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CHAPTER I:  
Motivation, background and hypotheses 

 
 

Motivation 
 

Fracture healing is a multi-stage regenerative process that under most 

circumstances restores bone function without generating permanent scar tissue (Alman 

2011).  There are, however, a significant number of cases in the clinical world in which 

the bone fails to repair.  Ten percent of all fractures require further intervention due to 

insufficient healing while 13% of tibial fractures result in delayed or non-unions (Colnot 

2011, Dimitriou 2011.) Successful repair depends on the type and extent of injury and 

the body’s bone repair program often cannot restore function after large segmental 

losses (Dimitriou 2011).   

Repair of large bone defects (>2cm) is one of the key unmet clinical needs in 

musculoskeletal medicine (Guldberg 2012).  Causes of such defects include disease, 

trauma and tumor resection (Dhillon 2011.)   The high prevalence of blast injuries 

among U.S. soldiers serving overseas recently (79% of combat casualties) has 

heightened awareness of the need to improve outcomes for patients with traumatic 

bone damage: 54% of evacuated soldiers had injuries to the extremities, of which 26% 

involved fractures (Doukas  2013.) 

Treatments for large bone defects include metallic implants, autologous bone 

transplants and allografts of cadaveric tissue.  Unfortunately, these techniques are often 

beset by implant loosening, donor site complications, or limited osseointegration (Xie 

2007 Tissue engineering, Dhillon 2011, Jacobson 2011.)  Approximately 60% of 

allografts, for example, fail within ten years (Xie 2007.) 
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Advances in tissue engineering offer the potential to address these drawbacks 

through the delivery of osteoconductive or osteoinductive scaffolds and factors.  The 

goals of bone tissue engineering, as defined by Hollister and Murphy, are to “(1) 

improve patient outcome, (2) reduce morbidity or complication . . . [and/or] (3) reduce 

procedural expenses” (Hollister 2011.)  However, Hollister and Murphy also argue that 

bone tissue engineering has been largely unsuccessful in translating successes in the 

lab to the clinic due to a combination of technical, philosophical and business-related 

factors.   

One overarching barrier to the realization of viable tissue engineering therapies is 

the poor regenerative capacity of most mammalian tissues compared to those of 

vertebrates such as the newt and axolotl (the Mexican Salamander, Ambystoma 

mexicanum), which can completely regrow severed appendages (Poss 2010.)  A rare 

exception to the limits of mammalian regeneration is the deer antler, the only example 

of complete, repeated organ regrowth in an adult mammal (Kierdorf 2007.)   Though 

they have largely escaped the attention of the tissue engineering field, the antlerogenic 

progenitor cells (APC) at the heart of antler regeneration have the potential to provide 

tremendous insights into potential strategies for directing adult somatic progenitor cells 

to achieve large scale tissue repair.   

At this stage, however, basic questions about the APC phenotype remain 

unanswered.  A better understanding of what APC are and how they differ from other 

cervid bone forming cells will guide future explorations of the mechanisms behind the 

unique behavior of these cells. 
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Background 
 

Antlers are bony appendages that are annually cast, regrown and fully 

mineralized to a largely acellular state (Fig 1).  With the important exception of reindeer, 

antlers are worn by the male members of deer species (Kierdorf 2007).  This seasonal 

process is coupled to the reproductive cycle and is associated with fluctuations in levels 

of circulating androgens (Price 2004).  Due to their size, nutritional requirements and 

role in “boxing” contests between rival males, antlers serve as outward indications of 

mate quality (Fig 2) (Price 2005, Landete-Castillejos 2007).  The demands of annual 

regrowth require some of the fastest rates of bone growth in nature, exceeding 2cm/day 

in some species (Price 2004).  Antlers grow so quickly that as much as 60-75% of the 

calcium required comes from bone resorption elsewhere in the body (Landete-

Castillejos 2007.)  

Antlers elongate through endochondral ossification occurring in growth centers in 

the tip of each antler tine (Fig 3) (Price 1994, Kierdorf 2009).   Within each growth 

center, antlerogenic progenitor cells (APC) reside in a niche called the reserve 

mesenchyme, where undifferentiated APC undergo rapid proliferation as well as robust 

apoptosis (as many as 64% of cells there are apoptotic) (Colitti 2005, Rolf 2008). More 

proximally, APC undergo chondrogenic differentiation while those in perivascular niches 

differentiate into osteoblasts.  The result is a tough matrix with a low mineral content 

compared to other mammalian long bones (Currey 2004). 

Deer Antler Growth, Regrowth and Anatomy 

The mechanisms that regulate the growth of a deer’s first set of antlers and 

subsequent regrowth are thought to differ in critical ways.  The former can be 

considered to be a more orthodox post-natal growth akin to the development of 

secondary sex characteristic (Faucheux 2004, Landete-Castillejos 2007) and the latter 

exploits not only mechanisms similar to wound healing and fracture repair (Li 2005), but 

is thought to recapitulate those of embryonic growth (Mount 2006). They are therefore 

described separately below. 
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First Antler Growth 

First or “primary” antler growth is, by definition, not a regenerative event (Kierdorf 

2007).  First antlers are generated from pedicles, bony, vascularized masses of nerves, 

connective tissue and skin from which the antlers extend (Fig 4) (Price 2004).   The 

pedicles are permanent projections of the frontal bones of the skull and are retained 

after the antlers are cast (Price 2004).    Both the pedicles and antlers are thought to be 

derived from an “antlerogenic periosteum”, a term coined by Richard Goss, a pioneer in 

the field of deer antler research (Li 1994).  Consisting of both cellular and fibrous layers, 

the antlerogenic periosteum is, in turn, likely derived from neural-crest tissue (Li 1994).  

Price cites Li and Suttie’s conjecture that the antlerogenic periosteum is a site of post-

natally-retained embryonic tissue (Price 2004). 

A male deer grows its first antlers during puberty (5-7 months for red deer, 

Cervus elaphus) (Price 2005).  The first antlers (“spikers”) are not branched, and 

develop via intramembranous and then endochondral ossification extending from the 

distal tips (Price 2004).  

Li and Suttie performed histological categorization of the stages and substages 

of pedicle and first antler growth in red deer (Li 1994.)  Except where indicated, the 

following is a summary of Li and Suttie’s 1994 paper.  There are two main stages of first 

antler growth, “internal” and “external”, during which the pedicle and first antlers are 

generated, respectively.  Li and Suttie further divided the internal (pedicle growth) stage 

into three substages: intramembranous ossification (IMO), ossification pattern change 

(OPC) and endochondral ossification (ECO).   

The IMO substage, occurring at about 4 months of age, is marked by the 

differentiation and proliferation of antlerogenic cells into osteoblasts (Price 2004).  In the 

presence of the ample vascularization of the antlerogenic periosteum, the newly formed 

osteoblasts begin to lay down trabecular bone directly (Li 1994 and Price 2004).  The 

bone produced at this stage is continuous with the frontal bone of the animal’s skull and 

is not visible from the exterior.   

In OPC or “transitional” ossification, antlerogenic cells at the free ends of the 

trabeculae form chondrocytes (Li 1994 and 1998, Price 2004).  The osseocartilaginous 
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tissue that forms is intriguing in that it is highly vascularized, though the sites of 

osteoblast differentiation seem to be distal to the furthest reaches of the capillaries.  The 

pedicle is not palpable from the exterior during this substage.   

If the capillary growth “catches up” to the antlerogenic cells at the free end of the 

trabeculae, the cells will again differentiate into osteoblasts and form bone 

intramembranously.  Li and Suttie believe the OPC substage is triggered by rising levels 

of androgens.   

The final substage of pedicle growth, endochondral ossification (ECO) occurs 

when the pedicle is between 2.5 and 4.0 cm long.  The ECO substage is indicated by 

the establishment of fully vascularized cartilaginous trabeculae orientated vertically, 

parallel to the long axis of the pedicle.  At this point, four distinct zones can be 

discerned within the pedicle.  These are (from proximal to distal): trabecular bone (from 

the IMO substage), osseocartilaginous tissue (from the OPC substage), cartilaginous 

tissue (from the ECO substage) and a hyperplastic perichondrium   The hyperplastic 

perichondrium, at the distal tip of the pedicle, is comprised of fibrous tissue arranged in 

a wave-like patterns and numerous, randomly-oriented cells engaged in rapid 

proliferation.   

The tissue generated during first antler growth is not distinguishable histologically 

from that from the ECO stage of pedicle formation.  In red deer, first antler growth is 

apparent as the pedicle/antler attains a height of approximately 4-6 cm.  Also, the skin 

that grows on the newly formed tissue takes on the silky appearance of antler velvet. 

 
Antler Regrowth 

The annual regrowth of deer antlers is a process of appendage regeneration 

unique among mammals (Kierdorf 2007).  Certain amphibians, the urodeles, are 

capable of complete regeneration of severed limbs.  There is considerable debate as to 

how antler regrowth and the regrowth of limbs in urodeles are similar and different.  This 

is not surprising, as this section illustrates how the process of regrowth itself is poorly 

understood and subject to controversy. 
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Antler regeneration follows a yearly cycle of shedding (“casting”), regrowth, and 

ossification (Fig 1).  It is widely believed that this cycle is closely coupled to, but not 

directly regulated by, fluctuations in levels of circulating androgens (Price 2004).  

Li examined the histological traits of regrowing red deer antlers and was able to 

distinguish five general stages of regeneration: precasting, casting, early wound 

healing, late wound healing/early antler regeneration and the formation of main beam 

and brow tine (Li 2005).  His characterization of these stages was based on his study of 

red deer and certain details may not be applicable to all deer species.   

In late winter or early spring, testosterone levels in male deer fall, possibly 

triggered by increasing day length (Price 2004, 2005; Bubenik 2006).  Through a 

process not well understood, an abscission line appears, marking a transition zone 

between “living” and “dead,” or fully mineralized antler (Li 2005).  At this abscission line 

extremely rapid osteoclastic resorption occurs, cleaving the antler from the permanent 

pedicle (Kierdorf 2007, Price 2004).  Price noted just how rapid casting can be, “…we 

noted an antler to be firmly attached to the pedicle at 08.00 only to find it was cast 30 

min. later” (Price 2004, emphasis added).  

What follows antler casting is the formation of a blastema in a process 

resembling wound healing (Faucheux 2004, Kierdorf 2007, Li 2005, Price 2004).  A 

thick skin layer (the “wound epithelium”) begins to grow over the wound within hours.  At 

the same time, osteoclasts selectively resorb bone from the abscission line, leading to a 

smoothing of the exposed bone (Li 2005, Price 2005, Kierdorf 2007).  The skin grows 

substantially over the next 1 to 2 days, and the advancing edge of the epidermis is 

anchored to the bone via “tongue-like” projections that extend into a layer of rapidly 

growing tissue below in the center of the pedicle (Li 2005).  Re-epithelialization is 

typically complete in 7 to 9 days (Faucheux, 2004).   

The exact nature of the tissue underneath the newly grown skin is unknown.  Li 

described it as “granulation tissue” because of its resemblance to that formed during 

wound healing (Li 2005).  However, Price and Faucheux, citing the latter’s finding of 

cells staining positive for PTHrP, believe this tissue to be mesenchymal (Faucheux 

2004, Price 2005).   
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Faucheux’s work suggests a recapitulation of embryonic growth processes 

during this stage of antler regrowth in conjunction with a more conventional wound 

healing response (Faucheux 2004).  Recall that a blastema, rather than a scab, forms at 

the site of casting.  It is not known why normal wound repair is not the sole response 

after casting, though it is thought that antler regeneration requires activation by the 

wound healing response (Price 2004).  There is a great deal of speculation about the 

role, or lack thereof, of the immune system after the antlers are shed.  Some suspect 

that the local environment around the pedicle is immunodeficient, and that there is a 

positive association between immunodefiency and ability to regenerate (Price 2004).  

Note that, despite the large area of exposed tissue after casting, bacterial infections 

rarely occur at these sites (Price 2004).  

The blastema that develops beneath the wound epithelium is comprised of 3 

broadly defined zones (Price 2004).  Immediately under the skin is an area that 

resembles the future perichondrium.  Below that are proliferating mesenchymal cells 

(Price 2004).  Underneath the mesenchymal cells is a region of chondrogenesis (Price 

2004). 

So far we have covered Li’s stages of pre-casting, casting and early wound 

healing.  In red deer, as in many other species, the initiation of antler regrowth 

immediately follows these stages (Li 2005).  In reindeer and moose, however, this is not 

the case (Price 2005).  For these species there can be a delay of several months 

between casting and regrowth, possibly as a means of conserving nutrients during the 

winter (Price 2005).  Such exceptions call into question the notion that casting 

necessarily triggers antler regrowth (Kierdorf 2007).  In fact, the existence of “double 

antlers” suggests the regeneration process begins before the previous set of antlers are 

even cast (Kierdorf 2007). 

Whenever it occurs, Li divides the stage of late wound healing/early antler 

regeneration into three substages (Li 2005).  First is the initiation of anterior and 

posterior growth centers (Li 2005).  Here, discrete clusters of chondrocytes are 

generated at the anterior and posterior edges of the pedicle (Li 2005).  The tips of these 

cartilaginous growth centers are topped with a hyperplastic periosteum/perichondrium 

layer which is heavily populated by mesenchymal “antlerogenic progenitor cells” (Li 



 
 

8 
 

2005, Rolf 2006).  The second substage involves the formation of continuous 

cartilaginous columns in the growth centers (Li 2005).  These columns are generated by 

the hyperplastic periosteum/perichondrium from the first substage and lead to bone 

formation in a sequence that closely mirrors the ossification stages of primary antler 

growth: intramembranous ossification (leading to trabecular bone formation), then 

“transitional” growth (in which osseocartilaginous tissue forms) and, finally, 

endochondral ossification (Li 2005). 

The third and last substage of late wound healing/early antler regeneration is a 

process of remodeling of the cartilaginous region formed in the previous substages (Li 

2005).  This final substage marks the end of an apparent wound healing response (Li 

2005).  In addition, the growth centers formed in the previous substage begin to “bulge 

out” from the pedicle (Li 2005). 

Finally, the last stage of antler regeneration defined by Li is that of the formation 

of the main antler beam and brow tine (Li 2005).  This stage ends in the fall as 

testosterone levels peak, triggering full mineralization of the antler and shedding of the 

velvet (Bubenik 2006).  The “hard” antlers are now exposed (Price 2004). 

The rate of regrowth of the antler occurs in an “S”-shaped growth curve (Price 

2004).  Regrowth during the first 4 to 6 weeks is fairly slow but accelerates rapidly in the 

following 60-80 days of late spring and early summer (Price 2004).  The longitudinal 

growth rate during those 60-80 days can approach 2 centimeters per day, though this 

figure is closer to 6.35mm for white-tailed deer (Ozoga 1996, Price 2004).  As fall 

approaches, the growth rate slows again and the above-mentioned process of 

mineralization occurs (Price 2004). 

 
Structure of the Regenerating Antler 

In her 2004 paper, Price delineates the anatomy of the regrowing antler and 

some candidate regulatory mechanisms (Fig 5) (Price 2004).  Except where indicated, 

the following is drawn from her 2004 paper.  The longitudinal growth of the antler is 

driven mainly by endochondral ossification at the tip of each antler branch.  The tip can 

be divided into the following zones (from distal to proximal): dermis, perichondrium, 

periosteum, “zone of proliferation” and “transition zone”.   
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The cellular region of the perichondrium, with its low concentration of ALP, is 

thought to be the “niche” that containing progenitor cells (Li 2001, Kierdorf 2007).  The 

periosteum is continous with the perichondrium and is a site of intramembranous bone 

formation.  Cells here have been found to express PTHrP, RANKL and the retinoic acid-

synthesizing enzyme RALDH2.   

The zone of proliferation has also been called the “reserve mesenchyme” or, 

simply, the “mesenchyme”.  It is a region heavily populated with cells that are not wholly 

differentiated down an osteoblastic lineage, as indicated by the dearth of ALP there.  

These cells have of late been referred to as “antler progenitor cells” by Mount and 

others (Mount 2006).  A low level of Type I collagen mRNA expression has been 

detected in the zone of proliferation and Type II collagen mRNA has not been found.  

This result suggests that there are few chondroprogenitor cells in this region. 

The zone of proliferation is thought to be the epicenter of growth for the 

regenerating antler (Price 2004, Kierdorf, 2007).  Cells there have a high rate of 

proliferation and apoptosis (64% of cells) (Colitti 2005).  The role of such a high degree 

of apoptosis is not known, but Price opines that this could be a defense against 

mutation in a region that might otherwise be prone to cancerous growth. 

The transition zone is where chondrogenic differentiation occurs.  Cells here are 

aligned in vertical columns and transcribe mRNA for Types I, IIA, IIB, and X collagen.  

As stated above, antler cartilage is unusual in its high degree of vascularization, unlike 

adult growth plate cartilage.  In addition, antler cartilage contains much more Type X 

collagen than typically found in the growth plate.  Osteoblasts and osteoclast progenitor 

cells can be found between the columns of chondrocytes.  According to Price, the rapid 

growth of antlers requires extensive resorption of mineralized cartilage via osteoclasts 

followed by the replacement of cartilage by bone by the osteoblasts supplied by the 

transition zone. 

For reasons that remain unclear, each set of regenerated antlers is larger and 

more complex than that grown in the previous year.  This process is termed 

hypermorphic regeneration (Kierdorf 2007). 
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Animal Studies 

One of the central challenges in deer antler research is the lack of standardized 

animal models or cell lines.  The species of deer studied have often been those 

convenient to the researchers.  Antlers have been studies from species including: 

 

• Fallow Deer (Dama dama) (Goss 1990, Kierdorf 2003) 

• Spotted Deer (Axis axis) (Rajaram 1982) 

• Red Deer (Cervus elaphus) (Price 1994, Faucheux 2001, etc.) 

• Reindeer (Rangifer tarandus)  (Kapanen 2002) 

• Roe Deer (Capreolus caprelous) (Kierdorf 2003) 

• Whitetail Deer (Odocoileus virginianus) (French 1956) 

  

Most of these animals have been studied ex vivo in the form of cast-off antlers or via 

histological examination of antler tissue from culled deer.  Much work has centered on 

the in vivo study of fluctuations in hormone levels (Bubenik 2006, Bartos 2009). As part 

of their examination of the regenerative role of the pedicle periosteum, Li, et al, studied 

roe deer in vivo (Li 2006).  Several workers have generated antler-derived cell cultures, 

but the types of cells and methods used have varied widely (Price 1994, Faucheux 

2001, Li 2001, Mount 2006, Rolf 2006).  Importantly, though some of these studies have 

examined antler progenitor cells, there have so far been no attempts to culture other 

types of MSCs from deer.  Marrow-derived MSCs would provide a powerful basis of 

comparison for the APC phenotype. 

Complementary DNA libraries have been generated for proteins such as BMP-3b 

isolated from reindeer.  Unfortunately, these libraries have since been lost (Väänänen, 

personal correspondence).  In addition, cervid VEGF has been sequenced.  However, 

the complete or even partial genome of deer species has yet to be sequenced 

(Kapanen 2002, Price 2004). 

Mechanical properties of antler and mechanoresponsiveness 

In general, antler is tougher, and more damage resistant than other types of 

bone, perhaps indicative of its evolutionary role as a secondary sex characteristic used 
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for fighting and display (Currey 2004).  Compared to a human humerus, the antler 

cortex is “young bone” composed chiefly of primary osteons (Launey 2010.)  Unlike 

other long bones, antler osteons lack cement lines and are instead surrounded by a 

hypermineralized region (Skedros 1995.) 

The role of mechanical forces in regulating the growth of the antler is not well 

understood.  Antlers are subject to frequent impacts during the rutting season but bear 

no weight other than their own.  Moreover, the exigencies of annual regeneration 

generally obviate the need for extensiveness remodeling.   

However, secondary osteons are found in antler compact bone, indicating that 

some remodeling occurs (Launey 2010.)    In addition, the presence of osteocytes in 

antler bone suggests the retention of mechanosensitivity in this tissue (Rolf 1999.)  

More speculative is the possibility that mechanical pressures due to the stretching of the 

skin overlying the pedicle may trigger the transition from intramembrous to 

endochondral differentiation during early antler regrowth (Li 2000.) 

Although there is circumstantial evidence that mechanical forces may exert some 

influence on the antler, no study has attempted to directly assess the effects of 

mechanical stimuli on antler cells.  Characterization of the mechanoresponsiveness of 

these cells compared to that of other cervid bone forming cells may offer some insight 

into the uniqueness of their phenotype. 

Cells and factors involved in antler regeneration 

The following is a breakdown of selected cells and factors thought to be 

especially important in the regulation of the process of antler regeneration. 

 
Antler Progenitor Cells 

 Antler regeneration was once thought to be akin to the limb regeneration 

witnessed in animals such as urodeles.  In other words, a process driven by the de- 

and/or trans-differentiation of existing cells during the formation of a blastema prior to 

tissue regeneration (Kierdorf 2007).  Kierdorf enumerated eight key differences between 

urodele limb and deer antler regeneration—the lack of de- or transdifferentiated cells in 

the latter being the most critical (Kierdorf 2007).  The prevailing view of antler growth 
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and regeneration is now one driven by de novo mesenchymal stem cell generation (Li 

2007, Rolf 2006, Kierdorf 2007).     

