
 

 

 Non-Invasive Quantitative Imaging 

Informs Early Assessment of Cancer 

Therapeutic Response  

by 

Benjamin A. Hoff 

 

A dissertation submitted in partial fulfillment 

of the requirements for the degree of  

Doctor of Philosophy  

(Biomedical Engineering)  

in the University of Michigan 

2013 
 

 

 

 

 

 

 

 Doctoral Committee: 

 Assistant Professor Craig J. Galbán, Chair 

 Professor Thomas L. Chenevert 

 Assistant Professor Kenneth M. Kozloff 

 Professor Douglas C. Noll 

 Professor Brian D. Ross



 

 

 

 

 

 

 

 

 

 

 

 

© Benjamin A. Hoff 2013 

  



 

ii 

 

Acknowledgements 

I would first like to thank Drs. Brian Ross and Craig Galbán for their financial support 

and general encouragement throughout my graduate career at the University of Michigan. 

Without this, I would likely not have progressed through the Ph.D. program. Working in this lab 

even as early as my freshman year under Drs. Brian Ross and Bradford Moffat solidified my 

interest in this field in addition to providing employment in their group which helped me pay my 

way through undergrad. I have been truly lucky to have access to the many imaging systems in 

Dr. Ross’s lab, which is equipped beyond the means of most peer laboratories. 

Since Dr. Galbán joined the lab, he has been a driving force in motivating me toward this 

goal. Without his energy and enthusiasm none of this would have been possible. His style of 

informal interactions to facilitate discussions helped to expedite my learning process, and was a 

great help in determining my research goals. Frequent discussions about the experimental 

process and background enhanced my understanding of the experimental strategy, and his proof-

reading has greatly helped my writing skills. 

Dr. Alnawaz Rehemtulla and those in his lab have been driving influences for learning 

the biology of cancer and strategies for bioluminescent molecular imaging. He has been of great 

help in understanding cell markers and drug targets as well as the use of advanced imaging 

techniques, such as bioluminescence (BLI), for understanding how cell signaling works. 

I would also like to acknowledge Dr. Thomas Chenevert for his valuable discussions 

about MRI principles. He has been a very patient teacher and has helped me to understand much 

about image artifacts, physics, pulse sequencing, and trouble-shooting related to MRI. Also, 

through revisions of his programs, I was able to enhance my knowledge of programming and 

MRI reconstruction. 

Also in my more recent projects, I have been able to delve more into fluorescence and x-

ray CT imaging. Through discussions with Dr. Kenneth Kozloff, as well as review of his 



iii 

 

publications, I have learned a lot about the analysis and experimental strategy of bone imaging. 

His help with my osteoporosis and bone metastasis projects proved invaluable. I would also like 

to thank Kathy Sweet for performing the surgical procedure for this project.  

I have also had many discussions with Dr. Charles Meyer, who provided critical support 

for all image co-registrations, which is the linchpin of PRM analysis. His help in understanding 

the subtleties of spatial transformation and the balance between speed and accuracy in the result 

have greatly aided the progress of much of my work. 

Although my interaction with Dr. Doug Noll has been relatively limited, I feel that much 

of my understanding of image formation from MRI, CT, and ultrasound can be attributed to him. 

Early in my graduate career I took his class on medical imaging, which greatly increased my 

understanding of the theory behind all of the imaging I had been doing up until then. 

Beyond the science of my research, others within the CMI group have provided 

assistance during my graduate studies and I would like to thank them by name. Tania 

Cunningham, our administrative assistant, with her enthusiasm and bright character has provided 

invaluable assistance with administrative issues.  Amanda Fair, the CMI Imaging Core Facility 

Manager, provided assistance with my animal protocols and procurement of supplies for my 

projects. Finally, Gary Laderach, CMI IT Specialist, for his technical support is greatly 

appreciated as his help in all things computers was always in high demand. 

I must also thank my student helpers that I have worked with during my studies. It is my 

firm belief that the ability to convey an idea in an intelligible fashion is critically important for a 

doctoral candidate. The opportunity to train and work with undergraduate students within the 

CMI provided me this exposure, which also reinforces my own understanding of my research. 

Although it can take some time to teach what they need to know, it almost always is worth the 

effort.  

Finally, I would like to thank my family for their continuing support. They have always 

pushed me to excel and to find something I truly love doing. Last, but definitely not least, I 

would like to thank my wife, Kaarin. Her unflinching support through these last few demanding 

years of graduate school have kept me going. Through our many discussions about my projects I 

have learned to be a better communicator of my research. 

 Ann Arbor 

 Aug 2013 



 

iv 

 

Table of Contents 

Acknowledgements ......................................................................................................................... ii 

List of Tables ................................................................................................................................. vi 

List of Figures ............................................................................................................................... vii 

List of Acronyms ......................................................................................................................... xiv 

List of Symbols ........................................................................................................................... xvii 

Abstract ...................................................................................................................................... xviii 

 Introduction ................................................................................................................... 1 Chapter 0:

0.1: References ............................................................................................................................ 4 

 Non-Mono-exponential Diffusion ................................................................................. 7 Chapter 1:

1.1: Chemotherapeutic Treatment Response ............................................................................... 7 

1.1.1: Introduction ................................................................................................................... 7 

1.1.2: Methods ......................................................................................................................... 9 

1.1.3: Results ......................................................................................................................... 13 

1.1.4: Discussion.................................................................................................................... 20 

1.2: Diffusion Model Sensitivity Analysis ................................................................................ 24 

1.2.1: Introduction ................................................................................................................. 24 

1.2.2: Methods ....................................................................................................................... 25 

1.2.3: Results ......................................................................................................................... 27 

1.2.4: Discussion.................................................................................................................... 29 

1.3: References .......................................................................................................................... 30 

 Permeability (DCE)-MRI ............................................................................................ 34 Chapter 2:

2.1: Permeability-MRI Treatment Response to VEGF Blockade ............................................. 34 

2.1.1: Introduction ................................................................................................................. 34 

2.1.2: Methods ....................................................................................................................... 36 

2.1.3: Results ......................................................................................................................... 41 

2.1.4: Discussion.................................................................................................................... 47 

2.1.5: Acknowledgements ..................................................................................................... 50 



v 

 

2.2: Comparison of DCE-MRI Models ..................................................................................... 50 

2.2.1: Introduction ................................................................................................................. 50 

2.2.2: Methods ....................................................................................................................... 51 

2.2.3: Results ......................................................................................................................... 52 

2.2.4: Discussion.................................................................................................................... 54 

2.3: DCE Model Sensitivity Analysis ....................................................................................... 55 

2.3.1: Introduction ................................................................................................................. 55 

2.3.2: Methods ....................................................................................................................... 55 

2.3.3: Results ......................................................................................................................... 55 

2.3.4: Discussion.................................................................................................................... 58 

2.4: References .......................................................................................................................... 58 

 Multimodality Imaging ............................................................................................... 63 Chapter 3:

3.1: Multimodality Imaging of Bone Metastatic Cancer ........................................................... 63 

3.1.1: Introduction ................................................................................................................. 63 

3.1.2: Materials ...................................................................................................................... 64 

3.1.3: Results ......................................................................................................................... 68 

3.1.4: Discussion.................................................................................................................... 71 

3.1.5: References ................................................................................................................... 74 

 Parametric Response Map of CT Bone ....................................................................... 77 Chapter 4:

4.1: Detection of Bone Loss in a Rodent Model of Osteoporosis ............................................. 77 

4.1.1: Introduction ................................................................................................................. 77 

4.1.2: Methods ....................................................................................................................... 79 

4.1.3: Results ......................................................................................................................... 81 

4.1.4: Discussion.................................................................................................................... 86 

4.2: PRM Detection of Bone Metastasis Response ................................................................... 89 

