
Holistic System Design for Deterministic Replay

by

Dongyoon Lee

A dissertation submitted in partial fulfillment
of the requirements for the degree of

Doctor of Philosophy
(Computer Science and Engineering)

in the University of Michigan
2013

Doctoral Committee:

Assistant Professor Satish Narayanasamy, Chair
Professor Peter M. Chen
Associate Professor Jason N. Flinn
Professor Stéphane Lafortune

©Dongyoon Lee

2013

To my family who has shaped my life:

My wife, Songyi Park

My father, Jongwoo Lee

My mother, Soonjung Kim

My daughter, Joyce Dabin Lee

My son, Justin Hyunbin Lee

ii

A C K N O W L E D G M E N T S

First and foremost, praises and thanks to God, the Almighty, for His blessings through-
out my whole life and my research work. This dissertation is not the product of my
effort alone. There are many people with whom I am indebted over the last few years
of graduate study.
I am forever grateful to my advisor Satish Narayanasamy for giving me the oppor-
tunity to do research with him and providing invaluable guidance throughout this re-
search. His patience, guidance, enthusiasm, and effort have deeply inspired me and
become essential to the birth of this thesis. It was a great privilege and honor to work
and study under his guidance.
I would like to express my profound gratitude to my committee, Peter Chen, Jason
Flinn and Stéphane Lafortune, for helping me shape this thesis. I especially thank
Peter and Jason for their patience and guidance in research projects. Many of the
research work in this thesis were developed in collaboration with them.
I would like to thank my colleagues at University of Michigan. Jie Yu and Abhayendra
Singh spent a lot of time with me in office while discussing research idea. Benjamin
Wester helped me learn kernel programming and debug Respec. Kaushik Veeraragha-
van gave me invaluable advice not only in research but also in job search. I thank
Jessica Ouyang and David Devecsery for helping make my work better through dis-
cussion and collaboration. I would also like to deeply thank Zijiang Yang at Western
Michigan University. He provided me with the opportunity to work on SMT-based
program analysis. Mahmoud Said also helped implementing the SMT-based algo-
rithm that we used for Rosa.
I would like to thank my family in Korea. I am sincerely thankful to my father, Jong-
woo Lee, and mother, Soonjung Kim, for their unstinting support in my graduate
study; my brother, Dongmook Lee, for being a constant source of cheer; and Songyi’s
parents for encouraging words, all of which make all the things happen.
Lastly, I would like to especially thank my wife, Songyi Park, for her love and endless
prayers to complete this research work. The sacrifice she made throughout my years
in Ann Arbor are simply ineffable. Songyi, this thesis is dedicated to you. I am
very much thankful to my daughter, Joyce Lee, and my son, Justin Lee, for being the
greatest happiness and joy of my life. May the Almighty God richly bless all of you.

iii

TABLE OF CONTENTS

Dedication . ii

Acknowledgments . iii

List of Figures . vii

List of Tables . viii

Abstract . ix

Chapter

1 Introduction . 1

1.1 Respec . 2
1.2 Chimera . 3
1.3 Rosa . 4
1.4 Roadmap . 4

2 Background and Related Work . 6

2.1 Software Deterministic Replay Systems . 6
2.2 Hardware Deterministic Replay Systems . 8
2.3 Deterministic Execution Systems . 10

3 Respec: Operating System Support for Multiprocessor Replay 11

3.1 Replay Guarantee . 12
3.1.1 Fidelity level . 12
3.1.2 Online versus offline replay . 15

3.2 Design . 15
3.2.1 Overview . 16
3.2.2 Divergence Checks . 17

3.3 Implementation . 19
3.3.1 Checkpoint and multithreaded fork 19
3.3.2 Speculative execution . 21
3.3.3 Logging and replay . 22
3.3.4 Detecting divergent replay . 24
3.3.5 Rollback . 26
3.3.6 Offline replay support . 27
3.3.7 Security considerations . 27

3.4 Results . 28

iv

3.4.1 Methodology . 30
3.4.2 Record and replay performance . 31
3.4.3 Rollback frequency . 33
3.4.4 The cost of rollback . 33

3.5 Extensions . 35
3.6 Conclusion . 36

4 Chimera: Hybrid Program Analysis for Multiprocessor Replay 37

4.1 Design . 39
4.1.1 Background . 40
4.1.2 Design Overview . 40
4.1.3 Weak-Lock Design . 42
4.1.4 Discussion . 42

4.2 Static Data-Race Detection . 43
4.2.1 RELAY . 43
4.2.2 Soundness . 43
4.2.3 False Positives . 44

4.3 Profiling Non-Concurrent Functions . 44
4.3.1 Overview . 45
4.3.2 Clique analysis . 46

4.4 Symbolic Bounds Analysis for Loops . 47
4.4.1 Overview . 47
4.4.2 Symbolic Bounds Analysis . 49
4.4.3 Choosing the Granularity for Code Region 49

4.5 Implementation . 50
4.5.1 Analysis, Instrumentation, and Runtime System 50
4.5.2 Static Analysis and Source code . 50

4.6 Results . 51
4.6.1 Methodology . 51
4.6.2 Record and replay performance . 52
4.6.3 Effectiveness of Optimizations . 54
4.6.4 Sources of Overhead and Scalability 56

4.7 Conclusion . 56

5 Rosa: Hardware Support and Offline Symbolic Analysis for Multiprocessor Replay 58

5.1 Load-Based Checkpointing Architecture . 60
5.1.1 Load-Based Program Input Logging 60
5.1.2 Handling System Events . 62
5.1.3 Multi-Processor Replay . 64
5.1.4 Discussion . 65

5.2 Reproducing Shared-Memory Dependencies using Offline Analysis 65
5.2.1 Overview of Offline Symbolic Analysis 65
5.2.2 Encoding Coherence Constraints . 66
5.2.3 Encoding Memory Model Constraints for SC 66
5.2.4 Encoding Memory Model Constraints for TSO 67
5.2.5 Replay Guarantees and Finding All Solutions 69

v

5.3 Bounding Search Space . 69
5.3.1 Pending Stores in Store Buffer . 72
5.3.2 In-flight Loads in Out-of-Order Execution 73
5.3.3 Bounding Search Space Effectively Using B-bound 73

5.4 Reducing Offline Analysis Cost Using Cache Hit Filtering 74
5.4.1 Implications of Cache Hit Filtering 75

5.5 Results . 76
5.5.1 Evaluation Methodology . 76
5.5.2 Strata Log Size and Offline Analysis Time 77
5.5.3 Strata Region Length . 78
5.5.4 Effects of Cache Hit Filtering and B-Bound Optimization 80
5.5.5 Sensitivity Studies . 83
5.5.6 The Number of Satisfiable Solutions 83
5.5.7 Program Input (Cache Miss) Log Size 85
5.5.8 Store-buffer Hit Log Size . 87
5.5.9 Recording Performance . 87

5.6 Conclusion . 88

6 Conclusion . 89

6.1 Comparisons and Contributions . 89
6.2 Holistic System Design . 90
6.3 Future Work . 91
6.4 Conclusion . 92

Bibliography . 93

vi

LIST OF FIGURES

3.1 An execution in Respec with two epochs . 16
3.2 A race that produces the same program state . 19
3.3 An execution with a data race . 20
3.4 Breakdown of overhead per benchmark . 30
3.5 Impact of epoch interval on rollback overhead . 34
3.6 Impact of number of rollbacks on rollback overhead 34

4.1 Chimera Overview . 40
4.2 A false data race due to non-mutex synchronizations 45
4.3 Clique analysis . 46
4.4 Instrumenting weak-locks for a loop . 48
4.5 Normalized recording overhead for Chimera with different sets of optimizations . 53
4.6 Proportion of instrumentation points for different logging schemes 53
4.7 Sources of recording overhead . 55
4.8 Scalability results on 2, 4, and 8 processor executions 56

5.1 Load-Based Logging Example . 60
5.2 Two example TSO executions and their replayed memory traces with old/new values 67
5.3 Two examples of recording Strata Hints under TSO 72
5.4 Cache hit filtering . 74
5.5 Strata log size and offline analysis overhead under SC and TSO memory models . 77
5.6 Strata region length . 78
5.7 Distribution of unfiltered memory events in a Strata interval for cycle bounds . . . 79
5.8 Distribution of unfiltered memory events in a Strata interval for downgrade bounds 79
5.9 Distribution of unfiltered memory events in a Strata interval for broadcast bounds . 79
5.10 Correlation between the number of unfiltered accesses 79
5.11 Effectiveness of local, read-only, and cache-hit filtering 81
5.12 Average and maximum number of unfiltered accesses per Strata region 81
5.13 Effectiveness of b-bound and Cache Hit Filtering (CHF) 81
5.14 Strata log size and offline analysis overhead for different c-bounds 84
5.15 Strata log size and offline analysis overhead for different d-bounds 84
5.16 Strata log size and offline analysis overhead for different b-bounds 84
5.17 Strata log size and offline analysis overhead for different number of processors . . 84
5.18 The number of satisfiable solutions . 85
5.19 Program input log size with 16bit counters . 85
5.20 Distribution of instruction counts and program input log size 86
5.21 (a) Store buffer hit ratio and (b) Store buffer hit log size 87

vii

LIST OF TABLES

3.1 Respec performance . 29
3.2 Rollback frequency in pbzip2 . 31
3.3 Rollback frequency in aget . 32

4.1 Benchmarks and input used for profiling and evaluating Chimera 51
4.2 Chimera record and replay performance . 52

5.1 Recording performance . 87

viii

ABSTRACT

Holistic System Design for Deterministic Replay

by

Dongyoon Lee

Chair: Satish Narayanasamy

Deterministic replay systems record and reproduce the execution of a hardware or soft-

ware system. While it is well known how to replay uniprocessor systems, it is much harder

to provide deterministic replay of shared memory multithreaded programs on multiprocessors

because shared memory accesses add a high-frequency source of non-determinism. This thesis

proposes efficient multiprocessor replay systems: Respec, Chimera, and Rosa.

Respec is an operating-system-based replay system. Respec is based on the observation that

most program executions are data-race-free and for programs with no data races it is sufficient

to record program input and the happens-before order of synchronization operations for replay.

Respec speculates that a program is data-race-free and supports rollback and recovery from mis-

speculation. For racy programs, Respec employs a cheap runtime check that compares system

call outputs and memory/register states of recorded and replayed processes at a semi-regular

interval.

Chimera uses a sound static data race detector to find all potential data races and instrument

pairs of potentially racing instructions to transform an arbitrary program to make it data-race-

free. Then, Chimera records only the non-deterministic inputs and the order of synchroniza-

tion operations for replay. However, existing static data race detectors generate excessive false

warnings, leading to high recording overhead. Chimera resolves this problem by employing

ix

a combination of profiling, symbolic analysis, and dynamic checks that target the sources of

imprecision in the static data race detector.

Rosa is a processor-based ultra-low overhead (less than one percent) replay solution that re-

quires very little hardware support as it essentially only needs a log of cache misses to reproduce

a multiprocessor execution. Unlike previous hardware-assisted systems, Rosa does not record

shared memory dependencies at all. Instead, it infers them offline using a Satisfiability Modulo

Theories (SMT) solver. Our offline analysis is capable of inferring interleavings that are legal

under the Sequentially Consistency (SC) and Total Store Order (TSO) memory models.

x

CHAPTER 1

Introduction

A deterministic replay system records and reproduces the execution of a hardware or software
system. The ability to reproduce an execution can be used to improve systems along many di-
mensions, including reliability, security, and q. For example, deterministic replay is an efficient
way to keep the state of a backup synchronized with the state of a primary machine [17]; it can
be used to parallelize or offload heavyweight analysis from production machines [55,21]; it can
be combined with minor perturbations to diagnose or avoid faults [62,72]; it can enable detailed
analysis for forensics [24] or computer architecture research [50, 83]; and it can provide the il-
lusion of reverse execution and time-travel debugging [69, 39]. In the recent past, Microsoft,
Marie, and Intel have realized this need and have produced replay tools such as iDNA [13],
ReTrace [83], and PinPlay [61].

The general idea behind deterministic replay is to log all non-deterministic events during
recording and reproduce these events during replay. Deterministic replay for uniprocessors can
be provided at low overhead because non-deterministic events occur at relatively low frequen-
cies (e.g., interrupts or data from input devices and clocks), so logging them adds relatively
little overhead.

Unfortunately, it is much harder to provide deterministic replay of shared memory multi-
threaded programs on multiprocessors because shared memory accesses add a high-frequency
source of non-determinism. A variety of software-based approaches have been proposed to re-
produce this non-determinism by logging a precise order of shared memory accesses, but these
approaches are prohibitively slow for many parallel applications [25, 61]. This severely limits
the use of deterministic replay tools because they cannot be used in production systems or even
for in-house testing. Other software approaches that target efficiency only support race-free
programs [63, 57] or do not guarantee deterministic replay [60, 5].

On the other hand, existing hardware-assisted solutions [81,49,34,47,48,19,32,82] require
invasive changes to the coherence mechanism (one of the most hard-to-verify components in a
multiprocessor) and also require complex hardware structures for optimizing the size of mem-
ory order logs. Another important limitation of many previous solutions is that they guarantee
replay solely for sequentially consistent (SC) executions. However, most modern processors

1

support only a relaxed memory model as SC disallows many common optimizations. For in-
stance, SPARC and x86-based processors support variants of the Total Store Order (TSO).

We observe that previous approaches think of deterministic replay as producing a replayed
execution that is identical in every way to the original execution, leading to high performance
overhead in software systems and complex processor design in hardware systems.

The key insight in this thesis is that completely identical replay is both impractical and un-
necessary. It is impractical to replay low-level details of the original execution like the detailed
behavior of the microarchitecture or the electrical behavior of the executing circuitry. More
importantly, it is unnecessary to replay these low-level details, since most proposed uses of de-
terministic replay require only higher-level states to be reproduced, such as the program state
of the process and system outputs. We exploit our insight by proposing deterministic replay
systems that do not record the precise order of shared memory accesses to avoid performance
overhead during recording, but still provide useful replay guarantee.

Another insight in this thesis is that it is possible to reduce the cost of detecting and logging
shared-memory dependencies by constraining the original execution in such a way that threads
interleave each other at the larger granularity rather than an instruction. This thesis provides
a solution that forces threads to interleave at the coarsened granularity, and records coarse-
grained shared-memory dependencies for efficient logging, but still preserves parallelism in
common cases for performance.

The following sections briefly introduce three novel deterministic replay systems proposed
by this thesis: Respec, Chimera, and Rosa; and describe how we exploit our insight in enabling
efficient deterministic replay of multiprocessor systems.

1.1 Respec

Respec is a low-overhead software-only system that is implemented in Linux operation system
kernel. Respec aims to support online deterministic replay in which the recorded and replayed
processes execute concurrently. The online replay has been demonstrated to play an important
role in providing safely guarantees in fault tolerance systems and decoupled runtime checks.
Past software solutions, however, could not be used for online replay as they either suffer from
high recording overhead or do not guarantee deterministic replay.

Respec is based on the observation that most program executions are data-race-free and it
is sufficient for data-race-free programs to record the happens-before order of synchronization
operations. Thus, instead of paying huge overhead to detect and log rare data races, Respec
speculates that a program is data-race-free and supports rollback and recovery from misspecu-
lation.

For racy programs, Respec employs a cheap runtime check that compares system call out-

2

puts and memory/register states of recorded and replayed processes at a semi-regular interval.
This stems from our first insight that completely identical replay is both impractical and unnec-
essary, and it is sufficient for many replay uses to guarantee that replayed execution produces
the same output and the final state as recorded execution. We call this relaxed, but sufficient
guarantee, external determinism, and leverage external determinism when we evaluate whether
the replayed run matches the original run by comparing only the output via system calls and
the final program state. Reducing the scope of comparison helps reduce the frequency of failed
replay and subsequent rollback. This technique results in low recording and replay overhead
for the common case of data-race-free execution intervals and still ensures correct replay for
execution intervals that have data races.

The experimental results show only 55 percent overhead on average to record and replay
programs with four threads. To the best of our knowledge, this work is the first software-only
system which can support efficient online replay of multi-threaded programs as other software
tools require a prohibitive amount of performance overhead.

1.2 Chimera

Respec requires a redundant execution on spare cores to enable low-overhead deterministic re-
play and therefore it incurs about two times the throughput cost. This thesis introduces Chimera,
which is the first approach that uses static program analysis to build an efficient software solu-
tion without redundant execution.

Similar to Repsec, Chimera stems from the observation that it is easy to provide determin-
istic multiprocessor replay for data-race-free programs (one can just record non-deterministic
inputs and the order of synchronization operations). Chimera uses a sound static data race de-
tector to find all potential data-races and instrument pairs of potentially racing instructions to
transform an arbitrary program to make it data-race-free. However, existing static data race de-
tectors generate excessive false warnings because static analysis cannot reason about non-mutex
happens-before relations (e.g., barriers), and a sound pointer analysis is necessarily conservative
and thus too imprecise. Our experiments show that logging all potential data race instructions
reported by static data race detector slows the execution down by more than 50 times.

Chimera resolves this problem by employing a combination of profiling, symbolic analy-
sis, and dynamic checks that target the sources of imprecision in the static data race detector.
This hybrid program analysis allows us to protect potential data races at the higher granularity
(such as a loop or a function) while still preserving parallelism in common cases. Instrumenting
potential data races at a loop or function granularity subsequently forces runtime to constrain
possible thread interleavings because it prevents fine-grained interleaving between threads, re-
sulting in low overhead in detecting and logging shared-memory dependencies.

3

By drastically reducing the overhead of recording potential data-races, we show that Chimera
is an attractive recording solution, especially for server (e.g., Apache) and desktop applications
(e.g., pbzip), for which Chimera’s recording overhead is only about 2.4 percent on average.

1.3 Rosa

Processor support could enable us to build ultra-low overhead (less than one percent) replay
solutions. However, hardware solutions should be complexity-effective enough that processor
vendors are encouraged to include a deterministic replay feature in the next-generation proces-
sors. This thesis proposes Rosa, which requires very little hardware support for replay as it
essentially only requires a log of cache misses to reproduce a multiprocessor execution. We
show that processor support for logging data fetched on cache misses is sufficient for replaying
each thread independently.

Unlike previous recording solutions, Rosa does not record shared memory dependencies at
all. Instead, it infers them offline, before replay, using a Satisfiability Modulo Theories (SMT)
solver. The order of shared memory accesses reconstructed by the SMT solver could be different
from the original execution. This implies that Rosa does not guarantee full-level replay fidelity,
which is the key to enabling simple hardware design. However, cache miss logging guarantees
that each instruction in the replayed execution reads and writes the same values as the recorded
execution.

Our offline analysis is capable of inferring interleavings that are legal under both Sequential
Consistency (SC) and Total Store Order (TSO) memory models. TSO is the most common
consistency model implemented in modern processors, but is not supported in many previous
solutions.

1.4 Roadmap

The rest of this thesis is organized as follows:
Chapter 2 presents an overview of background research in deterministic replay. We describe

and categorize previous software and hardware solutions for deterministic replay.
Chapter 3 presents Respec, an operating-system-based solution for multiprocessor deter-

ministic replay. This chapter includes the design, implementation, and evaluation of Respec.
Chapter 4 describes the design, implementation, and evaluation results of Chimera includ-

ing how Chimera uses static/dynamic program analysis to build an efficient software replay
solution.

Chapter 5 describes Rosa, a lightweight hardware-assisted replay solution using cache-miss
logging and offline analysis. We describe the hardware design and offline analysis of Rosa,

4

followed by evaluation.
Chapter 6 concludes the thesis. We summarize our contributions and discuss future work.

5

CHAPTER 2

Background and Related Work

With the advent of multiprocessor systems, it is now the role of the programmers to explic-
itly expose parallelism and take advantage of parallel computing resources. However, parallel
programming is inherently complex as programmers have to reason about all possible thread
interleavings. This problem is compounded by the fact that shared-memory multiprocessors are
non-deterministic in the sense that a given input is not guaranteed to produce the same output
across different executions. Therefore, to sustain the growth in computing that we have enjoyed
over the last few decades, it is critical that we provide programmers with solutions that can
drastically simplify parallel programming.

A deterministic replay system, which logs all non-deterministic events during recording and
reproduces these events during replay, has been shown to be useful in building many such tools
as time-travel debugger and fault tolerant systems by overcoming the inherent non-determinism
in multiprocessor systems. Along this line, this thesis proposes synergistic solutions that exploit
the strengths of various layers in a computing stack from static analysis to processor architecture
for enabling deterministic replay of multiprocessor systems.

As another direction to the address non-determinism issue in traditional multiprocessor sys-
tems, researchers have proposed deterministic execution systems, in which for a given input a
system is guaranteed to produce the same interleaving between threads, thus in turn producing
the same results.

Sections 2.1 and 2.2 describe previous software and hardware replay systems respectively,
and highlight the contributions of our proposed replay solutions: Respec, Chimera, and Rosa.
Then, Section 2.3 discusses the relationship between deterministic execution and deterministic
replay and briefly refers to previous deterministic execution systems.

2.1 Software Deterministic Replay Systems

Early software-based solutions are mostly limited to support replay only, on an uniprocessor
system. Deterministic replay for a uniprocessor execution can be provided at low cost as it does

6

not need to track shared-memory dependencies.
IGOR [27], one of the earliest recorders, uses copy-on-write checkpointing support in the

operating system to record and reproduce an intermediate state of a process. In addition to
checkpointing support, to ensure deterministic replay of a program from a particular state, it
is also necessary to record non-deterministic system input such as interrupts, DMA, and also
the values of any non-deterministic instructions such as the x86 RDTSC (ReaD TimeStamp
Counter) instruction. These events can be recorded in any of the layers in the software sys-
tem stack. Systems like Hyperviser [17], Boothe [16], and Flashback [69] make it possible
for the operating system to record and replay the non-deterministic events. DejaVu [20] and
jRapture [71] record most (but not all) of the non-deterministic system events by using the
Java Virtual Machine (JVM). ReVirt [24] and ReTrace [83] use support in the virtual machine
monitor that interfaces between the guest and host operating systems. Unlike Respec, none of
these systems support multiprocessor replay, because they cannot record and replay the non-
deterministic order between shared memory accesses executed by concurrent threads.

Systems like ReVirt [24] and DejaVu [20] support replay of multithreaded programs on a
uniprocessor system by deterministically replaying the thread schedules. However, replay of
a multithreaded program on a multiprocessor has remained a difficult problem. One of the
first systems to address this problem is InstantReplay [40]. It monitors every memory access
to a shared object to record the order in which different threads accessed it. Recent systems
such as Intel’s PinPlay [50, 61] and Microsoft’s iDNA [13] also record every memory access to
enable multiprocessor replay. But, monitoring every memory access is expensive (iDNA [13],
for instance, is about 5–15 times slower than the native execution). Instead of monitoring every
memory access, SMP-ReVirt [25] uses memory protection bits to detect all the shared memory
dependencies and recorded the memory order. But, handling a memory protection fault for
every shared memory dependency is also inefficient (up to nine times slower).

Instead of recording the order of all shared memory accesses, RecPlay [63] and JaRec [30]
monitor just the synchronization operations and record their order of execution. This approach
only ensures deterministic replay of a program up until the first data race, which limits the use of
a replayer in many ways. For example, while debugging using a replayer, a programmer might
want to understand the after effects of a data race bug in order to triage it, which is not possible
with RecPlay. After finding a data race bug, a tester might not want to wait for the developer
to fix it before he/she could carry on with further tests. Also, for continuously checking the
correctness of production runs it is necessary to replay past the first data race. In fact, most real
world applications contain benign data races [52]. For such applications, a replay tool is most
useful only if it can replay past the benign data races.

Recent work on software-only replay systems achieved relatively low logging overhead by
not eagerly recording shared-memory dependencies. ODR [5] and PRES [60] record less infor-

7

mation than necessary to reproduce the same interleaving between threads. Instead of detecting
and recording shared memory dependencies at runtime, they perform offline searches to re-
construct thread interleavings. This class of systems shows notable performance improvement
during recording, but the offline search is not guaranteed to succeed in a bounded amount of
time (failing to find a solution in some experiments). In some cases, the first deterministic re-
play may take a prohibitively long time when the search does not scale. However, subsequent
replays will have low overhead, because a solution will have previously been found.

On the other hand, Respec, proposed in this thesis, enables guaranteed deterministic replay
of shared memory multiprocessors at a low cost. As a concurrent work with ODR [5] and
PRES [60], Respec shares a similar intuition that it is not necessary to record precise shared-
memory dependencies for replay. However, Respec does not require offline search, so Respec
can be used for online replay in which record and replay are performed concurrently and effi-
ciently.

As another line of work, LEAP [35] uses static escape analysis to provide efficient multi-
processor replay. LEAP improves the efficiency of a recorder by monitoring accesses to only
shared variables that are determined using a static escape analysis. LEAP also improves effi-
ciency by ignoring accesses to variables that are immutable after initialization. Monitoring and
logging accesses to all mutable shared variables determined using a conservative static analysis
can be quite expensive at runtime. LEAP can slow down a program by more than two times in
the average case and six times in the worst case [35], which is higher than Respec (1.5x).

This thesis also proposes Chimera, which leverages hybrid program analysis that combines
static data race detection, profiling, and symbolic analysis. The technique allows us to enable
efficient software-only multiprocessor replay.

2.2 Hardware Deterministic Replay Systems

Recent hardware-assisted replay systems [81,49,34,47,48,19,32,82] show that recording shared
memory dependencies with hardware support only incur less than one percent of performance
overhead. Therefore, they all focus on reducing the log size and the amount of hardware states
required to detect and log shared-memory dependencies. While they succeeded in reducing
the cost of hardware real estate, the hardware complexity of those solutions is still so high that
processor manufacturers have been reluctant to adopt them.

To illustrate the complexity of a shared-memory dependency logger, we now discuss two
recently proposed hardware solutions, DeLorean [47] and ReRun [34].

DeLorean assumes support for BulkSC [18]. It divides a thread’s execution into what are
called chunks. The underlying BulkSC mechanism ensures that each chunk is executed atom-
ically. Given this execution environment, each core in DeLorean just needs to record the size

8

of each chunk that it executes. Also, a global arbiter records the total order between chunks
executed in different cores. DeLorean drastically reduces the log size required for recording
shared-memory dependencies. However, it introduces additional hardware complexity for sup-
porting BulkSC [18], a global arbiter for logging the order between chunks, and support for
logging chunk sizes.

ReRun [34] forms episodes and records their sizes along with a total order between them.
Similar to a chunk in DeLorean, an episode is also a sequence of instructions that appear to be
atomic in an execution. But ReRun differs from DeLorean in implementation details, such as
the conditions for terminating an episode. Before sending an invalidation acknowledgment or a
data update message to any coherence request, a processor core in ReRun terminates its episode
if it detects a read-write or a write-write conflict between the requesting access and one of its
past memory accesses. An episode is also terminated when a cache block gets evicted, because
the core would no longer receive any coherence message for the evicted cache block. Thus,
ReRun guarantees the atomicity property for an episode.

ReRun is very efficient in terms of log size (about four bytes/kilo-instruction) and perfor-
mance. However, it needs significant hardware support. Moreover, to support replay, Rerun
also needs system support for recording program input. Capo [48] discusses the problem of
interfacing software system support with a hardware-based record-and-replay system. Capo ad-
vocates software system support for recording program input, which requires a copy-on-write
checkpoint mechanism and support for logging non-deterministic system events. But the per-
formance cost of a software-based program input recording approach could lead to about a 20
to 40 percent performance loss, as shown in Capo [48].

Another important limitation of previous works is that most of them are limited to the SC
memory model due to its simplicity. Supporting a relaxed consistency memory model remains
a challenging problem. To the best of our knowledge, only a few replay systems support replay
under a relaxed memory model. RTR [82] is the first to propose a solution for TSO. It proposes
to dynamically detect loads that violate SC while executing on a TSO processor and then explic-
itly record their values. Detecting SC violation requires monitoring if a load memory location
is modified between the time the load accesses the location and the time when all the preceding
memory accesses have finished. In addition, RTR requires hardware support for detecting and
logging shared-memory dependencies precisely. Instead, we propose to record Strata along with
cache miss information. Strata require no communication between processor cores or changes
to the coherence mechanism to record them. Instead, at fixed periodic intervals each processor
core records their memory counts and outstanding stores in the store buffer. Thus the required
modifications are “local” to a processor core. We believe that a local solution is simpler than
a solution that require changes to the coherence mechanism, as coherence protocol design and
verification is hard. Effectively, our solution reduces the hardware complexity of the recorder

9

by relaxing the precision required in recording shared-memory dependencies.
ReRun [34] also uses the same technique as RTR to detect potentially SC-violating loads.

LReplay [19] records pending period information and supports some relaxed models such as the
Godson-3 consistency by logging load instructions that violate SC. However, it only considers
store atomic multiprocessor systems, which is not the case for the TSO memory model in x86
processors.

This thesis proposes Rosa, a hardware-assisted replay solution, which requires minimum
hardware extension for replay and does not require modifying cache coherence protocols. More-
over, Rosa can support replay of both SC and TSO memory model systems.

2.3 Deterministic Execution Systems

Deterministic execution systems help programmers by ensuring that the thread interleaving ob-
served is always the same for a given program and an input [22]. This approach obviates the
need for recording the order of shared-memory accesses (unlike deterministic replay), but must
still record any non-deterministic program input to reproduce an execution (like deterministic
replay). If the goal is to reproduce a multiprocessor execution (e.g. for debugging or replica-
tion), then deterministic execution system has the benefit of saving log spaces. However, pro-
posed deterministic execution systems, which artificially orchestrate thread interleavings and
memory operations, have reported higher performance overhead compared to replay solutions.