The growth centers that arise early in the endochondral phase of antler 

regeneration contain undifferentiated and rapidly proliferating, highly apoptotic “antler 

progenitor cells” (APC) (Li 2005, Colitti 2005, Mount 2006).   APC persist throught later 

growth in the reserve mesenchyme where, much like in the epiphyseal growth plate, 

they differentiate down chondro- and osteogenic pathways to supply the cellular 

“workforce” needed for antler growth. 

It is thought that APC are generated within the pedicle and antler periostea.  The 

notion of an “antlerogenic periosteum” has existed since the 1970s, when Hartwigg and 

Schrudde grafted a pedicle periosteum to a subcutaneous location in the leg of a roe 

deer and were able to successfully grow an ectopic antler (Li 2001).  This experiment 

was later repeated in fallow deer (Goss 1985).  Li was even able to use antler 

periosteum xenografts to grow pedicle on the heads of nude mice (Li 2001). More 

recently, Li showed that antler pedicles denuded of their periostea lost or suffered 

delays in their ability to regrow (Li 2007).   

The above work has been bolstered by histological and in vivo LacZ cell labeling 

studies pointing to the periosteum as the tissue source from which antler growth derives 

(though he does not describe his techniques in much detail) (Li 2001, 2005). In a later 

paper, Li concluded that both the antlerogenic periosteum and overlying skin govern the 

initial stages of antler growth and that only the former is important once antler growth is 

initiated (Li, 2008).   

As the importance of pedicle and antler periostea has been established, work 

has shifted toward characterizing the actual cells involved in antler regeneration.  

Several studies have hinged on the in vitro culturing of multiple cell types harvested 

from various regions within the regenerating antler tip (Price 1994, Li 1998, Faucheux 

2001, Li 2001, Rolf 2006).  However, only two recent studies have attempted to 

investigate the behavior of antler tip APC specifically (Mount 2006, Rolf 2008).   

Mount extracted cells post mortem from the reserve mesenchyme region of 2-

year-old red deer (Cervus elaphus) at 2, 4, and 8 weeks after antler casting as part of a 

study concerning the role of Wnt signaling in antler (Mount 2006).   Mount maintained 
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sub-confluent cultures of these cells and treated them with either lithium chloride (a Wnt 

agonist) or epigallocatechin gallate (EGCG, a Wnt inhibitor).  EGCG significantly 

reduced cell number, increased TUNEL-positive cells (indicating apoptosis) and 

increased ALP activity.  LiCl had no effect on cell number or TUNEL staining, but 

significantly reduced ALP activity compared to controls.   

Rolf, building on a 2006 paper in which he cultured cells from the regenerating 

tips of fallow deer (Dama dama), made the first attempt to isolate antler progenitor cells 

using several common MSC markers (Rolf 2008).  Using fluorescence-activated and 

magnetic cell sorting, cells collected from chondrogenic growth zones and pedicle 

periostea were screened positively (STRO, CD271, and CD133) and negatively (CD14, 

CD34, CD105, and CD133).  Rolf found that cells from the pedicle periosteum that were 

STRO-1+, CD271+, or CD133+ were also CD34-, a strong indicator that these cells 

were mesenchymal, rather than hematopoietic, progenitors.   

In addition, Rolf investigated the differentiation potential of STRO-1+ cells.  

These cells were exposed to either non-differentiating media or media containing 

osteoblastic, adipogenic or neurogenic factors (Rolf 2008).  Proliferation rates were 

greatest for cells in the osteoblastic medium.  These cells also produced measurable 

osteocalcin levels, a late phenotypic marker of osteoblasts, by the 21st day of culturing.  

RT-PCR of STRO-1+ cells maintained in non-differentiating media showed some 

expression of collagen I (though not of the other osteoblastic markers, cbfa1/runx2, 

osteocalcin, or the chondrogenic marker chondroadherin), indicating that a degree of 

differentiation had already occurred in some ostensible progenitor cells in the pedicle 

periosteum.   Intracellular lipid droplets were also reported in cells exposed adipogenic 

media via Oil Red O stain, though the criteria used for distinguishing lipid droplets from 

vesicles or even Golgi apparatus was arguably generous.  The paper does not describe 

the results of the attempted neurogenic culture experiment. 

Rolf’s 2008 paper provides an important verification not only of the existence of 

mesenchymal antler progenitor cells, but of the feasibility of culturing and differentiating 

these cells.  In essence, the groundwork has been laid for identifying APC as well as 

some basic cell phenotyping.  The door is now open for a more thorough investigation 

of APC behavior. 
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Hormones and factors 

The link between the initiation of first antler growth and the timing of the phases 

of regeneration and seasonal variations in sex steroid level has long been established 

(Price 2004, Bubenik, 2006).  A widely circulated story in the literature is that Aristotle 

himself observed that castrated deer fail to grow primary antlers (Price 2005).  In 

addition, castration during the mineralized antler stage will cause premature casting 

(Price 2004).  The regrown antlers of castrated deer appear normal but fail to either 

mineralize completely or shed their velvet covering (Price 2004).  Antler growth can be 

promoted in castrated and even female deer through the use of exogenous androgens 

(Price 2004). 

Though hormones are critical to antler growth and regrowth, they are actually 

only half of the way in a pathway between the ultimate cause of these processes and 

the processes themselves.  

This “ultimate cause” is the seasonal change in ambient light availability (Bubenik 

2006).  Signals from the retina are sent to the pineal gland, which Bubenik calls the 

“’clock’ and ‘calender’ [of antler growth]” (Bubenik 2006).  The pineal gland produces 

melatonin in response to darkness, and this hormone suppresses secretion of prolactin 

from the pituitary gland (Bubenik 2006).  Increased light availability in the springtime 

reduces melatonin production and allows prolactin levels to rise (Bubenik 2006).  The 

increased levels of prolactin stimulate the anterior pituitary to produce luteinizing 

hormone (LH), which, in turn, triggers the Leydig cells in the testes to produce 

testosterone (Bubenik 2006).  High levels of prolactin in the spring and summer 

suppress testosterone formation by blocking LH receptors on the Leydig cells (Bubenik 

2006).  This is why the effects of testosterone on antlers are not fully manifested until 

the late summer/early fall, when decreased light availability reduces the inhibitory effect 

that high levels of prolactin have on testosterone production (Bubenik 2006). 

The fluctuating levels of circulating testosterone correspond to the phases of 

antler regeneration.  Suppression of testosterone in the late winter/early spring triggers 

antlers casting.  Reduced suppression of testosterone during the spring and summer 

(via the mechanisms outlined above) coincides with antler regrowth (Price 2005, Bartos 
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2009).  Finally, peak levels of blood testosterone late in the fall are coupled to full antler 

mineralization and shedding of the velvet covering (Price 2005).   

Though testosterone is closely associated with antler growth, there is some 

controversy as to whether it or other hormones act directly on antlerogenic tissues and 

cells (Suttie 1995, Bartos 2009).  There is even conflicting evidence as to whether 

testosterone directly influences antler growth or regrowth (Suttie 1995, Li 2001, Price 

2005, Bartos 2009).  A potential source of such discrepancies could well be due to the 

wide range of protocols used to study the effects of hormones in deer. 

In his in vivo study of red deer, Suttie found that blocking testosterone secretion 

during and prior to antler regrowth had no inhibitory effect on antler regrowth (Suttie 

1995).  In fact, antlers in the treated group were slightly larger than those for which 

testerone levels were unaffected.  Bartos, on the other hand, saw a significant positive 

association between circulating testosterone concentrations and antler length in 2-year-

old and adult red deer (Bartos 2009).  Moreover, Li was able to use exogenous 

testosterone to induce pedicle and antler growth in several castrated male and female 

red deer (Li 2002).  Li also reported that graded concentrations of testosterone, 

dihydrotesterone, or estradiol had no proliferative effect on cells cultured from antler 

periostea (Li 2001). 

One school of thought implicates IGF-1 (insulin-like growth factor-1) as the 

“antler stimulating” factor (Suttie 1985).  Secreted by osteoblasts, IGF-1 is one of the 

most prevalent growth factors in bone (Delany 2001).  It is associated with increases in 

bone matrix formation and decreases in bone resorption (Delany 2001.)  A large 

increase in serum IGF-1 occurs during the rapid phase of antler regrowth (Fig 6) and 

IGF-1 levels correlate positively with antler growth rate (Suttie 1989, Price 2005.)   IGF-

1 mRNA has been found in osteoblasts and chondrocytes in the antler tip (Price 2005, 

Gu 2007.)  In culture, antler cells proliferate in response to IGF-1 (Price 1994, Li 2001, 

Sadighi 2001).  

 The mitogenic effect of IGF-1 on antler cells was completely abolished when the 

artificial glucocorticoid dexamethasone was added (Li 2001.)  This result corroborates 

the view that IGF-1 is negatively regulated by glucocorticoids such as cortisol (Delany 



 
 

16 
 

2001.)  It is therefore possible that glucocorticoids can regulate IGF-1 levels in the antler 

and perhaps alter the balance between proliferation and differentiation.   

However, predicting the effects of glucocorticoids on antler cells is difficult.  While 

dexamethasone was shown to decrease IGF-1-induced mitogenesis in antler cells, this 

glucocorticoid has also been demonstrated to enhance proliferation in some cell types 

(Bellows 1990, Jaiswal 2000, Tuan 2002.) Dexamethasone is also known to either 

increase (alkaline phosphatase activity) or decrease (collagen I and osteocalcin 

expression) markers of osteoblastogenesis in mesenchymal cells from other animals 

(Hoch 2012.) As dexamethasone is a component of many osteo-, chondro- and 

adipogenic differentiating media formulations, it remains to be seen what effects this 

glucocorticoid has on antler cell differentiation.   
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Hypotheses 
 

Though not well characterized, the APC phenotype may yield insights that could 

elucidate mechanisms for enhancing bone regeneration. We therefore embarked on a 

wide ranging investigation of APC properties and behavior.  In addition, we submit that 

any understanding of this uniqueness of APC is incomplete without also investigating 

how they differ from other cervid MSC.  To help answer this question, we cultured a 

parallel, animal-matched population of marrow-derived MSC (hereafter referred to as 

“MSC”) and subjected them to the same methods as with APC.  

Using cells isolated from the antlers and marrow of whitetail deer (Odocoileus 

virginianus), the work was guided by the following global hypothesis:  

 

APC and cervid marrow-derived MSC conform to a mesenchymal stromal cell 
model but differ measurably from each other in terms of their intrinsic 
behavior and responses to stimuli.   

 

Aim 1: To investigate APC behavior in culture 
The following hypotheses will be tested: 

 

1.1 Under static culture conditions, APC demonstrate increased colony 

formation, rates of proliferation and markers of adipo- chondro-, and 

osteogenic differentiation compared to animal-matched marrow MSC.   

 

1.2 Under static culture conditions, APC will display increased apoptosis 

compared to MSC. 

 
1.3 Under static culture conditions, APC and MSC will exhibit different responses 

to the artificial glucocorticoid steroid dexamethasone. 
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Aim 2: To investigate APC differentiation in an in vivo ectopic ossicle formation 
model 
The following hypothesis will be tested: 

 

APC in an in vivo ectopic ossicle formation model will generate more mineralized 

matrix compared to animal-matched marrow MSC. 

 
Aim 3: To determine APC response to oscillatory fluid flow (OFF) 
The nucleation of antler growth centers at sites of potentially high shear stress may 

indicate that APC possess an altered sensitivity to mechanical stimuli compared to 

marrow-derived MSCs of the same species.  The following hypothesis will be tested: 

 

APC and MSC have different patterns of response when subjected to oscillatory 

fluid shear stress. 
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Chapter I figures 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
Figure 1.1: The antler cycle.  Adapted from Ungerfeld 2008. 
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Figure 1.2: Two white-tailed bucks engaging in “boxing,” or display 
fighting, during a spring evening west of Saline, Michigan.  New antler 
growth is visible on the left contender.  Two suitably impressed does are 
on the left.  Image captured on a motion-activated game camera.  Courtesy 
of Charles Roehm. 
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Figure 1.3: Cross section of antler tip.  Image on left from Kierdorf 2007. Images 
on right stained with show safranin-O/Fast Green stain (200X mag.) 
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Figure 1.4: Stages of first antler growth in red deer (Cervus elaphus).  From 
Li 1994. 
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Figure 1.5: Deer antler regrowth.  Top row (left to right): Antler blastema 24hrs 
after casting; blastema after roughly 8 days; rapidly growing antler at about 21 
days.  Bottom row (left to right): fully grown antler at 100 days, still retaining 
velvet; fully mineralized antler at 140 days showing shedding of velvet.  From 
Price 2004. 
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Figure 1.6: Seasonal changes in testosterone, IGF-1, antler growth.  Testosterone, 
dashed line; IGF-1, solid line; Dot-dashed line, antler growth.  From Price, 2004. 
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CHAPTER II: 
AIM 1 

 

Introduction 
 

Antler regeneration is thought to be driven by the de novo generation of 

progenitor cells in the cranium or pedicle (Kierdorf 2007).  If this hypothesis is correct, it 

differs from the superficially analogous appendage regeneration processes in the 

urodele, which rely on trans- or dedifferentiation of existing lineage-committed cells 

(Kierdorf 2007).   

As their name and thus their putative role implies, antlerogenic progenitor cells 

are connective tissue progenitor cells.  APC are capable of regenerating at least the 

non-endodermal and non-ectodermal tissues in the antler (i.e. the bone and cartilage 

but likely not the velvet and vascular supply.)  Using LacZ labeling and X-gal staining, Li 

reported that all connective tissues in the antler could ultimately be traced to cells from 

the pedicle periosteum (Li 2001a.)  Li’s methods were never fully explained and the 

citation in his 2001 paper referred to unpublished data, but this result supports the 

central role of APC in regrowing the antler.   

We believe that antler chondrocytes and osteoblasts are most likely not directly 

derived from pedicle progenitors.  Instead, due to the paradigm of endochondral 

ossification and the overwhelming histological evidence we argue that these cells 

descend from an intermediate population of antlerogenic progenitor cells in the reserve 

mesenchyme, a zone of undifferentiated and rapidly proliferating cells at the antler tip 

(Price 2005).  If this assumption is valid, it likely reflects the simple expedient of 

maintaining a supply of progenitor cells as close as possible to the site of new tissue 

generation. After all, the antler grows from the tip and as the appendage lengthens, the 

growth zone will be displaced a substantial distance from the initial pedicle.  While it is
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possible that progenitors migrate through the vasculature from the pedicle to the antler 

tip, the fact remains that a large population of such cells are maintained at that distal 

location and from which chondrocytes and osteoblasts differentiate. 

Little is known of the cells at the heart of antler regeneration.   Most antler studies 

have been histological in nature; several have identified the expression of factors such 

as β-catenin (through which the canonical Wnt pathway acts), BMP-2 and -4, PTHrP 

and receptors for retinoic acid in the various tissue compartments (Feng 1995, Feng 

1997, Barling 2004, Mount 2006).   

It will obviously be difficult to make mechanistic assumptions behind antler 

regeneration until we better understand the APC phenotype through direct, 

experimental methods. Unfortunately, few investigations have involved the culturing of 

antler-derived cells.  Of these, several have sought to identify an “antler stimulating 

factor” that may enhance APC proliferation and thus help explain the rapid regrowth of 

which antlers are capable.  Candidate mitogenic factors include IGF-1 and steroids such 

as estradiol and testosterone, though debate continues as to which has the most robust 

effect in vivo (Kuzmova 2011.)   

As progenitor cells, it would follow that APC have some capacity for self-renewal 

and multipotency (Bianco 2008.)  However, APC self-renewal has not been 

investigated.  Moreover, though APC-derived cells generate bone and cartilage, we are 

aware of few peer reviewed studies that have attempted to differentiate antler cells 

down at least one cell lineage (Faucheux 2001, Berg 2007, Rolf 2008).  Rolf, for 

example, reported that STRO-1+ cells harvested from antler reserve mesenchyme have 

in vitro osteoblastic and adipocytic differentiation capacity (Rolf 2008).   

Here, we investigated how white-tailed deer APC conform to basic criteria 

defining mesenchymal stromal cells (MSC), particularly in terms of self-renewal and 

multipotency.  Drawing from the work of Bianco and Dominici, our definition will be as 

follows (Dominici 2006, Bianco 2008): 

 

1. Adherence on cell culture plastic 

2. Self-renewal as defined by colony formation 
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3. Capacity for differentiating into at least two mesenchymal lineages 

 

Working in vitro as a first step, we explored colony formation, cell enumeration 

over time, and mesenchymal lineage differentiation (adipo-, chondro- and osteogenic) in 

antler tip reserve mesenchyme APC.  Bianco might argue that such an investigation 

would ideally involve clonally-derived cells in order to verify that the same cells that 

possess the capacity for self-renewal are also capable of differentiation.  However, due 

to the technical challenges of selecting and expanding candidate clonal populations, we 

elected to explore mesenchymal stromal cell criteria in heterogeneous cell cultures.  We 

would counter a hypothetical “Bianco-esque” line of reasoning by arguing that the lack 

of literature on the APC phenotype in culture and appropriate protocols justifies a more 

conservative experimental approach. 

In addition to investigations of APC in terms of MSC criteria, we also explored the 

effects of glucocorticoids on APC.  Glucocorticoids regulate bone cell proliferation and 

differentiation directly and through interactions with hormones such as IGF-1 (Delany 

1994).  As the glucocorticoid dexamethasone is commonly used in differentiating 

medium, we investigated how it affected APC and MSC differentiation.  

Another unusual feature of the antler tip is robust apoptosis in the reserve 

mesenchyme, the region where undifferentiated APC undergo rapid proliferation (Colitti 

2005).  Colitti found that as many as 64% of cells in this tissue zone were apoptotic, an 

extremely high proportion for an adult tissue.  In this study, we explored apoptosis in 

APC and MSC chondrogenic cultures as well as whether it is differentially affected by 

dexamethasone. 

Finally, an important question when looking at APC is “to what degree are the 

properties of these cells shared by other cells derived from the same animal?”  We 

argue that any understanding of this uniqueness of APC is incomplete without also 

investigating how they differ from other cervid MSC.  To help answer this question, we 

cultured a parallel, animal-matched population of marrow-derived MSC (hereafter 

referred to as “MSC”) and subjected them to the same methods as with APC. 
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In this chapter, we will report the results of testing the following hypotheses: 
  

1.1 Under static culture conditions, APC demonstrate increased colony 

formation, rates of proliferation and markers of adipo- chondro-, and 

osteogenic differentiation compared to animal-matched marrow MSC.   

 

1.2 Under static culture conditions, APC will display increased apoptosis 

compared to MSC. 

 
1.3 Under static culture conditions, APC and MSC will exhibit different responses 

to the artificial glucocorticoid steroid dexamethasone. 

 
Here, we compared colony formation, cell expansion rates and differentiation 

capacities of reserve mesenchyme APC to animal-matched, phalangeal marrow-derived 

MSC.   We also examined the effects of the glucocorticoid dexamethasone on 

osteogenesis in vitro.  In chondrogenic cultures, we explored the effects of 

dexamethasone on cell number, apoptosis and matrix production. 

 

Material and methods 
 

Specimen acquisition  

Cells were obtained from three wild, mature white-tailed bucks (Odocoileus 

virginianus.)  Specimen acquisition took place on a University-owned nature preserve 

and conformed to institutional animal care and use standards and state wildlife policies.  

Following a three week program of baiting and game camera surveillance during July 

2011, professional sharpshooters were employed to harvest the bucks on consecutive 

nights during the first week of August.   

Disarticulated heads and front limbs (separated through the metatarsels) were 

placed on ice and transported immediately to the laboratory for dissection.  Following 

recovery, specimens remained on ice for between one and three hours before 

dissection. 
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Specimen dissection and cell harvest 

Disarticulated distal limbs were washed in tap water to remove dirt, blood and 

debris and then rinsed a chlorhexidine scrub followed by a saline or lactose Ringer’s 

solution.  The limb was degloved and the hooves and dew claws removed using a #10 

scalpel.  The phalanges were removed, washed again in tap water to remove any 

remaining dirt or hair and the soft tissue overlying the bones dissected away.  Each 

phalanx was soaked for 2 minutes in a 50ml conical tube filled with a solution of 500 

units/ml penicillin, 500µg/ml streptomyocin and 1 µg/ml amphotericin B in phosphate 

buffered saline (Gibco, Life Technologies, Grand Island, NY.)   

Phalanges were stored for up to 10hours at 4C in complete medium: Dulbecco 

Modified Eagle Medium containing 110mg/L sodium pyruvate and 4mM L-glutamine 

(Gibco), 10% characterized FBS (Gibco), 100units/ml penicillin/100µg/ml 

streptomyocin/0.25 µg/ml amphotericin B (Gibco.)  Fetal bovine serum for all remaining 

culture was obtained from a single batch that had been previously shown to give rise to 

robust mitogenesis in murine marrow-derived mesenchymal stromal cells (HyClone, 

Thermo Scientific, Waltham, MA, USA).   

Antler tips were dissected as follows.  After being washed as described above, a 

#22 scalpel blade was used to amputate the antler tip.  A #10 scalpel was then used to 

make longitudinal cuts along the proximal-distal axis of each antler tips.  Forceps were 

employed to peel the velvet off, with care taken not to remove the underlying soft tissue 

at the distal-most point.  Decorticated antler tips were washed, disinfected in antibiotic-

antimycotic, and stored in complete medium at 4C as above. 