4.2.1: Introduction ................................................................................................................. 89 

4.2.2: Methods ....................................................................................................................... 91 

4.2.3: Results ......................................................................................................................... 93 

4.2.4: Discussion and Conclusions ........................................................................................ 97 

4.3: References .......................................................................................................................... 99 

 Conclusions ............................................................................................................... 103 Chapter 5:

Appendix A: Calculation of Local Model Sensitivity ................................................................ 106 

 



 

vi 

 

List of Tables 

Table 1.1: Mean Parameter Values at Baseline. Pre-treatment data are presented for 

controls (n=10; top) and treated animals (n=13; bottom) as means (SEM). ................................. 15 

Table 1.2: Baseline diffusion model parameters for sensitivity analysis. ......................... 25 

Table 2.1: ELISA analysis of endogenous VEGF. ........................................................... 42 

Table 2.2: Baseline DCE model parameter values. .......................................................... 55 

Table 4.1.1: ex vivo Trabecular Bone Analysis. ............................................................... 85 

Table 4.1.2: ex vivo Cortical Bone Analysis ..................................................................... 85 

 



 

vii 

 

List of Figures 

Figure 1.1.1 Representative diffusion-weighted images of a rat brain harboring a 9L 

gliosarcoma acquired at b-values of (a) 120, (b) 1200, (c) 2000, and (d) 4000 sec/mm
2
. Images 

were independently scaled for better visualization at higher b-values. ........................................ 14 

Figure 1.1.2: (a): Plot over time of the mean tumor volume. Data presented as mean ± 

SEM. Significant difference in mean tumor volume between groups was assessed using an 

unpaired Student’s t-test. P values are provided at individual time points. (b): Kaplan-Meier 

survival plot for overall survival is presented for control and treated animals. Controls are shown 

as solid line with diamond markers and treated are shown as dashed lines with square markers. 

Significant differences in overall survival were observed between groups as assessed using a log-

rank test (P = 0.001). ..................................................................................................................... 15 

Figure 1.1.3: Hematoxylin–eosin-stained sections of intracerebral 9L tumors for 

representative (a) control and (b) BCNU-treated animals on day 6 post-treatment. .................... 16 

Figure 1.1.4: Representative maps and line plots of percent change in parameters 

sensitive to ‘‘fast diffusion’’ generated using (a, d, g) twopoint, (b, e, h) stretched-exponential, 

and (c, f, i) biexponential formalisms are provided. Diffusion maps, overlaid on T2-weighted 

images of a rat brain, were acquired at days 0 (a, b, c) and 6 (d, e, f) post-treatment initiation. 

Line plots (g, h, i) consist of mean values and standard errors from control and treated groups 

over the entire experiment. Data are presented as the mean ± the standard error of the mean. The 

symbols † and * designate significant differences from baseline and between groups, 

respectively. Statistical significance was assessed at P < 0.05. .................................................... 17 

Figure 1.1.5: Representative maps of the ‘‘slow diffusion’’ coefficients and line plots of 

percentage change in parameters generated using (a, c, e) two-point and (b, d, f) biexponential 

formalisms are provided. Diffusion maps, overlaid on T2-weighted images of a rat brain, were 

acquired at days 0 (a, b) and 6 (c, d) post-treatment initiation. Line plots (e, f) consist of mean 



viii 

 

values and standard errors from control and treated groups over the entire experiment. Data are 

presented as the mean ± the standard error of the mean. The symbols † and * designate 

significant differences from baseline and between groups, respectively. Statistical significance 

was assessed at P < 0.05. .............................................................................................................. 18 

Figure 1.1.6: Representative nonmonoexponential metric maps and line plots of 

percentage change in parameters generated using (a, d, g) two-point, (b, e, h) stretched-

exponential, and (c, f, i) biexponential formalisms are provided. Metric maps, overlaid on T2-

weighted images of a rat brain, were acquired at days 0 (a, b, c) and 6 (d, e, f) post-treatment 

initiation. Line plots (g, h, i) consist of mean values and standard errors from control and treated 

groups over the entire experiment. Data are presented as the mean ± the standard error of the 

mean. The symbols † and * designate significant differences from baseline and between groups, 

respectively. Statistical significance was assessed at P < 0.05. .................................................... 19 

Figure 1.2.1: Plots of parameter sensitivity analysis for each diffusion model, sensitivity 

coefficient vs. b-value, for: (A) mono-exponential, (B) stretched-exponential, and (C) bi-

exponential. Each plot shows three curves using varying reference values for the parameter of 

interest (blue = low, green = middle, and red = high). ................................................................. 27 

Figure 1.2.2: Plots of noise analysis results, with (A-C) mean absolute percent change 

plotted against baseline SNR and (D) comparison between diffusion coefficients of the three 

models at SNR=100. Errors are shown as ± SEM (too small to see on the mono-exponential 

plot). .............................................................................................................................................. 29 

Figure 2.1.1: Diagrammatic presentation of study time points (A). Treatments are 

highlighted in green, MRI (both DCE and DWI) are highlighted blue, MRI and blood serum 

collection were performed on Day 11 (red), and histological samples were taken at 

approximately Day 12 (yellow). Plot showing relative change in tumor volume in control 

(diamond, solid line) and treated (square, dotted line) groups over the study time period (B). 

Treated animals generally showed a significant slowing of tumor growth compared to controls. 

Doubling times in the control and treated groups were 3.76 (± 0.325) and 5.32 (± 0.319) days, 

respectively (p = 0.004). Significance in relative change in volume between groups occurred at 

days 8 and 11 post-therapy. Data are presented as means ± SEM. Significance was assessed at 

p<0.05 and indicated by *. ............................................................................................................ 37 



ix 

 

Figure 2.1.2: T2-weighted images with color overlays of parametric maps are shown for a 

representative animal in the control group (A–D) and the VEGF-Trap-treated group (E–H) prior-

to (Day -1, left image) and following (Day 1, right image) the initial treatment. The initial drop 

for the VEGF-Trap-treated group in K
trans

 (-27%), kep (-12%), and vp (-64%) can clearly be seen 

here (E–G). ADC shows a small, but significant drop (-7%) by the first day post-therapy (H). 

Tumor heterogeneity was observed at individual time points. Nevertheless response to VEGF-

Trap did not vary spatially throughout the tumor. ........................................................................ 42 

Figure 2.1.3: Plots of relative change in kinetic and diffusion parameters for the treated 

group (diamond, dotted line) shown together with the control (square, solid line). A significant 

decrease in K
trans

 and vp occurred on the first day post-therapy and persisted throughout the 

study. Tumor ADC steadily decreased in VEGF-Trap treated tumors up to 15% from the initial 

value. In contrast, kep continued to decrease throughout the study. Data are presented as means ± 

SEM. Significance was assessed at p<0.05 and indicated by * under their respective p-values. 