While deterministic execution can be supported fairly efficiently for programs without data-
races [57, 15], current software-only solutions for racy programs incur high overhead [11]. Ef-
ficiency can be improved by using custom hardware [22, 23, 33]; or by restricting the class of
programs supported to fork-join parallelism [12] or shared-nothing address spaces [8]. Another
approach is to isolate concurrent memory updates using virtual memory protection and deter-
ministically merge the memory state of different threads at deterministic times [42]. While this
approach guarantees determinism efficiently, it may result in program behaviors that are not
consistent with the processor’s memory consistency model.

This thesis proposes deterministic replay (not deterministic execution) solutions. However,
Chimera, proposed in this thesis, transforms a program into an equivalent data-race-free pro-
gram under the new set of synchronization operations. We believe that future work could lever-
age this property to design an efficient software only solution for deterministic execution as
well.

10

CHAPTER 3

Respec: Operating System Support for
Multiprocessor Replay

This chapter describes Respec, a new way to support deterministic replay of a shared memory
multithreaded program execution on a commodity multiprocessor. Respec’s goal is to provide
fast execution in the common case of data-race-free execution intervals and still ensure correct
replay for execution intervals with data races (albeit with additional performance cost). Respec
targets online replay in which the recorded and replayed processes execute concurrently.

Respec is based on two insights. First, Respec can optimistically log the order of memory
operations less precisely than the level needed to guarantee deterministic replay, while execut-
ing the recorded execution speculatively to guarantee safety. After a configurable number of
misspeculations (that is, when the information logged is not enough to ensure deterministic re-
play for an interval), Respec rolls back execution to the beginning of the current interval and
re-executes with a more precise logger. Second, Respec can detect a misspeculation for an
interval by concurrently replaying the recorded interval on spare cores and checking if its sys-
tem output and final program states (architectural registers and memory state) matches those of
the recorded execution. This is based on our insight that matching the system output and final
program states of the two executions is sufficient for most applications of replay.

Respec works in the following four phases:
First, Respec logs most common, but not all, synchronization operations (e.g., lock and

unlock) executed by a shared memory multithreaded program. Logging and replaying the order
of all synchronization operations guarantees deterministic replay for the data-race-free portion
of programs [63], which is usually the vast majority of program execution.

Second, Respec detects when logging synchronization operations is insufficient to reproduce
an interval of the original run. Respec concurrently replays a recorded interval on spare cores
and compares it with the original execution. Since Respec’s goal is to reproduce the visible
output and final program states of the original execution, Respec considers any deviation in
system call output or program state at the end of an interval to be a failed replay. Respec permits
the original and replayed execution to diverge during an interval, as long as their system output

11

and the program memory and register states converge by the end of that interval.
Third, Respec uses speculative execution to hide the effects of failed replay intervals and

to transparently rollback both recorded and replayed executions. Respec uses operating system
speculation [54] to defer or block all visible effects of both recorded and replayed executions
until it verifies that these two executions match.

Fourth, after rollback, Respec retries the failed interval of execution by serializing the
threads and logging the schedule order, which guarantees that the replay will succeed for that
interval.

Our results show that Respec shared memory multiprocessor record and replay is efficient.
For a combination of PARSEC and SPLASH-2 benchmarks, as well as the pbzip2, pfscan, aget
and Apache applications, Respec adds only an average 18% overhead to execution time when
two threads are replayed and 55% when four threads are replayed.

The rest of this chapter is organized as follows. Section 3.1 describes two design dimensions
along which replay systems vary and the choices we made for Respec. Section 3.2 and Sec-
tion 3.3 describes the design and implementation of Respec. Section 3.4 evaluates the perfor-
mance of Respec for programs with and without data races. Section 3.5 briefly introduces Dou-
bleplay extended from Respec to support offline replay, and presents other extension. Lastly,
Section 3.6 concludes the chapter.

3.1 Replay Guarantee

Replay systems provide varying guarantees. This section discusses two types of guarantees that
are relevant to Respec: fidelity level and online versus offline replay.

3.1.1 Fidelity level

Replay systems differ in their fidelity of replay and the resulting cost of providing this fidelity.
One example of differing fidelities is the abstraction level at which replay is defined. Prior
machine-level replay systems reproduce the sequence of instructions executed by the processor
and consequently reproduce the program state (architectural registers and memory state) of
executing programs [17, 24, 82]. Deterministic replay can also be provided at higher levels
of a system, such as a Java virtual machine [20] or a Unix process [69], or lower levels of a
system, such as cycle accuracy for interconnected components of a computer [66]. Since replay
is deterministic only above the replayed abstraction level, lower-level replay systems have a
greater scope of fidelity than higher-level replay systems.

Multiprocessor replay adds another dimension to fidelity: how should the replaying execu-
tion reproduces the interleaving of instructions from different threads. No proposed application

12

of replay requires the exact time based ordering of all instructions to be reproduced. Instead, one
could reproduce data from shared memory reads, which, when combined with the information
recorded for uniprocessor deterministic replay, guarantees that each thread executes the same
sequence of instructions. Reproducing data read from shared memory can be implemented in
many ways, such as reproducing the order of reads and writes to the same memory location, or
logging the data returned by shared memory reads.

Replaying the order of dependent shared memory operations is sufficient to reproduce the
execution of each thread. However, for most applications, this degree of fidelity is exceedingly
difficult to provide with low overhead on commodity hardware. Logging the order or results of
critical shared memory operations is sufficient but costly [25].

Logging higher-level synchronization operations is sufficient to replay applications that are
race-free with respect to those synchronization operations [63]. However, this approach does
not work for programs with data races. In addition, for legacy applications, it is exceedingly
difficult to instrument all synchronization operations. Such applications may contain hundreds
or thousands of synchronization points that include not just Posix locks but also spin locks and
lock-free waits that synchronize on shared memory values. Further, the libraries with which
such applications link contain a multitude of synchronization operations. GNU glibc alone
contains over 585 synchronization points, counting just those that use atomic instructions. In-
strumenting all these synchronization points, including those that use no atomic instructions, is
difficult.

Further, without a way to correct replay divergence, it is incorrect to instrument only some
of the synchronization points, assuming that uninstrumented points admit only benign data
races. Unrelated application bugs can combine with seemingly benign races to cause a replay
system to produce an output and execution behavior that does not match those of the recorded
process. For instance, consider an application with a bug that causes a wild store. A seemingly
benign data race in glibc’s memory allocation routine may cause an important data structure to
be allocated at different addresses. During a recording run, the structure is allocated at the same
address as the wild store, leading to a crash. During the replay run, the structure is allocated at a
different address, leading to an error-free execution. A replay system that allowed this divergent
behavior would clearly be incorrect. To address this problem, one can take either a pessimistic
approach, such as logging all synchronization operations or shared memory addresses, or an
optimistic approach, such as the rollback-recovery Respec uses to ensure that the bug either
occurs in both the recorded and replayed runs or in neither.

The difficulty and inefficiency of pessimistic logging methods led us to explore a new fi-
delity level for replay, which we call externally deterministic replay. Externally deterministic
replay guarantees that (1) the replayed execution is indistinguishable from the original execu-
tion from the perspective of an outside observer, and (2) the replayed execution is a natural

13

execution of the target program, i.e., the changes to memory and I/O state are produced by the
target program. The first criterion implies that the sequence of instructions executed during
replay cannot be proven to differ from the sequence of instructions executed during the original
run because all observable output of the two executions are the same. The second criterion im-
plies that each state seen during the replay was able to be produced by the target program; i.e.
the replayed execution must match the instruction-for-instruction execution of one of the pos-
sible executions of the unmodified target system that would have produced the observed states
and output. Respec exploits these relaxed constraints to efficiently support replay that guar-
antees identical output and natural execution even in the presence of data races and unlogged
synchronization points.

We assume an outside observer can see the output generated by the target system, such as
output to an I/O device or to a process outside the control of the replay system. Thus, we require
that the outputs of the original and replayed systems match. Reproducing this output is sufficient
for many uses of replay. For example, when using replay for fail-stop fault tolerance [17],
reproducing the output guarantees that the backup machine can transparently take over when
the primary machine fails; the failover is transparent because the state of the backup is consistent
with the sequence of output produced before the failure. For debugging [27,39], this guarantees
that all observable symptoms of the bug are reproduced, such as incorrect output or program
crashes (reproducing the exact timing of performance bugs is outside our scope of observation).

We also assume that an outside observer can see the final program state (memory and register
contents) of the target system at the end of a replay interval, and thus we require that the program
states of the original and replayed systems match at the end of each replay interval.

Reproducing the program state at the end of a replay interval is mandatory whenever the
program states of both the recording and replaying systems are used. For example, when using
replay for tolerating non-fail-stop faults (e.g., transient hardware faults), the system must peri-
odically compare the state of the replicas to detect latent faults. With triple modular redundancy,
this comparison allows one to bound the window over which at most one fault can occur. With
dual modular redundancy and retry, this allows one to verify that a checkpoint has no latent
bugs and therefore is a valid state from which to start the retry.

Another application of replay that requires the program states of the original and replayed
systems to match is parallelizing security and reliability checks, as in Speck [55]. Speck splits
an execution into multiple epochs and replays the epochs in parallel while supplementing them
with additional checks. Since each epoch starts from the program state of the original run, the
replay system must ensure that the final program states of the original and replayed executions
match, otherwise the checked execution as a whole is not a natural, continuous run.

Note that externally deterministic replay allows a more relaxed implementation than prior
definitions of deterministic replay. In particular, externally deterministic replay does not guar-

14

antee that the replayed sequence of instructions matches the original sequence of instructions,
since this sequence of instructions is, after all, not directly observable. We leverage this free-
dom when we evaluate whether the replayed run matches the original run by comparing only
the output via system calls and the final program state. Reducing the scope of comparison helps
reduce the frequency of failed replay and subsequent rollback.

3.1.2 Online versus offline replay

Different uses of deterministic replay place different constraints on replay speed. For some uses,
such as debugging [27,39] or forensics [24], replay is performed after the original execution has
completed. For these offline uses of replay, the replay system may execute much slower than
the original execution [60].

For other uses of replay, such as fault tolerance and decoupled [21] or parallel checks [55],
the replayed execution proceeds in parallel with the original execution. For these online uses of
replay, the speed of replayed execution is important because it can limit the overall performance
of the system. For example, to provide synchronous safety guarantees in fault tolerance or
program checking, one cannot release output until the output is verified [43].

In addition to the speed of replay, online and offline scenarios differ in how often one needs
to replay an execution. Repeated replay runs are common for offline uses like cyclic debugging,
so these replay systems must guarantee that the replayed run can be reproduced at will. This
is accomplished either by logging complete information during the original run [24], or by
supplementing the original log during the first replayed execution [60]. In contrast, online uses
of replay need only replay the run a fixed number of times (usually once).

Respec is designed for use in online scenarios. It seeks to minimize logging and replay
overhead so that it can be used in production settings with synchronous guarantees of fault
tolerance or program error checking. Respec guarantees that replay can be done any number
times when a program is executing. If replay needs to be repeated offline, Respec could store the
log in permanent storage. The recorded log would be sufficient for deterministically replaying
race-free intervals offline. For offline replay of racy intervals, a replay search tool [5, 60, 41]
could be used.

3.2 Design

This section presents the design of Respec, which supports online, externally deterministic
replay of a multithreaded program execution on a multiprocessor.

15

����������
	
�
�������
�������
� �
�������
�
� � � �
�������
� � �
�������
�

� � � �
�������
�
��	��
�����
�
�����!

�
� �
���������
� � � �
�������
� � �
���������

� � � �
�������
�"�#�$&%�'�(�)+*

,.-�/ 021 3 024�576�8�9�6�9:<; 5�=

>@?BADCFE�GF?HGJI�EKCFAD?BL�L >@?BMFNPO@Q
?BGJI@E�CFAD?HLRL

S TU
VW X

YZ [\
]^ _

`Ha�b
bc`

 �a�b
bd fe
gih�j hlk hnm�o�h<p2q�rPs2tvuPkxw

��	��
�����
�
�����!�

"�#y${z}|�~v��'d��<�
� �

�DaRb
b���e� ;���� 1 0����
��6�/ 620�6d�

�<�
� *

� �
�n���������S TU
VW �

YZ [\
]� _

Figure 3.1: An execution in Respec with two epochs

3.2.1 Overview

Respec provides deterministic replay for one or more processes. It replays at the process ab-
straction by logging the results of system calls and low-level synchronization operations exe-
cuted by the recording process and providing those logged results to the replayed process in
lieu of re-executing the corresponding system calls and synchronization operations. Thus, ker-
nel activity is not replayed.

Figure 3.1 shows how Respec records a process and replays it concurrently. At the start, the
replayed process is forked off from the recorded process. The fork ensures deterministic repro-
duction of the initial state in the replayed process. Respec checkpoints the recording process at
semi-regular intervals, called epochs. The replayed process starts and ends an epoch at exactly
the same point in the execution as the recording process.

During an epoch, each recorded thread logs the input and output of its system calls. When a
replayed thread encounters a system call, instead of executing it, it emulates the call by reading
the log to produce return values and address space modifications identical to those seen by the
recorded thread. To deterministically reproduce the dependencies between threads introduced
by system calls, Respec records the total order of system call execution for the recorded process
and forces the replayed process to execute the calls in the same order.

To reproduce non-deterministic shared memory dependencies, Respec optimistically logs
just the common user-level synchronization operations in GNU glibc. Rather than enforcing

16

a total order over synchronization operations, Respec enforces a partial order by tracking the
causal dependencies introduced by synchronization operations. The replayed process is forced
to execute synchronization operations in an order that obeys the partial ordering observed for the
recording process. Enforcing the recorded partial order for synchronization operations ensures
that all shared memory accesses are ordered, provided the program is race free.

Replay, however, could fail when an epoch executes an unlogged synchronization or data
race. Respec performs a divergence check to detect such replay failures. A naive divergence
check that compares the states of the two executions after every instruction or detects unlogged
races would be inefficient. Thus, Respec uses a faster check. It compares the arguments passed
to system calls in the two executions and, at the end of each epoch, it verifies that the memory
and resister state of the recording and replayed process match. If the two states agree, Respec
commits the epoch, deletes the checkpoint for the prior epoch, and starts a new epoch by creat-
ing a new checkpoint. If the two states do not match, Respec rolls back recording and replayed
process execution to the checkpoint at the beginning of the epoch and retries the execution. If
replay again fails to produce matching states, Respec uses a more conservative logging scheme
that guarantees forward progress for the problem epoch. Respec also rolls back execution if the
synchronization operations executed by the replayed process diverge from those issued by the
recorded process (e.g., if a replay thread executes a different operation than the one that was
recorded) since it is unlikely that the program states will match at the end of an epoch.

Respec uses speculative execution implemented by Speculator [54] to support transparent
application rollback. During an epoch, the recording process is prevented from committing any
external output (e.g., writing to the console or network). Instead, its outputs are buffered in the
kernel. Outputs buffered during an epoch are only externalized after the replayed process has
finished replaying the epoch and the divergence check for the epoch succeeds.

3.2.2 Divergence Checks

Checking intermediate program state at the end of every epoch is not strictly necessary to guar-
antee externally deterministic replay. It would be sufficient to check just the external outputs
during program execution. However, checking intermediate program state has three important
advantages. First, it allows Respec to commit epochs and release system output. It would be
unsafe to release the system output without matching the program states of the two processes.
Because, it might be prohibitively difficult to reproduce the earlier output if the recorded and
replayed processes diverge at some later point in time. For example, a program could contain
many unlogged data races, and finding the exact memory order to reproduce the output could be
prohibitively expensive. Second, intermediate program state checks reduce the amount of exe-
cution that must rolled back when a check fails. Third, they enable other applications such as

17

fault tolerance, parallelizing reliability checks, etc., as discussed in Section 3.1. Though inter-
mediate program state checks are useful, they incur an additional overhead proportional to the
amount of memory modified by an application. Respec balances these tradeoffs by adaptively
configuring the length of an epoch interval. It also reduces the cost of checks by parallelizing
them and only comparing pages modified in an epoch.

Respec’s divergence check is guaranteed to find all instances when the replay is not exter-
nally deterministic with respect to the recorded execution. But, this does not mean that execu-
tion of an unlogged race will always cause the divergence check to fail. For several types of
unlogged races, Respec divergence check will succeed. This reduces the number of rollbacks
necessary to produce an externally deterministic replay.

First, the replayed process might produce the same causal relationship between the racing
operations as in the recorded execution. Given that Respec logs a more conservative order
between threads (a total order for system calls and even the partial order recorded for syn-
chronization operations is stricter than necessary as discussed in Section 3.3.3.1), the replayed
process is more likely to reproduce the same memory order.

Second, two racing memory operations might produce the same program state, either im-
mediately or sometime in future, irrespective of the order of their execution. This is likely if
the unlogged race is a synchronization race or a benign data race [52]. For example, two racing
writes could be writing the same value, the write in a read-write race could be a silent write,
etc. Another possibility is that the program states in the two processes might converge after a
transient divergence without affecting system output. Note that a longer epoch interval would
be beneficial for such cases, as it increases the probability of checking a converged program
state.

Figure 3.2 shows an epoch with an unlogged synchronization race that does not cause a
divergence check to fail. The second thread waits by iterating in a spin loop until the first thread
sets the variable x. Because there is no synchronization operation that orders the write and the
reads, the replayed process might execute a different number of reads than the recorded process.
However, the program states of the replayed and recorded processes eventually converge, and
both processes would produce the same output for any later system call dependent on x. Thus,
no rollback is triggered.

However, for harmful races that should happen rarely, Respec’s divergence check could trig-
ger a rollback. Figure 3.3 shows an epoch with a harmful data race where the writes to a shared
variable y are not ordered by any logged synchronization operation. The replayed execution
produces a memory state different from the recorded execution. This causes the divergence
check to fail and initiate a recovery process. This example also shows why it is important to
check the intermediate program states before committing an epoch. If we commit an epoch
without matching the program states, the two executions would always produce different output

18

����� �����	��
���
�������� �����

Figure 3.2: A race that produces the same program state irrespective of the order between the
racing memory operations. Although the number of reads executed by the replayed process is
different from the recorded process causing a transient divergence, the executions eventually
converge to the same program state.

at the system call following the epoch. Yet, the replay system could not roll back past the point
where the executions diverged in order to retry and produce an externally deterministic replay.

3.3 Implementation

3.3.1 Checkpoint and multithreaded fork

Rollback and recovery implementations often use the Unix copy-on-write fork primitive to
create checkpoints efficiently [29,54]. However, Linux’s forkworks poorly for checkpointing
multithreaded processes because it creates a child process with only a single thread of control
(the one that invoked fork). We therefore created a new Linux primitive, called a multi-

threaded fork, that creates a child process with the same number of threads as its parent.
Not all thread states are safe to checkpoint. In particular, a thread cannot be checkpointed

while executing an arbitrary kernel routine because of the likelihood of violating kernel invari-
ants if the checkpoint is restored (this is possible because kernel memory is not part of the
checkpoint). For example, the restarted thread would need to reacquire any kernel locks held
prior to the checkpoint since the original checkpointed process would release those locks. It
would also need to maintain data invariants; e.g., by not incrementing a reference count already
incremented by the original process, etc.

Consequently, Respec only checkpoints a thread when it is executing at a known safe point:

19

Figure 3.3: An execution with a data race that causes the replayed process to produce a mem-
ory state different from that of the recorded process. The divergence check fails and the two
processes are rolled back to an earlier checkpoint.

kernel entry, kernel exit, or certain interruptible sleeps in the kernel that we have determined to
be safe. The thread that initiates a multithreaded fork creates a barrier on which it waits until all
other threads reach a safe point. Once all threads reach the barrier, the original thread creates the
checkpoint, then lets the other threads continue execution. For each thread, the multithreaded
fork primitive copies the registers pushed onto the kernel stack during kernel entry, as well as
any thread-level storage pointers. The address space is duplicated using fork’s copy-on-write
implementation.

Respec uses the multithreaded fork primitive in two circumstances: first, to create a replayed
process identical to the one being recorded, and second, to create checkpoints of the recorded
process that may later be restored on rollback. In the first case, the recorded process simply calls
the multithreaded fork primitive directly. In the second case, the checkpointing code also saves
additional information that is not copied by fork such as the state of the file descriptors and
pending signals for the child process. The child process is not put on the scheduler’s run queue
unless the checkpoint is restored; thus, unless a rollback occurs, the child is merely a vessel
for storing state. Respec deletes checkpoints once a following checkpoint has been verified to
match for the recorded and replayed processes.

Respec checkpoints the recorded process at semi-regular intervals, called epochs. It takes
an initial checkpoint when the replayed process is first created. Then, it waits for a predeter-
mined amount of time (the epoch interval) to pass. After the epoch interval elapses, the next
system call by any recorded thread triggers a checkpoint. After the remaining threads reach the
multithreaded fork barrier and the checkpoint is created, all threads continue execution. The
recorded process may execute several epochs ahead of the replayed process. It continues until
either it is rolled back (due to a failed divergence check) or its execution ends.

Respec sets the epoch interval adaptively. There are two reasons to take a checkpoint. First,
a new checkpoint bounds the amount of work that must be redone on rollback. Thus, the fre-

20

quency of rollback should influence the epoch interval. Respec initially sets the epoch interval
to a maximum value of one second. If a rollback occurs, the interval is reduced to 50 ms. Each
successful checkpoint commit increases the epoch interval by 50 ms until the interval reaches
its maximum value. The second reason for taking a checkpoint is to externalize output buffered
during the prior epoch (once the checkpoint is verified by comparing memory states of the
recorded and replayed process). To provide acceptable latency for interactive tasks, Respec
uses output-triggered commits [56] to receive a callback when output that depends on a check-
point is buffered. Whenever output occurs during an epoch, we reduce that epoch’s interval
to 50 ms. If the epoch has already executed for longer than 50 ms, a checkpoint is initiated
immediately. Note that the actual execution time of an epoch may be longer than the epoch
interval due to our barrier implementation; a checkpoint cannot be taken until all threads reach
the barrier.

3.3.2 Speculative execution

The recorded process is not allowed to externalize output (e.g., send a network packet, write
to the console, etc.) until both the recorded and replayed processes complete the epoch during
which the output was attempted and the states of the two processes match. A conservative
approach that meets this goal would block the recorded process when it attempts an external
output, end the current epoch, and wait for the replayed process to finish the epoch. Then, if
the process states matched, the output could be released. This approach is correct, but can hurt
performance by forcing the recorded and replayed process to execute in lockstep.

A better approach is available given operating system support for speculative execution.
One can instead execute the recorded thread speculatively and either buffer the external output
(if it is asynchronous) or allow speculative state to propagate beyond the recorded process as
long as the OS guarantees that the speculative state can be rolled back and that speculative state
will not causally effect any external output. We use Speculator [54] to do just that.

In particular, Speculator allows speculative state to propagate via fork, file system opera-
tions, pipes, Unix sockets, signals, and other forms of IPC. Thus, additional kernel data struc-
tures such as files, other processes, and signals may themselves become speculative without
blocking the recorded process. External output is buffered within the kernel when possible and
only released when the checkpoints on which the output depends are committed. External in-
puts such as network messages are saved as part of the checkpoint state so that they can be
restored after a rollback. If propagation of speculative state or buffering of output is not possi-
ble (e.g., if the recorded thread makes an RPC to a remote server), the recorded thread ends the
current epoch, blocks until the replayed thread catches up and compares states, begins a new
epoch, and releases the output. We currently use this approach to force an epoch creation on

21

all network operations, which ensures that an external computer never sees speculative state.
Respec allows multiple pairs of processes to be recorded and replayed independently, with the
exception that two processes that write-share memory must be recorded and replayed together.

3.3.3 Logging and replay

Once a replayed process is created, it executes concurrently with its recorded process. Each
recorded thread logs the system calls and user-level synchronization operations that it performs,
while the corresponding replayed thread consumes the records to recreate the results and partial
order of execution for the logged operations.

Conceptually, there is one logical log for each pair of recorded and replayed threads. Yet,
for performance and security reasons, our implementation uses two physical logs: a log in
kernel memory contains system call information and a user-level log contains user-level syn-
chronization operations. If we logged both types of operations in the kernel’s address space,
then processes would need to enter kernel mode to record or replay user-level synchronization
operations. This would introduce unacceptable overhead since most synchronization operations
can be performed without system calls using a single atomic instruction. On the other hand,
logging all operations in the application’s address space would make it quite difficult to guar-
antee externally deterministic replay for a malicious application’s execution. For instance, a
malicious application could overwrite the results of a write system call in the log, which would
compromise the replayed process’s output check. By placing only the data necessary for per-
formance at user-level, the verification of log records described in Section 3.3.7 is considerably
simplified.

3.3.3.1 User-level logging

At user-level, we log the order of the most common low-level synchronization operations in
glibc, such as locks, unlocks, futex waits, and futex wakes. The Posix thread implementation
in glibc consists of higher-level synchronization primitives built on top of these lower-level
operations. By logging only low-level operations, we reduce the number of modifications to
glibc and limit the number of operation types that we log. Our implementation currently logs
synchronization primitives in the Posix threads, memory allocation, and I/O components of
glibc. An unlogged synchronization primitive in the rest of glibc, other libraries, or application
code could cause the recorded and replayed processes to diverge. For such cases, we rely on
rollback to re-synchronize the process states. As our results show, logging these most common
low-level synchronization points is sufficient to make rollbacks rare in the applications we have
tested.

Respec logs the entry and exit of each synchronization operation. Each log record contains

22

the type of operation, its result, and its partial order with respect to other logged operations. The
partial order captures the total order of all the synchronization operations accessing the same
synchronization variable and the program order of the synchronization operations executed in
the same thread.

To record the partial order, we hash the address of the lock, futex, or other data structure
being operated upon to one of a fixed number of global record clocks (currently 512). Each
recorded operation atomically increments a clock and records the clock’s value in a producer-
consumer circular buffer shared between the recorded thread and its corresponding replayed
thread. Thus, recording a log record requires at most two atomic operations (one to increment
a clock and the other to coordinate access to the shared buffer). This allows us to achieve
reasonable overhead even for synchronization operations that do not require a system call.

Using fewer clocks than the number of synchronization variables reduces the memory cost,
and also produces a correct but stricter partial order than is necessary to faithfully replay a
process. A stricter order is more likely to replay the correct order of racing operations and
thereby reduce the number of rollbacks, as discussed in Section 3.2.2.

When a replayed thread reaches a logged synchronization operation, it reads the next log
record from the buffer it shares with its recorded thread, blocking if necessary until the record
is written. It hashes the logged address of the lock, futex, etc. to obtain a global replay clock
and waits until the clock reaches the logged value before proceeding. It then increments the
clock value by one and emulates the logged operation instead of replaying the synchronization
function. It emulates the operation by modifying memory addresses with recorded result val-
ues as necessary and returning the value specified in the log. Each synchronization operation
consumes two log records, one on entry and one on exit, which recreates the partial order of
execution for synchronization operations.

Respec originally used only a single global clock to enforce a total order over all synchro-
nization operations, but we found that this approach reduced replay performance by allowing
insufficient parallelism among replayed threads. We found that the approach of hashing to a
fixed number of clocks greatly increased replay performance (by up to a factor of 2–3), while
having only a small memory footprint. Potentially, we could use a clock for each lock or fu-
tex, but our results to date have shown that increasing beyond 512 clocks offers only marginal
benefits.

3.3.3.2 Kernel logging

Respec uses a similar strategy to log system calls in the kernel. On system call entry, a recorded
thread logs the type of call and its arguments. For arguments that point to the application’s
address space, e.g., the buffer passed to write, Respec logs the values copied into the kernel
during system call execution. On system call exit, Respec logs the call type, return value, and

23

any values copied into the application address space. When a replayed thread makes a system
call, it checks that the call type matches the next record in the log. It also verifies that the
arguments to the system call match. It then reads the corresponding call exit record from its
log, copies any logged values into the address space of the replayed process and returns the
logged return value.

Respec currently uses a single clock to ensure that the recorded and replayed process follow
the same total order for system call entrance and exit. This is conservative but correct. Enforcing
a partial order is possible, but requires us to reason about the causal interactions between pairs
of system calls; e.g., a file write should not be reordered before a read of the same data.

Using the above mechanism, the replayed process does not usually perform the recorded
system call; it merely reproduces the call’s results. However, certain system calls that affect the
address space of the application must be re-executed by the calling process. When Respec sees
log records for system calls such as clone and exit, it performs these system calls to create or
delete threads on behalf of the replayed process. Similarly, when it sees system calls that modify
the application address space such as mmap2 and mprotect, it executes these on behalf of the
replayed process to keep its address space identical with that of the recorded process. This
replay strategy does not recreate most kernel state associated with a replaying process (e.g.,
the file descriptor table), so a process cannot transition from replaying to live execution. To
support such a transition, the kernel could deterministically re-execute native system calls [24]
or virtualized system calls [58].

When the replayed process does not re-execute system calls, we do not need to worry about
races that occur in the kernel code; the effect on the user-level address space of any data race that
occurred in the recorded process will be recreated. For those system calls such as mmap2 that
are partially re-created, a kernel data race between system calls executed by different threads
may lead to a divergence (e.g., different return values from the mmap2 system call or a memory
difference in the process address space). The divergence would trigger a rollback in the same
manner as a user-level data race.

Because signal delivery is a source of non-determinism, Respec does not interrupt the appli-
cation to deliver signals. Instead, signals are deferred until the next system call, so that they can
be delivered at the same point of execution for the recorded and replayed threads. A data races
between a signal handler and another thread is possible; such races are handled by Respec’s
rollback mechanism.

