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ABSTRACT 

Crowd sourced strategies have the potential to increase the throughput of tasks 

historically constrained by the performance of individual experts.  A critical open 

question is how to configure crowd-based mechanisms, such as online micro-task 

markets, to accomplish work normally done by experts.  In the context of one kind of 

expert work, feature extraction from electron microscope images, this thesis describes 

three experiments conducted with Amazon’s Mechanical Turk to explore the feasibility 

of crowdsourcing for tasks that traditionally rely on experts.    

The first experiment combined the output from learning algorithms with 

judgments made by non-experts to see whether the crowd could efficiently and accurately 

detect the best algorithmic performance for image segmentation.  Image segmentation is 

an important but rate limiting step in analyzing biological imagery.  Current best practice 

relies on extracting features by hand.  Results showed that crowd workers were able to 

match the results of expert workers in 87.5% of the cases given the same task and that 

they did so with very little training.  The second experiment used crowd responses to 

progressively refine task instructions.  Results showed that crowd workers were able to 

consistently add information to the instructions and produced results the crowd perceived 

as more clear by an average of 8.7%.  Finally, the third experiment mapped images 

to abstract representations to see whether the crowd could efficiently and accurately 



 xi 

identify target structures.  Results showed that crowd workers were able to find 100% of 

known structures with an 82% decrease in false positives compared to conventional 

automated image processing. 

This thesis makes a number of contributions.  First, the work demonstrates that 

tasks previously performed by highly-trained experts, such as image extraction, can be 

accomplished by non-experts in less time and with comparable accuracy when organized 

through a micro-task market.  Second, the work shows that engaging crowd workers to 

reflect on the description of tasks can be used to have them refine tasks to produce 

increased engagement by subsequent crowd workers.  Finally, the work shows 

that abstract representations perform nearly as well as actual images in terms of using a 

crowd of non-experts to locate targeted features. 
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CHAPTER 1  

Introduction 

There has been much recent excitement about the potential to organize large 

groups (“the crowd”) to perform tasks faster and better than individuals (Westphal, 

Butterworth et al. 2005; Kittur, Chi et al. 2007; Lintott, Schawinski et al. 2008; Lee, 

Kapelner et al. 2009; Sullivan, Wood et al. 2009; Bernstein, Little et al. 2010; Lin 2010).  

Referred to broadly as “crowdsourcing,” efforts to harness crowd work have been 

accelerated by the development and proliferation of online micro-task markets 

(Surowiecki and Silverman 2007; Kittur, Chi et al. 2008; Sullivan, Wood et al. 2009; 

Borne and Team 2011; 2013).  Amazon’s Mechanical Turk (AMT) is the most notable 

instance of a micro-task market and it has been explored in the context of a wide range of 

relatively simple tasks (e.g., eliminating duplicate entries from a database).  An open 

question is whether markets like AMT can be harnessed to perform expert tasks.  

Specifically, preliminary exploration suggests that in a large class of activities throughput 

is often limited by the pace at which an expert can work. In particular, three primary 

challenges emerge when trying to transform tasks normally performed by experts into 

tasks that can be accomplished by the crowd.  First, problems need to be converted into 

forms that can be addressed by non-expert workers. Second, definitions of tasks 
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themselves need to be refinable by the crowd. And finally, data need to be transformed 

such that potentially sensitive or private information is not exposed.  

Scientific data analysis is a domain where crowd-based approaches have been 

proposed as a solution to many of the difficulties arising from data abundance (Westphal, 

Butterworth et al. 2005; Lintott, Schawinski et al. 2008; Lin 2010).  For example, with 

modern instrumentation, scientists increasingly have access to more data than can be 

analyzed. These gains reflect improvements in underlying semiconductors that are at the 

heart of computers, sensors, and related technologies embedded within instruments.  

Moore’s law, for example, says that processing power doubles every 18 months (Schaller 

1997).  Therefore, the rate of data acquisition is growing as a function of the capabilities 

of semiconductor-based systems, such as the charged coupled devices (CCDs), or 

photonic detectors, used by cameras within instruments to capture images.  While 

methods for collecting data have improved radically, methods for analyzing data have 

evolved more slowly. After acquiring data from instrumentation, extracting precise 

models from the data can be a time-consuming and labor-intensive process.  

The neurosciences are one domain where scientists struggle to keep pace with the 

capabilities of instruments, such as CCD-based light and electron microscopes.  On the 

one hand, it is now possible to obtain images that show both cellular and sub-cellular 

structures over relatively large areas (e.g., millimeters).  However, resolution at this scale 

poses challenges for viewing patterns of organization within biological systems.  For 

example, extracting all of the cell membranes from a moderate dataset of 2k x 2k x 100 

pixels could require months of manual labor.  As a consequence, scientists modify their 

analysis protocols to downsize images and reduce the number of structures that need to 
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be identified.  This thesis explores an alternative strategy where the crowd is used to find 

structures, with the potential of using the full extent of available data without increasing 

analysis overhead.  The sections that follow outline this strategy and the subsequent 

chapters provide detailed descriptions and results.  The thesis concludes with an 

assessment of the feasibility of crowd-based data analysis and an exploration of future 

directions. 

1.1 Organizing the work of the crowd 

It may be counterintuitive to solicit work from an unverified and unknown 

community of users, but crowds can be surprisingly capable. Surowiecki (2005) describes 

Francis Galton’s study (Galton 1907) of county fair attendees who were asked to guess 

the weight of a butchered and dressed ox. Galton’s surprising finding was that the median 

of the crowd’s estimates (1207 lbs) was very close to the actual dressed weight (1198 lbs) 

– a difference of only 0.8%.  Surowiecki draws a number of conclusions from Galton’s 

account and from other descriptions of crowd-based decision making.  First, there should 

be a diversity of opinion (i.e., each person has private information).  Second, individual 

decisions should be independent (i.e., not influenced by the decisions made by others).  

Third, each decision maker should be able to draw on specialized or local knowledge.  

And finally, there should be a mechanism to convert private decisions into a collective 

decision.  Evidence from practice suggests that crowds have worked best for independent 

and iterative tasks that do not require significant specialized training (Little, Chilton et al. 

2009). For example, Von Ahn demonstrated several types of work that crowds can do, 

but are very difficult to accomplish with algorithmic approaches, such as image labeling 

(Von Ahn 2006). In his tasks, Von Ahn took advantage of the workers’ image processing 
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capabilities. People are able to quickly interpret visual imagery, easily outperforming 

machine equivalents, particularly in tasks with uncertainty, such as when there are 

ambiguous subjects or situations with high degrees of noise.  

1.1.1 The crowd marketplace 

A key challenge in performing crowd-based work is recruiting and paying crowd 

workers.  A successful approach to this problem is the creation of online micro-task 

markets, such as AMT.  AMT uses a web interface to match workers and employers 

while providing mechanisms for authentication, task management, worker history, and 

information sharing among workers and employers.  Demonstrating the utility and cost 

benefits of AMT, Kittur et al. (2008) conducted user interface studies, a typically 

expensive and time consuming task, and found that participants produced high-quality 

evaluations at a much lower cost than with traditional methods. It was also noted that the 

time required for experimentation was significantly less due to the size of the worker 

community and the ability to work in parallel.  The programmable architecture of AMT is 

another advantage, allowing the development of tightly integrated applications. For 

instance, Soylent is a novel word processor application that is linked with AMT, enabling 

the user to send off portions of text to the crowd to be proofread or otherwise edited 

(Bernstein, Little et al. 2010). Similarly, GemIdent (Lee, Kapelner et al. 2009) couples 

automated algorithms and workers via AMT to seed the algorithms. This process 

increased the throughput and reduced the cost of the relatively labor-intensive process of 

quantifying and locating immune and cancer cells for increasing the accuracy of breast 

cancer prognosis.  
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1.1.2 Outside the crowd markets 

Despite AMT’s proliferation, there are alternative mechanisms for aggregating the 

contributions of many users, often oriented around scientific goals. Wikipedia and citizen 

science projects are two such examples. Wikipedia is a free, online encyclopedia 

developed by a very large community of volunteers, aggregating their efforts to create a 

high-quality resource rivaling print alternatives (Giles 2005). Knowledge in Wikipedia is 

often seeded by a few individuals with a majority of the other contributions being the 

aggregate of many small edits by a large number of contributors (Kittur, Chi et al. 2007).  

Citizen science projects are built around communities, often of expert and lay 

participants, that aggregate work and expertise, typically with no financial compensation. 

There are a number of different citizen science projects that utilize their participants in 

different ways to gather data, process data, solve problems, and explore. A citizen science 

project that uses participants as sensors, Community Collaborative Rain, Hail and Snow 

Network (CoCoRaHS), collects precipitation data from thousands of volunteers 

distributed throughout the U.S. By aggregating these precipitation data at a higher spatial 

resolution than the national weather service grid, scientists and firms can use these data to 

generate higher resolution forecasts than are typically available, a feature particularly 

relevant to weather sensitive individuals such as farmers (Cifelli, Doesken et al. 2005). 

eBird aggregates the observations of bird enthusiasts to discern patterns over large 

distances, correlating observations and patterns across observations (Sullivan, Wood et 

al. 2009). Such coordinated efforts from many independent individuals construct a 

sustainable network of contributors that would be prohibitively expensive for 

organizations such as the government to implement. GalaxyZoo is a very successful 
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citizen science project that trains participants to classify celestial objects collected from 

the Sloan Digital Sky Survey (Lintott, Schawinski et al. 2008). To reduce the complexity 

of the task for the end user, GalazyZoo automatically processes the data to present the 

user with only a single celestial body, reducing complexity and opportunity for user error. 

Attracting the attention of amateur astronomers, GalazyZoo boasts over a billion 

classifications by users. Participants in GalazyZoo that make significant discoveries have 

been cited in resulting scientific publications or have been mentioned in the 

acknowledgements. Along similar lines, Stardust@home uses crowd participants to 

identify the tracks of interstellar dust from microscopic images of an aerogel flown on a 

spacecraft (Westphal, Butterworth et al. 2005).  Finally, a different kind of project where 

citizen scientists process data is Foldit. In Foldit, participants “solve” protein structures. 

Participants employ sophisticated collaborator, heuristic, and visual problem solving 

methods to discover complex attributes of protein structures (Cooper, Khatib et al. 2010). 

Using a number of different motivational mechanisms such as professional attribution, a 

game format, and the opportunity to win special prizes, Foldit has gained much 

recognition in the popular and academic press.  

Citizen science projects attract the attention and efforts of a large number of 

participants for a number of reasons. These reasons include recreation (eBird), possible 

financial rewards (Foldit), community/peer recognition (Foldit, Stardust@home, 

GalazyZoo), and by encapsulating work into a game like or competitive format (Foldit, 

Finding Khan). Citizen projects allow users to pursue altruistic motivations, such as 

solving key chemical structures in Foldit to further scientific knowledge, while also 
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providing personal benefits, such as improved weather forecasting through contributions 

to CoCorahs.  

The motivations of Mechanical Turk workers are largely different than citizen 

science projects (Ipeirotis 2010) (Ross, Irani et al. 2010) and largely financial. Ross et al. 

in a survey of Mechanical Turk workers found that 18% of participants rely on 

Mechanical Turk to sometimes or always “make basic ends meet” and only 10% of 

workers reported that financial compensation was “Irrelevant to me”. Ipeirotis conducted 

a similar survey of Mechanical Turk workers and divided the responses between workers 

in the United States and India. He found that compared to their US counterparts, 

significantly more workers from India reported Mechanical Turk as a primary source of 

income and significantly fewer workers from India reported participation as a 

recreational activity.  

1.2 Feature extraction as a setting for crowd work 
 
As noted previously, the neurosciences represent a domain struggling to analyze 

increased amounts of data due to 

improvements in instrumentation.  The 

preceding section, on crowd work, presents 

possible mechanisms for processing increased 

volumes of data, either through online micro-

task markets or through citizen science projects.  I am in a unique position to explore the 

intersection of these approaches with the needs of neuroscientists.   

Figure 1: Fully segmented neurons in 3D 
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Over the period 1999-2012 I spent eight years (including the last three years) in 

residence at the National Center for Microscopy and Imaging Research (NCMIR) at the 

University of California, San Diego.  Now in its third decade of continuous operation, 

NCMIR is an international leader in the research and development of technologies for 

multi-scale, multi-modal 3D and 4D imaging, 

and correlated light and electron microscopy 

(Wiseman, Squier et al. 2000; Price, Chow et 

al. 2006; Milazzo, Lanman et al. 2009; 

Deerinck 2010; Shu, Lev-Ram et al. 2011). In 

addition, NCMIR has been a pioneer in the 

development and use of computational portals 

for remote instrumentation control (e.g., the 

Telescience portal) and the deployment of large and high-resolution visualization 

environments (e.g., the OptIPuter and OptIPortal efforts). My experiences at NCMIR laid 

the foundations for this thesis work, both through understanding of the underlying 

scientific work and through relationships formed with NCMIR scientists and support 

staff.  For example, I have observed the work practices of neurophysiologists and other 

scientists using a number of different instruments, specifically electron microscopes.  

In the neurosciences, instruments such as microscopes are required to see 

phenomena smaller than what can be resolved by the human eye. These instruments 

range from multi-photon confocal light microscopes to wide-field transmission and 

scanning electron microscopes. Because the NCMIR is a center for instrument 

development, these instruments are at the forefront of available technology, capable of 

Figure 2: Output from machine learning algorithm 
detecting cell membranes. 
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collecting data at higher resolution with improved signal to noise and at increased rates. 

For example, NCMIR’s scanning electron microscopes routinely acquire close to a 

trillion pixel 2D images (800k x800k pixels), or about 1.4 TB of data for a single image. 

It would require 277,778 24-inch monitors to display an image at native resolution. 

Multiplying the data collected, this instrument also collects data in the Z dimension to 

create a 3D volume of 100 or more layers. A number of experiments are ongoing with 

this instrument, and in particular will enable multi-scale electron microscopy, a mode of 

analysis traditionally reserved for multiple instruments examining the same specimen at 

different levels of resolution. (Wiseman, Squier et al. 2000; Singh, Schwarz et al. 2006; 

Perkins, Sun et al. 2009). Multi-scale microscopy allows the researcher to view contexts 

while preserving the resolution to discriminate between similarly sized but distinct 

structures within the specimen. This ability is the key to understanding abnormalities, 

allowing researchers to identify abnormalities at the cellular level, and the details of the 

abnormality at the subcellular level, providing clues as to the origins of the permutation.  

NCMIR’s transmission electron microscopes are fitted with 8k x 8k sensors and 

have the ability to stitch together multiple images to create very wide field images.  

Advances such as the 8k x 8k detector allow scientists to minimize the time the 

microscope is operating, reducing distortion of samples (Milazzo, Lanman et al. 2009). 

Higher resolution detectors also allow researchers to see context plus focus. Researchers 

have been able to use the 8k x 8k transmission electron microscope to view entire cells 

and particles of interest within the cell revealing organization and suggesting function of 

the particles in context of the broader cellular system (Milazzo, Lanman et al. 2009). 
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Images direct from the instruments have limited scientific value for rigorous 

analysis.  Often researchers want to “segment” the image, or conduct additional 

processing to extract features of interest (e.g., neurons as in Figure 1). For example, 

images from electron microscopes are typically 3D volumes of black and white images. 

Expert microscopists are able to flip through a stack of images and mentally reconstruct 

the features within the volume, but sharing and communicating knowledge of objects 

within these volumes requires additional analysis to create precise models of structures 

within the data. Extracting features from the volumetric data is the goal of segmentation. 

Segmentation reveals information about the structure that may not be readily seen when 

looking at data in 2D such as its three dimensional structure, volume, size, and shape of 

different components. Specifically, segmentation is the important first step towards 

understanding the relationship between structure and function.  For instance, in 1997, 

Perkins et al, transformed our understanding of the structure of mitochondria, the energy 

makers within a cell, through the process of 3D segmentation and computational 

reconstruction (Perkins, Renken et al. 1997).  After 3D reconstruction, Perkins observed 

that the internal structure, previously thought to be a baffling of endoplasmic reticulum 

was actually a series of crista that span the cell width. Previous models were based on 

images where the crista appeared like baffles when projected in a 2D space.  Image 

segmentation and reconstruction also allows for quantitative analysis. As computed 

models, attributes such as volume, size, and other attributes can be easily counted, 

compared, and organized. Further developing insight from the segmentation of cells and 

its components, Perkins et al. used precise volumetric segmentation of mitochondria to 

suggest unique bioelectric attributes of rods compared to cones in the retina. 
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Mitochondria are the energy makers of the cell and the precise characterization of its 

ultrastructure can be used to infer relationships between structure and function, 

specifically larger mitochondria with more cristae are capable of producing more energy. 