Baseline parameter values for vehicle and VEGF-Trap treated animals are: for K
trans

, 2.4±0.1 

(x10
-4

) /s and 2.3±0.1 (x10
-4

) /s (p=0.7), respectively; vp, 7.6±1.3 (x10
-3

) and 8.1±0.5 (x10
-3

) 

(p=0.7), respectively; kep, 1.9±0.1 (x10
-3

) and 1.9±0.1 (x10
-3

) (p=0.8), respectively; and ADC, 

1.1±0.02 (x10
-3

) mm
2
/s and 1.0±0.02 (x10

-3
) mm

2
/s (p = 0.1), respectively. ............................... 43 

Figure 2.1.4: The proliferative potential of tumors following treatment with vehicle (A) 

or VEGF-Trap (B) was determined by Ki-67 staining of samples taken on Day 12. Positively 

identified nuclei were counted in randomly selected fields. Representative micrographs for each 

group are shown. The quantification of the nuclei for each treatment group in 3–6 randomly 

selected fields per subject (C). Insignificant differences in Ki-67 positive nuclei were observed 

between treatment groups (p = 0.25). Bar plots are presented as the mean number of nuclei and 

SEM. Images were acquired at 40x magnification. ...................................................................... 45 

Figure 2.1.5: Tumor vasculature following treatment with vehicle (A) or VEGF-Trap (B) 

was determined by Von Willebrand factor staining of samples taken on Day 12. Positively 

stained vessels were counted in randomly selected fields. Representative micrographs for each 

group are shown. The quantification of the vessels for each treatment group in 2–3 randomly 

selected fields per subject (C). A significant decrease in the number of vessels occurred in 

VEGF-Trap treated animals (p = 0.011). Bar plots are presented as the mean number of nuclei 

and SEM. Images were acquired at 10x magnification. ............................................................... 46 



x 

 

Figure 2.1.6: Apoptosis and tumor cellularity following treatment with vehicle (A) or 

VEGF-Trap (B) was determined by ApopTag staining of samples taken on Day 12, 

superimposed on H&E. Extent of apoptosis and tumor cellularity were assessed by visual 

inspection. Representative micrographs for each group are shown. Treatment by VEGF-Trap 

resulted in massive apoptotic events in the tumor vasculature but negligible change in tumor 

cellularity when compared to vehicle-treated tumors. Healthy and apoptotic vessels are indicated 

by yellow and red arrows, respectively. A closer representative VEGF-Trap treated sample is 

shown in C, highlighting the border between tumor epithelial and vessel endothelial cells. 

Images were acquired at 20x (A&B) or 40x (C) magnification. .................................................. 47 

Figure 2.2.1: Plots over time show differences between models in comparable parameters 

means of (A) K
Trans

, (B) ve, and (C) tertiary parameters (τi from SSM and vp from the Patlak 

model). Plots over time of the (D) mean tumor area under the signal intensity curve (AUC) and 

(E) goodness of fit. Errors are presented as standard error of the mean (SEM). .......................... 53 

Figure 2.3.1: Plots over the time course of DCE model sensitivity coefficient for (A) 

Tofts-Kermode, (B) efflux-corrected Patlak, and (C) shutter speed (SSM) models. For the 

purpose of comparison of SSM parameters to the others, SC(L) is equivalent to SC(K
Trans

) and 

SC(p0) is equivalent to SC(ve). Each plot shows dS/dpi, where pi is the parameter of interest, for 

three reference values of pi (blue = low, green = mid, and red = high). ....................................... 56 

Figure 2.3.2: Resulting mean absolute error plotted against SNR for Tofts-Kermode 

(blue), Patlak (red), and Shutter-Speed (green) models. K
Trans

 and L parameter errors (A) are very 

similar between models, as are ve and p0 parameter errors (B), with ve from the Patlak model 

substantially lower than the other two above SNR=15. Additional DCE parameter errors, for vp 

(Patlak) and τi (SSM), are shown in (C). Parameter errors were also plotted against each other for 

a SNR of 25 (D), which is typical for DCE-MRI images. Error bars are standard error of the 

mean. ............................................................................................................................................. 57 

Figure 3.1.1: Diagram of the split luciferase construct used in this model. A split-

luciferase complex is expressed in the cells with a DEVD sequence between the N- and C-Luc 

domains, keeping the enzyme inactive through steric hindrance. When caspase-3 is expressed in 

the cell, signaling the cell to begin apoptotic events, active caspase-3 cleaves the DEVD 

sequence from the rest of the enzyme. Active luciferase then metabolizes luciferin substrate and 

emits light...................................................................................................................................... 65 



xi 

 

Figure 3.1.2: (A) Plots of percent change in tumor volume for each group show 

significant cell kill in the docetaxel group, but no significant effect in the ZA group. (B) Plots of 

percent change in tumor ADC show elevated values in the docetaxel group after day 6, but no 

significant change in the ZA group. (C) Representative ADC overlays show isolated areas of 

increased ADC in the docetaxel group (red) as well as a dramatic decrease in tumor volume seen 

at day 20. * indicates a significant difference from the control group (p<0.05)........................... 67 

Figure 3.1.3: (A) Plots of overall luminescence of the tumor-bearing leg over time. 

Values are shown as the percent change of total photon flux (over a fixed-area ROI) normalized 

by tumor volume (as measured by MRI). (B) Representative radiance overlays show increased 

caspase-3 activity in the docetaxel group and minimal change in the control and ZA groups. * 

indicates a significant difference from the control group (p<0.05). ............................................. 68 

Figure 3.1.4: (A) Plots of tumor-bearing bone volume from CT. The control group 

remained stable over the first two weeks followed by a sharp decline beginning at week 3. An 

increase in the ZA group was seen by the first week and remained elevated, while a significant 

increase was not seen in the docetaxel group until week 3 and almost reached the ZA group by 

week 4. (B) Representative image isosurfaces in the three groups. Controls presented successive 

bone degradation throughout the study. ZA-treated animals showed minimal changes in bone 

structure, with only fracturing caused by tumor growth. Docetaxel-treated animals showed some 

initial degradation through week 2 followed by recovery seen by week 4. * indicates a significant 

difference from the control group (p<0.05). ................................................................................. 69 

Figure 3.1.5: Bar plots of fluorescent signals in the tumor-bearing leg from (A) 

Osteosense
 
800 and (B) CatK

 
680-FAST are presented as values normalized by the non-tumor-

bearing leg. The ZA group showed no significant difference from controls with either fluorescent 

probe, but the docetaxel group showed significant increases in Osteosense
 
800 uptake (A, black 

bar) on weeks 2 and 4 and a significant drop in CatK
 
680-FAST signal (B, black bar) on week 4. 

* indicates a significant difference from the control group (p<0.05). .......................................... 70 

Figure 4.1.1: Plots of relative change in (A) bone volume fraction, BV/TV, and (B) bone 

mineral density, BMD, over the study time period. Quantitative values from registered images 

were determined from a volume-of-interest over the proximal tibial plateau distally to the 

tibia/fibula junction on baseline images. Differences between groups were not seen in either 



xii 

 

BV/TV or BMD until week 3 post-OVX, with decreases of 4.4±1.0% (p=0.002) and 3.4±1.1% 

(p<0.001), respectively, in the OVX group at the end of the study. Data is presented as group 

mean ± SEM. Significant difference between groups was assessed at p<0.05 and indicated by *.

....................................................................................................................................................... 82 

Figure 4.1.2: Bar plots showing the volume fraction of (A) increased HU, PRMHU+,  and 

(B) decreased HU, PRMHU-. The OVX group showed a significant increase in PRMHU+ on week 

2 which disappeared at later time points and a progressive increase in PRMHU- until the end of 

the study. For week 1 PRMHU-, group differences were nearly significant, with p=0.08. Data is 

presented as a group mean ± SEM. Significant difference between groups was assessed at p<0.05 

and indicated by *. ........................................................................................................................ 82 

Figure 4.1.3: Representative PRM images from (A) an OVX animal and (B) a sham 

animal, displayed as an axial slice over time (from left to right: weeks 0 to 4, respectively). The 

position of the slice shown is indicated by the yellow box on the surface rendering to the left of 

the PRM results. For each representative animal, (i) grayscale images, (ii) PRM overlays, and (ii) 

PRM scatterplots of individual voxel changes show a decrease in cancellous bone mineral over 

time (blue in the PRM). ................................................................................................................ 83 

Figure 4.1.4: Representative images of ex vivo images of proximal tibiae four weeks post-

surgery. (A) Surface renderings show regions used for ex vivo analysis (yellow boxes) of 

trabecula (left) and cortex (right).  (B) Maximum intensity projections from a middle slab 