3.3.4 Detecting divergent replay

When Respec determines that the recorded and replayed process have diverged, it rolls back
execution to the last checkpoint in which the recorded and replayed process states matched. A

24

rollback must be performed when the replayed process tries to perform an external output that
differs from the output produced by the recorded process; e.g., if the arguments to a write
system call differ. Until such a mismatch occurs, we need not perform a rollback. However, for
performance reasons, Respec also eagerly rolls back the processes when it detects a mismatch
in state that makes it unlikely that two processes will produce equivalent external output. In
particular, Respec verifies that the replayed thread makes system calls and synchronization
operations with the same arguments as the recorded thread. If either the call type or arguments
do not match, the processes are rolled back. In addition, at the end of each epoch, Respec
compares the address space and registers of the recorded and replayed processes. Respec rolls
the processes back if they differ in any value.

Checking memory values at each epoch has an additional benefit: it allows Respec to release
external output for the prior epoch. By checking that the state of the recorded and the replayed
process are identical, Respec ensures that it is possible for them to produce identical output in
the future. Thus, Respec can commit any prior checkpoints, retaining only the one for which
it just compared process state. All external output buffered prior to the retained checkpoint is
released at this time. In contrast, if Respec did not compare process state before discarding
prior checkpoints, it would be possible for the recorded and replayed process to have diverged
in such a way that they could no longer produce the same external output. For example, they
might contain different strings in an I/O buffer. The next system call, which outputs that buffer,
would always externalize different strings for the two processes.

Respec leverages kernel copy-on-write mechanisms to reduce the amount of work needed
to compare memory states. Since the checkpoint is an (as-yet-unexecuted) copy of the recorded
process, any modifications made to pages captured by the checkpoint induce a copy-on-write
page fault, during which Respec records the address of the faulted page. Similarly, if a page
fault is made to a newly mapped page not captured by the checkpoint, Respec also records the
faulting page. At the end of each epoch, Respec has a list of all pages modified by the recorded
process. It uses an identical method to capture the pages modified by a replayed process; instead
of creating a full checkpoint, however, it simply makes a copy of its address space structures
to induce copy-on-write faults. Additionally, Respec parallelizes the memory comparison to
reduce its latency.

In comparing address spaces, Respec must exclude the memory modified by the replay
mechanism itself. It does this by placing all replay data structures in a special region of memory
that is ignored during comparisons. In addition, it allocates execution stacks for user-level
replay code within this region. Before entering a record/replay routine, Respec switches stacks
so that stack modifications are within the ignored region. Finally, the shared user-level log,
which resides in a memory region shared between the recorded and replayed process, is also
ignored during comparisons.

25

3.3.5 Rollback

Rollback is triggered when memory states differ at the end of an epoch or when a mismatch in
the order or arguments of system calls or synchronization operations occurs. Such mismatches
are always detected by the replayed process, since it executes behind the recorded process.
Respec uses Speculator to roll back the recorded process to the last checkpoint at which program
states matched. Speculator switches the process, thread, and other identifiers of the process
being rolled back with that of the checkpoint, allowing the checkpoint to assume the identity of
the process being rolled back. It then induces the threads of the recorded process to exit. After
the rollback completes, the replayed process also exits.

Immediately after a checkpoint is restored, the recorded thread creates a new replayed pro-
cess. It also creates a new checkpoint using Speculator (since the old one was consumed during
the rollback). Both the recorded and replayed threads then resume execution.

Given an application that contains many data races, one can imagine a scenario in which it
is extremely unlikely for two executions to produce the same output. In such a scenario, Respec
might enter a pathological state in which the recorded and replayed processes are continuously
rolled back to the same checkpoint. We avoid this behavior by implementing a mechanism that
guarantees forward progress even in the presence of unbounded data races. This mechanism is
triggered when we roll back to the same checkpoint twice.

During retry, one could use a logger that instruments all memory accesses and records a
precise memory order. Instead we implemented a simpler scheme. We observe that the recorded
and replayed process will produce identical results for even a racy application as long as a single
thread is executed at a time and thread preemptions occur at the same points in thread execution.
Therefore, Respec picks only one recorded thread to execute; this thread runs until either it
performs an operation that would block (e.g., a futex wait system call) or it executes for the
epoch interval. Then, Respec takes a new checkpoint (the other recorded threads are guaranteed
to be in a safe place in their execution since they have not executed since the restoration of
the prior checkpoint). After the checkpoint is taken, all recorded threads continue execution.
If Respec later rolls back to this new checkpoint, it selects a new thread to execute, and so
on. Respec could also set a timer to interrupt user-level processes stuck in a spin loop and
use a branch or instruction counter to interrupt the replayed process at an identical point in its
execution; such mechanisms are commonly used in uniprocessor replay systems [24]. Thus,
Respec can guarantee forward progress, but in the worst case, it can perform no better than a
uniprocessor replay system. Fortunately, we have not yet seen a pathological application that
triggers this mechanism frequently.

26

3.3.6 Offline replay support

When requested, Respec can optionally save information to enable an offline replay of the
recorded process. This information includes the kernel’s log of system calls, the user-level
log of synchronization operations, and an MD5 checksum of address space and register state
at the end of each committed rollback. Since not all races are logged, offline replay of the
recorded process is not guaranteed to succeed in the first attempt. However, since the recorded
process has been replayed successfully at least once, it is likely that offline replay will eventually
succeed, although it may require a number of rollbacks and retries. Combining Respec output
with an offline replay search tool, such as is done in ODR [5] and PRES [60], would be a
promising approach to reduce search time.

3.3.7 Security considerations

One use of deterministic replay is to parallelize security checks by running them on one or
more replayed processes [55]. This section describes the security issues that must be considered
when using replay in this type of adversarial context, in which the software being replayed may
actively try to disrupt the replay system. For example, an attacker who compromises the replay
system could try to force the replayed process to skip over the execution interval that a security
check would have detected as suspicious.

Recall that the goals of our externally deterministic replay system are to ensure that: (1) the
replayed execution matches the output of the original execution (including the state at the end
of a replay epoch), and (2) the replayed execution is a natural execution of the target program.
By a “natural execution”, we mean that the replayed execution must match the instruction-for-
instruction execution of one of the possible executions of the original system (i.e., the system
without the kernel and library support for replay). While the replayed execution may diverge
from the original execution within an epoch, it must still converge back with the state of the
original execution by the end of the epoch.

Meeting these goals ensures that if the replayed process passes all security checks, a natural
run exists that passes all security checks, so the output and state produced by the original and
replayed processes is safe with respect to those checks. The most an attacker can do is to
choose which natural run the replayed process executes, but that natural run must still match the
output and state of the original process. For example, an attacker could try to avoid detection
by a buffer overflow security check by (1) overflowing a buffer in the original process and
(2) causing the replayed process to execute a different natural path that did not overflow the
buffer (and hence did not trigger the security check). However, the same output and state could
have been produced by the program without the buffer overflow, since that is exactly what the
replayed process has done.

27

We next argue that Respec meets these goals, even when replaying malicious software. We
assume that the software being recorded and replayed cannot corrupt kernel data. Therefore, we
place as much of Respec as possible within the kernel. Speculator, the kernel log, and memory
checkpoints are all placed in the kernel.

The only replay data that the malicious software can corrupt is the user-level log shared
between the recorded and replayed processes; this log contains the order of user-level synchro-
nization operations. Respec must therefore treat the user-level log as suspect. If, for example,
Respec trusted the header length fields in each user-level log record, the malicious software
might be able to cause a buffer overflow in the replay system and cause the replayed process to
deviate from the set of natural runs. More subtly, the malicious software could record an order
of synchronization operations that could not be generated by a natural run. For example, the
malicious software could write a log record that caused a lock operation to succeed even when
the lock was already held by another thread.

To protect against these attacks, Respec has an optional verification mode that can be used
during replay. When verification mode is enabled, the replayed process copies each record from
the shared user-level log to a non-shared memory region, then verifies that the log record repre-
sents a possible execution path. For instance, it rejects a log record that shows a lock operation
completing successfully when the lock is already held by another thread. To verify records, the
replayed process shadows the state of locks, futexes, and other logged data structures (the origi-
nal memory reserved for these structures is used for this purpose since the replayed process does
not execute the actual synchronization operations). If a logged action would be invalid given
the shadowed state, the action is rejected and a mismatch reported. Since Respec only logs a
few types of low-level operations, such verification is not difficult. However, since verification
adds overhead, it can be disabled to improve performance when replay is not being used for
security checks.

3.4 Results

Our evaluation answers the following questions:

• What is the overhead of Respec record and replay for common applications and bench-
marks?

• How often does imprecise logging lead to rollbacks for those application and bench-
marks?

• What is the cost of rollback and retry when it occurs?

28

application threads synch. system epochs pages original redundant Respec slowdown slowdown
ops. calls compared time (s) time (s) time (s) wrt wrt

& stdev. & stdev. & stdev. redundant original
blackscholes 1 524330 30 4 2973 7.04 (0.00) 7.04 (0.00) 7.34 (0.02) 4% 4%

2 524345 36 4 2974 3.54 (0.00) 3.54 (0.00) 3.79 (0.04) 7% 7%
3 524361 41 4 2976 2.37 (0.00) 2.37 (0.00) 2.77 (0.05) 17% 17%
4 524376 47 4 2977 1.79 (0.00) 1.94 (0.08) 2.24 (0.08) 15% 25%

bodytrack 1 387794 6180 11 4091 8.60 (0.01) 8.58 (0.03) 8.74 (0.02) 2% 2%
2 389907 7539 11 4235 4.89 (0.01) 4.83 (0.08) 5.13 (0.06) 6% 5%
3 393314 9982 7 3469 3.55 (0.02) 3.53 (0.05) 3.82 (0.13) 8% 8%
4 395835 11060 10 5733 2.86 (0.02) 3.08 (0.09) 4.82 (0.21) 56% 68%

fluidanimate 1 541964 2749 5 26475 6.69 (0.00) 6.72 (0.04) 6.74 (0.01) 0% 1%
2 4773663 3017 5 28309 4.04 (0.00) 4.13 (0.02) 4.60 (0.03) 11% 14%
4 7545571 3136 5 28895 2.52 (0.01) 2.61 (0.01) 4.35 (0.19) 67% 73%

swaptions 1 1922355 102 7 413 6.77 (0.00) 6.78 (0.00) 7.87 (0.04) 16% 16%
2 1905088 214 6 447 3.39 (0.00) 3.40 (0.01) 3.89 (0.06) 15% 15%
3 1905178 286 4 464 2.34 (0.00) 2.34 (0.01) 2.56 (0.03) 10% 10%
4 1800897 818 4 471 1.76 (0.18) 1.78 (0.02) 2.06 (0.16) 16% 17%

streamcluster 1 59681 7239 14 3121 10.97 (0.08) 11.09 (1.41) 11.01 (0.66) -1% 0%
2 108360 31159 8 2769 5.62 (0.66) 5.66 (0.47) 5.62 (0.56) -1% 0%
3 157874 56674 8 2798 3.35 (0.53) 4.64 (0.54) 5.68 (0.56) 22% 69%
4 208367 83029 8 2834 2.51 (0.32) 4.63 (0.37) 5.88 (0.52) 27% 134%

ocean 1 2648 61 5 202790 4.93 (0.00) 5.00 (0.00) 7.06 (0.05) 41% 43%
2 5203 855 4 154503 2.50 (0.00) 3.03 (0.01) 4.29 (0.03) 42% 72%
4 10366 2642 3 106102 1.49 (0.03) 2.28 (0.02) 3.25 (0.08) 43% 119%

raytrace 1 1115639 1143 2 8352 0.79 (0.01) 0.80 (0.01) 1.34 (0.01) 68% 70%
2 1123858 5632 2 8352 0.64 (0.01) 0.65 (0.01) 1.29 (0.03) 99% 101%
3 1117220 7046 2 8362 0.59 (0.00) 0.59 (0.00) 1.47 (0.12) 148% 150%
4 1118038 6102 2 8352 0.57 (0.00) 0.57 (0.00) 1.55 (0.10) 171% 173%

volrend 1 632 448 2 7372 1.83 (0.01) 1.83 (0.01) 1.88 (0.01) 3% 3%
2 141678 619 2 7377 1.33 (0.01) 1.34 (0.00) 1.39 (0.01) 3% 4%
3 143319 2784 2 7381 1.19 (0.00) 1.19 (0.00) 1.27 (0.00) 7% 7%
4 142177 4084 2 7385 1.10 (0.00) 1.13 (0.06) 1.21 (0.05) 7% 9%

water-nsq 1 67055 535 3 4760 3.05 (0.11) 3.09 (0.10) 3.16 (0.13) 2% 4%
2 122848 908 2 4203 1.68 (0.03) 1.68 (0.03) 1.74 (0.02) 4% 4%
3 156131 1281 2 6254 1.14 (0.01) 1.23 (0.03) 1.34 (0.03) 9% 18%
4 181343 1840 2 8305 0.90 (0.02) 0.91 (0.01) 1.38 (0.01) 52% 54%

fft 1 110 22 1 0 0.82 (0.00) 0.84 (0.09) 0.84 (0.00) 1% 2%
2 166 41 1 0 0.53 (0.00) 0.56 (0.04) 0.57 (0.00) 1% 8%
4 275 77 1 0 0.40 (0.01) 0.44 (0.01) 0.45 (0.00) 3% 12%

radix 1 109 18 2 16408 4.50 (0.01) 4.51 (0.65) 4.61 (0.02) 2% 3%
2 193 35 2 16416 2.29 (0.01) 2.35 (0.01) 2.41 (0.03) 3% 5%
4 392 81 2 31206 1.16 (0.00) 1.28 (0.00) 1.44 (0.04) 12% 24%

pfscan 1 267 75 3 19 1.94 (0.01) 1.94 (0.01) 1.99 (0.05) 3% 2%
2 301 83 2 15 1.15 (0.01) 1.16 (0.03) 1.19 (0.03) 3% 4%
3 340 91 2 16 0.92 (0.00) 0.94 (0.01) 0.97 (0.02) 3% 5%
4 376 99 2 16 0.77 (0.00) 0.83 (0.02) 0.98 (0.04) 19% 28%

pbzip2 1 993 297 20 33654 4.59 (0.00) 4.81 (0.16) 4.83 (0.10) 0% 5%
2 958 359 11 33699 2.35 (0.00) 2.42 (0.09) 2.73 (0.13) 13% 16%
3 954 386 8 33794 1.64 (0.05) 1.70 (0.03) 2.03 (0.15) 19% 24%
4 1005 409 6 33050 1.33 (0.00) 1.44 (0.04) 1.93 (0.23) 34% 45%

aget 1 8618 14681 4147 29039 2.05 (0.16) N/A 2.19 (0.14) N/A 7%
2 8739 13905 3921 27985 1.93 (0.00) N/A 2.17 (0.08) N/A 13%
3 8770 13096 3689 26348 1.94 (0.00) N/A 2.08 (0.04) N/A 7%
4 8432 12944 3642 26269 1.96 (0.04) N/A 2.08 (0.06) N/A 6%

apache 1 3808 11114 18065 5654 8.08 (0.06) N/A 8.13 (0.02) N/A 1%
2 3557 10919 17898 5851 7.89 (0.03) N/A 8.56 (0.12) N/A 9%
3 3417 10902 17922 5899 7.40 (0.04) N/A 9.42 (0.16) N/A 27%
4 3571 10945 17937 5824 6.98 (0.04) N/A 10.04 (0.12) N/A 44%

Table 3.1: Respec performance. Results are the mean of ten trials with the exception of pbzip2
and aget, which show the mean of 100 and 50 trials respectively. Values in parentheses show
standard deviations.

29

Blacksch. Bodytrack Fluidan. Swaptions Streamcl. Ocean Raytrace Volrend Water FFT Radix Pfscan Pbzip2
0.0

0.5

1.0

1.5

R
el

at
iv

e
ov

er
he

ad

Logging and other overhead
Memory comparison
Epoch overhead
Redundant execution

Figure 3.4: Breakdown of overhead per benchmark. For most benchmarks, results are presented
for 1, 2, 3, and 4 threads (left to right). For Fluidanimate, Ocean, FFT, and Radix, results are
presented for 1, 2, and 4 threads.

3.4.1 Methodology

We ran all experiments on a 2 GHz 8-core Xeon processor with 3 GB of RAM running CentOS
Linux version 5.3. The Linux kernel is a stock Linux 2.6.27 kernel, which we modified to
support Respec deterministic replay. In addition, the kernel has the Speculator support for
speculative execution. We also modified the GNU glibc library version 2.5.1 to support Respec.

We used three sets of benchmarks. The first set is five benchmarks from the PARSEC
suite [14]: blackscholes, bodytrack, fluidanimate, swaptions, and streamcluster. The second set
is six benchmarks from the SPLASH-2 suite [79]: ocean, raytrace, volrend, water-nsq, fft, and
radix. The final set is four parallel applications: pbzip2, which we use to compress a 17 MB log
file in parallel; pfscan, which we use to search in parallel for a string in a directory with 952 MB

of log files; aget, which we use to retrieve a 21 MB file over a local network; and Apache, which
we test using ab (Apache Bench) to simultaneously send 100 requests each from four concurrent
clients over a local network.

For all benchmarks, we ensure that all files are in the file cache in kernel memory before
execution begins. Thus, our experimental results do not include any disk I/O time, which would
mask the relative overhead of deterministic replay. We report three values for each experiment:
the original execution time of the application running on a stock system, a “redundant” exe-
cution time in which two copies of the application are run concurrently on a stock system by
forking an execution at the start, and the execution time using Respec to provide deterministic
replay. The redundant execution is a lower bound on execution time for online replay; of course,
the execution outputs could diverge. The Respec execution time measures the time for both the
recorded and replayed processes to finish.

For each benchmark, we vary the number of worker threads from one to four. Many bench-

30

threads rollback original type Respec slowdown
freq time (s) time (s) wrt

& stdev. & stdev. original
1 0% 4.59 (0.00) overall 4.83 (0.10) 5%

w/o rollback 2.70 (0.09) 15%
2 13% once 2.35 (0.00) w/ rollback 2.97 (0.12) 26%

overall 2.73 (0.13) 16%
9% once w/o rollback 2.00 (0.10) 22%

3 2% twice 1.64 (0.05) w/ rollback 2.29 (0.17) 40%
overall 2.03 (0.15) 24%

15% once w/o rollback 1.88 (0.16) 41%
4 1% twice 1.33 (0.00) w/ rollback 2.24 (0.29) 68%

overall 1.93 (0.23) 45%

Table 3.2: Rollback frequency in pbzip2

marks have additional control threads which do little work during the execution; we do not
count these in the number of threads. Pbzip2 uses two additional threads: one to read file data
and one to write the output; these threads are also not counted in the number of threads shown.
Unless otherwise mentioned, all results are the mean of ten trials.

3.4.2 Record and replay performance

Table 3.1 shows the overall performance results for Respec. The first two columns show the ap-
plication or benchmark executed and the number of worker threads used. The next four columns
give statistics about Respec execution: the number of user-level synchronization operations
logged, system calls logged, epochs executed, and memory pages compared. The next three
columns show the original, redundant, and Respec execution times. The last two columns show
Respec’s overhead with respect to the lower bound of the redundant execution time and with
respect to the original execution time. For the two networked applications (aget and apache),
measuring redundant execution time is difficult because the two separate processes contend for
network resources, whereas with Respec only the recorded process sends and receives network
packets.

Figure 4.5 provides a breakdown of the overhead normalized to the original execution time
for all non-networked benchmarks. Each data set shows results for 1, 2, 3 (if feasible), and
4 worker threads. The dark shaded area in each bar show relative overheads for redundant
execution. The lighter shaded areas show relative overhead associated with use of multiple
epochs, excluding memory comparison cost. We believe that this overhead is mainly due to page
fault overhead. The diagonally hashed areas show relative overhead due to memory comparison.
The remaining region shows all other overhead, the majority of which is likely due to logging

31

threads rollback original type Respec slowdown
freq time (s) time (s) wrt

& stdev. & stdev. original
10% once w/o rollback 2.19 (0.14) 7%

1 2% twice 2.05 (0.16) w/ rollback 2.21 (0.13) 8%
overall 2.19 (0.14) 7%

20% once w/o rollback 2.17 (0.08) 13%
2 2% twice 1.93 (0.00) w/ rollback 2.17 (0.05) 13%

overall 2.17 (0.08) 13%
w/o rollback 2.08 (0.05) 7%

3 24% once 1.94 (0.00) w/ rollback 2.09 (0.02) 8%
overall 2.08 (0.04) 7%

18% once w/o rollback 2.07 (0.05) 6%
4 2% twice 1.96 (0.04) w/ rollback 2.08 (0.02) 6%

overall 2.08 (0.06) 6%

Table 3.3: Rollback frequency in aget

synchronization operation and system calls. Respec’s implementation makes it difficult for us
to provide similar breakdowns for networked applications (Apache and aget) because use of
multiple epochs is required to correctly interact with clients on different computers, due to the
output commit problem (as discussed in Section 3.3.2).

Examining the results, we see that Respec overhead is generally quite low. For 2 worker
threads, Respec has average overhead with respect to the original execution of only 18% across
all benchmarks. This overhead gradually increases with the number of threads; with 4 threads,
Respec’s average overhead is 55%. Compared to the lower bound of redundant execution,
Respec’s average overhead is 16% with 2 threads and 40% with 4 threads. We conjecture that
this increase derives mostly from the increased synchronization between replay threads.

It is informative to examine some of the benchmarks with extreme characteristics. Fluidan-
imate from the PARSEC suite and raytrace from the SPLASH-2 suite execute over two million
logged synchronizations per second with four threads. Most of these operations are uncon-
tended lock and unlock operations, which do not require a system call. In these cases, Respec
overhead derives from the cost of logging these user-level operations. Ocean and streamcluster
show larger overheads with respect to the original execution for 4 threads, but show significantly
less overhead for 2 threads. In fact, for 4 threads, simply executing two copies of these bench-
marks concurrently shows similar large increases in execution time, indicating that most of the
overhead derives simply from sharing the limited memory bandwidth and processor caches for
redundant execution rather than from Respec itself. Many benchmarks show a spike in overhead
when the number of worker threads increases from 3 to 4; part of the reason for this spike may
be that our 8 core machine has no CPU capacity to spare for auxiliary threads if 4 cores each

32

are used to record and replay worker threads.
Respec overhead for the four applications at the bottom of Table 3.1 is relatively low, aver-

aging 11% with 2 worker threads and 31% with 4 worker threads. This lower overhead is to be
expected since these applications issue fewer system calls and synchronization operations than
the PARSEC and SPLASH-2 benchmarks.

3.4.3 Rollback frequency

Rollbacks were infrequent events for our benchmarks. In fact, only pbzip2 and aget were rolled
back during our experiments. Pbzip2 has one benign application-level data race in which an
output thread repeatedly spins on two variables (once for each chunk of data being compressed)
waiting for a worker thread to modify them from zero to one. While the race is benign, it affects
the number of system calls issued in some executions. It would also be difficult to identify and
log this race other than through manual code inspection since the spin loop does not use atomic
instructions. Additionally, pbzip2 uses the stdlibc++ library, which we have not modified to log
synchronization operations.

To better understand the frequency of rollbacks, we ran pbzip2 100 times. Table 3.2 shows
that 13–16% of the executions with more than one worker thread contained one rollback. In
general, the cost of rollback was reasonable. Rollbacks contribute 8% of Respec’s total over-
head when pbzip2 uses multiple worker threads.

For aget, one thread reads and displays download progress without obtaining a lock. This
data race is benign since display of slightly stale status information is acceptable. Table 3.3
shows that the divergent output and memory state leads to rollbacks. However, the performance
impact of these rollbacks is negligible because Respec checkpoints aget very frequently (on
every network receive).

3.4.4 The cost of rollback

To better understand the cost of rollbacks, we artificially inserted rollbacks into some of our
benchmarks by emulating the failure of a divergence check during benchmark execution. We
disabled Respec’s adaptive epoch algorithm and manually set the epoch interval to a configured
value.

Figure 3.5 shows the additional time needed to complete four benchmarks when a single
rollback is artificially introduced for different epoch intervals. The results show that rollback
overhead is roughly proportional to the length of the epoch interval. Intuitively, the execution
time increases by the amount of work that must be redone after a rollback. Any fixed cost
introduced by the rollback mechanism itself appears to be minimal.

33

0 200 400 600 800 1000

Epoch length (ms)

0

500

1000

A
dd

it
io

na
l e

xe
cu

ti
on

 t
im

e
(m

s) swaptions - 2 threads
bodytrack - 2 threads
fluidanimate - 2 threads
fluidanimate - 4 threads

Figure 3.5: Impact of epoch interval on rollback overhead

0 1 2 3 4 5

Number of rollbacks

0

500

1000

A
dd

it
io

na
l e

xe
cu

ti
on

 t
im

e
(m

s)

swaptions - 2 threads
bodytrack - 2 threads
fluidanimate - 2 threads
fluidanimate - 4 threads

Figure 3.6: Impact of number of rollbacks on rollback overhead

34

For a final experiment, we varied the number of rollbacks during benchmark execution
while keeping the epoch interval fixed at 100 ms. Figure 3.6 shows that the cost of rollbacks
is proportional to the number of rollbacks. Interestingly, fluidanimate and bodytrack show
a cost of approximately 160–180 ms per rollback (60–80 ms greater than the epoch interval
length). Upon further investigation, we found the reason to be our barrier implementation for
checkpointing; it can take several tens of milliseconds for all threads to reach the barrier for
these two benchmarks.

3.5 Extensions

Respec, proposed in this Chapter, is originally designed to support online replay in which
recording and replaying are performed concurrently (e.g., for fault toleranace, offloaded pro-
gram analysis, etc.). However, Respec is not suitable to support offline replay as Respec needs
to rollback recorded and replayed processes in cases when external determinism is violated, and
for recovery Respec has to constrain original execution as well (e.g., running all threads on a
uniprocessor to guarantee forward progress). For offlien replay in which original execution has
been already completed, Respec may perform offline search to find a thread interleaving, which
Respec doesn’t record by default, that leads to the same output and final state. Though such
offline search is feasible, this approach does not guarantee reproducibility due to hugh search
space.

To address this problem, I also helped extend Respec to build DoublePlay [75], which
guarantees offline multiprocessor replay (e.g., for debugging) using a novel execution model
called uniparallelism. Uniparallelism slices multithreaded execution into multiple time inter-
vals (epochs), and replays them concurrently on separate processors using Respec’s online re-
play support. By running each epoch on a single processor, DoublePlay does not need to log the
order of shared-memory accesses. Instead, similar to uniprocessor replay, the system only logs
the order in which threads in an epoch are timesliced on the processor. This strategy allows us
to record multiprocessor execution for a low latency cost (28%) and at the expense of 2x cores.

In addition to efficient deterministic replay, uniparallel execution, that provide the benefits
of uniprocessor execution while scaling performance with increasing cores in multiprocessors,
has shown to be useful in developing many useful tools. Veeraraghavan et al. [74] proposes
Frost that support detecting and surviving data races using complementary schedules on top
of uniparallel execution. Wester et al. [77] uses uniparallelism to provide parallel data race
detection that spread checking across multiple cores. Ouyang et al. [59] shows that uniparallel
execution can be used to provide region serilizability, more intuitive program semantics for
parallel programs.

35

3.6 Conclusion

Respec provides an operating system based solution for fast, online shared memory multipro-
cessor replay. Respec uses two novel techniques to achieve efficiency: external determinism,
a new fidelity level for replay, and speculative execution. External determinism provides ad-
equate guarantees for most applications of replay, but its relaxed constraints yield sufficient
freedom to support efficient multiprocessor replay. Respec uses speculative execution to opti-
mistically log only the most common synchronization operations, relying on rollback and retry
to guarantee correctness in the rare cases where the recorded and replayed processes diverged
due to unlogged races. These two techniques allow Respec to concurrently record and replay
multithreaded programs with an average overhead of 18% for two threads and 55% for four
threads.

36

CHAPTER 4

Chimera: Hybrid Program Analysis for
Multiprocessor Replay

In the previous Chapter 3, we describe Respec that supports efficient multiprocessor replay
based on external determinism and speculative execution. However, Respec requires a redun-
dant execution on spare cores to enable low-overhead replay, and therefore it incurs about 2x
throughput cost. This Chapter 4 proposes another efficient software-based solution, named
Chimera, based on static program analysis that does not require redundant execution.

Again, the fundamental challenge in multiprocessor replay comes from recording the non-
deterministic interleaving among threads, a property that is necessary to deterministically replay
programs that contain data-races. Recording and replaying the frequent interactions among
thread accesses to shared data can slow execution by an order of magnitude or more. How-
ever, if one could somehow statically guarantee that a program is data-race-free, then it is not
necessary to record thread interactions — past research has shown that recording and replaying
the happens-before order of synchronization operations is sufficient to ensure deterministic re-
play [63]. In most applications, synchronization operations are relatively infrequent compared
to memory accesses, and therefore logging them is relatively cheap. Many uses of determin-
istic replay, including program debugging, reproducing errors encountered in the field in a test
environment, replication for fault tolerance, and forensics following a computer intrusion, are
especially useful for programs with bugs, so working only for bug-free programs (i.e., programs
without data-races) is not a viable option.

Unfortunately, statically proving the absence of data-races in a program without rejecting
data-race-free programs is hard. If there is a chance that a program contains a data-race, then
one must record the order of potentially racing operations in order to guarantee that the recorded
program can be replayed deterministically. One could discover such operations with a dynamic
data-race detector. However, despite significant advances, dynamic data-race detection in soft-
ware slows program execution by nearly 8x [28] for state-of-the-art detectors. Thus, logging
the order of potentially racing instructions is no less of a problem than detecting a data race.

In this chapter we discuss Chimera, a deterministic replay system that employs a new hy-

37

brid program analysis to handle programs with data races. Chimera combines static data race
analysis with off-line profiling and targeted, dynamic checks to provide deterministic replay
efficiently.