To obtain MSC, the proximal ends of the phalanges were removed with an 

oscillating, cast-cutting saw (Stryker, Kalamazoo, MI.)  Fatty marrow was removed and 

complete medium used to flush red marrow into a 10cm cell culture dish, where it was 

homogenized by passing it through 18 and 26 gauge syringes.  Non-adherent cells were 

removed 24 hours after the initial plating by aspirating and replacing the culture 

medium.  
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Antler tip APC were harvested from the reserve mesenchyme, which was 

dissected, minced, and plated in complete medium.  As was the case for MSC, non-

adherent cells were removed 24 hours after the initial plating. 

As cellular antler tissue is only available on a seasonable basis, comparisons 

were made using both fresh and frozen cells.  To freeze, cells were first detached using 

0.25% Trypsin-EDTA (Gibco), resuspended in freezing medium (90% FBS, 10% 

DMSO.) After 24 hours at -80C in a Mr Frosty cell freezing container (Nalge Nunc 

International, Rochester, NY), cells were transferred to liquid nitrogen.  Thawed 

passage 1 cells were cultured in complete medium supplemented with 6 mM L-

glutamine (Gibco) and without amphotericin B.  

 

Cell enumeration over time  

First passage cells were seeded on 96-well plates (1000 cells/well or 3200 

cells/cm2).  Between 1 and 8 days, relative cell number was estimated by measuring the 

fluorescent intensity of a nuclear binding dye (CyQUANT, Life Technologies) at 485nm 

excitation/530nm emission on a GENios plate reader (Tecan Schweiz AG, Männedorf, 

Switzerland.)  Results were corrected using CyQUANT-only control wells. 

 

Colony formation 

First passage cells were plated at 6-well plates (160 cells/well or 17cells/cm2.)  

After 14 days culture in complete medium, the cells were stained with crystal violet.  

Wells were rinsed twice with PBS and fixed in 1% glutaraldehyde in PBS for 15 minutes.  

Next, cells were stained with 0.1% crystal violet in distilled water for 30 minutes and 

rinsed 4 times with dH20.  Colonies visible to the naked eye were counted manually. 

 

Osteoblast induction 

First passage fresh or thawed cells were plated at 5000cells/cm2 in   At 70-80% 

confluence, medium was supplemented with 0.1µm dexamethasone, 0.05mM L-

Ascorbic acid 2-phosphate (Sigma-Aldrich Co LLC, St. Louis, MO), and 10mM β-
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glycerophosphate (Sigma) (Jaiswal 1997).   In a subset of thawed cells, dexamethasone 

was omitted.  Unless stated otherwise, osteogenic medium contained dex. 

To detect mineralized nodules, osteogenic cultures were stained in 1% alizarin 

red-S  in 0.01%NH4OH, fixed in ice cold 70% ethanol and solubilized in 0.5N HCl + 5% 

SDS.  Next, solubilized stain was transferred to a 24-well (fresh cells only) or a 96-well 

plate (3 replicates per cell type per time point.)  Optical density (OD) was then read at a 

wavelength of 415nm and normalized to that of 0.5N HCL + 5% SDS.    

To correct for cell number, parallel wells were stained with crystal violet.  Crystal 

violet was solubilized in a 1:1 mixture of ethanol and 1% Triton X-100 for 30min.  OD 

was read at 562nm.  Alizarin Red ODs were normalized to the mean crystal violet OD 

for the cell type and time point. 

Alkaline phosphatase activity was detected using Moreau’s modification of 

Lowry’s method in which the enzyme is permitted to hydrolyze a colorless p-nitrophenyl 

phosphate (pNPP) substrate into yellow p-nitrophenol (pNP) (Lajeunesse 1990, Moreau 

1997) 

Cells were lysed in buffer (200mM glycine, 2mM MgCl2*6H20, 2% Triton X-100) 

and homogenized by repeated pipetting.  Lysates were transferred to 96-well plates, 

with three replicate wells per cell type.  Next, 12.5mM pNPP in ALPase buffer was 

added to each well containing lysate as well as to three negative control wells holding 

buffer only.  The reaction was conducted at 37C, after which it was stopped by adding 

1N NaOH.   

The pNP content in each well was quantified by measuring light absorbance at 

405nm and corrected using optical density values from the buffer-only negative control 

wells.  A standard curve was generated by way of linear regression of the optical 

densities of duplicate wells containing 0-60 nmol pNP.  Enzyme activity was expressed 

as pmol of pNP divided by incubation time and lysate protein content, the latter 

measured by BCA assays performed as per the manufacturer’s instructions 

(Pierce/Thermo Fisher Scientific, Rockford, IL, USA.)  
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Adipocyte induction 

Janderova’s adipogenesis protocol for human MSC was adapted to induce 

adipocyte formation in APC and cervid MSC (Janderova 2003.)  First passage fresh or 

thawed cells were plated at 5000/cm2.   At 95-100% confluence (designated day 0), 

complete medium was replaced with adipogenesis induction medium (AIM): high 

glucose (4.5g/L) DMEM (Gibco), 10% FBS, 1% Pen-Strep, 1µM dexamethasone 

(Sigma), 0.2mM indomethacin (Sigma), 1.7µM recombinant human insulin (Sigma), and 

0.5mM 1-Methyl-3-isobutylxanthine (Sigma.)  On day 3, the AIM was replaced with 

adipogenesis maintenance medium (AMM) for one day: high glucose (4.5g/L) DMEM, 

10% FBS, 1% Pen-Strep and 1.7µM recombinant human insulin.   

For the first 12 days of culture, cells were exposed to a total of 3 3-day AIM 

treatments separated by 1-day AMM treatments.  AMM was then used exclusively 

between days 13 and 21 and replaced every 3-4 days. 

Staining to detect lipid droplet was done in triplicate wells after 21 days culture in 

adipogenic medium.  Fifty percent of medium was aspirated from each well and an 

equal volume of 10% neutral buffered formalin added and allowed to incubate for 5 

minutes.  Wells were then completely aspirated, 10% NBF added and the cells fixed at 

4C.  Cells were then incubated in 60% isopropanol for 5 minutes.  The isopropanol was 

aspirated and the wells dried completely.  Oil red-O working solution (6 parts 0.5% Oil 

Red-O in isopropanol with 4 parts dH20) was added and the cells stained for 10 minutes 

under gentle shaking.   

 

Chondrocyte induction 

Chondrogenic differentiation was performed in micromass cultures (Mackay 

1998).  250,000 cells were pelleted in 15mL conical tubes and cultured in chondrogenic 

medium: high glucose DMEM, 1% Pen-Strep, 10ng/ml, recombinant human TGFβ3 

(Sigma), 0.1µM dexamethasone, 50µg/ml L-Ascorbic acid 2-phosphate, 40µg/ml L-

proline (Sigma), and 1% ITS+ (BD Biosciences, Sparks, MD, USA.)  Ovoid masses 

formed within 24 hours of culture in chondrogenic medium. 
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After 14 days, hypertrophic induction medium was used: high glucose DMEM, 

1% Pen-Strep, 50ng/ml thyroxine (Sigma), 1nM dexamethasone, 20mM β-

glycerophosphate, 50µg/ml L-Ascorbic acid 2-phosphate, 40µg/ml L-proline, and 1% 

ITS+.  In a subset of thawed cells, dexamethasone was omitted from both chondrogenic 

and hypertrophic media. 

At 28 days, micromasses were fixed for one hour in 10% NBF and then 

dehydrated and paraffin-infiltrated in an automated tissue processor for 7 hours 

(Shandon Hypercenter XP, Thermo Fisher.)  Due to the small size of the micromasses 

they were processed inside custom Delrin retaining rings placed inside mesh cassettes.  

The retaining rings prevented the micromasses from migrating through the cassettes’ 

vent holes during processing. 

Next, micromasses were paraffin-embedded using a Leica EG1160 paraffin 

embedding center (Leica Microsystems Inc, Buffalo Grove, IL, USA.) Micromasses were 

removed from molten paraffin, placed in a groove cut into a small piece of solid wax, 

and the solid wax then inverted and placed inside a plastic mold.  The solid wax kept 

the micromass affixed to the bottom of the mold, preventing movement when liquid wax 

was poured in.  This protocol was intended to ensure reliable location of the micromass 

during sectioning.  Six µm-thick sections were could then be cut on a Leica Microtome 

(Leica Microsystems) and mounted on glass slides.   

Collagen content was evaluated using Van Gieson’s Picric Acid Fuchsin stain 

(5% Acid Fuchsin in picric acid with Weigert’s Hematoxylin as a counterstain).  

Proteoglycans were visualized with 0.1% Safranin-O with 0.02% Fast Green and 

Weigert’s Hematoxylin as counterstains.   

As Safranin-O does not have high sensitivity (Camplejohn 1987), proteoglycan 

content was verified using 1% Alcian Blue in acetic acid (pH 2.5) on separate sections.  

Alizarin red staining (1 minute in 2% alizarin red-S in an aqueous solution of ammonium 

hydroxide, pH 4.2) was also performed on micromasses in the dexamethasone denial 

study. 

To measure micromass apoptosis and cell number, slides were dual-labeled 

using a TUNEL- Hoechst kit (Click-iT TUNEL assay, Molecular Probes/Life 
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Technologies, Eugene, OR).  TUNEL staining was visualized through the conjugation of 

an Alexa Fluor 594 fluorphore.   Three images were taken per section in the same field 

of view using a Zeiss Axiovert 200M (Carl Zeiss Microscopy, LLC, Thornwood, NY.) 

First, an auto-exposed brightfield image, used to estimate tissue area, was captured 

slightly above the plane of the slide to enhance contrast.  Next, the microscope’s 

multiple image acquisition software sequentially captured a Hoeschst-stained and 

TUNEL image using exposure times of 40ms and 500ms, respectively.   

Analysis was carried out using ImageJ software (National Institutes of Health, 

Bethesda, MD) on background corrected images. TUNEL intensity was evaluated as 

follow:  image background grayscale levels were removed using the Subtract 

Background function.  Grayscales levels were then measured in a region of interest 

drawn around the micromass section. 

Cells per matrix area were calculated from Hoechst-labeled and brightfield 

images.  Matrix area was calculated using the latter.  Image backgrounds were 

normalized using ImageJ’s Subtract Background algorithm after which the Enhance 

Contrast function was applied.  A software-generated threshold was applied and an 

areal measurement obtained. 

Cell number was determined from the Hoechst-stained images.  Background 

normalization was carried out as with the TUNEL images.  After the application of a 

software-generated threshold, ImageJ’s Particle Counter was used to count putative 

nuclei.  Only particles with an area greater than 175 pixels2 were counted, 

approximately equivalent to the area occupied by a 5um diameter object at 200x 

magnification.  Particle counter parameters were determined using images with “known 

good” nuclei, which yielded an estimated low end nuclear diameter of 5 um (equal to 

189 pixels2 for uncompressed images taken at 200x magnification.)  The lower 175 

pixels2 figure attempted to account for small variations in nuclear size. 
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Statistics 

As each experiment involved a small sample size (2 to 3 biological replicates), 

multiple experimental replicates (3 to 12) were performed for each assay.  Generalized 

linear mixed models, which take into account nested data structures and repeated 

measures, were therefore used for comparisons (SPSS, IBM Corp, Armonk, NY.)  For 

fresh and thawed cell models, “celltype” was used as a fixed effect and “animal” as a 

random effect.   

For the dexamethasone study, “dex treatment”, “celltype” and a “dex*celltype” 

interaction were used as fixed effects with “animal” again as a random effect. 

 
Results 

 

Cell enumeration over time 

Rapid antler growth rates in vivo prompted us to compare APC and MSC 

expansion in culture.  While MSC numbers increased before reaching a plateau at 6 

days, APC numbers declined between 1 and 4 days then increased between 5 and 8 

days (Fig.1A.)  Contrary to expectations, APC did not exhibit greater in vitro proliferative 

capacity compared to MSC. 

 

Colony forming units 

The formation of colonies is a measure of cellular self-renewal, a key progenitor 

cell trait (Bianco 2008).  The mean numbers of visible colonies generated by APC and 

MSC were similar, but APC demonstrated more inter-animal variability (Fig.1B.) 

 

Adipogenic differentiation 

The capacity to differentiate into adipocytes, osteoblasts and chondrocytes is 

another characteristic of mesenchymal stromal cells (Dominici 2006.)  After 21 days 

exposure to adipogenic media, both fresh and thawed MSC displayed widespread 

intracellular oil red-O-positive lipid droplets.  Few, if any, lipid droplets were apparent for 

either fresh or thawed APC at the same time point (Fig. 2). 
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Osteogenic differentiation  

We performed osteogenic differentiation of APC and MSC in culture using both 

fresh and thawed cells.  In a separate experiment, we measured the effects of the 

glucocorticoid dexamethasone on osteogenic differentiation in thawed cells.  Time 

points were varied slightly between these three sets of experiments to match apparent 

degrees of differentiation in the cultures.   

APC and MSC displayed different patterns of alkaline phosphatase activity over 

time.  In both fresh and thawed cells, APC activity was greater at earlier time points 

while MSC activity was greater by day 14 in thawed cells (Fig.3.)  In fresh cells, APC 

activity was greater than MSC at day 16 (Fig 3A.)  However, MSC activity increased 

over time in the same step wise fashion seen in thawed cells.   

Dexamethasone affected APC and MSC alkaline phosphatase activity differently 

(Fig 3C.)  Dex decreased APC activity at day 7, but had no significant effect at days 10 

or 14.  In MSC, however, dex consistently led to decreased alkaline phosphatase 

activity. Significant dex*celltype interactions at days 7 and 14 further suggested a 

differential response to dex at those time points.   

APC and MSC in osteogenic culture underwent different patterns of 

mineralization as well.  In thawed cells cultured with dex, by days 21/22 MSC had 

greater cell number-corrected mineralization, while no significant difference was seen 

by days 28/30 (Fig.4E,F.)  On the other hand, MSC maintained greater mineralization at 

day 30 in fresh cells (Fig.4D.)  APC consistently had fewer cells in fresh and thawed 

cultures compared to MSC (Fig.4A, B, C.) 

Dexamethasone influenced APC and MSC mineralization in different ways 

(Fig.4F.)  At day 21, dex reduced mineralization in both APC and MSC.  By day 28, dex 

led to increased mineralization in APC (APC+Dex: 0.232±0.08, APC-Dex: 0.142±0.06, 

p=0.02) but did not significantly alter alizarin red content in MSC at this time point 

(p=0.23) (Fig.4F.)  The dex*interaction was also significant for AR at day 28, indicating 

dex treatment had differential effects on APC and MSC mineralization at this time point.   
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Dexamethasone significantly lowered cell number in MSC at day 28, but the 

absolute difference was small (Fig.4C.)  Dex also lowered APC cell number at day 28, 

but the difference was a statistical trend (p=0.09.) 

In culture, APC and MSC osteogenesis differ in terms of timing and mineralized 

matrix production.  APC alkaline phosphatase activity responded more rapidly than that 

of MSC, yet mineralization per cell was initially more robust in the latter cell type.  APC 

and MSC also differed in their responses to dexamethasone.  Dex reduced MSC APA at 

all time points observed, but only delayed peak APC APA.  Dex consistently reduced 

mineralization in MSC in osteogenic cultures, but led to a temporary reduction in APC 

mineralization before increasing it above the values seen when dex was denied. 

 

Chondrogenic differentiation 

We used a micromass model to induce chondrogenic differentiation in thawed 

APC and MSC.  As the high cell density of micromasses initially resembles conditions in 

the antler’s reserve mesenchyme, we also explored whether the robust apoptosis seen 

in the reserve mesenchyme could be recapitulated in culture and if there is a 

relationship between apoptosis and cellular differentiation state. In a separate 

experiment, chondrogenic differentiation and apoptosis was investigated in thawed APC 

and MSC with and without dexamethasone.   

Putative hypertrophic chondrocytes and proteoglycans, evidence of a 

chondrogenic phenotype, were found in both APC and MSC micromasses (Fig 5.)  

However, matrix composition and the effect of dexamethasone depended on cell type.   

Safranin-O staining showed a widespread distribution in MSC micromasses, but 

staining was faint in APC micromasses (data not shown).  Alcian blue staining verified 

the presence of proteoglycans in the latter (Fig.5, middle panel).  Dex qualitatively 

increased the intensity and distribution of alcian blue and safranin-O (data not shown) in 

MSC micromasses, while having the opposite effect in APC micromasses.  Van 

Gieson’s staining confirmed collagen production throughout APC and MSC 

micromasses and was not affected by dexamethasone.    
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Alizarin red-S staining was performed to investigate matrix mineralization during 

chondrocytic differentiation (Fig. 5, right panels.)  Again, dex affected APC and MSC in 

seemingly opposite ways.  MSC alizarin red staining was qualitatively more robust with 

dex, while the reverse was apparent in APC.  

Cellularity of APC and MSC micromasses also differed.  In thawed cell 

micromasses, APC displayed significantly more cells per matrix area than MSC (Fig. 

6A,B).  Dex did not affect the number of APC cells per area (p=0.58) but increased 

cellularity in MSC (MSC+Dex 11.4±0.39, vs 7.1±0.35 in untreated MSC, p<0.001.)   

Compared to MSC, APC micromasses were more apoptotic.  In TUNEL-stained 

images, APC micromasses had greater mean grayscale intensities and proportion of 

nonzero grayscale pixels compared to MSC (Fig. 6C-F).  In APC micromasses, dex 

increased both measures of apoptosis, while reducing or having no effect on MSC. 

MSC micromass cultured with dex had increased cellularity, lower apoptosis and 

greater matrix production than without, indicating that dex helped drive proliferation and 

chondrogenic differentiation in these cells.  For APC micromasses, however, dex 

reduced matrix production and increased apoptosis while having little effect on 

cellularity.  The above suggests that, while MSC chondrogenesis is enhanced by 

dexamethasone, APC undergo more robust chondrogenic differentiation when cultured 

in the absence of this glucocorticoid.   
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Discussion 
 

Both APC and MSC demonstrated clonogenicity, or the ability to generate 

colonies in a density-independent manner in culture (Bianco 2008.)  The lack of 

difference in mean APC and MSC colony numbers suggests that overall self-renewal 

capacity is conserved across different connective tissue progenitors in a regionally 

restricted whitetail population.  On the other hand, the greater APC standard deviation 

indicates a greater variation in self-renewal of antlerogenic cells from deer to deer 

compared to marrow-derived MSC.   

It should be stated that APC and MSC colony formation cannot be attributed to 

the presence of cells strictly defined as CFU-Fs (colony forming units-fibroblastic) 

(Bianco 2008.)  This is due to the fact that we used passage 1, rather than fresh primary 

cells, for the colony formation assay.  Still, the goal of this assay was to confirm the 

existence of colony forming cells derived from the antler and marrow in culture, not 

estimate their numbers in vivo.  Our results make a compelling argument for the 

existence of a population of cells capable of self-renewal in the antler reserve 

mesenchyme and marrow compartments, as it seems unlikely that an in vitro culture 

could induce colony formation in cells not otherwise predisposed to it.   

White-tailed deer antlers regrow rapidly, about 0.25 inches (6.35mm) per day 

(Ozuga 1996).   In vitro, however, antler progenitor cells from these deer expanded less 

rapidly than MSC overall.  Interestingly, after 5 days of decline in a monolayer culture 

APC numbers began to recover.  

Cells were cultured from late summer antlers when growth has slowed.  

However, proliferation of red deer (Cervus elaphus) APC in vitro is independent of the 

stage of antler regrowth during which the cells were harvested (Kuzmova 2011).  It is 

conceivable that the situation is similar in the white-tailed deer as well.   

Slower APC proliferation in a monolayer culture may instead be due to one or 

more disadvantageous components of the culture system—initial plating density, 

oxygen tension, the lack of APC-specific mitogenic factors in the medium, etc.   
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Though it is risky to over interpret a negative result, another potential explanation 

for the relatively poor proliferation for APC is an increased stemness compared to MSC.  

One key feature of adult stem cells is a resilient quiescence, especially in vitro or ex 

vivo (Winer 2009.)  In case of hematopoietic stem cells, the only stem cells that have 

been definitively characterized, the promotion of proliferation can lead to stem cell 

“exhaustion,” or a decline in function (Orford 2008.)   

Interestingly, APC in a micromass culture consistently exhibited a greater cell 

number per area compared to MSC in the same conditions, both with and without 

dexamethasone.  Although greater cellularity does not necessarily reflect the cell 

proliferation rate, these data raise the possibility that APC mitogenesis may be more 

sensitive to milieu compared to MSC (i.e. monolayer versus three dimensional 

micromass.)  A time course study in which APC and MSC micromasses are cultured in 

complete, rather than chondrogenic, medium would be necessary to confirm whether 

the greater cellularity of APC micromasses is due to more rapid proliferation or, more 

likely, an altered balance between proliferation and differentiation. 

An alternative explanation for the seeming paradox of lower APC proliferation 

relative to MSC could be that rapid antler growth is instead due to robust matrix 

production per cell rather than rapid mitogenesis.  Unfortunately, the results from our 

APC differentiation assays do not support such a hypothesis.  We found that, at best, 

APC were able to match MSC matrix production per cell. 

