. J. Statist., 12(3):233–240.
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