By reconstructing precise volumetric models of mitochondria associated both with rods 

and cones, Perkins inferred the energy requirements of the two different cell types and 

suggested that cones have greater energy consumption compared to light adapted rods 

(Perkins, Ellisman et al. 2003). As further illustration, Martone et al. have developed a 

sophisticated database of image and segmentation data useful for cross-correlated 

quantitative studies of segmented features (Martone, Gupta et al. 2002).  

There are currently three methods for image segmentation from electron 

microscopes. The dominant method involves a manual process where experts trace 

features within an image with a computer mouse. It is common for users to trace a stack 

of images that a feature of interest runs through. After tracing one image, the user iterates 

through the stack of images creating a series of contours. An application compiles the 

different contours in 3D space and interpolates between the tracings, creating a 3D model 

of the object of interest (Kremer, Mastronarde et al. 1996).  While manual segmentation 

is very accurate and the current gold standard for scientific analysis, it is slow and does 

not scale well. A second method involves automated algorithms for the analysis of 

electron micrographs using machine learning techniques (e.g., Figure 2). The machine-

learning routine extracts features from images based on a training dataset (Jurrus, Hardy 

et al. 2009; Mishchenko 2009).  While highly scalable and capable of processing very 

large amounts of data quickly, these methods do not achieve the accuracy required for 

scientific analysis.  Further, experts believe that machines will not match the performance 
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of experts in the near future due to the noisy nature of electron micrographs (Mishchenko 

2009). Finally, a third method involves semi-automated approaches where users seed 

algorithms, combining human and machine effort. Applications such as Amira or IMOD 

ask users to establish initial conditions, such as through level-set methods or flood fills, to 

subsequently assist the user in the segmentation process (Kremer, Mastronarde et al. 

1996; Stalling, Westerhoff et al. 2005). Initial interviews with segmentation experts 

suggest that these algorithms can sometimes increase throughput, but at other times 

create more work than manual segmentation because of the high number of corrections 

required. When they work, they can speed up segmentation by as much as ten-fold over 

manual methods. 

The primary strength of automated segmentation methods is the ability to 

distribute computation over parallel resources to achieve faster throughput, but this 

method lacks the accuracy necessary for scientific analysis. The alternative method of 

experts segmenting images is typically performed alone or in small groups, and while 

accurate is very slow. Examining the HCI and CSCW literature reveals precedent for 

applications that are both highly parallel while incorporating the input of human users 

(Seung 2013). These applications combine the scalability of algorithmic approaches with 

the human ability to resolve uncertainty, suggesting suitability for crowd-based methods. 

That is, online micro-task markets, like AMT, provide a mechanism for coordinating the 

activity of many crowd workers (i.e., achieving parallelism) while exploiting the unique 

characteristics of human workers (i.e., visual processing).  The following section 

examines existing crowd-based frameworks and evaluates how they might be applied to 

the task of image segmentation in the neurosciences.  
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1.3 Three experiments in crowd-based image processing 

The thesis is organized around three experiments targeted at the challenges of 

having a crowd of non-experts achieve results comparable to experts.  This section briefly 

describes each experiment. 

1.3.1 Converting expert tasks so they can be performed by the crowd  

A key challenge in enabling Turkers to perform image segmentation is 

eliminating the need for expert knowledge. In the case of membrane tracing, for instance, 

a worker requires understanding of biological concepts to successfully distinguish 

between the features of interest within a cell, such as vesicles, the nucleus, endoplasmic 

reticulum, and mitochondria. Rather than asking workers to draw the outline of specific 

features, the first experiment in the thesis presents an array of competing segmentation 

results (i.e., obtained by automatic means) and asks users to choose the best match to a 

given pattern.  For example, in Figure 3, workers see three alternative segmentations and 

are told to choose the result where the pattern of green lines is most like the description 

of “outer walls, like the surface of a balloon, excluding any interior features.”  This re-

conceptualization of the segmentation task transforms the work performed from feature 

identification (requires expertise) to pattern recognition (does not require expertise). 

 
Figure 2: In the task assigned to workers, expertise is embedded in the system, reducing the knowledge required 
of the worker. In this example, answer A is the best match. 
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The key insight behind the re-conceptualization of the segmentation task is the 

recognition that knowledge can be embedded in mechanisms and approaches (in the case 

of image processing through machine learning algorithms), therefore reducing knowledge 

required of individual workers (Argote 1999).  For instance, Nonaka and Takeuchi (1995) 

describe the example of expertise built into an automatic bread maker.  In the initial 

product, the manufacturer simply mechanized what were thought to be the complete steps 

in making a loaf of bread.  Bread produced by these machines did not taste right.  A 

member of the design team came up with the idea of shadowing a famous baker to try to 

learn the secrets of the process. Through this observation they found that a special kind of 

kneading was essential for high quality bread.  The designers were able to achieve the 

same effect as the special kneading by adding ribbing to the mixing paddles in the bread 

machine.  In this case, Nonaka and Takeuchi document how the tacit knowledge of the 

baker was externalized in the form of the modified bread maker. A key advantage of this 

externalization was that an outcome previously achievable only by an experienced 

practitioner (i.e., the famous baker) could now be achieved through ordinary actions (e.g., 

measuring and adding ingredients) by the lay public.   

1.3.2 Allowing the crowd to refine tasks  

In online micro-task markets, communication about tasks is typically one way.  

Specifically, in AMT, employers create HITs, release these to users, and then harvest 

results.  By contrast, in most settings, workers have modes of varying richness (e.g., 

email to face-to-face communication) where they can exchange information.  For 

example, rapid feedback can be important in diagnosing and repairing breakdowns.  In 

the case of crowd-based tasks that are outside the usual experience of workers, the lack of 
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two-way channels may be a significant impediment to performance.  In particular, experts 

may formulate requests using language and concepts that are unfamiliar to less expert 

audiences.  The second experiment in the thesis addresses this concern by introducing the 

possibility that in addition to performing work, Turkers may also play a valuable role in 

re-formulating requests such that HITs become easier to understand and accomplish. 

The key insight behind allowing the crowd to refine tasks is that even though 

Turkers may lack expertise in the domain of a HIT, they possess the capacity to phrase 

requests such that workers are more motivated or have a clearer idea of what they are 

expected to do.  That is, Turkers may be untrained with respect to a given task, but they 

are very experienced (in some instances) at being Turkers.  For instance, in a system 

where requests can be refined, early responders can use their experience of executing a 

task to re-shape future requests to improve the performance of subsequent workers.  If 

successful, such an approach will show that the benefits of negotiating common ground 

(Clark 1996) (i.e., the give-and-take between task participants that produces mutual 

understanding) can be introduced into large-scale crowd activities, where typical 

approaches to forming common ground (e.g., dyadic conversation) are not practical.   

1.3.3 Transforming private or sensitive data  

A final challenge related to crowd-based image processing is that making images 

public may reveal information to competitors, such as in the case of labs racing to make 

the same discovery, or may compromise privacy, such as in the case of images made 

from patients.  Therefore, before engaging the crowd, underlying data may need to be 

transformed.  The third experiment in the thesis addresses this question by exploring 

whether transformations exist that allow the crowd to perform work unaware of the true 



 16 

nature or source of the data, while still yielding output that is useful when mapped back 

to the original data.   

The key insight here is that when images have a particular “shape grammar,” 

(Stiny 1980) or set of rules that can be used to describe objects in the image, abstractions 

can be produced that preserve important characteristics of an underlying image without 

revealing the actual image.  For example, a common image processing task is to locate 

occurrences of a specific feature (e.g., a sigmoid body) and then count the frequency of 

these features.  Through transformation of an image, resulting 2D images – when 

“flipped” back and forth – may show spherical volumes with tubes, similar to the 

appearance of a cat’s eye marble.  If workers, in aggregate, can find the coordinates of 

these “marbles” the coordinates can be used to show the location of sigmoid bodies in the 

actual image.  This approach has tremendous potential outside of the neurosciences. For 

instance, if numeric data can be transformed into shapes with shape grammars, crowds 

could work on a wide array of sensitive data.  For example, in the case of financial 

transaction data, transformed images could be used to detect characteristic shapes for 

patterns of fraud.   

1.3.4 Experiments in the context of popular crowdsourcing projects 

Individual contributions to crowdsourcing projects can take a number of different 

forms. Table 1 categorizes eight well known crowdsourcing applications into three 

categories: a) the crowd as a sensor; b) the crowd as a computer; and c) the crowd 

working collaboratively.  Projects such as CoCoRaHS and eBird solicit data from the 

crowd as sensors to create data collection networks that would be difficult if not 

impossible for a single organization to build. Crowd computing projects such as 



 17 

Stardust@Home, GalazyZoo, and Finding Khan present the crowd with tasks that are 

difficult to perform with existing algorithms. Crowd collaborative work in this context 

relies on the aggregate contribution of crowdworkers such as with community portals like 

CoCoRaHS and Finding Khan where solutions are the result of aggregate intelligence of 

the crowd.  

 

 Crowd as a sensor Crowd computing Crowd collaborative 
work 

CoCoRaHS(Cifelli, 
Doesken et al. 2005) 

X X X 

eBird (Sullivan, 
Wood et al. 2009) 

X   

Stardust@Home 
(Westphal, 
Butterworth et al. 
2005) 

 X  

GalaxyZoo (Lintott, 
Schawinski et al. 
2008) 

 X  

Foldit (Cooper, 
Khatib et al. 2010) 

 X X 

Finding Khan (Lin 
2010) 

 X X 

Gemident (Lee, 
Kapelner et al. 
2009) 

 X  

Eyewire (Seung et 
al. 2012) 

 X  

Embedding 
Expertise  
(Chapter 2) 

 X  

Dynamic Questions 
(Chapter 3) 

  X 

Task 
Transformation 
(Chapter 4) 

 X  

Table 1: Popular crowdsourcing applications in terms of worker contribution and the placement of dissertation 
contributions relative to existing literature.  
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The three experiments outlined in this dissertation for the most part build on the 

strategy of employing crowd workers to derive solutions difficult or impossible to 

accomplish with algorithms (Experiment 1: Embedding expertise and Experiment 3: Task 

transformation), while the second experiment (Experiment 2: Dynamic Questions) relies 

on the aggregate response of many users to generate and implement quality task 

instructions.  
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CHAPTER 2  

Distributing Expertise: Refining cell membrane segmentation 
by the crowd 

2.1 Introduction 

This experiment explores whether it is possible to accomplish expert work by 

orchestrating the efforts of non-experts via Amazon’s Mechanical Turk.  The approach 

involves the use of automated algorithms to reduce a complex task, in this case 

identification of biologically important structures within electron microscope images, 

from one that requires expert insight (e.g., hand segmentation of target structures) to one 

that non-experts can perform (e.g., recognizing the best result from a limited set of 

options).  The key hypothesis is that image segmentation can be transformed from a 

process that requires expert judgment (a scarce commodity) to one that relies on naïve 

pattern detection (a skill that many workers possess) – and that in doing so the crowd can 

achieve results similar to an expert.   

2.2 Motivation 

A challenge to enabling image segmentation via Mechanical Turk is elimination 

of the need for expert knowledge by the workers. For example, under conventional 

approaches, successful feature extraction requires the ability to operate the tools for 
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segmentation and the ability to distinguish structures of biological interest, such as the 

vesicles, nucleus, endoplasmic reticulum, and mitochondria within a cell. Crowd workers 

can’t be assumed to possess this kind of deep biological knowledge.  Therefore, the 

segmentation task must be transformed from one that is difficult for the crowd to 

accomplish to one that is easier.  That is, rather than asking crowd workers to trace the 

outline of particular features, workers are presented with alternate tracings generated 

using automated image processing. The crowd workers are then asked to choose the best 

match to a given pattern, such as, “outer walls, like the surface of a balloon, excluding 

any interior features” – as opposed to the expert task (e.g., find all structures that are 

mitochondria and trace these structures). Figure 4 shows representative output from an 

image processing algorithm in green on top of raw image data.  Crowd workers would 

scan the three choices and then select the option that best matches the given pattern 

description (in this case option A is the best match). 

 
Figure 3: In the task assigned to workers, expertise is embedded in the system, reducing the knowledge required 
of the workers. In this example, image A shows the best result. 

2.3 Methods 

2.3.1 Participants 

Participants were recruited from Amazon’s Mechanical Turk with several worker 

conditions. These conditions included a requirement that workers had completed 1000 

prior hits with a 95% success rate. Workers were given the option of previewing the HIT 
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before accepting it and were provided with a compensation of $0.25. For each HIT, 50 

participants were recruited for a total of 250 participants. 

2.3.2 Materials 

The electron microscope images used in this experiment were processed by both 

an expert and by machine learning algorithm targeting the cell membranes (see Figure 5). 

Consisting of 700x700 pixels and 50 slices in Z the selected volume was a fraction of a 

larger dataset. The dataset was first manually traced by an expert one slice at a time in 2D 

with the results composited at the end to create a 3D volume. The expert tracings were 

then used to train a neural network based algorithm to detect the cell membranes (Jurrus, 

Paiva et al. 2010). Machine learning algorithms in the neurosciences are an increasingly 

popular solution for segmenting large datasets (Jurrus, Hardy et al. 2009; Mishchenko 

2009).  

 
Figure 4: Training of automated segmentation algorithms. Users train algorithms with examples of what the 
program should do. The program then approximately applies this knowledge to similar data. 

2.3.3 Design 

Image data were processed using an automated segmentation technique (Jurrus, 

Paiva et al. 2010). During the automated segmentation process the algorithm goes 

through a noise reduction process. There are regions in the image where the algorithm 

has difficulty distinguishing between noise and membrane. Alternative renderings of 

these difficult regions were produced.   A pipeline of codes and scripts was created (see 

Appendix A) to overlay the generated contours onto electron microscope images, to scale 

Sample 
trace Learning 

algorithm
DataSample 

traceSample 
traceSample 
traceSample 
trace

User Data processed with algorithmWork done by user Trained learning algorithm

DataDataDataData
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these images to a size viewable on most displays (e.g., in a web browser), and to 

aggregate results from crowd workers.  Figure 6a shows an image before processing. 

Figure 6b shows the same image with candidate contours determined by the automated 

segmentation technique and then overlaid on the image using the pipeline of codes and 

scripts.  

   
 (a)    (b) 

Figure 5 (a): Original unannotated dataset. (b): Original dataset with automated segmentation results overlaid 
on top. 

2.3.4 Procedure 

Participants began the experiment by selecting the image segmentation task from 

within the Mechanical Turk online micro-task marketplace.  Once started, participants 

were shown sixteen instances of three alternative tracings and were asked to identify the 

option that best matched the description “outer walls, like the surface of a balloon, 

excluding any interior features.” Supporting the distribution of the task to a broad 

community of workers, a collection of web-based technologies was used including survey 

software, cloud based file hosting, and Amazon’s Mechanical Turk.  

Image	
  cropping	
  and	
  assembly	
  

Before the images were distributed to workers, they required processing to 

decrease the size suitable for distribution on the web. In support of this requirement a 
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script was written by the author included in Appendix A. Three volumes of images 

700x700x270 were divided into smaller images. These images were then uploaded to 

cloud storage easily accessible to Amazon’s Mechanical Turk and Qualtrics software. 

Qualtrics	
  

Qualtrics is an online survey suite with a number of features for dynamic content 

including web services integration. Each worker is tasked with identifying the best 

performing algorithm given three choices. The task was posed as a multiple choice 

question within the Qualtrics software, with each decision presented on its own page. 

Because of the large number of questions, links to data, and surveys that needed to be 

generated, the creation of the surveys was automated with a BASH shell script written by 

the author included in Appendix A. The shell script programmatically creates the survey 

and all of the correct dynamic links to the image data hosted on Amazon’s S3. Each 

survey also included a random six digit number used to validate participation within the 

Mechanical Turk environment.  