Interestingly, no qualitative relationship was apparent between the colony 

forming ability and relative proliferative capacity of APC and the size of the antlers of the 

individual animal from which they were cultured.  In fact, though buck R2 exhibited the 

largest rack out of the three animals used for this study, the cells culture from its antlers 

were the slowest to proliferate.  Without further investigation it remains to be seen if this 

observation reflects an actual in vivo discrepancy or is the product of the individual 

animal’s maturity, specimen collection procedure and/or culture protocols. 

In terms of cell potency, our results suggest that, compared to MSC, antler tip 

APC are more lineage restricted osteo/chondrogenic progenitors, with little adipogenic 

capacity.  This result may reflect that adipose tissue is not a primary antler constituent 
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while it is present in the phalangeal marrow space.  In the case of true stem cells, for 

example, differentiation is generally limited to the lineages present in the tissue of origin 

(Orford 2008.)  However, as heterogeneous cell cultures were used here, further 

investigation will be needed to determine whether differences in APC and MSC 

adipogenesis were exaggerated by the presence of committed adipocytic precursors in 

the latter culture.  

These findings contrast with those of Rolf, who reported positive oil red-O 

staining in fallow deer (Dama dama) STRO-1+ APC exposed to a commercial 

adipogenic medium (Rolf 2008).  Possible sources of discrepancy between his work and 

this study include the use of cells from different deer species and of commercial 

differentiating media as well as differences in subjective standards of what constitutes a 

“lipid droplet” rather than, say, intracellular vesicles. 

Under osteogenic conditions, APC alkaline phosphatase activity was higher than 

that of MSC for the first ten days in culture.  This suggests more rapid lineage 

commitment in APC in response to osteogenic factors, perhaps due to a greater degree 

of intrinsic osteo/chondrogenic commitment compared to MSC.  Despite higher initial 

alkaline phosphatase activity, APC mineralization was delayed until later time points or 

reduced relative to MSC, perhaps reminiscent of the delay in complete mineralization 

that occurs in the antler after full regrowth is achieved. 

Dex consistently inhibited mineralization in MSC cultures, but its effects on APC 

mineralization were time dependent.  This suggests that dex affects APC-derived 

osteoblasts in a manner dependent on differentiation stage, consistent with studies of 

glucocorticoid action on osteoblasts (Delany 1994.). In contrast, dex consistently 

reduced markers of early and late osteoblast differentiation in cervid MSC cultures. 

In addition to influencing matrix production in APC and MSC micromass, dex 

treatment led to differences in cellularity and apoptosis.  For APC, dex fostered more 

robust apoptosis but had no significant impact on cellularity.  In MSC micromass, dex 

led to greater matrix production, increased cellularity and reduced apoptosis over 

untreated micromasses.  This suggests that, in MSC undergoing chondrogenesis, dex 
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enhances both proliferation and differentiation, though these effects are likely 

dependent on the stage of cell lineage progression.  

Antler regrowth is associated with hormone levels changing throughout the 

mating cycle.  However, it has been difficult to determine which factors directly regulate 

APC proliferation and differentiation.  Factors such as testosterone, whose fluctuations 

are closely associated with the antler cycle (Suttie 1995), failed to promote mitogenesis 

in antler cell cultures (Li 1999.)  On the other hand, it is unclear whether IGF-1, which 

stimulates antler cell proliferation in vitro (Li 1999, 2001b) is the key stimulatory factor in 

antler growth (Kuzmova 2011. 

Dexamethasone can promote or suppress bone cell proliferation and 

differentiation directly and through interactions with steroids such as IGF-1 (Delany 

1994, Delany 2001, Tuan 2002, Hoch 2012.)   Dex can also reduce antler cell 

proliferation in vitro (Li 2001b.)   In APC cultures, we found that dex reduced markers of 

chondrogenic differentiation while promoting apoptosis.  High levels of apoptosis have 

been reported in the reserve mesenchyme, adjacent to regions of active 

chondrogenesis (Colitti 1005.)  This suggests that factors such as glucocorticoids might 

contribute to the shifting balance between progenitor proliferation and differentiation in 

the antler as it undergoes regeneration.  Additionally, an inverse relationship between 

apoptosis and chondrogenesis raises the possibility that apoptosis may help maintain a 

population of non-differentiating APC within the reserve mesenchyme.  Compensatory 

proliferation, in which caspases released from apoptotic bodies act as mitogenic factors, 

is one means by which apoptosis can contribute to tissue homeostasis (Fan 2008.)     

The observed pattern of time, factor, and milieu dependence of APC proliferation 

and differentiation may reflect a system of regulation required to confine antler growth to 

a specific anatomical and temporal range. Antler regrowth does not proceed 

“automatically” in response to antler casting, it is initiated by seasonally determined 

signaling (Kierdorf 2007.)  Complete mineralization of the antler is delayed until 

circulating androgens peak during the fall rutting season, after it is fully regrown (Price 

2004.) Moreover, antler regrowth occurs concurrently with bone resorption elsewhere in 
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body, indicating a differential responsiveness to circulating factors in the antler 

compared to other bone tissue (Landete-Castillejos 2007.) 

We have demonstrated that APC and cervid-marrow-derived MSC differ in terms 

of proliferative capacity, differentiation, apoptotic potential and hormone 

responsiveness.  Contrary to expectations, APC did not exhibit greater in vitro 

proliferative capacity compared to MSC.  Mean numbers of visible colonies generated 

by APC and MSC were similar, but APC demonstrated more inter-animal variability. 

 APC and MSC exhibited different patterns of differentiation.  Unlike MSC, no 

evidence of adipogenesis was seen in APC.  Under osteogenic conditions, APC 

displayed greater alkaline phosphatase activity at earlier time points yet generally less 

mineralization.  While dexamethasone reduced mineralization in MSC, this 

glucocorticoid had time dependent effects on APC.  In chondrogenic micromass culture, 

APC were more cellular than MSC, yet were also more apoptotic.  Dexamethasone had 

opposing effects on APC and MSC chondrogenesis, increasing markers of 

differentiation in latter cells with reducing them in the former.  Dexamethasone also 

increased apoptosis in APC but not MSC. 

 As knowledge of the APC phenotype improves, a compelling avenue of future 

research would be the elucidation of the mechanisms behind the properties and 

behavior of these cells.  A thorough understanding of the antler’s unique process of 

regeneration would be of great value in guiding the development of novel skeletal 

regenerative therapies.   
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Chapter II figures 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

FIG. 2.1: Comparison of APC and MSC cell number and colony formation. (A) 
Relative cell number over time as measured by optical density.  P 0.05 APC vs MSC 
at each time point.  8-16 wells per group per time point, n=3 bucks. (B) Colony 
formation at day 14 (n=3, p=0.89) 
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FIG. 2.2: Adipogenic differentiation of thawed cells.  MSC exhibit more Oil Red-O 
positive lipid droplets than APC from all three bucks.   
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FIG. 2.3: Alkaline phosphatase activity in fresh and thawed cells.  (A) Fresh cell 
alkaline phosphatase activity (n=2 bucks) (B) Thawed cell activity (n=3) (C) Alkaline 
phosphatase activity in thawed cells cultured with or without dexamethasone (n=2).  * 
or line: p 0.05, #:p 0.1. 
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FIG. 2.4: Relative cell number and mineralization during osteogenic differentiation 
(A) Fresh cell number (crystal violet optical density, n=2 bucks) (B) Thawed cell 
numbers (n=3) (C) Thawed cell numbers with and without dexamethasone (n=2) (D) 
Fresh cell mineral, normalized by cell number (24-well plate.) (E) Thawed cell 
mineral (96-well plate.) (F) Thawed cell mineral, with and without dexamethasone 
(96-well plate).  * or line: p 0.05.  Line+ #:p<0.1) 
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FIG. 2.5: Chondrogenic micromass histology (buck 1 cells, 200X mag.)  Arrow heads 
indicate examples of putative hypertrophic chondrocytes.   
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FIG. 2.6: Chondrogenic micromass cellularity and apoptosis. (A,B) Cells per area for 
thawed cells (n=3 bucks) and thawed cells with or without dexamethasone (n=2) (C,D) 
TUNEL grayscale intensity normalized by cells per area for thawed cell and thawed 
cells with or without dexamethasone.  Different scales due to lower permeabilization 
of tissue in latter study.  (E,F) Another measured of apoptosis: percent of pixels with 
nonzero grayscale, thawed cell and thawed cells with or without dexamethasone (G,H) 
Images of TUNEL stain, buck 1 APC and MSC, 200X mag. 6 sections per mass. * or 
line: p 0.05. 
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CHAPTER III:  
AIM 2 

 

Introduction 
 

At the beginning of the annual regrowth cycle, a seasonally dormant population 

of cells in the pedicle periosteum is activated.  The direct mechanism for this seasonal 

activation is unknown, but it is ultimately linked to changes in day length that are 

mediated by the animal’s pineal gland (Snyder 1983).  Interestingly, initiation of 

regrowth is not a direct result of antler casting—there can be a substantial delay 

between casting and regrowth and bucks whose antlers fail to cast can occasionally 

grow a second set of antler (Kierdorf 2007). 

Soon after the onset of regeneration, a second population of progenitor cells is 

generated in a growth center known as the reserve mesenchyme at the tip of each 

antler (Price 2005).  This contrasts to the process of appendage regeneration in 

amphibians, in which an injury induces the de- or –transdifferentiation of “committed” 

cells pursuant to the formation of a blastema (Kierdorf 2007).    

 Based on their location in a mesenchymal niche, it is reasonable to assume that 

antlerogenic progenitor cells (APC) have characteristics in common with mesenchymal 

stromal cells.  We would therefore predict that APC have the following characteristics 

(Dominici 2006, Bianco 2008): 

 

1. Adherence on cell culture plastic 

2. Self-renewal as defined by colony formation 

3. Capacity for differentiating into at least two mesenchymal lineages 
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In Aim 1 (Chapter II) we demonstrated that APC and MSC both share a similar 

capacity for self-renewal, as estimated by colony formation.  On the other hand, we saw 

large differences in APC and MSC differentiation down adipogenic, osteogenic and 

chondrogenic lineages in vitro.  While we provided evidence that cervid marrow-derived 

MSC were amenable to induction down all three lineages, APC were reluctant to 

produce the Oil Red-O lipid droplets that would have indicated adipogenesis, at least in 

culture.  This suggests that APC are more lineage committed osteo/chondropregenitors. 

We also saw large differences in osteogenic and chondrogenic capacity between 

the two cell types.  For example, compared to MSC, APC in a monolayer culture had a 

lower degree of cell number-corrected mineralization at early time points and were only 

able to match MSC mineralization at Day 28 when cultured in the presence of 

dexamethasone.  Markers of chondrogenesis were also qualitatively lower in APC 

micromasses. 

These results may suggest that the low mineralization capacity of the antler is 

manifested at a cellular level and can be recapitulated in vitro.  After all antlers have a 

relatively poor degree of mineralization compared to other long bones, which 

contributes to a tough, damage-resistant matrix (Currey 2004).   It is conceivable that, 

whether due to a need for material toughness or as a concession to yearly growth and 

casting, selective pressure has not guided antler osteoblasts toward a high per-cell 

matrix production.  One could also speculate that APC have greater “stemness” than 

MSC and, as a result, are more prone to quiescence in culture (Winer 2009.) 

An alternative explanation to the apparent disparity in the degree of osteo- and 

chondrogenesis between APC and MSC implicates the cell culturing milieu.  The 

protocols used for inducing differentiation had been adapted from those developed for 

human marrow derived MSC (Jaiswal 1997, Mackay 1998, Janderova 2003.)  

Consequently, these methods may have favored cervid cells from the marrow, rather 

than antler, compartment. 

There is also the larger issue—the degree to which an in vitro culture 

environment is even representative of conditions that cells would encounter in their 

native niches.  Bianco cites reports of marrow derived cells being differentiated into 
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muscle or endothelial cells in vitro.  He suggests that without in vivo verification of 

differentiation it is difficult to conclude whether these results reflect the actual 

differentiation capacity of these cells or is an artificial result of the non-physiologic 

conditions in the culture dish (Bianco 2008.)   In other words, behaviors that can be 

coaxed out of a population of cells in vitro may not reflect the phenotype of these cells in 

vivo. 

Drawing from the well-defined characterization of hematopoietic stem cells, 

researchers such as Bianco advocate for the demonstration of mesenchymal stromal 

cell differentiation in vivo, as opposed to in vitro: “. . . the widespread use of ‘in vitro’ 

assays in lieu of the defining in vivo asays is one of the most important sources of 

confusion, or at least controversy and disagreement, as to the nature, identity, and 

potency of ‘MSCs’” (Bianco 2010.)   

A convenient means for testing osteogenic differentiation in vivo is through the 

use of an ectopic ossicle formation model, in which culture- expanded cells are seeded 

onto scaffolds and implanted in an immunocompromised animal.  Heterotopic 

ossification using diffusion chambers has been used to demonstrate marrow stromal 

cell differentiation for decades (Ashton 1980.)  However, the model pioneered by 

Krebsbach and refined by McCauley seeds cells onto a porous scaffold (Krebsbach 

1997, Pettway 2005, Pettway 2008.)  This allows gives rise to ossicles derived from 

cells of both donor (undergoing differentiation) and host (usually hematopoietic) origin. 

 Here, we will test the following hypothesis: 

 

APC in an in vivo ectopic ossicle formation model will generate more mineralized 

matrix compared to animal-matched marrow MSC. 
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Materials and methods 
 

Positive control murine cell culture for use with fresh, late passage deer cells 

In the first set of ossicle studies, mouse cells were cultured in a manner assumed 

to be analogous with that of the deer cells. 

Thirteen to 14 days before implantation, 4 week-old, male C57BL/6 mice 

(Charles River Breeding Labs, Wilmington, MA) were anesthetized using isoflurane 

inhalation and killed via cervical dislocation.  For each round of implantations, 

approximately 14 million mouse MSC were required.  Between 6 and 8 BL/6 mice were 

sacrificed for each round.   

 Femora, tibiae, and humeri were dissected and placed in a 50ml conical tube 

containing ice cold PBS plus 200units/ml penicillin, 200µg/ml streptomycin and 0.5µg/ml 

amphotericin B (Gibco, Life Technologies, Grand Island, NY) until all needed bones 

from two mice were collected.  Bones were placed in a 100cm dish in a cell culture hood 

and the distal and proximal ends removed with sterile scissors.  Marrow was flushed 

into another dish using a syringe fitted with a 26-gauge needle and filled with the 

following medium:  Dulbecco Modified Eagle Medium containing 110mg/L sodium 

pyruvate and 4mM L-glutamine (Gibco), 10% characterized FBS (Gibco), 100units/ml 

penicillin/100µg/ml streptomyocin/0.25 µg/ml amphotericin B (Gibco.)   

The flushed marrow was broken up with a 3ml syringe and 21-gauge needle.  

The resulting cell suspension was seeded onto a single T-75 flask and 15ml of complete 

medium added.  Four flasks of cells were generated from each two BL/6 harvests.  Cells 

were cultured for 7 days, after which 50% of the medium was changed.  After 24 hours, 

medium was aspirated to remove non adherent cells, the flasks washed twice in sterile 

PBS, and 15ml complete medium added.  The BL/6 cultures were not passaged before 

seeding onto the implants. 

 

Positive control murine cell culture: thawed cells 

 For Experiment 2, mouse cell culture strictly adhered to the McCauley lab 

protocol, including the preconditioning factor dexamethasone in the medium. 
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Fifteen to 16 days before implantation, 4 week-old, male C57BL/6 mice (Charles 

River Breeding Labs, Wilmington, MA) were anesthetized using isoflurane inhalation 

and killed via cervical dislocation.  Marrow was flushed into another dish using a syringe 

fitted with a 26-gauge needle and filled with the following medium: α-MEM, 20% FBS, 

10-8 M dexamethasone, 2mM L-glutamine and 100units/ml penicillin/100µg/ml 

streptomycin.  This mouse cell growth medium (MCGM) was used only for BL/6 cell 

culture. 

The flushed marrow was broken up first with a 5ml serological pipette then with a 

3ml syringe and 18-gauge needle.  The resulting cell suspension (~7ml gathered from 2 

mice) was seeded onto a single T-75 flask and 13ml of MCGM added, for a total of 

20ml.  Cells were cultured for 7 days, after which 50% of the medium was changed.  

Two to three passages were performed before implantation to generate the required 

numbers. 

 

Host animal care 

 Scaffolds were implanted in four week-old, male, immunodeficient mice (Athymic 

Nude, Charles River.) Mice were received at three weeks of age and acclimated for one 

week in the vivarium before surgery.  Mice were group housed except when recovering 

from surgery and in the case of fighting between animals.  Water and food were 

provided ad libitum.  Animal care and use conformed to institutional regulations. 

 

Deer cell culture: fresh, late passage cells 

 Fresh APC and phalangeal marrow-derived cervid MSC from three bucks were 

used for Experiment 1.  These cells had been cultured continuously since harvest (see 

Chapter II) in order to generate the numbers needed for several experiments.  By the 

day of surgery, cells had been passed multiple times: passage 3 or 7 APC and passage 

4, 7 or 8 MSC were used. 
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Deer cell freezing, thawing and culturing: thawed cells 

As cellular antler tissue was only available on a seasonable basis, Experiment 2 

were performed using previously frozen passage 1 cells.   

To freeze, cells were washed twice in Ca2+ and Mg2+ free phosphate buffered 

saline and detached by incubating in 0.25% Trypsin-EDTA (Gibco, Life Technologies, 

Grand Island, NY) for 5 minutes at 37C.  The trypsin was inactivated with twice the 

volume of complete medium: Dulbecco Modified Eagle Medium containing 110mg/L 

sodium pyruvate and 0.2mM L-glutamine, 10% characterized FBS, 100units/ml 

penicillin/100µg/ml streptomycin and supplemented with additional L-glutamine for a 

total of 0.4mM (Gibco).   

Cells were pelleted by centrifuging at 500g for 6 min, resuspended at 500000 

cells/ml in freezing medium (90% FBS, 10% DMSO) and aliquoted into Cryule cell 

freezing vials (Wheaton Science Products, Millville, NJ.)  After 24 hours at -80C in a Mr 

Frosty cell freezing container filled with 250ml isopropyl alcohol to limit the rate of 

freezing to -1 degree C/min (Nalge Nunc International, Rochester, NY), cells were 

transferred to liquid nitrogen for long term storage.   

Frozen cells were revived by placing in a 37C water bath.  Immediately upon 

thawing, cell vials received a brief spin in a centrifuge to shift suspension away from the 

cap, after which 1ml complete medium was added to reduce the concentration of the 

DMSO in the now thawed freezing medium.  Cells were then aspirated transferred to a 

plastic T-25 tissue culture flask (Falcon, Becton Dickson Labware, Franklin Lakes, NJ.)  

Two vials of 500000 cells each were used for each T-25.  Not including the complete 

medium added to each vial to thin out the DMSO, 4 additional milliliters of medium were 

added to the flask to bring the total volume to 7ml (2x1ml cells suspended in freezing 

medium, 2x1ml complete medium added to the vials, 4ml complete medium added after 

cells transferred to flask.)  After 24hrs culture at 37C to foster cell adhesion, medium 

was aspirated and replaced with 5ml complete medium.  This purpose of this step was 

to remove all DMSO from the medium as well as to flush non-adherent (mostly 

nonviable) cells from the culture.  
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Upon 90-95% confluence, cells were split 1:3 by trypsinization (as above), 

resuspended in 12ml complete medium, and plated in a T-75 flask (Becton Dickinson.)  

Cells were split again into 3 T-75 flasks prior to implantation. 

 

Implant preparation: fresh, late passage cells 

 The McCauley lab protocol recommends ~5x5x7mm cubes of Gelfoam seeded 

with 2-3x106 mouse cells.  Implants were prepared from 7mm thick porcine Type I 

collagen hemostatic foam (Gelfoam, Pharmacia & Upjohn, Kalamzoo, MI.) In order to 

ensure consistent implant size, a pre-cleaned leather punch was used to punch 5mm 

diameter cylindrical plugs from the Gelfoam.  The smaller volume of these round 

implants compared to the approximate volume of those described in the McCauley 

protocol (137mm3 versus ~175mm3) was assumed to lead to a sufficient cell seeding 

density with the deer cells, which could not be guaranteed to provide the same cell 

yields as mouse cells. 

 

Implant preparation: thawed cells 

 The McCauley lab protocol recommends ~5x5x7mm cubes of Gelfoam seeded 

with 2-3x106 mouse cells (~11000-17000 cells/mm3.)   Based on the experience of 

Experiment 1, we decided to use smaller implants in seeded with cells in the same 

range of densities given in the protocol. 

 A pre-cleaned leather punch was used to punch 3.2mm diameter plugs from the 

Gelfoam (or 56.3mm3 volume.)  We intended to seed these implants with 1x106 cells 

each, giving a cell density of ~17800cells/mm3. 

One unexpected issue was that the punch transferred small metal particles into 

the implants, which may have been responsible for image artifacts seen in the fresh cell 

ossicle study (see Results.)  Consequently, all implants were tested for magnetic 

attraction using a powerful horseshoe magnet.  Those that exhibited any attraction to 

the magnet were discarded.  The remaining implants were x-rayed for 7 sec at 20kV to 

verify the absence of radiodense contaminants (Faxitron, Bioptics LLC, Tucson, AZ.) 
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Cell seeding 

Prior to surgery, Gelfoam implants were sterilized using ethylene oxide gas.  The 

night before surgery, the implants were placed in a 10cm dish filled with complete 

medium and transferred to a 37C cell culture incubator.  This allowed medium to 

completely soak the foam before cells were seeded.  

