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Abstract 
 

Lightweight materials and advanced combustion engines are being used with 

conventional and electrified vehicles to increase fuel economy, but such technologies 

may require more energy to produce and the impact of plug-in hybrid electric vehicles 

(PHEVs) is dependent on the electric grid. In this study, life cycle assessment (LCA) is 

used to evaluate the total energy and GHG emissions for baseline and lightweight internal 

combustion vehicles (ICVs), hybrid electric vehicles (HEVs) and PHEVs when they are 

operated with baseline and advanced gasoline and ethanol engines. Also, design 

harmonization techniques are developed to enable a comparison across diverse vehicle 

platforms by creating functionally equivalent conventional and hybrid vehicle models 

that account for increased structural support required for heavier, electrified powertrains. 

Lightweight vehicle models include primary and secondary mass reductions (including 

powertrain re-sizing) and are evaluated with body-in-white mass reduction scenarios with 

aluminum-intensive and advanced/high strength steel (A/HSS) designs. Advanced 

engine/fuel strategies are incorporated in the vehicle models with fuel economy maps, 

which were developed with a novel method to ensure combustion limits are not violated 

under boosted and dilute conditions for high compression ratio engines.  

The harmonized vehicle models show that the structural mass required per kg of 

powertrain mass for electrified vehicles is 0.2-0.3 kg. As compared to lightweight 

materials, more significant life cycle improvements are achieved by using advanced 

gasoline and E85 engines, as fuel consumption is reduced up to 24%. As compared to 

A/HSS, more mass can be removed from the vehicle with aluminum, leading to greater 

fuel consumption and life cycle reductions. However, due to the higher energy and GHG 

emissions associated with aluminum production, more significant life cycle reductions 

occur for an equivalent decrease in vehicle mass with A/HSS. Also, life cycle impacts are 

reduced more for ICVs as compared to hybrid vehicles because fuel economy is most 

sensitive to mass for ICVs. Considering the same vehicle platform, the combination of 
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lightweight materials and advanced engines yields the most life cycle energy and GHG 

reductions of the scenarios considered in this work, as the technologies provide 

complimentary results due to engine downsizing. The least life cycle energy and GHG 

emissions occur for the lightest weight hybrid vehicles using the downsized/turbocharged 

gasoline or E85 engine.  
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Chapter 1: Introduction, Motivation, Objectives and Approach 

1.1 Motivation 

In an effort to increase energy security and mitigate impacts of global warming, 

advanced vehicle technologies are being developed to increase vehicle efficiency and 

decrease greenhouse gas (GHG) emissions. In particular, lightweight materials and 

advanced combustion engines are being used to increase fuel economy for both 

conventional and electrified vehicles, especially as automobile manufacturers are 

required to meet fuel economy targets for 2017-2025 CAFE [1], [2]. Vehicle 

electrification is also increasing in popularity as more conventional vehicles are equipped 

with stop/start technology and hybrid and plug-in hybrid electric vehicles (HEV, PHEV) 

are gaining market share [3].  While these technologies are effective at reducing fuel 

consumption during the vehicle operation, the energy and emissions upstream of vehicle 

use may increase. For instance, lightweight materials are often more energy intensive to 

produce and vehicle electrification is dependent on the electricity from the grid, which 

varies according to fuel source [4], [5]. Also, highly efficient engines often require 

additional hardware (e.g. turbocharger system) or advanced fuels which could increase 

the material production energy consumption and GHG emissions. Since life cycle 

assessment (LCA) evaluates vehicle production, operation and end-of-life management, it 

is a useful tool to evaluate the impact of lightweight vehicles with advanced conventional 

and electrified powertrains [6].  

1.2 Lightweight vehicles 

The reduction in life cycle energy and GHG emissions that results from using 

lightweight materials to reduce vehicle mass is dependent on the following inputs: 1) the 

total mass that may be reduced from the vehicle, 2) the energy and GHG emissions 

required to produce and dispose of the lightweight materials and 3) the energy consumed 

and GHGs emitted during operation and upstream of the vehicle use. Also, assumptions   
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regarding vehicle miles traveled (VMT) and the lifetime of the vehicle are important for 

the analysis since vehicles that are more energy intensive to produce have a longer 

payback period, but may be more beneficial in the long-term. 

1.2.1 Mass reduction potential 

 Methods of vehicle mass reduction include material substitution, vehicle redesign, 

and vehicle downsizing [7], [8]. Mass is reduced through material substitution by 

replacing standard materials, such as steel, with lighter weight, higher strength materials.  

The amount of mass that can be reduced through this substitution alone depends on the 

lightweight material properties and the function of the original component [9].  Vehicle 

redesign, the second method to mass reduction, is achieved by either optimizing the 

vehicle design in some way (e.g. redesign the body structure with optimization 

techniques) or by downsizing vehicle subsystems after a primary mass reduction occurs, 

known as a secondary mass reduction [10], [11]. The third method to mass reduction, 

vehicle downsizing, requires changing the dimensions of the vehicle to provide weight 

savings. While vehicle downsizing can be a significant method to mass reduction (e.g. 

downsizing from one EPA size-class to the next size-class results in a 8-11% weight 

reduction [7]), it is not considered in this work because vehicle mass reductions are 

assumed to occur without altering the original vehicle dimensions. Thus, primary mass 

reductions through material substitution and secondary mass reductions through 

subsystem resizing are the focus of this work. 

 Since lightweighting is applicable to vehicles that use any powertrain technology, 

the mass reduction potential of diverse powertrain vehicles must be determined in a 

consistent manner. Previous work has done this by ensuring that vehicle performance is 

constant by re-sizing powertrain components [12], [13]. Also, some studies have 

accounted for structural support required for heavier, electrified powertrains [8], [14]. 

This work expands upon previous work by developing a novel design harmonization 

method that maintains functional equivalency (including vehicle performance) for diverse 

powertrain vehicles and accounts for additional structural support for heavier powertrains 

based on vehicle teardown data. 
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1.2.1.1 Material substitution (Primary mass reductions) 

Lightweight automotive materials, such as aluminum, advanced/high strength steel 

(A/HSS), magnesium and plastics and polymer composites, such as carbon fiber 

reinforced plastic (CFRP), have the potential to replace conventional steel and reduce 

vehicle weight. However, due to cost and manufacturing limitations of magnesium and 

non-metals, the percentage of HSS and aluminum in the light-duty vehicle fleet is 

increasing at a far faster rate [15]. Since HSS enables structural designs that are 

simultaneously stronger and lower in mass, it is currently being used to replace mild steel 

in a variety of subsystems, such as the powertrain, suspension, chassis, front-end and 

body-in-white (BIW), which is the bare body shell after welding but before painting [16]. 

Aluminum has a much lower density than steel and is being used to replace steel in parts 

such as the engine blocks, cylinder heads, wheels, closures and BIW. In fact, all-

aluminum bodies have been used in production vehicles such as the Audi A2 and A8, 

Jaguar XJ, Mercedes SL, Land Range Rover, and Tesla Model S [16], [17]. Based on 

these trends, this work focuses on HSS and aluminum as a means to reduce vehicle mass. 

The mass reduction potential of aluminum and A/HSS has been assessed using 

engineering analysis including computer aided engineering (CAE) and optimization [18], 

[19], [20], [21], [22]. For instance, recent studies by NHTSA, The Aluminum Industry 

and WorldAutoSteel have evaluated the potential to reduce mass of the BIW [18], [21], 

[22]. NHTSA found that by using an aluminum-intensive design (modeled after Audi’s 

spaceframe concept), the BIW mass could be reduced by 35% [18]. However, The 

Aluminum Industry found that up to a 42% reduction could be made while maintaining 

structure requirements [21]. With regards to A/HSS, NHTSA determined a 22% BIW 

mass reduction was possible, while WoldAutoSteel found a 35% reduction using a 

combination of current and near-future steels [18], [22].   

1.2.1.2 Secondary mass reductions 

After an initial mass is removed from the vehicle, other subsystems may be 

downsized while performance is maintained. The magnitude of these secondary mass 

savings is typically assessed using regression analysis of vehicle teardown data [11], [23]. 

Based on this data, mass influence coefficients are calculated for each subsystem, defined 

as ratio of change in subsystem mass per unit change in gross vehicle mass. Previous 
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studies have found that secondary mass savings, which include powertrain resizing, range 

from 23% to 180% of the initial mass change [23], [24].  

1.2.1.3 Design harmonization of conventional and electrified vehicles 

As conventional and electrified vehicles are expected to utilize lightweight 

vehicle designs, there is a need to assess their combined impact on reducing life cycle 

energy and GHG emissions. Accordingly, the mass reduction potential of these vehicles 

must be evaluated with baseline and lightweight vehicle models that preserve the same 

functional equivalency across diverse vehicle platforms. It is necessary to define the 

functional equivalency to ensure that life cycle results are comparable, but this definition 

may differ according to the scope and objective of the study. 

While previous work relating to design harmonization techniques is limited, 

recent studies have assessed the vehicle use phase of the life-cycle for conventional and 

electrified vehicles by ensuring that performance requirements are equivalent for all 

vehicles [12], [25]. For instance, Argonne National Laboratory (ANL) has compared the 

vehicle operation of conventional and electrified vehicles by sizing powertrain 

components based on performance criteria (e.g. engines are sized for gradeability and 

acceleration, HEV motors are sized to capture drive cycle regenerative energy) [12]. 

Also, previous work has determined the mass of electrified vehicle by adding/subtracting 

the mass of (P)HEV components to an ICV model as necessary [8], [26], [27]. 

Since (P)HEVs are likely to have a heavier powertrain mass than conventional 

vehicles which must be managed in a crash, possible structural design changes must be 

considered. Previous work has addressed this with a number of approaches, ranging from 

detailed modeling with finite element analysis (FEA) to a constant glider method, which 

assumes no additional structure is required [20], [26]. Additionally, studies have assumed 

a structural mass multiplier, such as 0.5 kg of structural mass per 1 kg increase in 

powertrain mass [8]. While detailed modeling techniques provide the most technical 

accuracy, they are often beyond the scope of LCAs. On the other hand, there is no 

certainty that the other approaches yield appropriate results, given a certain powertrain 

mass increase. Thus, this work provides an alternative approach to determine the 

structural mass required for heavy powertrains as part of the design harmonization 

techniques in Chapters 2-3. 
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1.2.2 Material production energy intensity 

As shown in Table 1, the energy and GHG emissions due to material production vary 

substantially for aluminum and steel. Due to the energy intensive process of reducing 

alumina to aluminum, the energy and emissions of primary aluminum are significantly 

higher than steel [5], [28]. However, by recycling aluminum, this process is eliminated 

and the energy required is much more similar to steel [28]. Since the majority of energy 

required to produce aluminum is in the form of electricity, the GHG intensity varies 

greatly according to the fuel mix of the grid and electricity allocation protocol [28], [29]. 

On the other hand, the production of A/HSS requires little to no additional energy as 

compared to conventional steel. Steel is strengthened mainly by alloying elements or 

thermally treating the metal, which are reported by the steel industry to be less than 5% 

of the overall production impacts [30], [31].  

 
Table 1. Energy and GHG emission intensities 

  MJ/kg kgGHG/kg 
Primary steel/AHSS 26.10 [32] 2.36 [32] 

Secondary steel/AHSS 13.06 [32] 0.88 [32] 
Primary wrought 

aluminum 
Extruded 147 [33] 10.74 [33] 

Cold rolled 
sheet 

218 [33] 15.94 [33] 

Primary cast aluminum 168 [33] 12.22 [33] 
Secondary wrought 

aluminum 
Extruded 11.56 [34] 0.84 [34] 

Cold rolled 
sheet 

28.26 [34] 2.08 [34] 

Secondary cast aluminum 19.06 [34] 1.37 [34] 
 

1.2.3 Vehicle efficiency 

 Vehicle mass reduction increases vehicle efficiency by reducing the tractive effort 

required to move the vehicle. As shown in Equation 1, tractive force, Ft, is a function of 

vehicle mass and is the sum of rolling resistances, Froll, inertial forces, Fi, aeordynamic 

drag, Faero, and forces due to the grade of the road, Fg [N]:   

!! = !!"## + !! + !!"#$ + !! = !!(!") +!" +
!
!
!!!!!! +!" !"#! 

Equation 1: Vehicle tractive force 
 

where   CR is the rolling resistance coefficient   [-] 

m is the vehicle mass      [kg]  
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g is the gravitational acceleration    [m/s2] 

a is vehicle acceleration     [m/s2] 

CD is the drag coefficient     [-] 

ρ is the air density      [kg/m3] 

v is the vehicle velocity    [m/s] 

A is the vehicle frontal area     [m2] 

θ is the grade of the road    [deg] 

 

Accordingly, as mass decreases less effort is required to accelerate the vehicle, overcome 

friction at the wheels, and meet the desired vehicle speed at a non-zero road grade. 

Many studies have assessed the fuel consumption reductions possible due to 

vehicle lightweighting for an internal combustion vehicle (ICV) [10], [13], [35], [36], 

[37], [38]. This is commonly reported as an elasticity of mass and fuel consumption, or 

the percent change in fuel consumption (or MPG) per percent change in vehicle mass 

[35]. Previous work has found that for a conventional vehicle, a 10% mass reduction 

results in a fuel consumption reduction of between 1.9-8.2% [10], [13], [16], [35], [36], 

[37], [38]. The disparity in these results is due to assumptions regarding the vehicle size, 

drive cycle characteristics (e.g. the frequency of acceleration events), and powertrain re-

sizing [10], [36]. The maximum improvements occur when the powertrain is re-sized to 

maintain performance, as fuel consumption is reduced between 5.5-8.2% [10], [13], [36], 

[37]. 

 Previous work has shown that the relationship between vehicle mass and fuel 

consumption is highly dependent on powertrain architecture [13], [35], [36], [38], [39]. 

For instance, a study by An et al. found that with a constant vehicle mass, a “vertical 

leap” in fuel economy is possible when switching from a conventional to electric hybrid 

powertrain [35]. However, once this change is made the benefit of mass reduction is less 

for the HEV (i.e. for the same mass change on an ICV and HEV, the change in fuel 

consumption is less for the HEV) [35]. These two trends are due to the fact that HEVs are 

able to capture kinetic energy through regenerative braking and eliminate engine idling, 

which is a significant source of efficiency losses for ICVs. Recent work by Carlson et al. 

has validated these modeling results through on-road validation by comparing the energy 
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consumption of a Ford Fusion (ICV), Ford Fusion Hybrid (HEV) and Nissan Leaf (BEV) 

when weight is incrementally added to the vehicle [38]. Results showed that for the same 

mass change, the absolute change in energy consumption for the vehicle operation is 

greatest for the ICV and least for the BEV [38].   

Recent work has also assessed the importance of powertrain downsizing for 

vehicles with diverse powertrains and found that when powertrains are re-sized to 

maintain performance, fuel consumption is reduced much more for ICVs as compared to 

HEVs [13], [36]. HEV powertrain efficiency is very dependent on the control strategy as 

this determines when and how to use the engine and motor to deliver power to the wheels 

[13]. Also, since HEVs rely on regenerative energy to increase powertrain efficiency, 

downsizing the motor and battery may limit the amount of energy that can be regenerated 

[13], [36]. However, ICV powertrains benefit significantly from downsizing because 

smaller engines have less losses associated with friction and throttling (see Section 1.3.2 

High Efficiency Gasoline Engine for a more detailed explanation) [13], [36], [37]. In fact, 

the mass elasticity of fuel consumption has been shown to be very low for ICVs if the 

powertrain is not re-sized [13], [36], [38]. This is because as mass is reduced from the 

vehicle, the load required from the engine is less and these low load operating conditions 

are less efficient [13], [36]. Thus, downsizing is needed to shift the operating condition to 

higher loads that have a higher efficiency [13], [36]. Accordingly, recent modeling work 

has shown that powertrain re-sizing for an ICV reduces fuel consumption by an 

equivalent or greater amount than vehicle mass reduction alone [36]. 

1.2.4 Life cycle results 

Previous LCAs have assessed the energy and GHG reduction potential of aluminum 

and HSS for light-duty vehicles [5], [40]. These studies have shown that the life cycle 

results are a function of the increase in energy and emissions during vehicle production, 

which is offset by reductions during the vehicle use [5], [40]. For instance, Kim et al. 

compared aluminum and HSS in a life cycle model, assuming that the vehicle mass can 

be reduced at most 23% with aluminum substitutions and 19% with a combination of 

HSS substitutions and secondary mass reductions [4]. A range of emission factors 

associated with material production was considered for each material, including 

information for recycled materials (assuming a closed-loop recycling scenario) [4]. Due 
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to the increased vehicle production burden of aluminum as compared to HSS, the total 

life cycle GHG emissions are higher for the lightweight aluminum vehicle, despite lower 

GHG emissions produced during the vehicle operation. However, if closed-loop recycling 

is considered, the payback period of the lightweight aluminum vehicle is significantly 

reduced. Overall, previous work has shown that aluminum and A/HSS can reduce life 

cycle energy and GHG emissions, but the significance of these reductions is highly 

dependent on assumptions regarding material intensities (i.e. gCO2/kg, MJ/kg), vehicle 

modeling methods and the vehicle lifetime [5], [40], [41]. 

1.3 Advanced combustion engines 

1.3.1 Thermodynamic review  

The potential of advanced combustion engines to reduce fuel consumption, and 

therefore life cycle energy and GHG emissions, is a function of the thermodynamic 

potential of these engine/fuel strategies. Engine efficiency can be expressed in a number 

of ways, including fuel conversion, combustion, or thermal efficiency. Fuel conversion 

efficiency, ɳ!, is a measure of the work output per unit energy supplied and is a function 

of combustion and thermal efficiency, as shown in Equation 2. Combustion efficiency, 

ɳ!, which quantifies the energy released per energy supplied, is generally very close to 

100% for stoichiometric spark-ignited (SI) engines [42]. Thermal efficiency is a measure 

of the work output per energy released. As shown in Equation 3, thermal efficiency 

increases as compression ratio, rc, and the ratio of specific heats, γ, increase for an ideal 

cycle. Thus, to develop highly efficient engines, a thermodynamic understanding of γ, as 

well as the main sources of efficiency losses, is essential.  

ɳ! = ɳ!ɳ!" 
Equation 2: Fuel conversion efficiency 

 
ɳ!" = ! −

!
!!
!!! 

Equation 3: Thermal efficiency 

 Mixture composition and temperature has a significant impact on γ, which is a 

function of the mixture gas constant, R, and constant pressure specific heat capacity, cP, 

as shown in Equation 4. Lower combustion temperatures are desirable to increase thermal 
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efficiency because as temperature decreases, the average molecular energy of the mixture 

decreases, which decreases cP and increases γ. Also, a mixture with a low molecular 

weight is beneficial, as R is inversely proportional to molecular weight. Molecules with a 

lower energy (e.g. diatomic vs. triatomic) also lower the specific heat capacity of the 

mixture, which provides further increases to γ. As γ increases, more work can be done on 

the mixture during compression and the maximum attainable thermal efficiency 

increases. 

! =
!

! − !
!!

 

Equation 4: Ratio of specific heats (gamma) 

To illustrate the impact of temperature and composition on thermal efficiency, 

consider the case of exhaust gas recirculation (EGR), a process in which exhaust gas is 

either recycled externally into the intake stream or kept in the cylinder until the next 

cycle. In the unburned mixture, the cP of exhaust gas species offsets the high cP of the 

fuel, thus increasing γ. Likewise, γ increases in the burned gas zone due to lower 

temperatures which cause cP to decrease. However, this trend is somewhat offset by the 

increased concentration of triatomic molecules which increase cP. If dilution is achieved 

with air instead of EGR, the concentration of triatomic molecules does not increase and 

efficiency is further increased. 

Heat transfer decreases engine efficiency, particularly at low engine speeds where 

there is more time for heat transfer to occur. To reduce these losses, combustion 

temperatures can be lowered by use of dilution, such as cooled EGR. Also, the proper 

combustion phasing is required to mitigate heat transfer losses while maximizing work 

output during expansion. Previous simulation work has shown that a CA50 (the location 

of 50% mass fraction burned) of 10 crank angle degrees (CAD) after top dead center 

(aTDC) achieves maximum efficiency [43]. 10%-90% burn duration is another important 

consideration since longer combustion durations lowers the work output. For instance, 

burn durations up to 20 CAD have minimal thermal efficiency losses, but efficiency 

decreases very rapidly for burn durations greater than 20 CAD [43].  

 Friction is also a significant source of efficiency losses and is most highly 

correlated to engine load. As described by the Chen-Flynn expression, friction increases 
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linearly with peak pressure and exponentially with piston speed [44]. Accordingly, for 

boosted conditions or high engine speeds, absolute friction increases. However, the 

relative impact of friction decreases as load increases due to the higher output of work 

[43]. Thus, assuming that the engine is not knock limited at high loads, the maximum 

efficiency occurs at peak load due to the decreased impact of friction. 

1.3.2 High Efficiency Gasoline Engine 

Engine efficiency can be significantly improved, with no reduction in 

performance, by downsizing and turbocharging spark-ignited gasoline engines [45]. For a 

given engine torque output, smaller engines must operate at higher load regimes where 

the relative impacts of friction are less significant [43]. Thus, efficiency is improved for 

the same vehicle performance conditions. Also, from a vehicle perspective, there is the 

possibility that smaller engines could reduce vehicle mass and lead to further increases in 

fuel economy [46]. However, since turbocharger systems are also required, it is difficult 

to generalize if total engine and vehicle mass will increase or decrease when such engines 

are used [46]. 

While downsized/turbocharged engines have the potential to significantly increase 

engine efficiency, they remain limited by knock, caused by higher cylinder temperatures 

and pressures. To mitigate knock, spark timing is adjusted from maximum brake torque 

(MBT) timing or excess fuel is injected in the cylinder to cool the charge. Alternatively, 

the compression ratio could be lowered, but this would also decrease the thermal 

efficiency of the engine. Another option is to use cooled exhaust gas recirculation (EGR) 

to dilute the mixture. As previously mentioned, EGR has the combined benefit of 

lowering peak temperatures and consequently increasing the ratio of specific heats, γ, for 

unburned and burned mixtures. Advantages of EGR also include reducing pumping work 

at low loads, eliminating fuel enrichment at high loads and enabling MBT spark timing, 

as demonstrated by Alger et al. [47]. However, the application of EGR is limited because 

it also increases burn rates which can increase the chance of misfire or partial burning 

[42], [48], [49]. Advanced ignition systems have demonstrated the ability to extend the 

lean limit, as an ignition system developed by Southwest Research Institute (SwRI) has 

been shown to increase combustion stability by emitting a continuous current at a high 

energy level. For instance, experimental results have shown that when used with the 
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SwRI high-efficiency dilute gasoline engine (HEDGE), the 0-50% MFB duration 

decreases and combustion stability is improved for 0-25% external EGR compared to the 

stock ignition system [50].  

The HEDGE engine, which also utilizes advanced boosting and an increased 

compression ratio, is an excellent demonstration of the efficiency benefits of dilution, as 

results show that fuel consumption decreases  between 5-30% compared to a typical port-

injected engine [51]. The most improvements are obtained at high loads due to reduced 

knock, improved combustion phasing, and eliminating the need for fuel enrichment [51].  

1.3.3 High Efficiency Ethanol Engines 

Due to the high octane number (ON) and heat of vaporization of ethanol, it can 

also be used to increase engine efficiency by reducing the likelihood of knock, increasing 

volumetric efficiency and lowering heat transfer losses [52], [53]. For instance, previous 

research has shown that even with increased compression ratios (e.g. up to 16.5:1) and 

higher load conditions, ethanol-gasoline blends can enable MBT timing with no 

occurrences of knock [54], [55], [56]. Ethanol remains limited by high peak cylinder 

pressures that exceed typical peak pressures for gasoline, about 100 bar [57], [58]. 

However, this is not a technical limit, as diesel engines are designed to tolerate much 

higher cylinder pressures.  

Previous research has investigated the efficiency and power improvements 

possible through using ethanol-gasoline blends with an increased compression ratio. In 

particular, Szybist et al. performed a thorough investigation of the impact on power, 

efficiency, and fuel consumption for ethanol blends at difference compression ratios (9.2, 

11.85, and 12.87), achieved by changing pistons on a 2.0 L Ecotec GM engine [53]. 

Experiments were run with regular gasoline (RG), high octane gasoline, and ethanol 

blends of 10%, 50%, and 85% with RG. Each fuel was run at stoichiometric conditions, 

as shown in Equation 5-Equation 6, and spark timing was adjusted for maximum brake 

torque (MBT). Similar to other studies, their results show that indicated mean effective 

pressure (IMEP) and indicated thermal efficiency (ITE) is higher for E85 as compared to 

RG for similar engine conditions and increases with compression ratio [55], [56], [59]. 

Indicated specific fuel consumption (ISFC) is also higher for E85 due to the lower energy 

content of ethanol. However, fuel consumption decreases with increasing compression 
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ratio due to the improved power and efficiency for higher compression ratios [53], [60]. 

These results indicate two things: 1) switching from gasoline to E85 increases power and 

efficiency by making more optimal engine conditions possible (increased compression 

ratio without spark retard), and 2) ethanol increases the power and efficiency for very 

similar engine conditions (compression ratio of 9.2 with no changes in spark timing) [53].  

C8H18 + 12.5 (O2 + 3.76N2) → 8CO2 + 9H2O + 47N2 
Equation 5: Combustion of iso-octane [53] 

 
C2H6O + 3 (O2 + 3.76N2) → 2CO2 + 3H2O + 11.28N2 

Equation 6: Combustion of ethanol [53] 
 

Under similar engine conditions, increased IMEP for ethanol is a result of charge 

cooling as well as a thermodynamic composition effects. Since ethanol has a higher heat 

of vaporization as compared to gasoline, more heat is required to vaporize the fuel. Thus, 

the specific volume of the intake charge is reduced and volumetric efficiency increases. 

Szybist et al. quantified this effect by measuring the air flow for each fuel [53]. Air flow 

increases about 2% for E85, leading to a higher heating value per unit mass of air (for a 

stoichiometric mixture) [53]. Accordingly, more energy per mass of air is induced to the 

cylinder and IMEP increases.  

Previous work has shown the efficiency improvements possible with E85, as 

compared to conventional gasoline [53], [58], [60], [61], [62], [63]. For instance, Szybist 

et al. found that with the same compression ratio, switching from gasoline to E85 

increases indicated thermal efficiency (ITE) by about 7% at mid loads and close to 8% at 

wide open throttle (WOT) [53]. If the compression ratio is increased from 9.2 to 12.87, 

ITE increases by 7.9%-8.4% [53]. These results are consistent with work by Caton et al. 

that measured the thermal efficiency of using E85 with compression ratios ranging from 

9 to 16.5 [61]. They found that the relative thermal efficiency increases by 2% for each 

compression ratio increase [61]. Experimental work by Gingrich et al. shows most 

significant improvements with using E85, as BTE is increased by 9-10 percentage points 

when increasing the compression ratio from 9 to 11 and using E85 instead of 92 RON 

gasoline [62]. A portion of these improvements are due to the use of EGR, which 

eliminates the need for fuel enrichment and ensure that MBT timing is possible, resulting 

in a 3-4% BTE improvement [62]. 
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1.3.4 Previous thermodynamic studies 

Previous work has shown that thermodynamic models are a useful tool to assess the 

potential of advanced combustion strategies [43], [64]. For instance, a study by Caton 

analyzed the thermodynamics of a high efficiency engine by incrementally incorporating 

the following changes to a baseline engine model: higher compression ratio, shorter 

combustion duration, lean equivalence ratio, EGR, and increased wall temperature [64]. 

For each case, Caton assess the thermodynamic tradeoffs associated with pressure, 

friction, temperature, γ, thermal efficiency and exergy destroyed [64]. Results show that 

while each technology increases the net efficiency, diluting the mixture (with air or EGR) 

and increasing the compression ratio achieve the greatest improvements. Efficiency 

improvements due to dilution are due to the increased work that can be extracted from 

combustion gases due to increased γ and reductions in heat transfer. Furthermore, by 

examining the impact of γ for an adiabatic engine model, Caton concluded that increased 

γ is responsible for half of the efficiency gains for dilute cases considered [64].  

 Recent work by Lavoie et al. also used thermodynamic models to evaluate the 

potential of advanced combustion strategies using dilution with downsized/turbocharged 

engines [43]. Lavoie et al. expanded the range of advanced combustion techniques 

considered by Caton to include higher dilution regimes (up to 80%) and homogeneous 

charge compression ignition (HCCI) combustion [43]. Results indicate that efficiency 

gains with advanced combustion (defined as using between 30% and 60% dilution) and 

downsizing are additive, not overlapping [43]. Also, drive cycle simulations show that a 

naturally aspirated (NA) advanced combustion and downsized/turbocharged SI engine 

increase CAFE fuel economy by 23% and 36%, respectively, while a 

downsized/turbocharged advanced combustion engine results in a 58% improvement as 

compared to a baseline NA engine [43]. Dilution with air achieves the highest engine 

efficiency due to improved composition properties and reduced temperatures, while 

engine downsizing increases efficiency by reducing frictional losses and increasing brake 

efficiency [43]. Turbocharging contributes significantly to net efficiency improvements 

by reducing pumping losses. Since these results have not considered combustion 

limitations such as knock or flammability limits, the fuel economy improvements 

represent the maximum potential of each strategy to reduce fuel consumption [43]. 
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1.4 Objectives, contribution and approach 

1.4.1 Objectives 

The objective of this work is to evaluate the individual and combined potential of 

advanced internal combustion engines and lightweight vehicle materials to reduce life 

cycle energy and GHG emissions for an internal combustion vehicle (ICV), hybrid 

electric vehicle (HEV), and plug-in hybrid electric vehicle (PHEV). Also, fuel cycle 

energy and GHG emissions will be assessed parametrically by considering diverse liquid 

and electric fueling options. 

 

The main objectives are as follows: 

1. Lightweight vehicles: Determine the life cycle energy and GHG emissions 

reductions that are possible by using material substitution and secondary mass 

reductions for diverse vehicle platforms. 

2. Advanced combustion engines: Evaluate the realistic potential of advanced 

combustion engines to increase engine efficiency and vehicle fuel economy. 

3. Lightweight vehicles and advanced combustion engines: Assess the synergies and 

tradeoffs of using advanced combustion engines and lightweight materials to 

reduce life cycle energy and GHG emissions. 

4. Diverse fuels: Determine the total life cycle energy and GHG emissions of these 

systems when used with diverse liquid fuels and electricity. 