(200m thick) show a clear difference between OVX and Sham animals. (C) Surface renderings 

of OVX (Left) and Sham (Right) trabecular bone (location indicated by yellow box in B) show a 

significant drop in trabecular structure following OVX surgery. (D) Surface rendering of region 

used for cortical analysis, excluding the trabecular region. (E) Parameters obtained from 

trabecular (left) and cortical (right) analyses. ............................................................................... 84 

Figure 4.2.1: PC3 implantations treated with zoledronic acid show a bone-protective 

effect. (A) MRI tumor volume and ADC determined at day 21 post-treatment-initialization 

shows a retardation of tumor growth and significantly lower ADC in the zoledronic acid treated 

animals. (B) Representative images for a control (top) and ZA-treated (bottom) mouse showing 

(from top to bottom) an isosurface, CT slice, PRM overlay, and PRM scatterplot from pre-

treatment to 21 days post-treatment. (C) PRMHU+ bar plot shows significantly higher volume of 



xiii 

 

bone that increased in density after treatment compared to controls. (D) PRMHU- bar plot shows 

minimal loss of bone in the ZA-treated group, compared to progressively increasing bone loss in 

the controls. ................................................................................................................................... 94 

Figure 4.2.2: LAPC-9 tumors showed a slower mixed PRMHU+/- response with docetaxel 

treatment compared to PC3. (A) Time plots of tumor volume (solid line) and ADC (dashed line) 

show successful response to treatment as volume shrinkage and ADC increase. (B) 

Representative images for a control (top) and docetaxel-treated (bottom) mouse showing (from 

top to bottom) an isosurface, CT slice, PRM overlay, and PRM scatterplot from pre-treatment to 

21 days post-treatment. (C) PRMHU+ bar plot over time shows more bone density increase in the 

docetaxel-treated group compared to controls, significant on days 14 and 21. (D) PRMHU- bar 

plot over time shows very little bone loss in the treated group compared to elevated bone mineral 

loss in the controls (though not significant in this study). ............................................................ 95 

Figure 4.2.3: PRMHU plots over time compare un-treated bone changes in PC3 

(diamonds, solid line) to LAPC-9 (squares, dashed line) intra-tibial tumors as quantified by (A) 

PRMHU+ and (B) PRMHU-. Significant difference between groups is denoted by an asterix, *. ... 96 

 



 

xiv 

 

List of Acronyms 

ADC – Apparent Diffusion Coefficient 

AKT – Protein Kinase B 

AUC – Area Under the Curve 

BCNU – 1,3-bis(2-chloroethyl)-1-nitrosourea 

BLI – Bioluminescent Imaging 

BMC – Bone Mineral Content 

BMD – Bone Mineral Density 

BSA – Bovine Serum Albumin 

BV – Bone Volume 

CT – Computed Tomography (specifically x-ray) 

DCE – Dynamic Contrast-Enhanced 

DDC – Distributed Diffusion Coefficient (for Stretched Exponential diffusion model) 

DMSO – Dimethyl Sulfoxide 

DSC – Dynamic Susceptibility-Weighted 

DTI – Diffusion Tensor Imaging 

DWI – Diffusion-weighted Imaging 

DXA – Dual-energy X-ray Absorptiometry 

EES – Extracellular Extravascular Space 

EGFR – Epidermal Growth Factor Receptor 

ELISA – Enzyme-Linked Immunosorbent Assay 

ETL – Echo Train Length (for fast spin-echo MRI) 

Fc – Factor c 

fDM – functional Diffusion Map 

FEA – Finite Element Analysis 



xv 

 

FLI – Fluorescence Imaging 

FOV – Field of View 

Gd-DTPA – Gadopentetic Acid 

GoF – Goodness of Fit 

H&E – Hematoxylin & Eosin 

HRP – Anti-Horseradish Peroxidase 

HU – Hounsfield Unit 

IgG – Immunoglobulin-G 

IHC – Immuno-Histo-Chemistry 

MIP – Maximum Intensity Projection 

MRI – Magnetic Resonance Imaging 

NRMSD – Normalized Root Mean Squared Deviation 

OVX – Ovariectomy  

PBS – Phosphate-Buffered Saline 

PRM – Parametric Response Map 

PSA – Prostate-Specific Antigen 

RANK(-L) – Receptor Activator of Nuclear factor Kappa-B (ligand) 

ROI – Region of Interest 

RTP – Ratio of Two-Point diffusion coefficients 

SC – Sensitivity Coefficient 

SCID – Severe Combined Immunodeficient 

SEM – Standard Error of the Mean 

SMI – Structural Model Index 

SNR – Signal-to-Noise Ratio 

SRE – Skeletal-Related Event 

SSM – Shutter-Speed model (DCE-MRI) 

Tb.Sp – Trabecular Spacing 

Tb.Th – Trabecular Thickness 

TE – Echo Time (for MRI) 

TGF – Transforming Growth Factor  



xvi 

 

TK – Tofts-Kermode model (DCE-MRI) 

TMB –Tetramethylbenzidine 

TR – Repetition Time (for MRI) 

TV – Total Volume 

VEGF – Vascular Endothelial Growth Factor 

VOI – Volume of Interest 

vWf – von Willebrand Factor VIII (IHC stain for vascular endothelium) 

ZA – Zoledronic Acid 



 

xvii 

 

List of Symbols 

Cp – blood plasma concentration 

Ct – tissue concentration 

fW – tissue water volume fraction (SSM) 

kep – flux rate constant between the extravascular extracellular space and plasma 

K
Trans

 – volume transfer coefficient (blood to EES) for DCE-MRI analysis 

L – first-order transfer rate constant (= K
Trans

) (SSM) 

p0 – extracellular volume fraction (= ve/fW) (SSM) 

R1 – spin-lattice relaxation rate constant (1/T1) 

r1 – T1 contrast agent relaxivity 

T1 – spin-lattice relaxation time constant 

T2 – spin-spin relaxation time constant 

ve – fractional volume of EES 

vp – blood plasma volume fraction 

α – diffusion anomalous exponent (Stretched-exponential diffusion model) 

τi – mean intracellular water molecule lifetime (SSM) 



 

xviii 

 

Abstract 

EVALUATION OF NON-INVASIVE IMAGING METHODS FOR 

QUANTIFICATION OF TREATMENT RESPONSE 

by 

Benjamin A. Hoff 

Chair: Craig J. Galbán 

 

Therapeutic response assessment of cancer has long been facilitated by non-invasive imaging methods 

such as magnetic resonance imaging (MRI) and x-ray computed tomography (CT) in the clinic. Standards 

of patient care are designed around the most common cases, which may not always be efficacious. 

However, through evidence-based medicine there has begun a shift toward more individualized care. 

Standard clinical practice for cancer response assessment utilizes only volumetric change, measured prior 

and following the completion of therapy, providing no opportunity to adjust the treatment. In addition, 

novel targeted therapies, which may not result in a substantial decrease in tumor volume, are becoming 

more prevalent in the treatment of tumors. There is a clear need for non-invasive biomarkers that provide 

near real-time information on the anatomical and physiological makeup of the tumor post-treatment 

initiation. Tools for assessing early treatment response may allow physicians to dynamically optimize 

treatments individually, enhancing patient prognoses and avoiding unnecessary patient morbidity. In the 

following studies, I have evaluated various non-invasive imaging tools for early detection of treatment 

response in rodent models of disease. Tissue apparent diffusion coefficients (ADC) are known to correlate 

well with cellular status in cancer, and have shown promise in the detection of early tumor treatment 

response. Several different numerical models of higher-order diffusion signal attenuation were evaluated 

to determine their sensitivity to treatment response compared to the standard diffusion model. Dynamic 

contrast-enhanced (DCE-) MRI has shown sensitivity to vascular changes in cancer and was evaluated as 

an imaging biomarker of treatment response using a novel vascular-targeted therapy. Quantitative indices 

generated from DCE-MRI data were compared to diffusion (ADC) and volumetric MRI readouts for 

response assessment. The utility of imaging readouts from concurrent MRI, CT, bioluminescence, and 

fluorescence imaging was also evaluated in a model of bone metastasis. Further, a new voxel-based 

analytical technique, the parametric response map (PRM), was applied to CT images of metastatic bone 

disease and osteoporosis to evaluate bone response to treatment and hormone deprivation, respectively. 