Chimera instruments a program to log all non-deterministic inputs (e.g., system call results),
the thread schedule on each processor core, and the happens-before relationships due to syn-
chronization operations. This information is sufficient to guarantee that the program can later
be replayed deterministically, provided the program contains no data-races.

To provide replay for racy programs, Chimera uses a sound but imprecise static data-race
detector (RELAY [76]) to find potential data-races. Every memory instruction that potentially
races with another instruction is placed inside a code region protected by a weak-lock. Chimera
records all happens-before relationships due to weak-locks in addition to the relationships due
to the original program synchronization. Thus, Chimera guarantees deterministic replay for all
programs.

We use weak-locks instead of traditional locks in order to be conservative and avoid intro-
ducing artificial deadlocks. A weak-lock is essentially a time-out lock, where mutual exclusion
is compromised if the weak-lock is not acquired in reasonable amount of time. In the rare case
when a weak-lock times out, Chimera deterministically preempts the thread that currently holds
the weak-lock and forces it to yield the weak-lock to the thread that timed out on the weak-lock;
the original holder of the weak-lock must reacquire the weak-lock before resuming its execu-
tion. This approach splits the code region protected by the weak-lock into two regions across
the preemption. Because this timeout mechanism enables Chimera to preserve the invariant that
only one thread holds a given weak-lock at any given time, Chimera can support deterministic
replay by reproducing the order of weak-locks at the same preemption point.

Unsurprisingly, we find that a sound data-race detector reports a large number of false data-
races, and thus adding a weak-lock for every reported data-race results in prohibitively high
overhead. Chimera employs two critical optimizations to drastically reduce this cost.

Both optimizations attempt to increase the granularity of a weak-lock, in terms of the size of
the locked code region and the amount of data the lock protects. Coarser weak-locks reduce the
cost of instrumentation but may serialize threads unnecessarily and compromise parallelism.
Chimera’s optimizations navigate this performance trade-off by targeting the main sources of
imprecision in a static data-race detector [76].

The first optimization is based on the observation that a large fraction of false data-race re-
ports are due to the inability of the static data-race detector to account for the happens-before
relations due to synchronization operations other than locks. One example of this is that a num-
ber of data-races are reported between initialization code and the rest of the program because
the static tool does not account for the happens-before relation due to fork-join synchronization.
To address this problem, we profile the program offline over a variety of inputs. If the code re-

38

gions containing potentially racing instructions are non-concurrent in all profile runs, Chimera
increases the granularity of the weak-lock to protect the entire code region instead of just one
instruction. Chimera currently treats functions as code regions. This optimization reduces the
number of times weak-locks are acquired and released during a function’s execution.

The second optimization pertains to the remaining set of false racy pairs that are part of
function pairs that ran concurrently in at least one profile run. This optimization targets the in-
accuracy caused by the conservative points-to analysis [70, 6] on which RELAY is based. Due
to this analysis, RELAY overestimates the set of shared objects that could be accessed by a
memory instruction and also underestimates the set of locks that could be acquired. We observe
that while the numeric values for the address bounds of an object accessed by a memory in-
struction are generally hard to determine precisely during static analysis, one can often estimate
reasonable bounds in the form of a symbolic expression [65].

Therefore, in our implementation, we compute symbolic address bounds of objects that
can be accessed by a racing instruction within a loop. Using this information, we increase the
granularity of the weak-lock to the entire loop containing the race, such that it protects the loop
for the data variables specified by the loop’s symbolic address bounds. This avoids the cost of
instrumentation for every iteration of the loop.

Our evaluation shows that Chimera is more efficient than the state-of-the-art software solu-
tions that guarantee multiprocessor replay [75]. We show that recording a set of server (e.g.,
Apache) and desktop (e.g., pbzip, aget) applications incurs only about 2.4% performance over-
head, and recording a set of memory-intensive scientific applications (SPLASH [79] incurs
about 86%. Replay overhead is also similar to that of recording. We find that our two opti-
mizations play a significant role in bringing the average overhead from 53x (when all races are
naively instrumented) to 1.39x.

Programs transformed by Chimera are data-race-free under the new set of synchronization
operations. Though our immediate motive for this transformation is to provide deterministic
record and replay, we envision that future work may be able to leverage the data-race-freedom
provided by Chimera to provide stronger guarantees such as sequential consistency and deter-
ministic execution [57], since these properties are much easier to guarantee in the absence of
data-races.

4.1 Design

This section provides a design overview of the Chimera multiprocessor replay system.

39

����������
	
��
��

��
��

�����������

�������

�������

���

�������������

������������

����

���������

��

�������

	
�����

�������������

��������

����

���������
��
� �����!����

�""
����!���"�

���
���������

#�����������$ %�����!���$����$

��������$

Figure 4.1: Chimera Overview

4.1.1 Background

A program is said to be data-race-free if none of its executions exhibit a data-race. Two memory
instructions are said to be racy if at least one of them is a write, and there is at least one execution
where the two are executed in different threads and not ordered by any happens-before relation
due to synchronization operations. For clarity, we define a few terms that we use in this paper.
A race-pair is a pair of static memory instructions that are racy. The two functions (or loops)
that contains the race-pair are referred to as a racy-function-pair (or a racy-loop-pair).

Chimera records non-deterministic input (e.g., interrupts and file reads) and happens-before
relations due to synchronization accesses in a program. This is sufficient to later provide de-
terministic replay for data-race-free programs because all memory instructions are ordered by
some happens-before relation [63]. However, it is insufficient to later provide deterministic
replay for programs that contain data-races.

4.1.2 Design Overview

Figure 4.1 presents an overview of how Chimera transforms a potentially racy program to a data-
race-free program by adding additional synchronization and runtime constraints. Chimera’s
transformation does not attempt to correct a given program, it simply makes it easier to deter-
ministically record and replay the program’s execution.

Chimera analyzes a given program using the RELAY [76] static data-race detector. RELAY
is sound, except for two corner cases (assembly instructions and pointer arithmetic). However,
the unsoundness is modularized and can be addressed using additional analysis [9, 78] (Sec-
tion 4.2.2).

In the simplest implementation of Chimera, each race-pair is placed inside a code section
protected by an unique weak-lock w. Recording and replaying the happens-before relation due
to weak-locks enables Chimera to record and replay the order of all racy accesses and thus
guarantee deterministic replay for all programs.

A sound static data-race detector is imprecise as it has to make very conservative assump-

40

tions. This results in a huge number of false data-races, and naively recording all those races re-
sults in high overhead. The insight of this paper is that by employing a combination of profiling,
symbolic address bounds analysis and dynamic checks, the overhead is significantly reduced to
the point where deterministic record and replay is viable even for production systems.

We discuss two specific optimizations. The first optimization is based on our observation
that for many false race-pairs, the code regions containing them are almost never executed
concurrently. One main cause for this imprecision is the static data-race detector’s inability
to account for non-mutex synchronization operations. Chimera learns which code regions are
almost always non-concurrent by profiling executions with a set of representative inputs. It
uses profile information to increase the granularity of weak-locks, both in terms of size of the
code region and the amount of shared objects they protect, which reduces the number of weak-
lock operations at runtime. Chimera’s profiler treats every function as a code region, though
other granularities could be considered. As shown in Figure 4.1, racy-pairs in non-concurrent
functions are handled using weak-locks instrumented at the granularity of a function (referred
to as function-locks).

Not all false data-races are part of non-concurrent code regions. Two code regions can
overlap in time, but still may not exhibit a data race if they access different sets of shared
objects. However, a static data-race detector may not always be able to prove that the set of
shared objects accessed in concurrently executed code regions are disjoint due to imprecise
pointer analysis. While it is hard to accurately compute the numeric values for address bounds
statically for a code region, it is often possible to derive a symbolic expression for the upper and
lower bounds of an object that will be accessed within a code region [65].

For data-races that are not found to be part of non-concurrent functions, Chimera checks if
they are part of a loop. If a data-race is not part of any loop, then Chimera simply instruments a
weak-lock at the granularity of a basic block (referred to as a basic block lock). In case the basic
block has a function call, Chimera instruments a weak-lock at the granularity of an instruction
(referred to as an instruction lock).

If a data-race is part of a loop, Chimera derives a symbolic address bound for the range
of addresses that a racy instruction can access within the loop. A race-pair is then guarded
by instrumenting a loop-lock. The loop-lock is also a weak-lock, but it protects a range of
addresses, which are computed at runtime using the symbolic expression derived statically. If
the symbolic bounds expression is too imprecise (e.g., one of the bounds is infinity), and if the
loop body is reasonably large in size, then Chimera instruments at the granularity of a basic
block. In this manner, Chimera avoids the risk of over-serializing the execution of loops.

41

4.1.3 Weak-Lock Design

Chimera ensures that the instrumented weak-locks do not introduce a deadlock. Chimera orders
the set of weak-locks constructed for each granularity of a code region (basic block, loop, and
function) and ensures that they are always acquired in the same order. When a program has
nested code regions (e.g., a function calling a function, a loop calling a function, etc.), an outer
region releases all its weak-locks before starting the inner region, and acquires the weak-locks
back after exiting the inner region. The order in which weak-locks of different granularities
are acquired is also consistent. Function-locks are always acquired before loop and basic-block
locks. Loop-locks are always acquired before basic-block locks. Hence, there cannot be a
deadlock between weak-locks.

Chimera avoids deadlocks that may happen when a weak-lock protected code region con-
tains a programmer specified synchronization wait. The “weak” part of the weak-lock is meant
for handling such deadlocks. If a weak-lock is stalled for more than a threshold period of time,
the stalled weak-lock invokes a special system call to handle the potential deadlock. The system
call handler identifies the thread that currently owns the stalled weak-lock by examining the log
files used to record the order of weak-lock acquires and releases. The kernel preempts the cur-
rent owner, and forces it to release and reacquire the weak-lock that timed-out. This allows the
stalled thread to acquire the weak-lock and proceed with its execution.

Though the above mechanism may compromise the atomicity of a weak-lock protected code
region, we always preserve the invariant that only one thread holds a given weak-lock at any
given time. Thus, recording and replaying the exact order of forced weak-lock release and reac-
quire operations with respect to instrumented weak-lock operations is sufficient to guarantee
deterministic replay. This requires that Chimera record and replay the exact instance when a
thread is preempted and forced to release its weak-locks. For this purpose, we plan to use a
mechanism from the DoublePlay replay system [75] in which the kernel records the instruction
pointer and the branch count (measured via hardware performance counters) at the point of pre-
emption. We have not yet ported this implementation to the Chimera infrastructure as none of
our benchmarks have exhibited a weak-lock timeout.

4.1.4 Discussion

Any data-race that exists in the original program can manifest in the transformed program.
However, Chimera now records the order between the racing instructions. Increasing the gran-
ularity of weak-lock (e.g., to a basic-block) would make it less likely for instructions from two
racy basic-blocks to interleave. If there is only one race between two racy basic-blocks, then
all thread interleavings in the original program can manifest at approximately the same proba-
bility in the transformed program. However, if there is more than one race between two basic

42

blocks, then Chimera’s weak-locks will try to serialize them. While preventing fine-grained
interleaving of smaller code regions may be beneficial for masking certain atomicity violations
in production systems [44], a programmer trying to record and debug a test run might consider
this to be a limitation of Chimera’s optimizations.

4.2 Static Data-Race Detection

Chimera uses the RELAY [76] static data-race detector to identify potential data-races. In this
section, we briefly summarize the RELAY detection algorithm, and then we discuss soundness
and completeness of RELAY.

4.2.1 RELAY

RELAY is a lockset-based static race detection tool that scales to millions lines of code. A
lockset for a program point is the set of locks held at that point. A lockset-based analysis
assumes that for every shared object there is at least one common lock that is held whenever
that object is accessed. The tool reports a race if a pair of memory accesses in different threads
could access the same shared object, the intersection of their locksets is empty, and at least one
of the accesses is a write.

We briefly summarize RELAY’s analysis, but details can be found in the original paper [76].
RELAY starts by analyzing every leaf function in the static call graph ignoring the calling con-
text. For each leaf function, it computes a summary. A function’s summary soundly approxi-
mates the effect of the function on the set of locks held before the function execution. Also, it
includes a summary of the set of shared objects accessed in the function and the lockset held
during each of its accesses. For example, a summary of a function bar(void *b) may say
that a write to the field b->bob can happen while holding a lock b->lock, and that the func-
tion releases the lock b->lock before returning. RELAY composes function summaries in a
bottom-up manner over the call graph by plugging in the summaries of the callee functions to
compute the summaries of the callers.

Thus, RELAY performs a bottom-up calling-context-sensitive analysis on the call graph to
compute the access summaries for all functions that are thread entry points. This is done using
a combination of flow-insensitive points-to [70, 6] and symbolic analysis.

4.2.2 Soundness

Chimera only instruments data-races found by the static data-race detector. Therefore, its de-
terministic replay guarantees are based on the soundness of the static data-race detector it uses.

43

RELAY has three potential sources of unsoundness, but they are modularized and each one
can be addressed separately using known techniques. First, RELAY ignores memory operations
that occur inside blocks of assembly code when calculating lockset summaries. However, this
issue could be addressed with additional engineering that integrates memory access analysis for
assembly instructions [9] with RELAY, or via manual annotations.

Second, the points-to analysis [70, 6] used by RELAY does not handle pointer arithmetic.
RELAY’s pointer analysis assumes that after any arithmetic operation on a pointer, the pointer
still points to the same object. When this assumption does not hold true, the pointer analysis
is not guaranteed to be sound. As a result, we can guarantee replay for an execution only
until the first buffer overflow. However, this does not fundamentally affect Chimera’s analysis.
Enhancing pointer analysis to handle pointer arithmetic [78], or ensuring language safety would
address this problem.

Finally, RELAY post-processes data-race warnings using unsound filters, but we do not use
them.

4.2.3 False Positives

To provide soundness, RELAY makes conservative assumptions, resulting in its reporting a
high number of false data-races. Instrumenting weak-locks for every false data-race results in
prohibitively high overhead.

There are two main sources of false positives. First, RELAY accounts for lock synchroniza-
tions, but ignores happens-before relationships due to non-mutex synchronization operations
such as fork/join, barriers, and conditional variables. As a result, RELAY may report a data-
race between memory operations that can never execute concurrently. The second main source
of false positives is due to the conservative pointer analysis it uses [70,6]. Conservative pointer
analysis would cause RELAY to underestimate the lockset held by a code region and overesti-
mate the variables that could be accessed by a memory instruction.

Our experimental results in Section 4.6 show that RELAY reported data-race warnings on
about 14% of memory operations in a dynamic execution. Instrumenting them with weak-locks
to record the order of those potential data-races incurs an approximately 53x slowdown. We
next discuss two important optimizations based on profiling (Section 4.3) and symbolic bounds
analysis (Section 4.4) that significantly reduce this cost.

4.3 Profiling Non-Concurrent Functions

A static data-race detector may report races between code regions that are never executed con-
currently. One reason for this is the inadequacy of the static analysis in accounting for non-

44

��������

	�
����

��

	�
����

����� �
�
�����������

���

��	
��
�
����

���������

��	
����
�
����

���

�

��� �
�
�����������

��	
��
�
����

���

���������

���

��	
����
�
����

�

��������

������� �������

�
�
�	�
������

���

��	
��
�
����

�������

��	
����
�
����

���

�

�
�
�	�
������

��	
��
�
����

���

�������

���

��	
����
�
����

�

����

Figure 4.2: A false data race due to non-mutex synchronizations. (a) A false data-race re-
ported for water application from the SPLASH benchmark [79]. Functions bndry() and
interf() are never executed concurrently due to the barrier synchronization, which is not
accounted for in RELAY. (b) The granularity of weak-locks is increased to function level in the
two potentially racy functions because Chimera’s profiler finds them to be non-concurrent.

mutex synchronization operations. To address this issue, Chimera uses a profile-guided analysis
to determine code regions that are likely to never execute concurrently and use that information
to increase the granularity of weak-locks without compromising an application’s parallelism.

4.3.1 Overview

One important limitation of lockset based static data-race detectors, including RELAY, is that
they account only for locks, but ignore happens-before relations due to non-mutex synchroniza-
tion operations. Many false data-races may be reported due to this limitation. Figure 4.2(a)
illustrates a false data-race reported for water. The data-race is false because the two suppos-
edly racy functions are never executed concurrently due to a barrier synchronization. We also
find that a number of false data-races are reported between initialization code and the rest of
the code regions, as RELAY does not account for fork-join synchronization. Another source
of false data-races, unrelated to non-mutex synchronizations, is the lack of static knowledge of
control dependencies. For example, we found instances where a set of code regions are exe-
cuted in only one thread, but RELAY reported false races among them. In all these cases, the
two code regions containing the race-pair reported by RELAY are never executed concurrently.

We observe that such cases can be determined by profiling with a set of representative inputs.
If a pair of potentially racy code regions are never executed concurrently in any of the profile
runs, then there is sufficient confidence that they are likely to be non-concurrent in another
execution. Profiling cannot guarantee that they will be non-concurrent in all executions. Never-
theless, we can take advantage of profiled information to increase the granularity of weak-locks
to larger code regions and reduce the dynamic number of weak-lock operations.

If a pair of code regions containing a potential race-pair is likely to be non-concurrent, then
Chimera increases the granularity of the weak-lock to protect the entire code region instead
of just the basic blocks containing the race-pair. Figure 4.2(b) shows how this optimization
affects the weak-lock instrumented to handle the false data-race that we discussed for water

45

����� ���

����� 	�
�

��

��
����� ���

����� 	�
�

��

����	

��
 ��

����� ���

����� 	�
�

����	
��

����	
��

��
��
����

����

��
���
�����
�

������

��
����
������

��

�� ��

��������

Figure 4.3: Clique analysis. (a) One weak-lock is instrumented for each race-pair. If a racy
function-pair is non-concurrent, a function-level weak-lock (f1, f2) is used. Otherwise, a
basic-block level weak-lock is used (b0). (b) Two potential data-races in a clique in a graph
of non-concurrent function share one function-lock (f0). (c) Cliques in a graph representing
non-concurrent functions.

(Figure 4.2(a)). In this study, we consider functions as code regions while performing non-
concurrent region profiling, but our method could be applied for other region granularities as
well. We refer to a weak-lock that protects a function as a function-lock.

By increasing the granularity of the weak-lock to the function-level, Chimera reduces the
dynamic number of operations on that lock. Increasing the granularity in terms of the code re-
gion size for a weak-lock also creates the opportunity to use a single weak-lock to guard multiple
potential data-races. The next section discusses an optimization that exploits this opportunity.

4.3.2 Clique analysis

We propose a clique analysis to determine which racy function-pairs can share the same function-
lock. Sharing a function-lock reduces the cost of instrumentation.

Figure 4.3(a) shows a graph with a node for every function that contains at least one potential
data-race. A dotted edge connects a pair of functions that could potentially race. A solid edge
connects a pair of functions that are found to be non-concurrent in all of the profile runs. For
example, alice is potentially racy and non-concurrent with bob and carol. Functions bob
and carol are non-concurrent, but are proven to be race-free with each other. Functions bob
and dave are racy and have also been found to be concurrent in some profile run.

One simple algorithm would be to assign a unique weak-lock for every racy-function-pair. If
the race-function pair is also non-concurrent, then we can use a function-level lock as shown in
Figure 4.3(a). Note that bob and dave could run concurrently, and so we do not use function-
level weak-locks to guard potential races between them, as that could serialize those the two
concurrent functions and compromise on parallelism. Instead, a weak-lock is instrumented at
the basic-block granularity.

The above algorithm requires that alice acquires and releases two function-level weak-
locks (f1 and f2) every time it is executed. However, alice, bob, and carol are po-

46

tentially non-concurrent with each other. Therefore, the two potential races could be guarded
using a single function-lock f0 as shown in Figure 4.3(b). This optimization would reduce the
number of weak-lock operations.

To identify a group of functions which are mutually non-concurrent, we construct maximal
cliques using a greedy algorithm in a graph of potentially non-concurrent functions (determined
through profiling). A clique of an undirected graph is a subset of nodes where every node
is connected to every other node. A maximal clique is a clique that cannot be extended by
including one more adjacent node. Figure 4.3(c) shows a graph of potentially non-concurrent
functions with two cliques, {alice,bob,carol} and {carol,dave}.

Once cliques are identified in a graph of non-concurrent functions, Chimera assigns function-
locks as follows. For each race-pair, it checks if its racy functions are non-concurrent. If they
are, then it finds the clique that the racy-function-pair is part of in the graph of non-concurrent
functions. Chimera assigns the function-lock corresponding to that clique to both racy func-
tions. For example in Figure 4.3(b), racy-function pairs {alice,carol} and {alice,bob}
are both assigned a single function-lock f0. Notice that this weak-lock assignment is efficient
for alice as it now has to acquire only one weak-lock as opposed to two. However, bob
and carol are unnecessarily serialized (as they do not race with each other), which is still
acceptable as they are also found to be non-concurrent during profiling.

It is possible that a racy-function-pair is part of two cliques. In that case, we use a greedy
algorithm that chooses the weak-lock corresponding to the clique that contains the most number
of racy-function-pairs.

4.4 Symbolic Bounds Analysis for Loops

Chimera’s second optimization targets race-pairs that remain after applying the profile-based
analysis described in the previous section. This optimization is based on symbolic address
bounds analysis. It addresses the imprecision of the conservative but sound pointer analysis
used in a static data-race detector.

4.4.1 Overview

Static data-race detectors [76, 38] use pointer analysis to determine the set of objects a mem-
ory instruction can access and also to determine the lockset at a program point. RELAY uses
a combination of Steensgaard [70] and Andersen [6] flow-insensitive and context-insensitive
pointer analysis, which are used in many static tools because they scale well to large programs.
However, because these analyses are very conservative, RELAY overestimates the range of
addresses that a memory instruction can access and underestimates the set of locks held at a

47

�������������	�
�������
��������������������

�������������������	
��
�����	��	��
����
��������

������������������	�
���������������������

������������������������	�
������������������

 ���������!�

"��������������������	
��
�����	��	��
����
��������

#����

$������������������	
����	��	������

%�����������������	����������������&�����������

�
�����������
'��('�	��('����
������)�**������

�������������������
'��('���������

���������!

��������������������	
����	��	������	

������!

Figure 4.4: Instrumenting weak-locks for a loop in the function slave sort in radix using
symbolic bounds.

program point, both of which cause it to report a number of false data races.
For example, we find a number of false data-races between two functions executed concur-

rently in different threads. This often happens when a programmer partitions work between
threads, but the static analysis is unable to determine that the function will access different parts
of a data structure. Figure 4.4 shows an example. RELAY reports a false data-race on the rank
array in line 4 and 11, and also on key from array in line 10. However, radix divides a large
array into multiple portions and assigns different portions to concurrent threads to process them
in parallel. Therefore, the base address of rank and key from are different for each worker
thread, and hence the threads do not access the same entry in those arrays concurrently.

It is hard to statically determine the absolute values of address bounds of an object accessed
by memory operations in a code region. However, it has been shown that the lower and upper
bounds in the form of a symbolic expression can often be derived statically [64, 65] with much
better accuracy. Chimera uses this information to increase the granularity of weak-locks that
it must instrument for race-pairs in concurrent code regions. The weak-lock is constructed
in such a way that it protects a code region for a range of addresses specified by a symbolic
expression. Thus, two potentially racy code regions can execute concurrently (provided our
symbolic bounds are accurate enough). At the same time, Chimera can protect the regions with
weak-locks instrumented at larger granularities to reduce the number of operations.

Figure 4.4 shows an example. RELAY reports that line 4 could race with itself. Instru-
menting a weak-lock inside the loop would be very expensive. Instead, Chimera instruments
a weak-lock that provides mutual exclusion for the entire loop (lines 3-5) only for the address
range from &rank[0] to &rank[radix-1]. This range is computed by a sound static
symbolic address bounds analysis, which we discuss in the next section.

48

4.4.2 Symbolic Bounds Analysis

We implemented our symbolic bounds analysis based on the algorithm proposed by Rugina and
Rinard [64, 65]. The goal of this analysis is to determine the symbolic expressions that specify
the upper and lower bounds for a pointer or array index variable at a program point that is found
to be potentially racy by the static data race detector. For the example in Figure 4.4, the analysis
determines that the symbolic lower bound of j of the first inner loop (line 4-7) is 0 and the upper
bound is the initial value of radix radix0 − 1. It also finds that line 4 can access a memory
region from &rank[0] to &rank[radix-1]. Details about the algorithm are discussed by
Rugina and Rinard [65].

The effectiveness of our optimization depends on the accuracy of the lower and upper
bounds. The analysis we use is sound, but imprecise. If the bounds are too conservative, we
may serialize concurrent code regions unnecessarily. There are two main sources of impreci-
sion. The first case is when the address of the racy object is based on the value of a variable
that cannot be determined outside the code region. For example, precise symbolic bounds for
the rank array accesses in the second inner loop (line 9-12) cannot be determined. The value
of the index variable my key cannot be computed outside the loop as it depends on the value
read from another array key from inside the loop (line 11). However, we can derive the sym-
bolic bounds for the array key from accurately. The second source of inaccuracy is when the
racy object’s bounds depends on an arithmetic operation (e.g., the modulo operation or logical
AND/OR) not supported in the analysis.

4.4.3 Choosing the Granularity for Code Region

Rugina and Rinard’s analysis [64, 65] describes a generic algorithm for larger code regions
including inter-procedural analysis, but, as a first step, we applied their technique only for loops
with no function calls in the loop body. As a result, our current implementation may not exploit
all opportunities for optimization.

If the symbolic bounds are too imprecise, care must be taken to ensure that we do not over-
serialize loops. If the derived symbolic expression for an address range is from negative infinity
to positive infinity, we consider it to be too imprecise to be useful. Otherwise, we consider it to
be precise enough. In that case, we balance the number of weak-lock operations with the loop
serialization cost.

If the symbolic bounds of a racy loop is precise enough, we assign a weak-lock at the loop
granularity (the first inner loop in Figure 4.4). If the bounds are too imprecise, we estimate via
profiling the average number of instructions executed by a loop iteration. If the estimate is less
than a loop-body-threshold, we still instrument at the loop granularity because the cost
of operations on the weak-lock does not warrant exposing parallelism in the loop. Otherwise, we

49

instrument a basic-block lock inside the loop body. If a loop is nested, we select the outermost
loop with precise enough bounds.

4.5 Implementation

This section presents the implementation details of the Chimera record and replay system.

4.5.1 Analysis, Instrumentation, and Runtime System

Our analysis and instrumentation framework is implemented in OCaml, using CIL [53] as a
front end. To profile concurrent function pairs (Section 4.3), we instrumented the entry and exit
of each function using CIL’s source-to-source translation. To statically derive symbolic bounds
of racy loops (Section 4.4), we also performed data flow analysis on a racy loop and produced
linear programming constraints using CIL. Then, we used lpsolve [2], a mixed integer linear
programming solver, to find a solution for static bounds that a racy loop may access. Finally,
based on the results of the above static analysis, we used CIL to instrument weak-locks at the
function, loop, basic block, or instruction granularity.

We modified the Linux kernel to record and replay non-deterministic input from system
calls and signals. We also modified GNU pthread library version 2.5.1 to log the happens-
before order of the original synchronization operations and the weak-locks added by Chimera.

4.5.2 Static Analysis and Source code

We used RELAY [76] to perform pointer analysis and to collect a set of potential data-races.
We applied Andersen’s inclusion-based pointer analysis [6] to resolve function pointers, and
Steensgaard’s unification-based approach [70] to perform alias analysis between lvalues. While
performing pointer analysis, RELAY first translates function local arrays and address-taken
variables to heap variables (making them global) in order to derive pointer constraints in a
unified manner. RELAY performs static analysis on this modified source code. This can lead
to unnecessary false data-races on local variables. To resolve this, we filtered out race warnings
on a ’heapified’ local variable that did not escape its function.

To perform sound static analysis, we made sure that all library source code (except for
apache and pbzip2) are included in our static analysis. For the standard C library, we used
uClibc [73] which is smaller and easier to analyze than the GNU glibc library, as it is developed
for embedded Linux systems. The uClibc library involves all the necessary functions such as
libc and libm.

For apache, we did not include libraries such as gdbm, sqlite3, etc., because they do
not contain code that gets executed for the input we use in our study. It is possible that the

50

application LOC profile environment evaluation environment
desktop aget 1.2K 2 workers, download a 29KB file from local network 2,4,8 workers, download a 10MB file from http://ftp.gnu.org

pfscan 2.1K 2 workers, scan 236 KB of small 22 files 2,4,8 workers, scan 952 MB of 8 log files
pbzip2 4.8K 2 workers, compress a 219 KB file, output to stdout 2,4,8 workers, compress 16 MB file, output to file

server knot 1.3K 2 workers, 4 clients, 100 requests, 29KB file 2,4,8 workers, 16 clients, 1000 requests, 390KB file
apache 99K 2 workers, 4 clients, 100 requests, 29KB file 2,4,8 workers, 16 clients, 1000 requests, 390KB file

scientific ocean 5.3K 2 workers, 130*130 grid, 1e-01 error tolerance 2,4,8 workers, 1026*1026 grid, 1e-07 error tolerance
water 2.5K 2 workers, 64 molecules, 5 steps 2,4,8 workers, 1000 molecules, 10 steps

fft 1.4K 2 workers, 24 matrix , no inverse FFT check 2,4,8 workers, 220 matrix, with inverse FFT check
radix 1.3K 2 workers, 28 keys , no sanity check 2,4,8 workers, 214 keys, with sanity check

Table 4.1: Benchmarks and input used for profiling and evaluating Chimera. The number of
lines in the source program (LOC) is measured for the CIL representation. It does not include
the size of library code: libc(41.7K) and libm(3.6K).

source code of a third party library may not be available for static analysis. When any part of
the source code of a library used by a program is not analyzed, the soundness of static analysis
may be compromised. One solution is to ask library builders to provide annotation (lockset
summaries) for their library functions so that it can be fed into RELAY to perform a sound
data-race analysis. Developing such annotations would be an one-time cost for library builders,
and it would not place any burden on software developers that use those libraries. Another
possible solution is to assume that a library function will only access the set of objects pointed
to by the parameters passed as function arguments without acquring any new locks. However,
this approach is not guaranteed to be sound, because a library could retain pointers passed to
previous calls to the same library. Also, instructions in a library’s function can have a data-race
on some shared-variable that is internal to the library. We employed the latter approach for
pbzip2 (we excluded the libbz2 library used by pbzip2)

We also converted the C++ pbzip2 program into ANSI-C code by replacing the vector STL
container with a linked-list-based C library, because our instrumentation framework, CIL [53],
can only handle C programs, but not C++ constructs.