 

1.4.2 Contribution 

Unlike previous LCAs, this work will incorporate a consistent method to model 

vehicles with diverse powertrains and include a novel method for assessing the realistic 

efficiency potential of advanced gasoline and ethanol engines. Also, this work will 

evaluate the impact of mass reduction on fuel consumption for each vehicle architecture 

(i.e. ICV, HEV, and PHEV), thereby providing a more accurate description of vehicle 

efficiency. A range of possible impacts from each fuel will be considered, which enables 

scenario analyses beyond the scope of what is typically considered in a vehicle LCA.   

 

 



15	
  
	
  

In summary, this work advances current LCAs by incorporating: 

1. Mass reduction potential models that capture the tradeoffs associated with 

heavier powertrains, vehicle efficiency and lightweight material production 

2. Conceptual engine models that preserve physical insight while demonstrating the 

potential of internal combustion engines to reduce life cycle energy and GHG 

emissions 

1.4.3 Approach 

To satisfy the objectives listed above, the potential of vehicle mass reduction and 

advanced engines are assessed in both individual and combined models using the 

modeling tools listed in Table 2. An overview of the method and models used for the 

dissertation is provided in Figure	
  1. As shown, each technology option is incorporated to 

the vehicle design for an ICV, HEV and PHEV. Vehicle performance and fuel economy 

results are obtained using Autonomie, a forward-facing vehicle simulation software [65]. 

Lastly, the life cycle energy and GHG emissions for the vehicle systems are determined 

based on the vehicle material composition, fuel economy results, and fuel type. These life 

cycle results are obtained using GREET 1 and 2, vehicle and fuel lifecycle modeling 

tools, respectively, and previous literature to determine a range of energy and GHG 

emissions intensities associated with lightweight materials and liquid fuels [66], [67]. The 

energy and GHG emissions due to electrical consumption are determined with eGrid, a 

database for power sector environmental impacts provided by the US Environmental 

Protection Agency [68]. Further details on the model inputs, data sources and model 

outputs are included in Table 3-Table 4 in the Appendix. 
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Figure 1: Dissertation model overview (Chapters 2-5) 

Table 2: Dissertation modeling tools for engines, vehicles and life cycle energy and GHG emissions 
Software Purpose Author 
GT-Power engine modeling Gamma Technologies 

Autonomie vehicle modeling Argonne National 
Laboratory 

GREET vehicle and fuel cycle 
modeling 

Argonne National 
Laboratory 

eGrid database for power sector  
environmental parameters 

U.S. Environmental 
Protection Agency 

 

It is important to note that optimizing vehicle efficiency through methods such as 

controls or gear ratios selection is beyond the scope of this work. Accordingly, the 

standard controller in Autonomie is used for each powertrain-type vehicle without 

modification. Gear ratios are selected for the baseline vehicles using engineering 

judgment but are not modified for the lightweight vehicles. As a result of these 

assumptions, the mass elasticities of fuel consumption in this work are expected to be 

lower than if the vehicle was optimized for the new vehicle mass. However, such 
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assumptions are consistent with previous studies that have evaluated the impact of mass 

reduction for diverse vehicle types [13], [35], [36], [37].  

Within the scope of the lightweight vehicle analysis, a new method is developed to 

compare the impacts of mass reduction across diverse powertrain vehicles. These design 

harmonization techniques provide a systematic method to model baseline vehicles by 

accounting for increased structural mass required for heavier powertrains. Also, design 

changes associated with electric vehicles are incorporated by downsizing the fuel and 

exhaust subsystem. Lightweight vehicle models are designed with the following 

assumptions: 1) material substitution of steel with aluminum and AHSS results in body-

in-white (BIW) mass reductions of 32-45% and 22-35%, respectively, and 2) secondary 

mass reductions, including powertrain re-sizing, are incorporated early to the vehicle 

design process. Based on these methods and assumptions, baseline and lightweight 

vehicle models are developed and evaluated in a LCA. 

 The internal combustion engine analysis requires a novel method to assess the 

potential of advanced gasoline and ethanol combustion strategies to decrease fuel 

consumption. This method enables knock and flammability limits to be identified using 

scaling methods that preserve physical insight and are validated against experimental 

results. These combustion limits are applied to a high efficiency gasoline and E85 engine 

under boosted and dilute operation conditions and compared to a baseline naturally 

aspirated gasoline engine. Within knock and flammability constraints, each operating 

condition is optimized for efficiency and fuel economy maps are generated for each 

engine. Also, ideal versions of these maps are generated, assuming the engine is not 

constrained by knock or flammability limits. Lastly, fuel economy and life cycle results 

are obtained to assess the potential of the high efficiency gasoline and E85 engines to 

reduce energy and GHG emissions.  

 To assess the synergies and tradeoffs of integrating lightweight materials and 

advanced engines in the vehicle design, the following questions are identified to focus the 

scope of the analysis: 
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1. What level of mass reduction is required to match the life cycle GHG emissions 

reductions for a contemporary ICV due to downsizing/boosting an advanced 

gasoline engine? 

2. What are the maximum life cycle energy and GHG reductions possible when 

lightweighting a contemporary ICV and replacing a baseline engine with an 

advanced gasoline or ethanol downsized/boosted engine?  

3. What are the life cycle energy and GHG emissions reductions due to using an 

advanced downsized/boosted ethanol engine in a HEV and PHEV as compared to 

an ICV with a baseline engine?  

 

The following chapters are organized according to individual or combined use of 

the technologies considered in this work. Chapter 2 focuses on vehicle design and 

describes design harmonization techniques used to model baseline and lightweight 

versions of an ICV, HEV, and PHEV. Chapter 3 uses the framework presented in 

Chapter 2 to evaluate the life cycle energy and greenhouse gas emissions of a baseline 

and lightweight ICV, HEV, and PHEV. Chapter 4 provides technical details regarding 

engine fuel economy maps and presents life cycle results for each engine/fuel 

strategy. Chapter 5 provides an integrated assessment of the potential of lightweight 

materials and advanced engines to reduce life cycle energy and GHG emissions by 

answering the questions listed above. Lastly, Chapter 6 discusses the major findings 

of the dissertation and presents suggestions for future work. Chapters 2-4 have been 

prepared as journal papers: Chapters 2-3 are a 2-part paper (to be submitted to 

Applied Energy) and Chapter 4 is an individual paper (under review with the 

International Journal of Engines Research).  
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1.6 Appendix 
 

An overview of the inputs required for GT-Power, Autonomie and GREET 1 and 

2 is shown in Table 3 [65], [66], [67], [69]. As indicated in the table, the following inputs 

were determined in this work: CA50 timing for maximum brake torque (MBT), engine 

fuel economy maps, vehicle fuel economy, vehicle and subsystem mass, and vehicle 

material composition. Further detail on the sources of model inputs and the associated 

outputs is provided in Table 4. Dates of data sources are included so that future research 

may easily identify the data that requires updating. 
Table 3. Inputs for each modeling software 

GT-Power • Single cylinder engine parameters (e.g. bore, stroke, 
compression ratio, valve timing) 

• Fuel specifications for ethanol and iso-octane 
• Turbocharger model 
• Heat transfer model (Woschni) 
• Friction model (Chen-Flynn) 
• Parameters for Wiebe function (including CA50 for MBT 

timing)* 
Autonomie • Engine fuel economy maps* 

• MATLAB/Simulink models for powertrain components, 
automatic or continuously variable transmissions, wheels and 
body 

• Drag and rolling resistance coefficients  
• Driver model and vehicle controls 
• Total vehicle mass* 
• Velocity profiles for EPA drive cycles, 0-60 MPG acceleration 

test and gradeabiltiy test 
GREET 1  

(fuel-cycle) 
• Energy and GHG emissions for each process required to 

produce ethanol and gasoline 
• Fuel economy* 

GREET 2  
(vehicle-cycle) 

• Energy and GHG emissions for each process required to 
produce the vehicle (including material data, battery 
manufacturing, and vehicle assembly) 

• Energy and GHG emissions for vehicle end-of-life processes 
(vehicle disassembly and disposal/recycling) 

• Assumptions regarding vehicle maintenance over its lifetime 
(e.g. number of battery replacements) 

• Total vehicle and subsystem mass (from teardown data)* 
• Total vehicle material composition (from teardown data)* 

*Determined/created in this work 
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Table 4. Model inputs (with sources) and outputs 
Input Source of input data Model Output 

Powertrain mass and 
front track width (Ch 2) 

Vehicle teardown data, 
2007-2013 [70] 

Design harmonization 
model (Ch 2) 

Baseline vehicle mass 
(Ch 2) 

Subsystem mass 
fractions, powertrain 

mass (Ch 2) 

Vehicle teardown data, 
2007-2013 [70] 

Design harmonization 
model (Ch 2) 

Vehicle subsystem 
mass and material 

composition (Ch 2) 
Primary mass reduction: 

Closures (Ch 2);  
BIW (Ch 3) 

Ashby, 1999 [9]; 
NHTSA, 2012 [18] 

 

Design harmonization 
model (Ch 2, 3, 5) 

 

Lightweight vehicle 
mass (Ch 2, 3, 5) Subsystem mass 

influence coefficients 
(Ch 2, 3, 5) 

 
Don Malen, 2013 [11] 

Gasoline and ethanol 
fuel properties (Ch 4);  
engine specifications 

(Ch 4) 

GT-Power, 2010 [69]; 
Previous literature 

GT-Power engine/fuel 
models (Ch 4) 

Engine fuel economy 
maps (Ch 4) 

Engine fuel economy 
maps (Ch 4) 

GT-Power engine 
models in Ch 4 of this 

work 

Vehicle drive cycle 
models: Autonomie 

(Ch 3, 5),  
Matlab (Ch 4) 

 
Fuel economy  

(Ch 3-5) 

 
Fuel economy (Ch 3, 5) 

Vehicle drive cycle 
models in Ch 3, 5 of 

this work 

 
 
 
 

Life cycle model  
(Ch 3, 5) 

 
 
 

Well-to-tank energy 
and GHG emissions  

(Ch 3, 5) 

Energy and GHG 
emissions to produce 
and transport gasoline 

and ethanol to the 
vehicle (Ch 3, 5) 

GREET 1, 2012 [66] 

Energy and GHG 
emissions from 

electricity (Ch 3, 5) 

 
eGrid, 2012 [68] 

Fuel economy (Ch 4) 
Autonomie vehicle 

drive cycle models in 
Ch 3, 5 of this work 

 
 

Life cycle model 
 (Ch 3, 5) 

 

Tank-to-wheel energy 
and GHG emissions  

(Ch 3, 5) Energy and GHG 
emissions from 

combustion (Ch 3, 5) 
GREET 1, 2012 [66] 

Vehicle subsystem mass 
and material 

composition (Ch 2) 

Vehicle teardown data, 
2007-2013 [70];  

GREET 2, 2012 [67] 

 
 
 
 
 

Life cycle model 
 (Ch 3, 5) 

 
 
 

 
 
 
 

Vehicle-cycle energy 
and GHG emissions  

(Ch 3,5) 
 
 

Steel and aluminum 
energy intensity and 

GHG emissions 
intensity (Ch 3) 

WorldAutoSteel, 2012 
[32]; 

Aluminum Association, 
1998, 2012 [33], [34] 

Energy and GHG 
emissions to produce 

naturally aspirated and 
turbocharged engines  

(Ch 5) 

 

Vehicle teardown data, 
2010, 2013 [70] 
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Chapter 2. Vehicle lightweighting vs. electrification: Part 1 – Design harmonization 

techniques to model vehicles with diverse powertrains 

2.1 Abstract 

Vehicle electrification and mass reduction have the potential to increase fuel 

economy and decrease life cycle energy and greenhouse gas (GHG) emissions. However, 

life cycle assessment (LCA) is required to fully understand these impacts due to 

electricity and lightweight material production burdens. While recent work has compared 

conventional, electrified and lightweight vehicles in a LCA, there remains a need for an 

appropriate method to examine comparable vehicles across diverse vehicle platforms 

(e.g. conventional internal combustion engine vs. hybrid electric), particularly as 

structural mass requirements may change depending on powertrain mass. This work 

develops such design harmonization techniques to model the vehicle mass, powertrain 

specifications, and material composition of an internal combustion vehicle (ICV), hybrid 

electric vehicle (HEV) and plug-in hybrid electric vehicle (PHEV), including lightweight 

versions of these vehicles. Baseline vehicle models are harmonized with functional 

equivalency requirements and by accounting for the structural support required for 

heavier powertrains, while lightweight vehicles are harmonized with mass compounding 

models that include powertrain re-sizing. The lightweight design method is demonstrated 

with a moderate material replacement scenario (steel is replaced with aluminum in the 

closures and bumpers) and subsystem downsizing (i.e. secondary mass reductions). Part 2 

of this work (presented in Chapter 3) uses this design method to evaluate the life cycle 

energy and GHG emissions of the baseline vehicles presented in the current chapter and 

lightweight vehicles designed with more significant material substitution scenarios. 

Results of the current work demonstrate the utility of the design harmonization 

framework, as differences in powertrain-dependent subsystems are incorporated into the 
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vehicle model and functional equivalency is maintained for all baseline and lightweight 

vehicles. 

2.2 Introduction 

In an effort to increase energy security and mitigate impacts of global warming, 

advanced vehicle technologies are being developed to increase vehicle efficiency and 

decrease greenhouse gas (GHG) emissions. For instance, lightweight materials are being 

used to increase fuel economy for both conventional and electrified vehicles, particularly 

as automobile manufacturers are required to meet fuel economy targets for 2017-2025 

CAFE [1]. Vehicle electrification is also increasing in popularity as more conventional 

vehicles are equipped with stop/start technology and hybrid and plug-in hybrid electric 

vehicles (HEV, PHEV) are gaining market share [2].  However, these technologies are 

known to increase the energy and emissions upstream of the vehicle use, as lightweight 

materials are often more energy intensive to produce and vehicle electrification is 

dependent on the electricity from the grid [3], [4]. Since life cycle assessment (LCA) 

evaluates vehicle production, operation and end-of-life management, it is a useful tool to 

evaluate the impact of lightweight, electrified vehicles [5].  

Previous work has modeled lightweight vehicles by accounting for primary and 

secondary mass reductions, including powertrain resizing to maintain performance [6].  

Primary reductions are considered either by detailed engineering assessment of part re-

design or by substitution ratios found with material indices.  Since material indices are 

determined based on the material properties and function of the part, the ratio of the 

material indices for the baseline and lightweight material yields a part-specific 

substitution ratio [7].  Secondary mass reductions, or the mass change due to subsystem 

resizing, are evaluated using mass influence coefficients for each subsystem. These 

coefficients are the ratio of change in subsystem mass per unit change in gross vehicle 

mass and are found using regression analysis of vehicle teardown data [8], [9].  Previous 

studies have found that secondary mass savings, including powertrain resizing, range 

from 23% to 180% of the initial mass change [9], [10].   

Since lightweight vehicle technologies will likely be used with both conventional 

and electrified vehicles to reduce vehicle load, there is a need to assess their combined 

impact on reducing life cycle energy and GHG emissions.  Accordingly, previous studies 
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have designed methods to create comparable models for vehicles with diverse 

powertrains.  For instance, Argonne National Laboratory (ANL) has compared 

conventional and electrified vehicles by sizing powertrain components based on 

performance criteria (e.g. engines are sized for gradeability and acceleration, HEV 

motors are sized to capture drive cycle regenerative energy) [11].  Previous work has also 

assessed the total vehicle mass for each powertrain architecture, since electrified vehicles 

are likely to have heavier powertrains than conventional vehicles [12], [13]. The 

powertrain mass for these vehicles is determined by accounting for the weight of new 

components and downsizing the existing infrastructure as necessary [12], [13], [14]. 

Once the new powertrain weight is determined, the structural design of the 

vehicle must be considered since this extra weight must be managed in a crash. Methods 

to account for the additional structural mass required for electric powertrains vary widely 

in the literature, from using finite element analysis (FEA) and finding the mass necessary 

for crash test approval to using the same glider and assuming the vehicle is designed for 

the heaviest powertrain [14], [15].  Other studies have used structural mass multipliers 

(e.g. 0-2 kg structural weight per 1 kg battery weight [16], 0.5 kg structural weight per 1 

kg extra powertrain weight [12]) based on industry input. While a FEA approach 

provides the most technical detail, it is beyond the scope for most LCAs. On the other 

hand, a constant glider approach likely underpredicts vehicle weight and therefore 

overpredicts the benefits due to electrification. Structural mass multiplier values are 

perhaps a better compromise, but may lead to inflated vehicle weights and have a limited 

application (e.g. up to a 2:1 ratio from Shiau et al. applies to battery weight only [16]).  

Thus, there remains a need for a method to determine the structural mass required for 

heavy powertrains with a simple, but robust method.  

The objective of this work is to develop a design harmonization process to model 

vehicles with diverse powertrains in order to assess the life cycle energy and GHG 

reduction potential of using lightweight materials in the vehicle design. This process will 

then be applied in Part 2 of this work to determine life cycle results for baseline and 

lightweight vehicles. The approach for the current work is to define the vehicle mass, 

powertrain specifications and material composition of a generic baseline and lightweight 

internal combustion vehicle (ICV), HEV, and PHEV with a 10-mile all-electric range, 
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PHEV-10. First, equivalency requirements are defined for all baseline and lightweight 

vehicles such that the vehicles are comparable for the purpose of the LCA. Then, the 

masses of baseline vehicles are determined from regression analysis, components are 

sized according to performance requirements, and materials are assigned according to 

vehicle teardown data.  Lastly, lightweight vehicles are designed with primary and 

secondary mass reductions, powertrain downsizing, and a new material composition that 

is adjusted to reflect the design changes. 

2.3 Methods 

2.3.1 Defining equivalent vehicles 

 The functional equivalence criteria for the ICV, HEV, and PHEV-10 (hereafter 

referred to simply as “PHEV”) are shown in Table 5. To maintain consistency, the 

vehicles should be of the same class (e.g. compact sedan), have the same plan view area 

(i.e. front track width and wheelbase) and be marketable in the US. Based on industry 

input, we have included the following parameters that are highly valued by US 

consumers: 5 passenger seating design, good vehicle “roominess”, a minimum cargo 

volume, and acceptable vehicle performance. Vehicle “roominess” relates to the distance 

between the front seats and can be evaluated by the vehicle front track width (FTW), the 

distance between the front tires. It is assumed that the HEV and PHEV battery is located 

in the tunnel (and trunk if necessary) and that all other powertrain components may be 

packaged under the hood, similar to the GM Volt. Thus, if the powertrain required for the 

electric vehicles becomes very large, cargo volume will decrease. 

 
Table 5: Functional equivalence criteria for the generic ICV, HEV, and PHEV 

Functional Equivalence Criteria 

• Compact sedan (FTW – see Appendix for details) 
• Same plan view area 
• Can seat 5 passengers (FTW – see Appendix for details) 
• Same FTW 
• Cargo minimum volume 
• Performance requirements: 

o 0-60 mph in 9 seconds 
o Gradeability: 6% grade at 65 mph at gross vehicle weight  
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As shown in Figure 2, the overall vehicle design process consists of modeling the 

vehicle mass and materials, included in the scope of this work, as well as the fuel 

economy and life cycle impacts, which will be incorporated in future work (Chapter 3). 

While the methods for powertrain sizing, fuel economy, materials and life cycle modeling 

are equivalent for baseline and lightweight vehicles, the vehicle mass design process is 

different. For instance, the masses of baseline vehicles are determined with a regression 

analysis using FTW and powertrain mass as predictor variables. On the other hand, the 

mass of lightweight vehicles is determined by subtracting an initial mass reduction from 

the baseline vehicles and computing simple secondary mass reductions (including 

powertrain re-sizing) until the vehicle mass converges.  

After the vehicle mass and powertrain specifications are determined for baseline 

and lightweight vehicles, this information is input to the fuel economy and material 

models. Fuel economy is determined with drive cycle vehicle simulation using 

Autonomie, a vehicle simulation software developed by ANL [17]. The material 

composition of each vehicle is found using mass and materials from teardown data as 

well as GREET 2, a vehicle life cycle modeling tool [18]. Lastly, the life cycle impact for 

each vehicle is determined with the fuel economy and material composition inputs and 

the energy/emissions intensity of the fuel and materials, found from GREET 1, a life 

cycle modeling tool for fuels, and GREET 2 [18], [19]. 
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Figure 2: Design harmonization algorithm 

2.3.2 Baseline vehicle models 

Vehicle mass 

 A method is developed to account for the extra vehicle weight (e.g. structural 

support) required for the HEV and PHEV powertrains. Using a linear regression analysis, 

vehicle mass is characterized as a function of powertrain mass and FTW. Powertrain 

mass is a good indicator for vehicle mass because vehicles are designed to support the 

heaviest powertrain that will be used in that line of vehicles. FTW is chosen as a 

predictor variable due to its high statistical correlation with vehicle mass, as compared to 

wheelbase or plan view area. For this work, the FTW of the proposed vehicle design is 

chosen to be the average of the top three consumer rated vehicles for 2012-2013 models, 
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60”, as this indicates a consumer-approved vehicle “roominess” [20].  Powertrain masses 

for the generic ICV, HEV, and PHEV are chosen based on representative vehicles 

designed by the same automotive manufacturer and are 188 kg, 283 kg and 327 kg, 

respectively. 

 The regression analysis is performed using vehicle teardown data from a vehicle 

benchmarking company [21].  To maintain consistency for the analysis, the 

sedans/hatchbacks included in the analysis are chosen to be similarly designed steel-

bodied vehicles defined by the following attributes: steel bodies, body-frame-integral, 

McPherson struts and transverse front wheel drive engines [13]. Note that these vehicles 

are not expected to meet the functional equivalency requirements as listed in Table 5 for 

the generic vehicles because these are defined in the vehicle model by FTW, battery size 

and performance. (Ideally, the ICVs included in the analysis would be limited to only 

include vehicles with the heaviest powertrain for that line of vehicles, but due to data 

limitations only 12 ICVs have this quality.) The resulting dataset includes a total of 29 

vehicles, comprised of 25 ICVs, 2 HEVs, and 2 PHEVs, as shown in Figure 3 according 

to marker symbol. 

 
Figure 3: Vehicle teardown data used in the regression analysis [21] 

 In evaluating the vehicle and powertrain mass data, it is apparent that two unique 

trends could exist for conventional and hybrid vehicles. In general, the ICVs have a 

higher vehicle mass as compared to hybrids for the same powertrain mass. This could be 

due to the fact that some of the hybrids in the dataset use high strength steels more 

aggressively than the conventional vehicles, thus providing the required structural 

support but without the additional mass. Also, it is possible that the noted trend is due to 
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the powertrain characteristics of hybrid versus conventional vehicles, as hybrids are able 

to achieve the same 0-60 MPH acceleration time with a lower power to weight ratio [22]. 

While the vehicles in the dataset do not have the exact same acceleration time, it is 

reasonable to expect that they are designed for very similar targets (e.g. 8.5-9 

seconds).Thus, as powertrain mass and power decrease, the mass of conventional 

vehicles decreases significantly in order to maintain the same power to weight ratio, 

while hybrid vehicles do not require such significant mass reductions. Also, it is evident 

that for a certain FTW, the vehicle mass of hybrid vehicles is higher than conventional 

vehicles. This is likely due to the increased mass per unit volume of the powertrain, 

particularly due to the battery weight.  

 However, an argument could also be made for characterizing all of the vehicles 

with one correlation. According to industry advice, all vehicles, regardless of powertrain 

type, must be designed to manage the mass of the powertrain in a crash. Thus, assuming 

no change in the materials used for these structural elements, the mass of structural 

components that protect the powertrain must increase with powertrain mass. Accordingly, 

since the precise composition of mild and high strength steel is not known for the 

vehicles in the dataset, there should be no distinction made between powertrain types 

when correlating vehicle mass with powertrain mass. In regards to the trend of FTW with 

vehicle mass, the lower FTW to mass ratio could be explained by the fact that two of the 

hybrid vehicles are hatchbacks. Thus, based on limited information for hybrid sedans, it 

is difficult to reach a conclusion regarding the trend of FTW and mass for hybrid 

vehicles. 

Since reasonable arguments may be made for either a one or two correlation fit, 

this work evaluates the life cycle impacts from both methods. However, since one of the 

objectives of this work is to assess possible life cycle implications caused by higher 

structural mass requirements for hybrid vehicles, particular focus is given to the 1 

correlation method. Accordingly, regression analysis results and resulting vehicle and 

subsystem masses are presented for both methods while material composition results are 

shown only for the 1 correlation method. A comparison of fuel economy and life cycle 

results is provided in Chapter 3. 
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 The regression analysis results using the 1 and 2 correlation methods are shown in 

Figure 4 and Equation 7-Equation 9, where vehicle and powertrain mass, VM and PWT, 

respectively, are in kg, and FTW is in mm. As expected, the coefficient of determination 

(R2-square) values are higher for the 2 correlation method (0.82 and 0.99 for the 

conventional and hybrid vehicles, respectively) since powertrain-specific trends are 

captured in individual models. However, the R2-square value for the 1 correlation 

method, 0.78, is also indicative of a well-fit model and will result in reasonable estimates 

of vehicle mass. Lastly, the p-value from the 1 correlation analysis, 9.4E-10, indicates 

that the predictor variables, powertrain mass and FTW, are significant for the regression. 

!" = −!"!#+ !.!"#$+ !.!"#$ 
Equation 7: 1 correlation method – ICV, HEV, PHEV 

!" = −!"#$ + !.!!"# + !.!!"# 
Equation 8: 2 correlation method - ICV 

!" = −!"#$ + !.!!"# + !.!!!! 
Equation 9: 2 correlation method – HEV, PHEV 

As shown in Figure 4, the 1 correlation method results in a best-fit solution plane 

that falls between the ICV and hybrid planes found with the 2 correlation method. The 

solution planes reflect the previously noted trends: conventional vehicle mass is most 

sensitive to a change in powertrain mass, while hybrid vehicle mass is most affected by a 

change in FTW.  

 

 
Figure 4: Regression results using the 1 and 2 correlation methods 

Results of using both methods are shown in Figure 5, where vehicle mass is 

evaluated using Equation 7-Equation 9 and compared against the measured vehicle mass. 
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Since the sample size of ICVs is significantly larger than the HEV and PHEV data, the 

linear regression for the 1 correlation method is a better fit for conventional as compared 

to hybrid vehicles. Thus, the predicted vehicle mass of the HEVs and PHEVs is higher 

using the 1 correlation method as compared to the 2 correlation method.    

 

 
Figure 5: Results of the regression analysis 

Once the total vehicle mass is determined for each vehicle, it is necessary to 

determine the mass of each vehicle subsystem in order to quantify the baseline vehicle 

material composition and determine the lightweight vehicle subsystem masses. First, ICV 

subsystem masses are found with the subsystem mass fractions from a representative 

conventional sedan, as shown in Figure 6. These values agree well with previous work 

(within 4%) that has calculated subsystem mass fractions for 35 conventional sedans 

[10]. Then, HEV and PHEV subsystem masses are determined with three assumptions: 1) 

subsystems that are not dependent on the powertrain have the same mass as their ICV 

counter-part (e.g. the interior is same for all vehicles), 2) the powertrain mass for each 

vehicle is equal to the powertrain used to determine the generic ICV, HEV, and PHEV 

vehicle mass and 3) the non-powertrain change in vehicle mass is distributed 

proportionally among powertrain-dependent subsystems. Thus, the increase in vehicle 

mass for the HEV and PHEV, as compared to the ICV, is attributed to both heavier 

powertrains and powertrain-dependent subsystems. 
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Figure 6: ICV Subsystem mass fraction of curb weight 

Powertrain-dependent subsystems are determined according to previous work that 

has evaluated the design changes necessary for hybridization. For instance, it is assumed 

that the body structure and front suspension must increase in order to maintain an 

acceptable crash test performance with the additional weight in the powertrain and that 

the fuel and exhaust systems may decrease due to engine downsizing [13], [15], [23], 

[24]. Also, the mass of the braking system is equivalent for all vehicles because the 

regenerative braking system is integrated with the existing infrastructure and requires 

only controls modifications [23]. Thus, the powertrain-dependent subsystems include the 

body structure, front suspension and fuel and exhaust subsystems. 

The mass of each powertrain-dependent subsystem is found for the HEV and 

PHEV with the assumption that the non-powertrain subsystems increase or decrease by 

the same percentage, !!". This simplification allows the change in subsystem mass to be 

modeled without detailed subsystem models, which are beyond the scope of this work. 

Accordingly, the change in vehicle mass due to non-powertrain subsystems, ∆VMnonpwt, is 

calculated by subtracting the change in powertrain mass from the total vehicle change in 

mass. Then, according to Equation 10, values for !!"  are found for the HEV and PHEV 

by assuming that the mass of the ICV body structure, !!"#$%&'(), and front 

suspension,  !!"#$%&'&(, increase, while the fuel and exhaust mass,  !!"#$#%!, decreases. 

Lastly, !!"is used to find the final mass for the body structure, front suspension and fuel 

and exhaust system in the HEV and PHEV.  
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!!"(!!"#$%&'() +!!"#$%&'&( −!!"#$#%&) = ∆!"!"!#$% 
Equation 10: Powertrain-dependent subsystem mass 

Component Sizing 

 Powertrain components are sized for the ICV, HEV, and PHEV such that the 

vehicle achieves the following acceleration and gradeability requirements: 0-60 mph in 9 

seconds and 65 mph at a 6% grade, respectively [25]. Additionally, the PHEV must have 

a 10 mile all-electric range (AER) while operating on the US06 cycle when starting with 

a fully charged battery with a 80% state of charge (SOC) range [11], [26], [27]. The 

US06 cycle is chosen as a representative drive cycle because it simulates aggressive city 

driving and will provide a conservative estimate of the necessary components. Since each 

vehicle has a unique powertrain configuration, the method to achieve the performance 

requirements is different for each vehicle, as shown in Table 6. For instance, the ICV 

must meet performance targets with engine power alone, while the HEV uses a 

combination of engine and motor power. Similar to previous work, the ratio of engine to 

motor peak power for the HEV is assumed to be the same as representative Toyota and 

Ford power-split hybrids, 1.2 [28], [29], [30]. Once the motor power is known, the HEV 

battery is sized by dividing the peak power of the motor by the motor efficiency, 88% 

[31]. The PHEV motor and battery are sized to supply the power required for driving the 

US06 cycle in all-electric mode. Additionally, the battery must deliver by the energy 

required for a 10-mile all-electric range. After the motor and battery sizes are known, the 

engine is sized to meet both performance requirements. Additional information on 

vehicle model parameters is located in Table 12 in the Appendix. 