Amazon	
  AWS	
  

Amazon’s web services (AWS) are a collection of cloud technologies including 

facilities for compute and data storage. Amazon’s S3 (Simple Storage Service) is a cloud 

storage service. Images of the segmentation data were stored on Amazon’s S3 

infrastructure and referenced within the Qualtrics surveys. Being an Amazon hosted 

technology, the pairing of Amazon S3 and Amazon’s Mechanical Turk ensured 

compatibility and implicit assurance of performance between the two systems. Data on 

S3 were uploaded and the permissions were modified to allow public read access to all of 

the data.  
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Amazon’s	
  Mechanical	
  Turk	
  

As described previously, Mechanical Turk is a micro-labor marketplace where 

workers are paired with employers for very small tasks.  Mechanical Turk offers a 

number of tools and configurations for managing workers and distributing work. 

Additional details of the configuration of the tasks are included in Appendix F. 

Participants completed the task with a median duration of 8 minutes, with some 

participants taking longer than 30 minutes. A total of 50 workers were assigned to each 

HIT, with five HITs issued for a total of 250 workers. The data from workers were 

processed to find consensus from the workers. Consensus was determined by tallying 

answers generated by workers.  

2.4 Results 

The results of this experiment demonstrate that workers can make decisions based 

on pattern recognition that closely coincide with expert judgments given the same task.  

Workers were presented with a panel of three alternatives: A, B, and C as shown in 

Figure 7. Workers were asked to select the image where the algorithm best outlined the 

cell membrane, as highlighted in Figure 8, while balancing the detection of other objects 

within the image, such as vesicles seen in Figure 9.  
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Original   A     B   C 

Figure 6: Image choices presented to workers, asked to pick the image where the green labels outline the cell 
membranes. 

 
 Original   A     B   C 
Figure 7: The algorithm for removing noise was overly agressive, missing part of the membrane. The membrane 
segment was properly detected in panel B. 

 

 Original   A     B   C 
Figure 8: Noise reduction was successful in Panel A, but not in Panels B or C. Panels B and C incorrectly label 
vesicles as part of the cell membranes. 

The gold standard for segmentation in the neurosciences is the expert worker. To 

better understand the performance of the workers solicited from Mechanical Turk, their 

results were compared to the results of an expert worker given the same task. Table 2 

summarizes the results from both the novices and the expert. 

  

Image number Novice/Expert 
agreement 

Percentage agreement 
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1 14/16 87.5% 
2 10/16 62.5% 
3 12/16 75% 
4 15/16 93.8% 
5 16/16 100% 
Table 2: Agreement between novice and expert of the best segmentation. Novices and expert agree on average 
83.8% of the time. 

The data available in Appendix A report the performance of the crowd relative to 

the responses of the “gold standard” or the performance of the human expert. These 

responses range from a low of 62.5% to a high of 100% with an average of 83.8%.  

In the neurosciences, segmentation of features from electron micrographs is 

typically performed by a single person. Even segmentation of whole cells requiring 

several months or years of labor are performed by a single person (Lenzi, Runyeon et al. 

1999; Sosinsky, Deerinck et al. 2005; Noske, Costin et al. 2008). There is no indication 

that a single expert is insufficient to segment even complex structures from electron 

tomograms. In fact Martin et al. showed that human performance in segmentation tasks is 

highly consistent (Martin, Fowlkes et al. 2001). In his work Martin generated 

performance criteria and measured the performance of several participants tracing objects 

from natural scenes. He found that in a majority of his measurements, the errors between 

workers peaked around zero suggesting highly consistent work tracing objects from 

natural scenes between workers. Furthermore, the computer science image processing 

community has embraced the concept of a single expert. In pursuing their goal to 

reproduce human performance in segmentation of objects in natural scenes like electron 

tomograms, they consistently refer to the effort of a single person as the “gold standard” 

(Jurrus, Hardy et al. 2009; Mishchenko 2009; Jurrus, Paiva et al. 2010; Giuly, Martone et 

al. 2012; Giuly, Kim et al. 2013). In these studies, the performances of the algorithms are 

compared to the results of a single domain expert. Following the example of the 
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computer science community and support that people are highly consistent in tracing 

objects from natural scenes, a single expert user was recruited to serve as the gold 

standard in these tests.  

To better understand the distribution of responses by the Turkers, I examined the 

results from the crowd (for Image 1) and compared them to the expert’s reasoning as 

determined from a semi-structured interview.  

Question 
Number 

Algorithm 
A 

Algorithm B Algorithm C Novice 
consensus 

Expert 

1 40 9 4 A A 
2 34 6 13 A C 
3 27 11 15 A A 
4 22 15 15 A A 
5 40 4 9 A A 
6 39 10 4 A A 
7 28 13 12 A A 
8 32 15 6 A A 
9 31 12 10 A A 
10 31 15 8 A A 
11 28 19 6 A B 
12 25 17 11 A A 
13 37 6 10 A A 
14 28 16 9 A A 
15 15 26 12 B B 
16 25 18 10 A A 

Table 3: The results from Image 1, a representative dataset, reporting the distribution of selections by Turkers 
compared to the expert’s selections. Randomized presentation of the results yielded no difference in the 
distribution of responses. 

The results shown in Table 3 indicate strong agreement between the Turkers and 

the expert, when using a plurality rule. That is, the response receiving the most votes 

from the Turkers agrees with the expert answer for fourteen of the sixteen images 

(87.5%).  Applying a stricter test using a majority rule (i.e., one response receives 50% or 

more of the Turker selections) still shows agreement on thirteen of the sixteen images 

(81.3%).  Examining the distribution of answers, there are instances where the consensus 

of the crowd is clear and in agreement with the expert, such as with Questions 1, 5, 6, 8, 



 28 

and 13 where the majority answer collected more than 50% of the votes. Bar charts, such 

as in Figure 10a are a good way to visualize questions where Turkers were in high 

agreement.  However, there were instances where the Turkers were more divided such as 

with Questions 3, 4, 7, 9, 10, 12, 14, and 16. Again, bar charts, such as in Figure 10b are 

a good way to visualize questions where Turkers failed to reach strong consensus.  

(Additional histograms for the remaining images and questions are included in Appendix 

A.)  Finally, there were two cases, Questions 2 and 11, where the majority answer by the 

Turkers received more than 50% of the votes – but this answer disagreed with the expert.  

 

 
  (a)        (b) 
Figure 9: Plot of crowd responses for each question. Additional questions are included in Appendix A. The first 
image demonstrates clear consensus of the crowd (a) while the second image demonstrates a split in 
identification by the crowd (b).  

The responses from the crowd are categorical, with each participant choosing 

from three independent choices. To additionally visualize the degree of consensus within 

the crowd, a convenience assumption was applied where each choice was treated as a 

scalar value and the differences between each choice were equal. In addition, a lack of 

response by the crowd was assigned a value of zero. With these assumptions, several 

boxplots were generated (e.g., Figure 11)showing the response of the crowd (black 

circles) relative to the expert (red circles). Error bars in Figure 11 represent variance 
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around the crowd’s choices. Additional plots visualizing responses of the crowd relative 

to experts for all images are included in Appendix A. 

 

Figure 10: Point plot of expert responses (in red) and novice responses (in black). Error bars report variance 
calculated in R. Blank responses from the crowd are substituted with zero. Additional plots in Appendix A.  

After collecting the responses from the expert, the expert participated in a semi-

structured interview discussing the answers of the crowd with particular emphasis on 

questions where there the Turkers differed or lacked strong consensus. In contrast to a 

pure pattern recognition process, the expert looked for “elimination criteria” such as “bad 

joins” and “prioritizing good connections over tracing a few stray vesicles.” In a number 

of cases the expert had trouble making a sure determination of the best selection because 

of limited contextual information, but made the selections given the available 

information. Asked about the differences in answers for Questions 2 and 11, the expert 
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indicated “It depends on what you’re prioritizing.” The instructions for the task and the 

task itself required judgment and interpretation of the instructions and task. In this case it 

appears that the expert prioritized the exclusion of vesicles over improved detection of 

the membrane. The expert reviewing the responses of the Turkers also indicated that in 

the cases where there was no clear majority of the Turker’s responses, “it could have 

gone either way.”  

2.4.1 Cost 

The cost of segmentation is mostly the time of the segmentation expert as they go 

through the stack of images tracing the features of interest with a mouse. Depending on 

the desired resolution, the analyst may skip a consistent number of slices in Z when 

tracing objects. They will then mesh the results, combining all of the 2D images into a 3D 

object. Looking at the 3D model, they will determine if the graphical representation 

matches their mental representation. If there are differences, experts will then go back 

and correct contours by adding or subtracting features until the graphical and mental 

model of the structures match.  

The process is different when correcting beginning with the output from learning 

algorithms. Segmentation experts will process objects using a flood fill tool to fill in the 

target structure, stopping occasionally to fix the errors made by the learning algorithm. 

The process is described to be “click, click, click, click, trace” opposed to just tracing. 

Because of the effort required to detect and correct errors, it is reported to take the same 

amount of time to correct machine learning results as it is to simply trace manually. In 

addition to the cost of the time to segment the data by the expert, there is considerable 

effort required to train and tune automated algorithms for a particular dataset. Each 
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dataset is different and requires tuning of parameters. Each algorithm is generally also 

optimized for a particular structure. 

Crowdsourcing the algorithm to detect some of the errors made by the algorithm 

requires the additional effort of configuring the task with the techniques outlined in the 

methods section. In this example, each image was processed by 50 workers at a rate of 

$0.25 per worker, resulting in a cost of $13.75 per image.  The relatively large sample 

was useful for illustrating those questions where the crowd clearly demonstrated 

consensus versus those where the crowd was evenly split; distinctions that would not 

have been apparent with smaller sample methods such as panel or consensus models. 

However, panel models would reduce costs by only executing additional HITs in the 

event that preliminary HITs did not reach some threshold of agreement (Little, Chilton et 

al. 2009).  For example, in the case of Questions 1 and 5 from the image comparison 

experiment, where there was very high consensus, additional HITs beyond the first 

several did not add much new information (i.e., the consensus was more immediately 

apparent for these questions).  Therefore, one could preclude further HITs if, for instance, 

five out of five initial responses agreed.  Implementing such an algorithm could decrease 

costs by the difference between the cost of collecting a full sample of HITs and the cost 

of collecting only those HITs required to be reasonably certain of consensus (i.e., 

according to some pre-determined level, such as six consecutive agreements, which 

would cost $1.50) shown in Table 4. Use of still more efficient algorithms, such as the 

agreement model used by Von Ahn’s ESP game, could decrease the cost of analysis of 

each image to as little as $.50 per image.  

Method Cost per image 
Expert Amortized costs of training the expert (e.g., 
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tuition, stipend) and ongoing costs (e.g., 
hourly rate, space, equipment) 

Mechanical Turk (as implemented) $13.75 
Mechanical Turk (modeled after Little et 
al.)  

$1.50 

Mechanical Turk (modeled after Von Ahn 
et al.) 

$0.50 

Table 4: Outline of costs associated with soliciting worker participation in Experiment 1 for different agreement 
methods. 

2.4.2 Limitations  

The accuracy of the work performed by workers is bound to the accuracy of the 

best possible result from the collection of image segmentation algorithms used. Because 

workers are choosing the best answer from a panel of pre-computed options, they cannot 

deviate from what the computer has already calculated. This may be alleviated by the 

introduction of simple drawing tools or by using multiple algorithms with greater 

diversity. 

The current implementation is also not optimized for the lowest cost. Iterative 

improvement schemes (Little, Chilton et al. 2009) (Ipeirotis, Provost et al. 2010) can be 

implemented to reduce the number of workers required, rather than relying on a 

consensus model (one of the more inefficient algorithms available, but one of the easiest 

to implement).  

In addition to the training of the automated algorithms, there is a need to create 

instructions for workers on Mechanical Turk. This step cannot be automated and is 

specific to the structure being traced and the alternatives being presented to workers. This 

process is potentially difficult as experts may struggle to effectively communicate with a 

novice workforce with minimal feedback. This disconnect between experts and novices is 

potentially alleviated with the use of “Dynamic questions” (described in the next 

chapter).   
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2.5 Discussion 

Significant infrastructure development is required to attempt the kind of 

experiment described in this chapter.  Specifically, before collecting a single data point, I 

had to:  

• Identify appropriate image-processing algorithms;  

• Write code for content distribution, image presentation, compensation for 

workers, image preparation, image comparison, aggregation of results, and 

image reconstruction – across multiple software platforms (e.g., AWS, 

Qualtrics, and MT).  

While the automated algorithms used in this experiment are freely available, the 

content distribution, presentation, worker compensation, and image reconstruction 

algorithms were custom developed by me for this dissertation (see Appendix A). While 

not necessarily generalizable to all future applications, the code and systems provide 

reference implementations where none existed before.  

In terms of the findings, crowd workers demonstrated a strong agreement with an 

expert when performing the same task (83.8% agreement).  Further, in cases where the 

crowd was unable to achieve a clear consensus, the expert concurred that these were 

more ambiguous situations (i.e., the crowd was legitimately split between responses and 

the expert thought multiple experts would be similarly split). Additional instruction for 

these ambiguous cases would be one way to improve performance.  For example, a pilot 

run of an image comparison task may identify those comparisons where workers struggle 

and these problematic comparisons could be addressed through guidance from an expert 

(i.e., in the form of modified instructions for these comparisons in subsequent HITs).  
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Finally, performance could be improved by culling crowd workers over iterative tasks 

according to accuracy and efficiency, resulting in a smaller set of workers still able to 

achieve desired results. 
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CHAPTER 3  

Dynamic Questions: Worker refined task instructions in 
micro-labor tasks 

3.1 Iterative refinement of task instructions by the crowd 

A critical challenge in distributing scientific work to the crowd is to minimize the 

expert knowledge required by the worker to engage in the task. Minimizing requirements 

maximizes the number of eligible workers. The previous chapter examined a technique 

for embedding expertise into the system by instilling the knowledge of the expert via an 

automated algorithm. The embedded knowledge was then applied to data where the task 

of the worker was reduced to a pattern recognition task.  

Continuing to seek how to distribute scientific work to the crowd, the next two 

chapters separates the task issued to workers into two parts: a) modification of task 

instructions; and b) modification of the underlying data  

We see in work by Von Ahn (Von Ahn 2006), that the instructions issued to 

workers are a powerful framing mechanism that can transform a dull and repetitive task 

to an entertaining one. Von Ahn et al. created a series of games oriented around tasks 

(“games with a purpose”) difficult for computers to accomplish, but trivial for human 

users, with one example oriented towards labeling of images. Two users were tasked with 
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labeling images, aiming to agree on the tags used to describe the image, developing a 

semantic index for the image – a task difficult to accomplish with algorithms. By framing 

the task as an entertaining game, he was able to solicit the attention of a large number of 

workers who might otherwise apply the same cognitive effort to less productive games 

such as Solitaire.  

In interactions with crowd workers, workers are only identified by their worker 

ID, so the human qualities of workers are not as apparent as in traditional work settings. 

Despite the sparse work context, Turkers do seek ways to make their work more 

meaningful and enriching. For example, Turkers will sometimes reject poorly formed 

HITs in favor of other work (Silberman et al. 2010). Additionally, Turkers leverage 

external information sources such as Turkopticon (Silberman et al. 2010) that provide 

repositories of Turker-generated feedback. These forums allow Turkers to share 

information, detailing past experiences with specific employers, and potentially creating 

consequences for employers with undesirable work or delinquent payment practices.  

 While clearly important, constructing well-articulated AMT tasks is challenging. 

With scientific work and the crowd there is the additional challenge of the potential 

divide between experts and novices based on language and approach. For example, 

Larkin et al. (Larkin, McDermott et al. 1980) found that experts and novices construct 

different mental models and solve problems differently. With the case of experts, they 

may use terms, logical constructs, or background knowledge not accessible to a novice. 

Compounding this divide, communicating and soliciting feedback in AMT is not always 

an obvious process. While in face-to-face communication an employer and worker might 

observe body language, ask and respond to questions, or refine the task, workers on 
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Amazon’s Mechanical Turk have little motivation and few mechanisms to provide 

feedback to an employer. The only feedback mechanism typically available to Turkers is 

through email – resulting in a loss of anonymity and with no guarantee of a timely 

response.  

This chapter examines a methodology for iterative feedback and refinement of 

task instructions by Turkers termed “Dynamic questions.” With Dynamic questions, 

Turkers submit alternative task instructions and vote on what they believe to be the best 

instructions. This chapter demonstrates how the Dynamic question system can result in 

questions that have more detail, greater clarity, and feature alternative vocabulary for 

technical terms.  