Use of these tools may help improve the clinical effectiveness of cancer patient therapy as well as drug 

development and testing in preclinical models. 
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 Introduction Chapter 0:

Diagnosis and assessment of therapeutic response in cancer has long been facilitated by 

non-invasive imaging methods such as magnetic resonance imaging (MRI), x-ray radiographs, 

positron emission tomography (PET), single photon emission computed tomography (SPECT) 

and x-ray computed tomography (CT) in the clinic and more recently optical imaging 

(fluorescence and bioluminescence) for pre-clinical models. On the subject of tumor biology 

there is still much that is not understood, for example some patients given a therapy may exhibit 

a positive outcome while others with the same therapy and clinical histopathological 

characteristics may not. Because of this, evaluation of the effectiveness of a therapy is valuable 

in determining a patient’s treatment strategy and prognosis. Traditional evaluation of cancer 

treatment efficacy has relied heavily on volumetric monitoring of tumor burden, with decreases 

indicating a successful response. These changes, however, may not be detectable until well after 

the treatment regime has been completed, precluding adjustment of the treatment strategy based 

on its efficacy. Development of tools for assessing early treatment response may allow 

physicians to dynamically optimize treatments on an individual level, enhancing patient 

prognoses and avoiding unnecessary patient morbidity. 

Diffusion-MRI is an MRI sequence capable of quantifying the molecular motion of 

protons primarily in water using bipolar motion-sensitive gradients. The magnitude of diffusion 

weighting is measured in b-values, which are a function of gradient strength, duration and 

spacing between gradients. Diffusion weighting can be applied directionally, allowing some 

assessment of the tissue structures as in diffusion tensor imaging (DTI), or isotropically, 

resulting in a general assessment of tissue water diffusion. In the simplest case only two 

diffusion-weighted images at a low and nominal b-value (~0 and ~1000 s/mm
2
, respectively) are 

required to generate the quantitative metric, the apparent diffusion coefficient (ADC) map, 

assuming mono-exponential decay in the MRI signal with increasing b-value. ADC has been 
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shown to be indicative of cellular status in cancer treatment [1-12]. Increases in ADC have 

correlated well with tumor cell death caused by cytotoxic therapies and are well-documented for 

nominal diffusion weighting. Recent studies, however, have shown that at high diffusion 

weighting (b-value) the signal attenuation curve deviates from a true mono-exponential behavior 

[9, 13-21]. Although no single theory has yet been embraced, the most popular models either use 

the sum of two diffusion populations (proposed as intra- and extra-cellular water) or a spectrum 

of diffusion rates attributed to the continuum of water hydration shells surrounding biological 

structures. Changes in these non-mono-exponential metrics may prove sensitive for detecting 

treatment response. 

Dynamic contrast-enhanced- (DCE-) MRI is a technique using small-molecule 

paramagnetic contrast-enhancing tracers injected intravenously to extract tissue vascular 

properties from time-course T1-weighted MR images. Contrast enhancement of the T1-weighted 

signal is proportional to the voxel concentration of contrast agent, allowing the extraction of 

pharmacokinetic tissue properties through modeling. Growing interest has been apparent in 

targeted cancer therapies, one focus of which is anti-vascular drugs such as Bevacizumab and 

Aflibercept. These targeted agents inhibit cellular signaling and resulting angiogenesis, the 

growth and recruitment of blood vessels, within the tumor. DCE-MRI has been shown to detect a 

reduction in vascular leakiness and blood volume within a treated tumor. In the following, both 

DCE- and DW-MRI were used to evaluate treatment response in a 9L rat gliosarcoma model 

treated with the new therapeutic agent, Aflibercept. A few different widely-used analytical 

models were also compared on the same data to assess variation of response sensitivity in these 

models. 

For the development and evaluation of new cancer pharmaceuticals, non-invasive 

imaging biomarkers have proven very useful in reducing total necessary animal populations as 

well as expediting the measurement of a therapeutic response. Quantification of treatment 

response in bone metastases has proven to be an elusive task, with currently no clinically-

accepted criteria. Recent studies have shown a critical link between metastatic cancer and its 

micro-environment, coined the “seed and soil” [22]. Through interaction with bone, certain 

cancer phenotypes are spurred to grow and proliferate, resulting in a vicious cycle of bone 

remodeling and tumor growth. With the wide variety of available imaging modalities, a great 

deal of physiological information can now be obtained from a single subject longitudinally over 
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the course of the study. With the combination of imaging modalities, researchers are now able to 

quantify multiple treatment responses at essentially the same time as well as longitudinally, in 

this case both bone and tumor response. In the following, an animal model of boney metastasis is 

presented, and treatment response is evaluated by DW-MRI, quantitative CT, bioluminescence 

(BLI), and fluorescence (FLI) imaging after treatment with the bisphosphonate, zoledronic acid, 

or the cytotoxic agent, docetaxel. These two therapies serve to highlight the two extreme 

treatment cases: anti-tumor-environment or anti-tumor, respectively, and are both clinically 

relevant therapies. Using multiple readouts, a more comprehensive perspective for new drug 

evaluation and efficacy screening can be achieved. 

Traditionally, quantitative cancer imaging has been evaluated using whole-tumor 

statistics such as the mean or histogram-based analyses. A new voxel-wise approach to detecting 

treatment response, the function diffusion map (fDM), has successfully been applied to DW-

MRI, resulting in increased sensitivity to localized diffusion changes over mean volume statistics 

[23-28]. This technique uses spatially aligned serial images to compare diffusion images both 

spatially and temporally. This same technique, now termed the parametric response map (PRM), 

has already been expanded to other images, including DCE- and dynamic susceptibility contrast 

(DSC-) MRI. In the following, this PRM analysis will be applied to bone CT images (in 

Hounsfield units, HU) to evaluate localized bone changes both in animal models and clinical 

metastatic cancer patients. Sensitivity of PRMHU to bone changes was validated through a well-

establish ovariectomy-induced osteoporosis model in rats, and further characterized in both 

osteolytic and osteoblastic models of bone metastasis in mice. 

In conclusion, there exists a great variety of quantitative imaging options for the 

assessment of cancer treatment response, particularly in pre-clinical imaging where tissue depths 

are not enough to inhibit optical imaging modalities. Through early detection of treatment 

response clinical patient treatments may be individualized, allowing the option to adjust 

treatments virtually “on the fly”. In addition, through the use of a multimodal quantitative 

imaging approach, tailored to a focused treatment or effect, a more comprehensive and efficient 

evaluation of mixed treatment effects can be possible. Even for a single imaging modality, for 

example DCE-MRI, it is important to understand the accuracy and limitations of the model to be 

used in order to extract valid conclusions from the results. In the following chapters various 

analytical models for multi-exponential diffusion MRI and DCE-MRI are evaluated for both 
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sensitivity to physiological or model parameter change and sensitivity to noise in the images. 