4.6 Results

This section evaluates Chimera’s recording and replaying overhead and demonstrates the effec-
tiveness of the profiling and symbolic bounds optimizations.

4.6.1 Methodology

We evaluated our system using three sets of benchmarks which are listed in Table 4.1. The
first set consists of three desktop applications: aget, pfscan, and pbzip2. The second set
has two web sever programs: knot and apache, which are evaluated using the ApacheBench
(ab) client. The final set contains four scientific programs from SPLASH-2 [79]: ocean,

51

DRF Logs logging order of potential data-races performance log size
application system synch. instr. basic blk. loop func. original record recording replay input order

calls ops. log log log log time(ms) time(ms) overhead overhead log(KB) log (KB)
desktop aget 16604 8424 28876 5191 15939 32416 5058 5114 1.01 0.06 20072 361

pfscan 109 879 8 0 39 347 848 881 1.04 1.02 2 3
pbzip2 592 2491 2621 81 1177 1540 1343 1371 1.02 1.03 1989 26

server knot 8056 32 5136 0 251 2257 7137 7176 1.01 0.01 84 23
apache 18301 36812 798891 266956 565863 1123337 18668 19376 1.04 0.02 178 6469

scientific ocean 2750 9978 6237 8233 287642 37655 2328 5585 2.40 2.24 16 727
water 10295 67202 21838 1409884 198993 1112798 1665 2820 1.69 1.75 101 12744

fft 113 193 1843 38 49718 11595 586 1249 2.13 2.23 2 107
radix 102 312 3 13 344 393 1599 1939 1.21 1.20 1 3

Table 4.2: Chimera record and replay performance. The results are the mean of five trials with
4 worker threads.

water, fft, and radix. To collect a set of concurrent function pairs for clique analysis
(Section 4.3.2), we profiled each program 20 times with various inputs. The inputs used for
profiling are significantly different from the input used for our performance evaluation.

Chimera is scalable to large programs. It is built on RELAY [76], which has been shown
to scale to very large programs (e.g., Linux with 4.5 million lines of code). Chimera also uses
static analysis to derive symbolic bounds, but it is a scalable intra-procedural analysis. Our
benchmark set includes some fairly large programs. Table 4.1 provides the number of lines
(LOC) of our benchmarks in their CIL representation. It does not account for the size of library
code: libc(41.7K) and libm(3.6K).

Presence of assembly code and buffer overflow may compromise the soundness of static
data-race analysis (Section 4.2.2). However, the programs we evaluated do not contain assembly
code, except for a few library functions. Also, we are not aware of any buffer overflow bugs in
our benchmarks. Also, we did not observe any weak-lock timeouts (Section 4.1.3) in any of our
experiments.

We ran our experiments on a 2.66 GHz 8-core Xeon processor with 4 GB of RAM running
CentOS Linux version 5.3. We modified Linux 2.6.26 kernel and GNU pthread library ver-
sion 2.5.1 to support Chimera’s record and replay features. All results are the mean of five trials
with 4 worker threads (excluding main or control threads). Section 4.6.2 presents scalability
results for which we used 2, 4, and 8 threads.

4.6.2 Record and replay performance

Table 4.2 shows Chimera’s record and replay performance when all the optimizations (function,
loop, and basic-block level weak-lock optimizations) are enabled. The first set of columns
quantifies the number of logs generated for recording program input (read through systems
calls) and the happens-before order of synchronization operations. These logs are sufficient
to guarantee replay for data-race-free (DRF) programs. The second set of columns quantifies
the number of logs due to various types of weak-locks. The next set of columns presents the

52

�

��

�� �

���� � � � � �	 �
 � � �
 � 	 � � �� �� � � � � ��	 � � � 	 � � ���� � 	 � � � � � � �� � � �� �� ���

��
��

���
�	

��	
��
�
�

�
���

	��
	�

� 	 � �� � 	 � �� � � � � � 	 � � 	 � �� � � � � � � � � 	 � �� � � � � � � � � � � � � 	 � � 	 � �� � � �

 � � � � � � � � � � � � 	 �
��� � �� �� � �

Figure 4.5: Normalized recording overhead for Chimera with different sets of optimizations

�

�

� �

� �

� �

� �

���� � � � � �	 �
 � � �
 � 	 � � �� �� � � � � ��	 � � � 	 � � ���� � 	 � � � � � � �� � � �� �� ���

��
��
���

��	

�

��
�

���

�

� 	 � �� � 	 � �� � � � � � 	 � � 	 � �� � � � � � � � � 	 � �� � � � � � � � � � � � � 	 � � 	 � �� � � �

 � � � � � � � � � � � � 	 �
��� � � �

Figure 4.6: Proportion of instrumentation points for different logging schemes

performance overhead. The last set of columns quantifies the gzip compressed log sizes for
recording the program input and the order of all synchronization operations (including weak-
locks).

Chimera incurs negligible overhead for desktop and server applications. For scientific ap-
plications (with high frequency of accesses to shared variables) the overhead is relatively high.
On average, our system incurs 40% performance overhead to record an execution with four
worker threads. Replay overhead is similar to that of recording overhead for most applications,
except for I/O intensive applications. Network intensive applications such as aget, knot,
and apache replay much faster as we feed the recorded input directly to the replayed process
without waiting for the network response. Chimera’s performance overhead is an order of mag-
nitude improvement over the state-of-the art software solutions that guarantee multiprocessor
replay [75].

Log sizes of Chimera are within acceptable limits for various uses of replay. aget produces
large logs because the contents of all the downloaded files are in the log. water also produces
a large log size because of frequent user specified synchronizations and weak-locks.

53

4.6.3 Effectiveness of Optimizations

We analyzed the effect of different optimizations on recorder’s overhead. Fine grained weak-
locks (instruction and basic-block level weak-locks) enable higher concurrency, but they in-
crease the number of program points instrumented resulting in higher performance and log size
overhead. The opposite is true for coarser grained weak-locks such as function and loop level
weak-locks. We use function-level weak-locks if two functions are likely to be non-concurrent
(Section 4.3). We use loop-level weak-locks with runtime bounds checks if our static analysis
can derive precise enough symbolic bounds (Section 4.4).

Figure 4.5 shows the performance overhead of Chimera’s recorder with different sets of
optimizations normalized to native execution time. As expected, instrumenting every potential
data-race at the granularity of a source line (labeled as ‘instr’) incurs 53x slowdown. However,
when we apply the profile-based optimization to increase the granularity of some weak-locks
to function level (‘inst+func’) the overhead drops to 27x. If we use only symbolic analysis to
coarsen the granularity of some weak-locks to loop level results in 33x overhead. However,
when we employ all the optimizations together (‘inst+bb+loop+func’), including basic block
level weak-locks, the average overhead drops significantly to 1.39x.

Applications such as pfscan and water benefit significantly from function-level locks.
In these applications, most data-races are in function-pairs ordered by some non-mutex syn-
chronization operations that our static analysis could not account for. For applications such as
apache, ocean, fft, and radix, loop-level locks reduce the recording overhead drasti-
cally. For example, in apache, RELAY reports a false data-race between memory operations
within a hot loop in the memset library function that iterates approximately over 6 million
times in our experiments. Function-level weak-lock is ineffective in this case, because two
threads may execute the memset concurrently. However, our static analysis determines the
bounds of addresses accessed within the hot loops of memset fairly accurately, which enabled
us to use loop-level weak-locks effectively. We also observe noticeable benefits in coarsening
weak-locks from instruction-level to basic-blocks (e.g., water).

Finally, for network applications like aget, knot, and apache, recording cost overlaps
with I/O wait resulting in negligible overhead. Chimera could be used even in production
systems for such applications.

Figure 4.6 shows the proportion of dynamic number of weak-lock operations with respect
to the total number of dynamic memory operations. A naive dynamic data-race detector would
have to instrument 100% of memory operations. This result shows the advantage of static data-
race analysis and our optimizations in terms of reducing the number of instrumented points in
the program. In general, results in Figure 4.6 for different optimizations are consistent with
the recording overhead in Figure 4.5. This indicates that the savings obtained from coarser
weak-locks was not overshadowed by any loss in parallelism.

54

�

�� �

�

�� �

���� � � � � �	 �
 � � �
 � 	 � � �� �� � � � � ��	 � � � 	 � � ���� � 	 � � � � � � �� � ���
��

���
�	

��

	�
��

�
�
���

	��
	�

� � 	 � � � � � � � � � � ��� � � � � � 	 � �� � � �

 � � � � � 	 � �� � � �

 � � �� � � � � � � � � � � � � � � � �� � � � 	 � � � � � � � 	 � � � �� �

Figure 4.7: Sources of recording overhead

On average, naively monitoring all data-races reported by the static data-race detector re-
quires us to instrument about 14% of all dynamic memory operations. By increasing the weak-
lock granularity to function, loop, and basic block levels, we can reduce the proportion of
weak-lock operations with respect to memory accesses down to 0.02% on average. In general,
this result shows that increasing the granularity of weak-locks reduces the instrumentation cost.

However, in some fairly rare cases, increasing the locking granularity from instruction to
loop-level may increase the frequency of weak-lock operations. The reason is due to control
flow dependencies. In pfscan, there is a racy instruction inside a hot loop that is guarded by
an if statement. If we use loop-level weak-lock, Chimera has to always perform weak-lock op-
erations when the loop is executed. But if we use instruction-level weak-lock, the instrumented
code will be executed only when the if condition gets satisfied.

In apache the number of weak-lock operations increase when we go from instruction-level
to function-level granularity. The reason for this is behavior is best explained using a contrived
example. Assume that RELAY finds a data-race between each of the functions foo, bar, and
qux. Also, assume that all these functions are non-concurrent with each other, except for the
function-pair bar and qux. For this example, Chimera will assign two different function level
weak-locks (one for foo-bar and another for foo-qux). This allows bar and qux to run
concurrently. As a result, foo is instrumented with two function-level locks, which may be
more costlier than using one instruction-level lock if there is only one racy instruction inside
foo.

We also studied the sensitivity of our profile-based non-concurrent function analysis to the
number of profile runs. We did this study only for pfscan and water-nsq, because other
applications shows little performance benefit from function-level logging (Figure 4.5). For
these two applications, the number of concurrent function pairs observed quickly saturates after
a small number of profile runs (five for pfscan and three for water-nsq).

55

�

�� �

�

�� �

�

�� �

�

�� �

���� � � � � �	 �
 � � �
 � 	 � � �� �� � � � � ��	 � � � 	 � � ���� � 	 � � � � � � �� � � �� �� ���

��
��

���
�	

��

	�
��

�

���
�	
��
	�

 � � � � �

Figure 4.8: Scalability results on 2, 4, and 8 processor executions

4.6.4 Sources of Overhead and Scalability

Figure 4.7 provides a breakdown of the remaining sources of performance overhead in the
Chimera recorder that incorporates all of our optimizations (‘inst+bb+loop+func’). The results
are normalized to the native execution time. We measure the performance of our system by
instrumenting each type of weak-lock one by one. The performance overhead due to a weak-
lock type is further broken down into the cost of logging the weak-lock operations and the
cost due to weak-lock contention. To measure the time lost due to weak-lock contention, we
subtracted the execution time of a program execution in which a weak-lock acquire operation
always succeeds without waiting from the execution time of a program execution in which the
weak-locks semantics are obeyed.

Contention for loop-level weak-locks dominate the overhead for scientific applications such
as ocean and fft. The reason is that our static symbolic bounds analysis is not very precise
for some performance critical loops in these programs because they tend to execute irregular
array accesses and unmodeled arithmetic operations (Section 4.4.2). As a result, the bounds
checks performed as part of loop-lock acquire operation over-serializes the execution. We also
fail to use loop-level lock and resort to instruction-level logging (e.g., water), if the loop body
contains a function call, because our symbolic analysis in intra-procedural.

Contention between loop-level weak-locks is the for increase in performance overhead as
the number of threads increases for some applications (Figure 4.8). We believe that source-level
inlining for small functions or inter-procedural symbolic bounds analysis could help reduce this
overhead. Nevertheless, as we discussed earlier (Section 4.6.3), our current analysis already
provides significant benefits with loop-level locks for many applications (e.g., ocean).

4.7 Conclusion

Chimera is the first software system for multiprocessors that leverages a static data-race de-
tector tool to provide a low overhead replay solution. However, existing static data race de-

56

tectors generate enumerous false warnings because 1) static data race analysis cannot reason
about non-mutex happens-before relations (such as fork-join, barriers, and signal-wait), 2) and
a sound pointer analysis is necessarily conservative and thus too imprecise. Chimera resolves
this problem by employing a combination of profiling, symbolic analysis, and dynamic checks
that target the sources of imprecision in the static data race detector.

Chimera’s transformations ensure that the resultant code is data-race-free when instrumented
with the new set of synchronization operations. We believe that this technique could also prove
quite useful for enabling stronger semantics for concurrent languages such as sequential con-
sistency and for enabling deterministic execution.

57

CHAPTER 5

Rosa: Hardware Support and Offline Symbolic
Analysis for Multiprocessor Replay

In Chapter 3 and Chapter 4, we introduce efficient software-only replay solutions: Respec and
Chimera. Processor support could enable us to build ultra-low overhead (<1%) replay solutions.
However, hardware solutions should be complexity-effective enough that processor vendors are
encouraged to include a deterministic replay feature in the next-generation processors.

In this Chapter, we propose a new hardware-assisted record-and-replay solution ,called
Rosa, that does not detect and log shared-memory dependencies at all. Moreover, our system
supports replay under the most commonly implemented relaxed memory model – Total Store
Order (TSO). We first show that if we use a load-based checkpointing mechanism for recording
program input [51], there is no need for shared-memory dependencies in order to replay each
thread in isolation. The reason is as follows. For each thread in a multi-threaded program, a
load-based checkpointing mechanism records the thread’s initial register state and the values of
a subset of the load instructions executed by the thread. We observe that this information alone
is sufficient for deterministically replaying each thread in isolation, independent of the other
threads. By deterministically replaying each thread in isolation, we can reproduce the exact
same sequence of instructions executed by a thread during recording, as well as reproduce the
input and output values of those instructions (input of a memory operation includes its address
as well). Such mechanism works for any type of underlying memory consistency model as long
as cache coherence is preserved.

However, replaying each thread in isolation is not sufficient for debugging a multi-threaded
program, as programmers need to understand the interactions between the threads. This would
require reproduction of shared-memory dependencies during replay. This information, however,
can be determined using an offline analysis, which works as follows.

By using load-based checkpoints, we can obtain the trace of all the memory operations
executed by a thread along with the address and input/output values of those memory operations.
From the final core dump, we also obtain the final state of every memory location. Using all
of this information, we determine the memory ordering constraints, compliant to underlying

58

memory coherence and consistency model, for all the memory operations executed by all the
threads. These constraints are then encoded in the form of a satisfiability equation that can be
solved by a SMT (Satisfiability Modulo Theory) solver. The solution represents the causal order
of the memory operations executed by all the threads, using which a programmer can reason
about the dependencies between the threads.

The equation consist of two types of constraints. The coherence constraints enforce that any
memory access M’s old value should be same as the new value of the memory access to the same
location that immediately precedes M in the derived causal order. The consistency constraints

are specified by a particular memory model. For sequential consistency (SC) memory model,
every memory access in a processor should follow the strict program order. On the other hand,
Total Store Order (TSO) differs from SC in that it relaxes store-to-load program order and store
atomicity [7]. The first relaxation allows a load to be scheduled ahead of an earlier store in
the same thread provided they are accessing different locations. The second relaxation allows
a store’s value to be made visible to a local load before it is made visible to remote loads. We
discuss how these two relaxations can be encoded as first-order logic formula and reproduce a
TSO-compliant causal order using an SMT solver.

To bound the search space during offline analysis, we propose to log certain hints during
recording. At periodic intervals, all the processor cores simultaneously record the number of
committed memory operations along with the number of stores pending in its local store buffer.
Using this information, we show that we can legally partition a multi-threaded program execu-
tion into smaller bounded intervals and determine a causal order for memory accesses in each
interval separately. In our mechanism, hints needed for bounding the search can be logged
without any additional communication between the processor cores. To further reduce offline
analysis time, our offline analysis eliminates a majority of cache hits from the offline search.
This is based on our observation that the causal order for most cache hits can be trivially inferred
from the causal order between cache misses.

By sacrificing precision in logging causal order, we manage to design a low-complexity
processor solution. The tradeoff is the offline analysis cost. However, offline analysis need to
be performed only once. Once shared memory dependencies are resolved, later replays can be
very efficient. We believe that developers would be willing to pay an one-time cost to reproduce
a bug (by replaying a few seconds that preceded a crash) that manifested in the production sites
and during beta-testing which is where a low-overhead processor recording solution would be
crucial.

The rest of the paper is structured as follows. Section 5.1 discusses how load-based check-
point scheme is sufficient for replaying each thread individually. In Section 5.2, we describe
offline analysis for reporducing the causal order for the shared-memory operations across all
the threads. Section 5.3 presents a solution to bound the search space and Section 5.4 proposes

59

�� ��

������	
��
�
����� ������	
��
�
�����

��	����
�
���	��������������

�� ��

��

��
��

��
��
��

������

�
�
�
�
�
�
�
�

�
�

�
�

 !��"��

#!��"��
#!��"��

#!��"��

 !��"��

 !��"��
#!�$"�� �$

�
�

��
�
�

����%����

	�&�%���� �	�'�����

����
��	

���(������

����
�����

#��
��
�����)��

 ����*�������)�� !�"

#!�"

Figure 5.1: Load-Based Logging Example

a filtering technique that reduces offline analysis time. Then, Section 5.5 shows experimental
results and Section 5.6 concludes this chapter.

5.1 Load-Based Checkpointing Architecture

The load-based checkpointing scheme was originally proposed in the BugNet architecture [51]
as an alternative to the system-dependent logging scheme for recording program input. The
original goal of BugNet was to avoid the system complexity in detecting and recording all types
of non-deterministic system input. In this paper, we show that there is an added advantage to
using a load-based checkpointing as we do not have to record shared-memory dependencies.
These dependencies can be determined offline by analyzing load-based checkpoint logs.

In this section, we briefly describe our load-based checkpointing scheme that is a modified
version of BugNet [51]. We extend the original design to support replay of the full system and
programs with self-modifying code. We discuss a complexity-effective architecture design to
support this scheme efficiently. We also describe its unique property that allows us to replay
each thread in a multi-threaded program in isolation without the information about shared-
memory dependencies. Then we describe additional architectural support required for logging
hints that help us bound the complexity of our offline analysis described in Section 5.2.

5.1.1 Load-Based Program Input Logging

Let us first consider recording a single-threaded program’s execution on a uni-processor system
without any system events such as I/O, DMA, context switches or interrupts. A key insight in
BugNet [51] is that to replay an interval of a program’s execution, it is sufficient to record the
program’s initial register state, and then record the values of all the load instructions executed
by the program during the interval. The value of a load instruction is recorded along with the
instruction count corresponding to the load instruction. The instruction count of a memory
instruction is the number of instructions that the program had executed since the beginning of
the recorded interval. Unlike in BugNet [51], we also consider instruction read as a load. This

60

extension allows us to handle programs with self-modifying code.
Using the recorded log, a tool like Pin [45] can be used to perform the replay. The replayer

emulates the states of the register and the virtual memory of the recorded program. It starts by
initializing the register states, including the program counter, by reading from the log. All the
memory states are initialized to invalid. Once initialized, the first instruction specified by the
program counter is executed. Since our system treats an instruction read as a load, its machine
code can be found in the recorded log. An instruction is replayed according to its type.

• Non-memory operations are executed by reading the input values from the emulated reg-
ister states, and then writing the result back to the emulated register states.

• For a load instruction, its effective address is computed from the input register states. In
addition, its value is read from the log and the emulated memory state is updated with
that value.

• For a store instruction, its input value is read from the emulated register state, its effective
address is computed, and then the emulated memory state is updated with the store value
(so that later loads to the same location can get their values).

Thus, a program is deterministically replayed with exactly the same sequence of instructions
along with their input and output values. The register and memory states for the program is also
deterministically reproduced at every instruction replayed.

Recording every load value (including instruction reads) is expensive in terms of log size.
In order to alleviate the problem, BugNet logs a load only if the load is the first memory access
to the location. Such loads are called as first-loads. The values of non-first-loads need not
be logged, as they can be read from the emulated memory state. Figure 5.1 shows a sample
execution. Assume that all the instructions in the example access the same memory location X.
Consider just the first four instructions executed by the processor P1 for now. R(X1) is the
first-load (with a return value 1), and it is logged (indicated by the solid dot on the right-side of
the instruction). The values of the next three memory operations are not logged as they can be
deterministically replayed using the emulated memory state.

In order to log an execution, the operating system first creates a checkpoint by recording
the context header and turns on logging for the processor core. The context header contains the
initial register state, a process identifier and the value of the timestamp counter of the processor
core.

To detect and log first-loads we need processor support. BugNet [51] uses a bit per cache
word in the private cache of a processor core to determine whether the location has been logged
for the program. We use an even simpler design, where we just log the cache block fetched on
a (load or store) cache miss, because any first access to a location would result in a compulsory

61

cache miss. In the case of a store miss, the data recorded for the cache block are the values
before executing the store.

In BugNet, a memory location’s value need not be logged if the first access to it is a store.
Because, any store, including the first-store, can be deterministically replayed using the emu-
lated register and memory states. However, we log the cache block fetched on a store miss if it
is not due to upgrade store miss (e.g. W(X2)), because it is possible that later on, the program
could execute a first-load to a different word in the same cache block. For the upgrade store
misses, we do not record the data, as it can be obtained from the previous load miss during
replay. This might slightly increase the log size when compared to the BugNet design. But
it avoids the need to use a bit per cache word, and also helps our offline analysis explained in
Section 5.2. W(X5), and W(X7) operations (denoted with cross marks) in Figure 5.1 are
(non-upgrade) store misses and are logged in our design.

The data logged for a memory access consist of the instruction count of the memory opera-
tion that causes the cache miss, and the data of the cache block fetched. To simplify the design,
we choose to not use any additional local log buffers. Instead, we directly write-back the cache
block to the log space allocated in the main memory. Note that any read from an uncacheable
memory-mapped location would always be logged as it will always result in a cache miss. Thus,
non-deterministic input read from system devices such as network cards are correctly captured.
Also, RDTSC (Read TimeStamp Counter) instruction in the x86 architecture is also treated as a
uncacheable load, and its return value is recorded.

A checkpoint for a program is created first when logging is turned on for that program.
Thereafter, a new checkpoint is created at regular intervals. The checkpoint interval length
is defined based on the available memory space for logging similar to the original BugNet
architecture [51]. To create a new checkpoint, the operating system flushes the data in the
private caches of the processor, logs the checkpoint header, and then continues to log the data
of every cache block fetched on a cache miss.

5.1.2 Handling System Events

The previous section assumes a uni-processor system, and also that there are no system events
that affect a program’s execution. We now relax the latter constraint. Unlike BugNet [51], we
choose to record the execution of the full system including the operating system code. An inter-
rupt, a system call, or another program can context switch a program executing on a processor
core.

On a context switch, the operating system terminates the current log by logging the current
instruction count for the processor core (so that the replayer would know when to context switch
during replay). It then logs a context header for the new program that is context switched in.

62

Now the context header contains the initial register state of new context including the program
counter, the process identifier, the processor timestamp, and the instruction count of the preivous
context header is updated.

Recording initial register state and the cache miss data along with the instruction count of
the memory operation is sufficient for reconstructing virtual memory address space. However,
to support full system replay, we should be able to reconstruct physical address space faithfully.
One possible solution would be recording physical address as well during cache miss logging.
During replay of the full system, when a program accesses a virtual address for the first time,
we can determine its equivalent physical address from the log. Thus, we can establish a map
between the virtual and physical addresses for a program during replay and emulate the physical
address space. However, there are two problems. First, the size of program input log would
increase, because we have to save 32bit or 64bit physical address for each log entry. Second,
logging physical address on cache miss is not sufficient for deterministic replay on physically
tagged private caches. In this case, on a context switch, private cache blocks are not flushed, so
the first access to a virtual memory location by the newly context switched in program might
not result in a cache miss. This implies that we cannot reconstruct the physical address from
the replayed virtual address. Moreover, the mapping between physical addresses and virtual
addresses could change after a page fault.

We solve this problems by letting the operating system record page tables on context switch
while recoring context header and update new mapping on page faults. Since we record the
mapping at page granularity, this approach would generate much smaller log size than logging
physical memory addresses on cache misses. We may record TLB misses to replay physical
addresses, but this approach would increase hardware complexity.

Replaying by emulating physical address space also allows our offline analysis to correctly
determine shared-memory dependencies between multiple processes (and of course threads)
that concurrently run on different cores.

To replay a checkpoint interval, the replayer starts from the first context header and contin-
ues to emulate the register state and the physical memory state of the system. When we find
a record for a memory access in the log during replay, the replayer determines the physical
address of the memory state from the logged page tables. When the execution during replay
reaches the next context header (determined by comparing the emulated instruction count with
the instruction count that was logged on a context switch), the emulated register state is updated
with the values from the next context header. Then the replay proceeds normally.

The above approach ensures replay of the full system execution on a processor core for an
interval. We can replay on any operating system as long as we have a tool that emulates the ISA
(Instruction Set Architecture) of the recorded processor. Using the process identifier logged in
the context header, the replayer could provide the programmer with information about which

63

application is replayed at any instant.

5.1.3 Multi-Processor Replay

We now discuss support for recording a full system execution on a processor with multiple
processor cores (which includes a DMA processor as well). Each processor core has log space
allocated to it in the main memory by the operating system. To start recording for a checkpoint-
ing interval, the operating system first records the context header for each core, and then lets
each core log their cache misses into the private log allocated to it. When a thread on a core
is context switched out, the operating system performs the same tasks that we described earlier
for a uni-processor system.

Consider the logs of two processors shown in Figure 5.1. All the memory operations shown
in the figure access the same memory location. The memory operations marked with a cross
are the ones that result in a cache miss, and therefore result in a log record. Notice that there
are shared-memory dependencies between the two executions. In any cache coherent multi-
processor, before a node can write to a memory block, it has to first gain exclusive permission
to that cache block. This results in invalidation of cache blocks privately cached in all the
other nodes. As a result, when a processor core tries to read a value that was last written
by another processor core, it triggers a cache miss. W(X7) and W(X5) shown in the figure are
examples. Thus, our logging mechanism implicitly captures the new values produced by remote
processors. This is the key property that allows us to replay the execution of a processor core
independent of the other cores. We achieve this without any changes to the coherence protocol.

To replay the execution of P1 in this two processor multi-core system, the replayer simply
takes the log recorded by P1, initializes the register state, and starts the replay. The replay
produces exactly the same sequence of instructions as in the recording phase, along with the
input and output values of those instructions. For each memory operation, the replayer can
determine its memory address. Also, it reproduces the value read or written by a memory
operation, which we refer to as the new value for the memory operation. Finally, as we described
earlier, for a write cache miss we log the value before it is modified by the write. Thus, the
replayer can also reproduce the old value for a memory operation, which would be the value
of the memory location before it was modified by the memory operation.

Thus, without any additional support for a multi-processor system, just by using the program
input log for each processor core, the replayer reproduces the exact same sequence of memory
operations that were executed during recording, along with their addresses, old and new values.
The figure on the right in Figure 5.1 shows the information reproduced after replaying the
execution of the two processor cores. The memory operations are labeled using the address
location that they access (in this example, all the accesses are to the same location X). The left

64

super-script of a memory operation denotes its old value, and the left sub-script denotes its new
value.

The operating system also records the final memory system state at the end of recording
(similar to the core dump collected after a system crash). In the example, the final state of X
is 3. In Section 5.2, we discuss how all this information can be used to determine the shared-
memory dependencies.

5.1.4 Discussion

We summarize the key additions to the operating system and hardware to support the logging
approach that we discussed. The operating system needs to provide support for creating a
checkpoint at regular intervals and recording page tables on context switch and a page fault.
Creating a checkpoint requires logging the context header for each processor core in its local
log (context header does not contain the memory state). Also, on a context-switch it needs to log
the context header for the newly scheduled process or thread. The processor on the other hand
needs to provide support for logging the data of the cache block fetched on a cache miss, and
the instruction count. When compared to the system-dependent logging approach, we believe
that this approach is a lot simpler.

5.2 Reproducing Shared-Memory Dependencies using Offline
Analysis

In Section 5.1, we shows that a load-value based logging enables deterministic replay of each
thread in isolation. However, to debug and understand parallel executions, we need the causal
order, compliant to the memory consistency model, between shared-memory operations as well.
In this section we present algorithms that calculate such causal order offline.