3.1.1 Dynamic Questions 

The dynamic questions system solicits feedback from Turkers to aid in the 

refinement of the task description. Every time a worker accepts a HIT, the Qualtrics 

software queries a Google Fusion Table and dynamically builds a survey using a set of 

task instructions that received the most votes from previous Turkers. At the completion of 

the task, workers are asked to submit their own interpretation of the question and vote 

from a panel of other user-contributed questions. At the conclusion of the task, the 

number of votes for each submitted alternate task instruction set is tallied by a PHP script 

that then updates a Google Fusion Table. Throughout the batch of HITs, the instructions 

presented to the workers can vary depending on which set of instructions receive the most 

votes.   

3.1.2 One-way communication 



 38 

The challenge of one person speaking to many in a unidirectional communication 

stream is not new. In an essay, Norman talks about how the product designer has limited 

opportunities to speak to the consumer through the design of objects (Norman 2004). 

Often in product design, designers speak to consumers through affordances and the 

design of the object where the product can speak to the consumer, a model that Norman 

coins as the System Image model. This communication between designer and consumer 

is mostly one way and is slow to iterate as seen in Figure 12 This model of 

communication is similar to HITs in Mechanical Turk where employers create a single 

HIT that is distributed to many workers with little feedback.  

3.1.3 Boundary Objects 

Norman’s System Image 

model also bears a resemblance to 

models of boundary objects 

discussed by Star and Greisemer 

(Star and Griesemer 1989). Unlike 

the relationship between designers 

and consumers, there is bi-

directional communication with 

boundary objects where these objects 

are the center of communication 

between two or more groups. A 

boundary object between a novice 

and an expert can be used to 

Boundary 
object

Expert Novice

System 
Image 

conceptual 
model 

(Norman, 
2004)

Boundary 
object, 

(Star and 
Griesemer, 

1989)

HIT (Human 
Intelligence 

Task)

Employer Worker
Dynamic 

Questions

(a)

(b)

(c)

http://jnd.org/dn.mss/design_as_communication.html

Figure 12: The flow of information between parties in (a) 
Norman's system Image model (b) boundary objects, and (c) 
dynamic questions. With Dynamic questions, the HIT changes 
based on feedback from workers. 
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negotiate understanding between the two parties.  

3.1.4 Dynamic Questions as collaborative information artifact 

Blending these different bodies of literature, and looking at the AMT HIT as an 

information object (Buckland 1991), the HITs created by employers don’t necessarily 

need to follow the model of creating a HIT once and distributing it to many. Orienting the 

HIT more like a boundary object and taking advantage of modern web technologies, a 

HIT can be created that sits between the worker and the employer and is dynamically 

changed to better accommodate the needs of the worker as illustrated in Figure 12 These 

two parties may have differing perspectives of the same information object based on their 

expertise. For example a neuroscientist will use specific vocabulary and logical 

constructs for an image of a tissue sample. A novice will use different vocabulary when 

interacting with the same image. It’s also possible that workers attempting to teach 

another worker a specific role will be able to provide specific insight that experts may 

overlook (Rochlin, La Porte et al. 1987). 

3.2 Pilot test 

To assess the feasibility of the dynamic questions system, a prototype was 

implemented using a synthetic task. The pilot test asked workers to interpret a video 

screen from a car and calculate the fuel consumed for a theoretical trip shown in Figure 

15.  

3.2.1 Participants 

Participants were recruited from Amazon’s Mechanical Turk with several worker 

conditions. These conditions included a requirement that workers had completed 1000 

prior hits with a 95% success rate. Workers were given the option of previewing the HIT 
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before accepting it and were provided with a compensation of $0.25. For each trial, a 

total of 100 participants were recruited for a total of 400 participants. 

3.2.2 Materials 

The author created a word problem asking workers to calculate the amount of fuel 

consumed based on an image from a 2008 Prius trip computer displayed in Figure 13. 

This image was embedded into a Qualtrics survey, distributed to workers using 

Amazon’s Mechanical Turk described in detail in section 3.2.4.  

 

Figure 13: Image presented to workers in Qualtrics survey software generated by dynamically querying a 
Google Fusion Table. 

3.2.3 Design 

The pilot experiment followed a two-group experimental design. The control 

group had a static set of questions while the experimental group performed tasks 

dynamically generated at runtime. In the experimental group, input from the crowd was 

incorporated into the instructions presented to the experimental group. The data collected 

included vote information, satisfaction data, and user contributed instruction sets from 

Qualtrics, Amazon’s Mechanical Turk, and Google’s Fusion Tables.  

3.2.4 Procedure 

 To create a dynamic task, the employer needs to create a system that solicits and 
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aggregates feedback. In the second case of dynamic questions, the system needs to 

dynamically incorporate the feedback into the tasks performed by workers. This system is 

enabled with a collection of technologies.  

Creating a dynamic question in a Mechanical Turk HIT involves combining 

several technologies including Google’s Fusion Tables, Qualtrics, custom PHP scripts, 

and Amazon’s Mechanical Turk. Generally, a survey in Qualtrics is created using an 

embedded field to populate the question for the HIT. This question is queried from a 

Google Fusion Table hosted on Amazon’s EC2. The following documents in detail the 

steps required to build dynamic questions in Mechanical Turk. 

Google	
  Fusion	
  tables	
  

Google Fusion Tables are SQL style tables with a web GUI and APIs for access 

through a number of different languages. They are freely hosted and leverage Google’s 

extensive infrastructure. To create a dynamic question, the author created a Google 

Fusion Table, deleting all of the default columns, and adding a “Votes” and “Text” field. 

The table is the active repository for questions and recording the number of votes issued 

to each question. In this case, the table was seeded with four initial values as seen in 

Figure 14. The Google Fusion Table can be viewed and edited by the investigator at any 

time during the data collection process.  
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Figure 14: Google Fusion Table, a free SQL like resource accessible by graphical user interface or API. A 
Google Fusion Table was used to keep track of the worker submitted questions and number of votes each 
individual question received. This Fusion Table contains the contributions from several workers and the tally of 
votes for the vaarious contributions. 

Qualtrics	
  Integration	
  

Qualtrics is an online survey suite with a number of features for dynamic content 

including web services integration and the ability to dynamically substitute text within 

surveys. Figure 15 shows the survey flow used in a dynamic question where the display 

of instructions is followed by several PHP calls to query a random text entry from the 
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Google Fusion Table. The survey flow then includes the ability for workers to contribute 

their own version of the question and ranking of the questions back into the Google 

Fusion Table. The end of the survey generates a random six digit number used to validate 

participation within the Mechanical Turk environment.  

 

Figure 15: Experimental flow for participant assignment into two groups 

 

Qualtrics

random 
assignment

Static question
Dynamic question
seeded with the 
static question

Control condition Experimental condition
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Figure 16: Qualtrics survey software flow including dynamic querying of questions from the Google Fusion 
Table. 

PHP	
  scripts	
  

Interfacing the information contained in the Google Fusion Tables and the 

Qualtrics survey software are several PHP scripts written by the author specifically for 

this purpose included in Appendix B. There are three scripts in total that work together. 

The first script adds worker-contributed text to the Google Fusion Table. The second 

script queries the Fusion Table and returns a random selection from a specified quartile or 

rank among the entries in the table. The last script updates the vote count of a specified 

text entry in the Fusion Table.  
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Amazon’s	
  AWS	
  

Two technologies are used from Amazon’s Web Services platform, EC2 and S3. 

Amazon’s EC2 is a virtualized compute architecture that allows a user to launch a 

computer instance using Amazon’s physical infrastructure. The EC2 instance was created 

by the author with an installation of Ubuntu server 12.04 LTS. Once configured, the 

machine was installed and configured as a LAMP (Linux, Apache, MySQL, PHP) server. 

Amazon’s S3 is a distributed, high reliability cloud storage system. The images 

distributed to workers in the Qualtrics survey was hosted on Amazon’s S3 as public 

images.   

Amazon’s	
  Mechanical	
  Turk	
  	
  

Another Amazon product, Mechanical Turk is a micro-labor marketplace where 

workers are paired with employers for very small tasks.  Coined as the artificial artificial 

intelligence, Mechanical Turk offers the programmatic accessibility of artificial 

intelligence with the cognitive capabilities of people, and is often used to distribute small 

tasks that are difficult to perform with algorithms but is relatively easy for human 

workers. Common examples of tasks on Mechanical Turk include tasks such as image 

tagging, categorizing, and content creation. While identifying all of the objects in a scene 

would be difficult for a machine to accomplish, a human worker can create image tags of 

all of the objects in the image. Mechanical Turk offers a number of tools and 

configurations for managing workers and distributing work.  A Qualtrics survey was 

created by the author to render the question and distribute collect responses from 

workers. In this task, workers were required to have already completed 1000 hit. 

Additional details of the configuration of the tasks are included in Appendix F. 



 46 

 

3.2.5 Results 

The dynamic questions system culled several user contributed contributions. 

These included re-phrasing the question, nonsense questions, and replication of the 

original question. One stand-out contribution by workers included reformulation of the 

task into metric units. A new HIT was constructed, containing the same image, 

compensation, but with updated task instructions. The new HIT re-phrased the task to the 

following, “The driver drove 91 miles at a fuel consumption rate of 50mpg. How much 

fuel has the driver used? 91 miles means 146.45 kilometers. 50 mpg means 21.26 kmpl.” 

The results from rephrasing the question resulted in accuracy of 84% with the same 

number of 103 participants. Additional detail and the results can be seen in Appendix G. 

The addition of the metric unit conversion as suggested by a worker made a significant 

difference in performance. 

The results of the pilot test indicated an increase in performance of workers in an 

experimental group compared to a control group as a result of using the refined 

instructions. In the pilot test, workers were asked to perform a simple calculation based 

on the information found in a graphic. Specifically they were given the instructions, “The 

driver drove 91 miles at a fuel consumption rate of 50mpg. How much fuel has the driver 

used?” workers completed the task with 57% accuracy. 

The results of the pilot test suggested the potential for Turkers to influence or 

inform task instructions, in this case significantly improving performance. To better 

understand the implications for a neuroscience-based task, four additional experiments 

were performed. 
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3.3 Experiment 1: Counting mitochondria 

To better understand the implications of Dynamic questions to a task closer to the 

driving application, this experiment asked workers to identify the number of 

mitochondria in an image. They were given a page of instructions with a detailed 

description and an image with examples highlighted in red boxes, as shown in Figure 15. 

In the control group, workers saw a static description of the task.  In the experimental 

group, input from the crowd was used to refine the task description over subsequent 

HITs.   

3.3.1 Participants 

Participants were recruited from Amazon’s Mechanical Turk with several worker 

conditions. These conditions included a requirement that workers had completed 1000 

prior hits with a 95% success rate. Workers were given the option of previewing the HIT 

before accepting it and were provided with a compensation of $0.25. For the trial, a total 

of 100 participants were recruited. 

3.3.2 Materials 

Workers were presented with a page of instructions (shown in Appendix B) 

including an electron micrograph with mitochondria. In the training image shown in 

Figure 17, the mitochondria are highlighted in red boxes. The workers were asked to 

identify all of the mitochondria in Figure 18.  
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Figure 17: Electron micrograph image presented to workers as a training image. Tasked with finding the 
number of mitochondria in the image, examples are outlined in red. 

 

Figure 18: Workers are tasked with finding all instances of mitochondria in this electron micrograph. Both 
experimental and control groups successfully performed this task. 

3.3.3 Design 

The experiments followed a two-group experimental design. The control group 

had a static set of questions while the experimental group performed tasks dynamically 

generated at runtime. The data collected included vote information, satisfaction data, and 



 49 

user contributed instruction sets from Qualtrics, Amazon’s Mechanical Turk, and 

Google’s Fusion Tables.  

3.3.4 Procedure 

The procedure is identical to the procedure used in the pilot test described in 

detail in 3.2.4.  

3.3.5 Results 

In this task, workers in both the experimental and control groups performed very 

well, approximately matching the performance of an expert. Table 5 shows the 

performance of the performance of both the control and experimental groups relative to 

the expert. Both groups performed near the performance of the expert. Table 6 shows the 

instructions as originally presented to workers and the modified instructions produced by 

workers through crowd input. The crowd-refined instructions built on the original 

instructions by adding an accessible analogy for the cristae in mitochondria, referring to 

them as a “zebra pattern” seen in Table 6 next to the instructions seeded to workers.   

A key attribute of Dynamic questions are the instructions contributed by workers. 

The top result in Table 6 illustrates the originally seeded instructions, “Mitochondria are 

dark objects with rubs that cut across them”, and the user contributed instructions, 

“Mitochondria come in shapes that are oblong or circular. They have a thick border with 

ribs that cut across them, like a zebra pattern.”  Additionally, Turkers on average thought 

the Turker contributed questions were clearer, as seen in Table 7 

(𝑥!"#$%"& = 2.74;   𝑥!"#$%&' = 2.40; 𝑡 229 = 1.12;𝑝 − 𝑣𝑎𝑙𝑢𝑒 = 0.264). 

 Regular HIT Dynamic Questions 
HIT 

Expert 

Mitochondria  20.5	
   21 
Table 5: Crowd response to the HIT with and without the use of Dynamic questions. 
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Experiment 1: 
Find the number 
of mitochondria 

Mitochondria are dark 
objects with ribs that cut 
across them. 

Mitochondria come in shapes that are 
oblong or circular. They have a thick 
border with ribs that cut across them, like a 
zebra pattern. 

 
Table 6: Task instructions seeded into the system and the result generated by crowd workers. 

 

Table 7: Comparison of perceived clarity of the instructions. Very clear is 1 while not clear is 5. Turkers on 
average thought the Dynamic questions were clearer.  

3.4 Experiment 2: Counting whole cells 

The first experiment demonstrated a performance difference between the 

experimental and control groups, possibly because the task was too easy (i.e., as a result 

of the example image).  Therefore, a second experiment was conducted where workers 

were asked to find the number of whole cells in an image, but this time without providing 

an example image, as was done in the first experiment.  

3.4.1 Participants 

Participants were recruited from Amazon’s Mechanical Turk with several worker 

conditions. These conditions included a requirement that workers had completed 1000 

prior hits with a 95% success rate. Workers were given the option of previewing the HIT 

before accepting it and were provided with a compensation of $0.25. For the trial, a total 

of 100 participants were recruited. 
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3.4.2 Materials 

Workers were not given an example image in this experiment and were asked to 

count the number of whole cells. The electron micrograph shown in Figure 17 also 

included a number of other features such as nucleoli, blood vessels, and other structures. 

 
Figure 19: Workers were asked to find the number of whole cells in this electron micrograph. 

3.4.3 Design 

The experiments followed a two-group experimental design. The control group 

had a static set of questions while the experimental group performed tasks dynamically 

generated at runtime. The data collected included vote information, satisfaction data, and 

user contributed instruction sets from Qualtrics, Amazon’s Mechanical Turk, and 

Google’s Fusion Tables.  

3.4.4 Procedure 

The procedure is identical to the procedure used in the pilot test described in 

detail in 3.2.4.  
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3.4.5 Results 

In this task, both experimental and control groups performed poorly, not matching 

the results of the expert. Table 8 shows the originally seeded task instructions and the set 

of instructions workers voted as the best set of instructions where each Turker has the 

ability to create or modify their own set of task instructions. This user contributed set of 

instructions is seen in Table 9. They added the analogy of the cell membrane being a 

“skin” and reiterated the intent of the task “Thus, you are looking for how many 

individual cells you are seeing in this picture.” It is interesting to note that workers voted 

for these tasks despite minor grammatical errors suggesting precision of the formulation 

of the task is less important than accessibility and ability to clearly communicate the 

intent of the task.  

Like the previous experiment, workers in the experimental condition rated the 

clarity of the task instructions higher than the control group seen in Table 10.  

 Regular HIT Dynamic Questions 
HIT 

Expert 

Whole cells 76.2	
  
 

87.5 
 

70 

Table 8: Table showing responses from the crowd asking to count the number of whole cells in the image. The 
control group performed better. Both groups included extreme answers of greater than 1000. 

Experiment 2: 
Find the number 
of whole cells 

Cells are structures 
defined by their 
membranes. You can 
find more information 
here: http://en.wikipedia.
org/wiki/Cell_(biology) 

 

Cells are defined by their membranes. 
Membranes are the outter covering, or 
"skin" on the cell. " For more information 
on cells please go here: 
http://en.wikipedia.org/wiki/Cell_(biology) 

 

Table 9: Table of task instructions seeded to Mechanical Turk and the task instructions generated by the crowd. 
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Table 10: Comparison of perceived clarity of the instructions. Very clear is 1 while not clear is 5. Turkers on 
average thought the Dynamic questions were clearer. 