 
Table 6: Performance requirements used to size powertrain components 

 Engine Motor Battery 
ICV 1) Acceleration / 

Gradeability                   
(Velocity < 0.1% of target) 

  

HEV 1) Acceleration / Gradeability 
(Velocity < 0.1% of target) 

2) Engine power = 1.2*(Motor power) 

1) Motor peak power  

 
PHEV 

1) Acceleration / 
Gradeability 

(Velocity < 0.1% of target) 

Peak power on US06 
cycle 

(Does not miss drive 
cycle velocity < 2 mph) 

1) Motor peak power  
2) 10 miles on US06 

cycle 
(Distance < 1% of target) 
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Components are sized in an iterative scaling process in Autonomie according to 

the velocity and distance tolerances specified in Table 6. The engine and motor 

performance maps and weights are scaled linearly by peak power while the battery 

characteristics are determined with a method proposed by Kim et al. [31], [32]. 

Accordingly, the resistance, power, current and mass of the battery is scaled by the ratio 

of the original and desired battery capacity [32]. This method ensures that the battery 

terminal voltage is maintained at an acceptable value since the number of battery cells 

does not change during the scaling process [32].  

Once the mass of the engine, motor and battery are known, the mass of the 

remaining powertrain components are determined in order to facilitate a more accurate 

material analysis. Components considered in this analysis include an automatic 

transmission for the ICV, a continuously variable transmission (CVT), power inverter, 

hybrid cooling system and electrical accessories for the HEV and PHEV, and a plug-in 

charger cable and outlet for the PHEV. For each vehicle, the mass of these components 

are determined by first subtracting the mass of the engine, motor, and battery (as 

applicable) from the total powertrain mass and allocating the remaining mass using mass 

fractions from representative ICV and hybrid vehicles. For instance, the ICV powertrain 

is only composed of the engine and transmission so 100% of the non-engine powertrain 

mass is allocated to the transmission. However, since the HEV powertrain includes a 

power inverter, hybrid cooling system and electrical accessories in addition to the 

transmission, the mass fraction of each is determined from teardown data of a 

representative HEV. Accordingly, the CVT, power inverter, hybrid cooling system and 

electrical accessories are 65%, 17%, 6% and 12% of the remaining powertrain mass for 

the HEV. Mass fractions for the PHEV powertrain are similar to the HEV but slightly 

lower, as 3% of the mass is allocated for plug-in charging components. 

Material Selection 

 The material composition of the baseline ICV is determined with teardown data 

from a representative sedan-sized vehicle [21]. Materials from this vehicle are classified 

into categories synonymous with GREET 2 and the mass fractions of materials in each 

subsystem is computed [18], [21]. Then, the material composition of the generic ICV is 

determined based on the material mass fractions and the mass of each subsystem.   
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Materials for the HEV and PHEV are found for each subsystem using the same 

material mass fractions for the ICV, with the exception of the powertrain.  To capture the 

impact of powertrain component downsizing, powertrain materials are determined in a 

disaggregated method by individually defining the material composition of the engine, 

motor, battery, automatic transmission, CVT, power inverter, cooling system, electrical 

accessories, and plug-in components. While the material composition of most of these 

systems are determined from teardown data, GREET 2 provides more detailed 

information for the motor, power invertor and Li-ion battery [23].  

2.3.3 Lightweight vehicle models 

Vehicle mass and component sizing 

Lightweight vehicles are designed in an iterative process that incorporates 

primary mass reduction from material substitution, secondary mass reductions in non-

powertrain systems and powertrain re-sizing to maintain vehicle performance 

requirements. As an initial step, primary mass reductions are determined with substitution 

ratios in a method developed by Ashby [7]. Accordingly, material indices are calculated 

for each part and material and the substitution ratio is found with the ratio of material 

indices for baseline and lightweight materials.  For instance, the material index, M, of a 

high crown panel (e.g. vehicle hood) is found from the equation: 

! =   
!
!!/!

 

Equation 11: Material index for high crown panel 

where E is the elastic modulus and ρ is the density. Using this equation, the material 

index ratio of steel to aluminum yields a substitution ratio of 1:0.6, which is consistent 

with previous studies [33], [34]. Similarly, substitution ratios may be found for any other 

vehicle part, assuming that their classification (e.g. high crown panel) and function is 

known. 

After an initial amount of mass is removed from the vehicle, secondary mass 

reductions for non-powertrain systems are determined with subsystem mass influence 

coefficients, !!, defined as the change in mass of subsystem i per unit change in gross 

vehicle mass [10]. Subsystem mass influence coefficients are adopted from previous 

work by Malen et al. that performed a regression analysis for sedans with the same 
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defining characteristics as used in this work (shown in to Table 13 in the Appendix) [10], 

[13]. Malen et al. found that mass compounding most strongly influences the body 

structure and has no effect on the electric, cooling, and body non-structure subsystems 

[13]. The new mass of each non-powertrain subsystem is found with a simple secondary 

mass change, assuming that only one resizing iteration takes place. Accordingly, the new 

vehicle mass is defined by 
!!" = !! + ∆ + ∆!! 

Equation 12: Mass compounding calculation for all vehicle subsystems 

where MRS is the vehicle mass after re-sizing, M0 is the initial vehicle mass, ∆ is the 

primary mass change, and !! is the mass influence coefficient for the vehicle, found from 

the sum of !!  for all subsystems. 

Once the new vehicle mass is known, the powertrain is re-sized based on the 

component sizing criteria, as specified in Table 6. Then, the change in powertrain mass is 

determined and input as a primary mass reduction to the secondary mass model. The 

second iteration of secondary mass reductions for non-powertrain subsystems results in a 

second updated vehicle mass and the new vehicle mass is compared to the previous 

result. If the change in vehicle mass is greater than 1 kg, the process continues. However, 

if the change in vehicle mass is less than 1 kg, the sizing routine is complete and the 

powertrain specifications and vehicle mass are input to the fuel economy and material 

models. 

Material selection 

The lightweight vehicle material composition is determined by incorporating the 

material substitution and subsystem downsizing into the baseline material model. It is 

assumed that during the secondary mass savings procedure, all components in a 

subsystem are downsized proportionally. Thus, the material composition of the 

lightweight vehicle subsystems is determined with the same subsystem material mass 

fraction used for the baseline vehicles.  
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2.4 Results 

2.4.1 Baseline vehicles  

Vehicle masses 

 As shown in Figure 7 and Table 7, the total vehicle mass for the generic ICV, 

HEV, and PHEV are found with the 1 and 2 correlation methods with powertrain mass 

and FTW inputs previously discussed. Due to the bias in the 1 correlation model towards 

ICVs, the generic HEV and PHEV masses found with this method are higher than those 

found with the 2 correlation method. Also, the ICV mass determined with 1 correlation is 

higher since the model must also characterize hybrid vehicles with higher powertrain to 

vehicle mass ratios. However, since vehicle mass differs by only 0.7%-1.5% when using 

the two methods, it is expected that the final impact on life cycle results will be 

negligible. Overall, the masses of the generic vehicles are in good agreement with 

production sedans, as using the 1 correlation analysis results in vehicle masses only 2-5% 

higher than the Toyota Corolla, Toyota Prius and Toyota Prius PHEV.  

  

 
Figure 7: Vehicle mass results for the generic ICV, HEV and PHV 

The additional mass for the HEV and PHEV is attributed to a mass increase in the 

powertrain, body structure and front suspension, and a mass decrease in the fuel and 

exhaust subsystem, according to Equation 10. Corresponding results for the 1 and 2 

correlation methods are shown in Table 7 and Figure 8. While the majority of the mass 

increase for the HEV and PHEV is due to heavier powertrains, the total mass of the 

powertrain-dependent subsystems increases by 17-24 kg with the 1 correlation method 
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and 24-26 kg using the 2 correlation method. Due to the assumption that the change in 

mass is proportional the original subsystem mass, the impact of downsizing the fuel and 

exhaust subsystem is least significant (2-3 kg), while the body structure contributes over 

90% of the powertrain-dependent mass increase for all vehicles.  

As compared to the ICV, the increase in structural mass for the HEV is greatest 

when using the 2 correlation method. For a 1 kg increase in HEV powertrain mass, 

structural mass (i.e. body structure and front suspension) increases 0.2 kg with the 1 

correlation method and 0.3 kg with the 2 correlation method. For the PHEV, results from 

both methods indicate that 0.2 kg of structural support is required per 1 kg increase in 

powertrain mass. It is important to note that this structural support value is highly 

dependent on the powertrain masses that we used to characterize generic vehicles and 

results could have a large variation due to the range of powertrain masses for ICVs, 

HEVs and PHEVs.  

While the 1 correlation method shows that increased structure is required for the 

PHEV as compared to the HEV, results from using the 2 correlation methods indicate the 

opposite trend (i.e. structural mass actually decreases by 2 kg). This is due to the lower 

sensitivity of vehicle mass to powertrain mass in the hybrid vehicle regression analysis. 

Overall, each correlation offers unique insight to possible hybrid vehicle design trends, 

but both methods produce similar ratios of structural to powertrain mass. Thus, the 

remaining analyses in this work employ the 1 correlation method (and the life cycle 

sensitivity of each method is assessed in Chapter 3). 
Table 7: Total vehicle and powertrain-dependent subsystem masses determined using 1 correlation 

(2 correlations) 
 ICV HEV PHEV 

Total vehicle mass 
(kg) 

1309 
(1290) 

1421 
(1411) 

1472 
(1451) 

Powertrain mass (kg) 188 283 327 
∆!"!"!#$% (kg) NA 17 (26) 24 (22) 

!!" NA 5% 
(8%) 

7% 
(7%) 

Body Structure (kg) 307 
(301) 

322 
(325) 

329 
(322) 

Front Suspension 
(kg) 

67 
(66) 

70 
(71) 

72 
(70) 

Fuel and Exhaust 
(kg) 

41 
(41) 

39 
(37) 

38 
(38) 
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Figure 8: HEV and PHEV powertrain-dependent subsystem mass change 

While the method of using a constant percentage mass increase/reduction for each 

powertrain-dependent subsystem is a simplified approach, this assumption will not have a 

significant impact on the total vehicle material composition since steel is the dominant 

material in each subsystem. For instance, if instead the total non-powertrain mass 

increase was due to increase in body structure alone, the total mass of steel and other 

materials in the vehicle would change less than 1%. Plastic and wrought aluminum would 

increase slightly due to the increase in the fuel and exhaust system mass, while rubber 

would decrease due to a smaller front suspension. The mass of steel would remain 

relatively unchanged because the increase in steel in the body structure and fuel and 

exhaust systems would compensate for the decrease in steel in the front suspension. Thus, 

the error in using !!" to allocate the change in mass for the generic HEV and PHEV will 

have negligible impacts on life cycle results. 

Component sizing 

 Results from sizing the powertrain components with performance requirements 

are shown in Table 4. For each vehicle, the acceleration requirement is more stringent 

than gradeability and each vehicle reaches 0-60 mph in 9 seconds exactly. The powertrain 

sizing method proposed in this work results in reasonable results as compared to 

production vehicles. For instance, the ICV engine power is within 10 kW of the Madza3 

engine and the HEV engine and motor sizes are very similar to the Toyota Prius. 

However, the HEV battery is oversized as compared to current HEVs (e.g. Toyota Prius 

battery has a total capacity of 1.8 kWh and 40% SOC range) [35]. This is due to the 

requirement that the battery provide the peak motor power, which is not a cost effective 
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design constraint in production vehicles. With regards to the PHEV battery size, it is 

expected that the battery will be slightly oversized since the US06 cycle represents more 

aggressive driving [36]. However, the 5.0 kWh battery capacity is comparable to the 

Toyota Plug-in Prius battery, which is 4.4 kWh and results in an EPA rated 11-mile all 

electric range in blended mode.  

Once the battery sizes are known, the cargo capacity may be calculated to 

determine if the functional equivalence requirements are met for the generic HEV and 

PHEV. Assuming that the energy density is representative of current lithium-ion 

technology (200 Wh/L) and the vehicle tunnel volume is equivalent to that of the GM 

Volt (6.8 cu ft), the HEV and PHEV batteries may be located entirely in the tunnel [37], 

[38]. Thus, the functional equivalence requirement of a minimum cargo volume is 

maintained for each vehicle.  
Table 8: Powertrain specifications for the baseline vehicles 

 ICV HEV PHEV 
Engine Power (kW) 117 kW 73.3 kW 75.7 kW 
Motor Power (kW)  61.1 kW 63.1 kW 
Battery Power (kW)  69.4 kW 80.4 kW 

Battery Capacity 
(kWh) 

 4.4 kWh  
(1.7 kWh useable)† 

5.0 kWh  
(4.0 kWh useable)‡ 

†SOC range of 40% [35] 
‡SOC range of 80% [27] 

Materials 

Based on the powertrain component specifications, the material composition for 

each powertrain is determined, as shown in Figure 9. The most significant material 

difference between the ICV and hybrid vehicles is due to the addition of the Li-ion 

battery, which is primarily composed of Lithium Manganese Oxide (LiMn2O4), wrought 

aluminum, copper, and graphite/carbon. The increase in copper for the hybrid vehicles is 

also due to the addition of the motor and generator, which are 24% copper by weight. 

These components, as well as the power inverter, also contribute to increased cast 

aluminum and steel in the powertrain. However, the overall content of steel is less for the 

hybrid vehicles due to the fact that the engines are almost half the size as the engines in 

the ICV. Also, while the automatic transmission is 70% steel by weight, the CVT 

replaces much of this steel with cast aluminum, resulting in a further increase in cast 



46	
  
	
  

aluminum for the hybrid vehicles. Lastly, the amount of plastic is increased in the hybrid 

vehicles due to parts required in the hybrid cooling system, electrical accessories, and in 

the case of the PHEV, plug-in components. 

 

 
Figure 9: Powertrain percent material composition by weight 

The material composition of the ICV, HEV and PHEV is shown in Figure 10. As 

compared to the ICV, the differences in material composition for the HEV and PHEV are 

due to changes in the powertrain, body structure, front suspension and fuel and exhaust 

subsystems. Most notably, copper and cast aluminum increase as the vehicle is electrified 

due to the addition of two motor/generators, a power inverter, and a battery. To a smaller 

extent, the amount of plastic and wrought aluminum increases for the HEV and PHEV 

due to modifications in the powertrain. As compared to the ICV, steel decreases by 5 kg 

for the HEV and increases by 15 kg for the PHEV. This is due to the tradeoff between an 

increase in steel in the body and front suspension and a reduction in steel in the 

powertrain and fuel and exhaust subsystems. For instance, while the HEV body structure 

and front suspension increase steel by 17 kg of steel, the change in powertrain 

composition reduces the mass of steel by 21 kg and the downsized fuel and exhaust 

eliminates 1kg. This results in a net decrease in steel for the HEV as compared to the 

ICV. On the other hand, the steel content in the PHEV is increased as compared to the 

ICV because the body structure and front suspension increase more than for the HEV due 

to the heavier powertrain. Also, the reduction of steel in the powertrain is less severe for 

the PHEV due to the increased mass of the CVT, cooling, and electrical accessories.  
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Since it is assumed that the wheels and non-structural part of the vehicle body 

remains the same for the ICV, HEV and PHEV, the mass of stainless steel, glass, and 

fluids are the same for each vehicle. The material category “Other” is comprised mainly 

of sensors, materials in the lead acid and Li-ion batteries, wiring harnesses and interior 

components, such as carpeting and lighting. Since the amount of materials in this 

category increase as the vehicle is electrified, the uncertainty of vehicle production 

energy and GHG emissions is greatest for the generic PHEV. 

 

 
Figure 10: Material composition for the baseline vehicles 

2.4.2 Lightweight vehicles  

Vehicle masses and component sizing 

As a demonstration of the lightweight vehicle design methodology, we assume 

that primary mass reductions are made in the closures and bumpers and that secondary 

mass reductions and powertrain re-sizing occurs until convergence criteria are met. The 

closures and bumpers are identified as areas where mass savings are likely to occur since 

material substitution in these subsystems is a relatively simple and affordable option for 

automobile manufacturers [39]. It should be noted that secondary mass reductions are 

only achieved if the decision to reduce mass is made early in the design process, which 

may not always be the case. However, this work assumes that the decision to lightweight 

the closures and bumpers is made with enough time to reap the benefits of secondary 

mass savings. 

Similar to previous work that has assessed the potential of mass reduction in 

closures and bumper subsystems, we assume that steel parts can be replaced with 
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aluminum due to the higher strength to weight ratio of aluminum [39]. The mass of the 

steel parts is determined with mass fractions from teardown data of a representative ICV 

sedan. Specifically, the mass of steel parts in the closures and bumpers are found as a 

fraction of the total subsystem mass and applied to the generic ICV subsystem mass to 

determine the mass of the baseline steel parts. Since it is assumed that the closures are the 

same for the ICV, HEV and PHEV, the mass of these parts are equivalent for all vehicles. 

The substitution ratio of steel to aluminum is found for each part based on its 

material index, which is dependent on E, ρ, or the tensile strength, σY, as shown in Table 

9. According to the calculated substitution ratios, it is evident that material substitution 

for the window frame is not beneficial because it would require an increase in mass to 

perform the same function with aluminum. Thus, the window frame is not included in the 

material substitutions considered in this work. 
Table 9: Material indices and substitution ratios by part [40] 

Subsystem Part Geometry Design 
constraints 

Material 
Index† 

Substitution ratio  
(Steel:Aluminum) 

 
 
 
 
 

Closures 

Window 
frame 

 
Beam in 
bending 

Stiffness, 
Size  

! ! 1:1.03 

Door 
beam 

Yield 
strength, 

Size 

!! ! 1:0.25 

Hood  
High 

crown 
panel 

 
 

Stiffness, 
Size  

 
 
!!/! ! 

 
 

1:0.6 
Trunk 
Outer 
panel 

Fenders 
Inner/side 

panels Flat panel !!/! ! 1:0.5 

 
Bumpers Bumper 

beams 
Beam in 
bending 

Buckling 
stiffness, 
strength 

 
!!/! ! 

 
1:0.63 

†Material properties are as follows [40]: 
Steel: E = 200 GPa, !! = 220 MPa, ρ = 7860 kg/m3 

Aluminum: E = 70 GPa, !! = 260 MPa, ρ = 2710 kg/m3 

 

 As shown in Figure 11, aluminum displaces a total of 37.5 kg of steel in the 

closures and bumpers, with the most significant reductions in the door beam.  The mass 

of the closures and bumpers are reduced by 48% and 37%, respectively, which is 

consistent with previous work that has performed detailed modeling and crash test 

simulations to determine the maximum mass savings in these subsystems [39], [41].  
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Figure 11: Mass of steel and aluminum parts in the closures and bumpers 

 Once the primary mass reduction is known, secondary mass reductions are 

considered with the secondary mass model and powertrain re-sizing routine, as shown in 

Table 10 and Figure 12. The initial mass reduction for each vehicle is 51 kg, based on the 

primary mass change and Equation 10. Subsequent mass reductions are unique for each 

vehicle due to the distinct powertrain characteristics and component sizing requirements. 

For instance, the ICV has the least potential for powertrain downsizing due to the 

limitations of the fixed gear ratios in the transmission and the fact that no mass savings 

can be yielded from downsizing a battery. On the other hand, the hybrid vehicles have the 

most powertrain reductions due to the potential to downsize the battery. Due to these 

trends, secondary mass reductions contribute 34% to the total mass reduced for the ICV 

and 40-41% for the HEV and PHEV.  
Table 10: Secondary mass reductions and the final lightweight vehicle masses 

Vehicle mass 
with non-
powertrain 
secondary 
reductions 

(kg) 

Reduction in 
powertrain 
mass (kg) 

Vehicle mass 
with non-
powertrain 
secondary 
reductions 

(kg) 

Reduction in 
powertrain 
mass (kg) 

Vehicle mass 
with non-
powertrain 
secondary 
reductions 

(kg) 

Reduction in 
powertrain 
mass (kg) 

ICV Baseline Vehicle 
Mass:  1309 kg 

HEV Baseline Vehicle 
Mass: 1421 kg 

PHEV Baseline Vehicle 
Mass: 1472 kg 

1258 3.8 1370 6.7 1421 6.3 
1253 0.4 1360 1.3 1412 1.1 
1252 NA 1358 0.3 1410 0.3 

  1358 NA 1410 NA 
ICV Lightweight Vehicle 

Mass: 1252 kg 
HEV Lightweight Vehicle 

Mass: 1358 kg 
PHEV Lightweight Vehicle 

Mass: 1410 kg 
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Table 11: Powertrain specifications for the lightweight vehicles 
 ICV HEV PHEV 

Engine Power (kW) 113 kW 70.3 kW 72.7 kW 
Motor Power (kW)  58.6 kW 60.6 kW 
Battery Power (kW)  66.6 kW 78.6 kW 

Battery Capacity 
(kWh) 

 4.2 kWh 
(1.7 kWh useable)† 

4.9 kWh 
(3.9 kWh useable)‡ 

†SOC range of 40% [35] 
‡SOC range of 80% [27] 

 

 
Figure 12: Powertrain specifications for the baseline and lightweight vehicles 

Materials 

The material composition of the lightweight vehicles is shown in Figure 13. The 

most significant changes in materials are due to primary reductions, as shown by the 

decrease in steel and increase in aluminum. In fact, at least 80% of the reductions in steel 

are due to material substitution, while 5-7% is due to secondary mass reductions in the 

body structure. Stainless steel, cast iron, aluminum, copper, plastic, and rubber are 

reduced by 5% or less for all vehicles due to secondary mass reductions. However, there 

is no change in glass and fluids because the body non-structure is equivalent to the 

baseline vehicles. 
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Figure 13: Change in materials for lightweight vs. baseline vehicles 

2.5 Conclusions 

This work provides design harmonization techniques to incorporate design 

changes necessary for electrified vehicles in an easily understood, systematic process, 

suitable for the scope of a LCA. First, vehicle mass is determined based on regression 

analysis of vehicle teardown data using FTW and powertrain mass as predictor variables. 

Then, the change in mass due to non-powertrain subsystems is determined and allocated 

to the body structure, front suspension, and fuel and exhaust systems. Lastly, the material 

composition for each subsystem is scaled according to the change in subsystem mass. 

Two approaches for the regression analysis are compared in order to assess the 

design implications of including all vehicles in the analysis, regardless of powertrain-

type, or developing unique correlations for conventional and hybrid vehicles. The 1 

correlation approach assumes that conventional and hybrid vehicles are designed with the 

same structural materials and requirements regarding powertrain mass. However, the 2 

correlation method assumes that hybrid vehicles could use increased high strength steels 

in the structural components and that the design criteria is powertrain-specific, depending 

on the power to weight characteristics of the vehicle. While results from both methods 

show that vehicle mass increases with electrification, the increase in structural support 

per increase in powertrain mass required for the HEV is more significant with the 2 

correlation approach due to the lower ICV mass predicted with this method. For instance, 

results from using 2 correlation method indicates that 0.3 kg of structural mass is required 

per increase in powertrain mass for the HEV, while the 1 correlation method yields 0.2 

kg. However, both methods result in 0.2 kg increase in structural mass per powertrain 
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mass for the PHEV. While these results provide insight to possible trends in vehicle 

design, the impact on vehicle mass trends is negligible for the scope of a LCA and the 1 

correlation method is used for subsequent analyses. 

The lightweight vehicle design process outlined in this work incorporates methods 

from previous authors into a streamlined process that can be used in future LCAs. 

Lightweight vehicles are designed using a combination of primary and secondary mass 

reductions, including powertrain re-sizing to maintain performance. Primary reductions 

from material substitutions are input to a secondary mass model which accounts for 

simple mass compounding in non-powertrain systems. Once an updated vehicle mass is 

determined, the powertrain is re-sized in Autonomie. The change in powertrain mass is 

input to the secondary mass model and the process continues until convergence criteria 

are met. 

To demonstrate the utility of the vehicle design methodology, a lightweight 

scenario is considered where steel is replaced with aluminum in the closures and 

bumpers. To ensure that secondary mass reductions may be incorporated in the vehicle 

design, it is assumed that the decision to lightweight the vehicle is made early in the 

design process. As a result, the mass of the ICV, HEV, and PHEV is reduced by 57 kg, 

63 kg, and 62 kg, respectively, with 34-41% of these secondary mass reductions. Overall, 

the most significant mass reductions occur for the hybrid vehicles due to the greater 

potential for powertrain downsizing. As a result of vehicle lightweighting, steel decreases 

by 13-14%, wrought aluminum increases by 52-64%, and all other materials decrease by 

5% or less.   

Part 2 of this work (presented in Chapter 3) will apply the design harmonization 

process to assess the life cycle energy and GHG reduction potential of lightweight 

materials and vehicle electrification. While the lightweight vehicle models in Chapter 2 

are a useful demonstration of the design methodology, more significant primary mass 

reduction scenarios are considered in Chapter 3, along with fuel economy and life cycle 

results, according to the process shown in Figure 2. Accordingly, material substitution 

scenarios will include body-in-white materials replacements of conventional steel with 

aluminum and advanced / high strength steel. As done in the present work (Chapter 2), 

secondary reductions, including powertrain re-sizing, will be used to determine the final 
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vehicle mass and powertrain specifications. Through drive cycle simulations for the 

baseline and lightweight vehicles, the potential of each vehicle-type to reduce fuel 

consumption per unit mass reduced (known as the mass elasticity of fuel consumption) 

will be included in the LCA. Thus, life cycle results shown in Chapter 3 will include the 

fuel economy differences due to powertrain architecture as well as the design 

harmonization techniques presented in Chapter 2.  
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2.7 Appendix 

 
Correlation of FTW to vehicle class and occupancy 

 Vehicle classes are defined by the EPA according to interior volume, defined as 

the sum of cargo and passenger volume [42]. As shown in Figure 14, EPA Interior 

Volume is reasonably well correlated to FTW for a variety of different sized sedan 

vehicles, chosen from the 2012-2013 Consumer Report for automobiles [20]. Similarly, 

as each of these vehicles have a 5 person occupancy, it is reasonable to assume that FTW 

in the range of 57-63” is suitable to meet this requirement.  

 
Figure 14: EPA Interior Volume (cargo + passenger volume) vs. FTW for subcompact, compact, and 

mid-size sedans 

 
Vehicle model parameters 

Table 12: Vehicle model parameters used in Autonomie 
 ICV HEV PHEV 

CD 0.3 
Front area 2.58 m2 

Rolling resistance 
coefficients 

F1 = 0.008 
F2 = 0.00012 

Transmission 5 speed 
automatic CVT 

Final drive ratio 3.5 4.113 

SOC range NA 40%-80% 
[35] 

20%-100% 
[26], [27], [43] 

SOC target NA 56% [35] 25% [27] 
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Subsystem mass influence coefficients 
 
Table 13: Subsystem mass influence coefficients to determine secondary mass reductions (found with 

regression analysis of teardown data) [13] 
Subsystem Subsystem mass influence 

coefficient 
Body non-structure 0 

Body Structure 0.127 
Front Suspension 0.027 
Rear Suspension 0.028 

Braking 0.024 
Fuel and Exhaust 0.061 

Steering 0.009 
Tires and Wheels 0.050 

Bumpers 0.035 
Electrical 0 
Cooling 0 

Powertrain (Not included for this work) 
Closures 0 
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Chapter 3: Vehicle lightweighting vs. electrification: Part 2 – Life cycle energy and 

GHG emissions results for diverse powertrain vehicles 

 

3.1 Introduction 

Lightweight materials and vehicle electrification are gaining popularity in the US 

light-duty vehicle fleet and have the potential to reduce life cycle energy and greenhouse 

gas (GHG) emissions from the transportation sector [1], [2]. However, some lightweight 

materials, such as aluminum and carbon fiber, require more energy to produce than 

conventional materials and vehicle electrification requires electricity from the grid, which 

varies based on energy source [3], [4], [5], [6], [7], [8], [9], [10]. Life cycle assessment 

(LCA) is a useful tool to determine the impact of these technologies since it not only 

evaluates the vehicle use phase, but also the processes required for producing vehicle 

materials and fuels and the end-of-life vehicle management [11]. 

 Since automotive trends indicate that aluminum and advanced / high strength 

steels (A/HSS) are steadily increasing as part of the vehicle fleet composition, the impact 

of these lightweight materials on life cycle energy and GHG emissions should be 

assessed [12]. Previous work has determined that the energy and GHG emissions of 

primary aluminum are significantly higher than steel, primarily due to the energy 

intensive process of reducing alumina to aluminum [3], [5]. However, by recycling 

aluminum, this process is eliminated and the energy required in production is much more 

similar to steel [5]. The GHG emissions intensity of aluminum has a large variability 

according to the fuel mix of the electricity grid and the electricity allocation protocol [5], 

[13]. On the other hand, the production of A/HSS is less dependent on electricity and 

requires little to no additional energy as compared to conventional steel. This is because 

steel is strengthened mainly by alloying elements or thermally treating the metal, which 

are reported by the steel industry to be less than 5% of the overall production impacts 

[14], [15].  
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Much of the previous work relating to mass reduction potentials of aluminum and 

A/HSS have focused on possible reductions in the body-in-white (BIW), as the body is 

generally the heaviest part of the vehicle [16]. In particular, recent studies sponsored by 

the National Highway Traffic Safety Administration (NHTSA), The Aluminum 

Association and WorldAutoSteel have contracted EDAG, an independent engineering 

firm, to assess the potential mass reductions possible with aluminum and/or AHSS 

according to specified constraints [17], [18], [19]. For instance, NHTSA evaluated the 

maximum mass reductions possible for the Honda Accord with the requirements that the 

design should not increase cost more than 10% and should be commercially feasible for 

high volume production by 2020 [17]. Using computer aided engineering (CAE) 

optimization, they found that the baseline BIW mass, which is already 48% HSS, could 

be reduced by 22% with AHSS and 35% with an aluminum-intensive design [17]. On the 

other hand, The Aluminum Association found that the BIW mass of the Toyota Venza 

could be reduced by 42% from the baseline BIW, comprised of HSS and AHSS [18]. 