 Immediately prior to use, implants were squeezed with a sterile instrument to 

displace some of the medium in order for the cell suspensions (see below) to be 

absorbed.  “Blank” (no cell) implants were then placed in 50ml conical tubes and set 

aside. 

Cells were trypsinized as described above.  Aliquots of 1x106 cells were 

resuspended in 50ml conical tubes and centrifuged at 500g for 6 minutes.  Medium was 

aspirated and the cells resuspended in 25µl complete medium.  This volume was 

approximately half that of the implant and assumed to be sufficiently small to be 

completely taken up by the partially dried sponges. 

A sponge was taken dropped into each tube and a sterile scalpel handle used to 

force the cell suspension into each sponge.  A cap was then placed on each tube, 

tightened and then loosened one quarter turn to allow gas exchange.  Tubes were 

placed in a 37C incubator until ready to be taken to the operating room, where they 

were kept in a 37C water bath. 

 

Implantation surgery 

 During surgery, mice were anesthetized using isoflurane inhalation and kept on a 

heating pad.  Animals were placed under a sterile drape during each procedure.  To 

implant each sponge, an incision was made on the dorsal aspect of the mouse and a 

blunt instrument used to create a subcutaneous pocket.  A single sponge was placed in 

each pocket and the incision closed using a surgical adhesive (GLUture, Abbott 

Laboratories, Abbott Park, IL.)  After surgery, mice were singly housed under a heat 

lamp until the effects of anesthetic dissipated.  Animal health was monitored daily. 
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 Four surgical locations were used for each animal and implant placed 

randomized. 

 

Monitoring of ossicle growth and animal sacrifice 

 Four weeks following surgery, “lumps” were visible on the backs of place at sites 

corresponding to implant placement.  One to two mice from each batch of surgeries 

were imaged under anesthesia in a pre-clinical micro-computed tomography scanner 

(eXplore Locus, GE Medical Systems, Milwaukee, WI.)  Following image reconstruction 

on 27µm voxels, a qualitative assessment of ossicle growth progress was made.   

 Implants were ultimately kept in the mice for 6 weeks.  At this point, the animals 

were sacrificed as described above.  The implants were then dissected out and placed 

in 10% neutral buffered formalin to enable fixation.  After 48 hours in NBF, implants 

were transferred to 70% ethanol for storage. 

 

Micro-computed tomography 

 Implants were scanned using microCT and reconstructed on 18um voxels.  Many 

of the implants had little apparent mineralization.  The soft tissue and non-resorbed 

Gelfoam had similar degrees of x-ray attenuation.  Therefore, implants were scanned in 

air rather than water to provide sufficient contrast for visualization. 

 Analysis was performed using GE Microview software on three dimensional 

regions of interest (ROI) interpolated from two dimensional splines.  After generating 

image histograms to estimate mineralized tissue grayscales, a global threshold was 

applied to each ROI and mineral content and density calculated.   

 

Histology 

Ossicles were demineralized in 10% ethylenediamine tetraacetic acid in PBS for 

48 hours.  Demineralization progress was monitored via x-ray (Faxitron.)  Ossicles were 

washed twice in dH20 and kept in 70% ethanol prior to processing.  To process, 

demineralization ossicles were dehydrated and paraffin-infiltrated in an automated 

tissue processor for 7 hours (Shandon Hypercenter XP, Thermo Fisher.) 
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Next, ossicles were paraffin-embedded using a Leica EG1160 paraffin 

embedding center (Leica Microsystems Inc, Buffalo Grove, IL, USA.) Seven µm-thick 

sections were cut on a Leica Microtome (Leica Microsystems) and mounted on glass 

slides.   

Matrix content was visualized using Safranin-O/Fast Green staining with 

Weigert’s hematoxylin as a nuclear counter stain.  In addition Alcian Blue-Periodic Acid 

Schiffs stain was carried out using a commercial kit (Poly Scientific R&D Corp, Bay 

Shore, NY.)   

Putative osteoclasts were identified using a tartrate-resistant acid phosphatase 

(TRAP) detection kit and a protocol adapted from one developed by the McCauley 

laboratory (Sigma.)   Slides were dewaxed in xylene and rehydrated to 50% ethanol and 

then ultrapure water.  Next, slides were incubated in 0.2M Tris, pH 9.0 for 1 hour at 

37C.  TRAP staining was performed for 1 hour at 37C.  Gill’s No. 3 Hematoxylin was 

used as a nuclear counterstain.  Slides were counterstain for 2 to 3 seconds and 

coverslipped using an anti-fading aqueous mounting reagent (ProLong Gold, Life 

Technologies, Carlsbad, CA.) 

 Images were captured on a Zeiss Axiovert 200M microscope (Carl Zeiss 

Microscopy, LLC, Thornwood, NY.) 

 

Statistics 

 As each experiment involved a small sample size (3 biological replicates), 

multiple experimental replicates were performed for each assay.  Generalized linear 

mixed models, which take into account nested data structures and repeated measures, 

were used for comparisons (SPSS, IBM Corp, Armonk, NY.) Sequential Bonferroni post 

hoc tests were used, with a p-value ≤0.05 considered significant. 

Only ossicles with detectable bone were considered for analysis.  As ossicle 

microCT involved APC, MSC and blanks, “celltype” was used as a fixed effect; no 

random effect was considered.  Statistical comparisons were limited to implants with 

detectable mineralized tissue and values more than two standard deviations from the 
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mean were omitted.  Figures show least squared means (LSM) and standard 

deviations. 

Results: fresh, late passage cells 
 

Probabilities of mineral formation: fresh, late passage cells 

 The probability of ossicle formation varied depending on the group (Fig. 1.)  The 

likelihood of bone formation in C57BL/6, blank (no cell), and APC groups were similar—

approximately 50%.  MSC-seeded implants, on the other, produced detectable mineral 

about 25% of the time.  Because these data were based on the aggregate probability of 

each group rather than the probability of each implant generating mineral, statistics 

cannot be employed to verify such comparisons. 

 

Ossicle mineralization: fresh, late passage cells 

 Implants seeded with C57BL/6 marrow MSC had by far the greatest mineral 

content, though large variation was observed in specimens with detectable 

mineralization (mean 6.45 ± 6.15 µg.)   Much less mineral was formed in the other 

groups and, interestingly, blank (no cell) controls actually formed significantly more 

mineral than implants seeded with either late passage APC or cervid MSC (Fig. 2A.).  

No difference was seen in the mineral densities of blank, APC or MSC implants (Fig. 

2B.) 

 

Ossicle histology: fresh, late passage cells 

 In implants seeded by C57BL/6 cells, small, discontinuous regions of apparent 

bone stained intensely for Fast Green (Fig. 3A, B.) Little Safranin-O staining occurred in 

these regions.  Though bone was detected in BL/6-seeded scaffolds, no TRAP-positive 

cells were seen (Fig. 3C.) 

 Staining revealed deer cell-seeded scaffolds and blanks to be composed of 

regions of new tissue and non-resorbed Gelfoam.  Safranin-O/Fast Green stain did not 

uncover consistent differences in scaffold composition between groups (Fig. 4.)  In 
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general, however, APC and MSC-seeded implants were composed of a qualitatively 

greater proportion of Fast Green-positive tissue compared to the blanks (Fig. 4.) 

 Despite the lesser degree of mineralization detected in APC and MSC-seeded 

implants compared to the blanks, the latter did not display any apparent TRAP staining 

(Fig. 5.)  In contrast, TRAP-positive cells were seen in ossicles from buck 1 APC and 

MSC-seeded ossicles from bucks 1 and 3.  However, the number of TRAP-positive cells 

was still too small to quantify meaningfully. 

 

Results: thawed deer cells 
 

Probabilities of mineral formation: thawed cells 

 All implants seeded with C57BL/6 cells formed detectable mineral (Figs. 6, 7.)  

Similar probabilities of mineral formation were exhibited by implants seeded with APC, 

MSC or no cells at all (approximately 0.7).  Of these three groups, APC had the highest 

probability (0.76.)   

  

Ossicle mineralization: thawed cells 

 Implants seeded with BL/6 cells displayed robust mineral formation (mean 167 ± 

155 µg.)  In addition, unlike implants seeded with fresh, late passage cells, those that 

received thawed APC and MSC had greater mineral compared to the blanks (Fig. 8.)  

There was no difference detected in the mineral content between APC and MSC. 

 Mineral densities were of a similar magnitude between all groups, with MSC 

showing significantly greater TMD than the blanks (though there was not a substantial 

absolute difference) (Fig. 8.) 

 

Ossicle histology: thawed cells 

 Safranin-O/Fast Green staining revealed a well formed cortical shell surrounding 

a defined marrow space in ossicles seeded with BL/6 cells (Fig. 9A-C.)  Within this 

marrow numerous erthyrocytes, probably of host origin, could be seen. Numerous 

putative osteocytes were buried in the bony cortex (Fig. 9C.)  The majority of staining 
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was due to Fast Green; little, if any, of the tissue has positive Safranin-O staining.  The 

cortex stained intensely for Periodic Acid-Schiff, with alcian blue apparent in discrete 

regions surrounding the “lacunae” of buried cells (Fig.9D.)  Numerous TRAP-positive 

bodies (putatitve osteoclasts) were found in the bone as well (Fig.9E.) 

 In blank and APC and MSC-seeded ossicles, Safranin-O/Fast Green stain did 

not reveal a continuous cortical shell or marrow space (Fig.10.)  Instead, these 

specimens were defined by regions of new tissue and unresorbed Gelfoam.  

Qualitatively, APC and MSC-seeded ossicles exhibited a higher ratio of the former to 

the latter.  However, no attempt was made to calculate relative areas of new tissue and 

Gelfoam.  As with BL6-seeded implants, APC and MSC-seeded implants and blanks 

had little Safranin-O staining.   

 As microCT analysis revealed limited but nonetheless extant mineral in the 

ossicles, further histological analysis was performed to attempt to better define the 

composition of the new tissue.  Alcian Blue-Periodic Acid/Schiff was, as with the 

Safranin-O staining, able to differentiate regions of new tissue from unresorbed Gelfoam 

(Fig.11.)  Newly formed tissue stained intensely for PAS, but little specific Alcian Blue 

staining was observed.  At 400X magnification, cells can be seen buried in the newly 

formed tissue in most images of APC and MS-seeded implants.  Few buried cells could 

be found in blank implant sections.  Rather, cells in the blank implants largely appeared 

on the surfaces of the regions of newly formed tissue.   

 TRAP-staining provided further evidence of mineralized tissue formation in the 

implants (Fig.12) TRAP-positive cells, most multinucleated, were observed in APC and 

MSC-seeded implants, indicating the presence of osteoclasts.  No TRAP-positive cells 

were seen in the blank implants.  The relatively small number of TRAP-positive cells in 

APC and MSC-seeded implants precluded meaningful quantification.   
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Discussion 
 

 The purpose of this aim was to investigate APC osteogenic differentiation in a 

milieu more representative of the in vivo environment compared to the in vitro conditions 

described in Chapter II.  Using immunodeficient mice as a proxy for deer, we implanted 

cell-seeded or blank Gelfoam implants subcutaneously for 6 weeks.  We carried this 

process out twice, first using fresh, late passage (P3-8) deer cells and then with thawed 

passage 1 cells.   

 When it comes to demonstrating osteogenic differentiation in vivo, the first study 

proved inconclusive.  Counter intuitively, implants seeded with either APC or MSC 

produced less mineral than implants seeded with no cells at all.  Even the positive 

control implants, those seeded with fresh marrow-derived MSC from C57BL/6 mice did 

not produce robust bone growth compared to that reported in the literature (Pettway 

2005, 2008.)   

Addressing the second issue first, the intention of the positive control in this study 

was to provide a reference point using a “known good” cell type (in this case murine 

MSC) that had been pre-cultured under the same conditions as the APC and MSC.  In 

other words, the C57BL/6 used in conjunction with fresh, late passage deer cells were 

maintained in a standard complete medium used throughout our work (see Materials 

and Methods), rather than the “richer” formulation used in the literature (Krebsbach  

1997, Pettway 2005, 2008.)  In addition, the protocol used to wash away non-adherent 

cells from the freshly plated mouse cell cultures was similar to that used for deer cells.   

Though it is possible that other factors contributed to the less than expected 

bone formation in BL/6-seeded implants, it seems most likely that robust mineral 

formation by these cells in the ectopic murine model benefits from two key protocols.  

The first is the enrichment of the adherent cell population in the initial culture by 

delaying the first wash up to one week.  The second is the pre-culturing of these cells in 

a medium containing a high percentage of FBS. 

Regarding the poor generation of mineralized tissue in fresh, late passage APC 

and MSC, there may have been two key issues at play.  The first is that there is a clear 
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positive association between continued cell replication and senescence, a concept 

promoted by Hayflick in 1961 and ultimately linked to the shortening with each division 

of structures called telomeres on the ends of chromosomes (Watts 2011.)  Senescence 

is thought to initiate in mesenchymal stromal cells upon culturing and MSC gradually 

lose their proliferative and differentiating capacity with increasing passage number 

(Bonab 2006, Wagner 2011.)  Further, using cell cultured from red deer antlers (Cervus 

elaphus), Kuzmova found a significant reduction in H3  thymidine incorporation in 

passage 2 cells versus primary cultures, indicating a ~50% reduction in proliferation in 

the later passage (Kuzmova 2011.)   Therefore, it is likely that fresh passage 3-8 APC 

and MSC had lost much of their capacity for osteogenic differentiation. 

A second issue is whether deer cells are capable of substantial growth or 

differentiation on a subcutaneously implanted gelatin scaffold, even under optimal 

conditions.  Krebsbach has reported that bone growth in the murine ectopic model was 

dependent on cell type and scaffold material (Krebsbach 1997.) Unlike mouse MSC, 

human MSC seeded onto gelatin scaffolds failed to promote in vivo bone growth when 

dexamethasone and ascorbic acid were absent from the initial culturing medium (ibid.) 

Even when these factors were added to the medium, bone growth was achieved in only 

5 of 28 scaffolds after implantation (ibid.)  On the other hand, implanted hMSC were 

able to reliably generate bone when seeded onto scaffolds made from  HA/TCP 

(hydroxyapatite/tricalcium phosphate), even after prior culturing in medium lacking dex 

and ascorbic acid (ibid.)  Consequently, it is possible that gelatin scaffolds are inherently 

not conducive to APC or cervid MSC differentiation after implantation in a mouse. 

The second set of experiments attempted to address these issues via three 

changes: first, the use of passage 1 (albeit previously frozen) APC and MSC; second, 

the adoption of C57BL/6 culturing protocols in line with those used in the literature 

(including the delay of cell washing in culture and the use of 20% FBS and 

dexamethasone in the medium); and third, the use of smaller implants to increase the 

density of seeded cells to the level used by Pettway/McCauley (~17000-18000 cell/cm3) 

(Pettway 2005, 2008.)  Though the use of those protocols rendered the BL/6 a less 
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direct positive control, it tested whether we could successfully recapitulate previous 

results with the ectopic ossicle model. 

In this second round of experiments, our scaffolds seeded with BL/6 were able to 

reproduce the type and extent of bone growth reported in the literature—complete with 

a bony “cortex” and marrow space comprised of cells of most likely host origin (see 

Fig.9.)  This demonstrates the validity of our cell seeding, implantation and assay 

methods. 

Our results for the other implants were more in line with expectations.  Though 

the probability of bone formation was approximately the same between APC and MSC-

seeded scaffolds and blanks, scaffolds implanted with deer cells produced significantly 

more mineralized tissue compared to initially acellular scaffolds.  However, the mineral 

generated by APC and MSC in vivo (a least squared mean of less than 1µg) was less 

than 1/100th of that produced by BL/6-seeded scaffolds. 

With the relatively poor tissue mineral content of thawed passage1 APC and 

MSC-seeded scaffolds detected by microCT, we again used histology to look for 

additional evidence of bone formation.  Though the numbers were too small to 

accurately quantify, we observed two key cell types in these implants.   

First were putative osteocytes buried within the new tissue generated in the APC 

and MSC-seeded scaffolds that were virtually absent in blanks.  Though definitive 

identification of these cells would require assaying for markers such as E11/gp38, 

sclerostin, DMP-1, phex and FGF-23 (Bonewald 2007), their placement within apparent 

lacunae in scaffold tissue lends credence to our assertion of some non-stochastic bone 

formation.  Second, our observation of tartrate-resistant acid phosphatase (TRAP)-

positive cells in APC and MSC-seeded scaffolds gives us further confidence that these 

cells gave rise to bone formation in the murine model.  We failed to observe any TRAP 

positive cells in blank scaffolds, in line with the significantly lower mineralization 

measured in these scaffolds. 

Detection of TRAP positive cells is indicative of the presence of osteoclasts, but 

is not ironclad proof.  Immune cells such as macrophages and dendritic cells can also 

stain positively for TRAP (Hayman 2008.)  However, scaffolds were implanted in 
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immunodeficient mice lacking functional thymus glands.  The thymus is a primary 

lymphoid organ that serves as the site of maturation for T-cells (Widmaier 2008.)  

Though immune cells such as macrophages may still be present in athymic mice, the 

lack of mature helper T-cells may limit their specific activation (ibid.) Therefore, it is not 

unreasonable to assume that the presence of TRAP-positive cells in APC and MSC-

seeded scaffolds strongly indicates existence of osteoclasts in those scaffolds. 

Interestingly, there was no significant difference in the amount of mineral in APC 

and MSC-seeded implants.  This contrasts to our in vitro findings (see Chapter II), in 

which MSC produced far more mineral under osteogenic conditions compared to APC, 

even correcting for cell number.  It is possible that, compared to the MSC, APC 

osteogenic differentiation requires a more stringent set of factors--factors that were 

more available when these cells were seeded onto collagen sponges and implanted in 

mice.  Put another way, APC differentiation is characterized by more specific milieu 

dependence relative to MSC. 

Clearly, our ectopic ossicle formation studies would have benefitted from further 

protocol optimization. Had the resources been available, it would have been preferable 

to seed ossicles with fresh, primary APC and MSC.  Still, though we failed to reject the 

null hypothesis of this aim, we have demonstrated that culture-expanded APC and MSC 

are capable of osteogenic differentiation in vivo.   
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Chapter 3 figures 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 FIG. 3.1: Probability of mineral formation in fresh cell ossicles.  
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FIG. 3.2:  Fresh cell ectopic ossicles microCT data (n=3.) (A) tissue mineral content 
and (B) tissue mineral density. Line: p<0.05. 



77 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

FIG. 3.3: Ossicle formation in C57BL/6 seeded positive control implants for fresh deer 
cell study.  No pre-conditioning performed prior to implantation.  (A) Whole implant 
showing small bone region (arrow).  Safranin-O stain, 25x mag.  (B) Inset of bone. 
Safranin-O stain, 200x mag. (C) Inset of bone, TRAP stain, 400X mag (non-adjacent 
section.)  No staining observed. 
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FIG 3.4: Safranin-O staining in fresh cell ossicles. 100X mag.  
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FIG. 3.5: TRAP staining of fresh cell ossicles.  No staining in blanks and scaffolds 
seeded with APC from 2 of 3 deer (see arrows).  Positive staining in scaffolds seeded 
with MSC from 2 of 3 deer (arrows). 400X magnification.   
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FIG. 3.6:  Probability of mineral formation in thawed cell ossicles. 
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FIG. 3.7:  Thawed cell ectopic ossicle mineralization.  Images generated from microCT 
using 800 HU threshold. 
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FIG. 3.8:  Thawed cell ectopic ossicles microCT data (n=3).  (A) tissue mineral content 
and (B) tissue mineral density. Line: p<0.05. 
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FIG 3.9: Ossicle formation in C57BL/6-seeded positive control implants for thawed 
deer cell study.  Pre-conditioned prior to implantation.   (A) Whole ossicle showing 
cortical shell (*) and marrow space (#).  Safranin-O stain, 25x mag.  (B) Inset of 
marrow. Safranin-O stain, 200x mag. (C) Inset of bone. Safranin-O stain, 200x mag. 
(D) Inset of bone, Alcian Blue-PAS stain, 200X mag. (E) Inset of bone, TRAP stain, 
400X mag. 
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FIG. 3.10: Safranin-O staining in thawed ossicles.  100X mag.  
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FIG. 3.11: Alcian Blue-PAS staining of thawed ossicles.  Magenta regions are tissue 
while purple-stained regions are non-resorbed Gelfoam.  400X mag. Arrowheads 
indicate buried, putative osteocytes. 
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 FIG. 3.12: TRAP staining of thawed cell ossicles.  Arrow heads indicate TRAP-positive 
cells.  400X mag. 
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CHAPTER IV:  
Aim 3 

 

Introduction 
 

 Clearly, bones are living organs capable responding to biochemical and 

mechanical stimuli.  The ways in which bone reacts to its mechanical environment are 

of interest as these play a significant role in determining the tissue’s “structure-function” 

relationship.    This mechanical adaption is manifested in three key ways: the 

optimization of bone strength through the judicious formation and resorption of structural 

material, the alignment of trabeculae in principal stress directions and the 

mechanoresponsiveness of individual bone cells as part of this self-regulating system 

(Martin1998.) 