3.5 Experiment 3: Finding Nucleoli 

The prior experiment failed to yield the expected difference in performance. To 

further characterize the implications of Dynamic questions, workers were asked to count 

the number of nuclei in an image. In this task, workers were again not provided with an 

image or detailed description.  

3.5.1 Participants 

Participants were recruited from Amazon’s Mechanical Turk with several worker 

conditions. These conditions included a requirement that workers had completed 1000 

prior hits with a 95% success rate. Workers were given the option of previewing the HIT 

before accepting it and were provided with a compensation of $0.25. For the trial, a total 

of 100 participants were recruited. 

3.5.2 Materials 

This experiment used the same electron micrograph used in the previous 

experiment, this time asking workers to count the number of nucleoli as seen in Figure 

18.  
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Figure 20: Workers were tasked with finding the number of nucleoli in this electron micrograph. 

3.5.3 Design 

The experiments followed a two-group experimental design. The control group 

had a static set of questions while the experimental group performed tasks dynamically 

generated at runtime. The data collected included vote information, satisfaction data, and 

user contributed instruction sets from Qualtrics, Amazon’s Mechanical Turk, and 

Google’s Fusion Tables.  

3.5.4 Procedure 

The procedure is identical to the procedure used in the pilot test described in 

detail in 3.2.4.  

3.5.5 Results 

In this experiment the community continues to demonstrate their ability to re-cast 

the instructions into alternative representations. In this example, workers added that each 

nucleus would include a nucleoli or, “a small, circular, dark mass” seen in Table 12.  

In this test, both groups performed poorly with results significantly different than 

the expert evaluation as reported in Table 11. The results seem to indicate slightly better 
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performance for the control group. The difficulty of the task was reflected in the top 

question voted by workers seen in Table 12: “There should be an example picture with 

the nucleoli circled so people know exactly what they are looking for”. These instructions 

and the poor performance of workers seem to indicate an overly difficult task.  

 Dynamic Questions 
HIT 

Expert 

Nucleoli 42.9	
  
 

6 

Table 11: HIT requested that users count the number of nucleoli. The responses from the crowd indicated the 
HIT instructions were underspecified and included several responses from the crowd to include sample images. 

Experiment 3: 
Find the number 
of nucleoli 

Nucleoli are the dark 
spots (not the light spots) 
enclosed by lighter areas 
and enclosed by cell 
bodies 

(a) There should be an example picture 
with the nucleoli circled so people know 
exactly what they are looking for 

 

Table 12: The task instructions seeded to Mechanical Turk and the task instructions generated by the crowd 
workers. 

 

Table 13: Perception of clarity by Turkers where 1 is Very clear and Not clear is 5 

3.6 Experiment 4: Finding Nuclei 

In yet another experiment to differentiate the performance characteristics of 

dynamic questions compared to traditional HITs, workers were asked to count the 

number of nuclei in the image. In this task, workers were again not provided with an 

image or detailed description.  

 

3.6.1 Participants 

Participants were recruited from Amazon’s Mechanical Turk with several worker 

conditions. These conditions included a requirement that workers had completed 1000 
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prior hits with a 95% success rate. Workers were given the option of previewing the HIT 

before accepting it and were provided with a compensation of $0.25. For the trial, a total 

of 100 participants were recruited. 

3.6.2 Materials 

The same electron micrograph was used for a third time, this time asking workers 

to identify the nucleus. The image in Figure 19 obscures the target structure with other 

intracellular and extracellular features.  

 

Figure 21: Preferences of crowd workers, (Rankfourth) represents the task instructions with the most votes 
while the other choices represent randomly selected user contributed selections from the top three quartiles 

3.6.3 Design 

The experiments followed a two-group experimental design. The control group 

had a static set of questions while the experimental group performed tasks dynamically 

generated at runtime. The data collected included vote information, satisfaction data, and 

user contributed instruction sets from Qualtrics, Amazon’s Mechanical Turk, and 

Google’s Fusion Tables.  
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3.6.4 Procedure 

The procedure is identical to the procedure used in the pilot test described in 

detail in 3.2.4.  

3.6.5 Results 

In another experiment to differentiate the performance characteristics of dynamic 

questions compared to traditional HITs, workers were asked to count the number of 

nuclei in the image. In this task, workers were again not provided with an image or 

detailed description of the target structure. In terms of performance, the control group 

outperformed the experimental group seen in Table 14, but as an important secondary 

result the community continued to demonstrate their ability to re-cast the instructions into 

alternative representations and on average the experimental group with Dynamic 

questions rated their task instructions as more clear as shown in Table 15. In this 

example, workers added that each nucleus would include a nucleoli or, “a small, circular, 

dark mass”.  

While the performance benefits of dynamic questions may be unclear, Dynamic 

questions has demonstrated itself to be a tool for generating alternate castings of task 

instructions generated by the crowd that can provide novice language and analogies that 

may not be apparent to the expert. On average, workers exposed to the experimental 

condition rated their instructions as more clear seen in Table 16. 

 Regular HIT Dynamic Questions 
HIT 

Expert 

Nuclei 34.2	
  
 

27.5	
  
 

59 

Table 14: HIT requesting workers count the number of nuclei in the image. Both groups performed poorly. 
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Trial 4: Find the 
number of 
nuclei 

In this task you need to 
count the number of cell 
nuclei in the image. Cell 
nuclei are bag-like 
structures that enclose 
most of the cell's 
DNA.  http://en.wikipedi
a.org/wiki/Cell_nucleus 

 

In this task you need to count the number 
of cell nuclei in the following image. Cell 
nuclei are bag like structures which will 
appear as ovular objects in the image. 
They will contain a small, circular, dark 
mass. 

 

Table 15: Table with the task instructions seeded to Mechanical Turk and the task instructions generated by 
crowd workers. 

 

Table 16: Comparison of perceived clarity of the instructions. Very clear is 1 while not clear is 5. Turkers on 
average thought the Dynamic questions were clearer. 

3.6.6 Accuracy 

Following the conclusion of the pilot test, a series of additional experiments were 

performed that better aligned with the nature of the neurosciences driving application. 

The first explored tasking the crowd with counting the number of mitochondria in an 

image. Workers were provided with a page of instructions including an image of the 

target structure.  In this experiment, both the experimental and control groups performed 

well. An additional experiment was planned with the aim of distinguishing performance 

differences between the two groups. The next experiment increased the complexity and 

ambiguity of the task. The experiment did not provide an outline example of the 

structure, instead relied exclusively on the text task instructions. In this experiment, 

neither group performed particularly well, with the control group results more closely 

aligned with the expert evaluation. In this experiment as with the other following 

experiments, several results included grossly incorrect answers that claimed detection of 
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thousands of the targeted structures. Despite the poor performance of the experimental 

group, workers did increase specificity of the instructions and made contributions to the 

formation of the task instructions. Workers also rated the clarity of the dynamic questions 

to be improved. To better differentiate between the performance between control and 

experimental groups, an additional experiment was performed with a different image that 

had additional visual interference. The experiment was run without providing an example 

of the target structure. In this case the workers voted as the most popular formulation of 

the instructions as request for a visual example of the target structure. The task was 

determined by the experimenter to be too difficult for the crowd given the conditions. In a 

further attempt to tease out the performance another experiment was performed with a 

structure that was considered to be more easily distinguished visually. Workers were 

asked to identify the number of nuclei in the image. Workers again performed poorly in 

both groups, both missing the mark set by the expert.  

With the exception of the pilot test and the identification of the mitochondria, 

workers failed with regards to accuracy. Despite this, workers consistently preferred the 

dynamic questions, suggesting greater satisfaction with the task instructions formulated 

by other workers.  

3.6.7 Throughput 

In the pilot test, throughput or how quickly do workers process the task was also 

different between the two tasks. With the original question, the average time taken to 

complete the task is 208.9 seconds. In the second task with the revised question, on 

average it took 133.1 seconds to complete.  
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In the subsequent experiments, the results were less clear. Several times were 

measured test results returned in negative seconds reflecting technical malfunction in 

Qualtrics reporting mechanisms. Potential behavioral complications are reflected by very 

long task completion times with some participants taking more than 15 minutes to 

complete the task, likely indicating a pause or external activity during the HIT.  

3.6.8 Cost 

There are two possible cost models. The first model where the experiment is 

conducted and the employer reformulates the task based on feedback. The second model 

where surveys are dynamically built and distributed to workers based on feedback. In the 

first model, the cost of the experiment will increase to accommodate collecting worker 

feedback. In the second model, there is no direct additional cost. It could be that the less 

specific question will result in initially decreased productivity, but this is not clear.   

Method Cost 

Expert Amortized costs of training the expert (e.g., 
tuition, stipend) and ongoing costs (e.g., 
hourly rate, space, equipment) 

Mechanical Turk large sample $12.50/structure 

Mechanical Turk panel As low as $1.50 

Mechanical Turk consensus model As low as $0.50 

Table 17: Costs associated with dynamic questions. 

3.6.9 Limitations 

There is clear potential for increasing the satisfaction of the worker by increasing 

communication between workers and the employer. There are limitations to these results 

including vandalism, difficulty in identifying useful contributions from the crowd, and 

possible collusion in some cases.  
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Workers in this task were told that other workers may see their responses. 

Browsing contributions from the Fusion Table revealed that one worker added a URL, 

“sdvisualimages.com” as an alternative question to be presented to workers. This 

response was a clear attempt to promote their website to other workers on Mechanical 

Turk.  

In scientific applications, the results are limited to the refinement of the question 

and increasing satisfaction of the test. There is a preference for worker contributed 

questions, but this experiment was unable to convert this preference to higher 

performance scores.  

In addition, it may be difficult to determine useful contributions contributed by 

workers. When presenting alternative questions to workers, they are given a list of 

worker contributed options. The entire table is divided into quartiles. One question is 

randomly chosen from each quartile and presented to workers. If there are many 

contributions from workers it is possible that useful contributions may take a long time to 

accumulate votes that indicate popularity among workers.  

It is also possible that questions contributed by workers could defeat the intent of 

the task. For example, if workers collude and change the task so that workers do nothing 

and are still compensated.  

3.7 Discussion 

Mechanical Turk workers have discretion with regards to what work they choose 

to perform (Silberman, Irani et al. 2010). Mechanical Turk workers have the ability to 

turn to external forums that track employer traits such as clarity, difficulty of work, and 

payment history of employers (Irani and Silberman 2013). Poorly formed HITs, including 
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the task instructions, have the potential to turn away potential workers and decrease the 

likelihood of repeat workers.  

Dynamic questions was an approach developed to address the challenge of poorly 

formed HITs resulting from the language and mental model divide that sometimes exists 

between novices and experts. Dynamic questions updates task instructions based on 

changes submitted by workers and subsequent votes as to the most useful instructions 

from a list of crowd-generated possibilities.  

In the pilot test using a simple math problem, there was a clear performance 

increase resulting from the inclusion of feedback from workers, in this case a translation 

of the units from Imperial units to metric units. Amazon’s Mechanical Turk employs 

workers from more than 100 countries, most of which use the metric system. Simple 

insights such as this can escape employers oriented to their home cultures and systems, 

and therefore modification of instructions by the crowd can make a significant difference 

in the performance of workers in terms of accuracy and throughput.  

Encouraged by these results, several follow-up experiments explored the utility of 

dynamic questions in the context of interpreting biological images. In the biologically 

relevant tasks, the performance benefit was inconclusive. While workers preferred the 

task instructions provided by other workers, their performance was the same as workers 

in control conditions (i.e., where instructions were not modified). It may be that the 

biologically relevant tasks that are heavily visual and potentially ambiguous are not the 

best tasks for this approach.  

Despite the lack of a demonstrable performance difference, dynamic questions 

potentially lessens the burden on employers laboring to generate a task with the 
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appropriate vocabulary and specificity. Dynamic questions are potentially broadly 

applicable to a number of different Mechanical Turk tasks where the task instructions do 

not have to remain consistent for every worker. Additionally, a Mechanical Turk task 

using the dynamic questions architecture does not add additional cost to the HIT.  

While the dynamic questions system shows potential to enhance communication 

between workers and employers, there is the potential to enhance the performance of the 

system. Two possible alternations to the existing system might include improved 

incentives for workers and improved guidance for workers.  

The current system rewards workers for performing the task and engages the 

workers to also participate in refining the task instructions and there is no additional 

compensation for refining the task instructions. Within the Mechanical Turk system it is 

possible to reward workers with bonuses after the completion of the HIT. One objective 

of the dynamic questions system is to generate high-quality instructions to display to 

subsequent workers. It is possible to directly incentivize workers to produce high quality 

instruction by promising a bonus if subsequent workers vote their instruction set as the 

best.  

In addition to providing bonuses, it is suggested that additional guidance to 

workers may enhance their performance. Workers in reiterating the task instructions are 

asked to generally improve the quality of the instructions. An example of how workers 

can transform non-descriptive task instructions to informative task instructions can 

inform workers as to possible ways that instructions can be transformed. For example in 

the HIT described in this chapter, workers can be provided with sample task instructions 

and an example high-quality transformation of those instructions. To possibly automate 
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this process, original task instructions and worker improved suggestions from previous 

HITs can be used to instruct subsequent workers.  
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CHAPTER 4  

Task Transformation: From expert tasks to pattern 

recognition 

4.1 Experiment 3: Indirect work with task transformation  

As outlined in Chapter 2, segmentation is an important analysis method in the 

neurosciences. This experiment looks at a different dataset and scientific objective: 

classification. Classification is a process of identification where investigators mark the 

location of target structures in the data. Classification is often used to measure the 

frequency of occurrence of an object. For example, frequency data are useful for 

measuring differences between experimental variations and control subjects, such as the 

frequency of mitochondria in a normal mouse compared to an obese mouse. In this case, 

variations between the types of mice can provide clues to the correlation between the 

energy making centers of the cells and fat accumulation.  

In this experiment, classification is performed by transforming the original data 

into an alternative representation and assigning the workers to perform an analogous task 

using the transformed data. Data are then mapped back to the original data. In response to 

a scientist interested in classifying specific structure in thousands of images, this 
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experiment looks at the detection of stigmoid bodies in electron micrographs as seen in 

Figure 20. Instead of asking workers to find stigmoid bodies in the original data, workers 

are instead asked to find objects in the transformed data that look like marbles. There are 

two reasons to be concerned with whether Turkers can perform meaningful work using 

transformed data. First, because raw data can reveal scientific intent, there is value in 

translating data into more abstract forms. Image data in the neurosciences can reveal the 

region from which data are collected and the stains used to label the structures of interest. 

Stains are specifically selected for their ability to bind to particular targets. These stains 

make some structures visible while passing over others. Second, task transformation 

work can be simpler. Rather than asking workers to find a biological structure, workers 

instead search for a target shape (e.g., “find a neuropil” vs. “find a marble-like shape”).  

The overall process, as shown in Figure 21, is to train a learning algorithm on a 

sample structure, run the algorithm on the dataset, cut up and distribute the dataset to 

distributed workers as an analogous task, and then map the result back to the original 

data. The amount of data that needs to be analyzed by the expert scientist decreases at 

key points in this workflow. 

The task performed by 

experts changes from 

scanning the image cell by 

cell to reviewing automated 

results to reviewing the 

refined results by the crowd, 

Original data

Original data

Scan data 
with IMOD, 

marking 
targets

  Annotated data  .  

Figure 22: Un-annotated data and annotated data with the target structure 
marked. 
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reducing the number of objects to scan to less than a half-dozen objects. 

This system demonstrates a methodology for blending work done by algorithms 

and distributed workers in the process of classification that may be useful for analysis of 

very large datasets. These results show that even without releasing data to the public, 

training of a single example yielded significant reduction of false positives, reducing the 

amount of work required by the expert.  

4.2 Methods 

4.2.1 Participants 

A total of 250 

participants were recruited 

from Amazon’s Mechanical 

Turk with worker 

conditions. These 

conditions included a 

requirement that workers 

have completed 1000 hits 

with a 95% success rate. 

Workers were given the 

option of previewing the 

HIT before accepting it and 

were provided with a 

compensation of $0.25. 