However, this was only a structural feasibility study and manufacturing techniques were 

not taken into consideration [18]. Also, WorldAutoSteel used topology optimization in 

their FutureSteelVehicle design and found that the mass of a baseline HSS and AHSS 

BIW could be reduced by 35% if higher strength steels were used [19]. However, the 

AHSS steels used in this assessment are not expected to be commercially available until 

2015-2020 [19]. While the studies sponsored by the aluminum and steel industries likely 

reflect their respective business interests, they provide insight regarding the projected 

capabilities of the materials based on optimistic assumptions [18], [19].  

The fuel economy improvements that result from vehicle mass reductions have 

been shown to be a function of the powertrain architecture [20], [21], [22], [23]. For 

instance, a study by An et al. found that the benefit of mass reduction is less for a hybrid 

electric vehicle (HEV) as compared to an internal combustion vehicle (ICV) [20]. This is 

due to the fact that HEVs are able to capture kinetic energy through regenerative braking 

and eliminate engine idling, a significant source of efficiency losses for ICVs [20]. 

Recent work by Carlson et al. has validated these modeling results through on-road 

vehicle testing of an ICV, HEV and battery electric vehicle (BEV) [21]. Their results 

indicate that for the same change in mass, the absolute change in energy consumption is 
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greatest for the ICV and least for the BEV [21]. Previous work has also shown that 

powertrain re-sizing has a significant impact on the amount of fuel economy 

improvements, particularly for ICVs [22], [23]. While powertrain efficiency for HEVs is 

largely a function of regenerative braking and controls strategy, the efficiency of ICVs 

relies on the engine efficiency and therefore, the operating regime [22], [23]. Since 

smaller engines increase efficiency, powertrain downsizing is required for ICVs to 

achieve significant fuel economy improvements from vehicle mass reduction [22], [23].  

Previous vehicle LCAs have demonstrated the tradeoffs between increased 

emissions during the material production phase and decreased emissions during vehicle 

use for aluminum and HSS lightweight vehicles [3], [4], [5]. For instance, Kim et al. 

compared aluminum and HSS in a life cycle model, assuming various levels of vehicle 

mass reduction using each material (11-23% with aluminum and 6-11% with HSS) [3]. 

For the range of mass reduction scenarios considered, the GHG emissions payback period 

is 4-10 years for aluminum and 1-4 years with HSS. However, if secondary aluminum is 

used in a low carbon grid region, the payback period is reduced to 1-2 years. Results by 

Das show similar results, as the higher production energy and emissions of primary 

aluminum outweighs the lower energy consumption during vehicle use [4]. Ultimately, 

the life cycle benefits of using aluminum as a lightweight vehicle material are highly 

dependent on the amount of aluminum that is recycled, while the impact of HSS relies 

primarily on the amount of mass it is able to reduce from the vehicle [3], [4]. 

 In addition to evaluating the impact of mass reduction, previous LCAs have 

compared the impact of conventional versus electrified vehicles and found that results are 

highly dependent on assumptions regarding the source of electricity and vehicle lifetime  

[6], [7], [8], [9]. For example, a study by Argonne National Laboratory (ANL) assessed 

life cycle GHG emissions of an ICV and various types of plug-in hybrid electric vehicles 

(PHEVs) for different grid regions. They found that the emissions for the PHEV ranged 

from 90% lower than the baseline ICV in the lowest fossil fuel region to 10% higher in 

the region dominated by coal [6].  Similarly, Bandivadekar et al. found that life cycle 

GHG emissions of a BEV would increase by 72% if coal was used instead of natural gas 

to produce electricity [7]. MacPherson et al. also demonstrated the sensitivity of GHG 

emissions for plug-in electric vehicles by evaluating the impact of electric grid region. 
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They found that life cycle GHG emissions could change by more than 100 gCO2/mi-eq 

for a PHEV and 150 gCO2/mi-eq for a BEV depending on the GHG intensity of the grid 

[24]. In addition to evaluating the impact of fuel source on life cycle impacts, recent work 

by Hawkins et al. has demonstrated the importance of vehicle lifetime assumptions when 

comparing a conventional and electrified vehicle [8]. Since vehicle production GHG 

emissions are higher for a BEV as compared to an ICV (due to increased electric 

components), reducing the lifetime vehicle miles traveled (VMT) decreases the GHG 

reduction benefit of a BEV [8].  

 While previous LCAs provide valuable insight to the life cycle impacts of 

lightweight materials and electrification, the vehicle models used have assumed either a 

constant glider for all powertrains or a fixed increase in structural mass per increase in 

powertrain weight [6], [7], [8]. Since previous work has not developed equivalent vehicle 

models for diverse powertrains, comparisons between the vehicles may have a bias 

towards one powertrain technology over another. The objective of this work is to assess 

the potential of aluminum and A/HSS to reduce life cycle energy and GHG emissions 

from conventional and electrified vehicles with the vehicle design harmonization 

techniques described in Part 1. Accordingly, the life cycle impacts of a baseline ICV, 

HEV, and PHEV with a 10-mile all-electric range (AER), PHEV-10, are evaluated in a 

LCA and evaluated against lightweight versions of these vehicles. Baseline vehicles are 

designed according to Part 1 (using the 1 correlation method) and lightweight vehicles 

are modeled assuming that the baseline BIW can be re-designed using aluminum or 

A/HSS. Also, it is assumed that secondary mass reductions, including powertrain 

downsizing, are implemented to the vehicle design in an early stage and can provide 

further mass reductions. The impact of mass reduction on fuel economy is determined 

individually for each vehicle, thereby capturing the differences due to powertrain 

architecture. Lastly, vehicle-cycle energy and GHG emissions are determined and 

scenario analyses are used to determine the impact of a range of material production and 

electricity energy and GHG intensities, including a closed-loop recycling scenario. To 

assess the impact of using the design harmonization method as compared to previous 

approaches, life cycle results are also obtained using the constant glider and structural 

mass multiplier methods and evaluated against the current method.  
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3.2 Method 

 Consistent with Part 1, the life cycle evaluation of vehicles with diverse 

powertrains is conducted according to the design harmonization algorithm shown in 

Figure 15. Similar to the work in Part 1, the current work evaluates vehicle mass, 

powertrain component sizes and the material composition of a baseline and lightweight 

ICV, HEV and PHEV-10 (hereafter referred to simply as “PHEV”). In addition, drive 

cycle fuel economy results are obtained using Autonomie, a forward facing (drive-to-

wheels) vehicle simulation software developed by ANL [25]. Life cycle energy and GHG 

emissions are determined with fuel economy results, material composition of the vehicle 

and the energy and GHG emissions intensity of materials and fuels. The energy and GHG 

emissions intensity of materials are determined for mild steel, A/HSS and aluminum 

based on previous literature, while the production data for all other materials are adopted 

from GREET 2, a vehicle life cycle modeling tool [26]. Fuel cycle impacts are obtained 

for liquid fuels with GREET 1, a life cycle modeling tool for fuels, and for electricity 

with eGRID, the environmental database on the electric power sector provided by the 

U.S. Environmental Protection Agency (EPA) [27], [28].  
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Figure 15: Design harmonization algorithm 

3.2.1 Baseline vehicle models 

 The methods described in Part 1 are used to develop baseline vehicle models for 

this work. Accordingly, vehicle mass is determined with regression analysis of vehicle 

teardown data using front track width (FTW) and powertrain mass as predictor variables 

for vehicle mass. Then, component sizes are determined based on performance criteria, 

such as acceleration time, gradeability and AER. Lastly, the material composition of the 

vehicle is found based on vehicle teardown data of a representative ICV and powertrain-

specific components for a HEV and PHEV. (Refer to Part 1 for more detailed 

descriptions on the method and results for baseline vehicle models.) 
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3.2.2 Lightweight vehicle models 

Similar to the baseline vehicle models, lightweight vehicles are designed using the 

process described in Part 1. However, while the work in Part 1 evaluated a material 

substitution scenario to demonstrate the lightweight vehicle design method, this work 

assesses increased mass reduction scenarios with both aluminum and A/HSS to show the 

potential of each to reduce life cycle energy and GHG emissions. Since current vehicle 

design trends indicate that A/HSS is increasing as part of the BIW composition, it is 

assumed that the BIW of the baseline vehicle is comprised of a combination of mild and 

high strength steels [12]. Accordingly, the following maximum BIW reduction values for 

AHSS and aluminum are adopted from NHTSA: 22% with A/HSS, 35% with an 

aluminum space frame. Thus, this work evaluates the two materials in an apples-to-apples 

comparison for a baseline vehicle that already has a significant amount of A/HSS in the 

design. Consistent with results from NHTSA, the following BIW mass reduction 

scenarios are considered: 15% and 20% with A/HSS and 15%, 20%, 25% and 35% with 

the aluminum-intensive design. As described by NHTSA, the aluminum space frame 

design is comprised of 92% aluminum (22% extrusions, 35% sheet, 35% castings) and 

8% steel. While the reduction scenarios considered in this work represent a range of 

possible mass reductions that could occur, the amount of mass reduction is largely 

dependent on the exact composition of the baseline vehicle body and other design 

constraints, such as the cost of implementation.  

 

3.2.3 Energy and GHG emissions models 

The life cycle energy and GHG emissions for each vehicle are determined with 

vehicle cycle models that account for processes spanning from raw material extraction to 

vehicle disposal/recycling, and fuel cycle models that include everything from mining of 

materials to vehicle fuel consumption. GHG emissions are calculated using 100-year 

global warming potentials from the IPCC Fourth Assessment Report and include CO2, 

CO, VOC, CH4, N2O, CF4, and C2F6  [29].   
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Vehicle-cycle 

 Vehicle production energy and GHG emissions are determined based on the 

material composition of each vehicle and the energy and GHG emissions intensity for 

each material. For most materials, energy and emission intensities are found using 

GREET 1, which calculates the energy and emissions from raw material recovery and 

extraction through vehicle disposal and recycling [27]. However, since steel, A/HSS and 

aluminum are the focus of this work, energy and GHG emissions for these materials are 

adopted from the most recent publications from the aluminum and steel industries, as 

shown in Table 14 [30], [31], [32]. Since the energy and GHG emissions intensities of 

conventional and advanced steels are very similar, it is assumed that no additional energy 

is required for A/HSS as compared to mild steel [15]. However, due to the energy-

intensive process of alumina reduction, the energy required to produce 1 kg of primary 

aluminum is up to seven times more than steel, based on the values shown in Table 14. 

The alumina reduction process also is a significant source of GHG emissions because two 

species with very high global warming potentials (7,390 and 12,200), CF4 and C2F6, are 

produced in addition to the GHGs that results from combustion (i.e. CO2, CO, VOC, CH4 

and N2O).  

 By recycling steel and aluminum, energy consumption is reduced by 50% for 

steel and up to 92% for aluminum, as shown in Table 14. Similarly, the GHG emissions 

intensity of the materials is lowered by 63% and 92%, respectively. As compared to steel, 

aluminum has a greater potential for energy and GHG emissions reductions through 

recycling because it eliminates the need for alumina reduction. Thus, the ratio of 

secondary to primary aluminum in the vehicle composition has a significant impact on 

the vehicle-cycle energy and GHG emissions results. Unless otherwise noted, this work 

assumes that the vehicles have 11% secondary aluminum in wrought products and 85% 

recycled aluminum in cast products [32]. Also, it is assumed that 26% of the steel content 

in the vehicles is made from recycled materials [26]. 
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Table 14. Energy and GHG emissions intensities 
  MJ/kg kgGHG/kg 

Primary steel/AHSS 26.10 [31] 2.36 [31] 
Secondary steel/AHSS 13.06 [31] 0.88 [31] 

Primary wrought 
aluminum 

Extruded 147 [30] 10.74 [30] 
Cold rolled 

sheet 
218 [30] 15.94 [30] 

Primary cast aluminum 168 [30] 12.22 [30] 

Secondary wrought 
aluminum 

Extruded 11.56 [32] 0.84 [32] 
Cold rolled 

sheet 
28.26 [32] 2.08 [32] 

Secondary cast aluminum 19.06 [32] 1.37 [32] 
 

Since the final impact of an aluminum-intensive vehicle is strongly dependent on 

the electricity sources for primary aluminum production and the percentage of secondary 

aluminum in the vehicle, two sensitivity analyses are performed to evaluate the 

sensitivity of the baseline assumptions. As shown in Table 15, a range of GHG emission 

factors for primary aluminum ingot production is evaluated based on previous work by 

Colett et al. that assessed the impact of assigning electricity sources to aluminum 

producers in increasing levels of localization [13]. Collet et al. found that with the most 

localized method of power plant aggregation, GHG emission intensities could range from 

4.28 to 29.99 kgGHG/kg if main fuel source for the region was based on hydroelectric 

power or coal [13]. Thus, these values for primary aluminum ingot production are 

considered in the first sensitivity analysis. In a second sensitivity analysis, the impact of 

increasing the ratio of secondary to primary aluminum in the vehicle is evaluated. 

Accordingly, it is assumed that closed-loop recycling is feasible and the percentage of 

secondary aluminum in the vehicle is increased from 11% to 50%.  
Table 15. Sensitivity analyses 

 Design parameter Baseline value Alternative values  
 

Vehicle Cycle 
Aluminum ingot 
GHG intensity 

10.33 kgGHg/kg 
[30] 

4.28-29.99 
kgGHG/kg [13] 

Wrought aluminum 
recycled content 

11% [32] 50% 

Fuel Cycle PHEV charging 
location 

Average US 
Lowest and highest 
NERC grid region 

[28] 
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Fuel-cycle 

 The energy and GHG emissions associated with liquid fuels and electricity are a 

combination of two phases: well-to-tank (WTT), which includes all processes upstream 

of vehicle use, and tank-to-wheel (TTW), consisting of fuel consumption on-board the 

vehicle. The WTT impacts of gasoline are calculated for the extraction, refining, and 

distribution processes using GREET 1 [27]. In accordance with GREET 1 model 

assumptions, 92% of the gasoline is from conventional oil while 8% is from oil sands 

(4% surface mining, 4% in situ extraction) [27]. To account for the regional variation in 

the electric grid, energy and emission rates are determined according to the affiliation of 

power plants with a North American Electric Reliability Corporation (NERC) sub-region 

[28]. Energy and emissions rates for electricity generation are determined using the eGrid 

database, as described in MacPherson et al., and upstream fuel-cycle impacts are 

evaluated with GREET 1 according to fuel type for each NERC sub-region [24], [27], 

[28]. Baseline results are calculated with eGRID data for the average US grid and the 

variation in carbon intensities for different NERC sub-region locations is explored in a 

sensitivity analysis using the lowest and highest carbon dependent regions on the US, as 

shown in Table 15. Specifically, the NYCC Upstate New York and WECC Rockies 

regions are identified as having the lowest and the highest annual GHG/kWh emissions, 

as the NYCC region is largely dependent on hydroelectric and nuclear power while the 

WECC region is dominated by coal. 

The TTW energy and GHG emissions for each vehicle are determined with city 

and highway drive cycle vehicle simulations in Autonomie.1 In accordance with EPA 

guidelines for adjusted fuel economy, the combined CAFE fuel economy is determined 

with a harmonic average of the city (UDDS) and highway (HWFET) drive cycle with 

weights of 47% city and 53%, respectively [33]. Also, aggressive driving is simulated by 

1.25*CAFE (i.e. velocity profiles for the UDDS and HWFET drive cycles are multiplied 

by 1.25 and these are used to calculated the combined fuel economy) to capture the 

impacts of heavy accelerations and increased vehicle speeds beyond the standard city and 

highway drive cycles [20]. The fuel economy of hybrid and plug-in hybrid vehicles is 
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measured considering charge sustaining (CS) and charge depleting (CD) modes of 

operation [34]. CS mode is measured for the HEV and PHEV by ensuring that the state of 

charge (SOC) at the end of the drive cycle test is equal to the initial SOC [34]. CD mode 

for the PHEV is measured assuming that the battery is fully charged to the allowable 

SOC at the beginning of the drive cycle test [34]. Consistent with previous work that has 

addressed SOC ranges and targets, the HEV is assumed to have a SOC window of 40% 

while the PHEV has a range of 80% [35], [36], [37], [38]. Please refer to the Appendix of 

Chapter 2 for a complete list of vehicle parameters. 

 

Total vehicle life cycle 

The total vehicle life cycle (TVLC) energy and GHG emissions are found on a per 

mile basis by adding the vehicle and fuel cycle impacts and dividing by the VMT during 

the lifetime of the vehicle. Since the PHEV may be driven in all-electric mode, the TVLC 

impacts are determined with the weighted sum of energy and GHG emissions from 

gasoline and electricity. This is done using a utility factor (UF) that indicates the amount 

of driving done in CS versus CD mode [39]. The UF of a vehicle is defined based on the 

vehicle’s AER [39]. For instance, a 10-mile range is equivalent to a UF of 0.271 

indicating that 27.1% of the drive miles are driven in CD mode while 72.9% are driven in 

CS mode [39]. Consistent with assumptions in GREET, this work assumes that the 

lifetime VMT for each vehicle is 160,000 miles [26]. 

 

3.3 Results 

3.3.1 Lightweight mass and powertrain sizing 

 The final mass of each lightweight vehicle is determined with the powertrain 

sizing routine and secondary mass reduction model. After the BIW mass is reduced 

through material substitution, secondary mass reductions in non-powertrain and 

powertrain subsystems are determined in an iterative procedure until the vehicle mass is 

reduced less than 1 kg. This convergence criterion is met after 4 iterations for the ICV 

and PHEV and 5 iterations for the HEV. Results for the 35% mass reduction scenario are 

shown in Table 16, while the results for the other levels of mass reduction are included in 

the Appendix. For all mass reduction scenarios and vehicles, secondary mass reductions 
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contribute 35-41% of total mass reductions, with the most reductions occurring for the 

HEV and PHEV due to the potential for battery downsizing. Of these reductions, 79% to 

88% occur in the first downsizing iteration due to the relative magnitude of the mass 

reduction that initiates further downsizing. For instance, during the first iteration of 

downsizing the ICV for the 35% scenario, the BIW mass is reduced by 108 kg, non-

powertrain subsystems are reduced by 39 kg and the powertrain is reduced by 11 kg, 

resulting in a 12% reduction in vehicle mass. All subsequent secondary mass reductions 

reduce another 7 kg, only 12% of the total secondary mass reductions. 
Table 16. Lightweight design process for 35% BIW mass reduction 

Vehicle mass 
with non-
powertrain 
secondary 
reductions 

(kg) 

Reduction in 
powertrain 
mass (kg) 

Vehicle mass 
with non-
powertrain 
secondary 
reductions 

(kg) 

Reduction in 
powertrain 
mass (kg) 

Vehicle mass 
with non-
powertrain 
secondary 
reductions 

(kg) 

Reduction in 
powertrain 
mass (kg) 

ICV Baseline Vehicle  
Mass: 1309 kg 

HEV Baseline Vehicle 
Mass: 1421 kg 

PHEV Baseline Vehicle 
Mass: 1472 kg 

1163 11 1268 20.4 1315 18.7 
1147 1.2 1238 4.0 1288 3.2 
1145 0.3 1232 0.8 1284 0.5 
1145 NA 1231 0.1 1283 NA 

ICV Lightweight Vehicle 
Mass: 1145 kg 

HEV Lightweight Vehicle 
Mass: 1231 kg 

PHEV Lightweight Vehicle 
Mass: 1283 kg 

 

The final engine, motor and battery specifications for each BIW reduction 

scenario and vehicle are shown in Figure 16. Overall, powertrain components are 

downsized by 5-8% for the lightest A/HSS vehicle and by 10-14% for the lightest 

aluminum-intensive vehicle. Due to the fact that the hybrid vehicles achieve the 

performance targets using a combination of energy and motor power, the HEV and 

PHEV engine size is about 42% lower than the ICV engine for a similar vehicle mass. 

Also, the PHEV battery must have a 13% higher energy capacity than that of the HEV 

battery to meet the 10-mile AER requirement.  

Due to the fact that the acceleration requirement requires a higher torque at the 

wheels than the gradeability requirement, all vehicles meet the 9 second acceleration time 

exactly and exceed the gradeability target. Accordingly, the size of powertrain 

components increase linearly with vehicle mass, as the power to weight ratio of the 
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vehicles must be constant for each type of vehicle to maintain the same acceleration time. 

However, the change in component size per change in vehicle mass (i.e. the slope of the 

line in Figure 16) is not always equivalent for each vehicle, as this is dependent on the 

powertrain design and component sizing process. For instance, as compared to the HEV 

and PHEV engines, the ICV engine decreases more per unit decrease in vehicle mass. 

This is due to the fact that the ICV relies entirely on the engine for propulsion power, 

unlike the hybrid vehicles that utilize the motor for the majority of initial acceleration 

power. Also, as compared to the PHEV battery, the HEV battery is downsized more per 

change in vehicle mass due to the requirement that it provide the motor with peak power 

(instead of the 10-mile all-electric range). Thus, a greater reduction in battery mass 

occurs for every kg of primary mass reductions. Since the battery mass is a significant 

portion of the total powertrain mass, the HEV has a slightly higher potential for 

secondary mass reductions as compared to the PHEV.  

 
Figure 16. Powertrain downsizing potential for each vehicle 

The final lightweight vehicle mass for each vehicle is shown in Figure 17. For 

reference, the potential vehicle mass with only BIW mass reductions (i.e. no secondary 

mass reductions) is also included. As the fraction of BIW mass reduction increases, 

secondary mass reductions become more significant due to the nature of the mass 

compounding effects. With both primary and secondary mass reductions included in the 

vehicle design for the lightest aluminum-intensive vehicle, mass is reduced by 164 kg for 
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the ICV (a 14% reduction), 190 for the HEV (a 15.4% reduction) and 189 for the PHEV 

(a 14.7% reduction). The maximum reduction for the A/HSS material substitution 

scenario decreases vehicle mass by 93-109 kg (a 7.7-8.3% reduction). 

 
Figure 17: Lightweight vehicle mass results with and without secondary mass reductions 

3.3.2 Lightweight vehicle material composition 

 The material composition for each lightweight vehicle is determined based on the 

mass of the lightweight subsystems and material mass fractions of the baseline vehicle 

models. The material composition of the lightest aluminum-intensive and A/HSS vehicles 

are shown in Figure 18. The maximum steel reductions (340 kg) occur for the aluminum-

intensive PHEV with 35% BIW mass reductions. Of these, 8% are the result of secondary 

mass reductions, which also reduce aluminum, copper, rubber, plastic, and stainless steel 

by 4-8%. Trends for the ICV and HEV are similar, as 7-8% of the steel reductions are 

due to secondary mass reductions. Since secondary mass reductions have less of an 

impact for the A/HSS vehicle due to the lower amount of primary mass removed, the 

mass of non-steel materials is only reduced by 5% at most. As compared to the baseline 

vehicles, 90 kg of steel is removed at most for the PHEV, with 27% of these reductions 

due to subsystem downsizing.  
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Figure 18: Material composition of the lightest aluminum-intensive (35% BIW mass reductions) and 

A/HSS vehicle (20% BIW mass reductions) 

3.3.3 Fuel economy 

As shown in Figure 19, the fuel economy for each vehicle is determined using 

Autonomie (see Figure 27 in the Appendix for aggressive drive cycle results). Due to 

increased vehicle efficiency for hybrid vehicles, fuel economy in charge sustaining mode 

is 49-50% higher for the HEV and PHEV as compared to the ICV. The MPGe for the 

PHEV is higher than the HEV due to the high efficiency during charge depleting mode 

(221 Wh/mi to 205 Wh/mi for the baseline and lightweight PHEVs) and the method of 

calculating MPGe based on the EPA’s conversion of 33.6 kWh to 1 gallon of gasoline. 

Consequently, fuel economy is increased by 56% for the PHEV as compared to the HEV.  

 
Figure 19: Fuel economy results for baseline and lightweight ICVs, HEVs and PHEVs2 

 

The impact of mass reduction on fuel economy is determined for each vehicle, as 

shown for the UDDS cycle in Figure 20(a) with the mass elasticity of fuel economy and 
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in Figure 20(b) with the absolute change in fuel consumption per change in mass. Also, 

mass elasticity results for the CAFE cycle are included in Table 21 in the Appendix. 

Similar to results found in previous literature, the PHEV and HEV have the lowest mass 

elasticity of fuel consumption due to their regenerative braking capabilities and increased 

powertrain efficiency. While the HWFET drive cycle results follow the same trends, 

results from the UDDS cycle most clearly demonstrate the difference between different 

powertrains due to the increased regenerative braking that occurs during city driving. For 

instance, when the mass of the HEV decreases by 10%, the total braking energy at the 

wheels during the UDDS drive cycle also decreases by 10% and the recovered energy at 

the battery decreases by 8%. Thus, as mass is reduced from the vehicle, some of the fuel 

economy gains from the lower vehicle inertia are offset by the loss of regenerative 

braking energy. As compared to the HEV, the PHEV has a lower sensitivity to vehicle 

mass due to the increased efficiency during all-electric operation.  

Mass elasticity of fuel consumption results determined in this work agree well 

with previous simulation results, as CAFE fuel consumption is decreased by 6.8% for a 

10% decrease in vehicle mass for the ICV [20], [22], [23]. Similarly, the HEV and PHEV 

fuel consumption is reduced by 6.2% and 6.5% for a 10% decrease in vehicle mass. Due 

to the higher baseline fuel economy of the PHEV, the percent reduction in fuel 

consumption is higher as compared to the HEV even though the absolute fuel 

consumption reduction is lower. A complete list of fuel economy and fuel consumption 

mass elasticity results from this work is included in Table 21 in the Appendix, along with 

results from previous literature.   

The impact of powertrain re-sizing on fuel economy, also shown in Figure 20, is 

much more significant for the ICV as compared to the HEV. If the mass of an ICV is 

decreased without powertrain downsizing, the engine operates at a lower torque that has a 

lower efficiency. By downsizing the engine, the operating regime is shifted to higher 

torques and efficiency is increased (e.g. by 3.5% for the case shown in Figure 20). 

However, if the mass of a hybrid vehicle is reduced without modifying the powertrain, 

the impact on vehicle efficiency is much less pronounced. This is due to the fact that the 

efficiency of the motor is less sensitive to downsizing than the engine. For instance, a 

14% decrease in weight results in a 2% increase in efficiency for the ICV engine but only 
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a 0.3% efficiency increase for the motor. Since this is the case, the hybrid control strategy 

has an important role in determining the final impact on vehicle efficiency, as the engine 

will be utilized for a shorter duration of the drive cycle and operated at higher, more 

efficient torque levels.  

 
Figure 20: UDDS drive cycle results for all baseline and lightweight vehicles (a) mass elasticity of fuel 

economy (elasticity results shown for each vehicle), (b) absolute change in fuel consumption per 
absolute change in vehicle mass 

3.3.4 Total life cycle energy and GHG emissions 

As shown in Figure 21, the total life cycle results for the baseline ICV, HEV and 

PHEV demonstrate the benefit of vehicle hybridization as a means to reduce life cycle 

energy and GHG emissions. Total life cycle results are largely dependent on the vehicle 

use phase, as 84-91% of the total life cycle results are attributed to the fuel-cycle.  

Accordingly, vehicle efficiency and upstream fueling sources play a key role in 

determining the total life cycle performance. For instance, even though the vehicle 

production energy and emissions are slightly higher for the HEV as compared to the ICV, 

the fuel consumption of the HEV is 34% lower and total life cycle energy and GHG 

emissions are reduced by 29%. While a similar trend is noted for the PHEV, the fuel 

consumption reduction is much more significant due to the method of converting kWh to 

an equivalent gallon of gasoline (e.g. MPGe fuel consumption is 57% lower for the 

PHEV as compared to the ICV, but life cycle results are only 35% lower). Since the 

electricity to gasoline conversion is based on the energy content of the fuel and does not 

account for the combustion processes required to create electricity, life cycle results yield 

a more accurate basis on which to compare the PHEV to the non-plug in vehicles than by 
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simply evaluating MPGe results. When considering the upstream fuel cycle and power 

plant combustion processes for the average US grid, it is evident that the PHEV reduces 

energy and GHG emissions by only 8% as compared to the HEV and 35% as compared 

to the ICV.  

As vehicle electrification increases, vehicle-cycle energy and GHG emissions are 

increased due to changes in the powertrain and powertrain-dependent subsystems (i.e. 

body structure, front suspension, and fuel and exhaust). The most significant impact is the 

addition of a Li-ion battery to the powertrain, as this increases vehicle production GHG 

emissions by 2.5 gGHG/mi (78% of the total increase) for the HEV as compared to the 

ICV. Of the remaining increase (0.7 gGHG/mi), 40% is due to other changes in the 

powertrain and 60% is due to increased structural support. Thus, the design 

harmonization techniques employed in this work result in a 1% increase in vehicle 

production energy and GHG emissions for the HEV and PHEV.  

 
Figure 21: Baseline vehicle life cycle energy and GHG emissions 

 Vehicle cycle, fuel cycle and total life cycle results are shown in Figure 22-Figure 

24, respectively, for all of the baseline and lightweight vehicles. Since energy and GHG 

emissions follow the same trends, GHG emissions data is shown here and the 

corresponding energy consumption figures are included in the Appendix. As shown in 

Figure 22, the aluminum-intensive vehicles produce more GHG emissions (and consume 

more energy) during the vehicle production phase as compared to the A/HSS and 

baseline vehicles. Since the energy and emission intensities of mild and A/HSS steel are 

assumed to be equivalent, the baseline and A/HSS vehicles follow the same linear trend 

according to powertrain type. However, due to component and material differences 
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between the hybrid and conventional powertrains, the A/HSS hybrid vehicles are more 

energy and GHG intensive to produce than the baseline or A/HSS ICVs of an equivalent 

mass. On the other hand, vehicle production energy and GHG emissions for aluminum-

intensive HEVs are higher than for PHEVs with the same vehicle mass, despite the fact 

that the powertrain is more energy intensive to produce for the PHEV. This trend is due 

to the fact that for a given vehicle mass, the mass of the body structure is higher for the 

HEV and therefore the content of aluminum in the vehicle is significantly increased. 

Since the average energy and emissions intensity of primary aluminum is at least five 

times that of steel, the differences in the body weight are amplified as compared to the 

A/HSS vehicles. However, in the context of the total vehicle life cycle, the vehicle-cycle 

contributes only 20% at most to total GHG emissions. Thus, the differences in vehicle 

production due to powertrain type are less than 1% of the total vehicle life cycle results. 