The use of a multi-modality imaging strategy is also evaluated, using MRI, x-ray CT, 

bioluminescence, and fluorescence imaging, for a more comprehensive evaluation of 

tumor/stroma treatment response using a limited study population. Finally, a new method for 

evaluating spatially-localized changes in 3D images is evaluated on CT images of the bone. This 

method may see its greatest use for evaluation of bone metastases, which currently have no 

official criteria for assessing treatment response in the clinic. This manuscript provides an 

evaluation of several methods for quantifying physiological changes in vivo.  
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 Non-Mono-exponential Diffusion Chapter 1:

1.1: Chemotherapeutic Treatment Response 
Included with permission from John Wiley and Sons: 

Hoff BA, Chenevert TL, Bhojani MS, Kwee TC, Rehemtulla A, Le Bihan D, Ross BD, Galbán CJ. 

Assessment of multiexponential diffusion features as MRI cancer therapy response metrics. Magn Reson 

Med. 2010 Nov;64(5):1499-509. 

1.1.1:  Introduction 

Diffusion-weighted magnetic resonance imaging (DWI) shows promise as an imaging 

biomarker for treatment response in glioma patients [1-9] as well as in a variety of other clinical 

tumor types [10-16]. Routine in almost all preclinical and clinical scanners, diffusion maps can 

be generated from a minimum of two images acquired at low (b-value ~ 100 sec/mm
2
) and high 

(b-value ~ 1000 sec/mm
2
) diffusion weightings. Assuming mono-exponential signal attenuation 

with b-value, the apparent diffusion coefficient (ADC) can be calculated analytically. The 

application of diffusion MRI for the detection of early tumor treatment response was first 

reported using a rodent glioma model using diffusion weightings at nominal b-values ( 1000 

sec/mm
2
) [17]. This initial report has been verified and expanded by ensuing publications using 

different tumor models and therapeutic agents [1, 18, 19], supporting the use of diffusion MRI as 

a sensitive imaging biomarker capable of detecting early cellular changes in treated tumors 

which precede macroscopic volumetric response. 

The efficacy of this technique lies in its sensitivity to the molecular motion of water, 

which is affected by cellular, subcellular, and macromolecular elements that impede otherwise 

free diffusion of water. Thus, therapeutic changes within the tumor at the cellular level can be 

monitored by serial diffusion measurements [20-23]. Through thermal random motion, water 

molecules sample the surrounding microarchitecture within tissues at length scales (few microns) 

much smaller than typical MRI voxel resolution (~millimeter). The theoretical basis for diffusion 
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analysis is that cell membranes and other structures hinder the diffusion of molecules [20, 24]. 

The magnitude of diffusion-driven displacement is altered by tortuosity and hindering effects and 

can therefore be used to infer their presence and density. Studies have revealed that in biological 

systems water proton signal attenuation due to diffusion weighting does not follow mono-

exponential decay, and the deviation from mono-exponential behavior is best observed at 

relatively high b-values ( 3000 sec/mm
2
). A more accurate description of signal attenuation 

with b-value over this wide b-value range requires more complex biophysical models [25-28]. 

An early interpretation of multiexponential diffusion patterns was that water moves 

within two or more compartments representing pools of “fast” (extracellular) and “slow” 

(intracellular) diffusion components in the signal. At low b-values the “fast” diffusion pool 

dominates signal attenuation, whereas at high b-values the “slow” diffusion pool dominates 

leading to a biexponential form for signal decay. Biexponential signal attenuation in DWI has 

been studied extensively in a variety of biological systems, and the physical mechanisms that 

govern nonmonoexponential decay continue to be an area of debate. An alternative formalism for 

the nonmonoexponential decay incorporates the underlying complexity in the diffusion medium 

as a continuous distribution of diffusion coefficients arising from a multiplicity of pools. Termed 

the “stretched-exponential” formalism, Bennett et al. [29] provided an analytical representation 

of the signal attenuation as a function of the probability density with a particular diffusion 

coefficient. Although this formalism can be used to infer the intravoxel diffusion heterogeneity 

within a biological system, it does not lend itself to straightforward association between 

biophysical compartments and signal decay. Although the “stretched-exponential” formalism has 

not been evaluated for its sensitivity to treatment response in tumors, this method has shown 

promise for characterizing tumors in brain cancer patients [30, 31]. 

Research investigating the sensitivity of high b-value DWI for treatment assessment has 

shown promising results [6, 32]. Mardor et al. have demonstrated in patients with malignant 

brain lesions that the ratio of the diffusion coefficient from the ‘‘fast’’ pool and the “slow” pool 

signal fraction is highly sensitive to radiation-induced changes in the tumor. This parameter not 

only demonstrated a significant change from baseline as early as 1 week post-treatment initiation 

but was capable of predicting clinical outcome in all of the studied patients [6]. In contrast, 

conventional mono-exponential ADC (in their study, low and high b-values were 120 and 1200 
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sec/mm
2
, respectively) was found to be predictive of outcome in only half of the patient 

population studied. Sensitivity of high b-value DWI to treatment was also observed in a colon 

cancer mouse model [32]. These authors used the area under the normalized 

nonmonoexponential diffusion curve to quantify the diffusion characteristics of the tissue. This 

diffusion index was found to provide early prognostic information on animal responsiveness to 

treatment. 

In this study, three nonmonoexponential diffusion formalisms applied over an extended 

range of b-values (120–4000 sec/mm
2
) were tested against the conventional two-point ADC 

measurement to determine their sensitivity to therapy-induced changes of tissue using a rodent 

brain tumor model. Results showed similar time response curves for all diffusion indices 

following treatment. Although the highest fractional change following treatment was observed 

using the biexponential formalism, these results were not significantly different from those 

observed using the conventional two-point ADC calculation. 

1.1.2: Methods 

Animal Tumor Models 

9L gliosarcoma cells were obtained from the Brain Tumor Research Center at the 

University of California in San Francisco. The cells were grown as monolayers in 10 cm
2
 sterile 

plastic flasks in DMEM with 10% fetal bovine serum, 100 IU/mL penicillin, 100 mg/mL 

streptomycin, and 2 mM L-glutamine in an incubator held at 37C and 95%/5% air/CO2 

atmosphere. Before implantation, cells were harvested by trypsinization, counted, and re-

suspended in serum-free medium for injection.  

Tumor implantation was performed on Male Fischer 344 rats (Harlan Sprague-Dawley, 

Indianapolis, IN), weighing ~125–150 g, as previously described [33]. Briefly, animals were 

anesthetized with a ketamine/xylazine mixture (87/13 mg/kg) administered intraperitoneal. A 

small incision was then made over the right hemisphere of the cranium. A 1 mm diameter burr 

hole was drilled through the skull using a high-speed surgical drill, and a 5 mL suspension 

containing 1 x 10
5
 9L cells was injected through the burr hole to a depth of 3 mm. After injection 

of the cells, the burr hole was filled with bone wax to prevent extra-cranial extension of the 

tumor, and the surgical area was cleaned using 70% ethanol. Vetbond (3M, St. Paul, MN) was 

used to close the incision until healed. 
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Chemotherapy 

Once the tumors reached 40–80 mm
3
 as quantified using T2-weighted MRI, pretreatment 

diffusion-weighted (DW) images (details below) were acquired for all animals. At the time of 

treatment, 1,3-bis(2-chloroethyl)-1-nitrosourea (BCNU) (LKT Laboratories, St. Paul, MN) was 

freshly prepared and formulated to a final concentration of 5 mg/mL BCNU in 10% ethanol. 

Subsequent to their pretreatment DWI scan, animals either received a single bolus intraperitoneal 

injection of BCNU (9.98 mg/kg; n = 13) or 10% ethanol as the control vehicle (n = 10). 

Typically, tumors increased in volume by 400% over the duration of the study (2 weeks post-

treatment initiation), and euthanasia was accomplished by CO2 overdose. 