5.2.1 Overview of Offline Symbolic Analysis

The goal of our offline analysis is to find a valid causal order between all the memory accesses
executed concurrently across all the threads. The algorithm takes the memory trace of each
thread and the final memory state as input. The memory trace for a thread is produced by
deterministically replaying using its cache miss log (Section 5.1). For each memory access, we
have its effective address, old value, new value and information about whether it was a cache hit
or a miss. To produce the causal order between the memory accesses, we generate the memory
ordering constraints that need to be satisfied, encode them as a quantifier free first-order logic
formula and use a Satisfiability Modulo Theory(SMT) solver called Yices [26] to find a solution.

65

The algorithm to encode all the necessary constraints in the first-order logic formula is pre-
sented in Algorithm 1, 2, and 3. A valid causal order should satisfy two types of constraints.
First, any memory access M ’s old value should be same as the new value of the memory access
to the same location that immediately precedes M in the derived causal order. We call this con-
straint as the coherence constraint(CH), because it is the property of coherence that ensures that
there exists a total global order between all memory accesses to a location under any memory
model.

Second, the causal order should obey the memory ordering constraints specified by a partic-
ular memory model. We refer to these constraints as the memory model(CM) constraints. In this
paper we discuss the SC and TSO constraints and algorithms to encode them as the first-order
logic formula.

5.2.2 Encoding Coherence Constraints

For each memory access M , there exists an order variable O. The values of the order variables
determine the causal order for the memory operations. Lines 25-36 in Algorithm 1 presents
the algorithm for encoding the coherence constraints. To encode coherence constraints, for
each memory access M , the algorithm specifies the set of all memory operations that access the
same location and can potentially be ordered immediately after M (which requires that their old
values equals the new value of M). Special care is taken to account for the possibility that an
access could be the last access to a memory location.

In the example shown in Figure 5.1(right), all accesses are to the same location X. X5 is the
only access that can immediately follow X4, because only X5 has the old value that matches
the new value of X4. On the other hand, X5 could be followed by either X6 or X7, which leads
to the possibility that there could be multiple solutions for a given execution trace. For this
example, both X1 → X2 → X3 → X4 → X5 → X6 → X7 and X1 → X2 → X3 → X4 →
X5 → X7 → X6 are valid causal orders as they both obey the coherence constraints.

5.2.3 Encoding Memory Model Constraints for SC

Memory model constraints are determined by the underlying consistency model, which can
be classified according to whether it follows or relaxes the following two axioms: Instruction

Reordering and Store Atomicity [4, 7]. Sequential consistency has the strictest requirement. It
requires that program order between the memory operations of a processor is satisfied in the
global total order observed between memory accesses executed by all the processors. Thus, it
does not allow any type of instruction reordering. Moreover, SC requires store atomicity. That
is, either all or none of the processors see a store’s value.

66

�� ��

����������

�� ��

��

��

��

�	

�
�������
����

�
�

�
�

�
�

�
�

�
�����

�
�	����
�����

�
�����

�� ��

����������

�� ��

��

��

��

�	

�
�������
����

�
�
�
�
�
�

�
��
����� �
�	���

�
�����

�
�����

�
�����

�
�����

��

��

�
�
�
�

��
��

Figure 5.2: Two example TSO executions and their replayed memory traces with old/new values

Algorithm 2 describes how to encode the memory model constraints for SC. For each pro-
cessor, we ensures that every memory operation should obey the strict program order, pre-
venting any instruction reordering. Our algorithm encodes these constraints using the order
variables O of memory operations. Under SC, order of each memory operation in a proces-
sor P is constrained to be greater than the order of all the earlier memory operations that
appeared in the program order in P . Together with uniqueness constraints, this constraint in
effect ensures store atomicity as well. For example shown in Figure 5.1(right), SC ensures
O1 < O2 < O3 < O4 < O7 for P1 and O5 < O6 for P2.

5.2.4 Encoding Memory Model Constraints for TSO

The TSO model is widely used in the SPARC [67] and is also similar to the x86 memory
model [36,37]. It relaxes the SC memory order constraints between memory accesses executed
in a processor core as follows:

• Instruction Reordering: A processor may re-order a load before a store if they access
different locations.

• Store Atomicity: A store’s value may be made visible to a following local load in the
same processor before it is made visible to remote processors.

Algorithm 3 describes how we encode these memory ordering constraints. We relax this
constraint for TSO to account for the above two relaxations (line 6).

5.2.4.1 Allowing Relaxed Instruction Reordering

Instruction re-ordering relaxation in TSO allows a processor to retire a store to a local store
buffer and allows following (performance critical) loads to execute. The execution shown on the
left in Figure 5.2 is not valid under SC but is a valid TSO execution due to the relaxed instruction
ordering requirement. Under SC, either Y2 or X4 should be the last memory operation in any
valid total order. But in this example, both loads Y2 and X4 are executed before the stores X1

and Y3 respectively, which leads to a non-SC order.

67

If a load can be re-ordered above a store in a processor, the ordering requirement between
them is not specified in the first-order logic formula. The first clause in line 40 in Algorithm 1
checks whether the ordering between a store and a load can be relaxed, and if so no ordering
constraint between those two instructions will be enforced (Line 42).

5.2.4.2 Allowing Relaxed Store Atomicity

Store atomicity relaxation allows a processor to read its own store’s value early. That is, a
processor can forward the value of a store in the store buffer to a following load to the same
location. Thereby, if a store results in a cache miss, a processor need not wait for it to resolve,
and instead forward that store’s value to a later load accessing the same location.

Relaxed store atomicity requirement can be accounted for in our memory model constraints.
Under TSO, a load-to-load program order constraint generally cannot be broken. However, to
accommodate relaxed store atomicity constraint, we make an important observation that loads
can be allowed to reorder with respect to an older load that read its local store’s value. Thus, if
we can determine all loads that read its local store’s value offline, then we can simply relax the
ordering requirement between those loads and the loads that follow them in the program order.
To identify the loads that read a local store’s value offline, we log the memory count of the load
that hit in the store buffer during recording.

The example shown on the right in Figure 5.2 is not valid under SC as it violates store
atomicity but is valid under TSO. Under TSO, while the stores X1 and Y4 are temporarily held
in P1’s and P2’s store-buffer respectively, the loads X2 and Y5 can read the value 1 written
by locally buffered stores. Then, before the stores’ new values become visible to the other
processor, loads Y3 andX6 can read the old value 0 from their locally cached copies. Effectively,
the load-load ordering between X2 → Y3 and Y5 → X6 appear to be relaxed.

Thus, we accommodate TSO’s relaxed store atomicity constraint by allowing loads to be re-
ordered with respect to older loads that resulted in store buffer hits during offline analysis. The
second clause in line 40 in Algorithm 1 checks for the condition when a load-load order can be
relaxed. The offline analysis should ensure that no remote load/store accesses are interleaved
between the load that caused a store buffer hit and the previous store to the same location. This
is taken care of by ensuring that, if a load results in a store buffer hit, its preceding store’s
immediate follower set (IFS) contains only the load that resulted in the store buffer hit (Line
11).

Consider again the example trace in Figure 5.2(b). Our analyzer would relax the program
order constraints X2 → Y3 and Y5 → X6 because X2 and Y5 are store buffer hits. This would
allow our analysis to produce a valid causal order under TSO for this example: Y3 → X6 →
X1 → X2 → Y4 → Y5.

While relaxing the above constraints, we also specify that all memory accesses following a

68

fence or a lock-prefixed memory operation should obey the program order.

5.2.5 Replay Guarantees and Finding All Solutions

As we find a valid causal order that meets the above constraints, the order determined by the
offline analysis might be different from the original order observed during recording. However,
the replayed execution is guaranteed to be a valid execution that leads to the same final state.
For example, in the case of data races, the racy accesses would have the same value, and any
erroneous behavior would also be deterministically reproduced.

Our symbolic analyzer can produce all possible solutions by adding the negation of the pre-
viously derived solutions into the constraints. The procedure continues until the constraints
become unsatisfiable. Finding all feasible solutions is valuable as it reveals all thread interleav-
ings leading to the same erroneous state. In order to improve the performance we must avoid
finding the solutions that are different but semantically equivalent. For example, two causal
orders that have different orders on loads to the same location are equivalent. Two solutions are
equivalent if the following two conditions are satisfied:

• The total orders of non-silent writes (which have different old and new values) are same.

• For each read and silent writes, its preceding and following non-silent writes (if exists)
are same.

The definition allows us to filter out equivalent solutions due to reads and silent writes. The
result of finding all possible (but non-equivalent) solutions can be found in Section 5.5.6

5.3 Bounding Search Space

The encoding algorithm presented in Section 5.2 is impractical, as an SMT solver cannot com-
pute a satisfiable solution with limited time and resource for unbounded number memory ac-
cesses. We present a solution to bound the search space by logging hints that allows our offline
analyzer to partition a multi-processor execution into smaller bounded intervals, and analyze
each interval separately.

To bound the search space we log barrier-like hints called Strata at regular intervals [?].
Each processor keeps track of the length of interval by counting the number of cycles elapsed
since the last Stratum log. Once a predetermined threshold is reached, all the processors si-
multaneously record their current memory counts. A memory count is the number of memory
operations committed by a processor. The program execution between two Strata hints is re-
ferred to as a Strata region.

Each processor logs its memory counts at the same instant of time. Under SC, memory
counts logged at a particular time t provide a barrier-like happens-before relation between all

69

Algorithm 1: ENCODING ALGORITHM(STRATAREGION E , FINALSTATE F)
1: /*
2: Given: Memory events E = {e1, e2, . . . , e|E|} and Final State F of a Strata region
3: Goal : Find a causal order between memory events satisfying

(1) uniqueness constraints CU , (2) coherence constraints CH , and
(3) memory model constraints CM

4: */
5: let E|p be a set of all memory accesses in processor p
6: let Oi be an event order variable of memory access ei
7: let ei.loc be the memory location of ei
8: let ei.type be the access type (load or store) of ei
9: let ei.succ be the memory access to ei.loc in the same processor, following ei in program

order
10: let ei.sbh specifies if ei resulted in a store buffer hit
11: let ei.IFS (Immediate Follower Set) be the set of memory accesses which can immediately

follow ei. It contains only ei.succ if ei.succ.sbh is a hit. Otherwise, it contains ei.succ and
remote memory accesses to ei.loc, provided their old values are same as ei’s new value

12: let ei.IntS (Interference Set) be the set of memory accesses including ei.succ and remote
accesses to ei.loc

13: let ei.LAST be the set containing a memory access if it is the last access to ei.loc in a
thread and its new value is same as final state of ei.loc in F

14: /* The SMT solver finds a solution that satisfies all the constraints */
15: CFINAL = CU ∧ CH ∧ CM
16: /* Uniqueness Constraints */
17: CU=true;
18: for all pairs of memory accesses (ei, ej) ∈ E × E where i 6= j do
19: CU = CU ∧ (Oi 6= Oj);
20: end for
21: /* Coherence Constraints */
22: CH = true;
23: for all memory accesses ei ∈ E do
24: for all ej ∈ ei.IFS do
25: //order one immediate follower ej , prevent other accesses to ei.loc from being sched-

uled between ei and ej
26: Ci = Ci ∨ ((Oi < Oj) ∧

∧
ek∈(ei.IntS−{ej})((Ok < Oi) ∨ (Oj < Ok)));

27: end for
28: if ei ∈ ei.LAST then
29: //schedule ei to be the last memory access to ei.loc and prevent other accesses in

ei.LAST from being the last access
30: Ci = Ci ∨ (

∧
ek∈(ei.LAST−{ei})(Ok < Oi);

31: end if
32: CH = CH ∧ Ci;
33: end for
34: /* Memory Model Constraints are shown in Algorithm 2 and 3*/

70

Algorithm 2: ENCODING ALGORITHM FOR SC
1: /* Memory Model Constraints for SC */
2: CM=true;
3: for all E|p : 〈ep1, ep2, . . . , epk〉 ⊆ E do
4: CM = CM ∧ (Op1 < Op2 < ... < Opk);
5: end for

Algorithm 3: ENCODING ALGORITHM FOR TSO
1: /* Memory Model Constraints for TSO */
2: CM=true;
3: for all E|p : 〈ep1, ep2, . . . , epk〉 ⊆ E do
4: for i = pk; i > p1; i−− do
5: for j = i− 1; j ≥ p1; j −− do
6: if ¬(ei.type = load ∧ ej.type = store ∧ ei.loc 6= ej.loc) ∧

//store-to-load reordering
¬(ei.type = load ∧ ej.type = load ∧ ei.loc 6= ej.loc ∧ ej.sbh = hit)
//store atomicity violation

then
7: CM = CM ∧ (Oj < Oi);
8: end if
9: end for

10: end for
11: end for

71

��� �� ��

���				
��

������� ��
����

������

�
����

�
����

������

����� �����

��� �� ��

����

��
����

�
����

�����

�������	���

��������	���

� ��� ��!��

�����

� ��!!"�����	#��	��� ��!��

� ��!!"����

� ���������	#��	��!!"����

Figure 5.3: Two examples of recording Strata Hints under TSO

memory accesses committed before t and the accesses committed after t. Thus, memory ac-
cesses in different Strata regions are totally ordered. An SMT solver can solve one Strata region
at a time, starting with the last Strata region and final state. Later, solutions found for all the
regions are concatenated based on the total order for Strata.

The above approach, however, is not sufficient for recording execution under relaxed con-
sistency models and out-of-order executions. We discuss how we can ensure the correctness of
the happens-before relations specified by the count of committed memory operations.

5.3.1 Pending Stores in Store Buffer

For clarity, we distinguish between three states of a memory access’ execution: (a) a load access
is said to have executed if it has read the value, (b) a memory access is said to have committed

when it is committed in-order and its entry removed from the Re-Order Buffer (ROB) and (c) a
store access is said to have performed when its value is written to the cache block (made visible
to remote processors) and its entry removed from the store buffer.

Stores committed from the ROB, but not yet removed from the store buffer could violate
the happens-before specified by the Strata hints. Consider the example in Figure 5.3(a), which
shows the same trace in Figure 5.2(b). Ignore the dashed box for now and let us assume the
following state: stores X1 and Y4 are committed but not yet performed (temporarily buffered in
the store-buffer of their respective processors), loadsX2 and Y5 are committed, and loads Y3 and
X6 have only been executed but have not been committed yet. Assume a Stratum is logged at
this state. Each processor logs that they have committed two memory operations. This Stratum
would provide happens-before relation Y4 → Y3, but in reality load Y3 executed before the store
Y4 was made visible to P1. Similarly, an incorrect happens-before order X1 → X6 would be
enforced by the offline analyzer. As a result, it will be impossible to find a satisfiable solution
for the second Strata region containing {Y3,X6} as they would conflicts with the final state.

We solve this problem by logging the number of in-flight stores (IStore) in addition to the
number of committed instructions as Strata hints. Since the stores are retired in-order from the
store buffer, the offline analyzer can determine that the last IStore stores in a thread before
the Stratum log were pending in the store buffer. Using this information, while constructing the

72

Strata regions, the offline analyzer moves the stores pending in the store buffer and its dependent
loads (loads that read their value from the store buffer) to the following Strata region. Then they
are analyzed with the memory accesses in that Strata region.

For the example in Figure 5.3(a), each processor logs both the number of committed instruc-
tions, which is two, and the number of in-fight stores, which is one. The Strata is represented as
a dashed box, and the tuple inside the box shows the logged information in each processor. Dur-
ing offline analysis, while creating Strata regions, in-fight stores X1 and its dependent load X2

would be moved to the second region as the arrows indicates. Also, Y3 and Y4 would be moved
to the second region. With this modification, now the SMT solver would be able to correctly
analyze {X1,X2,Y3,Y4,Y5,X6} together and arrive at valid TSO-compliant causal order.

5.3.2 In-flight Loads in Out-of-Order Execution

Most modern processor implementations have speculation support for breaking load-to-load
memory ordering constraints to efficiently support TSO [31]. They execute a load out-of-order,
and then re-execute them on commit to check if the out-of-order speculative execution was valid
or not. The check would fail if there was a remote store that modified the value before the load
commits. When a check fails, the load and its dependent operations are re-executed. However,
recording Strata using committed memory counts is still sufficient even in the presence of out-
of-order speculation.

Figure 5.3(b) presents an example. Say, the load Y2 executes out-of-order returning a value
of 0, but remains uncommitted. Then, the store Y3 in P2 executes, commits and retires from
the store buffer by writing a value of 1 to memory. If Strata is created at this moment, then the
loads X1 and Y2 in P1 would be considered as part of the second Strata region, because those
loads have not committed yet, whereas the store would be considered as part of the first Strata
region. This would be an incorrect happens-before relation. However, before committing Y2,
the processor would re-execute the load and find that its value has changed, which would trigger
a misspeculation recovery.

5.3.3 Bounding Search Space Effectively Using B-bound

Processors can determine the end of a Strata region in many ways. The simplest approach
would be for each processor to count the number of processor cycles and determine the end
of an interval when a threshold number of cycles had elapsed. This bounding mechanism is
called cycle bound (c-bound), and it requires no additional communication between processors.
However, the interval size does not account for the degree of communication between con-
currently executing threads which is a critical factor that determines the offline analysis time.

73

�� ��

������

�	��
��

�	��
��

	��
��

	��
��
�	��
��

	��
��

	��
��

	��
��

�	��
��
	�
 	�
 	�

����������������� ��������
�� ����

��!���
��"�������

��#���

��$��

�#%��

�&

'''

(�&
�$��)'''

�&
�#���*��$��

�$��

�#%��

�

'''

(
�$��)'''

Figure 5.4: (a) Write-hit Property, (b) Read-hit Property, and (c) Cache Hit Filtering Example

An adaptive scheme that logs adjusts Strata region size based on the amount of inter-processor
communication is preferable.

We evaluate two approaches that are aware of the degree of communication between proces-
sors. One is called downgrade bound (d-bound). In d-bound, each processor counts the number
of invalidated or downgraded cache blocks in an interval. If any processor observes downgrades
more than a pre-configured threshold, it asks all the other processors to log a Stratum hint. Since
the number of downgrades implicitly capture the amount of sharing, we expect the number of
shared accesses to be analyzed across Strata regions to be similar. However, d-bound requires
changes to the coherence mechanism as it requires additional inter-processor communication to
create Strata.

We also evaluate a second approach that is suitable for a snoop-based architecture broadcast-
bound (b-bound). In snoop-based architecture, each processor snoops the coherence messages
broadcasted on the bus. We leverage this property to determine the Strata interval length. Each
processor simply counts the number of broadcasted messages and when a threshold is reached a
Stratum is logged. Thus, b-bound does not require additional communication between proces-
sors in a snoop-based architecture, while it can also adapt the frequency of Strata logs according
to the degree of communication between concurrent threads.

5.4 Reducing Offline Analysis Cost Using Cache Hit Filter-
ing

While analyzing a Strata region, causal order for many memory operations can be trivially
determined and therefore filtered out from the time consuming symbolic analysis. First, local

access filtering eliminates all accesses to a location that are accessed in only one processor in a
Strata region. Second, read-only access filtering removes all accesses to a location that are only
read within a Strata region. This is because any causal order between these eliminated accesses
is valid within a Strata region. Since filtering unnecessary memory operations can significantly
reduce offline analysis time, we propose an additional non-trivial filtering method called cache

74

hit filtering (CHF).
Cache hit filtering is based on our observation that memory operations between a cache-

miss and its last-cache-hit (a hit before losing the read or write permission) to a location can
be filtered from the offline analysis. Our recorder logs only cache blocks fetched on a cache
miss, and so after replaying each thread and obtaining its memory trace, the offline analyzer can
determine which memory accesses had resulted in cache misses during recording. Using this
cache hit and miss information, it is also trivial to determine last-cache-hits.

Our offline analysis filters out all cache hits except last-cache-hits. Following constraints
(also illustrated in Figure 5.4) are added to the first-order-logic formula produced by Algo-
rithm 1.

• Remote reads and writes cannot be interleaved between write-miss and a consecutive
write-hit.

• Remote writes cannot be interleaved between {write-miss, read-miss, or write-hit} and a
consecutive read-hit.

The SMT solver then finds a valid causal order among only unfiltered memory operations.
The order for the filtered operations are inferred trivially according to the program order.

Figure 5.4(c) shows an example for the cache hit filtering optimization. Memory operations
marked with crosses are cache misses. Memory operations marked with solid dots are last read-
/write cache hits. Rest of the memory operations in gray are the memory operations eliminated
by the cache hit filtering optimization. Following are the constraints added to correctly support
this optimization. Write X6 and reads X7, X9 cannot be interleaved between X1 (write-miss)
and X4 (write-hit). Remote write X6 cannot be interleaved between X4 (write-hit) and X5

(read-hit). Note that remote reads such as X7 and X9 are allowed to be scheduled between X4

and X5.

5.4.1 Implications of Cache Hit Filtering

In addition to enforcing the above additional constraints, cache hit filtering also requires several
modifications to the offline analysis. First, cache miss/hit information is available only at the
cache block granularity. Therefore, local and read-only accesses also need to be determined
at the block granularity instead of at the word granularity. Otherwise, local and read-only
filtering may incorrectly remove memory operations that are cache-misses or last-cache-hits
which need to be preserved for enforcing cache hit filtering constraints. This may reduce the
effectiveness of local and read-only filtering optimizations due to false sharing at the block
granularity. However, we expect that cache hit filtering would effectively compensate for the
cost.

Second, memory dependencies should also be determined at the block granularity. That

75

is, SMT solver should consider block address to determine whether two memory accesses are
aliased. Similarly, old and new value comparison should also be performed at the block gran-
ularity. This reduces the aliasing between values of loads and stores, and thereby reduces the
search space and offline analysis time.

Third, filtering out write hits may lead to a mismatch between old and new values of un-
filtered accesses. We resolve this by patching up the old and new values at the cache block
granularity before we feed the filtered traces to the SMT solver.

Finally, a Stratum log may be created between a cache miss and a cache hit. This implies
that the first access to a location in a Strata region is a cache hit. We add additional constraints
to take care of such tricky special boundary cases. For instance, if the first access to a location
in a thread in a write-hit, then none of the remote accesses to that location is allowed to be
scheduled before the write-hit.

5.5 Results

In this section, we begin with Section 5.5.1 by describing our evaluation methodology and then
provide experimental results as follows. Section 5.5.2 evaluates the size of Strata hints log and
offline analysis overhead for the TSO model and compare them to the sequentially consistent
(SC) model. The following three sections provide detailed analysis on different bound schemes
(c-bound, d-bound, and b-bound) and filtering optimizations. Then, Section 5.5.6 shows the
number of all possible solutions. Section 5.5.7 and 5.5.8 evaluate the program input and store
buffer hit log size respectively. Finally, we present recording performance in Section 5.5.9.

5.5.1 Evaluation Methodology

Our simulation framework is based on Simics [46] for full system functional simulation and
modified FeS2 [1] for cycle-accurate TSO simulation. We model 2, 4, 8, and 16 cores, each
with a 32 KB private L1 cache (32-byte block, 4-way associative, 3-cycle latency) and a shared
L2 cache (64-byte block, 8-way associative, 30-cycle latency). We model the MESI coherence
protocol and a store buffer (32 entry FIFO, 8-byte granularity). We also model speculation
support for breaking load-to-load memory ordering constraints to efficiently support TSO [31].

We use four sets of benchmarks: SPLASH-2 [80], PARSEC 2.0 [14], SPEComp [68], and
server applications. We evaluate our system with barnes, fmm, and ocean from SPLASH-
2, blacksholes, bodytrack, and x264 from PARSEC 2.0, wupwise, and swim from
SPEComp, and two server applications Apache and MySQL. All applications are configured
to have the same number of worker threads as the number of cores. We fast-forward up to a
point where all the threads are spawned and the program starts its main computation (e.g. up

76

���

�����

�������

���������

�����������

�� �
��
�� 	

�� �

��
�� �

��

����� ����� �������! ��"$# %'&�(�&�)+*!� , ��� # -.%'/0(�&�).*'� , ��� #

�

���

�����

�������

���������

�����������

�� �
��
�� 	

�� �

��
�� �

��

����� ����� �������! ��"$# %'&�(�&�)+*!� , ��� # -.%'/0(�&�).*'� , ��� #

1�2

1�2�2

1�2�2�2

1�2�2�2�2

34
53
56 7
89 8:
;4<
= 4
5>

34
84?:
3> :
@ A<
:
B$C4 D
4?
CE

F�G�H�G�IKJ�L M 1�2�N O F'PQH�G�I0J�L M 1�2�N

1

1�2

1�2�2

1�2�2�2

1�2�2�2�2

R@@
69 34
53
56 7
89 8:
;4<
= 4
5>

S 84?
8T :
34
84?:
3> :
@ A<
:
B$C4 D
4?
CE

F�G�H�G�IKJ�L M 1�2�N O F'PQH�G�I0J�L M 1�2�N

Figure 5.5: Strata log size and offline analysis overhead under SC and TSO memory models

to the second barrier synchronization point or OMP parallelization point). Then, we collect the
multi-threaded workload traces for 500 million instructions. For Apache, we use SURGE [10]
to generate web requests to a repository of 20000 files (totaling 480 MB) with 400 concurrent
clients. For MySQL, we use SysBench [3] to send concurrent queries to a database containing
one million records. We tested OLTP mode with 16 client threads. Except the scalability results,
all other results are collected for 8-core configurations. Finally, for offline symbolic analysis,
we used the Yices SMT solver [26].

5.5.2 Strata Log Size and Offline Analysis Time

Figure 5.5 compares Strata log size and offline analysis time between the SC and TSO models.
For this experiment, we apply cache hit filtering and b-bound optimization with a threshold of
10. Sensitivity results on these optimizations are presented in the later three sections.

We logged 4 bytes to record a memory count in a processor core while logging a Stratum,
but this could be optimized by recording only the different in memory counts in a processor
between two Strata logs. In addition, we logged the number of in-flight stores to support TSO
model (Section 5.3). For a 32 entry store buffer, we need 5 bits to log the number of in-flight
stores. On average, we need 1025KB for SC and 1185KB for TSO (15% increase) to record
Strata hints for one second of program execution on an 8-core configuration.

Figure 5.5(b) shows that offline analysis time for TSO surprisingly decreases by 30% when
compared to that of SC. Relaxing constraints could have positive or negative effect on offline
analysis time. Under TSO, search space increases. But when compared to SC, in TSO, it is
possible that the proportion of legal solutions to the infeasible solutions that the SMT might
explore increases. If so, then the offline analysis time could be better than SC. The variation in
analysis time for different applications in Figure 5.5(b) is a consequence of this.

On average, it takes 260 seconds to analyze one second of an 8-threaded execution under
TSO. swim is our worst case which takes 745 seconds. This offline analysis need to be per-

77

�����

�����

�����

� �����

�
�	
�
��

��	
��	
�

� ������� � ������� ����� � ����������� �� ! "���# � !���� ���$��������%&% ��%

�����

�����
'
 (

(�)
(�)�)
(�)�)�)
(�)�)�)�)
(�)�)�)�)�)

*++,-
./
0.
0,
12-
23-
4/

5./
2/
65
.7
5+
895:&;
/
</
6 ;
=

)�>)�(
)�> (

) ?�)�) (�)�)�) (�?�)�) @�)�)�)

*

A 2/
62B
5

C$D�EGFIHGE J K L M�N M�OQPRM�PSDGN TVU�WXW�M�YZYZM�Y[J H\U�HQJ HGL M�N]�U�K

Figure 5.6: (a) Proportion of local, read-only, cache-hit and unfiltered accesses and (b) Scala-
bility of offline analysis.

formed only once. Once shared memory dependencies are resolved, execution can be replayed
with little overhead. Furthermore, we could reduce the analysis cost by parallelizing the offline
analysis of different Strata regions and also improve our generic Yices solver by customizing it
specifically for our problem.

For the SC model, we also compared the sizes of Strata logs to the precise race logs in
one of the state-of-the-art hardware recorders, called Rerun [34]. The results show that we can
save about 10 times memory race log size when compared to ReRun. However, our program
input log could be larger than that of a copy-on-write based program input recorder assumed by
ReRun. The program input log size is evaluated in Section 5.5.7.

5.5.3 Strata Region Length

This section provides comprehensive analysis on determining the appropriate length for the
Strata regions to bound the search space of offline analysis. As discussed in Section 5.4, we
eliminate local, read-only, and intermediate cache-hit memory accesses in each Strata region,
and only analyze remaining unfiltered memory accesses that is left after filtering. Filtering the
local accesses and read-only accesses within a Strata region eliminates over 99% of memory
accesses from offline analysis. Figure 5.6(a) shows this result for a configuration where the
Strata regions are constructed when 10 broadcasted coherence messages have been observed
(b-bound of 10). Here, swim show the most portion of unfiltered accesses, which was 0.34%.

More memory events per Strata region would increase the cost of offline analysis. There-
fore, we would like the unfiltered accesses per Strata region to be less than some threshold.
Figure 5.6(b) shows the time taken (y-axis uses a log scale) to analyze Strata regions with dif-
ferent numbers of unfiltered accesses. This includes the execution of all test applications where
the Strata regions are constructed with rough cycle bound. The result shows the exponential
increase of offline analysis cost.