Segmented and distributed

Original data

Transformed 
data

Divide data 
into small 

pieces

Distribute to 
workers

Collect 
results

Map crowd 
results to 

data

Original data

Transformed data

yes nonono

Machine 
learning 
algorithm

Figure 18: Process of transforming original data with automated 
segmentation routines, distributing to workers, and mapping the results 
back to the original data – marking all of the target structures.  

Figure 23: Process of transforming original data with automated 
segmentation routines, distributing to workers, and mapping the results 
back to the original data - marking all of the target structures. 
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Participants completed the task with a median duration of 2 minutes, with participants 

taking as long as 30 minutes. 

4.2.2 Materials  

The images selected for detection comprised a stack of 50 electron micrographs 

extending 2666 in X and 2000 in the Y dimension. Each micrograph was processed using 

the Cytoseg automated segmentation algorithm (Giuly, Martone et al. 2012) trained for 

the grayscale gradient expressed by the target structure. A stack of every 10 images from 

the resulting automated segmentation results were then divided into a 4x4 grid and 

assembled into 3D Z stacks. Each worker was presented with 16 Z stacks in the Qualtrics 

survey software distributed to workers with Amazon’s Mechanical Turk.  

4.2.3 Procedure 

As depicted in Figure 21, task transformation was a multi-step process.  The 

workflow began with a fully processed dataset from the instrument that had been aligned 

and stripped of artifacts. In this dataset, data were collected from the SBFSEM. With this 

instrument data are collected by imaging the top of a specimen block at high resolution. 

In an iterative process, a very fine knife then scrapes the top of the block and the 

underlying layer is imaged. Once the data are collected and aligned, the investigator 

trains the learning algorithm on a feature of interest. The resulting data are processed into 

smaller subsets, suitable for small displays. Distributing the work with Mechanical Turk 

and Qualtrics, workers identified a targeted object, which was mapped back to the 

original data indicating the precise location of the structure of interest.   

The following describes these steps from data collection to classification in detail.  
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The original data in Figure 22 is a grayscale image with the darker portions of the 

image representing the stained objects. The target structure, a stigmoid body, is a small 

grey body that exists in intracellular space and looks much like a nucleolus.  

 
Figure 24: Original image acquired from a SBFSEM (Serial Block Face Scanning Electron Microscope). 
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The research scientist then trains the learning algorithm by segmenting a sample 

structure. IMOD (Kremer, Mastronarde et al. 1996) was used to segment a single 

example of a stigmoid body, this training data was then input into Cytoseg (Giuly, 

Martone et al. 2012). The output of the algorithm is a set of black and white images 

where the white regions are potential detections and the black regions are thought not to 

be stigmoid bodies as seen in Figure 23. 

 

 
Figure 25: Threshold voxel output from the Cytoseg learning algorithm 

A noise filtering step was added at the suggestion of the Cytoseg author using the 

application ImageJ to remove all of the objects that are too large, too small, and non-

circular (Abrmmoff, Magalhaes et al. 2004). The result of this filtering process is shown 

in Figure 24. Figure 25 overlays the result on top of the original image. We can see in this 

figure two true positives and ten false positives. 
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Figure 26: Final mask generated by the automated algorithm Cytoseg. 

 
Figure 27: Original data with automated segmentation mask overlaid in light blue. The two true positives are 
circled in red. 
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Distributing the task to workers, a stack of 50 images was processed. The data 

were then divided into sections that can be distributed using Amazon’s Mechanical Turk. 

Figure 26 shows the process of stacking and cutting up images to be distributed to 

workers. In this case the images were processed into a 4x4 grid with commands located 

in Appendix C. Once the images are cut up into grid pieces, they are assembled into 

animated stacks using the generate_animation_alt.sh found in Appendix C. The script 

written by the author creates a series of bash scripts that are run to create the final files. 

 
Figure 28: (a) Stack of image masks. (b) Stack of image masks in a 4x4 grid. (c) One of the sixteen stack sub-
volumes in a 4x4 grid. (d) Stack sub-section cut away from the rest of the dataset assembled into a flip-book 
animation. 

(a) (b)

(c) (d)
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In these small flip-books, the underlying geometry of the target structure persist 

through multiple slices in Z whereas errors and some other false positives only persist 

through single slices or do not follow a predictable structure. In Figure 27, you can see a 

simple representation of what a stigmoid body may look like through multiple slices. 

Figure 28 is a small flip-book animation that demonstrates a series of Z images that 

sections through the target structure. You can see noise in image 5 that does not persist in 

in the Z dimension.  

 
Figure 29: Five layers show in in perspective with each layer showing a circular body. The aggregate of these in 
3D represents a 3D sphere. 

 
Figure 30: A sample dataset displayed to workers. Each image is one layer in an animated flip-book. Workers 
are tasked with finding the marble-like sphere in the data. 
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Once the flip-book animations are created, the images are distributed to 

Mechanical Turk where Turkers were asked to find structures that resembled a cat-eye 

marble as shown in Figure 29. The cat-eye marble closely resembles the stigmoid body 

and doesn’t reveal any scientific objectives. These instructions presented to workers 

made no reference to the original data or to the true underlying target structure.  

 
Figure 31: Instructions presented to Mechanical Turk workers. 

Each dataset was distributed to fifty workers, and in the task they were asked to click on 

the “cat-eye marble.” These clicks were recorded by the Qualtrics heat-map question type 

and at the end of the task, visualized as seen in Figure 30. The Qualtrics heat map showed 

points of consensus and how many workers clicked on that region. Once all of the click 

data were compiled, as shown in Figure 31, the consensus of the workers was mapped 

back to the original electron micrograph as seen in Figure 22.  
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Figure 32: Heat map from Qualtrics identifying the X/Y coordinates of the corresponding body. 

 
Figure 33: Heat map output from Qualtrics of all images compiled into a single image. 

4.3 Results 

The gold standard for accuracy of classification in the neurosciences is manual 

tracking by an expert. In manual classification, workers examine each image, marking the 
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occurrence of each structure. Classification, like segmentation, is a labor-intensive 

process that varies with the complexity of and number of structures, quality of the data, 

and the experience of the scientist.  

In this experiment 50 images were divided into 5 datasets with the dimensions of 

2666×2000x11 pixels, one image overlapping the previous dataset. Workers click on the 

“cat-eye marble” generating points collected by Qualtrics. These clicks are used to 

generate heat maps indicating where workers click and how many click in the same 

region. The resulting heat maps are given threshold points to mark consensus by the 

workers, in this case agreement of 20 or more participants in the same region (40%) 

marked a point of consensus. These points were manually correlated with structures in 

the dataset using print-outs and highlighters to track true and false positives resulting in 

images such as Figure 31. 

4.3.1 Cost  

The cost of analysis in image processing is mostly in the human cost of the expert. 

It is estimated by an expert that it would require several minutes to manually process this 

dataset finding all instances of the target structure and marking them. This manual 

process of annotating the image is the gold standard for accuracy.  

Automated algorithms have the potential to reduce the burden of experts by 

reducing the amount of work that needs to be done by the expert. Early interviews 

indicate that depending on the accuracy of the automated algorithm, particularly false 

positives, it is easier to manually process the data. With learning algorithms, the expert 

must train the algorithm with examples of the target structure. Workers must also then go 

through the dataset to correct mistakes made by the algorithm.  
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Crowdsourcing the results as with task transformation adds a layer of complexity. 

With crowdsourcing the data requires additional processing to transform the data into a 

form that can be distributed and then must be analyzed to collect the intelligence and map 

the results back to the data. Additionally, systems such as Mechanical Turk and Qualtrics 

need to be configured. Lastly, Mechanical Turk workers must be compensated for their 

time. It cost $68.75 for Mechanical Turk workers to process 50 images.   

Method Cost 

Expert Amortized costs of training the expert (e.g., 
tuition, stipend) and ongoing costs (e.g., 
hourly rate, space, equipment) 

Mechanical Turk large sample for 50 
images 

$68.75 

Mechanical Turk panel per image As low as $1.50 

Mechanical Turk consensus model per 
image 

As low as $0.50 

Table 18: Summary of costs for Task transformation. 

4.3.2 Accuracy 

The gold standard of classification is manual labeling by an expert. An expert 

familiar with the stigmoid body was asked to find all instances in the stack, a process that 

required several minutes. The results of the expert were used to determine errors made by 

the crowd or learning algorithms. Table 15 shows the total number of objects that were 

detected and thought to be stigmoid bodies. The crowd was able to significantly reduce 

the number of false positives shown in Table 16. Figure 32 shows the results of the 

learning algorithm in light blue, false positives from the crowd in red, and true positives 

identified by the expert in green.  
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Table 19: The number of errors made by the expert, crowd, and learning algorithms.  

 
 

 
 
 
 
 
 
 
 
 
 
 
 

 Expert 
(number 
errors) 

Crowd (number of 
errors) 

Learning algorithm 
(number of errors)  

Subvolume 1 0 1 4 
Subvolume 2 0 2 14 
Subvolume 3 0 1 8 
Subvolume 4 0 3 6 
Subvolume 5 0 1 12 

 
 

Expert 
(number 
of objects 
detected) 

Crowd (number of 
objects detected) 

Learning algorithm 
(number of objects 
detected)  

Subvolume 1 3 4 7 
Subvolume 2 3 5 17 
Subvolume 3 2 3 10 
Subvolume 4 4 7 10 
Subvolume 5 2 3 14 
Table 20: The number of objects detected by the expert, crowd, and learning algorithm. 
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Figure 34: Original image from subvolume 3 with automated images in light blue. The false positives from the 
crowd in red and true positives in green. 

4.3.3 Throughput 

The results of the combination of the automated algorithm and Mechanical 

Turkers didn’t produce perfect classification. However, it did result in a significant 

reduction of data that needed to be evaluated by experts during the process of 

classification. Figure 33 demonstrates the three variations of the information required to 

process manually, with automated segmentation, and with task transformation.  
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      (a)            (b)    

 
   (c) 

Figure 35: (a) Unannotated electron micrograph where experts look at all objects in the image to find target 
structures. (b) Machine learning annotated image where regions in blue mark areas where the algorithm 
detected the target structure. (c) The results of task transformation marked with regions in green representing 
identification of the target structures.  

In the process of classification, experts go through each image and mark the 

centroid of each instance of the desired structure. With the automated results overlaid on 

top of the electron micrograph, experts have significantly decreased search space, 

visually targeting only the annotated regions. Overlaying the automated algorithm results 

decreases search space from every cell in the image to about a dozen points. In 

comparison, the crowd-sourced task further reduced the search space in the example 

shown in Figure 32 from eleven points to three where one was a false positive. There 

were no false negatives in the five sub-volumes analyzed. Workers significantly reduce 

the number of false positives generated by the learning algorithm, resulting in annotations 

with few false positives and no false negatives. 
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4.3.4 Limitations 

Despite the advantages in reducing information that the investigator needs to 

interact with, the process of task transformation has limitations. Task transformation in 

this example utilizes the naturally occurring geometry of the target structure, a simple 

sphere. Many structures of interest are much more complex in shape and may not be as 

conducive for transformation. There are also a number of steps that are done manually 

and could negate the performance gains by experts, including the generation of 

instructions for Mechanical Turk workers, analysis of data, and mapping the results back 

to the original data. 

Additionally false positives are an area for concern. While there were no false 

positives in this example, if the automated algorithm does not detect the structure, 

workers will never be given the opportunity to find the structure. Learning algorithms 

may not detect unexpected mutations of the targeted structure. It is these unexpected 

results that are often the most scientifically interesting.  

4.4 Discussion 

There are other examples of data reduction of large volumes of image data. 

Finding Khan reduced the number of possible sites from an intractable number of 

structures to investigate to a number of sites that could be prioritized and accomplished 

given limited resources for exploration (Lin 2010).  

The scale of the problems in the neurosciences is no less than in applications like 

Finding Khan. The increases in efficiency in both instrumentation and methods for data 

collection are creating vast expanses of tissue that need to be analyzed, more than 

individual investigators can do themselves. Task transformation in this example steps in 
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that direction, and does so while addressing a key practical problem of obscuring the 

underlying and confidential data.  

Distributing work to the crowd again multiplies the effort of the expert and 

solicits the effort of the crowd to perform tasks often less desirable to the expert worker, 

but necessary for publishable results. In this example, reducing the number of false 

positives by a factor of 5.5.  

Existing methods for extracting data with semi-automated methods are increasing 

throughput, but the time consuming and repetitive nature of the work creates barriers to 

participation greater than the effort required to perform them.  

Production of this example required building the infrastructure and assembling a 

suite of infrastructures for content delivery, image processing by automated algorithms, 

image processing to send to workers, content delivery network, answer preparation and 

etc.  

The technologies assembled in this experiment along with the new code in 

Appendix C were applied to a small set of data. Experiments suggest that the time 

required for crowd work doesn’t increase with the number of jobs, but workers act in 

parallel.  

There are limited practical applications for task transformation in the 

neurosciences; the overhead and possibility for false positives narrows utility beyond data 

reduction. Still, the results are promising. For example, this approach begins to address 

the tension between recruiting a large and diverse workforce while retaining some data 

security. Workers are never presented with the raw data and it would be difficult to map 

the task data back to the original data. Future directions for this approach could include 
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use for estimating the occurrence of objects in data. this approach may result in faster 

tuning of learning algorithms. Learning algorithms often require months of developer 

support to tune the algorithm to a specific structure or even dataset. Crowdsourcing may 

be a way to cheaply identify where algorithms require additional tuning. 
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CHAPTER 5  

Theoretical Contributions and Conclusions 

5.1 Contributions 

The techniques described in this dissertation demonstrate the potential for 

applying crowdsourcing to expert work in the sciences. Current methods for data analysis 

lack the throughput for processing large datasets made possible by modern 

instrumentation. Existing crowdsourcing methods are not designed for applications that 

require expert knowledge or require privacy of underlying data. This dissertation 

demonstrates a system that can be applied to crowdsourcing the analysis of electron 

micrographs. While these techniques are not intended to replace the expert, they can 

multiply the effort of the expert worker, reducing the number of false positives that 

experts need to analyze, and use self-refining mechanisms to potentially guide the expert 

in the development of more effective crowdsourcing applications. The following describe 

the contributions of each individual experiment, limitations, and future directions.   

5.1.1 Experiment 1: Distributing expertise 

Modern instrumentation such as the SBFSEM produces large amounts of data, too 

much for an individual investigator to process completely. The method outlined in the 
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first experiment distributes the burden of processing to a combination of automated 

algorithms and the crowd, leveraging the scalability of automated algorithms with the 

visual processing capabilities of crowd workers. In this system, experts train the 

algorithms that perform the initial work and crowd workers refine the results to determine 

the best match of the data to a given pattern. The contributions of the crowd add dynamic 

organizational capacity to the workplace, but without the recurring costs of employing 

workers. Crowd workers have cost advantages compared to traditional expert labor, they 

are transient and do not require continuous mentoring, employment, space 

accommodations, or benefits. In addition, crowd workers are numerous and can be 

quickly recruited, are open to small quantities of work, and require less initial investment 

compared to developing experts and recurring costs of expert mentoring.  

This experiment provides two theoretical contributions. First, it extends the 

organizational literature regarding how expertise is externalized and reused within 

crowdsourcing. While the organizational literature recognizes machine learning as an 

externalized form of expertise, there is no example application to broad online 

communities like Amazon’s Mechanical Turk where the electronic knowledge is highly 

portable with very low incremental costs for replication. Second, it extends the existing 

literature of crowdsourcing applications to include tasks that require expertise in the 

neurosciences for the application of segmentation.  Most current crowdsourcing 

applications are typically simple tasks with similarly simple results.  The first experiment 

demonstrated knowledge embedded into a system that aggregated the effort of crowd 

workers who were not experts, to produce outcomes that were similar to outcomes 

normally obtained from experts. To some degree this work also extends image processing 
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literature to automated and semi-automated methodologies by providing a method for 

refining the results from automated segmentation through programmatic access of an 

online worker community. 

5.1.2 Experiment 2: Dynamic questions 

Experts and novices approach problems differently (Larkin, McDermott et al. 

1980). Experts and novices differ in approach, vocabulary, and mental models when 

solving problems. These differences can be invisible to the expert, but can be impassable 

barriers to novices.  

Dynamic questions bridge expert formulation of language and logical constructs 

presented in the task by re-formulating descriptions in the language of naïve workers. 