 

 
Figure 22: Vehicle-cycle gGHG/mi for each vehicle 

 Fuel cycle results for the lightweight and baseline vehicles, shown in Figure 23, 

include combustion and upstream processes for gasoline and electricity, which are 

combined for the PHEV using the UF for a 10-mile all-electric range. Since the upstream 

energy and GHG emissions correspond to the tank-to-wheel fueling demand, the fuel 

cycle results are consistent with the previously reported fuel consumption. That is to say, 

the ICV has the lowest efficiency while the PHEV has the highest efficiency due to 

regenerative braking capabilities and all-electric operation. Also, the mass elasticity of 

fuel consumption is shown for each vehicle, as GHG emissions decrease at an increased 

rate for the ICV than the HEV or PHEV as vehicle mass is decreased. 
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Figure 23: Fuel-cycle gGHG/mi for each vehicle 

 Combining the vehicle and fuel cycle results, total vehicle life cycle results are 

shown in Figure 24. Accordingly, A/HSS lightweight vehicles have a lower energy and 

GHG emissions impact for each powertrain-type vehicle. In fact, results show that the 

A/HSS ICV with 15% BIW mass reductions achieves 87% of the life cycle GHG 

reductions possible as the 25% BIW mass reduction scenario with aluminum. Also, the 

total life cycle results reflect the trends due to the distinct mass elasticity of fuel economy 

for each vehicle. For instance, a 100 kg reduction in vehicle mass reduces ICV life cycle 

GHG emissions by 6% but only by 5% for the HEV and PHEV. Thus, results indicate 

that applying lightweight materials to the ICV results in the greatest impact per unit of 

mass reduction. 

 

 
Figure 24: Total life cycle gGHG/mi for each vehicle 

 Overall, the trend of life cycle results for the conventional lightweight vehicle 

with aluminum and A/HSS is consistent with previous work, as both materials result in a 
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reduction of life cycle energy and GHG emissions [3], [4], [40], [41]. For instance, work 

by Kim et al. found that by reducing ICV mass by 6% using either aluminum or A/HSS, 

life cycle GHG emissions are reduced by 5-8% [3]. Similarly, this work shows a 5-6% 

reduction in GHG emissions per 6% ICV mass reduction with both lightweight materials 

[3]. However, as compared to Kim et al., the input emissions intensity of A/HSS is lower, 

leading to a greater reduction in life cycle impacts for A/HSS vehicles [3]. Life cycle 

results are largely dependent on the assumptions regarding aluminum and A/HSS 

emissions, as Kim et al. found that GHG emissions could change by 100 gGHG/mi when 

considering high and low emissions factors for both materials [3]. 

 While this work has included detailed powertrain re-sizing and secondary mass 

savings models, life cycle results are similar to previous work [40]. This is due to the 

large variability of life cycle results in the literature and the fact that life cycle results are 

most correlated to fuel consumption reductions, regardless of how these reductions are 

achieved [4], [40]. As evaluated by Kim et al., LCA results regarding lightweight 

materials and vehicles have a great variability, depending on the vehicle modeling 

method, input assumptions on energy and GHG emissions of materials, and a number of 

other value judgments [40]. Ultimately, since life cycle results are most dependent on 

fuel consumption reductions, the powertrain re-sizing and secondary mass models in this 

work provides more confidence in the results but does not show surprising differences 

from previous work. However, the modeling detail in this work does have a significant 

impact on the trend of life cycle impacts for hybrid vehicles, as discussed in the “Impact 

of design harmonization techniques” section of this work. 

 

3.4 Sensitivity Analysis 

 The life cycle variation of recycling aluminum and electricity allocation protocols 

is shown for the aluminum-intensive PHEVs in Figure 25. Since the PHEVs contain the 

highest mass fraction of aluminum for a given BIW mass reduction scenario (e.g. 12-

14%), the energy and GHG reductions due to modifying the aluminum production 

processes represent the best-case scenario for the vehicles considered in this work. By 

recycling 50% of the wrought aluminum in the closed loop recycling scenario, the 

average energy and emissions required to produce 1 kg of aluminum is reduced by 40% 
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for the PHEV. As a result, vehicle production energy and emissions are reduced by 9%-

11% and life cycle results decrease by 2%.  

 The variation of primary aluminum ingot GHG emissions due to electricity 

allocation protocol is also evaluated for the aluminum-intensive PHEV and shown in 

Figure 25. Consistent with the baseline scenario, 11% of wrought aluminum and 85% of 

cast aluminum in the vehicle is secondary aluminum (and the corresponding GHG 

emissions do not vary with electricity allocation protocol). Depending on if the electricity 

is allocated to coal or hydroelectric power, vehicle cycle GHG emissions could increase 

by 44% or decrease by 14%, resulting in a life cycle sensitivity of +14% to -3%. Since 

the electricity allocation protocol for wrought aluminum has a significant impact on life 

cycle results for aluminum-intensive vehicles, it is essential to clearly define the level of 

localization for electricity allocation within the LCA framework. 

 

 
Figure 25: Variation of aluminum due to recycling and production allocation for the aluminum-

intensive PHEVs 

The range of energy and GHG emissions due to PHEV charging location is 

evaluated with the NERC regions that have the greatest and least carbon intensity. 

Accordingly, the WECC Rockies region represents a high carbon grid, as 68% of the grid 

is dominated by coal, while the NPCC Upstate New York grid region represents a low 

carbon grid, since it uses a significant amount of hydroelectric and nuclear power. As 

shown in Figure 26, the life cycle impact ranges from -9% to 7% gGHG/mi depending on 

if the vehicle is charged in a low or high carbon grid region. As this range of life cycle 

results is more significant than the previous analysis with sourcing aluminum production, 

the results emphasize the necessity to consider the charging region (i.e. electricity fuel 



82	
  
	
  

sources) when evaluating life cycle performance of a PHEV. Furthermore, since these 

results are only for a 10-mile range PHEV, a PHEV with a larger range would have a 

greater variability due to charging location. 

 
Figure 26: Life cycle sensitivity to charging location for the baseline PHEV 

3.5 Impact of design harmonization techniques 

 The design harmonization techniques developed in this work provide an 

alternative approach to the constant glider or structural mass multiplier vehicle modeling 

methods. A comparison of results from using the current harmonized method, constant 

glider approach and structural mass multiplier method (using the ratio of 0.5:1 structural 

mass to powertrain mass increase) is shown in Table 17. Since results from the single 

correlation harmonized design method indicate that only 0.2 kg of structural mass is 

required per unit increase in powertrain mass, the vehicle mass determined with the 

current method is less than the structural multiplier method, but greater than the constant 

glider approach. Accordingly, the proposed harmonized method offers a middle-of-the-

road approach to determine life cycle impacts of electrified vehicles. For instance, this 

approach results in life cycle GHG emissions that are up to 2.0% lower as compared to 

the structural mass multiplier method, and 1.1% higher as compared to the constant glider 

approach. Thus, the current method validates previous methods and provides an 

alternative approach that more accurately captures trends in current vehicle design. 

 Within the design harmonization framework, single and combined correlation 

methods are evaluated to determine the impact of including conventional and hybrid 
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vehicle designs together or separately. As discussed in Part 1, the 1 correlation method 

shows that more structural support is required as electrification increases, while the 2 

correlation method indicates that the relationship between structural mass and powertrain 

mass is less significant. However, the difference in life cycle results is mainly due to the 

fact that the 2 correlation method predicts lower vehicle masses for all vehicles, leading 

to increased fuel economy. Thus, fuel consumption and life cycle GHG emissions are 

reduced by 1% when the 2 correlation method is used instead of the single fit. Note that 

results for the 2 correlation method in Table 17 should not be directly compared to the 

glider and structural mass multiplier results, as these are based on the ICV model 

determined with the 1 correlation method. 

Lightweight vehicle models developed using the design harmonization method 

include fuel economy simulation for each powertrain-type vehicle, thus incorporating the 

mass elasticity of fuel economy trends of conventional and electrified vehicles in the 

LCA. If a constant fuel reduction value (FRV) was used instead, as is often done in 

lightweight vehicle LCAs, the hybrid vehicle life cycle reductions would have been 

inflated [40]. For instance, if the FRV that was determined for the ICV was used for the 

HEV, fuel consumption for each vehicle would be reduced by 0.21 gal/100mi (0.49 

L/100km) per 100 kg mass reduction. As a result, HEV fuel economy would increase 

from 50 to 62 MPG (instead of 50 to 54 MPG) for the baseline and 35% BIW mass 

reduction scenario, resulting in a life cycle GHG emissions reduction of 16% (instead of 

6%). Thus, by including the powertrain-specific FRVs with the design harmonization 

approach, life cycle impacts for a HEV with 15.4% mass reduction are 12% lower than 

they would be otherwise. Since there has not been much literature published concerning 

the life cycle comparison of mass reduction for conventional and electrified vehicles, 

future work should ensure that powertrain-specific fuel economy trends are included in 

the LCA, as these have been shown to have a significant impact on life cycle results. 
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Table 17: Comparison of results using current and previous vehicle modeling methods 
 ICV HEV PHEV 

Harmonized 
method -     
1 Corr.  

(2 Corr.) 

Glider / 
Structural 

mass 
mult. 

1 Corr. 
 (2 Corr.) 

 

Glider 
Structural 

mass 
mult. 

1 Corr. 
(2 Corr.) 

 

Glider 
Structural 

mass 
mult. 

Vehicle 
mass (kg) 

1309 
(1290) 

1309 1421 
(1411) 

1404 1452 1472 
(1451) 

1448 1518 

Body 
structure 

(kg) 

307 
(301) 

307 322 
(325) 

307 355 329 
(322) 

307 377 

Front 
suspension 

(kg) 
67 

(66) 

67 70 

(71) 

67 67 72 

(70) 

67 67 

Fuel and 
exhaust 

(kg) 
41 

(41) 

41 39 

(37) 

41 41 38 

(38) 

41 41 

Fuel 
economy 
(MPG) 

33.2 

(33.6) 

33.2 49.6 

(49.9) 

50.0 48.9 77.1 

(77.9) 

78.0 75.5 

Life cycle 
GHGs 
(g/mi) 

471 

(466) 

471 330 

(329) 

328 335 292 

(289) 

289 298 

% 
difference 

in LC 
results 

0% 

(-1.1%) 

0% 0% 

(-0.5%) 

-0.8% 1.4% 0% 

(-1.0%) 

-1.1% 2.0% 

3.6 Conclusions 

 This work evaluated the life cycle energy and GHG emissions of baseline and 

lightweight ICVs, HEVs and PHEVs with aluminum and A/HSS. Using the design 

harmonization technique described in Part 1, lightweight aluminum vehicles were 

designed for 15%, 20%, 25% and 35% BIW mass reduction scenarios and lightweight 

A/HSS vehicles were designed for 15% and 20% BIW mass reduction scenarios. Results 

show that with secondary mass reductions, including powertrain downsizing, lightweight 

vehicles are 16% lighter than baseline vehicles, with 35-41% of these reductions due to 

secondary mass reductions.  

The mass elasticity of fuel economy was assessed for each vehicle by simulating 

the drive cycle performance of each powertrain-type vehicle with Autonomie. Consistent 

with results from previous literature, results showed that the fuel economy of the ICV is 

more sensitive to a change in vehicle mass than the hybrid vehicles. Since the use phase 
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is the most significant portion of the total vehicle life cycle, the mass elasticity of fuel 

economy is evident in the life cycle results. Thus, results of this work indicate that it is 

more beneficial to lightweight an ICV than a hybrid vehicle because for one unit of mass 

reduction there is a greater decrease in life cycle energy and GHG emissions. 

Life cycle results show that it is possible to achieve more life cycle energy and 

GHG emissions reductions with A/HSS than with aluminum per unit mass reduced for 

the vehicle. However, due to the greater potential of aluminum to reduce vehicle mass, 

maximum life cycle reductions are achieved with the aluminum-intensive 35% BIW mass 

reduction scenario. However, for all powertrain-type vehicles, a similar reduction in 

energy and GHG emissions is achieved with either the 25% BIW mass reduction scenario 

with aluminum or 15% BIW mass reduction scenario with A/HSS. Thus, depending on 

practical constraints such as cost and manufacturing, lightweight vehicle designs using 

A/HSS or aluminum may achieve equivalent life cycle goals. Overall, results from this 

work demonstrate the life cycle benefits of applying lightweight materials to electrified 

vehicles, as the lightest aluminum-intensive PHEV reduces life cycle energy and GHG 

emissions by 39% as compared to a baseline ICV.  

The design harmonization techniques used for the life cycle analysis enable a 

comparison between different powertrain-type vehicles that accounts for the structural 

mass required to support heavier, electrified powertrains. As compared to a constant 

glider or structural mass multiplier approach (assuming 0.5 kg of structural mass is 

required per kg powertrain mass increase), the current design method offers an alternative 

approach, as 0.2-0.3 kg of structural support is required per unit increase in powertrain 

mass. Consequently, vehicle production impacts are increased by up to 1.6% as compared 

to the constant glider approach and CAFE fuel economy decreases up to 1.2%, resulting 

in only a 1% change in life cycle results. Conversely, life cycle results are 2% lower as 

compared to the structural mass multiplier method. Overall, since life cycle results 

obtained with the harmonized design method are only 1-2% different than results 

determined with previous methods, it is recommended that the design harmonization 

method should only be used if vehicle design and electric powertrains are the focus of the 

work. Otherwise a glider approach may provide a less computationally intensive method 

to obtain similar results. Also, as more information becomes available regarding hybrid 
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vehicle design, this framework should be re-applied to determine if electric vehicle 

design modifications have become more significant and should be included for future 

vehicle LCAs.  
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3.8 Appendix 
Table 18. Lightweight design process for 25% BIW mass reduction 

Vehicle mass 
with non-
powertrain 
secondary 
reductions 

(kg) 

Reduction in 
powertrain 
mass (kg) 

Vehicle mass 
with non-
powertrain 
secondary 
reductions 

(kg) 

Reduction in 
powertrain 
mass (kg) 

Vehicle mass 
with non-
powertrain 
secondary 
reductions 

(kg) 

Reduction in 
powertrain 
mass (kg) 

ICV Baseline Vehicle Mass:  
1309 kg 

HEV Baseline Vehicle Mass: 
1421 kg 

PHEV Baseline Vehicle Mass: 
1472 kg 

1205 7.9 1311 14.6 1360 13.4 
1193 0.9 1290 2.8 1341 2.3 
1192 0.1 1286 0.5 1337 .5 

 NA 1285  1337 NA 
ICV Lightweight Vehicle 

Mass: 1192 kg 
HEV Lightweight Vehicle 

Mass: 1285 kg 
PHEV Lightweight Vehicle 

Mass: 1337 kg 
 

Table 19. Lightweight design process for 20% BIW mass reduction 
Vehicle mass 

with non-
powertrain 
secondary 
reductions 

(kg) 

Reduction in 
powertrain 
mass (kg) 

Vehicle mass 
with non-
powertrain 
secondary 
reductions 

(kg) 

Reduction in 
powertrain 
mass (kg) 

Vehicle mass 
with non-
powertrain 
secondary 
reductions 

(kg) 

Reduction in 
powertrain 
mass (kg) 

ICV Baseline Vehicle Mass:  
1309 kg 

HEV Baseline Vehicle Mass: 
1421 kg 

PHEV Baseline Vehicle Mass: 
1472 kg 

1226 6.3 1333 11.7 1383 10.7 
1217 0.7 1316 2.3 1367 1.2 
1216 .02 1313 0.4 1364 0.3 

 NA 1312  1364 NA 
ICV Lightweight Vehicle 

Mass: 1216 kg 
HEV Lightweight Vehicle 

Mass: 1312 kg 
PHEV Lightweight Vehicle 

Mass: 1364 kg 
 

Table 20. Lightweight design process for 15% BIW mass reduction 
Vehicle mass 

with non-
powertrain 
secondary 
reductions 

(kg) 

Reduction in 
powertrain 
mass (kg) 

Vehicle mass 
with non-
powertrain 
secondary 
reductions 

(kg) 

Reduction in 
powertrain 
mass (kg) 

Vehicle mass 
with non-
powertrain 
secondary 
reductions 

(kg) 

Reduction in 
powertrain 
mass (kg) 

ICV Baseline Vehicle Mass:  
1309 kg 

HEV Baseline Vehicle Mass: 
1421 kg 

PHEV Baseline Vehicle Mass: 
1472 kg 

1247 4.7 1355 8.8 1405 8.1 
1240 0.5 1342 1.7 1393 1.4 
1239  1340 0.3 1391 0.2 

 NA 1340  1391 NA 
ICV Lightweight Vehicle 

Mass: 1239 kg 
HEV Lightweight Vehicle 

Mass: 1340 kg 
PHEV Lightweight Vehicle 

Mass: 1391 kg 
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Figure 27: Aggressive drive cycle results for the baseline vehicles 

 
 
Table 21: Elasticity of fuel consumption and fuel economy for a 10% mass reduction and comparison 

with previous literature that included powertrain re-sizing for the combined drive cycles (CAFE) 
 Results from this work Previous Literature 
 FC % decrease  MPGe % 

increase FC % decrease MPG % 
increase 

 
ICV 6.8% 

(0.21 gal/100mi) 

 
7.3% 

6.9% [42], 6.8% 
(NEDC) / 5.5% 
(HYZEM) [43] 

6.4% [44]*, 
8.2% [20], 

8.3% [23]** 
 

HEV 6.2% 
 (0.13 gal/100mi) 

 
6.7% 

5.7% (NEDC) / 
4.9% 

(HYZEM)† [43] 

6.9% [20]‡, 
8.2%[23]** † 

 
PHEV 

6.5%  
(0.08 gal-
eq/100mi) 

 
7.0% 

 
- 

 
- 

*This was based on the FTP-75 which is a variant of the UDDS city drive cycle 
**Reported results interpolated for 10% mass reduction 

†Parallel hybrid 
‡Power-split, FWD 
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Figure 28: Vehicle-cycle MJ/mi for each vehicle 

 

 
Figure 29: Fuel-cycle MJ/mi for each vehicle 

 

 
Figure 30: Total vehicle life cycle MJ/mi for each vehicle 
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Chapter 4: Scaling and dimensional methods to incorporate knock and flammability 
limits in models of high efficiency gasoline and ethanol engines 

4.1 Abstract 
Recent work has shown the utility of using simplified models with prescribed 

burn rates to assess the potential of advanced combustion strategies to increase engine 

efficiency. However, this approach could be improved by incorporating knock and 

flammability limits in such models. This work incorporates such limits using a 

combination of conceptual models that are based on theoretical understanding of knock 

and flame phenomenon and experimental results that have identified knock and 

flammability limits for SI engines. Using this method, the ideal and feasible potential of a 

high efficiency gasoline and E85 engine are compared against a baseline naturally 

aspirated gasoline engine. Turbocharging, dilution with EGR, and higher compression 

ratios are used to increase the efficiency potential of the high efficiency gasoline and E85 

engines. Results demonstrate the benefit of using this simplified approach to modeling 

high efficiency engines, as the expected trends occur: the high efficiency gasoline engine 

is most limited by knock while the E85 engine permits spark timings closer to maximum 

brake torque (MBT); and increased EGR can be used for the E85 engine due to the higher 

flame speeds of ethanol. Fuel economy maps are created for each engine/fuel strategy and 

evaluated in a vehicle model to obtain fuel economy results. Results show that peak brake 

thermal efficiency (BTE) is increased by 13.7% for the high efficiency gasoline engine 

and 17.7% for the E85 engine, as compared to the baseline gasoline engine.  
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4.2 Introduction  
 Downsizing and turbocharging is one of the most effective technologies for 

gasoline engines to maintain performance while increasing efficiency [1]. By lowering 

the engine displacement, the engine operates in a higher load regime where it is more 

efficient [1], [2], [3], [4]. At these high load, boosted conditions, thermal efficiency 

increases due to reductions in pumping and friction losses. As load increases, absolute 

friction increases but the relative impact of friction decreases [5]. In addition, downsized 

engines reduce absolute friction for all speeds and loads due to the lower surface area 

traversed by the piston [5].  

The main challenge to downsized and turbocharged gasoline engines is reducing 

knock while maintaining optimal performance. One solution could be to reduce the 

compression ratio, thus lowering the peak cylinder pressure and temperature. However, 

this is not desirable because a lower compression ratio decreases thermal efficiency. 

Other strategies include enriching the fuel-air mixture with excess fuel, thus lowering 

combustion temperatures, or retarding spark timing away from maximum brake torque 

(MBT) timing until knock does not occur. These methods are clearly undesirable from an 

efficiency standpoint. Another option is to use cooled exhaust gas recirculation (EGR) to 

dilute the mixture. EGR has the combined benefit of lowering peak temperatures and 

consequently increasing the ratio of specific heats, γ, for unburned and burned mixtures. 

A higher γ increases thermal efficiency by enabling more work to be done on the mixture 

during compression. This leads to an increased change in pressure during combustion and 

corresponding work output. The increase in efficiency due to EGR is augmented at low 

loads because EGR reduces pumping work by displacing intake air. At high loads, EGR 

may replace enrichment as a means to reduce exhaust gas temperatures because EGR 

enables spark timings near MBT timing and increases the specific heat capacity of the 

burned gases. The main disadvantage of adding EGR to a fuel-air mixture is the resulting 

slower burn rates, which increases the chance of misfire or partial burning [6], [7], [8]. 

Technologies to extend the lean limit include charge stratification and advanced ignition 

systems [9]. While charge stratification can be used to stabilize combustion by ensuring 

sufficient fuel exists around the spark, under typical overall lean operation a 3-way 

catalyst cannot be used to treat emissions (particularly NOx). However, a variety of 
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advanced ignition systems demonstrate the potential to control combustion in highly 

dilute homogeneous mixtures [9], [10]. For example, researchers at Southwest Research 

Institute (SwRI) have developed a new ignition system that emits a continuous current 

which is maintained at a high energy level throughout the entire discharge [9]. This is 

thought to increase flame kernel growth and burn rates, providing increased combustion 

stability [9]. Results from using this system with their high-efficiency dilute gasoline 

engine (HEDGE) concept show that 0-50% MFB duration decreases and combustion 

stability is improved for 0-25% external EGR compared to the stock ignition system [9]. 

An alternative method to reduce knock while maintaining efficiency is to replace 

or blend gasoline with a higher octane fuel, such as ethanol. Previous work has shown 

that ethanol-gasoline blends can be used at MBT timing without knock even when the 

compression ratio and peak BMEP is increased from the gasoline baseline [11], [12]. For 

instance, Caton et al. found that E85 may be used with a 16.5 compression ratio with only 

modest spark retard [13]. This is possible due to ethanol’s higher octane number (ON) 

and higher heat of vaporization, which increases charge density and volumetric efficiency 

through cooling [14], [15]. This also results in lower heat losses for the same intake 

pressure and temperature conditions [16]. The main limitation to using ethanol in a 

gasoline engine is that at high loads, peak cylinder pressures can easily exceed 100 bar, 

typically considered the limit for most SI engines [17], [18]. 

 Since there are many ways to increase engine efficiency, thermodynamic models 

have proven a useful tool to assess the thermodynamic potential of advanced lean or 

dilute combustion strategies [5], [19]. For example, Lavoie et al. used conceptual models 

to assess the benefits of HCCI, SI, and advanced combustion for conventional and 

downsized / turbocharged engines [5]. Since the objective was to show the 

thermodynamic potential of each technology, engine operating constraints (e.g. knock, 

flame limits) were not considered. Their results show that reductions in friction losses 

play an important role in increasing efficiency for downsized engines and that additive 

gains in efficiency are possible by using advanced combustion strategies with these 

engines. For example, when evaluated over the combined city and highway drive cycles, 

a naturally aspirated (NA) advanced combustion and downsized/turbocharged SI engine 

increase fuel economy 23% and 36%, respectively, while a turbocharged advanced 
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combustion engine results in a 58% improvement from the baseline NA engine [5]. These 

improvements are an upper limit on the potential of each strategy.  

 The objective of this work is to incorporate knock and flame limits in a 

thermodynamic engine model to assess the realistic, or feasible potential versus the ideal 

potential of highly efficient engine technologies. In particular, ideal and feasible versions 

of high efficiency gasoline and ethanol engines are compared against a baseline SI 

engine. The approach is to use an engine cycle simulation with 1-D gas dynamics to 

create fuel consumption maps and evaluate each engine design [20]. First, the maximum 

thermodynamic potential is assessed using MBT timing and optimistic EGR assumptions. 

Then, a method is developed to determine knock and flammability limits for each high 

efficiency engine. Lastly, these limits are incorporated into the drive cycle models and 

new fuel consumption and efficiency results are obtained. 

4.3 Model 
A single cylinder engine model was built in GT-Power, a commercial software 

platform for engine simulation, to represent a light duty gasoline direct-injection (GDI) 

engine. As shown in Table 22, the single cylinder model has a displacement of 0.5L and 

variable, fixed cam intake valve timing. To minimize pumping losses the intake timing 

was advanced for low speeds and retarded for high speeds.  
Table 22. Single cylinder engine model specifications 

Volume (L) 0.5 
Bore (mm)/Stroke (mm) 87.4 / 83 

Intake Valves (2)  
Lift (mm)/Diameter (mm) 10.2 / 34.5 

IVO (deg ATDC gas exchange) -44 to 25  
IVC (deg ATDC gas exchange) 218 to 287  

Exhaust Valves (2)  
Lift (mm)/Diameter (mm) 10.2 / 31 

EVO (deg ATDC firing) 131 
EVC (deg ATDC firing) 384 

 

A turbocharger model, described in Lavoie et al., is used to apply a backpressure 

on the system for a given intake pressure and overall turbocharger efficiency, ɳOTC [5]. 

The model is based on an energy balance equation that determines that amount of turbine 

work needed to operate the compressor while accounting for efficiency losses [5]. ɳOTC is 
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a product of the turbine, compressor, and mechanical link efficiencies and is assumed to 

be 40% for this work. If ɳOTC or exhaust temperature decrease, the backpressure and 

associated pumping work increase accordingly [5]. Also, it is assumed that a heat 

exchanger located between the compressor and engine maintains the intake temperature 

at a constant temperature. 

Heat transfer is determined with the standard Woschni correlation [6]. Friction is 

modeled with the Chen-Flynn expression, where friction is a function of cylinder 

pressure and mean piston speed [21]. Heat release is modeled with the Wiebe function 

[6]. Inputs to the Wiebe function are 10-90% burn duration, CA50 (location of 50% mass 

fraction burned), and combustion efficiency. For maximum brake torque (MBT), the 10-

90% burn duration is set to 25 deg ATDC and CA50 is determined on a case by case 

basis. Unless otherwise stated, MBT conditions will be used with a combustion efficiency 

of 98%. 

 Similar to previous gasoline engine modeling studies, iso-octane is used as a 

thermodynamic surrogate for gasoline [8]. The fuel properties of gasoline and neat 

ethanol (E100) are obtained from GT-Power, as shown in Table 2. Also shown are the 

properties of E85 (85% ethanol, 15% gasoline by volume), which are calculated with the 

weighted sum of the two fuels. The heat of vaporization, which is significantly higher for 

ethanol, is incorporated into the model during the fuel vaporization process. It is assumed 

that all of the fuel is vaporized immediately after injection and that the necessary energy 

is extracted from the surrounding gases. 
Table 23. Fuel properties 

 Gasoline† E85 E100 
Lower Heating 
Value (MJ/kg) 44.3 30.2 27.7 

Heat of 
Vaporization 

(kJ/kg) 

 
308 

 
831 

 
924 

ON 92 107 110 
†Thermodynamic properties taken from iso-octane. 

4.4 Fuel and engine configurations 
To assess the potential of gasoline and ethanol to increase engine efficiency, 

engines are designed for each fuel and compared against a baseline gasoline engine. The 

design parameters of the three engine/fuel strategies are shown in Table 3. All engines 
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operate at stoichiometry (ϕ = 1) but differ in air handling, compression ratio, and EGR. 

The baseline engine is naturally aspirated and does not use any external EGR, while both 

high efficiency engines are turbocharged with up to 2 bar intake pressure and use up to 

25% cooled EGR, maintained at 60° C in the intake manifold. A 10.5:1 compression ratio 

is chosen for the baseline engine [22]. Since the high efficiency gasoline engine is 

designed to have a higher knock resistance by using cooled EGR, its compression ratio 

can be increased to 12:1 [23], [24], [25]. Previous work has shown that when modifying a 

gasoline SI engine for ethanol, up to a 7.6 increase in ON allows 1 compression ratio 

increase [26], [27]. The E85 engine has a 15 ON increase, so the compression ratio can 

be increased from 12:1 to 14:1.  
Table 24. Overview of engine/fuel model parameters 
 Baseline 

Gasoline 
High 

Efficiency 
Gasoline 

High 
Efficiency 

E85 
Intake Air NA (≤ 1 bar) TC (≤ 2 bar) TC (≤ 2 bar) 

Compression 
Ratio 10.5 12 14 

External 
EGR 

0% ≤ 25% ≤ 25% 

Cooled EGR 
Temperature 60° C 60° C 60° C 

Φ 1 1 1 
 

Since the purpose of this work is to incorporate realistic limits to the 

thermodynamic models, ideal and feasible versions of each engine are assessed. The ideal 

engine/fuel strategies are not restricted by knock or flammability limits and operate at 

MBT timing with 25% external EGR over the entire speed and load range. Feasible 

engine/fuel strategies are limited by knock and flammability. Knock is eliminated by 

retarding spark timing and flame quench is avoided by limiting the amount of acceptable 

external EGR.  

4.5 Knock model 
Knock is a major limitation of SI engines because it leads to high cylinder 

pressure fluctuations which could be very damaging to the engine. In practical 

applications, spark timing must be delayed away from MBT to eliminate knock. Since 

this work uses a fixed Wiebe function with a constant burn duration, spark timing is 
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effectively replaced by setting the CA50 location. Knock limits are applied by first 

identifying knock with an autoignition correlation and then retarding CA50 until knock 

does not occur.  

Knock is assumed to occur if the flame traversing the charge does not consume 

the end gas before it autoignites. The ignition delay, τID, or the time required for the onset 

of knock, is dependent on the pressure, unburned temperature and mixture composition. 

The residence time, τRES, decreases with increasing engine speed. Short ignition delays 

mean that the end gas can autoignite before the flame is able to fully consume the charge. 

As engine speed increases and residence time decreases, there is a speed at which the 

ignition delay is greater than the residence time and knock does not occur. 