78

�����
�����
�����
�����
�	���	�

��

�
��
�����
� ���
� ��
� �

� ���	��� �	���	��� �	�����	�������� �! #"%$�&#')(!*,+.- /0/,/�- /�/,/1 2*0+3/,/�- /0/0/4�5*0+./0- /,/�/6'%*870- /,/0/ 9 &#:#; � <=�?> �0'A@4�?@6"%> �%(B�C�C�BD3D3�BD������� �! #"%$�&#')(!*,+.- /0/,/�- /�/,/1 2*0+3/,/�- /0/0/4�5*0+./0- /,/�/6'%*870- /,/0/ 9 &#:#; � <=�?> �0'A@4�?@6"%> �%(B�C�C�BD3D3�BD

��� E F G H E F G H E F G H E F G H E F G H E F G H E F G H E F G H E F G H E F G H
FBECI JBK	L M NON P�G8K�ECJ Q FBR E	G8S#L=G3T�PBR K�L FBP�HBU3V I ECG3S W ���	� Q X%Y�ZBX%[L=K L=X%[N Q ECZ,ECG8TBK NOU#L]\�R

^� ���
�_

Figure 5.7: Distribution of unfiltered memory events in a Strata interval for cycle bounds

`�a	b
c a	b
d�a	b
e�a	b
f a�a	b

gh ij
ikl
gmngn
h j
gom pn
q r

a s	t�a�a s f a	a�a u f a�a�av,w�xAy3z|{ }�~��!�#w��0y#~)}!�0�3�,���)�.�,�O���.�0�2~%�B�#��� �#����� �!�#w��0y#~5�A�.���,�0���?� � y#�#� � �=�?{ �,~A�4���6w%{ �%}B�C�C�,�.�3�,�

a	b �
�B�C� �B�	 ¡ ¢O¢ £��.�	�	� �B¤ �	�.¥#]�.¦�£B¤ �� �B£��B§#¨ � �C�.¥ © `�d c ª%«�¬Bª�­]� ª%­ ¢ � ¬ �C�.¦B� ¢O§C =®�¤¯h rgm

h° ±
g

Figure 5.8: Distribution of unfiltered memory events in a Strata interval for downgrade bounds

²C³�´
µC³�´
¶C³�´
·C³�´
¸	³C³�´

¹ º»¼ ½¾
½¿À »Á
Â»Â
¼ ¾»
ÃÁ
ÄÂÅ Æ

³ ÇCÈC³�³ ÇC¸	³	³C³ ÉC¸	³	³	³Ê0Ë=Ì0Í�Î0Ï3Í�Ð8Ñ�Ò,Ì0Ó,Ô0ÎOÍÖÕ8×BØ,ØÙÒ�Õ.ÚBØ4Ï)Õ8×,Ø6Î|Õ8Ú Û Ô,Ü Ý Þ Ñ ß,Ë ß�ÎOà�ßBàÖÌ,Ë=á?Í�Ï3Ï#ßBÐ.Ð8ßBÐ

³�´ â ã ä å â ã ä å â ã ä å â ã ä å â ã ä å â ã ä å â ã ä å â ã ä å â ã ä å â ã ä å
ã�âCæ ç�è#é ê ë4ë ì�ä8èCâCç ã�í âCä8î.é=ä]ï�ì�í è#é ã�ì�å�ð ñ#æ â#ä8î ò ²	¶	µ ó?ô�õ�ó?ö é è é ó?ö ë â õ â#ä]ï�è ë6ð3é=÷�í

ø¼ Æ»Á
¼¹

Figure 5.9: Distribution of unfiltered memory events in a Strata interval for broadcast bounds

ù	úCú
ûüúCú
ý	úCú
þ	úCú
ÿ	úCú
�	úCú

��
��
��
��
����
	

���
��

ú
�	úCú

	úCú

ú ý	ú �CúCú �Cý	ú
CúCú
� �
� �
���
�

��������������� �"! #$#$��#%! &'��&'! &�(�*) +,��-

.0/�/
1 /�/
2 /�/
30/�/
4 /�/
50/�/

67 8
98
:
;8
;<
9=
>??8
@@8
@

/
A0/�/
B0/�/

/ 2 / A�/�/ A 2 /

C <
D E
FDG

HJI$KML�N0L$O�P�Q�R I�L�S,TVU�I�W�X$Y[Z N0U�P�U]\ X N0X \ X ^0P�Z _`N0R

a�b�b
c b�b
d b�b
e�b�b
f b�b
g�b�b

hi j
kj
l
mj
mn
ko
pqqj
rrj
r

b
s b�b
t�b�b

b s b0b t0b�b a�b�b c b�b d b�b

u n
v w
xvy
h

zJ{$|M}*~ {��0�����0� �0��� �${�����~ ���������"� ��� � �0� � �$�0��~ �[�0�

Figure 5.10: Correlation between the number of unfiltered accesses and (a) cache miss counts,
(b) downgrade counts, and (c) broadcast counts

79

Based on this observation, we experimented with four different processor cycle bounds.
Figure 5.7 shows the distribution of Strata intervals for each bound. Each Strata interval would
have different number of unfiltered memory accesses depending on the program characteristics,
and the intervals are classified over four ranges. Figure 5.7 shows that for programs like fmm
even if we use a bound of a million cycles (a stratum is created after a million processor cycles
has elapsed), most intervals would still be left with less than 500 unfiltered accesses. But for
programs like swim we need a lower cycle bound, because we find many intervals with more
than 1000 unfiltered accesses if we use a higher bound. Based on the application to be recorded,
the operating system can set the cycle bound appropriately.

We also performed similar experiments on different downgrade bounds (Figure 5.8) and
broadcast bounds (Figure 5.9). For downgrade bounds, each core counts the number of down-
grade requests (invalidation or downgrade exclusive permission), and if any core reaches a
predefined bound, then it sends a message to all the nodes to log a stratum. For a snoop-based
architecture, we can exclude this additional communication by leveraging the property that each
processor snoops the coherence messages broadcasted on the bus. Each processor simply counts
the number of broadcasted messages and when a threshold is reached a Stratum is logged. These
approaches are more complex than using a cycle-bound approach, but could reduce the offline
analysis overhead. This tradeoff is discussed later in Section 5.5.4.

Our system does not use the number of cache misses as another metric to form Strata regions
as the capcity misses are not directly correlated to the degree of communication between con-
current threads. Figure 5.10 plot the number of unfiltered accesses versus the cache miss count,
downgrade count and broadcast count respectively for all applications with the cycle bound of
10000. As one can see, there exists significant correlation between the downgrade/broadcast
counts and unfiltered accesses, because they are a better indicator of the sharing behavior in an
application (more sharing would result in more memory accesses in an interval as we filter out
local and read-only accesses).

5.5.4 Effects of Cache Hit Filtering and B-Bound Optimization

In this section, we evaluate the effectiveness of cache hit filtering (CHF) and also compare
different bounding schems. We compare four configurations under SC: SC(c-bound), SC(d-
bound), SC+CHF(d-bound), and SC+CHF(b-bound). The first SC(c10000) configuration rep-
resents cycle-bound scheme where each processor forms Strata after 10000 cycles have elapsed
(c-bound). The second SC(d10.c10000) configuration is for downgrade-bound approach where
each processor creates Strata either after more than ten cache blocks have been downgraded
(d-bound) or after 10000 cycles have elapsed. The third configuration, SC+CHF (d10.c10000),
employs our cache hit filtering optimization over the earlier design. The forth configuration,

80

����� �����
����� �����
����� �����
����� 	����

������ �����

� �

��
����
����
���
�

� ����������� �����! �!"#� $ �����&%!�� %#' ()!"!* ' � (+��� ���,���&����- -.��-/10.2�354 6+7589898985:<;=0�2�354 >57985? 6�7989898589:@6A0.2!35B935C=D�4 >57985? 6�7989898589:@>=0�2�3AB#3ACED�4 ;97589:

����� ����� � F � � � F � � � F � � � F � � � F � � � F � � � F � � � F � � � F � � � F � �
F���� "#��- * GHG �!�&����" F�� ����IJ-.��%!��� ��-KF!�!�#$ (�� ���&I L ���!� M)!N M ' - � - M ' G ��N!���&%!� GH$J-.O!�

�

Figure 5.11: Effectiveness of local, read-only, and cache-hit filtering

P�Q
R Q
S Q
T�Q�Q
T�U�Q
T�P�Q
T R Q

VWXY Z
[\[
] ^__
[``
[`a b
Z\^
Z^

cJd#e f T�Q�Q�Q�Q�g c+d!e h T�Q�i f T�Q�Q�Q�Q�g c+d!j�d!kml+e h T�Q�i f T�Q�Q�Q�Q�g c+d!j�d!kml+e n T�Q�g
o Q�U U�p�T

Q
U�Q

q rs.t
u vW w
V x�y�y

x�z�y
{ y�y
{ z�y
| y�y
| z�y
} y�y

~��� �
���
� ���
���
��� �
���
��

�+�#� � x�y�y�y�y�� �+�!� � x�y�� � x�y�y�y�y�� �+�#���!�1�+� � x�y�� � x�y�y�y�y�� ���!���!�m��� � x�y��
z�x } ����� z�z � z � | � z�z � y { x } z ���!���

y
z�y

� �
�.�� �
�

Figure 5.12: Average and maximum number of unfiltered accesses per Strata region

¡!¢
¡�¢�¢
¡!¢�¢�¢
¡�¢�¢!¢�¢

£¤
¥ ¦§
¨© ª«
¬­®
¯ °«
±²

³+´#µ ¶�¡�¢!¢�¢!¢�· ³�´!µ ¸#¡�¢!¹ ¶�¡�¢!¢�¢!¢�· ³�´!º�´#»1¼+µ ¸#¡�¢�¹ ¶�¡!¢�¢�¢�¢!· ³+´#º�´#»1¼�µ ½#¡�¢�·

¡¨ £¾¤
£ ¿!À

¿�À!À
¿!À�À�À
¿�À!À�À�À

ÁÂÁ
Ã ÄÅÆ Å
ÇÈÉ
ÊË É
ÁÌ

É
ÍÇÂ
Ì Ç
Î ÏÊ
ÇÐ.ÑÉ
ÒÉ
Í ÑÓ

Ô+Õ9Ö × ¿�À!À�À!À�Ø Ô�Õ#Ö Ù ¿!À�Ú × ¿�À!À�À�À!Ø Ô�Õ#Û�Õ#Ü1Ý+Ö Ù ¿�À!Ú × ¿!À�À!À�À�Ø Ô+Õ#Û�Õ#ÜmÝ�Ö Þ ¿!À�Ø

¿
¿!À

ßÎÎÃÆ Â
É
Á

à ÅÉ
ÍÅ
á ÇÂÉ
ÅÉ

Figure 5.13: Effectiveness of b-bound and Cache Hit Filtering (CHF) in reducing Strata log size
and offline analysis overhead

81

SC+CHF(b10), is a design with cache hit filtering and with b-bound. Each core creates Strata
if there have been more than ten coherence broadcast messages (b-bound). Without cache hit
filtering, b-bound optimization alone is not effective because there could be a Strata region with
high hit rate and less sharing, leading to a large number of unfiltered accesses.

Figure 5.11 shows differences in local, read-only, and cache-hit filtering ratio among dif-
ferent bounding schems. For the first two configurations without cache-hit filtering, we need
to analyze less than 0.4% of total memory operations. Applying cache hit filtering (SC+CHF
(d10.c10000)) reduces the effectiveness of local or read-only filters due to false sharing (we have
to analyze at the block granularity if we employ cache hit filtering). However, cache-hit filtering
effectively compensates for the loss. Figure 5.12 shows the average and maximum number of
unfiltered accesses per Strata region. This shows that the cache-hit filtering is effective espe-
cially when we combine it with the b-bound optimization represented as SC+CHF(b10). When
the two optimizations are applied together the average number of memory operations per Strata
reduces by more than 10x compared to c-bound (SC(c10000)) and nearly 40% compared to the
d-bound (SC(d10.c10000)). Programs like ocean with a high cache miss rate does not benefit
from CHF optimization.

Also, the maximum number of operations per Strata region, which determines the worst case
analysis time, reduces significantly in most cases. Maximum number of memory operations per
Strata region is an important measure given that the offline analysis time grows exponentially
with the number of memory operations to be analyzed together. The maximum number of
memory operations across all Strata regions in all programs is less than 90 after employing
CHF and b-bound optimizations.

One interesting property of b-bound is that the standard deviation of the maximum num-
ber of unfiltered accesses across different benchmarks is a lot smaller than d-bound (16.9 vs
76.6). This indicates that b-bound with CHF is a better application-independent predictor of
how large each Strata region should be. Furthermore, b-bound is simpler than d-bound in terms
of hardware implementation for a snoop-based architecture, because d-bound requires addi-
tional communication among cores but b-bound does not.

Figure 5.13 shows the result of cache hit filtering and b-bound optimizations on Strata log
size and offline analysis overhead. The b-bound optimization reduces the Strata log size by
nearly three times. Cache hit filtering does not affect the size of Strata log, because it is an
offline filter employed to reduce the number of memory operations that need to be analyzed
within a Strata region.

Cache hit filtering reduces offline analysis time by reducing the number of memory opera-
tions that need to be analyzed. Also, to support CHF optimization, we perform analysis at the
cache block granularity. While this may reduce the effectiveness of local and read-only filters
as discussed before, it could reduce the search space by reducing the amount of aliasing be-

82

tween the old and new values of memory operations which in turn reduces the legal follower set
for a memory operation. On average, compared to SC(d10.c10000), SC+CHF(d10.c10000)
shows 6% of improvement on offline analysis overhead. However, together with b-bound,
SC+CHF(b10) shows impressive improvements: 3x less Strata log size and 4.8x less offline
analysis time on average.

5.5.5 Sensitivity Studies

In this section, we present sensitivity studies varing the threshold on each bounding scheme.
Figure 5.14, 5.15, and 5.15 shows the tradeoff between Strata log size versus offline analysis
time for c-bound, d-bound and b-bound respectively. For example, Figure 5.16 shows that on
average, Strata log size increase approximately linearly as the b-bound decreases from 100 to 5:
122KB/sec, 242KB/sec, 1185KB/sec, and 2333KB/sec, respectively. On the other hand, it takes
54261 seconds with b-bound of 50 to analyze one second of 8-threaded execution, whereas it
only takes 258 seconds with b-bound of 10, which is about 210 times of improvement. The user
or the operating system can specify the bound based on the trade-off that one is willing to pay.

We also present scalability results with different number of processors for a constant b-
bound of 10. Figure 5.17(a) shows that on average Strata log size increases by 3.1x, 1.6x, and
2.4x as the number of cores doubles from 2 to 16. Similarly, Figure 5.17(b) shows that offline
analysis cost increases by 1.8x, 3.3x, and 2.5x respectively.

5.5.6 The Number of Satisfiable Solutions

In this section, we evaluate the number of feasible solutions. Our offline analysis can find all
satisfiable solutions that obey all the required constraints compilant to the given memory con-
sistency model. We also applied the notion of equivalent solutions (discussed in Section 5.2.5)
to prevent the solver from finding a solution that has indeed the same causal dependencies as
the previous solutions.

Figure 5.18(a) shows the statistics on the number of possible solutions for each application.
On average 62% of Strata regions have a single solution; 29% have less than 10 solutions; 8%
have less than 100 solutions. The remaining 1% of Strata regions have more than 100 solu-
tions. In further investigation, we find that four applications (barnes, wupwise, swim, and
ocean) have Strata regions with more than 100 solutions, but all of those Strata regions actually
have relatively small number of memory operations accessing a single or few different mem-
ory locations. For example, barnes has a Strata region that includes 300 different solutions
with only 12 unfiltered memory operations accessing a single location; and wupwise includes
a Strata region that produces 216 satisfiable solutions with 12 memory operations accessing a
single memory location.

83

���
�����
�������
���������
�����������

�� �
� ��
	
 �
�

��� �
���

� � ������� � ��������� � � ����� � �������

�
���

	� �
� �

� �
� ���
� �����
� �������
� ���������
� �����������
� �������������

�� �
�� �
�� �
�
! "�#
$ ��
%

&�
�
�'&�
% &
()#
&* +
�,�'
-

. / ������� . � ������� . / ����� . � �����

�
0
�
�
� �
� ���
� �����
� �������
� ���������
� �����������
� �������������

!((�� �
�� �
�� �
�
! "�#
$ ��
%

1
�'2
&�
�
�'&�
% &
()#
&* +
�,�'
-

. / ������� . � ������� . / ����� . � �����

Figure 5.14: Strata log size and offline analysis overhead for different c-bounds

3�4
3�4�4
3�4�4�4
3�4�4�4�4
3�4�4�4�4�4

56 5
7 89
:; <
=> ?
@A B
=CD

E�F�G E 3�4 EHG E�F

3
3�4

:6 I
5 J

J�K
J�K�K
J�K�K�K
J�K�K�K�K
J�K�K�K�K�K
J�K�K�K�K�K�K
J�K�K�K�K�K�K�K

LMN O
PQ O
RM S
TN T
U VPW
X PR

YO
PT
PZYO
[Y
L \W
Y] ^
P_PZ
`

a�b�c a J�K aHc aHb

K
d
J
J
J�K
J�K�K
J�K�K�K
J�K�K�K�K
J�K�K�K�K�K
J�K�K�K�K�K�K
J�K�K�K�K�K�K�K

ULLMN O
PQ O
RM S
TN T
U VPW
X PR

e TPZ
f YO
PT
PZYO
[Y
L \W
Y] ^
P_PZ
`

a�b�c a J�K aHc aHb

Figure 5.15: Strata log size and offline analysis overhead for different d-bounds

gihih
gjhihih

gihjhihih
gihihjhihih

kl
m no
pq r
stu
vw x
syz

{}| g}hih {~| � h {~| gih {}| �

g
gihp k�l

k
�j�
�j�j�
�j�j�j�
�j�j�j�j�
�j�j�j�j�j�

�i�H�i�j�j�j�
�j�i�H�i�H�i�H�

��� �
����
� ���
��
���
� ��
�

��
����
��
� �
� ���
�����
�� ��

�i� �j�j� �}� � � �i� �j� �i� �

�
�j�
�j�j�
�j�j�j�
�j�j�j�j�
�j�j�j�j�j�

�i�H�i�j�j�j�
�j�i�H�i�H�i�H�

����� �
����
� ���
��
���
� ��
�

� ���
�� ��
����
��
� �
� ���
�����
�� ��

�i� �j�j� �}� � � �i� �j� �i� �

Figure 5.16: Strata log size and offline analysis overhead for different b-bounds

� �
� �H�
� �H�H�
� �H�H�H�
� �H�H�H�H�

� ¡
¢ ¢
£ ¤¥
�¦ §
¨©ª
«¬ ­
¨®¯

°H± ²³± ´µ± � ¶ ±

�
� �
� �H�
� �H�H�
� �H�H�H�
� �H�H�H�H�

� ¡
¢ ¢
£ ¤¥
�¦ §
¨©ª
«¬ ­
¨®¯

°H± ²³± ´µ± � ¶ ±

·H¸

·j¸H¸

·H¸j¸H¸

·j¸H¸j¸H¸

¹ º»¼
º¼
½ ¾¿
¹ ¿
ÀÁ»Â
Ã »¼
Ä

Àº»¿
»ÅÀº
Ä À
Æ ÇÂ
ÀÈ�É
»Ê»Å É
Ë

ÌHÍ ÎµÍ ÏjÍ ·jÐHÍ

·

·H¸

·j¸H¸

·H¸j¸H¸

·j¸H¸j¸H¸

ÑÆÆ½
¹ º»¼
º¼
½ ¾¿
¹ ¿
ÀÁ»Â
Ã »¼
Ä

Ò ¿
»Å¿
Ó Àº
»¿
»ÅÀº
Ä À
Æ ÇÂ
ÀÈ�É
»Ê»Å É
Ë

ÌHÍ ÎµÍ ÏjÍ ·jÐHÍ

Figure 5.17: Strata log size and offline analysis overhead for different number of processors

84

�����
�����
�����
�����
�����
�����
	����

����
�����
�������

�
 �
��
� ��
��
��
����
��
 �
��

� ����� ������� ���������

���
�����
�����
�����
�����
�����
�����
	����

����
�����
�������

�
 �
��
�
��
 �
��
� ��
��
��
����
��
 �
��

� ����� ������� ���������
�� ��

���

��
�

�

�� �� �	 �

��
�

�

��
�

�
��

�
�

�	
�
�

�

�

�
��

�

�
��

�

�

�

�

� ���
�
�

���
�

����
�
�

Figure 5.18: The number of satisfiable solutions. (a) Distribution of possible solutions (b)
Example of many solutions in wupwise due to silent stores

�����
�����
 ���
! ���
" ���
���

$%&
'()
*+,
- .$
/0 12
34
56 7
289

: ;=<?> @ A=BC> D E=;F<
GIH�> H

JLKNM�OQP=RTSIU VTW�XZY []\T^_Pa`_b cFdQegf
STKNM�OQP=RihjVT^lk
W�KNM�RihjVT^akmY no\�poqrd�cFf

�
s ���

HutvB HwtvB HutxB HwtvB HytxB HytvB HutvB HutxB HwtvB HutxB HutzB
t=H�@ ;F{�< | }]} E=BC{�H�; tF~ H�Ba�

<CBl�FEF~ {�<
tFEF�=�
> @ H�Ba� ������� �

AF�
�
D <C{ <

�
D } H��FH�Ba�F{ }���<?�F~ H���{�@ H���{

� %.
$

Figure 5.19: Program input log size with 16bit counters

It turns out that these many solutions are mainly due to a set of writes that together act
as silent writes, which have the same old and new value. Figure 5.18(b) is an example of a
Strata region that has many (216) possible solutions in wupwise. In this example, X2 and X3

(similarly X6 and X7) form silent write pairs that together has the same old and new value of
0. As long as they are ordered (X2 < X3, X6 < X7), all the rest operations can be ordered in
any place, leading to many solutions. For instance in P1, X8 and X9 can be placed before X2 <

X3 pair, or between X3 and X6, or after X6 < X7 pair, leading to 6 possible combinations.
Similarly X12 in P2 have 3 choices, X10 and X11 in P5 have 6 choices, and X5 in P6 has 2
choices. As a result, total valid solutions become 6*3*6*2 = 216.

5.5.7 Program Input (Cache Miss) Log Size

As discussed in Section 5.1, our system logs cache miss data to implicitly capture non-deterministic
program input such as I/O, interrupt, DNA, etc. and replay each thread’s memory operations
in isolation. On any cache miss, the cache block fetched is directly written back to the main-
memory along with the current instruction count of the processor core. Thus, the total size of
program input log can be calculated by (Size of Cache Block + Size of dyanmic counter) *
(Number of cache misses).

85

� ���
� �����
� �������
� ���������
� �����������

��
� ��
	
�
	�

����������� ������� ���� !��"�#%$ &('*) ���(����+,�� - ����+,�� -.� /!��0�12&�$)

�43 �
�
� �

� 5 6 7 8 9 : ; < � � ��� � 5 � 6 � 7 � 8 � 9

=

12��'*��&(>��?�/>@ $ #A� $ �. &�B� &�#%&�C�$>$ D�&E@ C�#%$ F�G�C�-H-�G�$ GI������C�$ #�)

J�K
L�L(K
L�M(K
L�N(K
L�O(K
L�J(K

P Q
RST
U VW
XY Z
[\]
^_ `
[ab

c�d>e2f�gih j4k�l.m n,oipqe(r(s�t u�vxw c�d>eqf�yzj4p%{ c4f�yzjip {|m }Ao4~��Eu>t w

N�K
O�K
J�K

� �VW
��
�P

���4k�ji{4� �i~E}A� t%s�� j4pq� �4s�t%p �����4{��I��t �*�4j4oi�!t%s

Figure 5.20: Distribution of instruction counts and program input log size with compressed
format

Figure 5.19 shows program input log size for different logging schemes. All the logging
scheme assume 16bit(2bytes) of counter. Logging scheme (a) is the baseline system which was
described in Section 5.1. It records both load and store misses at the block granularity. Logging
scheme (b) shows the log size for logging at word-size granularity, assuming that we track
depedencies with additonal log-bit per word in cache like BugNet [51]. We expected that fine-
grained logging should outperform cache-block-size logging due to less false sharing. However,
the result shows that word-granularity logging (b) is not better than block-granularity logging
(a). It turns out that we have to record more dynamic instruction operation counts between two
log records for (b). That is, even though (b) captures shared memory dependency at fine-grained
level, each record should include 16bit counters, which offsets the benefits.

To further understand the situations, we collected the distribution of dynamic instrunction
counts between two log records. In Figure 5.20(a), the y-axis shows the number of logs, and
x-axis shows the number of bits that is required to represent the log strides. As can be seen,
most counts in the program input log for (b) is biased on lower bits. This implies that we
can represent the majority of instruction counts with small number of bits, for example with
4 bits. Based on this observation, we can reduce the size of each log record by using two
forms of dynamic counts. Let’s say we use the first prefix bit to distinguish whether the log
record includes compressed count format (4bits) or full count format (15 bits) for large counts.
Figure 5.20(b) shows the result of sensitivity test on different encoding formats which use 1 to
15 bits for compressed format. The figure shows that (a) can be optimized with 6+15 format and
shows 165MB/sec, whereas (b) is optimized with 4+15 format and shows 146MB/sec. Note that
tracking dependencies at word granularity (b) requires additional hardware support like log-bit
per cache word. Therefore, there is a tradeoff between log size and hardware complexity. We
also add the input log size for BugNet in (c) which only logs the first load to each memory
location and assumes additional hardware support for multiprocessor replay.

86

App. Store Buffer Hit(%)
barnes 1.22
fmm 4.89
ocean 6.65
black. 1.95
body. 0.63
x264 2.33

wupwise 0.92
swim 0.35

apache 3.23
mysql 2.28

average 2.45

���

���

� �

� �

���

��
� 	

��

� �
�
�� �
	
�
��
� �	�
�

�

� �

�

�

	
�

Figure 5.21: (a) Store buffer hit ratio and (b) Store buffer hit log size

baseline slowdown slowdown
application average without with

IPC priority priority
barnes 10.44 0.43% 0.33%
fmm 13.04 0.01% 0.01%
ocean 4.31 0.21% 0.2%

blackscholes 12.61 0.93% 0.59%
bodytrack 11.56 0.17% 0.15%

x264 13.71 0.03% 0.03%
wupwise 13.48 0.03% 0.02%

swim 1.74 1.57% 1.48%
Apache 13.34 0.04% 0.03%
MySQL 13.59 0.03% 0.02%
average 10.78 0.35% 0.29%

Table 5.1: Recording performance

5.5.8 Store-buffer Hit Log Size

In addition to logging cache blocks feteched on cache miesses, our system also records memory
counts of load instructions that hit in the store buffer to handle violations of store atomicity
under TSO (Section 5.2.4.2). Figure 5.5.8 shows the stor buffer hit ratio on our simulation for
each application, and Figure 5.21 shows corresponding log size. On average, about 2.45% of
load instructions read their values from the processor-local store buffer, and thus store buffer hit
log requires 21.9MB of log space to record one second of 8-threaded execution under TSO.

5.5.9 Recording Performance

As the last experiment, we analyze the performance overhead on recording for the processor
configuration described in Section 5.5.1. On a cache miss, the fetched cache block is directly
written back to the main-memory along with the current instruction count of the processor core.
We also evaluated an optimization which the packets that write-back recorded logs are given a
lower priority in the routers. Table 5.1 shows input log size and the performance degradation on

87

8 core configurations. swim shows the highest cache miss rates and requires largest input log
size. The worst degradation is also for swim (1.57% slowdown). The priority optimization re-
duces the overhead to 1.48%. On average, the non-prioritized scheme incurs 0.35% slowdown,
whereas prioritized scheme incurs 0.29% overhead.

5.6 Conclusion

Deterministic replay can significantly help programmers understand a multi-threaded program
execution. Over the past few years, the architecture community has made significant progress
is developing hardware designs that are both performance and space efficient. In this paper, we
focused on reducing the hardware complexity of a recorder and supporting TSO memory model.
We discussed a solution, where a program input log consisting mainly of the initial register
state and cache miss data was sufficient for ensuring replay of the execution in multi-processor
system. Much of the complexity is off-loaded to a novel symbolic analysis algorithm, which
uses a SMT solver and determines the causal order between shared operations under the TSO
model. We also discussed complexity-effective solutions for logging Strata hints that allowed
us to bound the offline analysis, and cache-hit filtering optimization to reduce the number of
memory operations that need to be analyzed to determine the causal order. These optimizations
reduced the Strata log size by 3x and offline analysis time by 4.8x on average. We showed that
offline analysis could in fact be 30% more efficient for a TSO execution that an SC execution.

88

CHAPTER 6

Conclusion

This chapter compares our proposed deterministic replay solutions, discusses lessons learned
about holistic systems design for deterministic replay, presents future works, and concludes the
thesis.

6.1 Comparisons and Contributions

Respec, an operating-system-based software-only system, is the first system that enables online
replay on commodity hardware. Respec speculates that a program is data-race-free, and opti-
mistically records synchronization operations and program input only. For data races, instead
of logging the precise order of memory operations, Respec compares system call outputs and
memory/register states of recorded and replayed processes at a semi-regular interval to check
divergence while guaranteeing external determinism. When the check fails, Respec rolls back
and retries the failed interval by serializing the threads and logging the schedule order. This
technique results in low recording and replay overhead for the common case of data-race-free
execution intervals and still ensures correct replay for execution intervals that have data races.
The key strength of Respec is that it incurs very small latency overhead compared to other
software-only solutions as it does not monitor individual memory operations, and thus Respec
can provide online replay, in which both recording and replaying must be efficient. However,
Respec performs best when extra cores are available since it needs an extra execution to detect
divergence.