 Though cell mechanoresponsiveness is a critical element of bone’s structure-

function relationship, the actual ways in which cells sense and respond to mechanical 

stimuli are, even today, not well understood.  Though tissue strains of approximately 

0.1% occur during physiologic loading (i.e. during ambulation), bone cells typically 

require strains of 10 to 100 times greater magnitude to respond (Riddle 2008.)   Many 

believe that, rather than acting directly on bone cells, matrix deformation during 

locomotion is transduced to cyclical fluid flow through bone’s lacunar-canalicular system 

(Forwood 1996.)   

Bending stresses in the long bones, for example, induce pressure gradients that, 

in turn, generate fluid flows proportional to strain rate (ibid.)   In addition, changes in 

oscillating intermedullary pressure are associated with bone formation and reduction of 

cortical porosity (Qin 2003.)  Regardless of the exact source of strain, it is thought that 

the resulting fluid flow amplifies the mechanical signal to a magnitude that can be 

sensed by bone cells in some as yet undetermined fashion (Riddle 2008.) 
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The specific flow modality experienced by bone cells during locomotion is also a 

source of debate.  Papers have reported the effects of steady (continuous fluid 

delivery), pulsatile (net positive) and oscillatory fluid flow (no net fluid delivery) on these 

cells (Jacobs 1998, Bakker 2001, Jiang 2002.)  However, Jacobs argues that by virtue 

of its cyclical nature, oscillatory fluid flow may closely approximate physiologic 

conditions in an experimental setting (Jacobs 1998.)   

The actual magnitudes of the shear stresses that cells are exposed to in vivo are 

unknown.  In a frequently cited paper, Weinbaum described a porous media model that 

estimated peak shear stresses of up to 30 dyn/cm2 in canaliculi due to combined axial 

and bending loads (Weinbaum 1994.)  Using a connected cellular network model, Mi 

calculated a peak shear stress of approximately 20 dyn/cm2 in the canalicular networks 

of avian long bones subjected to cyclical loading (Mi 2005.)  It is unclear the extent to 

which Mi’s value truly reflects loading in large animal long bones.  However, the similar 

magnitudes of the Weinbaum and Mi shear stress estimates lend credence to their use 

as target parameters for fluid shear stress experiments. 

Both of the above studies focused on fluid flow in the canalicular network, based 

on the assumption that terminally differentiated osteocytes perform the bulk of the 

mechanosensing in bone.  In fact, numerous studies have demonstrated that cells 

further “upstream” in the osteoblast lineage respond to fluid flow—which is fortunate 

from an experimental standpoint, as the challenges of obtaining and culturing 

osteocytes in vitro (Stern 2012) favors the use of less differentiated cells.  Though it is 

not yet known if the mechanoresponsiveness of mesenchymal progenitors and 

osteoblasts of varying degrees of lineage commitment contribute to bone’s structure- 

function relationship in vivo, Riddle cites Qin’s 2003 paper as evidence that marrow 

cells are exposed to fluid stresses in the body (Qin 2003, Riddle 2006.) 

It is thought that cells respond both directly to flow-induced shear stress itself as 

well as to changes in chemotransport, in which fluid movement delivers needed factors 

and washes away waste products (Jacobs1998, Donahue 2003.)  Researchers have 

focused on several basic interrelated cell responses to fluid flow which occur over 

different time scales.  The specificity of the response may be positively related to the 



91 

 

time of exposure to the flow.  Intracellular calcium and ATP release occurs within 

minutes of the onset of flow (Riddle 2008a.)  The signaling factors nitric oxide and 

prostaglandin E2 are secreted between minutes and hours (Riddle 2008b).   

Nitric oxide (NO) is a small, short-lived molecule generated from molecular 

oxygen and the terminal guanidine nitrogen of the amino acid L-arginine in a reaction 

that also results in L-citrulline (Van’T Hof 2001.)   The molecular targets of NO are not 

known, but the molecule has bisphasic effects on bone resorption and formation (ibid.)  

At low concentrations, NO is thought to contribute to IL-1 induced bone resorption; yet 

NO can inhibit resorption at high concentrations (ibid.)  Likewise, constitutive production 

of low  concentrations of NO contributes to osteoblast homeostasis while inhibiting 

proliferation in these cells at high concentrations due to increased apoptosis (ibid.)   Of 

the three isoforms of nitric oxide synthase (NOS), the enzyme that catalyzes the 

reaction that forms NO, the endothelial form (eNOS) is constitutively expressed in bone 

cells.  ENOS is regulated by changes in intracellular Ca2+  while the inducible synthase 

(iNOS) can be synthesized in response to pro-inflammatory cytokines (ibid.)  Neuronal 

NOS is thought to be absent in bone cells.  

Prostaglandin E2 (PGE2) are small lipid molecules that are part of a larger group 

of eicosanoid signaling molecules produced in nucleated cells  (Miller 2006.)  

Prostaglandins are synthesized as follows:  first, phospholipase A2 frees arachidonic 

acid from membrane phospholipids.  Prostaglandin H2 is then generated from 

arachidonic acid by cyclooxygenase-1 or -2 (COX-1, -2) as a result of stimuli such as 

inflammation (via IL-1 and TNF-α) and hormones (Harris 2002, Miller 2006.)  

Prostaglandins such as PGE2 are produced by PGE synthases and released from the 

cell, where they act in a paracrine fashion (Harris 2002.) 

What makes PGE2 interesting in the context of mechanosensing is that this 

molecule is also produced in response to perturbations of the cell membrane (Miller 

2006.) There are two stages of PGE2 release due to fluid shear stress (Genetos 2005.)  

First, a burst of PGE2 is released after 5-10 minute of flow as a result of Ca2+ entry into 

the cell. Second, after 45-60 minutes of continuous application of flow, PGE2 release 

results from an increase in COX-2 synthesis and production. 
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In bone, PGE2 is primarily produced by osteoblasts and affects these cells as 

well as osteoclasts (Miller 2006.)  This molecule has a variety of seemingly 

contradictory effects on bone, promoting either bone resorption or formation, possibly 

due to the types of receptors present (ibid.) Suffice it to say, we do know that PGE2 

mediates cAMP production and DNA synthesis resulting from mechanical stimuli in vitro 

(Forwood 1996.)  In short, though its exact role may be unclear, PGE2 is a clear marker 

of mechanoresponsiveness. 

At tens of hours after fluid flow cells can respond by proliferating.  Jiang found 

that pulsatile flow increased proliferation in osteoblastic cells, while Kapur linked 

extracellular signal-related kinases (ERK) 1 and 2 to increased proliferation in 

osteoblastic cells after steady flow (Jiang 2002, Kapur 2004 .)  Riddle also noted a 

positive association between both ERK and Ca2+ signaling and proliferation in human 

mesenchymal stromal cells after oscillatory flow (Riddle 2006.)  However, these signals 

appeared to operate with some degree of independence—with Ca2+ release dependent 

on shear stress and ERK1/2 phosphorylation dependent on chemotransport (ibid.)  In a 

later paper, Riddle attributed oscillatory flow-induced Ca2+ and ATP signaling almost 

entirely to chemotransport, rather than shear stress (Riddle 2008a.)      

Having discussed the ways in which bone and bone-derived mesenchymal cells 

respond to mechanical stimuli, what role could mechanoresponsiveness play in antler 

regeneration?  Though this is still a largely open question, there is circumstantial 

evidence mechanical forces indeed play some role in the antler.   

First, though antler cortical bone consists mainly of primary osteons, secondary 

osteons can also be found (Launey 2010.)  This indicates that some degree of 

remodeling may occur during the short, annual life span of the antler.  While bone 

remodeling may be triggered by biochemical cues, mechanical forces are one of the 

central regulators of this process (Jacobs 2010.) 

Second, osteocytes are found in antler bone (Rolf 1999.)  In Aim 1 (see Chapter 

II) we also noted putative osteocytes in stained sections of antler bone.  The presence 

of osteocytes in antler does not necessarily indicate that these cells serve the same 

mechanosensing function in this tissue as they do elsewhere.  Without evidence of 
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normal physiologic function, it is at least conceivable that antler osteocytes are 

nonfunctional and are buried in antler bone as a result of a vacuum adaptation—i.e. 

simply the consequence of unimpaired terminal osteoblast differentiation.  Still, we 

argue that it is more likely that the osteocytes in antler bone serve the same function 

they do in other bones. 

Last, Li speculates that the transition from intramembranous to osteochondral 

ossification early in the regrowth stage is mediated by the pressure of the antler skin 

stretched over the tissue (Li 2000.)  Similarly, based on anatomical descriptions of early 

antler regeneration, we have observed that new antler growth centers appear in places 

where one would expect high traction forces due to the re-epithelialization of the antler 

after casting (Price 2005.)   

Consequently, in this aim we investigated the degree to which reserve 

mesenchyme-derived antlerogenic progenitor cells (APC) respond to mechanical 

stimuli.  Based on Jacobs’ contention that oscillatory fluid flow is the most 

physiologically relevant, we chose this flow modality as the means to mechanically load 

these cells.  We will test the following hypothesis: 

 

APC and MSC have different patterns of response when subjected to oscillatory 

fluid shear stress. 
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Materials and methods 
 

Specimen acquisition  

As described in Chapter II, APC and phalangeal-marrow-derived mesenchymal 

stromal cells were obtained from three wild, mature white-tailed bucks (Odocoileus 

virginianus.)  Specimen acquisition took place on a University of Michigan-owned nature 

preserve and conformed to institutional animal care and use standards and state wildlife 

policies.   

 

Cell freezing, thawing and initial culturing 

As cellular antler tissue is only available on a seasonable basis, experiments 

were performed using previously frozen passage 1 cells.   

To freeze, cells were washed twice in Ca2+ and Mg2+ free phosphate buffered 

saline and detached by incubating in 0.25% Trypsin-EDTA (Gibco, Life Technologies, 

Grand Island, NY) for 5 minutes at 37C.  The trypsin was inactivated with twice the 

volume of complete medium: Dulbecco Modified Eagle Medium containing 110mg/L 

sodium pyruvate and 0.2mM L-glutamine, 10% characterized FBS, 100units/ml 

penicillin/100µg/ml streptomycin and supplemented with additional L-glutamine for a 

total of 0.4mM (Gibco).   

Cells were pelleted by centrifuging at 500g for 6 min, resuspended at 500000 

cells/ml in freezing medium (90% FBS, 10% DMSO) and aliquoted into Cryule cell 

freezing vials (Wheaton Science Products, Millville, NJ.)  After 24 hours at -80C in a Mr 

Frosty cell freezing container filled with 250ml isopropyl alcohol to limit the rate of 

freezing to -1 degree C/min (Nalge Nunc International, Rochester, NY), cells were 

transferred to liquid nitrogen for long term storage.   

Frozen cells were revived by placing in a 37C water bath.  Immediately upon 

thawing, cell vials received a brief spin in a centrifuge to draw suspension away from 

the cap, after which 1ml complete medium was added to reduce the concentration of 

the DMSO in the now thawed freezing medium.  Cells were transferred to a plastic T-25 

tissue culture flask (Falcon, Becton Dickson Labware, Franklin Lakes, NJ.)  Two vials of 
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500000 cells each were used for each T-25.  Not including the complete medium added 

to each vial to dilute the DMSO, 4 additional milliliters of medium were added to the 

flask to bring the total volume to 7ml (2x1ml cells suspended in freezing medium, 2x1ml 

complete medium added to the vials, 3ml complete medium added after cells 

transferred to flask.)  After 24hrs culture at 37C to foster cell adhesion, medium was 

aspirated and replaced with 5ml complete medium.  This purpose of this step was to 

remove all DMSO from the medium as well as to flush nonadherent (mostly nonviable) 

cells from the culture.  

Upon 90-95% confluence, cells were split 1:3 by trypsinization (as above), 

resuspended in 12ml complete medium, and plated in a T-75 flask (Becton Dickinson.)   

 

 Covalent modification of cell culture slides 

 Glass culture slides were silanized, a process in which organosilanes are 

covalently attached to a surface in a self-assembling monolayer (Cras 1999.)  These 

silanes, in turn, allow molecules such as fibronectin, collagen, etc., to adsorb. 

 Silanization was carried out according to a protocol adapted by former 

Orthopaedic Research Laboratory student Michael Ominsky from the work of Werb 

(Werb 1989, Ominsky 2003.)  In brief, 75x38x1mm glass microscope slides intended for 

cell adhesion and as slide covers (Fisher Scientific, Pittsburgh, PA), were first cleaned 

by immersion in 20% H2SO4 (15 minutes), tap water, 0.1N NaOH, distilled water, 100% 

ethanol and then dried in a 60-70C oven.  

 Next, slides intended for cell adhesion were exposed to 2% γ-

aminopropyltriethoxysilane in dH20 (Sigma-Aldrich, St.  Louis, MO) for 4 minutes and 

washed with dH20 and PBS.  Slides were then incubated in 0.25% gluteraldehyde in 

PBS (Sigma) for 30 minutes at room temperature, washed in PBS and 100% ethanol 

and dried in a 60-70C oven.   
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Fibronectin coating of slides 

 Covalently modified slides were coated in fibronectin (5µg/cm2) to promote cell 

adhesion.  The following procedure was documented by former Orthopaedic Research 

Laboratory PhD student Michael Ominsky (Ominsky 2003).   

Silicone chambers (Sylgard 184, Dow Corning, Midland, MI) were selected for 

adequate glass adhesion and autoclaved at 250C for 25 minutes.  On the day of cell 

seeding, these chambers were transferred to a cell culture hood and placed on 

polycarbonate panels.  These panels are subsequently used for transporting the 

finished chamber/slide assemblies to and from cell culture incubators.  

Covalently modified slides were pressed onto the chambers to form a watertight 

seal, leaving an area of 12.3cm2 open for cell culture.  Each slide/chamber was then 

inverted to expose the open area and filled with 2ml of a sodium carbonate buffer with 

31µg/ml bovine fibronectin (Sigma-Aldrich.)   The composition of the buffer was as 

follows: 91 mM sodium bicarbonate (NaHCO3) and 9.1mM anhydrous sodium 

carbonate (Na2CO3) in dH20.  The pH of the buffer was brought to 9.6 using sodium 

hydroxide, after which the buffer was sterile filtered and stored at 4C.  To prevent the 

growth of microorganisms, the buffer was re-filtered every 3-4 months. 

After the fibronectin-containing buffer was added to the cell adhesion slide, a 

slide cleaned as described above was used to cover the chamber/slide assembly.   

Following three hours of incubation at room temperature under a sterile hood, the 

fibronectin was aspirated and the slides were washed in pre-warmed PBS and complete 

medium. 

 

Seeding of cells on slides 

 Cells were cultured in T-75 flasks preparatory to seeding on slides.  At 90-95% 

confluence, cells were trypsinized, spun at 500g for 6min and resuspended in 10ml of 

complete medium.  The cell count per milliliter of suspension was determined using an 

improved Neubauer hemacytometer.  The average of both sets of grids was used to 

establish the count. 



97 

 

 At this point, the complete medium used to rinse the chamber/slide assemblies 

was aspirated and a volume of suspension containing 250000 cells added to each 

(20300 cells/cm2.)  Chambers were then topped off to 2ml with complete medium. 

 Approximately 16 hours before fluid shear testing was to be conducted, the 

complete medium was exchanged for serum- free medium (SFM): phenol red-free low 

glucose DMEM, 100units/ml penicillin/100µg/ml streptomycin, and 4mM L-glutamine 

(Gibco.)  Phenol red and fetal bovine serum can interfere with assays involving 

conditioned medium and were therefore omitted from the formulation.   

 Cells were transported to the cell culture hood adjacent to the fluid shear 

apparatus immediately after SFM was added (again, approximately 16 hours before 

fluid shear commenced.)  The delay between this cell transfer and the conduction of 

OFF experiments allowed any potentially confounding effects induced from this 

movement to diminish before testing. 

 

Oscillatory fluid shear apparatus 

 The fluid shear apparatus used here was adapted from the device originally 

developed for Michael Ominsky, in which the cell-seeded slides comprises one plate of 

a parallel plate flow chamber (Fig.1A) (Ominsky 2003).  Fluid was delivered using a 

custom-built, programmable servomotor-powered syringe pump (linear actuator model 

SA-4-B.125-P-RBC4, Ultra Motion LLC, Cutchogue, NY) driven by a PC-based motion 

control application (Smart Motor Interface Version 1.314, Animatics) though a digital-

analog converter (Fig.1B) (National Instruments, Austin, TX.)    The Popper Perfketum 

glass syringes used in the pump had barrels and plungers precision ground to a slip fit 

that did not require elastomeric seals (Fig.1B) (Sigma-Aldrich.) 

 The shear stress provided was based on the principles of fixed parallel plate flow.  

Based on the assumptions of laminar flow and parabolic velocity profile, the governing 

equation is as follows: 

 

τ = 6µQ/bh2 
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 Where τ = shear stress, µ= fluid viscosity (equal to 0.00087 Pa-s for flow 

medium), Q= volume flow rate (cm3/s), b= channel width (2.7cm) and h= channel 

height (0.0127cm.)    

 Two pascals of oscillatory fluid shear was generated using a Smart Motor 

Interface program adapted from a steady flow program written by Ominsky (Fig. 2.)   

Using a simple WHILE loop, this program delivered a 0.5Hz sawtooth waveform that 

gave rise to a 0.167ml/s flow rate in the flow chamber.  As the goal was to isolate the 

effects of fluid shear rather than chemotransport, this program delivers zero net volume 

of medium to the chamber.   

Validation was conducted using the actuator’s linear potentiometer and a 

rudimentary Labview program (National Instruments) to ensure that the system was 

delivering the appropriate flow rate and cyclic rate. This testing revealed a motor 

amplitude error of approximately 10%, necessitating an over driven velocity constant (V) 

of 42591, rather than the theoretical 38332.   

 Though the fundamental mechanical hardware was unchanged compared to 

earlier uses of the system (Ominsky 2003, Pagedas 2010, Joiner 2010, Joiner 2012), 

some aspects were altered to suit the needs of our experiments.  The system was 

mounted on a cart for portability and had numerous blind fasteners replaced with 

alignment pins and thumb screws to ease set-up and tear-down.   

More importantly, the polycarbonate chambers and fixed seals used previously 

were replaced with machined stainless steel chambers and removable, high 

temperature-resistant O-rings.  The O-rings were cast from two-part R-2374A/B silicone 

(Silpak Inc, Pomona, CA) in a custom-built mold.  Casting was done under a -15inHg 

vacuum for one hour to remove bubbles.  Unlike the earlier hardware, the steel 

chambers and silicone O-rings were autoclavable, and better able to be kept free of 

contamination.  According to the manufacturer, R-2374 silicone has a service 

temperature of up to 204C (400F.) 
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Setting up the OFF system 

 Components that were too large (such as the fluid reservoir syringe holder) or 

otherwise unable to be autoclaved (fluid lines) were washed in soapy water, rinsed in 

dH20 and sprayed with 70% ethanol after each use.  After drying overnight, these 

components were stored in a plastic bag to keep dust off of them.  As described above, 

chambers, O-rings and chamber covers were autoclaved prior to use.  By the way, if 

you’re actually reading this, go ahead and give yourself a gold star for the day.  The day 

before the system was to be run, the non-autoclavable components were resprayed 

with 70% ethanol, placed in the appropriate cell culture hood and exposed to the hood’s 

UV light as a final cleaning measure. 

 The operation of the system was adapted from the Ominksy protocol.  During 

each run, one chamber was exposed to fluid shear and a second chamber just 

assembled and connected to an unloaded syringe.  This second chamber acted as a 

sham control.  The sham simulated the conditions of the loaded chamber without 

exposing the cells inside to any loading beyond that caused by operator handling. 

During system validation we experimented with the use of one or more loading 

syringes simultaneously.  When more than one syringe was mounted to the manifold, 

the precision ground syringes required some looseness in the clamp affixing the 

plungers to the actuator.  Due to the short stroke of the actuator during the desired 

loading modality, this “slop” would have reduced reproducibility between loaded 

specimens. If multiple plungers were instead clamped tightly to the actuator, we found 

that any small misalignments would be magnified across the clamp’s width, raising the 

risk that the plungers would bind and crack the barrels.   

Though it decreased experimental throughput, we reduced the tolerance stack by 

running one syringe, and therefore one loaded chamber, at a time.  This allowed the 

loading syringe to be located in the center of the pump manifold. 

 On the day of shear loading, the apparatus was fully assembled in a cell culture 

hood.  Uncoated, cell-free slides were mounted in the chambers.  The system was filled 

with PBS plus 200units/ml penicillin, 200µg/ml streptomycin and 0.5µg/ml amphotericin 

B and run for 10-20 minutes.  These initial “dummy” runs served two purposes.  First, 
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they provided a chance to verify that the equipment was operating properly.  Second, 

the 2X concentration of antibiotics and antimycotic acted as a final cleaning step should 

any microorganisms remain in the system. 

 

Operating the OFF system  

Loading was performed for 5, 15, and 60 minutes.  Due to the lack of availability, 

cells from buck 2 were loaded for 15 and 60 minutes only. 