Workers progressively refine task instructions provided by an expert. In this model, 

results demonstrate that even crude formulations of task instructions gain specificity and 

remodel the language used into more accessible terms. Experiment 2 also demonstrated 

that workers can provide direct feedback to employers through this mechanism. For 

example, such as when workers provided instructions on how the employer could 

enhance the task instructions by including example images.  

This work contributes to the literature of crowdsourcing.  It re-imagined the HIT 

in mTurk work as an object that is dynamic, capable of integrating feedback and 

contributions from workers, and that opens limited two-way communication between 

employer and workers.  

5.1.3 Experiment 3: Task transformation 

Distributing unpublished work to public workforces can inadvertently reveal 

unpublished hypothesis (Wright 2010). In crowdsourcing data, there is a tension between 
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enlisting large communities to participate with the need to keep unpublished data 

confidential.  

In the neurosciences, electron micrographs reflect several steps of the scientific 

process including region where the tissue is collected and stains used to reveal specific 

structures. Correlating the region where tissue was collected and the stains used may 

reveal an investigator’s hypothesis or interests. To reduce the chance of revealing 

confidential information, this experiment obscures the data, revealing only information 

required to accomplish the task and presenting the task in an alternate framing.  

The third experiment continues to demonstrate the potential of pairing automated 

algorithms with crowd workers. It builds on the work of the first experiment by also 

concealing the underlying data to prevent the unintended distribution of information 

revealing of an employers’ scientific methods, tools, or hypotheses. Results demonstrated 

the ability of crowd workers to filter noise and reduce the number of false positives 

detected by automated algorithms.  

This work contributes to the literature of crowdsourcing scientific work by 

demonstrating a technique for engaging crowd workers without exposing sensitive 

underlying data.  This was accomplished by transforming data into another form, asking 

workers to complete an analogous task on the transformed data, and mapping the results 

back to the original data.  

5.2 Limitations and Generalizability 

With the broad goal of applying crowdsourcing to scientific applications, this 

dissertation focused its scope using a driving application, specifically image 

segmentation in the neurosciences. As a result of this driving application, the 
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development of the infrastructure is specific to the requirements and challenges of image 

segmentation. These limitations to generalization are specific to each experiment and 

detailed in the following sections.  

5.2.1 Experiment 1:  Distributing expertise 

Experiment 1 is directed specifically to membrane detection of cells in electron 

micrographs. The experiment implements existing automatic segmentation algorithms 

that are not explicitly designed to generate a panel of alternate segmentations such as 

those presented in Experiment 1. Future algorithms can be architected to provide 

purposefully unique segmentations for feedback from the crowd and feedback the 

responses of the crowd into the training of the algorithm.  

Within the neurosciences there are other types of neuropil commonly segmented 

such as mitochondria, nucleoli, and endoplasmic reticulum. The methods presented here 

could be applied to those structures as well but may be more difficult to apply if there 

isn’t a clear shape geometry the crowd workers can be tasked with recognizing. For 

example, the membrane or cell walls may be easier to describe than the filament like 

structure of endoplasmic reticulum.  

Application to disciplines other than the neurosciences may be possible if the 

judgments made by crowd workers can be broken down into a panel of possible choices. 

One such application may be possible in the atmospheric sciences where crowd workers 

are asked to provide local expertise and intuition to an ensemble prediction of a hurricane 

path. Workers familiar with the terrain the hurricane is expected to travel could provide 

intuitive or informed decisions as to the path of the storm. 
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5.2.2 Experiment 2: Dynamic questions 

The dynamic questions system demonstrated in Experiment 2 is possibly the most 

generalizable of all the experiments. The infrastructure leverages several scalable cloud 

systems such as Amazon’s EC2, Google’s Fusion Tables, and Qualtrics. Each of these 

systems are capable of serving many simultaneous users. Intended to bridge experts with 

novices, dynamic questions can be applied to the refinement of Mechanical Turk tasks 

instructions where experts may have trouble communicating with novices.  

Despite best efforts, dynamic questions did not demonstrate improved 

performance of workers when applied to applications in the neurosciences, but did show 

performance increases in a pilot test. It is possible that these methods can increase 

performance in other tasks that are less qualitative or with less uncertainty.  

5.2.3 Experiment 3: Task transformation 

Similar to Experiment 1, task transformation combines automated algorithms with 

the crowd. Within the neurosciences, these same methods can be applied to other 

structures that have a contiguous 3D shape or pattern.  

These methods can possibly be applied to other domains such as the earth 

sciences, for example, one could imagine recasting the Finding Khan project with a 

combination of automated learning algorithms that can produce an image mask of 

possible man-made structures. Crowd workers would then annotate data marking possible 

ancient architectural structures that do not conform to naturally occurring structures. It 

may be that workers can distinguish between man-made objects and naturally occurring 

objects in vast expanses of land, reducing the number of possible sites that the team 

targets their investigation.  
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5.3 Costs of analyzing data  

Many examples of very successful crowdsourcing efforts do not compensate their 

workers, but rather rely on the altruistic efforts of the crowd (Sullivan, Wood et al. 2009), 

or entertain them (Von Ahn 2006; Cooper, Khatib et al. 2010). While the driving 

application in this dissertation have clinical implications that may attract volunteers (e.g., 

by contributing to understanding of Alzheimer’s disease, Parkinson’s disease and etc.), 

building communities of workers remains a difficult task. It is unknown how many failed 

crowdsourcing projects there are. Separating motivation and work mechanisms, this 

dissertation work focuses on the mechanisms for work. Nonetheless, there may be 

members of the community that are less interested in building communities and would 

like to multiply the effort of the workers, in which case, costs are of significant concern. 

The following is an analysis of the associated costs in implementing crowdsourcing of 

image processing in the neurosciences using the methods outlined in this dissertation. 

However, when calculating the costs of crowdsourcing work, the employer must 

examine not just the recurring costs (Amazon fees), but also initial costs. An example of 

these costs are broken down in the following table:  

 Initial costs Recurring costs 
Expert work Tuition, stipend, mentoring, 

physical space, computer 
resources, education 
materials, and software 
licenses 

Amortized costs of tuition, 
stipend, mentoring, physical 
space, educational 
materials, and software 
licenses. 

Machine learning Hardware installation, 
systems administration, 
software maintenance, and 
energy costs. 

Hardware maintenance, 
energy costs, systems 
administration, and 
facilities. 

Experiment 1 : Embedding 
expertise 

Leverage costs of expert 
and machine hardware in 
addition to setup with 
Qualtrics, AWS, AMT, and 

None 
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worker compensation. 
Experiment 2: Dynamic 
Questions 

System setup with 
Qualtrics, AWS, AMT, and 
worker compensation. 

None 

Experiment 3: Task 
Transformation 

Leverage costs of expert 
and machine hardware in 
addition to setup with 
Qualtrics, AWS, AMT, and 
worker compensation. 

None 

Table 21: Summary of costs for experiments in comparison to existing methods of work 

To further illustrate the costs of crowdsourcing feature extraction, it is possible to 

estimate the costs of segmenting a full dataset such as the one used in Experiment 1. The 

volume from which images were selected in Experiment 1 was 700x700x269. From a 

semi-structured interview with an expert analyst, extracting a single structure including 

the cell membranes would require about 8 hours of continuous labor. Graduate students 

capable of this type of work such as those employed by the University of Michigan costs 

about $25,255.38 for a candidate graduate student for a nine-month term as of the year 

2012. Given 20-23 working days per month without holidays and a nine-month term, it 

would cost approximately $127.55 of a graduate student candidate’s time (8 hours) to 

segment a cell from this volume. To extract all of the structures, similar to the work 

performed by the Turkers, within the volume (assuming an estimated 57 partial or whole 

cells within the volume), it would cost as much as $7,270.35 with an assumed rate of 

$15.90 per hour and $127.55 per structure. To approximately segment all of the cell 

membranes using the techniques outlined in Experiment 1 as it is implemented would 

cost $9,625.00.  If the experiment were to be modified to only require two workers to 

agree on the same answer, costs could be as low as $350.00 for all of the membranes in 

the volume assuming all of the workers agreed and there were minimal set-up costs and 

fees. 
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In addition to costs, there is a question as to the availability of sufficient workers 

to complete the segmentation of a large volume. In the experiments conducted here with 

the segmentation tasks, it was common to receive all of the results within three days. It is 

suggested by others (Giuly, Kim et al. 2013) that it is possible to cull a group of workers 

familiar with your task and reliably receive results for thousands of hits per day.  

While the recurring costs for crowdsourcing with systems such as Mechanical 

Turk are significant, they are typically less than the initial costs of acquiring new expert 

work or developing new machine learning algorithms. These experiments build on 

existing experts and algorithms, multiplying the existing investment in these resources 

without long term commitment to the infrastructure or people required to do the work.  

5.3.1 Future Work 

Looking towards a vision where scientific work is routinely accomplished in 

tandem between algorithms and crowd workers, these methods could be applicable to 

workforces that are unable to perform manual labor, such as those with disability due to 

back or other injuries. The methods presented in this dissertation make use of innate 

human ability and require little to no training. The combination of low threshold for 

participation and the use of innate ability extends the reach of these methods to a large 

community of users, and could be hosted on platforms other than Amazon’s Mechanical 

Turk. 

To extend these techniques to a broader audience such as the one outlined above, 

a number of changes would need to be made including improving the ease of publishing 

work to AMT, compatibility with mobile devices, further development of algorithms 

tuned for these methods, and optimizing the costs of human participation.   
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The data described in this dissertation required pre-processing, or manipulation of 

the data into a format that could be distributed to workers. In the first experiment, the 

output of the algorithm was separated at three stages, superimposed with the original 

data, and cut into smaller pieces. Although the code are included to accomplish each of 

these steps, each process requires parameters to be calculated to determine the correct 

grid size for the given dataset. To automate these steps, it is possible to chain together 

applications using a scientific workflow system such as Kepler (Ludascher, Altintas et al. 

2006). Encapsulating these steps into workflows will provide users with visual workflows 

that can be easily edited and adapted to new datasets or applications, and create an 

information artifact that can be shared with others interested in performing similar work.  

Further extending the reach of the experiments detailed in this work, extending 

participation to other devices such as tablets and phones would increase the reach of 

Experiments 1 and 3. As the number of mobile devices capable of rendering high-

resolution images increases, they become a compelling platform for distributing visual 

work, particularly with touch displays. The touch displays on these devices enable direct 

manipulation of data and may be a good platform for editing segmentations or marking 

features in data.  

While the experiments described in this dissertation demonstrate new techniques, 

they are not necessarily optimized for cost and efficiency. Further work needs to be 

directed towards building online communities of volunteers and optimizing the costs 

associated with labor marketplaces such as Amazon’s Mechanical Turk. The optimization 

of costs may include decreasing the number of decisions made by workers.  
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5.3.2 Extensions to other applications 

Beyond the neurosciences, there are several potential extensions to the techniques 

described in this dissertation. For example, this work could be extended to capture the 

intuition of the crowd, refining advertisements, and distributing work with security in 

mind. 

In the first experiment, distributing expertise, the emphasis of the task was to 

choose the best segmentation rendered by the automated algorithm from a panel of 

choices. In this decision workers had to interpret the data and judge the output of the 

algorithms. The results demonstrated the selection of answers by workers can reflect the 

varying degrees of consensus between workers. The expert indicated that in several 

instances where the expert and the crowd sourced answers differed, the answer could 

have gone “either way”. It is possible to use the distribution of answers by the crowd to 

assign probabilities to each answer where a clear consensus of the crowd indicates high 

degree of confidence and a split in the crowd’s answers indicates a low degree of 

confidence. Such a system could potentially be used to extract features from other 

volumetric data such as in the earth sciences.   

In the second experiment, Dynamic questions, workers refined task instructions 

provided by the employers adding specificity and information. Applied to an application 

other than the neurosciences, it is possible to imagine the same technique used for feature 

extraction in the earth sciences. The organization could recruit the crowd to refine task 

instructions to include alternate wording, lay language, or even sentence structures that 

are familiar to the target audience.  
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The third experiment, Task transformation, addressed the tension between 

distributing work to a large and public workforce and retaining control of scientific data. 

The same method for obscuring the underlying data could be applied to other applications 

where the underlying data are sensitive, such as with national security applications. In 

these applications, like in the neurosciences, there are large amounts of data where the 

expert might want to identify sparse objects of interest such as specific facilities. The 

attention of security experts is limited, but if the data could be distributed in a less 

recognizable In this case, the effort of the crowd could focus the limited attention of high-

value security experts to likely targets of interest.   

5.4 Conclusions 

Technology has a long history as a factor that increases efficiency, reduces effort, 

and enables new kinds of work. In agriculture, the plow and beast of burden were used to 

till fields larger than could be done by farmers alone, early computers were used to break 

codes in war, and calculators simplify tedious mathematical calculations. As our 

relationship with technology matures, we continue to pair people and technology.   

As demonstrated in the sciences, there are domains of inquiry where technology 

alone is insufficient. This dissertation demonstrates the synergy between advanced 

algorithms and a micro-labor marketplace, working together to benefit from the 

scalability of automated algorithms and the image processing capabilities of people. This 

dissertation makes a step toward enabling the crowd to participate in new applications 

while solving important problems in the neurosciences.  
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APPENDIX A 

 

Experiment 1 materials 

A series of BASH shell scripts are required for processing images to be 

distributed to workers. There are two primary scripts. The first automatically generates a 

series of surveys that are loaded into Qualtrics. The second script creates These scripts 

were performed on a Dell workstation with 16GB of RAM and 1TB of hard drive using 

Ubuntu 12.04LTS.  

Generating surveys to load into Qualtrics 

This script generates text files that are imported into Qualtrics. The generated 

survey points to a set of images uploaded to Amazon’s S3 distributed storage 

infrastructure. 

 
 #!/bin/bash 
 
imagenum=265; 
 
echo [[AdvancedFormat]] 
for i in `seq 0 15`; 
do 
  echo [[Question:Matrix]] 
  echo '${e://Field/Rank0z' 
  echo '<br>' 
  echo '<br>' 
  echo [[Choices]] 
  echo '<br>' 
  echo [[Answers]] 
  echo A '<img alt="microsopy image" 
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src="https://s3.amazonaws.com/e1data/'$imagenum'/cv8squares/'$ima
genum'_cv8_4x4_'$i'.png" />'  
  echo B '<img alt="microsopy image" 
src="https://s3.amazonaws.com/e1data/'$imagenum'/cv7squares/'$ima
genum'_cv7_4x4_'$i'.png" />'  
  echo C '<img alt="microsopy image" 
src="https://s3.amazonaws.com/e1data/'$imagenum'/cv6squares/'$ima
genum'_cv6_4x4_'$i'.png" />'  
  echo [[PageBreak]] 
done 

Generate Bash scripts to combine images 

The following creates a series of Bash shell scripts to create a combined image of 

the variations generated by the automated algorithm. 

#!/bin/bash 
 
 
echo "#!/bin/bash" 
for i in 201 211 212 218 221 225 235 258 260 265; do 
    echo "cd" $i; 
//    echo "convert zap"$i"_cv6.tif -crop 4x4@ +repage +adjoin 
cv6squares/"$i"_cv6_4x4_%d.png"; 
//    echo "convert zap"$i"_cv7.tif -crop 4x4@ +repage +adjoin 
cv7squares/"$i"_cv7_4x4_%d.png"; 
//    echo "convert zap"$i"_cv8.tif -crop 4x4@ +repage +adjoin 
cv8squares/"$i"_cv8_4x4_%d.png"; 
    echo "mkdir 4panelimages" 
    for j in {0..15}; do 
 echo "montage ./raw/"$i"_raw_4x4_"$j".png 
./cv8squares/"$i"_cv8_4x4_"$j".png 
./cv7squares/"$i"_cv7_4x4_"$j".png 
./cv6squares/"$i"_cv6_4x4_"$j".png -geometry 175x175+2+2 -shadow 
-tile x1 ./4panelimages/"$i"_combined_"$j".png"; 
    done; 
    echo "cd ../"; 
done; 
 

Experiment re-run with random presentation 

Experiment1 was performed with randomization of the 16 questions of the HIT 

but with a fixed presentation of the three individual choices. There was some concern that 

workers simply picked “A” for all choices. The experiment was re-run on two images 
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with 100 additional participants randomizing the presentation of the 16 questions in the 

HIT and randomizing the presentation of the three choices.  