MRI Scans 

During MRI examinations, animals were anesthetized with 1–2% isoflurane/air, and body 

temperature was maintained by blowing warm air through the bore of the magnet using an Air-

Therm (World Precision Instruments, Sarasota, FL). MR scans were performed immediately 

before treatment and every 3 days thereafter using a 9.4 T, 16 cm horizontal bore Varian (Palo 

Alto, CA) Direct Drive system with a quadrature rat head coil (Doty Scientific, Inc., Columbia, 

SC). DW images were acquired using a spin-echo sequence, with a navigator echo and gradient 

waveforms sensitive to isotropic diffusion [34], with the following parameters: repetition time 

(TR)/echo time (TE) = 4000/41 ms, field of view (FOV) = 30 mm, matrix size = 64 x 64, slice 

thickness = 2 mm, number of slices = 8, sweep width = 50 kHz, gradient pulse width = 10.5 ms, 

gradient pulse separation = 25 ms, and b-values (x-gradient, y-gradient, and z-gradient 

amplitudes) of 120 (5.3, 4.8, and 4.2 G/cm), 1200 (16.6, 15.0, and 13.1 G/cm), 1600 (19.1, 17.3, 

and 15.6 G/cm), 2000 (21.3, 19.2, and 17.4 G/cm), 3000 (25.9, 23.4, and 21.3 G/cm), and 4000 

sec/mm
2
 (29.7, 26.9, and 24.6 G/cm) with averages of 1, 1, 1, 1, 4, and 16, respectively. DWI 

scans were constrained to a total scan time of 2 h based upon an institutionally approved animal 

protocol. In addition to the time constraint, only voxels in the tumor with a signal to noise (SNR) 

> 6 at high diffusion weighting (i.e., b = 4000 sec/mm
2
) were evaluated. The first step in 

maintaining this constraint was to determine a voxel size that provides adequate SNR and 

resolution within a 2 h MR experiment. As observed in Chenevert et al. [3], 9L rodent brain 

tumors treated with 13.3 mg/kg BCNU can exhibit an ADC as high as 1.5 x 10
-3

 mm
2
/sec. A 

sucrose phantom of 15% sucrose/water, with a measured ADC of 1.4 x 10
-3

 mm
2
/sec over the b = 
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120–1200 sec/mm
2
 range, was used to determine sequence parameters (i.e., FOV, slice thickness, 

and averages) that provide a SNR > 6 at b = 4000 sec/mm
2
 [35].  

Post-processing of Diffusion-Weighted Images 

All MRI data were transferred to a PC, interpolated to a matrix size of 256 x 256, and 

analyzed using in-house software developed in MATLAB (The MathWorks, Inc., Natick, MA). 

Curve-fitting was performed using an un-weighted non-linear least-squares algorithm using an 

initial parameter guess based on literature values. Diffusion signal decay, found to follow a 

nonmonoexponential trend in healthy brain tissue and tumor from our animal model, was 

analyzed using three diffusion approaches. 

Two-Point Analytical Formalism 

The simplest of all three techniques investigated captures the nonmonoexponential trends 

observed in the DW images from a two-point subsampling of the signal decay curve using the 

following equation: 

        
  (    

⁄ )

(     )
, [1.1.1] 

where S1 and S2 are the signal intensities at b-values b1 and b2, respectively, and ADC1–2 is the 

diffusion coefficient obtained using b1 and b2. The conventional mono-exponential ADC was 

calculated using b-values of 120 and 1200 sec/mm
2
 (ADC120–1200), which captures the rapid 

diffusion decay in the nominal-b regime while avoiding perfusion effects observed at very low b-

value (<100 sec/mm
2
). Slow diffusion decay, observed in the high-b regime, was captured by 

determining the ADC using b-values of 2000 and 4000 sec/mm
2
 (ADC2000–4000). The ratio of 

ADC2000–4000/ADC120–1200, defined as RTP, was used as an empiric index of nonmonoexponential 

behavior derived from the piece-wise two-point formalism. An RTP close to one implies mono-

exponential behavior, whereas a decreasing RTP implies greater disparity in signal decay between 

low-b and high-b regimes, thus greater multiexponential behavior. 

Stretched Exponential Formalism 

This formalism defines the divergence of a diffusible particle from mono-exponential 

trends as anomalous diffusion (29,36). Referred to as the stretched exponential, this formalism 

portrays molecular diffusion in a locally nonhomogeneous environment, which is represented by 

the equation: 
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  ( )    [ 
 (     ) ], [1.1.2] 

where S is the signal intensity at a given b-value, S0 is the signal intensity with no diffusion 

weighting, DDC is the distributed diffusion coefficient, and  is the anomalous exponent bound 

between 0 and 1 [29, 36]. By inspection of Eq. 2, it should be clear that α = 1 is equivalent to 

monoexponential diffusion signal decay. Conversely, an  approaching 0 indicates a high degree 

of multiexponential signal decay, thus  will be used as the nonmonoexponential index derived 

from the stretched exponential formalism. This convention maintains consistency with Bennett et 

al.’s [29] definition of a as a diffusion heterogeneity index, although we remind the reader that a 

numerically high a value (~1) represents a low intravoxel diffusion heterogeneity approaching 

monoexponential decay, whereas a numerically low a value represents a high degree of diffusion 

heterogeneity exhibited as multiexponential decay. It is also worth emphasis that the term 

“heterogeneity” in this context refers to intravoxel heterogeneity of exponential decays, as 

opposed to intervoxel heterogeneity of diffusion coefficients as often is the case, particularly in 

tumor. Parameter maps of DDC and  were calculated by linearizing the stretched exponential 

equation and then fitting it to the DW images in a pixel-wise manner over all b-values using a 

linear least-squares technique. 

Biexponential Model 

Calculation of the biexponential diffusion components was performed by a pixel-wise fit 

to all DW images of the following equation: 

  ( )    (   
        

    ), [1.1.3] 

where S and S0 are signal intensities at a given b-value and no diffusion weighting, respectively, 

D1 and D2 are the fast and slow diffusion coefficients, respectively, and V1 and V2 are the fast 

and slow signal fraction contributions, respectively. The fractional signal components are related 

by the expression V2 = 1 – V1. The fit was performed using a nonlinear least-squares technique. 

Image Analysis 

Volumes of interest (VOI) over the tumors were manually contoured on the low b-value 

DWI, which exhibits T2-weighted contrast and serves for quantification of tumor volume. Low 

SNR voxels were excluded before calculation of mean parameter values within the VOI from 

each diffusion formalism. To accomplish this, voxels having SNR  6 on the b = 4000 sec/mm
2
 

DWI were identified by software in a binary 3D mask. The mask was then applied to all DW 
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images guaranteeing that only those voxels with a SNR > 6 were evaluated. Regions of necrosis 

or blood pools, typically observed as hypo-intense on T2-weighted images, were manually 

omitted from the VOIs. Parameter change with respect to treatment was assessed using the 

percent change of the mean of each parameter (100x [PostTherapy – PreTherapy] / PreTherapy). 

Histology 

An additional six animals were used for obtaining histology of the tumors for control (n = 

3) and treated animals (n = 3) 6 days post-treatment. 9L tumors from these animals were placed 

in buffered formalin overnight, dehydrated in 70% ethanol, and subsequently embedded in 

paraffin. Tissue sections were prepared for histological processing by routine techniques. Briefly, 

paraffin sections (5 mm thick) were cut on a microtome and heated for 20 min at 65C. Slides 

were deparaffinized in xylene with three changes for 5 min each and then rehydrated through an 

alcohol gradient for 2 min each (100% alcohol, 95% alcohol, and 70% alcohol). Sections were 

first stained using a Gill’s 2x hematoxylin solution and then subsequently stained with eosin. 

Statistics 

A paired Student’s t-test was used to assess significance between the percent changes in 

each parameter post-treatment initiation from pretreatment values and between the percent 

change in similar parameters for each formalism at individual time points in the treated group. 