After cleaning and set up (see above), the fluid shear system was flushed with 

serum free medium.  Next, two cell-seeded slides were placed in the chambers.  As 

described above, one chamber was connected to the syringe pump and the other to 

free standing sham syringe.  The plunger of the sham syringe was fixed in place with a 

small clamp and a strip of tape.   

During loading, the chambers, sham syringe and the rack holding the fluid 

reservoirs were placed in a 37C cell culture incubator (Fig. 1A) while the syringe pump 

remained outside the incubator (Fig.1B.)  Note that the sham loading was the same 

duration as the actual loading. 

 

Generating conditioned medium 

Upon completion of loading, the chambers, sham syringe, reservoir rack, syringe 

pump manifold and fluid lines were returned to the cell culture hood. The slides were 

removed from the chambers and placed on a custom built ABS plastic holding block.  

Three milliliters of PBS was applied to the slides and aspirated to wash the cells.  One 

milliliter of SFM was then pipetted onto the surface of the slides and kept in place via 

surface tension.  The holding block was transferred to the incubator for 15 minutes to 

condition the SFM. 

After incubation, the block was moved back to the hood.  The now conditioned 

SFM was pipetted and cells scraped into the eppendorf tubes.  The tubes were 

centrifuged at 1000-3000g for 5 min to pellet the cells and the supernatant (~750µl) 

aliquoted into two tubes.  All tubes were then flash frozen I liquid nitrogen and kept in a -

80C freezer.   
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During 15 minutes of medium conditioning, the OFF system was prepared for the 

next run.  First, it was filled with PBS + antibiotic-antimycotic to flush out any remaining 

medium from the previous run.  The PBS was aspirated and the system refilled and 

flushed with fresh SFM.  The system was then filled a third time with SFM.  After the 

cells and conditioned medium from the previous run were frozen, new cell-seeded 

slides were placed in the chamber and another round of OFF performed. 

 

DNA quantification 

The DNA content of each slide served as an estimate of cell number.  A 

commercial kit (DNeasy Blood and Tissue Kit, Qiagen, Hilden, Germany) was used to 

extract DNA as per the manufacturer’s instructions.  In brief, cells were thawed, 

resuspended in 200µl PBS per tube, and exposed to 20µl proteinase K.  A lysate was 

produced using the kit’s buffers and pipetted onto spin columns placed in polypropylene 

microtubes.  DNA that had adhered to the column was washed twice and dried by 

spinning at 20000g for 3 min.  Last, the DNA was eluted in 200µl of buffer. 

Freshly extracted DNA was quantified on a spectrophotometer (NanoDrop 2000, 

Thermo Fisher Scientific, Waltham, MA.)  One microliter of the elution buffer was used 

to calibrate the device, after which DNA content was measured in each specimen.  The 

purity of each DNA sample was assessed via A260/280 ratio (peak nucleic acid 

absorbance at 260nm divided by that for proteins at 280nm.) 

 

Nitric oxide assay 

 The nitric oxide concentration in conditioned medium samples was measured 

using a commercial fluorometric assay kit (Cayman Chemical Company, Ann Arbor, MI.)  

NO has a 4 second half life and is rapidly oxidized into nitrite (NO2-) and nitrate (NO3-).  

This kit uses a reductase to enzymatically convert nitrate to nitrite.  The resulting total 

nitrite content, in turn, converts DAN (2,3-diaminonaphtalene) to 1(H)-napthotriazole.  

A total nitrate/nitrite standard curve was generated using the provided standard 

as well as a volume of non-conditioned SFM equivalent to the volume of conditioned 

medium used in the specimens.  Standards and samples were aliquoted in duplicate 
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wells.  After adding NaOH, the fluorescent intensity in each well was detected (363nm 

excitation, 430nm emission) using a spectrophotometer (SpectraMax M5, Molecular 

Devices, Sunnyvale, CA.)  Results were normalized to the DNA content of each 

specimen. 

 

Prostaglandin E2 ELISA 

 A commercially available competitive-binding ELISA kit (Amersham Biotrak, GE 

Healthcare Life Sciences, Pittsburgh, PA) was used to detect PGE2 in conditioned 

medium specimens, as in previous studies (Bakker 2001, Donahue 2003, Saunders 

2003, Genetos 2005.)  The assay was performed as per the manufacturer’s instructions, 

with a standard curve generated using from provided standard as well as blank and 

non-specific binding wells.  Standards and samples were aliquoted in duplicate wells 

and the optical absorbances of each well read at 450nm (SpectraMex M5, Molecular 

Devices.)  Non-conditioned SFM results were subtracted from the sample values, which 

were then normalized by the DNA content of each well. 

 

Statistics 

 As each experiment involved a small sample size (2-3 biological replicates), 

multiple experimental replicates were performed for each assay (3-6 per cell type per 

time point.)  Generalized linear mixed models, which take into account nested data 

structures and repeated measures, were used for comparisons (SPSS, IBM Corp, 

Armonk, NY.) Sequential Bonferroni post hoc tests were used, with a p-value ≤0.05 

considered significant.     

 In sham-normalized data for combined animals, “celltype” was used as a fixed 

effect; no random effect was considered.  For combined animal data that included both 

load and sham conditions, a “celltype*load” interaction term was included as a fixed 

effect.  Figures show least squared means (LSM) and model-generated standard 

deviations. 

Statistics were also conducted for results within each animal separately.  For 

sham-normalized data, paired t-tests were performed for data at each time point while 



103 

 

data that included both load and sham conditions were compared using one-way 

analysis of variance and Dunnett’s T3 post hoc test.      

For all results, values more than two standard deviations from the mean were 

omitted.   

  
Results 

 

DNA 

 The DNA content of each load and sham slide was quantified to estimate of 

relative cell number.  A260/280 ratios for each specimen exceeded 2.0, indicating high 

quality DNA extraction.   

 DNA content generally did not vary significantly regardless of whether load was 

applied (Fig.3.)  In combined data, loaded cells typically had less DNA, though this was 

only significant for MSC sham slides at the 5min time point (Fig.3A.)  MSC from bucks 1 

and 3 displayed similar behavior (buck 2 cells were not available for that time point), 

however the difference was not significant (Fig.3B-D.)  Shear stresses are capable of 

removing some quantity of cells, though it is unclear if APC and MSC differ in their 

susceptibility to detachment. 

 Comparing sham-normalized load DNA content in combined-animal data 

revealed differences in APC and MSC depending on the duration of loading (Fig.4A.)  

After 5 min of load, APC retained significantly more DNA than MSC (p=0.002), yet the 

opposite was true after 60 min (p=0.032.)  In cells from individual animals similar, 

though not statistically significant, differences were observed for buck 1 and 3 at these 

time points (Fig.4B, D.)  Large variabilities in the individual animal data precluded 

generalizations about DNA content at the 15 min time point. 

 When the DNA content of sham slides was divided by the days elapsed between 

seeding on fibronectin coated slides and testing, an unexpected result appeared (Fig.5.)  

In both combined and individual animal data, APC had greater than or equal DNA 

accumulation per day compared to MSC.  These data contrast markedly with our earlier 

cell enumeration of time results (see Chapter II), for which cells had been seeded on 
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cell culture plastic.  Note that both cell types did not appear to be subject to widespread 

cell detachment. 

  

Nitric oxide 

 Nitric oxide content of conditioned medium was quantified as a measure of cell 

mechanoresponsiveness (Fig. 6.)  Due to a defect in the spectrophotometer’s 

fluorescent detection function, only relative (load/sham) values were able to be obtained 

for NO content. 

 No nitric oxide was detected in cells from all bucks after 60 min of loading and in 

cells from buck 2 at 15 min (buck 2 cells were not loaded for 5 min.)  Significantly 

greater sham normalized NO was observed in MSC medium at 15 minutes (Fig.6A.)  

However, the lack of consistency in the individual animal data at this time point makes it 

difficult to determine whether this significance represents a true cell-based difference or 

is an artifact of the assumptions of the generalized linear mixed model.   

 

Prostaglandin E2 

 Prostaglandin E2 content in conditioned medium was used as another measure 

of mechanoresponsiveness (Fig.7-9.) 

 First, we compared the PGE2 in APC and MSC load and sham groups (Fig.7.)  

This served as a “reality check” to verify the extent to which oscillatory fluid shear 

affected PGE2 levels in each cell type.  In short, loading had few consistent effects on 

PGE2. In combined animal data (Fig.7A), greater PGE2 was observed in loaded versus 

sham APC after 5 and 15 minutes of load, though only the former difference was 

significant (p=0.003.)  The only significant difference in load versus sham combined 

animal MSC data occurred at the 15 time point, in which conditioned medium from 

sham cells actually had a greater PGE2 content.  Individual animal data (Fig.7B-C) 

largely reflected the significant differences seen in the combined data.  Large variation 

was seen in buck 2 MSC at the 15 time point (Fig. 7C), which contributed to the some 

ambiguity in the combined data. 
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 When comparisons were made between sham-normalized PGE2 (the relative 

magnitude of the load effect), few clear trends emerged (Fig.8.)  Though combined-

animal APC (Fig.8A) displayed a significantly greater normalized prostaglandin after 5 

min of loading (p=0.001), this trend was seemingly reversed in the individual animal 

data (Fig.8A, C.) This inconsistency was due to large variations in MSC PGE2 at the 

individual animal level, which themselves were consequences of a single widely 

dispersed value in each data set (though still within two standard deviations of the 

mean.)  Thus, it is difficult to make definitive statements about relative APC and MSC 

PGE2 production due to load. 

 On the other hand, it was clear that the basal levels of prostaglandin were much 

higher in APC compared to MSC (Fig.9.)  For illustration and statistical purposes, sham 

PGE2 levels were expressed as pgPGE2/pgDNA (rather than pgPGE2/ngDNA) and log 

transformed.  At every time point in both combined and individual animal data, APC 

exhibited significantly higher PGE2 levels.  The difference in combined data was 100.96 

at for 15 minute shams, equal to a 9X fold change.  The largest was 18X at 5 min.  In 

the individual animal data, the smallest APC-MSC fold change difference was for buck 1 

15 min sham (4.9X) and the largest for buck 3 60 min shams (313X.) 

 

Discussion 
 

 Mechanical forces are known to play a central role in literally shaping the 

musculoskeletal system.  During ambulation, bending and compressive loads are 

transduced to cyclical alterations in fluid flow in the marrow space and lacunar-

canalicular system (Forwood 1996, Qin 2003.)  It is therefore thought that oscillatory 

fluid flow represents a physiologically relevant mechanical stimulus in vitro (Jacobs 

1998.)   

Little is known about the role, if any, that mechanical forces play in the formation 

of deer antler.  Circumstantial evidence, such as the presence of osteocytes and some 

secondary osteons in antler bone, led us to pursue this question on a cellular level (Rolf 

1999, Launey 2010).  Using an oscillatory fluid flow (OFF) regime, we explored the 
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effects of 2Pa of shear stress on thawed first passage APC and MSC after 5, 15, and 60 

minutes of load. 

Looking at nitric oxide and prostaglandin E2, we failed to discern an overall effect 

of OFF on either APC or MSC.  While NO is clearly produced by these cells, high within-

animal and across-animal variability complicated the elucidation of repeatable patterns 

of this factor’s secretion by APC or MSC.   

We did not detect NO in any animal after 60 min of load, and in buck 2 after 15 

min as well. It is possible that bone or antler cells respond to load with fast acting 

constitutive nitric oxide synthase (eNOS) rather than the inducible form of this enzyme.  

Or, it is possible that iNOS is expressed quickly and transiently in response to load.  In 

either case, it is certainly conceivable that the earliest time point examined in this study, 

5 min, was simply too late to catch any spikes in NO secretion.  Future explorations of 

NO in deer APC or MSC would benefit from even earlier time points (1-3 min) or the use 

of a fluorometric nitric oxide probe to monitor secretion in real time.  The latter would 

require substantial re-engineering of our fluid shear apparatus.   

  It seems that, contrary to our assumption that PGE2 is a longer term marker of 

mechanoresponsiveness, the only significant load-induced increase in this factor was 

seen in APC after five minutes, the shortest OFF duration.  At this same time point, the 

magnitude of APC sham-normalized PGE2 was also greater than in MSC.  Though 

these data would benefit from additional confirmation, they at least suggest that APC 

are capable of a more robust PGE2 response to short duration loads.  As the highest 

intensity loading of antler likely is due to clashes among males during the rutting 

season, it may be that this tissue has adapted to respond to short-lived impact forces. 

 Though they were not part of the original intention of this study, our work 

revealed two intriguing results regarding the basal (unloaded) APC phenotype.  First, 

APC cultured on fibronectin-coated sham slides showed similar and often greater DNA 

accumulation over the time compared to MSC under the same conditions.  Second, 

unloaded APC demonstrated significantly greater PGE2 secretion (both in the 

denotative and statistical sense) at all time points in all animals. 
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 DNA content served as a proxy for cell number.  The similar and frequently 

higher rate of DNA accumulation in APC contrasts versus MSC sharply to our earlier in 

vitro work (Chapter II.)  There, we used a fluorescent DNA marker to estimate the 

relative numbers of APC and MSC.  We found significantly lower APC cell number at 

each 24 hour interval over 7 days, as well as a decline and recovery of APC number 

that occurred over the first 5 days in culture (see Chapter II, Fig.1B.)   

 Three potential explanations for these differences are 1) the use of frozen and 

thawed cells in the current study, 2) different initial seeding densities, and 3) altered cell 

response to the culture substrate.   

Addressing the first, it is theoretically possible that freezing selects for a more 

robust cell population.  However, prior work has shown that freezing of human bone 

marrow mononuclear cells has little effect on the expression of cell surface markers or 

on indicators of osteogenic differentiation such as alkaline phosphatase (Haack-

Sorensen 2007, Ginis 2012.)   The cited studies showed somewhat different effects of 

freezing on cell proliferation, with Haack-Sorensen finding a slight enhancement and 

Ginis noting no difference when compared to unfrozen cells.  However, the most 

pronounced increases in cell proliferation in the former study were found in cells frozen 

for short periods of time (one month) and cultured beyond 7 days.  Still, we cannot rule 

out the possibility that freezing and thawing may induce changes to the cell population 

that benefit APC proliferation to a greater extent than MSC, even over the 2-3 days of 

culture from seeding to sham loading. 

 Regarding the role that initial plating densities may play in affecting APC and 

MSC number over time, recall that in our in vitro cell enumeration study we seeded cells 

at 3200 cells/cm2.  In the current study, seeding densities were approximately 6 times 

higher: 20300 cells/cm2.  It is possible that APC and MSC differ in their response to 

seeding densities, and that the lower density used was insufficient for APC to mount 

robust proliferation.  Though plausible, the explanation is at variance with the notion that 

lower seeding densities actually promote bone MSC growth due to the reduction of the 

likelihood of contact inhibition, increased log growth phase duration and greater nutrient 

availability per cell (Fossett 2012.)  An alternative explanation is that APC plated at the 
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higher density are in fact more resistant to contact inhibition compared to MSC.  If true, 

resistance to contact inhibition in antler cells would represent a diametrically opposed 

adaptation compared to the naked mole rat (Heterocephalus glaber), whose cells 

possess a hypersensivity to contact inhibition that is thought to contribute to this 

rodent’s singular tumor resistance (Seluanov 2009.)   

 The most likely explanation for the differences in relative cell number compared 

to our earlier in vitro work points to the substrate on which the cells were cultured.  In 

the latter study, cells were plated onto standard cell culture plastic: plasma-treated, 

polystyrene BD Falcon 96 well plates.  In the current work, recall that cells were seeded 

onto silanized glass slides coated with 5µg/cm2 bovine fibronectin.   

 The adherence of MSC onto cell culture plastic has been a defining feature of 

these cells since the days of Friedenstein and is now considered a key phenotypic 

marker (Colter 2000, Dominici 2006.)  MSC are known to possess a variety of adhesion 

molecules.  Human bone marrow MSC cultured on plastic, for example, express a suite 

of α  and β integrins (α1-3,5,6, 11, V, X and β1-2, 4-5 and 7-8) as well as several other 

adhesion molecules (ICAM-1, E-, P-, L- selectins, E- and VE-cadherins, etc.) (Brooke 

2008.)  On the other hand, cell culture plastic is less representative of the in vivo milieu 

compared to actual extracellular matrix (ECM) proteins.   

 The composition of the ECM has wide ranging effects on cell growth and 

differentiation (Sottile 2000.)  Fibronectin is a cell adhesive glycoprotein that, like 

molecules collagen and laminin, is a fibrillar constituent of many ECM (Singh 2012.)   

Binding to integrins α5β1, α4β1, and αvβ3 and proteoglycans such as syndecans, 

fibronectin can give rise to a host of cell behaviors including cell growth (Sottile 2000.)  

In light of this, there are several explanations for our observations that APC grow as or 

more rapidly as MSC on fibronectin-coated glass slides compared to cell culture plastic.  

First, compared to MSC, APC may express a suite of adhesion molecules more specific 

to fibronectin.  Or, perhaps APC present a larger proportion of fibronectin-specific 

molecules.  Still another possibility is that APC possess a more robust downstream 

response to fibronectin binding.  No matter the mechanism, it appears that APC cell 
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enumeration over time has a milieu dependence distinct from animal-matched marrow 

stromal cells. 

 The second key unexpected result from the current study was the robust 

secretion of PGE2 in non-loaded APC compared to MSC.  It is possible that the minor 

handling sham cells do incur could contribute to some degree of PGE2 production.  

However, we believe that our results under these conditions were qualitatively indicative 

of basal prostaglandin secretion levels.  Therefore, it is reasonable to propose that APC, 

at least thawed APC cultured on fibronectin-coated glass slides, have constitutively 

greater PGE2 production relative to MSC. 

 If this observation is valid for APC in vivo, it has several intriguing implications.  

The first is a possible mechanism for our observation that APC are resistant to 

adipogenic differentiation (see Chapter II.)  There is evidence that PGE2 can directly 

suppress PPARγ2 expression in an autocrine fashion in fibroblasts, and thus serve as 

an antagonist of adipogenesis (Inazumi 2012.) 

The second implication involves the effects of PGE2 on the immune response. 

Once widely thought to be immunosuppressant, PGE2 is more accurately 

immunomodulatory: it alters immune cell proliferation and function in a manner that 

shifts the response from the phagocytic type 1 to the anti-inflammatory, more antibody-

dependent type 2 (Harris 2002.)  Prostaglandin E2 is one of the factors secreted by 

MSC that contribute to the immunomodulatory nature of these cells (Aggarwal 2004.)  

Interestingly, speculation exists that the absence of scar tissue or bacterial infection 

after antler casting is due to antler being immunodeficient in some way (Price 2004.)  In 

other words, it is thought that the suppression of a stereotypical inflammatory response 

at the site of antler casting may contribute to the formation of a blastema instead of 

fibrotic scar (ibid.)  Robust constitutive production of PGE2 by APC, if the case in vivo,  

would offer a mechanism for an altered immune response at the site of antler casting. 

 A third ramification of high constitutive PGE2 production in APC relates to the 

well-characterized relationship between this factor and bone.  Depending on the 

concentration, PGE2 has both anabolic and catabolic effects on bone (Scutt 1995).  The 

anabolic effects of PGE2 may be mediated though bone MSC rather than directly 
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though osteoblasts and are associated in vitro with a transient increase in bMSC cell 

number and collagen production (ibid.) It is therefore possible that PGE2 is can 

stimulate high (though most likely milieu dependent) APC proliferation. 

 An additional well-studied aspect of PGE2 in bone is its ability to oppose the 

catabolic effects of high doses of glucocorticoids such as dexamethasone (Scutt 1996.)  

Recall from Chapter I that the calcium demands of rapid antler growth cannot be met 

entirely through the animal’s diet and are supplemented by transient bone resorption 

elsewhere in the body (Landete-Castillejos 2007.)  Also note the coincidence between 

peak circulating IGF-1 levels and rapid antler growth (Price 2004.)  Though the 

relationship between growth factors and stress hormones is complicated, often 

seemingly contradictory and species specific, it has been demonstrated that IGF-1 

stimulates ACTH-induced cortisol in bovine adrenal glands (Le Roy 2000.)  In fact, peak 

serum cortisol levels in some species coincide with antler growth, during a period of 

reversible skeletal bone resorption (Ingram 1999.)   Therefore, we argue that high 

constitutive PGE2 production in the antler, again if the case in vivo, might provide a local 

osteoprotective counterbalance to systemic resorptive signals. 