While other more complex approaches exist for evaluating knock, such as the 

autoignition integral or direct integration of chemical kinetics, we have chosen a simpler 

approach in which knock is identified if τID < τRES. Since previous work on HCCI 

combustion has shown that evaluating the ignition delay at top dead center (TDC) 

conditions correlates well with ignition characteristics, for the case of SI knock we 

calculate the relevant ignition time, τID, with unburned temperature and pressure at the 

location of peak pressure, analogous to the TDC conditions for HCCI [28]. Fuel ON and 

EGR also have a significant impact on τID since higher ON fuels increase the ignition 

delay and EGR prevents knock due to its impact on ignition chemistry. To calculated the 

ignition delay, this work uses an autoignition correlation that incorporates the effects of 

unburned temperature, pressure, ON, and EGR. The equation combines the Hoepke et al. 

correlation with the ON multiplier term from the Douaud and Eyzat correlation, as 

follows [29], [30]:  
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Equation 13: Ignition delay 
where τID is in ms, P in bar, and T in K. Pressure and unburned temperature are evaluated 

at peak pressure conditions and xEGR is the total EGR mass fraction in the cylinder. 

τRES is calculated with engine speed and residence period in crank angle degrees 

(CAD). While the speed at which knock becomes borderline is different for every engine 

due to engine geometry, flow and heat transfer differences, previous work has shown that 
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a typical SI-NA engine is not significantly knock limited for speeds equal to or greater 

than 3000 RPM at WOT [31]. Thus, the residence period is calibrated such that τID = τRES 

= 0.75 ms at 3000 RPM and WOT for the baseline engine, as shown in Figure 31. τID 

decreases with engine speed due to decreased residual gas fraction and increased 

unburned temperature and pressures until 5000 RPM when the peak cylinder pressure and 

temperature begin to decrease. A residence period of 13.5 CAD was chosen such that 

τRES = τID at 3000 RPM. Thus τRES is defined by: 

!!"# = !".! ∗ !"""/(! ⋅ !"#)   
Equation 14: Residence time 

For speeds less than 3000 RPM the ratio of τID to τRES is less than one, indicating that 

knock occurs.  

  
Figure 31. Baseline gasoline engine ignition delay at WOT and residence time with the constraint for 

knock defined by τID/ τres at 3000 RPM. 

 

4.5.1 Baseline gasoline engine 
The criteria to identify knock (τID/τRES < 1) is applied to each engine/fuel strategy 

over the full range of speeds and loads using the same residence time definition. For 

instance, consider the baseline engine operating at 2000 RPM. Figure 32 shows that 

τID/τRES decreases as load increases and knock is identified from 7.2 to 9.3 bar BMEP. As 

load increases, the unburned temperature and pressure of the end gas increase. This 

increases reaction rates and lowers τID. Note that the results shown in Figure 32 are found 
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using the CA50 location that results in peak BTE, or MBT timing, for each load level 

(CA50 ranges from 10.5 to 9.5 deg aTDC for 1 to 9.3 bar BMEP).  

 
Figure 32. Knock limits for the baseline gasoline engine at 2000 RPM. 

 For the conditions that knock, i.e. BMEP > 7.2 bar, CA50 (spark timing) is 

retarded until knock does not occur (τID/τRES = 1). As CA50 is retarded, combustion 

occurs later in the expansion stroke and peak cylinder pressure and unburned temperature 

decrease. This increases τID and reduces the likelihood of knock. To illustrate this for a 

range of operating conditions at 2000 RPM, CA50 locations are identified where τID/τRES 

= 1 for each desired load. Results from this method are shown in Figure 33(a-b), where 

Figure 33(a) shows ∆CA50, the difference between the CA50 that does not knock and 

CA50 for MBT timing, and Figure 33(b) shows the BTE for the non-knocking 

conditions. Since ∆CA50 at 2000 RPM and WOT (9.3 bar BMEP) results in only a 0.5% 

loss in BTE, there is no significant decrease in BTE from the ideal, MBT conditions, as 

shown in Figure 33(b). 
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Figure 33. Baseline gasoline engine results at 2000 RPM: (a) the change in knock limited CA50 from 

CA50 at MBT timing (∆CA50), (b) brake thermal efficiency comparison between ideal (CA50 at 
MBT timing) and knock-limited engines. 

4.5.2 High efficiency gasoline engine 
Knock limits for the high efficiency gasoline engine with different amounts of 

external EGR are determined with the same method as the baseline engine, with MBT 

timing and the calibrated τRES, as shown in Figure 4. Note that for the 0% EGR case, 

knock is predicted at 5.8 bar BMEP, which is lower than the knock limit for the baseline 

engine at 2000 rpm (7.2 bar BMEP), previously shown in Figure 2. This is due to the 

higher compression ratio of the high efficiency engine, which increases peak temperature 

and pressure and decreases τID.  

The benefit of EGR as a means to reduce knock is also shown in Figure 34, as 

25% external, cooled EGR extends the knock limited BMEP from 5.8 to 7.7 bar BMEP. 

As EGR increases for a constant low to mid load BMEP level, τID increases due to lower 

unburned gas temperatures, despite higher peak cylinder pressures. EGR also increases 

the unreactive portion of the mixture, which increases τID through the xEGR term in 

Equation 13. At high load conditions, the impact of EGR on τID is much less pronounced. 

This is due to a combination of significantly higher boost pressures, required to maintain 

load during dilute operation, and a fixed burn rate that is assumed in the model. As EGR 

and boost pressures increase for a high load condition, it is assumed that the intake 

temperature is maintained at 60° C by a heat exchanger. However, peak cylinder 

pressures increase substantially with load, resulting in increased peak unburned 

temperatures. Thus, unburned temperature has an opposite trend with EGR at high loads 

than at low loads. Increased EGR causes both pressure and unburned temperature to 



104	
  
	
  

increase, resulting in a lower τID (mitigated by the increased value of xEGR used in 

Equation 13. However, since these results were found with a fixed burn duration, they do 

not account for the slower flame speeds expected with EGR dilution, which would lower 

peak cylinder pressure and unburned temperature, thus increasing τID with EGR.  

 
Figure 34. Knock limits for the high efficiency gasoline engine at 2000 RPM. 

Results from retarding spark timing for knocking conditions are shown in Figure 

5(a-b). Compared to the baseline engine, the trend of ∆CA50 with load is much more 

pronounced. Since the non-knocking CA50 is significantly later than the CA50 for MBT 

timing, less work is extracted during the expansion stroke and BTE is reduced. Adding 

EGR mitigates this effect and enables an earlier CA50, closer to MBT timing, without 

knock. In addition to enabling earlier spark timings, EGR increases BTE at low loads by 

reducing pumping work and across all loads through benificial thermal and composition 

effects. This is demonstrated for 4 bar BMEP where MBT timing is possible for all EGR 

levels; as EGR increases BTE increases above the 0% EGR baseline value. Due to 

dilution, EGR lowers combustion temperatures and therefore decreases the specific heat 

capacity, cp, of the burned gas mixture. While this benefit is somewhat offset by an 

increased mass fraction of triatomic molecults (that increases cp), the overall effect is that 

gamma increases during combustion. Thus, as EGR increases more work is done per unit 

of combustion heat. 
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Figure 35. High efficiency gasoline engine results at 2000 RPM: (a) the change in knock limited CA50 
from CA50 at MBT timing (∆CA50), (b) brake thermal efficiency comparison between ideal (CA50 at 

MBT timing, 25% EGR) and knock-limited engines. 

4.5.3 High efficiency E85 engine 
Figure 36 shows the ignition delay results as a function of load for the E85 

engine. Due to the higher ON and higher heat of vaporization of E85, which lower 

temperatures, τID is significantly higher than τID for the baseline and high efficiency 

gasoline engine for all load conditions. The majority of this increase (68% to 100%) is 

due to the higher ON, since an increase from 92 to 107 ON results in a 67% increase in 

τID, according to Equation 13. However, the lower unburned temperatures of the E85 

engine also increase τID, particularly at high loads when the higher heat of vaporization of 

E85 has the largest impact. As more fuel is injected to meet the desired load, more energy 

is required to vaporize the fuel. Since the heat of vaporization for E85 is more than twice 

that of iso-octane, much more energy is required to vaporize the same mass of fuel. In 

addition, since E85 has a lower energy content than iso-octane, more grams of fuel must 

be injected to achieve the same load. Thus, as load increases the impact of the heat of 

vaporization increases and the temperature after injection and during combustion is 

significantly lower for the E85 engine. Even though the E85 engine has higher peak 

cylinder pressures due to a higher compression ratio, the peak unburned temperatures are 

up to 8.6% lower as compared to the high efficiency gasoline engine. For the conditions 

shown in Figures 4 and 6, τID is 66% to 140% higher for the E85 engine and knock is not 

detected until 14 bar BMEP. 
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Figure 36. Knock limits for the high efficiency E85 engine at 2000 RPM. 

 

 Similar to gasoline, ∆CA50 and BTE were found for each load, shown in Figure 

37. Due to the higher compression ratio of the E85 engine, heat loss increases for the 

same BMEP and MBT timing occurs at slightly later CA50 locations. At most, CA50 

must only be delayed 7.3 CAD from MBT timing (22 bar BMEP, 22% EGR), resulting in 

a 2% decrease in BTE. This small decrease in efficiency demonstrates the benefit of 

using a high ON fuel to enable high load operation without requiring spark retard. 

Compared to the high efficiency gasoline engine, the maximum BTE at 2000 RPM is 

improved 10.2%. 

 

 
Figure 37. E85 engine results at 2000 RPM: (a) the change in knock limited CA50 from CA50 at 

MBT timing (∆CA50), (b) brake thermal efficiency comparison between ideal (CA50 at MBT timing, 
25% EGR) and knock-limited engines. 
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4.6 Flammability limits 
Diluting the fuel-air mixture with air or EGR is known to increase the likelihood 

of abnormal combustion events, such as misfire or partial burning. Predicting such events 

in detail would require modeling of the turbulent flame structure, an approach beyond the 

scope of this work. This work uses a combination of qualitative dimensional theory with 

appropriate experimental calibration to estimate flammability limits and assess the 

feasibility of proposed external EGR levels in the engine maps considered.  

Experimental results of EGR tolerance from SwRI’s HEDGE engine provide 

insight on the amount of EGR that can be used in an advanced SI engine. As detailed in 

Alger et al., an EGR map was developed for a 2.4L, multi-port injection (MPI) engine 

with a 11.4:1 compression ratio, a similar engine to the high efficiency gasoline engine 

we are considering [23]. As done in this work, the compression ratio of the HEDGE 

engine was increased from the baseline engine to be used with a high amount of cooled, 

external EGR. Results from the HEDGE engine show that it is possible to incease EGR 

with load and that the amount of feasible EGR does not vary significantly with engine 

speed. Stable combustion is maintained up to almost 30% EGR, at which point 

flammability limits are encountered [23]. However, due to limitations of the turbocharger 

system, EGR is decreased at high load and low speed conditions to increase torque and 

achieve the desired BMEP [23].  

To understand the ways in which dilute operation can be enhanced or restricted, it 

is helpful to review the flame development process and the related abnormal combustion 

phenomena. During the initial flame development period, misfire occurs if the mixture is 

too dilute and there is insufficient fuel for the flame to ignite. If the flame kernel survives, 

flame propagation will proceed in a locally laminar process. As the flame gets exposed to 

the turbulent flow field, the flame becomes increasingly wrinkled, thereby enhancing the 

burning velocity due to larger flame surface areas. If the burning rate is too low, the 

mixture may not completely burn by the time the exhaust valve opens, resulting in partial 

burning. As turbulence increases, flame straining has a dominant impact over flame 

wrinkling and the likelihood of flame quenching increases [7].  

Conceptual turbulent flame studies have identified the key parameters that 

influence the combustion regimes. These are: turbulence intensity, u’, turbulence integral 
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length scale, L, laminar flame speed, SL, and laminar flame thickness, δL. These are used 

in nondimensional models such as the Leeds combustion diagram, shown in Figure 8. 

The x and y axes are defined by nondimensional ratios, L/δL and u’/SL, respectively. 

Combustion regimes are defined by the Karlovitz stretch factor, K, the turbulent strain 

rate normalized by chemical rate in the flame. Following Abdel-Gayed et al., K is defined 

by the following expression [32]:  

! = !.!"#
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Equation 15: Karlovitz stretch factor 

where Ret is the turbulent Reynolds number based on the integral length scale. As K 

increases, the flame is more likely to quench due to the increasing impact of flame strain, 

i.e. when the stretch time becomes low enough to interfere with the energy release time in 

the flame. Also, if the mixing time is not on the same order as the chemical time, the 

flame cannot propagate and flame quenching occurs at KRe-0.5 = 0.079, equivalent to a 

Damkohler number, Da ≡ (L/u’)(SL/δL), on the order of 1. 

 

  
Figure 38. Modified Leeds Diagram for premixed combustion regimes. 

Previous work has shown that combustion regime diagrams can be used to 

characterize combustion in SI engines [7]. For example, Dai et al. found that the Leeds 

diagram could be used to map combustion regimes and predict misfire for a 1.6L and 

2.0L SI engine [7]. As the mixture became leaner, with either air or EGR dilution, the 

combustion regime moved closer to the flame quench limit (upwards and to the left) until 
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misfire was predicted at the K = 1.5 flame quench boundary. Experimental results 

corroborate these results, thus demonstrating that the Leeds Diagram can representatively 

predict misfire limits of SI engines [7].  

This work also uses the Leeds diagram to predict flame quench, but with 

simulation results for the high efficiency gasoline and E85 engines. SL and δL for gasoline 

are taken from iso-octane and are obtained with laminar flame speed correlations 

developed by Middleton et al. with the unburned temperature and pressure immediately 

before the start of combustion, total EGR (external and residual fraction) and equivalence 

ratio [8]. SL and δL for E85 are also found with the Middleton correlations, but are scaled 

directly by the ratio of SL for ethanol to iso-octane, β, to account for the higher flame 

speed and inversely by 1/β to account for the shorter flame thickness of ethanol. Based on 

measured iso-octane and ethanol flame speeds in the literature, β was set to 1.3 for this 

work [33]. To account for the fact that only 85% of the fuel by volume is ethanol, the 

final value for SL and δL for E85 is the weighted sum of SL and δL for both fuels. 

Consistent with previous estimates that indicate L is 20% of the clearance height, L = 0.8 

mm for this work [34]. As u’ may be approximated by half the piston speed at TDC, u’ = 

3.5 m/s at 2000 RPM [6]. These values of u’ and L are held constant for the load and 

EGR range at 2000 RPM for the high efficiency gasoline and E85 engines.  

Engine simulation results are obtained for the high efficiency gasoline and E85 

engine operating at different EGR levels (0%, 10%, 20%, 25%, 30%) and loads (1, 4, 6, 

10, 14, 18, 22 bar BMEP) and at 2000 RPM, shown in Figure 39(a-b). Since u’ and L are 

constant for the conditions shown, trends with increasing EGR and load are solely due to 

changes in SL and δL, caused primarily by changes in unburned temperature, pressure, 

density, total EGR, and O2 concentration. Values for these parameters for the conditions 

shown in Figure 39(a-b) are included in the Appendix. 
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Figure 39. Simulated combustion results at 2000 RPM plotted on the Leeds Diagram (conditions just 
before the start of combustion) (a) high efficiency gasoline engine, (b) E85 engine. 

Table 25. Feasibility of operating conditions shown in Figure 39 
External 

EGR 
BMEP (bar) 

1 4 6 10 - 22 
30% × × × × 
25% × × ü üü 
20% × ü üü üü 
10% ü üü üü üü 
0% üü üü üü üü 

(üü = yes for high efficiency gasoline and E85 engines, ü = yes for just the E85 engine, 
× = no for either engine/fuel). 

As EGR increases along a constant load for both engine/fuel strategies, the points 

on the Leeds Diagram shift upwards and to the left, similar to results seen by Dai et al. 

[7]. The upward trend is caused by lower SL, resulting from lower O2 concentrations and 

higher pressures as EGR is increased [8]. The leftward trend on the Leeds Diagram is due 

to higher δL, consistent with lower SL as EGR increases.  

As load increases for a constant EGR level, the points on the Leeds Diagram shift 

slightly upward and to the right for both engine/fuel strategies. SL decreases with 

increasing load because the increase in pressure and decrease in unburned temperature is 

more significant than the increase in O2 concentration. The shift to the right on the 

combustion diagram, due to lower δL, is a result of increased unburned density, which 

outweighs the impact of a slightly lower SL. For instance, as load increases from 1 to 22 

bar BMEP with no external EGR for the high efficiency gasoline engine, unburned 

density increases 763% and δL decreases by 88% while SL decreases by only 7%.  
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The high efficiency gasoline and E85 engines operate in very similar combustion 

regimes for the same speed, load and EGR conditions, as shown in Figure 39(a-b). This is 

due to a tradeoff between unburned temperatures and flame speed characteristics of the 

fuels based on their molecular structure. Since ethanol is a straight chain alcohol with a 

lower carbon content than iso-octane (a branched alkane), ethanol has a faster flame 

speed than iso-octane for the same temperature, pressure and EGR conditions. However, 

due to the higher heat of vaporization of E85 as compared to iso-octane, the unburned 

temperatures for E85 are significantly lower (see Appendix), resulting in slower flame 

speeds. This trend is augmented as load increases since a greater mass of fuel is 

vaporized. For the conditions shown in Figure 9(a-b), the resulting trend is that SL is up 

to 8% higher for E85 at low loads and 11% lower at high loads. Since δL is inversely 

related to SL and unburned density, which is higher for E85, δL is lower for E85 at low 

loads and the combustion regime is shifted to the right. At high loads, there is little 

difference in δL between the E85 and high efficiency gasoline engine. 

The feasible operating conditions for both the high efficiency gasoline and E85 

engines are indicated by the flame quench boundary in Figure 9(a-b) and are listed in 

Table 4. Any point on or above the flame quench line is considered infeasible. Since the 

slope of the flame quench boundaries are positive, as load increases and the combustion 

regime shifts to the right, higher amounts of external EGR may be used while 

maintaining stable combustion. Since the high efficiency gasoline engine was calibrated 

to exclude 30% from the feasible regime, the maximum external EGR for this engine is 

25% and occurs at the highest load. Due to the tradeoff between lower unburned 

temperatures and the faster flame speed of ethanol, the maximum external EGR for the 

E85 engine is also 25%. However, since the combustion regime for the E85 engine is 

shifted to the right at low loads, there are three conditions that are feasible for the E85 

engine that are not feasible for the high efficiency gasoline engine: 1 bar BMEP with 

10% EGR, 4 bar BMEP with 20% EGR, and 6 bar BMEP with 25% EGR. 

The theoretical flame limit results for the high efficiency gasoline engine are 

compared to the experimental results from SwRI’s HEDGE engine in Figure 10. Aside 

from peak torque, where the HEDGE engine is limited by the turbocharger, the 

theoretically determined EGR limits are in good agreement with those used at SwRI. 
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Thus, the EGR limits for the high efficiency gasoline are chosen to be analogous to the 

experimental results for constant BMEP levels, but with no restrictions on EGR due to 

turborcharging, as shown in Figure 40. Using these same BMEP levels, EGR limits for 

the E85 engine are defined based on the theoretical results shown in Figure 9(b). As 

shown in Figure 40, the E85 engine has a higher EGR tolerance at low loads, due to the 

faster flame speed of ethanol at these conditions. 

The variation of EGR with speeds other than 2000 RPM is not evaluated in this 

work, as experimental results indicate that EGR varies little with speed, particularly in 

the region where the engine typically operates (1000-2000 RPM, 0-5 bar BMEP). This is 

likely due to similar trends in u’ and SL as engine speed varies. As speed increases, 

higher piston speeds increase u’ and higher unburned temperatures increase SL. Thus, 

combustion regime results would be similar for speeds other than 2000 RPM.  

  
Figure 40. EGR trends with load for the SwRI HEDGE engine, theoretical results, and EGR map 

limits for this work. 

 The results of implementing EGR and knock limits to the high efficiency gasoline 

and E85 engine at 2000 RPM are shown in Figure 41(a-b). Also shown are the ideal and 

worst case scenarios, as defined by EGR level and CA50 location. With flame and knock 

limits taken into account, BTE is lower than the ideal case, but improved from the 0% 

EGR case. The impact of knock on reducing efficiency is more significant for the high 

efficiency gasoline engine, particularly at high loads (e.g. at 22 bar BMEP spark timing is 

20 CAD after MBT and efficiency is reduced 14.5%). Since the E85 engine is less 
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limited by knock and flammability constraints, efficiency is increased up to 17% as 

compared to the high efficiency gasoline engine for the conditions shown in Figure 41.  

 

  
Figure 41. Brake thermal efficiency at 2000 RPM under ideal, realistic, and worst case scenarios (a) 

high efficiency gasoline engine, (b) E85 engine. 

4.7 Feasible and ideal engine maps  
To obtain ideal and feasible engine maps, the calculations for 2000 RPM are 

repeated over the full engine range, 800-6000 RPM. The ideal strategies assume that 25% 

cooled EGR may be used over the entire speed/load range with MBT timing, while 

feasible maps are based on the previously discussed criteria to ensure that flame quench 

and knock do not occur. Thus, external EGR is limited according to Figure 10 and CA50 

location is determined for each speed/load/EGR level such that τID/τRES ≥ 1. If knock is 

identified at the MBT timing, CA50 is determined using a linear interpolation based on 

intake pressure at the lower knocking load limit up to the full load condition where the 

maximum CA50 retard is necessary. Accordingly, the maximum spark retard occurs at 

low engine speeds since residence time is the longest. In fact, the high efficiency gasoline 

requires that spark timing occur slightly after TDC to mitigate knock for high loads and 

speeds less than 1000 RPM. In practice, excess fuel would be used at such conditions to 

cool the charge and allow earlier spark timings, but these considerations are beyond the 

scope of this work.  

Brake thermal efficiency (BTE) maps for the ideal and feasible baseline gasoline, 

high efficiency gasoline, and E85 engines are shown in Figure 42(a-f). A comparison of 

the ideal maps shown in Figure 12(a,c,e) demonstrates the benefits of using 

turbocharging, increased compression ratios, EGR, and ethanol to increase efficiency. 
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The maximum gain in efficiency results from extending the load limit of the engines, as 

the impact of friction and pumping losses decreases as load increases. For instance, the 

peak BTE for the ideal high eficiency gasoline and E85 engines occur at peak load and 

are 13.7% and 17.7% higher than the ideal baseline engine. At low-mid load conditions, 

efficiency is also increased for these engine/fuel strategies due to thermodynamic benefits 

of a higher compression ratio and use of 25% cooled, external EGR. For instance, from 2 

to 5 bar BMEP, the median percent increase in BTE as compared to the ideal baseline 

engine is 7.5% for the high efficiency gasoline engine and 8.0% for the E85 engine. The 

ideal E85 engine has higher efficiencies than the high efficiency gasoline engine due to a 

higher compression ratio and higher heat of vaporization of ethanol, which increases 

volumetric efficiency and reduces heat losses for the same BMEP. 

As shown in Figure 42(a,b), the BTE for the feasible and ideal baseline engines 

are very similar. This is because the feasible engine is only knock constrained from 8 bar 

BMEP to peak load, where knock is most severe. However, the spark retard required to 

eliminate knock at peak load is at most 6 CAD, resulting in an efficiency penalty of less 

than 1%. Thus, incorporating knock constraints for the baseline engine does not result in 

a significant efficiency penalty.  

Shown in Figure 42(d,f), feasible engine maps for the high efficiency gasoline and 

E85 engines demonstrate efficiency reductions due to both flammability and knock 

limits, which are more significant at boosted conditions. Thus, the difference in BTE 

between the ideal and feasible high efficiency gasoline engines is much more pronounced 

as compared to the baseine engines. For instance, the maximum reduction in BTE is due 

to flammability limits, as BTE is reduced up to 10% at low loads where external EGR is 

eliminated. At high loads, knock constraints reduce BTE by up to 5%, corresponding to a 

spark retard of 15 CAD.  

The feasible E85 engine has similar efficiency reduction trends as the feasible 

high efficiency gasoline engine, but to a lesser extent. For instance, the maximum 

reductions in BTE occur due to flammability limits at low loads, but the median 

reduction is only 2% for 0-2 bar BMEP, whereas the feasible high efficiency gasoline 

efficiency is reduced 5% at these loads. Also, since the higher octane number and higher 

heat of vaporization of ethanol aids in reducing knock, spark timing does not need to be 
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retarded from MBT as much as the gasoline engine (e.g. 8 vs. 15 CAD at peak load, 5000 

RPM with 25% EGR) and efficiency at peak load decreases by less than 1% for all 

speeds. 

The engine maps for the feasible engine/fuel strategies are similar to experimental 

engine results. For instance, the peak BTE for the feasible baseline engine, 34.4%, 

corresponds to 236 g/kWh, which is very similar to the minimum BSFC of recent low 

friction NA engines (240 g/kWh) [22]. The minimum BSFC for the feasible high 

efficiency gasoline engine is 213 g/kWh and is comparable to the minimum BSFC results 

from the HEDGE engine with a 11.4 compression ratio (216 g/kWh) [35]. However, 

results shown in Figure 42(a-f) do not show a significant BTE island that is expected due 

to enrichment at high loads. Thus, the miminum BSFC occurs much closer to peak 

BMEP, while previous results indicated that the minimum BSFC condition is around 

75% peak load. 
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Figure 42. BTE engine maps: (a) ideal baseline engine, (b) feasible baseline engine, (c) ideal high 

efficiency gasoline engine, (d) feasible high efficiency gasoline engine, (e) ideal E85 engine, (f) feasible 
E85 engine. 

4.8 Vehicle fuel economy 
 Each engine/fuel strategy was then evaluated in a vehicle model developed in 

MATLAB/Simulink, as done in Lavoie, et al. [5]. (See Lavoie et al. for more information 

on the vehicle model parameters [5].) A mid-size sedan is chosen as the vehicle platform 

and the baseline engine is assumed to be a 4 cylinder, 2.5 L engine. To ensure consistent 

torque and performance for all engine/fuel strategies, the high efficiency gasoline and 

E85 engines were sized to match the peak torque and RPM of the ideal baseline engine. 

Accordingly, the high efficiency gasoline engine has a displacement of 1.5 L (3 

cylinders) while the E85 engine is 1.2 L (2 cylinders).  

Fuel economy results are shown in Figure 43, as well as the percent MPGe 

improvement from the ideal baseline engine over the combined City-Highway cycle. The 

E85 engine offers the most fuel economy improvements (41.1% and 40.9% for the ideal 

and feasible, respecitvley) due to the previously discussed efficiency benefits of the fuel, 

compression ratio, and EGR, as well as the fact that the engine is downsized from 2.5 L 

to 1.2 L. The high efficiency gasoline engines are also downsized, but to a lesser extent, 

and also show an improvement from the baseline (33.0% and 30.1% for the ideal and 

feasible, respectively). Fuel economy is slightly reduced for the feasible high efficiency 

gasoline engine, since it operates in low load regions where flammability limits are most 

severe. The feasible baseline engine shows no reduction in fuel economy as compared to 

the ideal baseline engine because spark retard is minimal near peak load and the engine 

operates mainly at low to mid loads.  
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The increase in efficiency for the high efficiency gasoline and E85 engines is due 

to a variety of factors. Primarily, the relative impact of friction is reduced through 

downsizing and boosting the engine. Since peak torque is constant, peak BMEP scales 

inversely with engine size. Thus, downsizing the engine increases BMEP and therefore 

BTE. Secondly, increasing the compression ratio increases the thermal efficiency due to 

the higher amount of work produced during the expansion stroke, relative to the 

compression stroke. Thirdly, fuel is used to increase the efficiency for the E85 engine. By 

using a fuel with a higher laminar flame speed and heat of vaporization, the amount of 

dilution is increased even at low loads, resulting in small efficiency gains. Also, the 

higher heat of vaporization of ethanol increases volumetric efficiency and decreases heat 

transfer losses. Fourthly, the use of fuels and dilution are used to relax combustion 

constraints and enable engine downsizing/boosting and increased compression ratios. 

Thus, by manipulating the constraints due to knock and flammability limits, the engine 

operating space is extended and vehicle efficiency is increased. 

 

 
Figure 43. Combined city and highway fuel economy equivalence results for each engine/fuel 

strategy.3  
 

4.9 Conclusions 
Thermodynamic models were used to assess three SI engine/fuel strategies: a 

baseline gasoline engine, high efficiency gasoline engine, and high efficiency boosted 

ethanol engine. The ideal potential of each was assessed assuming that MBT timing and 
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25% EGR was possible at all operating conditions. Feasible versions of these maps were 

developed by incorporating knock and flammability limits. Each ideal and feasible 

engine/fuel strategy was then evaluated in a vehicle model with engines downsized to 

maintain equivalent torque and RPM to obtain drive cycle results. 

 

The main conclusions of the advanced engine analysis are summarized as follows:  

• This work provides an easily understood method of assessing knock and 

flammability constraints on combustion. Knock is assessed by comparing 

residence time, which varies with speed, to ignition delay time, calculated with a 

combined Hoepke et al. and Douaud and Eyzat correlation that accounts for 

unburned temperature, pressure, ON, and EGR [29], [30]. Flammability limits are 

determined by evaluating the impact of strain on the flame, using the Karlovitz 

number, ratio of laminar to turbulent parameters, and the Leeds Combustion 

Diagram. 

• Results from the knock model show that as load is increased at 2000 RPM, knock 

is first identified at 6 bar BMEP for the high efficiency gasoline engine, but not 

until 14 bar BMEP for the E85 engine. The E85 engine is more resistant to knock 

due to the high octane of the fuel and higher heat of vaporization, which reduces 

unburned temperatures.  

• Flame model results indicate an upper limit of 25% EGR for the high efficiency 

gasoline and E85 engine. For both engines, EGR may increase with load while 

maintaining stable combustion. However, the E85 engine may use more EGR at 

low loads, as compared to the high efficiency gasoline engine, due to the 

molecular structure of ethanol which results in a higher flame speed. 

• Engine fuel economy maps were developed for each engine/fuel strategy. 

Compared to the ideal baseline engine, peak BTE is increased by 13.7% for the 

high eficiency gasoline engine and 17.7% for the E85 engine. Knock and 

flammability constraints reduce peak efficiency by 2.6% for the high efficiency 

gasoline engine but less than 1% for the E85 engine. Fuel economy results show a 

similar trend, as the difference between ideal and feasible fuel economy is 2.2% 

for the high efficiency gasoline engines but only 0.14% for the E85 engines. The 
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differences between the feasible and ideal baseline engines are negligible due to 

the minimal spark retard required to eliminate knock. 