 

All of the 16 questions are randomized in presentation by Qualtrics 

 

The presentation of the answers are also randomized by Qualtrics 
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Qualtrics maps the randomized responses back to the original placement of the data. This figure shows 
33 responses map back to Image 1, 5 responses map back to Image 2, and 10 responses map back to Image 3.  

 

Experiment1 image 201 
Crowd consensus in bold 
 

Random order of 
presentation

panel of 3 images

Random order of presentation
of individual images
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 Imag
e 1 
(origi
nal) 

Image 2 
(original) 

Image 
3 
(original
) 

Image 1 
(randomize
d answer 
presentatio
n) 

Image 2 
(randomi
zed 
answer 
presentat
ion) 

Image 3 
(random
ized 
answer 
presenta
tion) 

Expert 
answer 

1 35 6 10 33 5 10 Image 1 
2 20 12 21 23 10 13 Image 1 
3 26 18 8 28 10 9 Image 1 
4 34 7 10 28 9 10 Image 1 
5 24 12 18 23 13 12 Image 1 
6 32 11 10 31 10 7 Image 1 
7 22 21 9 21 14 12 Image 1 
8 39 6 7 29 8 9 Image 1 
9 25 19 7 24 10 13 Image 1 
10 30 12 12 26 10 12 Image 1 
11 34 11 8 26 14 7 Image 1 
12 30 15 9 28 11 10 Image 1 
13 29 13 11 26 14 7 Image 1 
14 32 13 10 33 9 5 Image 1 
15 23 21 9 18 18 11 Image 2 
16 30 11 10 30 8 8 Image 1 

 
Experiment1 image 212 
Crowd consensus in bold 
 
 Image 

1 
(origin
al) 

Image 2 
(original
) 

Image 
3 
(origin
al) 

Image 1 
(randomized 
image 
presentation
) 

Image 2  
(random
ized 
image 
present
ation) 

Image 3 
(random
ized 
image 
present
ation) 

Expert 
Answer 

1 26 19 10 19 10 14 Image 2 
2 41 8 6 30 7 8 Image 1 
3 24 17 16 16 9 21 

5..4.1.1.1.1 I
m
a
g
e
 
2 

4 23 28 5 22 13 10 Image 1 
5 23 21 12 20 12 13 Image 1 
6 31 11 15 17 13 13 Image 1 
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7 31 9 15 24 9 11 Image 1 
8 36 14 4 23 11 11 Image 1 
9 32 11 13 24 7 14 Image 1 
10 26 23 5 18 17 9 Image 2 
11 26 15 13 20 11 14 Image 1 
12 24 24 8 19 12 13 Image 1 
13 17 25 12 14 13 19 

5.4.2 I
m
a
g
e
 
2 

14 26 22 7 21 12 12 Image 1 
15 19 15 21 17 7 22 

5..4.2.1.1.1 I
m
a
g
e
 
3 

16 30 16 9 24 13 9 Image 2 
 

The results of the experiment do not indicate the fixed order of the options led to 

excessive section of choice “A”. In image 201, both the randomized and the fixed 

conditions resulted in the selection of the first image panel as the choice of the crowd. In 

image 212, 12/16 questions were selected as choice “A” in the fixed presentation. 

Workers selected the same panel 13/16 times in the randomized presentation. 

 

Agreement between experts and novices rating the quality of the 

algorithm output  
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Image 201 
 
> kappa2(cbind(a, b)) 
 Cohen's Kappa for 2 Raters (Weights: unweighted) 
 
 Subjects = 16 
   Raters = 2 
    Kappa = 0.458 
 
        z = 2.56 
  p-value = 0.0106 
 
Image 211 
 
> kappa2(cbind(a, b)) 
 Cohen's Kappa for 2 Raters (Weights: unweighted) 
 
 Subjects = 16 
   Raters = 2 
    Kappa = 0.068 
 
        z = 0.573 
  p-value = 0.566 
 
Image 212 
 
> kappa2(cbind(d, e)) 
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 Cohen's Kappa for 2 Raters (Weights: unweighted) 
 
 Subjects = 16 
   Raters = 2 
    Kappa = 0.385 
 
        z = 2.02 
  p-value = 0.0439 
 
Image 218 
 
> kappa2(cbind(f, g)) 
 Cohen's Kappa for 2 Raters (Weights: unweighted) 
 
 Subjects = 16 
   Raters = 2 
    Kappa = 0.636 
 
        z = 2.73 
  p-value = 0.00629 
 
Image 221 
(Answers are the same between the two groups) 
> kappa2(cbind(h, i)) 
 Cohen's Kappa for 2 Raters (Weights: unweighted) 
 
 Subjects = 16 
   Raters = 2 
    Kappa = NaN 
 
        z = NaN 
  p-value = NaN 
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Series of plots visualizing user responses for Image 201 
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Series of plots visualizing user responses for Image 211 
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Series of plots visualizing user responses for Image 212 
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Series of plots visualizing user responses for Image 218 
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Series of plots visualizing user responses for Image 221 
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APPENDIX B 

Experiment 2 materials 

PHP Script for adding a new entry to the Google Fusion 
Table 

 
<?php 
 
include('../phplibs/clientlogin.php'); 
include('../phplibs/sql.php'); 
include('../phplibs/file.php'); 
 
$question = $_GET['q']; 
$ftable= $_GET['table']; 
 
//if question is not null then.... 
 
if ($question != NULL) { 
   //Login to fusiontables 
   $token = 
ClientLogin::getAuthToken('davidcalit2computer@gmail.com', 
'Ki$$my@ss!'); 
   $ftclient = new FTClientLogin($token); 
 
  //Insert the text into table with Votes = 0 
  echo $ftclient->query(SQLBuilder::insert($ftable, 
array('Text'=> $question, 'Votes' => 0))); 
 
} 
 

?> 

Ranking Entries 
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<?php 
 
include('../phplibs/clientlogin.php'); 
include('../phplibs/sql.php'); 
include('../phplibs/file.php'); 
 
require_once("../phplibs/Stat.class.php"); 
 
$rank = $_GET['rank']; 
$debug= FALSE; 
$ftable= $_GET['table']; 
 
//get token 
$token = 
ClientLogin::getAuthToken('davidcalit2computer@gmail.com', 
'PASSWORD_REMOVED'); 
$ftclient = new FTClientLogin($token); 
 
$av=explode("\n",$ftclient->query(SQLBuilder::select($ftable, 
array('rowid', 'Votes')))); 
 
//echo "length of array". sizeof($av); 
//echo "<br />"; 
 
  unset($av[0]); 
 
  $av=(array_filter($av)); 
 
  if ($debug) print_r($av); 
 
$counter=0; 
foreach($av as $cliff_av){ 
  $newArray = explode(',',$cliff_av); 
  $rowId[] = $newArray['0']; 
  $voteCount[] = $newArray['1']; 
  $counterarray[]= $counter++; 
} 
 
$counter=0; 
arsort($voteCount); 
foreach($voteCount as $key=>$value){ 
  $counterarray[$key]=$counter++; 
 
  if ($counterarray[$key] == $rank){ 
     $myrank=$rowId[$key]; 
     } 
} 
 
  if (!(is_numeric($rank))){ 
    //nab array of votes from fusiontables 
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    $getvalues=$ftclient-
>query(SQLBuilder::select($ftable,array('Votes'))); 
    $valuearray=explode("\n",$getvalues); 
    unset($valuearray[0]); 
    $count=count($valuearray); 
    $valuearray=(array_filter($valuearray)); 
    if ($debug) print_r($valuearray); 
 
    unset($value); 
 
    if ($debug) print_r($valuearray); 
    
    $stat= new Stat(); 
 
    $first = $stat->percentile($valuearray,25); 
    $second = $stat->median($valuearray); 
    $third = $stat->percentile($valuearray,75); 
 
    if ($debug==TRUE){     
      echo "<br />"; 
      echo "<br />"; 
      echo "Quartiles:  "; 
      echo "<br />"; 
      echo "first quartile: " . $first; 
      echo "<br />"; 
      echo "second quartile: " . $second; 
      echo "<br />"; 
      echo "third quartile: " . $third; 
      echo "<br />"; 
    } 
 
    switch ($rank) { 
      case "first":  
        $tempstring=$ftclient-
>query(SQLBuilder::select($ftable,array('rowid'),"'Votes' <= 
'$first'")); 
        break; 
      case "second": 
        $tempstring=$ftclient-
>query(SQLBuilder::select($ftable,array('rowid'),"'Votes' >= 
'$first' AND 'Votes' <= '$second'")); 
        break; 
      case "third": 
        $tempstring=$ftclient-
>query(SQLBuilder::select($ftable,array('rowid'),"'Votes' >= 
'$second' AND 'Votes' <= '$third'")); 
 break; 
      case "fourth": 
        $tempstring=$ftclient-
>query(SQLBuilder::select($ftable,array('rowid'),"'Votes' >= 
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'$third'")); 
        break; 
    } 
 
    $temparray = explode("\n",$tempstring); 
    unset($temparray[0]); 
 
    array_pop($temparray); 
 
    if ($debug==TRUE) { 
      echo "<br />"; 
      print_r($temparray); 
      echo "<br />"; 
    } 
 
    $tempindex=array_rand($temparray); 
    $myrank=$temparray[$tempindex]; 
    $string=$ftclient-
>query(SQLBuilder::select($ftable,array('Text'),"'rowid' = 
'$myrank'"));  
  }  
 
 
  if (is_numeric($rank)){ 
    $string=$ftclient-
>query(SQLBuilder::select($ftable,array('Text'),"'rowid' = 
'$myrank'"));  
  } 
 
  $replacements='Rank' . $rank . '='; 
  $pattern='/Text/'; 
  echo preg_replace($pattern, $replacements, $string); 
 
  if ($debug){ 
    echo "<br /> rowid: " . $myrank;  
    echo "<br />" . $string=$ftclient-
>query(SQLBuilder::select($ftable,array('Votes'),"'rowid' = 
'$myrank'")); 
  } 
?> 

Updating Votes 

<?php 
//ini_set('error_reporting', E_ALL); 
 
include('../phplibs/clientlogin.php'); 
include('../phplibs/sql.php'); 
include('../phplibs/file.php'); 
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$topvote = trim($_GET['v']); 
$ftable= $_GET['table']; 
$myrow=0; 
 
$debug=FALSE; 
 
//if question is not null then.... 
 
if ($topvote != NULL) { 
   //Login to fusiontables 
   $token = 
ClientLogin::getAuthToken('davidcalit2computer@gmail.com', 
'Ki$$my@ss!'); 
   $ftclient = new FTClientLogin($token); 
 
   if ($debug) echo "query string:  ".$topvote;  
   echo "<br />"; 
   echo "table: " . $ftable; 
   echo "<br />"; 
    
     $rawrows=$ftclient->query(SQLBuilder::select($ftable, 
array('rowid'))); 
     $rowarray=explode("\n",$rawrows); 
 
     unset($rowarray[0]); 
     print_r($rowarray); 
 
     for ($i=1; $i < sizeof($rowarray); $i++){ 
  
$textarray[$i]=preg_replace('/[\n\r]/','',substr(trim($ftclient-
>query(SQLBuilder::select($ftable, array('Text'), 
"'rowid'='$rowarray[$i]'"))),4)); 
  if ($textarray[$i] == $topvote){ 
     echo "****BAZINGA <br />"; 
     echo "rowid of what I'm looking for is " . 
$myrow=$rowarray[$i]."<br />"; 
     } 
     } 
 
if ($debug)     print_r($textarray); 
      
     echo "<br />"; 
     $myrow=intval($myrow); 
 
     preg_match("/([\d]+)/",$ftclient-
>query(SQLBuilder::select($ftable, array('Votes'), 
"'rowid'='$myrow'")),$newvote); 
 
   //increment vote count 
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   $newvote[0]++; 
   echo "<br />new vote: " . $newvote[0] . "<br />"; 
   echo $ftclient->query(SQLBuilder::update($ftable, 
array('Votes'=>$newvote[0]), $myrow)); 
} 
 
?> 

Summary of satisfaction data 

The following is a table of the satisfaction data reported for both the control and 

experimental groups for each of the four experiments as reported by Qualtrics. Lower 

scores are better.  
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APPENDIX C 

Experiment 3 materials 

Two methods for generating animations. The first method attempts to create all of 

the images while the second method creates a script that creates the images. The second 

method is thought to be more reliable.  

Generating all animations 

Automated methods for generating animations from all of the images files 

#!/bin/bash 
 
NUMOFTILES=16 
#NUMOFTILES - how many chunks the image is divided into.  
NUMOFZ=10 
#NUMOFZ - how many slices in Z you want the stack to go.  
TOTALIMAGES=184 
#NUMOFIMAGES - Number of images that need to be sliced and diced.  
DELAY=50 
#DELAY - the gap between displaying images 
COMMAND="convert -delay $DELAY " 
 
for i in `seq 0 $NUMOFTILES`; 
  do 
    for j in `seq 0 $(($TOTALIMAGES/$NUMOFZ))`; 
      do  
        BASE=$(($j*$NUMOFTILES*$NUMOFZ)) 
        for k in `seq 0 $(($NUMOFZ-1))`; 
          do 
         COMMAND="$COMMAND 
image$(($k*$NUMOFTILES+$BASE+$i)).png" 
          done 
 COMMAND="$COMMAND ./testgifs/animation$(($j+$i)).gif" 
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 echo $(($j+$i)) 
 COMMAND="convert -delay $DELAY " 
      done 
  done 
 

 

Alternate method for generating animations one stack at 
a time 

#!/bin/bash 
 
counter=0; 
 
echo "#!/bin/bash" 
for i in `seq 50 59`; 
  do 
    echo "convert dlee_mask0"$i".png -crop 4x4@ +repage +adjoin 
mask"$counter"-%d.png"; 
    let counter++; 
  done 
 
for i in {0..15; do convert -delay 50 \ 
mask0-$i.png \ 
mask1-$i.png \ 
mask2-$i.png \ 
mask3-$i.png \ 
mask4-$i.png \ 
mask5-$i.png \ 
mask6-$i.png \ 
mask7-$i.png \ 
mask8-$i.png \ 
mask9-$i.png animation$i.gif; done 
 

5.4.3 Sample output from the script 

#!/bin/bash 
convert dlee_mask010.png -crop 4x4@ +repage +adjoin mask0-%d.png 
convert dlee_mask011.png -crop 4x4@ +repage +adjoin mask1-%d.png 
convert dlee_mask012.png -crop 4x4@ +repage +adjoin mask2-%d.png 
convert dlee_mask013.png -crop 4x4@ +repage +adjoin mask3-%d.png 
convert dlee_mask014.png -crop 4x4@ +repage +adjoin mask4-%d.png 
convert dlee_mask015.png -crop 4x4@ +repage +adjoin mask5-%d.png 
convert dlee_mask016.png -crop 4x4@ +repage +adjoin mask6-%d.png 
convert dlee_mask017.png -crop 4x4@ +repage +adjoin mask7-%d.png 
convert dlee_mask018.png -crop 4x4@ +repage +adjoin mask8-%d.png 
convert dlee_mask019.png -crop 4x4@ +repage +adjoin mask9-%d.png 
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APPENDIX D 

Qualtrics Questions 

Instructions for distributing expertise 

PHP Script for adding a new entry to the Google Fusion Table 
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Instructions for task transformation 
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Instructions for Dynamic Questions (Pilot Test) 
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APPENDIX E 

Google Fusion Tables 

Results from Experiment 1 – Distributing expertise 

The results stored in Google Fusion Tables are accessed through a GUI. 

Screenshots of the user interface and data are included below. 



 129 



 130 

 

 

Additional data are available in the attached archive.  
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Results from Experiment 2 – Task transformation 
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Results from Experiment 3 – Dynamic Questions 
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APPENDIX F 

mTurk Configurations 

Configuration from Experiment 1 – Distributing 

expertise 
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Configuration from experiment 2 – Task transformation 
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Configuration from experiment 3 – Dynamic questions 
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Appendix G 

Mechanical Turk data 

Online hosting of results from Mechanical Turk 

Amazon’s Mechanical Turk generates significant amount of information from 

every HIT result including WorkerIDs, assignementIDs, IP addresses, and answers to all 

of the individual questions. The results from all of the experiments conducted on 

Mechanical Turk are included in an online archive found at the following web address: 

 https://s3.amazonaws.com/dlee_dissertation/Mechanical_Turk_results_dlee_dissertation.zip 

These results are stored in CSV or comma-separated values. This format can be 

easily imported into word processing, spreadsheet, and statistical applications.  
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