Chimera is the first system that leverages static program analysis in a deterministic replay
field. Chimera records synchronization operations and solely potential data races reported by
a static data race analysis. Chimera further reduces logging costs by leveraging profiled infor-
mation and symbolic bounds analysis so that it can reduce the cost of logging false warnings
produced by a conservative static analysis. Chimera does not monitor code regions running
non-concurrently or accessing disjoint memory addresses. Instead, Chimera checks whether
the profiled assumptions are satisfied at runtime. When source codes are available, and static

89

analysis is adequately precise, Chimera would be the best solution for efficient multiproces-
sor replay. Chimera can provide a stronger guarantee than Respec in that Chimera records the
precise order of shared memory accesses by logging the order of newly added locks, but the
performance overhead is similar to that of Respec. However, coarsened instrumentation granu-
larity (e.g., loop-level or function-level locks) consequently does not allow the runtime system
to observe fine-grained interleaving, implying that Chimera has limitations for the purpose of
debugging. Moreover, the overall performance of Chimera is bounded by the precision of pro-
filing and symbolic bounds analysis. In our experiments, we observe that compared to desktop
and server applications, Chimera doesn’t scale well to data-parallel scientific programs in which
symbolic bounds analysis for multi-dimensional array accesses turns out to be very imprecise,
and end up serializing many loop accesses. In such cases, Respec (or Doubleplay) will be a
better solution and profiling could help identify the characteristic of applications. Nevertheless,
Chimera shows that performance overhead is only 2.4 percent on average for Apache and desk-
top applications. In addition, we believe that the techniques in Chimera could also prove quite
useful for enabling stronger semantics for concurrent languages such as sequential consistency
and for enabling deterministic execution.

Rosa considerably reduces the complexity of hardware support in processor-based replay
systems by not recording shared memory dependencies at all. Instead, Rosa determines a valid
casual order which is compliant to an underlying memory model, using Satisfiability Modulo
Theories (SMT) solver offline. Rosa provides solutions to support Sequential Consistency (SC)
and Total Store Order (TSO) memory models. TSO is the most common consistency model
implemented in modern processors, but not supported in many previous solutions. Rosa also
includes a mechanism for bounding the search space of offline analysis. Compared to Respec
and Chimera, Rosa incurs negligible performance overhead (less than one percent) at the cost
of custom hardware support.

6.2 Holistic System Design

One of the key lessons that we learned from Respec and Rosa is that defining the right replay
guarantee is very important in designing efficient replay systems. We observed that completely
identical replay is often unnecessary. By relaxing replay guarantee, we could propose more
complexity-efficient solutions. Respec only guarantees the same output and final state (external
determinism) between two executions. Similarly, Rosa does not record shared-memory depen-
dencies at all. Thread schedules reconstructed by SMT solver in Rosa could be different from
the original execution. However, Rosa guarantees that each thread reproduces the same se-
quence of instructions and that each instruction reads and writes the same value as the recorded
execution, which is sufficient for many replay uses, such as debugging.

90

The lessons we learned from Chimera include that 1) static analysis can help design efficient
multiprocessor replay, and 2) a constrained runtime system also can help reduce the cost of
monitoring and logging shared-memory dependencies. In addition to the lock-set based data
race detection algorithm used in Chimera, we believe that there would be a lot of potential
in another static analysis including static may-happen-in-parallel analysis. Chimera also takes
advantage of a constrained runtime system in which thread interleaving happens at a larger
granularity so that shared-memory dependencies can also be detected and logged at a coarse
granularity, reducing the runtime overhead during recording.

Going forward, we believe that future multiprocessor replay systems should exploit the
strengths of each approach. We imagine that the static analysis and constrained thread inter-
leaving used in Chimera could improve other systems as well. Static analysis could be used to
identify which objects need to be monitored in cases of misspeculation in Respec (instead of
comparing whole memory states). If static analysis can figure out that a certain code region is
data-race-free (though it does not look trivial for large code regions), then this ability can be
used to turn on/off redundant executions to save twice the throughput cost. Moreover, by pro-
viding a constrained runtime system that prevents certain fine-grained interleaving while still
preserving parallelism in common cases such as Chimera, Respec can reduce the chance of di-
vergence between recorded and replayed processes. Similarly, Rosa can also reduce the cost of
offline SMT analysis by restricting the search space. We see a deterministic execution system
that guarantees the same thread interleaving for a given input (and thus does not need to log the
thread schedule at all) as an extreme form of constrained runtime system. On the other hand,
the current design of Chimera blindly records and replays all potential data races. However, as
shown in Respec and Rosa, recording all data races is not necessary. One may identify a set of
data races that may affect system outputs using dynamic taint analysis techniques, and design
a system that guarantees the same happens before order only for those data races. Lastly, the
offline search based approach used in Rosa looks promising when users want to have a very
small recording overhead, but are willing to pay for more overhead during replay.

6.3 Future Work

For future work, we envision that the hybrid program analysis used for Chimera to build a
deterministic replay system can be generalized and applied to other applications. We plan on
developing a new speculation-based approach that leverages static program analysis to build
efficient dynamic analysis tools such as data race detection.

Chimera, our second proposal, leverages static program analysis on deterministic replay.
This work stems from the insightful observation that most memory accesses can be proved to
be data-race-free by static data race analysis. However, existing static analysis for data race

91

detection is too imprecise and suffers from excessive false warnings due to 1) lack of runtime
happened-before information and 2) conservative pointer analysis. We resolve this problem by
leveraging profiled assumptions which can help prune out false positives and by performing
light-weight runtime checks to detect misprofiling. We also discuss symbolic bounds analysis
used for deriving memory regions that a code region may access, which can be used for testing
disjointness at runtime. By monitoring only a subset of suspicious memory operations, we
could build an efficient deterministic replay solution.

We envision that the proposed hybrid program analysis can be further generalized so that
it can be applied to other types of dynamic analysis such as data-race detectors and memory
safety checking. Previous works showed that information obtained from static analysis can
help reduce the cost of dynamic tools. However, as shown in the work on Chimera, the main
problems with static analysis, such as pointer alias analysis, are that they do not scale well
or they are imprecise. Here, hybrid program analysis can play an important role to improve
scalability or precision of static analysis, and eventually can be used to reduce the runtime cost
of dynamic tools. Hybrid program analysis proposes to make assumptions about the common
case (mostly via profiling) to guide the static analysis. Those mostly-true assumptions can help
static analysis to be less conservative during analysis so that it can produce more precise results.
With better static analysis, we may either reduce the number of dynamic checks or convert
expensive checks into cheap ones, leading to improved runtime performance of dynamic tools.
At runtime, we need to ensure that the assumptions we made during static analysis are satisfied.
In case they fail, we would have to perform slower regular dynamic analysis.

Therefore, the performance benefits from hybrid program analysis depend on 1) how much
we can improve static analysis, 2) how expensive the additional runtime checks to verify as-
sumptions will be and 3) how frequently those assumptions will fail. Our future work will be
to find appropriate assumptions that are mostly true, help static analysis, and are easy to check
at runtime. We also want to find a proper dynamic analysis which can take advantage of profile
guided static analysis.

6.4 Conclusion

We are now at the cusp of a major technological shift. Programmers should write parallel
programs to extract performance from the next generation of multicore processors. However,
today’s tools provide very little support for developing parallel programs and programmers are
left facing subtle and intermittent concurrency bugs. We believe that our research on determin-
istic replay can lead to significant improvements in programmability, security and reliability of
parallel programs.

92

BIBLIOGRAPHY

[1] Fes2 simulator. http://fes2.cs.uiuc.edu.

[2] lpsolve, mixed integer linear programming solver. http://lpsolve.sourceforge.net/5.5.

[3] Sysbench. http://sysbench.sourceforge.net.

[4] ADVE, S. V., AND GHARACHORLOO, K. Shared memory consistency models: A tutorial.
IEEE Computer 29 (1995), 66–76.

[5] ALTEKAR, G., AND STOICA, I. ODR: Output-deterministic replay for multicore de-
bugging. In Proceedings of the 22nd ACM Symposium on Operating Systems Principles
(October 2009), pp. 193–206.

[6] ANDERSEN, L. O. Program analysis and specialization for the c programming language.
In PhD thesis, DIKU, University of Copenhagen (1994).

[7] ARVIND, A., AND MAESSEN, J.-W. Memory model = instruction reordering + store
atomicity. SIGARCH Comput. Archit. News 34, 2 (2006), 29–40.

[8] AVIRAM, A., WENG, S.-C., HU, S., AND FORD, B. Efficient system-enforced deter-
ministic parallelism. In Proceedings of the 9th Symposium on Operating Systems Design
and Implementation (Vancouver, BC, 2010).

[9] BALAKRISHNAN, G., AND REPS, T. Analyzing memory accesses in x86 executables. In
In CC (2004), Springer-Verlag, pp. 5–23.

[10] BARFORD, P., AND CROVELLA, M. Generating representative web workloads for net-
work and server performance evaluation. In In Proceedings of the 1998 ACM SIGMET-
RICS Joint International Conference on Measurement and Modeling of Computer Systems
(1998).

[11] BERGAN, T., ANDERSON, O., DEVIETTI, J., CEZE, L., AND GROSSMAN, D. Core-
det: a compiler and runtime system for deterministic multithreaded execution. In Pro-
ceedings of the 15th International Conference on Architectural Support for Programming
Languages and Operating Systems (Pittsburgh, PA, 2010), pp. 53–64.

[12] BERGER, E. D., YANG, T., LIU, T., AND NOVARK, G. Grace: Safe multithreaded
programming for C/C++. In Proceedings of the International Conference on Object Ori-
ented Programming Systems, Languages, and Applications (Orlando, FL, October 2009),
pp. 81–96.

93

[13] BHANSALI, S., CHEN, W.-K., DE JONG, S., EDWARDS, A., MURRAY, R., DRINIĆ,
M., MIHOČKA, D., AND CHAU, J. Framework for instruction-level tracing and analysis
of program executions. In Proceedings of the 2nd International Conference on Virtual
Execution Environments (2006), pp. 154–163.

[14] BIENIA, C., KUMAR, S., SINGH, J. P., AND LI, K. The PARSEC benchmark suite:
Characterization and architectural implications. In Proceedings of the 17th International
Conference on Parallel Architectures and Compilation Techniques (October 2008).

[15] BOCCHINO, JR., R. L., ADVE, V. S., DIG, D., ADVE, S. V., HEUMANN, S., KOMU-
RAVELLI, R., OVERBEY, J., SIMMONS, P., SUNG, H., AND VAKILIAN, M. A type and
effect system for deterministic parallel Java. In Proceedings of the International Confer-
ence on Object Oriented Programming Systems, Languages, and Applications (Orlando,
FL, October 2009), pp. 97–116.

[16] BOOTHE, B. Efficient algorithms for bidirectional debugging. In Proceedings of the
ACM SIGPLAN 2000 Conference on Programming Language Design and Implementation
(2000), pp. 299–310.

[17] BRESSOUD, T. C., AND SCHNEIDER, F. B. Hypervisor-based fault tolerance. ACM
Transactions on Computer Systems 14, 1 (February 1996), 80–107.

[18] CEZE, L., TUCK, J., MONTESINOS, P., AND TORRELLAS, J. Bulksc: bulk enforcement
of sequential consistency. In ISCA (2007), pp. 278–289.

[19] CHEN, Y., HU, W., CHEN, T., AND WU, R. Lreplay: A pending period based determin-
istic replay scheme. In ISCA (Saint-Malo, France, June 2010).

[20] CHOI, J. D., ALPERN, B., NGO, T., AND SRIDHARAN, M. A perturbation free re-
play platform for cross-optimized multithreaded applications. In Proceedings of the 15th
International Parallel and Distributed Processing Symposium (April 2001).

[21] CHOW, J., GARFINKEL, T., AND CHEN, P. M. Decoupling dynamic program analysis
from execution in virtual environments. In Proceedings of the 2008 USENIX Annual
Technical Conference (June 2008), pp. 1–14.

[22] DEVIETTI, J., LUCIA, B., CEZE, L., AND OSKIN, M. DMP: Deterministic shared mem-
ory multiprocessing. In Proceedings of the 14th International Conference on Architectural
Support for Programming Languages and Operating Systems (March 2009), pp. 85–96.

[23] DEVIETTI, J., NELSON, J., BERGAN, T., CEZE, L., AND GROSSMAN, D. Rcdc: a
relaxed consistency deterministic computer. In Proceedings of the 16th International
Conference on Architectural Support for Programming Languages and Operating Systems
(2011), pp. 67–78.

[24] DUNLAP, G. W., KING, S. T., CINAR, S., BASRAI, M. A., AND CHEN, P. M. ReVirt:
Enabling intrusion analysis through virtual-machine logging and replay. In Proceedings
of the 5th Symposium on Operating Systems Design and Implementation (Boston, MA,
December 2002), pp. 211–224.

94

[25] DUNLAP, G. W., LUCCHETTI, D. G., FETTERMAN, M., AND CHEN, P. M. Exe-
cution replay on multiprocessor virtual machines. In Proceedings of the 2008 ACM
SIGPLAN/SIGOPS International Conference on Virtual Execution Environments (VEE)
(March 2008), pp. 121–130.

[26] DUTERTRE, B., AND DE MOURA, L. A Fast Linear-Arithmetic Solver for DPLL(T).
In Proceedings of the 18th Computer-Aided Verification conference (2006), vol. 4144 of
LNCS, Springer-Verlag, pp. 81–94.

[27] FELDMAN, S. I., AND BROWN, C. B. IGOR: A system for program debugging via
reversible execution. In PADD ’88: Proceedings of the 1988 ACM SIGPLAN and SIGOPS
Workshop on Parallel and Distributed Debugging (1988), pp. 112–123.

[28] FLANAGAN, C., AND FREUND, S. FastTrack: Efficient and precise dynamic race detec-
tion. In Proceedings of the ACM SIGPLAN 2009 Conference on Programming Language
Design and Implementation (Dublin, Ireland, June 2009), pp. 121–133.

[29] FRASER, K., AND CHANG, F. Operating system I/O speculation: How two invocations
are faster than one. In Proceedings of the 2003 USENIX Annual Technical Conference
(San Antonio, TX, June 2003), pp. 325–338.

[30] GEORGES, A., CHRISTIAENS, M., RONSSE, M., AND BOSSCHERE, K. D. Jarec: A
portable record/replay environment for multi-threaded java applications. In Software:
Practice and Experience (2004).

[31] GHARACHORLOO, K., GUPTA, A., AND HENNESSY, J. Two techniques to enhance the
performance of memory consistency models. In In Proceedings of the 1991 International
Conference on Parallel Processing (1991), pp. 355–364.

[32] GWENDOLYN VOSKUILEN, FARAZ AHMAD, T. V. Timetraveler: Exploiting acyclic
races for optimizing memory race recording. In ISCA (Saint-Malo, France, June 2010).

[33] HOWER, D., DUDNIK, P., HILL, M. D., AND WOOD, D. A. Calvin: Deterministic
or not? Free will to choose. In 17th International Conference on High-Performance
Computer Architecture (February 2011), pp. 333–334.

[34] HOWER, D. R., AND HILL, M. D. Rerun: Exploiting episodes for lightweight mem-
ory race recording. In Proceedings of the 35th International Symposium on Computer
Architecture (June 2008), pp. 265–276.

[35] HUANG, J., LIU, P., AND ZHANG, C. Leap: lightweight deterministic multi-processor
replay of concurrent java programs. In Proceedings of the 18th ACM SIGSOFT Interna-
tional Symposium on Foundations of Software Engineering (2010), pp. 207–216.

[36] INTEL CORPORATION. Intel 64 architectures memory ordering white paper. Tech. rep.,
2007.

[37] INTEL CORPORATION. Intel 64 and IA-32 Architectures Software Developer’s Manual
(rev.30). Tech. rep., 2009.

95

[38] KAHLON, V., SINHA, N., KRUUS, E., AND ZHANG, Y. Static data race detection for
concurrent programs with asynchronous calls. In Proceedings of the the 7th joint meeting
of the European software engineering conference and the ACM SIGSOFT symposium on
The foundations of software engineering (New York, NY, USA, 2009), pp. 13–22.

[39] KING, S. T., DUNLAP, G. W., AND CHEN, P. M. Debugging operating systems with
time-traveling virtual machines. In Proceedings of the 2005 USENIX Annual Technical
Conference (April 2005), pp. 1–15.

[40] LEBLANC, T. J., AND MELLOR-CRUMMEY, J. M. Debugging parallel programs with
instant replay. IEEE Transaction on Computers 36, 4 (1987), 471–482.

[41] LEE, D., SAID, M., NARAYANASAMY, S., YANG, Z. J., AND PEREIRA, C. Offline
symbolic analysis for multi-processor execution replay. In International Symposium on
Microarchitecture (MICRO) (2009).

[42] LIU, T., CURTSINGER, C., AND BERGER, E. D. Dthreads: efficient deterministic multi-
threading. In Proceedings of the 23rd ACM Symposium on Operating Systems Principles
(2011), pp. 327–336.

[43] LOWELL, D. E., CHANDRA, S., AND CHEN, P. M. Exploring failure transparency and
the limits of generic recovery. In Proceedings of the 4th Symposium on Operating Systems
Design and Implementation (San Diego, CA, October 2000).

[44] LUCIA, B., DEVIETTI, J., STRAUSS, K., AND CEZE, L. Atom-aid: Detecting and
surviving atomicity violations. In Proceedings of the 35th International Symposium on
Computer Architecture (Beijing, China, 2008), pp. 277–288.

[45] LUK, C.-K., COHN, R., MUTH, R., PATIL, H., KLAUSER, A., LOWNEY, G., WAL-
LACE, S., REDDI, V. J., AND HAZELWOOD, K. Pin: Building customized program
analysis tools with dynamic instrumentation. In Proceedings of the ACM SIGPLAN 2005
Conference on Programming Language Design and Implementation (Chicago, IL, June
2005), pp. 190–200.

[46] MAGNUSSON, S., CHRISTENSSON, M., ESKILSON, J., FORSGREN, D., HÅLLBERG,
G., HÖGBERG, J., LARSSON, F., MOESTEDT, A., AND WERNER, B. Simics: A full
system simulation platform. IEEE Computer 35, 2 (2002), 50–58.

[47] MONTESINOS, P., CEZE, L., AND TORRELLAS, J. DeLorean: Recording and determin-
istically replaying shared-memory multiprocessor execution efficiently. In Proceedings of
the 35th International Symposium on Computer Architecture (June 2008), pp. 289–300.

[48] MONTESINOS, P., HICKS, M., KING, S. T., AND TORRELLAS, J. Capo: a software-
hardware interface for practical deterministic multiprocessor replay. In Proceedings of the
14th International Conference on Architectural Support for Programming Languages and
Operating Systems (2009), pp. 73–84.

[49] NARAYANASAMY, S., PEREIRA, C., AND CALDER, B. Recording shared memory de-
pendencies using Strata. In Proceedings of the 12th International Conference on Architec-
tural Support for Programming Languages and Operating Systems (2006), pp. 229–240.

96

[50] NARAYANASAMY, S., PEREIRA, C., PATIL, H., COHN, R., AND CALDER, B. Auto-
matic logging of operating system effects to guide application-level architecture simula-
tion. In International Conference on Measurements and Modeling of Computer Systems
(SIGMETRICS) (June 2006), pp. 216–227.

[51] NARAYANASAMY, S., POKAM, G., AND CALDER, B. BugNet: Continuously record-
ing program execution for deterministic replay debugging. In Proceedings of the 32nd
International Symposium on Computer Architecture (June 2005), pp. 284–295.

[52] NARAYANASAMY, S., WANG, Z., TIGANI, J., EDWARDS, A., AND CALDER, B. Auto-
matically classifying benign and harmful data races using replay analysis. In Proceedings
of the ACM SIGPLAN 2007 Conference on Programming Language Design and Imple-
mentation (San Diego, CA, June 2007).

[53] NECULA, G. C., MCPEAK, S., RAHUL, S. P., AND WEIMER, W. Cil: Intermediate
language and tools for analysis and transformation of c programs. In Proceedings of the
11th International Conference on Compiler Construction (2002), pp. 213–228.

[54] NIGHTINGALE, E. B., CHEN, P. M., AND FLINN, J. Speculative execution in a dis-
tributed file system. In Proceedings of the 20th ACM Symposium on Operating Systems
Principles (Brighton, United Kingdom, October 2005), pp. 191–205.

[55] NIGHTINGALE, E. B., PEEK, D., CHEN, P. M., AND FLINN, J. Parallelizing security
checks on commodity hardware. In Proceedings of the 13th International Conference on
Architectural Support for Programming Languages and Operating Systems (Seattle, WA,
March 2008), pp. 308–318.

[56] NIGHTINGALE, E. B., VEERARAGHAVAN, K., CHEN, P. M., AND FLINN, J. Rethink
the sync. In Proceedings of the 7th Symposium on Operating Systems Design and Imple-
mentation (Seattle, WA, October 2006), pp. 1–14.

[57] OLSZEWSKI, M., ANSEL, J., AND AMARASINGHE, S. Kendo: efficient deterministic
multithreading in software. In Proceedings of the 14th International Conference on Ar-
chitectural Support for Programming Languages and Operating Systems (March 2009),
pp. 97–108.

[58] OSMAN, S., SUBHRAVETI, D., SU, G., AND NIEH, J. The design and implementation of
Zap: A system for migrating computing environments. In Proceedings of the 5th Sympo-
sium on Operating Systems Design and Implementation (Boston, MA, December 2002),
pp. 361–376.

[59] OUYANG, J., CHEN, P. M., FLINN, J., AND NARAYANASAMY, S. ...and region serializ-
ability for all. In Proceedings of the fifth USENIX Workshop on Hot Topics in Parallelism
(2013), HotPar ’13.

[60] PARK, S., ZHOU, Y., XIONG, W., YIN, Z., KAUSHIK, R., LEE, K. H., AND LU, S.
PRES: Probabilistic replay with execution sketching on multiprocessors. In Proceedings
of the 22nd ACM Symposium on Operating Systems Principles (October 2009), pp. 177–
191.

97

[61] PATIL, H., PEREIRA, C., STALLCUP, M., LUECK, G., AND COWNIE, J. PinPlay: A
framework for determinisrtic replay and reproducible analysis of parallel programs. In
Proceedings of the 2010 IEEE/ACM International Symposium on Code Generation and
Optimization (March 2010).

[62] QIN, F., TUCEK, J., SUNDARESAN, J., AND ZHOU, Y. Rx: Treating bugs as allergies—
a safe method to survive software failures. In ACM Symposium on Operating Systems
Principles (Brighton, United Kingdom, October 2005), pp. 235–248.

[63] RONSSE, M., AND DE BOSSCHERE, K. RecPlay: A fully integrated practical record/re-
play system. ACM Transactions on Computer Systems 17, 2 (May 1999), 133–152.

[64] RUGINA, R., AND RINARD, M. Symbolic bounds analysis of pointers, array indices,
and accessed memory regions. In Proceedings of the ACM SIGPLAN 2000 Conference
on Programming Language Design and Implementation (New York, NY, USA, 2000),
pp. 182–195.

[65] RUGINA, R., AND RINARD, M. C. Symbolic bounds analysis of pointers, array indices,
and accessed memory regions. ACM Trans. Program. Lang. Syst. 27, 2 (2005), 185–235.

[66] SARANGI, S., NARAYANASAMY, S., CARNEAL, B., TIWARI, A., CALDER, B., AND
TORRELLAS, J. Patching processor design errors with programmable hardware. IEEE
Micro Top Picks 27, 1 (2007), 12–25.

[67] SPARC INTERNATIONAL, INC., C. The SPARC architecture manual (version 9).
Prentice-Hall, Inc., Upper Saddle River, NJ, USA, 1994.

[68] SPEC. Standard performance evaluation corporation - http://www.spec.org.

[69] SRINIVASAN, S., ANDREWS, C., KANDULA, S., AND ZHOU, Y. Flashback: A light-
weight extension for rollback and deterministic replay for software debugging. In Pro-
ceedings of the 2004 USENIX Annual Technical Conference (Boston, MA, June 2004),
pp. 29–44.

[70] STEENSGAARD, B. Points-to analysis in almost linear time. In Proceedings of the
ACM SIGPLAN 1996 Conference on Programming Language Design and Implementa-
tion (1996), pp. 32–41.

[71] STEVEN, J., CHANDRA, P., FLECK, B., AND PODGURSKI, A. jrapture: A capture
replay tool for observation-based testing. In Proceedings of the International Symposium
on Software Testing and Analysis (2000).

[72] TUCEK, J., LU, S., HUANG, C., XANTHOS, S., AND ZHOU, Y. Triage: Diagnosing
production run failures at the user’s site. In Proceedings of the 21st ACM Symposium on
Operating Systems Principles (October 2007), pp. 131–144.

[73] UCLIB.ORG. uClibc, a C library for embedded Linux. http://uClibc.org.

98

http://uClibc.org

[74] VEERARAGHAVAN, K., CHEN, P. M., FLINN, J., AND NARAYANASAMY, S. Detecting
and surviving data races using complementary schedules. In Proceedings of the Twenty-
Third ACM Symposium on Operating Systems Principles (New York, NY, USA, 2011),
SOSP ’11, ACM, pp. 369–384.

[75] VEERARAGHAVAN, K., LEE, D., WESTER, B., OUYANG, J., CHEN, P. M., FLINN, J.,
AND NARAYANASAMY, S. Doubleplay: parallelizing sequential logging and replay. In
ASPLOS (Newport Beach, CA, 2011).

[76] VOUNG, J. W., JHALA, R., AND LERNER, S. Relay: static race detection on millions
of lines of code. In Proceedings of the the 6th joint meeting of the European software en-
gineering conference and the ACM SIGSOFT symposium on The foundations of software
engineering (Dubrovnik, Croatia, 2007), pp. 205–214.

[77] WESTER, B., DEVECSERY, D., CHEN, P. M., FLINN, J., AND NARAYANASAMY, S.
Parallelizing data race detection. In Proceedings of the eighteenth international conference
on Architectural support for programming languages and operating systems (New York,
NY, USA, 2013), ASPLOS ’13, ACM, pp. 27–38.

[78] WILSON, R. P., AND LAM, M. S. Efficient context-sensitive pointer analysis for c pro-
grams. In Proceedings of the ACM SIGPLAN 1995 Conference on Programming Lan-
guage Design and Implementation (New York, NY, USA, 1995), pp. 1–12.

[79] WOO, S. C., OHARA, M., TORRIE, E., SINGH, J. P., AND GUPTA, A. The SPLASH-
2 programs: Characterization and methodological considerations. In Proceedings of the
22nd International Symposium on Computer Architecture (June 1995), pp. 24–36.

[80] WOO, S. C., OHARA, M., TORRIE, E., SINGH, J. P., AND GUPTA, A. The splash-2
programs: Characterization and methodological considerations. In ISCA (1995), pp. 24–
36.

[81] XU, M., BODIK, R., AND HILL, M. D. A “flight data recorder” for enabling full-system
multiprocessor deterministic replay. In Proceedings of the 30th International Symposium
on Computer Architecture (June 2003), pp. 122–135.

[82] XU, M., BODIK, R., AND HILL, M. D. A regulated transitive reduction (RTR) for longer
memory race recording. In Proceedings of the 12th International Conference on Architec-
tural Support for Programming Languages and Operating Systems (2006), pp. 49–60.

[83] XU, M., MALYUGIN, V., SHELDON, J., VENKITACHALAM, G., AND WEISSMAN,
B. ReTrace: Collecting execution trace with virtual machine deterministic replay. In
MOBS07 (June 2007).

99

	Dedication
	Acknowledgments
	Table of Contents
	List of Figures
	List of Tables
	Abstract
	Introduction
	Respec
	Chimera
	Rosa
	Roadmap

	Background and Related Work
	Software Deterministic Replay Systems
	Hardware Deterministic Replay Systems
	Deterministic Execution Systems

	Respec: Operating System Support for Multiprocessor Replay
	Replay Guarantee
	Fidelity level
	Online versus offline replay

	Design
	Overview
	Divergence Checks

	Implementation
	Checkpoint and multithreaded fork
	Speculative execution
	Logging and replay
	User-level logging
	Kernel logging

	Detecting divergent replay
	Rollback
	Offline replay support
	Security considerations

	Results
	Methodology
	Record and replay performance
	Rollback frequency
	The cost of rollback

	Extensions
	Conclusion

	Chimera: Hybrid Program Analysis for Multiprocessor Replay
	Design
	Background
	Design Overview
	Weak-Lock Design
	Discussion

	Static Data-Race Detection
	RELAY
	Soundness
	False Positives

	Profiling Non-Concurrent Functions
	Overview
	Clique analysis

	Symbolic Bounds Analysis for Loops
	Overview
	Symbolic Bounds Analysis
	Choosing the Granularity for Code Region

	Implementation
	Analysis, Instrumentation, and Runtime System
	Static Analysis and Source code

	Results
	Methodology
	Record and replay performance
	Effectiveness of Optimizations
	Sources of Overhead and Scalability

	Conclusion

	Rosa: Hardware Support and Offline Symbolic Analysis for Multiprocessor Replay
	Load-Based Checkpointing Architecture
	Load-Based Program Input Logging
	Handling System Events
	Multi-Processor Replay
	Discussion

	Reproducing Shared-Memory Dependencies using Offline Analysis
	Overview of Offline Symbolic Analysis
	Encoding Coherence Constraints
	Encoding Memory Model Constraints for SC
	Encoding Memory Model Constraints for TSO
	Allowing Relaxed Instruction Reordering
	Allowing Relaxed Store Atomicity

	Replay Guarantees and Finding All Solutions

	Bounding Search Space
	Pending Stores in Store Buffer
	In-flight Loads in Out-of-Order Execution
	Bounding Search Space Effectively Using B-bound

	Reducing Offline Analysis Cost Using Cache Hit Filtering
	Implications of Cache Hit Filtering

	Results
	Evaluation Methodology
	Strata Log Size and Offline Analysis Time
	Strata Region Length
	Effects of Cache Hit Filtering and B-Bound Optimization
	Sensitivity Studies
	The Number of Satisfiable Solutions
	Program Input (Cache Miss) Log Size
	Store-buffer Hit Log Size
	Recording Performance

	Conclusion

	Conclusion
	Comparisons and Contributions
	Holistic System Design
	Future Work
	Conclusion

	Bibliography