• The increase in fuel economy for the high efficiency gasoline and E85 engines is 

mainly due to downsizing/boosting and higher compression ratios. Also, ethanol 

is used to increase efficiency by increasing volumetric efficiency, lowering heat 

transfer losses, and enabling more dilution to be used at low loads. These 

efficiency benefits of downsizing and boosting are enabled by dilution and 

ethanol which relax combustion constraints (e.g. knock and flammability limits). 

 

The conceptual approach developed in this work could be used to assess the knock 

and flammability limits of other engine/fuel strategies. For instance, the tradeoffs in 

efficiency and knock could be evaluated for very high compression ratios (e.g. 18:1) for 

gasoline and ethanol engines. Also, the potential of alcohol fuels to increase EGR 

tolerance could be evaluated by modeling a wider range of fuel blends in advanced 

engines using the framework presented in this work.  
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4.11 Appendix.  
Parameters for data points in Figure 9: 
 

High Efficiency Gasoline (HEG) Engine 

External 
EGR 

SL (cm/s) - HEG 
1 4 6 10 14 18 22 

30% 26 26 25 23 21 20 18 

25% 32 33 32 30 28 26 24 

20% 41 42 40 38 36 34 31 

10% 55 61 59 58 55 51 48 

0% 73 83 85 82 78 73 69 
 

External 
EGR 

δL (cm) - HEG 
1 4 6 10 14 18 22 

30% 0.0110 0.0063 0.0051 0.0033 0.0023 0.0018 0.0015 

25% 0.0102 0.0057 0.0046 0.0029 0.0020 0.0016 0.0014 

20% 0.0087 0.0049 0.0040 0.0025 0.0018 0.0014 0.0012 

10% 0.0078 0.0041 0.0032 0.002 0.0014 0.0012 0.0010 

0% 0.0067 0.0036 0.0026 0.0017 0.0012 0.001 0.0008 
 

External 
EGR 

Unburned Temperature (K) - HEG 
1 4 6 10 14 18 22 

30% 873 822 797 808 826 838 839 

25% 878 817 794 806 818 822 825 

20% 887 825 802 805 810 809 806 

10% 885 831 804 804 804 795 787 

0% 888 827 819 804 799 786 775 
 

External 
EGR 

Pressure (bar) - HEG 
1 4 6 10 14 18 22 

30% 9 15 19 32 50 70 94 

25% 9 14 17 30 46 63 80 

20% 9 14 17 29 43 57 71 

10% 8 13 16 27 39 50 62 

0% 8 12 16 25 36 46 56 
 

External 
EGR 

Total EGR (%) - HEG 
1 4 6 10 14 18 22 

30% 47 39 36 35 34 34 34 
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25% 44 35 32 30 29 28 28 

20% 41 31 28 25 24 23 22 

10% 36 24 20 16 14 13 12 

0% 30 17 13 8 5 3 2 
 

External 
EGR 

Unburned Density (g/m3) - HEG 
1 4 6 10 14 18 22 

30% 3.8 6.5 8.4 14 21.5 29.6 30.0 

25% 3.6 6.1 7.8 13.4 20.1 27.0 34.4 

20% 3.5 6.0 7.6 12.8 18.9 25.3 31.5 

10% 3.2 5.5 7.1 11.9 17.5 22.7 28.2 

0% 3.0 5.1 6.7 11.2 16.1 21.1 26.0 
 

External 
EGR 

O2 Concentration (%) - HEG 
1 4 6 10 14 18 22 

30% 12 13 14 14 14 14 15 

25% 12 14 15 15 15 15 16 

20% 13 15 15 16 16 17 17 

10% 14 16 17 18 18 19 19 

0% 15 18 19 20 20 21 21 
 

E85 Engine 
External 

EGR 
SL (cm/s) - E85 

1 4 6 10 14 18 22 
30% 29 28 26 22 19 19 18 

25% 37 36 33 29 25 24 23 

20% 43 44 41 37 32 31 30 

10% 58 63 60 55 49 47 45 

0% 76 85 82 76 70 67 65 
 

External 
EGR 

δL (cm) - E85 
1 4 6 10 14 18 22 

30% 0.0083 0.0051 0.0043 0.0033 0.0027 0.0020 0.0015 

25% 0.0072 0.0043 0.0037 0.0029 0.0023 0.0017 0.0014 

20% 0.0069 0.0039 0.0033 0.0025 0.0021 0.0016 0.0012 

10% 0.0060 0.0032 0.0027 0.0021 0.0017 0.0013 0.0011 

0% 0.0052 0.0029 0.0023 0.0018 0.0014 0.0011 0.0009 
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External 
EGR 

Unburned Temperature (K) - E85 
1 4 6 10 14 18 22 

30% 851 786 763 739 738 764 790 

25% 859 792 760 732 726 747 765 

20% 853 791 759 732 715 733 744 

10% 853 791 756 715 703 708 711 

0% 852 783 753 711 691 695 693 
 

External 
EGR 

Pressure (bar) - E85 
1 4 6 10 14 18 22 

30% 11 16 20 28 39 58 82 

25% 11 16 19 26 36 52 71 

20% 10 15 18 26 33 47 63 

10% 9 14 16 22 29 41 52 

0% 8 12 15 20 27 36 46 
 

External 
EGR 

Total EGR (%) - E85 
1 4 6 10 14 18 22 

30% 46 38 36 34 34 34 34 

25% 43 35 32 30 29 29 29 

20% 41 31 28 25 24 24 23 

10% 35 24 21 16 15 14 13 

0% 30 17 13 9 7 5 4 
 

External 
EGR 

Unburned Density (g/m3) - E85 
1 4 6 10 14 18 22 

30% 4.4 7.3 9.1 13.5 18.9 26.9 36.2 

25% 4.3 7.1 8.8 12.7 17.2 24.2 32.6 

20% 4.0 6.8 8.4 12.4 16.2 22.8 29.8 

10% 3.7 6.3 7.7 11.1 14.6 19.9 25.8 

0% 3.5 5.7 7.4 10.3 13.6 18.9 23.7 
 

External 
EGR 

O2 Concentration (%) - E85 
1 4 6 10 14 18 22 

30% 11 13 13 14 14 14 14 

25% 12 14 14 15 15 15 15 

20% 12 14 15 16 16 16 16 

10% 13 16 17 17 18 18 18 

0% 15 17 18 19 19 20 20 
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Chapter 5: Lightweight materials and advanced combustion engines 

5.1 Introduction 

The combined potential of lightweight materials and advanced combustion engines to 

reduce life cycle energy and GHG emissions is evaluated by integrating the vehicle 

models developed in Chapters 2-3 with the engine models created in Chapter 4. 

Additionally, the life cycle performance of advanced engines must be incorporated in the 

LCA by modeling the vehicle-cycle impacts of downsized/turbocharged engines. 

Uncertainty due to assumptions regarding upstream production of fuels is included with a 

representative range of energy and GHG emissions intensities for various ethanol 

feedstocks and oil extraction processes from previous literature. 

Since many combinations of mass reduction, engine technologies and vehicle 

platforms exist, the scope of this work is limited to answering the following three 

questions: 

1. What level of mass reduction is required to match the life cycle GHG emissions 

reductions for a contemporary ICV due to downsizing/boosting an advanced 

gasoline engine? 

2. What are the maximum life cycle energy and GHG reductions possible when 

lightweighting a contemporary ICV and replacing a baseline engine with an 

advanced gasoline or ethanol downsized/boosted engine?  

3. What are the life cycle energy and GHG emissions reductions due to using an 

advanced downsized/boosted ethanol engine in a HEV and PHEV as compared to 

an ICV with a baseline engine?  

 

It is important to note that while this framework enables an evaluation of the 

maximum increase in fuel economy for the mass reduction and engine scenarios 
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considered for the ICV, the fuel economy results for the hybrid vehicles are not the 

maximum value because controls have not been optimized. For this reason, the ICV is 

used to assess the individual versus combined application of lightweight materials and 

advanced engines in question one and two. Then, question three focuses on hybrid 

vehicles that utilize mass reduction and advanced engine technologies in order to 

demonstrate life cycle improvements possible even without optimal controls for each 

technology combination. 

For ease of comparison of results, nomenclature is developed for the three engine/fuel 

technologies and vehicle-technology combinations. Engine/fuel strategies are referred to 

as follows: NA for the baseline naturally aspirated gasoline engine, HEG for the high 

efficiency gasoline engine, and E85 for the high efficiency E85 engine. Combinations of 

baseline/lightweight vehicles and engine type are identified by “X-YZ” where X is the 

engine name (e.g. NA, HEG, E85), Y is the vehicle name (e.g. ICV, HEV or PHEV), and 

Z is the percent body-in-white (BIW) mass reduction (e.g. 0, 10, 20, 25, or 35). For 

instance, HEG-ICV35 refers to the high efficiency gasoline engine ICV with 35% BIW 

mass reductions. 

5.2 Engine production energy and GHG emissions 

  The life cycle impact of advanced engines is dependent on the energy and GHG 

emissions associated with their production, as well as the resulting fuel economy over the 

vehicle lifetime. Accordingly, a method is developed to convert the baseline naturally 

aspirated engine (equivalent to the baseline engine discussed in Chapter 4) to a 

downsized/boosted engine (equivalent to the HEG and E85 engines discussed in Chapter 

4). First, the mass fractions of engine parts are determined based on teardown data from a 

representative naturally aspirated engine (1.8 L, 4-cylinders). (This is the same engine 

that was used for the vehicle materials and life cycle analyses in Chapters 2-3.) Then, 

these mass fractions are applied to the generic baseline engine to find the specific mass of 

each part. Next, the materials used for the engine block, cylinder head, pistons and 

crankshaft are evaluated to determine if higher strength materials are necessary to 

withstand the higher combustion pressures of the high efficiency engine. Then, the engine 

is modified by adding a turbocharger and reducing the number of cylinders, according to 

the size of the downsized/boosted engine. Lastly, the life cycle energy and GHG 
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emissions impact of these changes are assessed with the mass of materials and energy and 

GHG emissions intensities for each material. 

 The material composition and subsystem mass fractions for a typical naturally 

aspirated gasoline engine are determined from teardown data, as shown in Figure 44 [1]. 

A complete list of parts included in each engine subsystem is included in Table 31 of the 

Appendix. The engine block, cylinder head and crankshaft systems are the heaviest 

components, as they comprise 66% of the total engine mass. Accordingly, the material 

mass fractions of cast aluminum and steel are very significant, as the engine block and 

cylinder head are cast aluminum and crankshaft is steel. Additionally, much of the 

cooling system, engine mounts, lubrication system, front engine system, and components 

in the cylinder head system (e.g. camshaft) are composed of steel.  

 
Figure 44: Materials and mass fraction of a typical naturally aspirated engine 

  In order to assess the design modifications required for a downsized/boosted 

engine, the materials of important load bearing components must be evaluated to 

determine if they are compatible with the higher cylinder pressures expected during 

engine operation. Specifically, the engine block and cylinder head are important 

structural components that must have adequate strength and stress qualities at a wide 

variety of temperatures and a high thermal conductivity in order to dissipate heat [2]. 

Also, the pistons must be designed to withstand high mechanical and thermal loads, as 

they are subjected to the peak cylinder pressures, high temperature gradients and 

significant inertial forces during acceleration events [2]. Similarly, the crankshaft must 

also have good strength and stress characteristics and be able to withstand the high forces 

due to combustion and piston accelerations. 
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 The baseline engine is designed with a cast aluminum engine block, cylinder head 

and pistons, as well as a steel crankshaft. Based on current industry trends, it is assumed 

that these material choices are appropriate for the downsized/boosted engines as well [3], 

[4]. For instance, the materials for these parts are the same as used in the Ford EcoBoost 

1.6 L and 2.0 L engines, two state-of-the-art downsized/boosted engines available in 

production vehicles today [3]. Also, BMW’s 3.0 L triple-turbocharged duty diesel engine 

uses aluminum pistons designed by Federal-Mogul that can withstand cylinder pressures 

up to 200 bar [4]. However, it is important to note that the future trend of material 

application for significantly downsized engines is not certain, as new downsized/boosted 

engines are continually being released. For instance, the 1.0L, 3-cylinder Ford EcoBoost 

engine is the most recent and smallest of the EcoBoost engines and uses a cast iron 

engine block instead of aluminum [5]. This design choice was made in order to decrease 

the warm-up time, thereby decreasing fuel consumption during cold-start conditions [5]. 

While this may be a future trend of highly downsized/boosted engines, this work assumes 

that aluminum will remain one of the popular material choices for engine block design. 

In addition to a materials analysis of critical engine components, the parts list of 

the baseline engine is assessed to determine if any additional parts are required or if any 

parts can be removed for the downsized/boosted engine model. The only additional 

components are included in the turbocharger system, which is characterized from 

teardown data of a representative turbocharged engine [1]. Accordingly, the turbocharger 

itself is composed of steel and cast aluminum alloys and has a mass of 2.4 kg. The 

turbocharger system weighs 7.0 kg in total and includes a wastegate (steel), valves (steel 

and electronic components), and piping for water and oil (steel, plastic and rubber) [1]. 

Since it is assumed that the number of cylinders is reduced for the downsized engine, the 

number of pistons, connecting rods, intake/exhaust valves and ignition coils/spark plugs 

decrease accordingly, as shown in Table 26 for a 4 to 3-cylinder reduction. It is assumed 

that the mass of the engine block, cylinder head and crankshaft do not decrease for the 

high efficiency engine due to the fact that these components are designed to meet the 

peak load demand or peak power, which is highly correlated with component mass (see 

Figure 50 in the Appendix). Since the peak power of the high efficiency engines is 

equivalent to the baseline engine, it is assumed that no downsizing occurs for these parts.  
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Lastly, before the engine production impact may be assessed, it is necessary to 

quantify the cylinder reduction between the baseline and downsized/boosted engines 

according to the displaced engine volume, calculated from the peak torque and power 

characteristics of the 0.5 L single cylinder engine models developed in Chapter 4. For 

instance, the baseline engine for the ICV must have a peak power of 117 kW (157 hp), as 

determined in Chapter 2, which corresponds to a peak torque rating of 231 Nm and a 2.6 

L displacement (4-cylinders). Since the high efficiency engines must also meet the same 

acceleration requirements, they are sized for the same torque and power requirements. 

Accordingly, the high efficiency gasoline and E85 engines have a displacement of 1.5 L 

and 1.3 L, respectively. Based on current engine trends, it is assumed that the 2.6 L 

engine is a 4-cylinder engine, while the 1.5 L and 1.3 L each have 3-cylinders. A 

summary of the design changes from the 4-cylinder baseline engine to a 3-cylinder 

downsized/boosted engine is shown in Table 26.  

 
Table 26: Material and parts for the baseline naturally aspirated and turbocharged/downsized 

engines 
Engine Part Material No. of parts 

- Baseline 
No. of parts - 

Turbocharged/downsized 
Engine block Aluminum 1 1 
Cylinder head Aluminum 1 1 

Crankshaft Steel 1 1 
Pistons Aluminum 4 3 

Piston rings Steel 12 9 
Connecting 

rods 
Steel 4 3 

Intake valves Steel 8 6 
Exhaust 
valves 

Steel 8 6 

Spark plugs Electronics 4 3 
Ignition coil 

assembly Electronics 4 3 

Turbocharger Steel + 
Aluminum 

0 1 

 

Engine production energy and GHG emissions are determined for the baseline 4-

cylinder and downsized/turbocharged 3-cylinder engine based on the material energy and 

emissions factors and material masses for each engine. As done in Chapter 3, the energy 
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and GHG emissions intensities of steel and aluminum are adopted from the most recent 

published data from the steel and aluminum industries [6], [7]. Also, the energy and GHG 

emission factors for plastic and rubber are determined with GREET 2 [8]. However, since 

the material composition of electrical components, such as spark plugs, are not provided 

in the teardown data, these components are omitted from the engine production analysis.  

The final mass of the downsized/boosted engines is determined to be 1 kg less 

than the baseline engine, due to the fact that the mass of the turbocharger system is only 1 

kg less than the mass saved from downsizing. However, the mass fraction of cast 

aluminum is increased for the downsized/boosted engines because the addition of the cast 

aluminum portion of the turbocharger is larger than the cast aluminum removed from the 

engine due to downsizing.  

As shown in Figure 45, downsizing and turbocharging the baseline engine results 

in a 3% increase in engine production energy and GHG emissions. The production 

burden increases despite the decrease in mass due to the fact that some of the steel in the 

baseline engine is replaced by cast aluminum. However, it is important to note that if the 

spark plugs and ignition coils were included in the energy and GHG emissions model, 

there would be less of a difference (relative and absolute) in energy and GHG emissions 

between the two engines. However, the difference between the baseline and high 

efficiency engines is negligible in the scope of the total vehicle life cycle analysis, as a 

3% increase in engine production impacts would only increase the vehicle-cycle results 

by less than 1%. 

While the engine production analysis shown here provides valuable insight on the 

life cycle comparison of naturally aspirated and downsized/boosted engines, it is 

important to note that there may be additional factors that would increase the vehicle 

production burden of downsized/boosted engines. For instance, advanced aluminum 

manufacturing techniques are likely to be used to create components (e.g. pistons) for 

engines with a high specific power [9]. These manufacturing techniques are likely more 

energy-intensive than the processes assumed in this model [9]. Also, as cylinders are 

removed from the engine it may be necessary to add balancing components, such as an 

unbalanced flywheel, as used in the 3-cylinder Ford EcoBoost 1.0 L engine [10]. 
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However, it is expected that even with these considerations taken into account, the 

increase in total vehicle life cycle energy and GHG emissions would be minimal. 

  

  
Figure 45: Vehicle production energy and GHG emissions for the baseline and downsized/boosted 

engines 

5.3 Fuel-cycle analysis of gasoline and ethanol 

 To assess the life cycle impact of vehicles using gasoline and ethanol fuels, it is 

necessary to evaluate the range of fuel-cycle impacts that are possible due to differences 

in oil classification and extraction process, ethanol feedstock, and life cycle accounting 

method. Thus, current trends of gasoline and ethanol production are presented and 

previous fuel-cycle work is discussed. As done in Chapter 3, fuel cycle impacts from 

electricity are incorporated to the life cycle model using average US grid data from 

eGRID and the associated upstream impacts using GREET 1 [11], [12]. Based on this 

work, a range of energy and GHG emissions factors are identified to represent the span of 

fuel-cycle results for gasoline, ethanol and electricity (for PHEV charging). These values 

will be used in Section 4 for the total vehicle life cycle analysis. 

5.3.1 Gasoline 

Due to significant technology advancements in the oil industry and rising oil 

prices, the share of oil produced from unconventional sources is increasing rapidly [13]. 

Unlike conventional oil, unconventional oil requires either additional extraction or 

refining processes to achieve the same quality as light, liquid oil that is obtained from a 
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well drilling process [14]. For instance, oil shale is a sedimentary rock that contains 

kerogen, a pre-cursor of oil [15]. After the oil shale is mined and pre-processed, kerogen 

is extracted from the rock in a process that requires very high temperatures [15]. 

Similarly, oil (bitumen) derived from oil sands must be separated from sand, water and 

clay using high temperatures and additional water input. Most commonly, oil sands are 

mined with in situ technology (instead of surface mining), where steam is created by 

burning natural gas and pumped into the ground through horizontal wells [16].  After the 

bitumen becomes less dense, it is pumped to the surface. A similar process involving 

thermal heating is used to extract other types of heavy crude oil, such as the oil found in 

Venezuela (a significant crude oil import for the US) [17]. After these oils are extracted, 

they require significant refining processes to lower the sulfur content and density. On the 

other hand, shale oil is a light oil with low sulfur content, but is trapped in horizontal 

reservoirs at much deeper levels beneath the earth’s surface [18]. Shale oil is mined using 

horizontal drilling and fracturing techniques, where a mix of water, sand and chemicals 

are pumped into the reservoir at a high pressure, causing fractures in the rock formation 

[18]. This releases the liquid shale oil that is subsequently pumped to the surface. 

While oil shale remains uneconomical, the rate of extraction of oil sands and shale 

oil is rapidly increasing [18]. For instance, the Energy Information Administration (EIA) 

projects that due largely to shale oil recovery in the US and oil sand mining in Canada, 

liquid fuel production in non-OPEC nations will increase by 1.6 million bbl/d in 2014 

[13]. In fact, in the US alone, crude oil production is expected to rise from 6.5 million 

bbl/d in 2012 to 8.1 million bbl/d in 2014, a 24% increase [13].  

Previous work has shown that the fuel-cycle energy and GHG emissions for 

conventional and unconventional oils is dependent not only on the extraction process, but 

also the input assumptions and boundaries used in the life cycle analysis [15], [19], [20], 

[21]. For instance, work by Bergerson et al. found that when considering production of 

synthetic crude oil from oil sands with baseline assumptions, surface mining requires less 

energy and GHG emissions than in situ processes [19]. However, when best and worst 

case assumptions are included in the analysis, the range of possible emission intensities is 

very similar for the two processes [19]. Despite these uncertainties, most of the previous 

life cycle analysis of surface mining and in situ techniques for oil sands has found that 
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situ processes require increased energy and GHG emissions because to the natural gas 

required for bitumen extraction has a more significant impact than the electricity required 

for surface mining [12], [21]. Accordingly, the energy and GHG emissions intensities 

used in this work for gasoline derived from conventional oil and oil sands are adopted 

from GREET 1, as shown in Table 27 [12]. For reference, the GHG impact of 

Venezuelan crude oil is also shown in Table 27 [22]. While fuel-cycle information is not 

currently available for shale oil, it is expected that this will have a large variability based 

on the mining process and key assumptions, such as methane leakage during extraction 

[20].  

 
Table 27: Energy and GHG emissions per MJ-gasoline for conventional and unconventional oils [12], 

[22] 
 Energy 

(MJ/MJ) 
GHG emissions 

(gGHG/MJ) 
Conventional 0.21 19 

Oil sands – surface 0.41 30 
Oil sands – in situ 0.47 33 
Venezuelan crude 

oil - 22 

5.3.2 Ethanol 

 Ethanol can be produced from any biological feedstock that is composed of sugars 

or materials that can be converted to sugar [14]. Thus, a range of feedstocks could be 

used, each requiring their own manufacturing processes [14]. For sugar crops, such as 

sugarcane, the sugar is removed from the crop and fermented into alcohol with yeast and 

other microbes [14]. Then, water is removed from ethanol and it is distilled to the desired 

concentration. However, if the feedstock is starch-based, such as corn, the starch must 

first be converted to sugar using a high temperature enzyme process before it is 

fermented into alcohol and distilled. Similarly, feedstock that is cellulosic biomass must 

be separated into cellulose, hemicellulose and lignin. Then, cellulose is converted into 

sugars with an acid hydrolysis process. While the process to convert biomass to ethanol is 

technically feasible, it remains limited by high cost and alternative processes are 

currently being investigated [14]. 

 Motivated in part by the Renewable Fuel Standard and the recent E15 standard, 

ethanol production rates have increased from 800 to 1,100 million gallons per month 
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from 2009 to 2012 [23]. The majority of ethanol consumed in the US is derived from US 

grown corn, as 40% of the corn produced in 2011-2012 was used to produce ethanol or 

associated products, such as animal feed [23]. Aside from corn, some of the ethanol sold 

in the US is derived from sugarcane from Brazil. However, these imports are only a small 

fraction (less than 1%) of the total ethanol supply in the US [23]. To date, cellulosic 

ethanol has had a minimal role in US ethanol production, as financial barriers and 

technical scalability challenges have prevented high production volumes [24]. However, 

a recent study found that due to new ethanol plants coming online, 20,000 gallons of 

cellulosic ethanol was produced in late 2012 and their output is expected to rise to 5 

million gallons by the end of 2013 [24]. However, this annual production rate would only 

be 0.4% of the total ethanol production in the US assuming 2012 production values [23], 

[24].  

 As compared to petroleum-derived fuels, biofuels present a unique set of 

challenges for typical attributional LCAs, such as the method used in this work. In 

attributional LCAs, environmental impacts are calculated according to industrial 

processes and it is assumed that the final destination of all carbon is known. However, 

this framework poses unique problems for biofuels. In biofuel LCAs, biogenic CO2 is 

fully credited as it is assumed that the CO2 uptake during feedstock growth exactly 

balances the CO2 emitted due to combustion (during vehicle operation). This raises the 

issue of additionality because if the feedstock is earmarked for ethanol instead of food, no 

additional CO2 is removed from the atmosphere by growing that feedstock. Also, 

leakages in GHG accounting occur due to the fact that the market will respond to a 

disruption in food sources and presumably, new land will be transformed into agricultural 

land to meet the market demands. Recent LCAs have attempted to capture this 

phenomenon, known as indirect land use change (ILUC), with a LUC factor that includes 

the impacts of deforestation, among other processes necessary to re-allocate land. 

However, there remains great variability due to the boundary used to find such LUC 

factors. Also, a discrepancy often exists between LCAs regarding co-product credits that 

are allocated by ethanol feedstock (e.g. animal feed, electricity) [25], [26], [27].  

 Due to biofuel-specific accounting difficulties as well as measurement 

uncertainties, such as N2O emissions and soil organic carbon sequestration/emissions, 
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there is a great variability in the literature regarding life cycle impacts of ethanol [25], 

[26], [27]. For instance, Farell et al. performed a comparative study of select studies for 

corn ethanol and found that as compared to gasoline, corn ethanol GHG emissions results 

could range from +32% to -20% [27]. Also, Luo et al. assessed the impact of a range of 

assumptions on the environmental impact of corn stover-based ethanol and found that by 

incorporating the co-product impact of feed and fodder production, the GHG emissions 

changed from a positive to negative value [25]. Similarly, Wang et al. found that due to 

the lower fossil fuel energy required during farming and production of cellulosic ethanol, 

combined with the electricity credit, GHG emissions are very close to zero [26]. In the 

case of miscanthus, values are negative due to the CO2 credits given due to LUC [26].   

While the range of possible life cycle results is very large, the GREET 1 model 

provides a consistent method to compare ethanol derived from a range of feedstock 

options [12], [26]. As described in Wang et al., the model assumes specific co-products 

are derived for each feedstock (e.g. animal feed for corn ethanol, electricity for sugarcane 

and cellulosic ethanol) [12], [26]. Similar to other biofuel LCAs, it is assumed that there 

is no net change in biogenic CO2 [26]. Also, land use changes are incorporated with 

global trade and soil organic carbon models that account for the differences in carbon 

emissions from specific crop types [26]. Accordingly, the energy and GHG emissions 

intensity of ethanol is shown in Table 28 with and without the inclusion of LUC impacts 

for GHG emissions. Overall, corn ethanol has the most significant GHG impact due to 

natural gas that provides power to the plant and nitrogen-based agricultural fertilizers that 

result in N2O emissions [26]. Sugarcane has the next highest emissions and the highest 

energy requirement, largely due to increased transportation and distribution impact from 

Brazil to the US [26], [28]. Energy and GHG emissions for corn stover, switchgrass and 

miscanthus are minimal due to the low energy required during farming and the co-

product credit for electricity production [26]. When considering the impact of LUC, 

results follow the same trend but are even less for corn stover and miscanthus, as carbon 

is assumed to be absorbed instead of released in the soil organic carbon model of these 

feedstocks [26].  
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Table 28: Energy and GHG emissions per MJ-ethanol for a variety of ethanol feedstocks [12] 
 Energy 

(MJ/MJ) 
GHG emissions 

(gGHG/MJ) 
[with LUC] 

LUC 

Corn 1.4 62 [65] 9.1 gGHG/MJ 
Sugarcane 1.6 37 [53] 16 gGHG /MJ 

Corn stover 
(cellulosic) 1.1 1 [0] -1.2 gGHG /MJ 

Switchgrass 
(cellulosic) 1.1 6 [7] 1.3 gGHG /MJ 

Miscanthus 
(cellulosic) 1.2 1 [-11] -12 gGHG /MJ 

 

5.4 Results - Technology combinations 

5.4.1 Mass reduction vs. advanced engines - ICV 

The impact of using either lightweight materials or advanced gasoline engines to 

reduce life cycle energy and GHG emissions from an ICV is assessed using the 

aluminum-intensive and A/HSS vehicle designs, as described in Chapter 3, and the HEG 

engine model, presented in Chapter 4. Accordingly, the HEG engine model is integrated 

in the Autonomie ICV model and drive cycle fuel economy is determined. As previous 

described, the HEG engine is downsized from a 4-cylinder 2.6 L engine to a 3-cylinder 

1.5 L engine to provide the same power and therefore, an equivalent 0-60 MPH 

acceleration time as the baseline ICV. Also, the vehicle-production energy and GHG 

emissions of the HEG engine is included in the life cycle model according to the results 

presented in Section 2.  

The life cycle energy and GHG emissions for the NA-ICV0, A/HSS and aluminum 

lightweight ICVs (NA-ICV15-35) and HEG-ICV0 are shown in Figure 46. Error bars 

represent the variation in well-to-pump impacts for conventional oil and oil sands with 

surface and in situ mining processes. Results show that the life cycle energy and GHG 

emissions reduction achieved with the high efficiency gasoline engine exceeds the 

possible reduction by lightweighting the ICV up to 14%. This is due to the fact that life 

cycle results are strongly correlated to fuel economy and increase in fuel economy 

achieved by changing engines is much more significant than the lightweight BIW 

scenarios considered. Specifically, as compared to the baseline ICV, a 35% BIW mass 
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reduction reduces CAFE fuel consumption by 8.5% while simple changing engines 

reduces CAFE fuel consumption by 23%. Accordingly, well-to-pump and tank-to-wheel 

energy and GHG emissions are 23% lower for the HEG ICV as compared to the baseline 

ICV. Also, since vehicle production energy and GHG emissions are increased by only 

1% by replacing engines, this results in a negligible increase in TVLC results. Thus, life 

cycle energy and GHG emissions are reduced by 7% and 22% for the ICV with 35% 

BIW mass reductions and high efficiency engine vehicle, respectively. Based on the trend 

of fuel economy with vehicle mass shown in Figure 46, it would require a 38% decrease 

in vehicle mass to achieve the same fuel economy, and therefore life cycle energy and 

GHG emissions, as the baseline ICV with the HEG engine. 

 
Figure 46: Life cycle energy and GHG emissions comparison of an advanced engine and lightweight 

ICVs. Error bars indicate well-to-pump variation of gasoline (conventional oil and tar sands). 