 In this study, we have provided evidence that APC and MSC have different 

patterns of response to oscillatory fluid flow.  In particular, that APC exhibit heightened 

PGE2 production after short duration fluid shear compared to MSC.  However, we were 

not able to construct a more generalizable statement about APC and MSC 

mechanoresponsiveness.  Fortunately, unanticipated findings in terms of APC cell 

number over time and sham PGE2 levels have raised intriguing questions regarding the 

unique manner in which these cells interact with their microenvironment. 
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Chapter IV figures 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

FIG. 4.1: Apparatus used to generate fluid flow.  (A) Fluid reservoirs and chambers 
(sham and load.)  Shown inside cell culture incubator.  (B) Actuator, linear slide and 
syringe pump.  This equipment was kept outside incubator during experiment. 
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'this program will give 2 Pa shear @ 0.5 Hz 
 
PID1 
KP=50 
KI=28 
KD=100 
KL=200 
KS=1 
KV=300 
KA=0   
KG=0 
O=0  ' reset motor at current position 
'v=38332 ' velocity constant = 32212*(1.19rev/s) for 2 Pa shear 
v=42591 'velocity constant for 2Pa times 110% to compensate for  motor amplitude error at 
0.5 Hz 
'v=256000        'high speed velocity for calibration 
A=96  ' acceleration to 1.19rev/s in 0.1sec 
z=0  ' cycle # = 0 
q=1188            'position constant = (1.19rev/s)*1sec*1000 encoder codes/sec--this gives 0.5Hz 
cycles 
'q=64000 'position constant = 1 inch for calibration 
 
WHILE z<2400 ' for 10 HOURS 
P=q 
V=v 
MP   
G  ' GO 
TWAIT ' Waits for motor to fully stop 
F  'lets PID filter update, helps prevent slight loss of position errors 
 
P=-q 
V=-v 
MP   
G  ' GO 
TWAIT ' Waits for motor to fully stop 
F  'lets PID filter update, helps prevent slight loss of position errors 
z=z+1 
LOOP 
END 
 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

FIG. 4.2: Simple code used to generate 2Pa shear stress using a saw tooth waveform at 
0.5Hz.  Adapted from steady flow program originally written by Michael Ominsky. 
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FIG. 4.3: Effects of loading on DNA. (A) Data from animals combined (n=2 for 5 min 
timepoint, n=3 for others.)  Generalized linear mixed model. Least squared means and 
estimated std devs.  (B), (C), (D) Bucks 1, 2 and 3.  One way ANOVA, Dunnett’s T3 
post-hoc test.  * Significant relative to sham. 
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FIG. 4.4: Load DNA normalized by sham. (A) Data from animals combined (n=2 for 5 
min time point, n=3 for others.)  Generalized linear mixed model. Least squared 
means and estimated std devs.  (B), (C), (D) Bucks 1, 2 and 3.  Paired t-tests at each 
time point.  * Significant relative to MSC. 
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FIG. 4.5: Rate of DNA accumulation of in sham-loaded cells (ng/day).  Measured from 
time of cell seeding to completion of sham loading. (A) Data from animals combined 
(n=2 for 5 min time point, n=3 for others.)  Generalized linear mixed model. Least 
squared means and estimated std devs.  (B), (C), (D) Bucks 1, 2 and 3.  Paired t-tests 
at each time point. * Significant relative to MSC.  # p<0.1 relative to MSC. 
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FIG. 4.6: Nitric oxide, load normalized by sham. (A) Data from animals combined 
(n=2 for all time points due to lack of detectability in buck 2 cells.)  Generalized linear 
mixed model.  Least squared means and estimated std devs.  (B), (C), (D) Bucks 1, 2 
(15 and 60 min only) and 3.  Paired t-tests at each time point.  No detectable NO at 60 
min in cells from all bucks, none for NO at 15 min.  * Significant relative to MSC. 
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FIG. 4.7: Effects of load on PGE2, load and sham. (A) Data from animals combined 
(n=2 for 5 min time point, n=3 for 15 and 60 min.)  Generalized linear mixed model. 
Least squared means and estimated std devs.  (B), (C), (D) Bucks 1, 2 and 3.  One way 
ANOVA, Dunnett’s T3 post-hoc test.  * Significant relative to sham. 
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FIG. 4.8: PGE2 load normalized by sham. (A) Data from animals combined (n=2 for 5 
min time point, n=3 for 15 and 60 min.)  Generalized linear mixed model. Least 
squared means and estimated std devs.  (B), (C), (D) Bucks 1, 2 and 3.  Paired t-tests 
at each time point. * Significant relative to MSC.  # p<0.1 relative to MSC. 
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FIG. 4.9: Comparison of basal PGE2 levels in MSC and APC using sham data (log 
pgPGE2/pgDNA.) (A) Data from animals combined (n=2 for 5 min time point, n=3 for 
15 and 60 min.)  Generalized linear mixed model. Least squared means and estimated 
std devs.  (B), (C), (D) Bucks 1, 2 and 3.  Paired t-tests at each time point. * Significant 
relative to MSC.   
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 Chapter V: summary and future directions 

Summary 

 

Project outline 

Repair of large bone defects is one of the key unmet clinical needs in 

musculoskeletal medicine (Guldberg 2012).  One critical barrier to the realization of 

viable tissue engineering repair therapies is the poor regenerative capacity of most 

mammalian tissues compared to those of vertebrates such as certain amphibians, 

which can completely regrow severed appendages (Poss 2010.)  A rare exception to 

the limits of mammalian regeneration is the deer antler, the only example of complete, 

repeated organ regrowth in an adult mammal (Kierdorf 2007.)   Though they have 

largely escaped the attention of the tissue engineering field, the antlerogenic progenitor 

cells (APC) at the heart of antler regeneration have the potential to provide tremendous 

insights into potential strategies for directing adult somatic progenitor cells to achieve 

large scale tissue repair.   

As basic questions about the APC phenotype remain unanswered, we embarked 

on a wide ranging investigation of properties and behavior displayed by these cells in 

vitro and in an in vivo murine ossicle model.  In addition, we submit that any 

understanding of the uniqueness of APC is incomplete without also investigating how 

they differ from other cervid MSC.  We therefore cultured a parallel, animal-matched 

population of marrow-derived MSC and subjected them to the same methods as with 

APC.  

Using cells isolated from the antlers and marrow of whitetail deer (Odocoileus 

virginianus), the work was guided by the following global hypothesis:  
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APC and cervid marrow-derived MSC conform to a mesenchymal stromal cell 
model but differ measurably from each other in terms of their intrinsic 
behavior and responses to stimuli.   

 

In Aim 1 (Chapter II), we investigated how white-tailed deer APC conform to 

basic criteria defining mesenchymal stromal cells (MSC), particularly in terms of self-

renewal and multipotency.  Working in vitro, we compared colony formation, cell 

expansion rates and differentiation capacities of reserve mesenchyme APC to animal-

matched, phalangeal marrow-derived MSC.   As antler growth is closely tied to hormone 

status, we also examined the effects of the glucocorticoid dexamethasone on 

osteogenesis.  In chondrogenic cultures, which we argue recapitulate aspects of the 

antler tip microevironment, we explored the effects of dexamethasone on cell number, 

apoptosis and matrix production. 

According to Bianco and others, in vivo differentiation is a more representative 

measure of a cell’s multipotency than in vitro culturing (Bianco 2008.)  In Aim 2 (Chapter 

III), we therefore explored APC and MSC osteogenic differentiation in a murine ectopic 

ossicle formation model (Krebsach 1997, Pettway 2005 and 2008.)  Here, cells were 

seeded onto collagen scaffolds and implanted subcutaneously in immunodeficient mice 

for 6 weeks.  Evidence of mineralized tissue formation was collected using microCT and 

histological techniques. 

Last, with mechanical forces so intimately linked to musculoskeletal structure-

function relationships, we sought in Aim3 (Chapter IV) to investigate the degree to 

which reserve mesenchyme-derived antlerogenic progenitor cells (APC) respond to 

mechanical stimuli.  Based on Jacobs’ contention that oscillatory fluid flow is the 

modality most representative of the mechanical conditions experienced on a cellular 

level, we employed it to load these cells (Jacobs 1998.) 
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Key results 

Aim 1 

 Contrary to expectations, APC did not exhibit greater in vitro proliferative capacity 

compared to MSC.  Mean numbers of visible colonies generated by APC and MSC 

were similar, but APC demonstrated more inter-animal variability. 

 APC and MSC exhibited different patterns of differentiation.  Unlike MSC, no 

evidence of adipogenesis was seen in APC.  Under osteogenic conditions, APC 

displayed greater alkaline phosphatase activity at earlier time points yet generally less 

mineralization.  While dexamethasone reduced mineralization in MSC, this 

glucocorticoid had time dependent effects on APC.  In chondrogenic micromass culture, 

APC were more cellular than MSC, yet were also more apoptotic.  Dexamethasone has 

opposing effects on APC and MSC chondrogenesis, increasing markers of 

differentiation in latter cells with reducing them in the former.  Dexamethasone also 

increased apoptosis in APC but not MSC. 

 

Aim 2 

 Fresh, late passage APC and MSC did not experience substantial mineralization 

in an in vivo ectopic ossicle formation model.  However, early passage, albeit previously 

frozen, APC and MSC displayed greater markers of osteogenic differentiation (tissue 

mineral content and presence of putative osteocytes and osteoclasts) compared to 

blank (no cell) controls.  In contrasts to in vitro results, no difference was seen between 

APC and MSC mineralization in vivo. 

 

Aim 3 

 Oscillatory fluid shear did not have a generalizable influence on the nitric oxide 

and prostaglandin E2 content of APC and MSC conditioned medium.  Loaded APC did 

exhibit greater increases in PGE2 versus sham at early time points, yet no consistent 

effect was found in MSC.   

 On the other hand, non-loaded APC showed equal or increased relative cell 

numbers compared to MSC.  In addition, basal levels of APC PGE2 were substantial 

greater. 
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Conclusions and observations 

We presented evidence that antler tip APC are likely more lineage-committed 

osteo-/chondroprogenitors compared to animal-matched marrow MSC with different, 

often opposing, responses to glucocorticoid steroids. 

The inverse relationship between APC apoptosis and chondrogenesis raises the 

possibility that programmed cell death may help sustain a potential “work force” of non-

differentiating APC within the reserve mesenchyme.  Apoptosis, rather than being 

antagonistic to tissue regeneration, may, though a mechanism such as compensatory 

proliferation, actually contribute to short duration progenitor cell homeostasis. 

  In contrast to our in vitro findings, APC and MSC produced similar amounts of 

mineral in a murine ossicle model.  It is possible that, compared to the MSC, APC 

osteogenic differentiation requires a more stringent set of factors--factors that may be 

more accessible to these cells when seeded onto collagen sponges and implanted in 

mice.  This further reinforces the notion that APC and MSC growth and differentiation 

are subject to distinct set of responses to environmental cues. 

We were not able to make definitive statements regarding APC and MSC 

mechanoresponsiveness.  However, our investigation of the effects of oscillatory fluid 

shear stress on these cells uncovered more evidence of the differing effects of milieu on 

growth (in this case, the growth substrate) as well as the robust basal production of a 

factor (PGE2) by APC that could contribute to antler-specific behavior.   

APC cultured on fibronectin-coated glass accrued DNA at a rate equal to or 

greater than MSC, contrasting with the reduced cell enumeration over time seen when 

antler cells were grown on cell culture plastic.  Experimental differences (fresh versus 

thawed cells or seeding densities) may have contributed to these results, but it is also 

possible that APC possesses an altered sensitivity to extracellular matrix materials like 

fibronectin.   

Our observation of greater PGE2 production in APC contributes to the 

speculation that antler is an “immunodeficient” or “immune privileged” tissue and offers 

a potential mechanism for a local osteoprotective counterbalance to systemic resorptive 

signals during the antler cycle.  The latter may involve an association with the 

differential response of APC to glucocorticoids compared to marrow cells.  While these 
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findings await further verification, they implicate PGE2 as a compelling factor for 

additional study in the context of tissue regeneration. 

The observed pattern of time, factor, and milieu dependence of APC expansion 

and differentiation may reflect a system of regulation required to confine antler growth to 

a specific anatomical and temporal range. Antler regrowth does not proceed 

“automatically” in response to antler casting, it is initiated by seasonally determined 

signaling (Kierdorf 2007.)  Complete mineralization of the antler is delayed until 

circulating androgens peak during the fall rutting season, after it is fully regrown (Price 

2004.) Moreover, antler regrowth occurs concurrently with bone resorption elsewhere in 

body, indicating a differential responsiveness to circulating factors in the antler 

compared to other bone tissue (Landete-Castillejos 2007.) 

Throughout this project the lack of readily available laboratory animals and 

protocols was a constant challenge.  We were able to carry out our work by subjecting 

cells from wild animals to methods developed for mouse, rat and human cells.  This 

resulted in two central limitations to our work: small sample size and the use of non-

optimized techniques.  Compared to projects involving more conventional animal 

models, considerable time was expended conducting protocol development.  

Consequently, our results were derived largely from merely serviceable methods.  It is 

our hope that the extensive cataloging of the techniques used here would offer a 

beneficial starting point for the next person who intends to conduct antler cell research. 

Overall, we have demonstrated that APC are musculoskeletal mesenchymal 

stromal cells with a distinctly different phenotype compared to animal-matched bone 

marrow-derived MSC. 

 

Ramifications for regenerative medicine 

 The deer accomplishes something that is unique among adult mammals: the 

repeated regrowth of an appendage.  The ubiquity of deer in the landscape around us 

belies the potential boon these animals are to regenerative medicine.  As mammals, 

cervids are far closer to our own species evolutionarily compared to the more commonly 

studied regenerative animal models such as the newt and axolotl.   



130 
 

 As illustrated in Chapter I, research into antler progenitor cell behavior and 

response to putative factors has shed light on a variety of intriguing facets of the antler 

cycle.   However, one of the key aspects of antler research that has remained 

unexplored is the difference between APC and other cervid progenitor cells.   

We found that the APC phenotype is strikingly different compared to marrow-

derived MSC.  Our results suggest that these differences may be part of a pattern of 

local regulation that limits regenerative signaling to a specific place and time.  After all, 

rapid cell growth and differentiation on a systemic level would be destructive to the 

organism.   This local confinement of antler regrowth underscores the potential of this 

model in guiding the development of novel regenerative strategies, in which one goal is 

to isolate the effects of exogenous materials and factors to the damaged region so as to 

reduce systemic morbidities.   

Recall that the buck has the means to stop antler growth as well.  As described in 

Chapter I, this is accomplished by harnessing rising testosterone levels to fully 

mineralize the antler and cause the velvet to shed.  Though the exact mechanisms 

governing this process are not yet known, the capacity for selective growth cessation 

further highlights the pertinence of the antler to regenerative medicine, as well as to 

other fields involving the study of unchecked tissue growth. 

It would be presumptuous to make bold productions as to whether our results 

would be off some benefit to the field of regenerative medicine.  At this point we merely 

submit that the above is worthy of further investigation. 

  
Future directions 

 

 In this section, we will detail several experiments that could be conducted in the 

near future using available knowledge, techniques and equipment. 

 

Confirmation of results and optimization of protocols 

 In order to address the limitations described above, a priority of any future work 

would be to confirm our results using a larger sample size.  Due to the use of wild 

animals, the limited temporal availability of cellular antler tissue and the commensurate 
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legal hurdles involved in the off-season culling of bucks, we were only able to have a 

maximum of three bucks collected at a time.  Additional animals would certainly improve 

the statistical power of our results and thus reduce the likelihood of Type II errors (when 

one fails to reject a null hypothesis when it is actually false.)   

As an example, consider the load/sham PGE2 levels we saw in Aim 3.  We found 

a statistically significant difference between APC and MSC for the 5 minute time point.  

To repeat this experiment to ensure a power of at least 80%, we can calculate the 

needed sample size (N) based on the following equation: 

 

N ≈ 2*SD2*(zα + zβ)2/Δ2 
 

 Where SD is the standard deviation of the population, zα + zβ are the values of 

the z distributions for the desired α and β levels, and Δ is the difference between means 

to be detected.  Using the pooled standard deviation for all our APC and MSC results as 

an estimate of “population” SD, we get a value of 0.72.  We desire an α of 0.05 (for a 

P<0.05) and a β of 0.80 (or 80% power), yielding a “power index” (equal to (zα + zβ)2) of 

7.9.  Last, we would like to at least be able to detect a difference of 1 in our sham-

normalized PGE2 levels.  Putting this all together, we find that nine animals per group 

would be necessary for the desired experimental power. 

Optimization of protocols would require a larger number of cells than was 

available for our work so far.  Methods could be refined using cells from antler only, 

which would not require the killing of the animal.  This would allow the use of farmed 

deer, whose owners have been understandably reluctant to allow culling of scientifically-

robust numbers of their herds.   

 While collecting pilot data we experimented with the use of a drill-powered 

trephine to collect cells from the antler tips of anaesthetized captive white-tails.  Such 

equipment could be used to gather large numbers of cells from the same deer over the 

course of the summer growing season.  In addition, a trephine could be used to collect 

bone marrow and allow the continued refinement of methods for cervid MSC without the 

sacrifice of animals.  
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Investigation of apoptosis 

 Our results (see Chapter II) have led us to speculate that apoptosis may play an 

important role in the homeostasis of APC.  To explore these questions further, we 

propose investigating the effects of the modulation of apoptosis on cell number and 

proliferation.   

 An initial study would probe the effects of different culture conditions on 

apoptosis and attempt to hone in on the specific pathways (extrinsic or intrinsic, etc.) 

involved in the programmed death of these cells.  APC and animal-matched, marrow 

derived would be grown in monolayers and micromass cultures.  The former would be 

conducted on fibronectin-coated slides, which we have shown to allow cell growth of a 

degree equal to or greater than MSC.  As described in Chapter II, micromass cultures 

offer a milieu that approximates that of the distal antler, where robust apoptosis has 

been shown to occur (Colitti 2005.)   

Assessments of apoptosis would be carried out histologically (using TUNEL-

staining) as well as via the expression of genes coding for proapoptotic proteins such as 

TNF, BAK and BAX (Lindsten 2000, Willis 2003.)  Basal levels of proliferation under 

these conditions would be measured using H3 -conjugated thymidine incorporation or 

BrdU (or a non-toxic equivalent such as Invitrogen’s Click-iT EdU kit.)  Cell would be 

seeded from the 3200/cm2 to the 20300/cm2 values used in the cell enumeration and 

fluid shear studies, respectively, to determine the effects of seeding density on 

proliferation. 

 Next, we would investigate the effects of graded doses of pro- and anti-apoptotic 

compounds on apoptosis and cell proliferation.  Compounds would be chosen to target 

pathways specific to the upregulated proapoptic genes found in the initial study.  

Examples of commercially available proapoptotic compounds include BAM7 and AT101 

(BAX activators) and recombinant human BAX (Sigma-Aldrich, St. Louis, MO.)  Anti-

apoptotic factors include BAX inhibiting peptide and GNF-2 (a Bcr inhibitor) (also from 

Sigma.)  If our earlier in vitro observations are valid, we would expect that some degree 

of apoptosis suppression would negatively impact APC proliferation and vice versa.  

However it is likely that the effects of the selected compounds will be multi-phasic—that 
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the suppression or enhancement of apoptosis may only occur within a range of 

concentrations. 

 

Investigation of prostaglandin E2 

 Confirmation will be needed to verify whether the comparatively robust 

production of PGE2 by APC occurs on a constitutive basis in vitro, or if the levels of this 

factor measured in these cells (see Chapter IV) was an artifact of the sham loading 

protocol.  In addition, it would also be worthwhile to explore whether the production of 

PGE2 is substrate and cell-density dependent. To carry this out, we propose seeding 

APC and MSC on standard cell culture-treated polystyrene plates as well as glass 

slides onto which graded concentrations of gelatin and fibronectin had been coated.  

PGE2 and COX-2 levels will be measured in conditioned medium specimen and in cell 

lysates, respectively.  Expression of prostaglandin synthases and COX-2 will also be 

determined using qPCR.  If our Chapter IV data was representative of the basal APC 

phenotype, we would expect APC to produce more PGE2 regardless of the culture 

conditions. 

 We also propose to investigate in situ production of PGE2.  

Immunohistochemistry would be used to locate PGE2, COX-2 and PGE2 receptors 

EP1-4 in antler tissue sections (Harris 2002.)  Comparisons would be made between 

relative numbers of cells in each antler tissue compartment that were positive for each 

marker.  The proportion of each PGE2 receptor subtype would also be determined to 

give a sense of the specific downstream pathways activated. 

 The next logical step would be the modulation of PGE2 levels in APC and MSC 

in vitro.  From the results generated in the first part of the study, APC and MSC culture 

conditions (cell plating density and substrate) would be selected for maximal growth.  

Next, proliferation would be measured graded concentrations of PGE2 antagonists such 

as indomethacin and SC-560 (both COX-2 inhibitors) and agonists including Perkin 

Elmer’s Prostanoid (Levine 1972, Brenneis 2006.)  We predict that suppression of 

PGE2 production would be more detrimental to APC proliferation compared to that of 

MSC.  On the other hand, we hypothesize that increasing PGE2 levels would not 
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enhance (and could actually degrade) APC proliferation, while offering some benefit to 

MSC proliferation, at least over a range of concentrations (Scutt 1995.) 

 

Gene array comparison between APC and MSC 

 So far the scope of our analysis has been limited to a narrow number of mainly 

biochemical markers of cell growth and differentiation.  In order to maximize the utility of 

the APC as a model for musculoskeletal regeneration, we must cast a wider net to 

better encompass the panoply of differences that may exist between APC and cervid 

MSC.  One means of doing so would be to use microarrays to capture alterations in 

gene expression between these cell types.   

 A key technical challenge to such work would be the lack of commercially 

available cervid microarrays.  There is, however, a high degree of synteny between 

deer, sheep, cows and humans chromosomes (Slate 2002.)  While this by no means 

guarantees the necessary homology at the single gene level, it is encouraging enough 

for us to propose the use of microarrays designed for bovines, sheep or even humans.   

 Microarrays could assist in the understanding of differences in the regulation of 

pathways involved in development, inflammation, osteogenesis, chondrogenesis, etc. 

between cultured APC and MSC.  This knowledge would be of great help in guiding the 

development of future experiments. 
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