 While these results indicate expected trends based on the model, it is important to 

note that current downsized/boosted engines do not provide the fuel economy (and life 

cycle) benefits as shown in the model results. For instance, according to the EPA 

combined fuel economy for 2013 vehicles, the 1.6 L Ford Ecoboost Fusion achieves only 

a 7% decrease in fuel consumption as compared to the naturally aspirated 2.5 L Fusion 

[29].4 This is due to two main reasons: 1) production engines require excess fuel at idle 

conditions, which was not incorporated in the engine model, and 2) the high dilution 

levels noted by Southwest Research Institute (SWRI) and used in the engine model are 

likely not realized in production engines, thus necessitating fuel enrichment and 

suboptimal spark timing to mitigate knock [30]. For instance, data published for the 
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Ecoboost 1 shows that as load increases above 12 bar, brake specific fuel consumption 

(BSFC) begins to increase (e.g. about 10 g/kWh for a 10 bar BMEP increase), thus 

reducing some of the high load benefits assumed for downsized/turbocharged engines 

[31]. This increase in BSFC is likely due to lower dilution levels that are not significant 

enough to eliminate the need for knock mitigation, either by spark retard or fuel 

enrichment. On the other hand, experimental research at SWRI has shown that by using 

up to 25% dilution, fuel enrichment and spark retard can both be eliminated [30]. 

However, such dilution levels have been achieved by use of an advanced ignition system 

developed by SWRI which is currently not used in production engines [32].  

Since the dilution levels used to create the HEG and E85 fuel economy maps are 

equivalent to those observed with SWRI’s HEDGE engine, the brake specific fuel 

consumption for the HEG engine is consistent with the experimental fuel consumption 

results (see Chapter 4) [33]. Accordingly, life cycle results for the HEG ICV correspond 

to optimistic, but feasible engine/vehicle designs. Similarly, BIW designs using 

aluminum space frame or all A/HSS are most often used in luxury vehicles, such as the 

Audi A6 and Jaguar XL [34]. Since these designs are possible from a design and 

manufacturing perspective, they also are indicative of optimistic, but feasible life cycle 

results. 

The sensitivity of life cycle results to fuel-cycle assumptions is evaluated by 

incorporating the range of possible well-to-pump values for gasoline, as identified in 

Section 3. Since the range of GHG emissions associated with oil shale is much larger 

than conventional oil or oil sands, the life cycle GHG reductions achieved by advanced 

engines or lightweight materials could be insignificant if oil shale is used with these 

vehicles. However, since current levels of oil shale production are minimal it is 

reasonable to assume the worst-case scenario of oil sands produced with in situ processes. 

Based on these results, life cycle emissions are still lower for the ICV with the high 

efficiency engine as compared to the lightest weight ICV with the baseline engine, as 

shown in Figure 46.  

5.4.2 Mass reduction and advanced engines - ICV 

 The combined benefits of using advanced engines with lightweight ICVs is 

evaluated by applying the HEG and E85 engine maps to the Autonomie model for a 
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lightweight ICV with 35% BIW mass reductions (14% total vehicle mass reductions). 

Accordingly, the HEG and E85 engines are downsized from a 4-cylinder 2.6 L engine to 

1.4 L and 1.1 L 3-cylinder engines and fuel economy results are obtained, as shown in 

Table 29. Similar to previous results, the change in vehicle production energy and 

emissions are negligible from downsizing from a 4 to 3-cylinder engine.  

The life cycle impact of individual and combined applications of lightweight 

materials and advanced engines are shown in Figure 47 for the ICV. Error bars indicate 

the range of well-to-pump impacts for gasoline (conventional oil and oil sands) and 

ethanol (diverse feedstocks and LUC factors as identified in Table 28). Due to the 

previously described uncertainties with ethanol LCAs, the well-to-tank emissions (i.e. 

combustion emissions) are shown in the results for the E85-ICV35. However, since well-

to-tank emissions would not be considered with typical life cycle accounting methods, 

the following analysis assumes this is excluded when comparing total vehicle life cycle 

results. 

Results show that by using the advanced gasoline engine with the lightweight 

ICV, fuel consumption is decreased by 23% and life cycle energy and GHG emissions 

decrease by 26%. Note that the improvement in life cycle impacts due to lightweight 

materials and advanced engines is not directly additive, as this would have resulted in a 

27% improvement. This is due to the fact that the baseline engine in the lightweight ICV 

is also downsized, resulting in additional fuel economy improvements. While not shown, 

a similar trend exists for the E85 engine, which has an even higher efficiency than the 

HEG engine.  

Assuming that GHG emissions from combustion are negated by uptake of 

biogenic CO2, the lowest life cycle GHG emissions are associated with the E85-ICV35, 

while the lowest life cycle energy consumption occurs for the HEG-ICV35. Energy 

consumption is significantly higher for the E85-fueled vehicle due to the increased 

energy required in the well-to-pump phase of the life cycle, despite the lower energy 

consumed on-board the vehicle (i.e. tank-to-wheel). Life cycle energy and GHG results 

are highly sensitive to the possible variation due to fuel-cycle impacts, particularly for 

ethanol. For instance, the magnitude of the uncertainty due to feedstock type and LUC for 
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the E85-ICV35 (180 gGHG/mi) is over three times higher than the greatest uncertainty 

for gasoline with the NA-ICV0 (54 gGHG/mi). 

 
Table 29: Engine size and CAFE fuel economy (MPG) for ICV technology combinations 
 NA-ICV0 NA-ICV35 HEG-ICV0 HEG-

ICV35 
E85-ICV35 

Engine Size 2.6 L (4-cyl) 2.3 L (4-
cyl) 

1.5 L (3-cyl) 1.35 L (3-
cyl) 

1.1 L (3-cyl) 

CAFE 
MPGe† 

33 36 43 47 52 

gge/100 mi† 3.0 2.8 2.3 2.1 1.9 
kJ/m 2.3 2.1 1.8 1.6 1.5 

†Miles per gallon equivalent (MPGe) and gallon of gas equivalent (gge) based on LHV of 
gasoline = 122.5 MJ/gal, LHV of E85 = 86.8 MJ/gal. 
 

 
Figure 47: Life cycle results for lightweight ICVs using advanced gasoline and E85 engines. Error 

bars indicate well-to-pump variation of gasoline (conventional oil and tar sands) and ethanol (corn, 
sugarcane and biomass with and without LUC. 

 

5.4.3 Mass reduction and advanced engines - HEV and PHEV  

 The impact of using advanced gasoline and E85 engines with lightweight HEVs 

and PHEVs is shown in Table 30 and Figure 48-Figure 49. Error bars indicate the range 

of fuel-cycle impacts for gasoline, ethanol and electricity, in the case of the PHEV. 

Similar to the trends shown for the ICV, the combination of mass reduction and advanced 

engine technologies provide the maximum benefits. However, since the hybrid vehicles 

rely on the engine for only a portion of the drive cycle, the impact of increasing engine 

efficiency is much less significant. For instance, while the HEG and E85 engines reduce 

fuel consumption of the ICV35 by 23% and 29% as compared to the NA engine, using 
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these engines in the HEV35 only reduces fuel consumption by 14% and 17%, 

respectively. The potential for fuel consumption reductions is even less for the PHEV 

because the total fuel economy is a weighted sum of blended and all-electric operation, 

and the efficiency in all-electric mode is constant regardless of engine type. Accordingly, 

even though the blended fuel economy results are very similar to those of the HEV, the 

total fuel consumption for the PHEV is only reduced by 6% with the HEG engine and 8% 

with the E85 engine.   

As shown in Figure 5-6, the trend of HEV and PHEV life cycle energy and GHG 

emissions is highly correlated to fuel consumption and well-to-pump assumptions 

regarding ethanol, gasoline and electricity. Due to the higher efficiency of the E85 

engine, tank-to-wheel GHG emissions are lowest for the ethanol-fueled HEV and PHEV. 

However, similar to the E85-ICV35, life cycle GHG emissions for the ethanol-fueled 

hybrids have a high degree of uncertainty. If it is assumed that biogenic CO2 is fully 

credited and CO2 from combustion is removed from the analysis, life cycle GHG 

emissions are lower for the E85-HEV35 as compared to the E85-PHEV35. The E85-

PHEV35 results in slightly higher emissions (without combustion CO2) due to the 

requirement that 27% of total miles traveled is fueled by electricity. Also, similar to the 

ICV results, the lightweight vehicles with the HEG engine achieve significant reductions 

in GHG emissions as compared to the NA-(P)HEV0 and have the lowest life cycle 

energy requirements.  

Considering the ICV, HEV and PHEV technology combinations presented in Figure 

4-6, life cycle energy consumption is lowest for the HEG-PHEV35 and GHG emissions 

are least for the E85-HEV35. For each vehicle, the trend of life cycle results is dependent 

on the fuel sources and corresponding assumptions, including the fuel source of 

electricity for the PHEV. For the well-to-pump scenarios considered in this work, ethanol 

has the greatest uncertainty followed by electricity and lastly, gasoline.   
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Table 30: CAFE fuel economy (MPG) for hybrid vehicle technology combinations 
  NA-0 NA-35 HEG-35 E85-35 
 

HEV 
Engine Size 1.6 L (3-cyl) 1.4L (3-cyl) 0.8 L (2-cyl) 0.7 L (2-cyl) 

CAFE 
MPGe† 

50 54 63 66 

gge/100 mi† 2.0 1.9 1.6 1.5 
kJ/m 1.5 1.4 1.2 1.2 

 
PHEV 

Engine Size 1.6 L (3-cyl) 1.5 L (3-cyl) 0.9 L (2-cyl) 0.7 (2-cyl) 
CAFE 

MPGe†‡ 
77 84 90 92 

gge/100 mi†‡ 1.3 1.2 1.1 1.1 
kJ/m 1.3 1.2 1.0 1.0 

‡Calculated with a utility factor (UF) of 0.271 and the EPA conversion that 1 gallon of gasoline is 
equivalent to 33.7 kWh. 
 

 
Figure 48: Life cycle results for lightweight HEVs using advanced gasoline and E85 engines. Error 

bars indicate well-to-pump variation of gasoline (conventional oil and tar sands), ethanol (corn, 
sugarcane and biomass with and without LUC), and electricity (greatest and least carbon intensive 

NERC grid regions). 

 
Figure 49: Life cycle results for lightweight PHEVs using advanced gasoline and E85 engines. Error 

bars indicate well-to-pump variation of gasoline (conventional oil and tar sands), ethanol (corn, 
sugarcane and biomass with and without LUC), and electricity (greatest and least carbon intensive 

NERC grid regions). 
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5.5 Conclusion 

 The life cycle energy and GHG emissions of an ICV, HEV and PHEV used with 

lightweight materials and/or advanced engines is evaluated with consideration of the 

plausible range of well-to-pump impacts associated with gasoline, ethanol and electricity. 

A model is developed to account for mass and materials changes necessary for 

downsized/boosted engines and is incorporated in the vehicle-cycle analysis of HEG and 

E85 vehicles. Also, a range of fuel-cycle impacts due to oil type / extraction method and 

ethanol feedstock / life cycle accounting method is included and represented by error bars 

in the analysis. 

 A life cycle comparison of using either lightweight materials or advanced engines 

for the ICV indicates that the most energy and GHG reductions are possible with the 

HEG engine. This is due to the fuel economy improvement observed with the HEG-ICV0 

as compared to the NA-ICV35, which represents a total vehicle mass reduction of 14%. 

The fuel economy trends found in this work are consistent with previous work that has 

demonstrated a 7% improvement in fuel economy per 10% vehicle mass reduction and 

has predicted a 20% fuel economy improvement with an experimental version of the 

HEG engine (i.e. SWRI’s HEDGE engine) [35], [36]. Based on the trend of fuel economy 

with mass determined in this work, a 38% decrease in vehicle mass would be necessary 

for the NA-ICV to achieve the same fuel economy and life cycle results as the HEG-

ICV0. 

 Using mass reduction techniques and advanced engines in the same ICV platform 

further reduces life cycle energy and GHG emissions. For instance, while the NA-ICV35 

and HEG-ICV0 reduces life cycle impacts by 7% and 22%, respectively, the HEG-ICV35 

results in a 27% reduction. Since the impact of increased vehicle production energy and 

emissions is negligible, the decrease in life cycle impacts is due entirely to the reduction 

in fuel consumption, which is 9%, 24% and 30% for the NA-ICV35, HEG-ICV0 and 

HEG-IVC35 as compared to the NA-ICV0. Since the efficiency of the E85 engine is 

higher than the HEG engine, fuel consumption (based on gallons of gasoline equivalence) 

is reduced even further for the E85-ICV0 and E85-ICV35 (e.g. 30% and 35%). It is 

interesting to note that the benefit of combining lightweight and advanced engine 

technologies on fuel economy and life cycle results is not directly additive. This is due to 
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the fact that the NA-ICV35 engine is downsized to meet performance specifications, thus 

providing fuel economy benefits that are not included in the HEG-ICV35 or E85-ICV35 

models. However, mass reduction and advanced engines are complementary 

technologies, as downsized engines are particularly desirable for vehicles with a lower 

total mass.  

 Hybrid vehicles show similar life cycle trends, but to a lesser extent, as compared 

to ICVs as lightweight materials and advanced engines are incorporated to their design. 

For instance, as compared to ICVs, the improvement from replacing the NA engine with 

the HEG or E85 engine is less for hybrid vehicles due to the fact that operation is split 

between the engine and motor. It is important to note that since controls were not 

optimized for each hybrid configuration, results are not representative of the maximum 

fuel consumption reduction possible. Thus, based on these assumptions, fuel 

consumption (on a MPGe basis) is reduced at most 24% and 16% for the E85-HEV35 

and E85-PHEV35 as compared to the NA-HEV0 and NA-PHEV0. Furthermore, fuel 

economy and life cycle improvements for the PHEV are less than the HEV due to the 

dependence on all-electric consumption, which is constant regardless of engine 

efficiency.  

Due to the higher fuel economy of hybrid vehicles, life cycle impacts are 

significantly lower for these vehicles. The least life cycle energy and GHG emissions 

occur for the lightest weight hybrid vehicles that use the HEG or E85 engine. Due to the 

high well-to-pump energy requirements of ethanol, energy consumption is lowest for the 

HEG as compared to the E85 in the PHEV35. However, assuming that the GHG 

emissions from combustion are negated by uptake of biogenic CO2, GHG emissions are 

lower for the E85 as compared to the HEG in any vehicle. With GHG emissions from 

combustion excluded from the LCA, the relative impact of electricity increases, resulting 

in life cycle emissions that are higher for the E85-PHEV35 as compared to the E85-

HEV35. Thus, life cycle GHG emissions are lowest for the E85-HEV35.  

While the implementation rates of these technologies will depend on their cost 

and the price of fuel, it is clear that advanced downsized/boosted engines (with gasoline 

or ethanol) and lightweight materials provide complimentary benefits for both 

conventional and electric vehicles and will play a key role in meeting future CAFE 
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standards.  Furthermore, reductions in life cycle energy and GHG emissions will take 

place as vehicles with these technologies are incorporated in the current fleet. 
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5.7 Appendix 
 

Table 31: Part list for the baseline engine 
Crankshaft system Cylinder head 

system 
Engine block 

system 
Engine mounts 

system 
crankshaft, bearings 
crank seal housing, 

sensors, pulley, 
pistons system 

cylinder head, 
bearings, camshafts 
rocker arms, valve 

train, Intake/exhaust 
valves, sprockets, 
cam sensor, spark 
plugs, ignition coil 

assembly 

engine block, belts, 
knock sensor, starter 

motor 

left and right 
mounts, oscillating 

mounts, motor 
mount stopper 

Front engine 
system 

Gasoline fuel 
injection system 

Lubrication system Style cover system 

crankshaft sprocket, 
timing belt housing, 

timing system 

injector rails, 
injectors, intake 

manifolds, throttle 
body 

dip stick housing, 
oil pump/filter 
system, piston 

lubricators 

noise insulation, 
style cover 

 

 
Figure 50: Correlation of peak engine power and mass of the engine block/head and crankshaft [1] 
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Chapter 6: Conclusions and recommendations for future work 

6.1 Conclusions 

The framework developed in this work enables an evaluation of vehicle technologies 

that have been proven as technically feasible but do not hold a significant share of the 

market. For instance, lightweight vehicle designs that use aluminum-intensive or 

advanced / high strength steel (A/HSS) body structures are technically feasible but 

remain limited to niche markets and proof-of-concept projects. Similarly, experimental 

research engines have shown brake thermal efficiencies exceeding 40%, but these 

efficiencies are not realized in current production vehicles. By incorporating lightweight 

materials and advanced gasoline and ethanol engines in the life cycle modeling 

framework, the individual and combined potential of these technologies are assessed, 

providing guidance for the future application of the technologies. 

This work advances previous life cycle models by providing a further level of detail 

regarding advanced engines and hybrid electric vehicle models. For instance, fuel 

economy maps for downsized/boosted dilute gasoline and ethanol engines were 

developed and integrated in the vehicle simulations. Also, internal combustion vehicle 

(ICV), hybrid electric vehicle (HEV) and plug-in electric hybrid vehicle (PHEV) models 

were created using newly developed design harmonization techniques. Using a 

harmonized method to model vehicles with diverse powertrains ensures that vehicles are 

functionally equivalent and that hybrid vehicle models account for structural changes that 

are necessary to support the heavier mass of electric powertrains. Similar to previous 

work, lightweight vehicle models were created using primary and secondary mass 

reductions, and vehicle performance was maintained by re-sizing powertrain components. 

Primary reductions were evaluated with body-in-white (BIW) mass reduction scenarios 

ranging from 15%-35% for an aluminum-intensive design and 15%-20% for an 

optimized A/HSS structure. 
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Key findings from this work pertain to modeling methods, evaluation of technologies 

and implications for policy makers / automobile manufacturers, as follows: 

 

MODELING METHODS  

• DESIGN HARMONIZATION – As compared to previous techniques, a more 

streamlined and flexible method was developed to create equivalent vehicle 

models for vehicles with diverse powertrains. Based on a regression analysis of 

conventional and hybrid vehicle teardown data, a 1 and 2 fit correlation was 

determined using front track width and powertrain mass to predict vehicle mass. 

The design harmonization methods show that 0.2-0.3 kg of additional structural 

support is required per unit increase in powertrain mass. As compared to the 

constant glider or structural mass multiplier methods (using a ratio of 0.5:1), life 

cycle results obtained with the design harmonization method vary by -0.7% to 

+2%. Depending on the purpose of the study (e.g. if detailed vehicle modeling is 

desired) it may be acceptable to use the simpler approaches. However, if future 

work requires modeling the design trends of diverse vehicle platforms, the design 

harmonization method is most appropriate. The techniques presented in this work 

provide a flexible method to account for hybrid-specific design requirements and 

create comparable models of conventional and electrified vehicles.  

 

• MASS ELASTICITY OF FUEL ECONOMY AND LCA – By modeling the fuel 

economy of the baseline and lightweight vehicles with forward-facing vehicle 

simulations, the mass elasticity of fuel economy (defined as the percent change in 

fuel economy per percent change in vehicle mass) is captured in the life cycle 

model for each powertrain-type vehicle. Thus, life cycle results show that for a 

unit decrease in mass, the maximum absolute and percent reductions occur for the 

ICV as compared to the HEV and PHEV. In other words, lightweight vehicle 

materials are most effective at reducing life cycle energy and GHG emissions for 

an ICV, as compared to HEVs or PHEVs. It is recommended that future work 

include this phenomenon when assessing the fuel economy or life cycle potential 

of mass reduction for various powertrain architectures.  
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EVALUATION OF TECHNOLOGIES 

• TECHNOLOGY COMBINATION WITH THE LEAST LIFE CYCLE 

IMPACTS – The least life cycle energy and GHG emissions occur for the lightest 

weight hybrid vehicles that use an advanced gasoline or ethanol engine. 

Specifically, the least energy consumption occurs for the lightweight PHEV using 

a high efficiency gasoline engine. Energy consumption is lower for the PHEV 

fueled by gasoline instead of ethanol due to the high energy required to produce 

ethanol. Also, energy requirements are lowest for PHEVs because they have the 

highest vehicle efficiency. As compared to the gasoline fueled vehicles, life cycle 

GHG emissions are lowest for the lightweight PHEV with the high efficiency 

gasoline engine. While the E85 engine reduces GHG emissions during the vehicle 

operation, life cycle GHG emissions are indeterminate for biofuels. 

 

• ADVANCED ENGINES - The potential of advanced engines to decrease life 

cycle energy and GHG emissions is significant, as dilute downsized/boosted 

gasoline and ethanol engines increase fuel economy by 24-30% for ICVs and 6-

17% for hybrid vehicles. A comparison of mass, materials, and production 

energy/GHG emissions for a 4-cylinder naturally aspirated and 3-cylinder 

downsized/turbocharged engine reveals that the impact on vehicle production 

energy and GHG emissions is negligible (less than 1%). Overall, advanced 

gasoline and ethanol engines reduce life cycle GHG emissions by up to 26%, 

depending on vehicle type. Energy consumption is also reduced by up to 26% for 

the advanced gasoline engine, but increased by 6-14% for the ethanol engine due 

to the increased energy required to produce ethanol. 

 

• LIGHTWEIGHT MATERIALS – Life cycle results show that by reducing the 

BIW mass by 35% with an aluminum-intensive design decreases life cycle 

impacts by 5-7%, despite the fact that the energy and GHG emissions intensity of 

aluminum is higher than steel. Similarly, as compared to aluminum A/HSS results 

in 5% life cycle energy and GHG reductions. The energy and GHG reduction 
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from aluminum and A/HSS are similar because while there is less potential for 

mass reduction with A/HSS, the energy and GHG emissions to produce A/HSS 

are much lower than for aluminum. Furthermore, the potential to reduce life cycle 

impacts per unit mass removed is higher for A/HSS than aluminum. Therefore, 

A/HSS is more advantageous for BIW mass reduction scenarios up to a 20%, 

while maximum life cycle reductions are achieved with a 35% reduction in BIW 

mass using aluminum.  

 

• ADVANCED ENGINES VS. LIGHTWEIGHT MATERIALS – For the scenarios 

considered in this work, advanced gasoline and ethanol engines provide 

significantly more life cycle energy and GHG emissions reductions than achieved 

with lightweight vehicle materials due to the higher fuel economy realized with 

advanced engines. For instance, using the high efficiency gasoline engine in the 

ICV with no BIW mass reduction results in a 24% reduction in fuel consumption 

as compared to the baseline vehicle. However, if the BIW mass is reduced by 

35% and the ICV is operated with the baseline engine, fuel consumption is 

reduced by only 9%. Also, while certain lightweight materials, such as aluminum, 

increase vehicle production energy and GHG emissions, there is no noted increase 

for advanced engines. Thus, advanced engines offer more dramatic reductions in 

life cycle energy and GHG emissions, while reductions from lightweight 

materials are more modest. While the advanced engine/fuel strategies considered 

in this work are currently not available in production vehicles, aluminum and 

A/HSS are presently being implemented in vehicle design, particularly for luxury 

vehicles.  

 

• CONVENTIONAL VS. HYBRID ELECTRIC VEHICLES - As compared to 

ICVs, HEVs and PHEVs offer significant reductions in life cycle energy and 

GHG emissions, corresponding to the higher fuel economy of hybrid vehicles. 

Since controls were not optimized in this work, it is expected that the attainable 

fuel economy and life cycle improvements are even higher for hybrid vehicles in 

the market. When lightweight materials and advanced engines are used with 
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ICVs, HEVs and PHEVs, ICVs show the greatest potential for life cycle 

reductions due to their higher mass elasticity of fuel economy. Also, since ICVs 

are propelled entirely by power from the engine, increasing engine efficiency 

results in more significant fuel consumption and life cycle reductions for these 

vehicles. While advanced engines and lightweight materials have less of an 

impact for hybrid vehicles, there is an opportunity to significantly reduce life 

cycle GHG emissions from PHEVs if the vehicle is charged in an electric grid 

region with a low carbon intensity.  

 

• LIFE CYCLE TRADEOFFS WITH ETHANOL - The fuel properties of ethanol 

enable up to an 18% improvement in peak engine efficiency as compared to a 

baseline naturally aspirated gasoline engine, even when considering knock 

limitations. This results in a 8-30% decrease in fuel consumption (on a MPGe 

basis) for each vehicle type, with maximum reductions occurring for the ICV. 

However, these reductions in energy consumption are offset to some extent by the 

significant energy requirements to produce ethanol. Final life cycle results are 

indeterminate due to the inherent difficulties of using LCA to evaluate biofuels.  

IMPLICATIONS FOR POLICY MAKERS / AUTOMOBILE MANUFACTURERS 

• STRUCTURAL MASS REQUIREMENTS FOR HYBRID ELECTRIC 

VEHICLES – This work has evaluated vehicle teardown data and developed 

correlations that account for the increased structural mass that may be necessary 

for electrified powertrains. If the structural mass increase is significant, fuel 

economy would decrease and the energy and GHG emissions associated with 

vehicle production would increase, thus negating some of the benefits of hybrid 

vehicles. This work finds that 0.2-0.3 kg of structural support is required for a 1 

kg increase in powertrain mass, resulting in a less than 1% increase in vehicle 

production energy and GHG emissions.  

 

• MASS REDUCTION FOR CONVENTIONAL VS. ELECTRIFIED VEHICLES 

– Since the mass elasticity of fuel economy is greatest for ICVs, these vehicles 

have the greatest potential to reduce life cycle energy and GHG emissions per unit 
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of mass removed from the vehicle. Thus, it is recommended that automakers 

aggressively incorporate mass reduction techniques in the design of ICVs. Such 

techniques should also continue to be applied to hybrid vehicles, as this will also 

provide fuel economy benefits and enable smaller batteries to be used with no 

reduction in performance or range. Smaller batteries are desirable because they 

can reduce the environmental impact of hybrid vehicle production and also lower 

the cost of hybrid vehicles, thus increasing their market penetration. Overall, 

while vehicle mass reduction has the potential to reduce life cycle impacts for all 

powertrain type vehicles, maximum fuel economy improvements are achieved for 

lightweight ICVs. 

6.2 Recommendations for future work 

 Based on the findings of this work, the following questions could be posed for 

future work: 

 

1. What are the life cycle trade-offs of using ethanol vs. a petroleum-based high 

octane fuel with a high heat of vaporization? 

This work has demonstrated the potential of ethanol to increase engine efficiency 

when used with a downsized/boosted engine with a high compression ratio (14:1) and 

significant amount of dilution (25% EGR). However, the life cycle impacts of ethanol are 

uncertain, as cellulosic ethanol is currently uneconomical and corn-based ethanol results 

in competition with food resources. Also, from a life cycle perspective, the GHG 

emissions for biofuels are debatable, since the impacts of dedicating farmland for an 

energy crop are not straightforward. Thus, it may be desirable to produce a petroleum-

based fuel with the beneficial fuel properties of ethanol, namely a high octane number 

and high heat of vaporization. Future work could compare the energy and environmental 

impacts of manufacturing this petroleum-based fuel as compared to ethanol and assess 

the trade-offs over the total vehicle life cycle. If the increased GHG emissions associated 

with fuel production do not outweigh the GHG reductions due to increased fuel economy, 

the petroleum-based fuel could provide a more certain pathway to reduce life cycle GHG 
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emissions. Thus, results of this analysis could be used to inform future policies regarding 

optimal fuels for light-duty vehicles. 

 

2. What policies could encourage the production and use of engines and fuels that 

are optimized for each other? 

There remains a potential to create policies that encourage the use of advanced 

engines and fuels that are optimized for each other. Current policies, such as the 

renewable fuel standard and CAFE credits for flex fuel vehicles (FFV), have not 

produced the desired effects. E85 is not widely available and flex fuel vehicles are often 

fueled by gasoline instead of ethanol. Furthermore, due to the uncertainty of E85, most 

FFV engines are not optimized for ethanol and the fuel economy improvements that are 

possible with a high octane/heat of vaporization fuel are not being realized. Thus, future 

work could propose a policy solution that encourages the production of fuels and engines 

that are tailored for each other and the use of these technologies together.  

 

3. To reduce life cycle energy and GHG emissions, is it more desirable to have one 

or more than one vehicle platform for conventional and electrified vehicles? 

While electrified vehicles may require design modifications to account for powertrain 

component changes and provide the support necessary for heavier powertrains, it remains 

unclear if it is more advantageous to create a new vehicle platform for electrified 

vehicles, such as the Toyota Prius, or use an existing platform, such as the GM Volt. 

With one platform, fewer modifications may be required to the existing vehicle 

manufacturing process. However, a trade-off exists when considering conventional 

vehicles that share the same platform as electrified vehicles. Since vehicles must be 

designed to support the heaviest powertrain, any increase in structural mass would reduce 

the fuel economy of the conventional vehicles in a one-platform approach. To evaluate 

these trade-offs, an assessment should include vehicle manufacturing processes and life 

cycle analyses of vehicles sharing the same platform. Also, trends in vehicle design may 

be modeled using the regression analysis method proposed in this work, which should be 

updated as more electric vehicle data becomes available. 
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4. What are the implications of using distinct regression correlations for electrified 

vehicles to predict vehicle mass instead of one aggregated correlation to describe 

all vehicles? 

This work has discussed the differences of using 1 vs. 2 regression correlations to 

predict vehicle mass from powertrain mass and front track width. However, as more data 

becomes available on electrified vehicles, the regression analysis method should be 

updated to capture the differences between each powertrain-type vehicle. For instance, 

future work could model different powertrain type vehicles with separate regression 

equations or the degree of hybridization could be included in the analysis as a parameter. 

This will provide further insight in the unique design characteristics of diverse powertrain 

vehicles and increase the level of modeling detail included in the design harmonization 

method. 

 

5. Based on technology adoption scenarios, what is the potential of lightweight 

materials, advanced engines, and electrified vehicles to reduce GHG emissions in 

the US by 2050?  

While this work has evaluated the current potential of lightweight materials, advanced 

engines and electrified vehicles to reduce life cycle GHG emissions, the future potential 

of these technologies should be evaluated to provide a roadmap for achieving GHG 

reduction targets. Since there is an increased cost associated with clean vehicle 

technologies, their adoption will depend on their current price, balanced by any subsidies, 

and the price of fuel. Thus, technology adoption pathways should be evaluated under 

reasonable economic and policy scenarios. Since the same life cycle goals may be 

achieved by using different technologies or technology combinations (as shown in this 

work), such an analysis could provide insight to the most affordable pathway to an 

equivalent reduction in GHG emissions. 
 