Group comparisons were assessed for each parameter at individual time points using an 

independent sample Student’s t-test. Treatment efficacy on overall survival was assessed by log-

rank test and displayed using a Kaplan-Meier survival curves. All statistical computations were 

performed with a statistical software package (SPSS Software Products, Chicago, IL). Statistical 

significance was assessed at P < 0.05.  

1.1.3: Results 

Representative DW images, acquired at b-values of 120, 1200, 3000, and 4000 sec/mm
2
, 

are demonstrated in Figure 1.1.1. Using low b-value images, delineation of tumor extent allowed 

for tumor volumes to be measured over time. Although the tumor volume in treated animals did 

appear to have a slower rate of growth than controls, this did not result in statistical differences 

in tumor volume between groups at individual time points (Figure 1.1.2a). Nevertheless, as 

presented in Figure 1.1.2b, the median survival of treated animals (9 days with a 95% confidence 

interval of 8.2–9.8 days) was found to be significantly longer than control animals (5 days with a 
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95% confidence interval of 3.8–6.2 days; P = 0.001). Increased longevity in treated animals was 

consequent to tumor cell death, which was verified by histology. Histological sections of 

representative control and treated animals at day 6 post-treatment initiation are presented in 

Figure 1.1.3. Following BCNU treatment, fewer nuclei were observed in the treated tumor than 

control, suggesting massive cell kill in the tumor volume of treated animals. An increase in 

pleomorphism and giant cells was also evident in the treated tumors. Tumor growth rate kinetics 

and histology were consistent with previous findings using the 9L gliosarcoma rat brain tumor 

model [6]. 

 

Figure 1.1.1 Representative diffusion-weighted images of a rat brain harboring a 9L 

gliosarcoma acquired at b-values of (a) 120, (b) 1200, (c) 2000, and (d) 4000 sec/mm
2
. Images 

were independently scaled for better visualization at higher b-values. 

 

Presented in Table 1.1 is a summary of the parametric indices generated from the three 

formalisms for control and treated tumor groups acquired at baseline. Significant differences in 

indices with similar diffusion properties were observed between all formalisms. In contrast, 

group comparisons did not result in statistical differences for any given parameter. To verify the 

accuracy of our biexponential fit to the data, pretreatment values were calculated in healthy rat 

striatum. Biexponential results of D1 and V1 (0.88 x 10
-3

 mm
2
/sec and 0.79) were found to be 

comparable with previous values in brain tissue [28]. In contrast, D2 (0.42 x 10
-3

 mm
2
/sec) was 
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2.5x that of Niendorf et al.’s measurement [28] of 0.165 x 10
-3

 mm
2
/sec, which could be a result 

of higher diffusion weighting, up to 10
4
 s/mm

2
 as opposed to the 4000 s/mm

2
 used here. 

 

Figure 1.1.2: (a): Plot over time of the mean tumor volume. Data presented as mean ± 

SEM. Significant difference in mean tumor volume between groups was assessed using an 

unpaired Student’s t-test. P values are provided at individual time points. (b): Kaplan-Meier 

survival plot for overall survival is presented for control and treated animals. Controls are shown 

as solid line with diamond markers and treated are shown as dashed lines with square markers. 

Significant differences in overall survival were observed between groups as assessed using a log-

rank test (P = 0.001). 
 

Table 1.1: Mean Parameter Values at Baseline. Pre-treatment data are presented for 

controls (n=10; top) and treated animals (n=13; bottom) as means (SEM). 
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Figure 1.1.3: Hematoxylin–eosin-stained sections of intracerebral 9L tumors for 

representative (a) control and (b) BCNU-treated animals on day 6 post-treatment. 
 

As shown in Figure 1.1.4, maps of parameters more sensitive to “fast diffusion” 

properties pretreatment (left column) and 6 days following BCNU treatment (right column) were 

generated over the tumor volume and superimposed on T2-weighted images. Top-row images 

(Figure 1.1.4a,d) represent ADC120–1200, middle-row images (Figure 1.1.4b,e) are DDC, and 

bottom-row images (Figure 1.1.4c,f) are D1. In addition, the full time course of ADC120–1200, 

DDC, and D1 expressed as percent change from pretreatment values are illustrated in Figure 

1.1.4g–i, respectively. D1 was found to be significantly larger than ADC120–1200 and DDC at 

baseline (Table 1.1) and at day 6 post-treatment initiation as well as having, in absolute terms, a 

larger dynamic range (~1.5–3.0 x 10
-3

 mm
2
/sec) within the tumor volume allowing easier 

visualization of tumor features (Figure 1.1.4c,f). As for the responsiveness of these indices to 

treatment, the percent change from baseline peaked at day 6 post-treatment initiation, followed 

by a descent toward baseline at day 9 (Figure 1.1.4g–i). Near identical trends were observed for 

ADC120–1200 and DDC with significant group and baseline value differences observed on days 3 

and 6. Similar results were observed for D1 except for the negligible group differences at day 3 

post-treatment-initiation, which is attributed to the slower rate of ascent from baseline (Figure 

1.1.4i). Although change in D1 was found to be most responsive to treatment with a ~25% 

increase at day 6 from baseline, it was not found to be significantly larger at this time point or 
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any other time point from what was observed for change in ADC120–1200 and DDC (P = 0.204 and 

P = 0.711, respectively, for day 6). 

 

 

Figure 1.1.4: Representative maps and line plots of percent change in parameters 

sensitive to ‘‘fast diffusion’’ generated using (a, d, g) twopoint, (b, e, h) stretched-exponential, 

and (c, f, i) biexponential formalisms are provided. Diffusion maps, overlaid on T2-weighted 

images of a rat brain, were acquired at days 0 (a, b, c) and 6 (d, e, f) post-treatment initiation. 

Line plots (g, h, i) consist of mean values and standard errors from control and treated groups 

over the entire experiment. Data are presented as the mean ± the standard error of the mean. The 

symbols † and * designate significant differences from baseline and between groups, 

respectively. Statistical significance was assessed at P < 0.05. 

  

Analogous parametric maps and line plots to Figure 1.1.4 are illustrated in Figure 1.1.5 

for quantities sensitive to the “slow diffusion” component of the decay curve, namely ADC2000–

4000 (Figure 1.1.5a,c,e) and D2 (Figure 1.1.5b,d,f). In general, ADC2000–4000 and D2 showed little 

change in day 6 values from baseline (Figure 1.1.5a–d). Percent change in the mean values over 

time corroborates observations found in the maps from the representative animal (Figure 1.1.5a–
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d) with ADC2000–4000 and D2 peaking at less than 10% of baseline. Group differences were only 

observed at day 3 for D2, partly attributed to a drop in control D2. Interestingly, both ADC2000–

4000 and D2 resulted in ~7% decrease from baseline on day 9 post-treatment initiation (Figure 

1.1.5h,i), which correlated with the descent back to pretreatment values observed in diffusion 

coefficients sensitive to “fast diffusion” (Figure 1.1.4).  

 

 

Figure 1.1.5: Representative maps of the ‘‘slow diffusion’’ coefficients and line plots of 

percentage change in parameters generated using (a, c, e) two-point and (b, d, f) biexponential 

formalisms are provided. Diffusion maps, overlaid on T2-weighted images of a rat brain, were 

acquired at days 0 (a, b) and 6 (c, d) post-treatment initiation. Line plots (e, f) consist of mean 

values and standard errors from control and treated groups over the entire experiment. Data are 

presented as the mean ± the standard error of the mean. The symbols † and * designate 

significant differences from baseline and between groups, respectively. Statistical significance 

was assessed at P < 0.05. 
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Figure 1.1.6: Representative nonmonoexponential metric maps and line plots of 

percentage change in parameters generated using (a, d, g) two-point, (b, e, h) stretched-

exponential, and (c, f, i) biexponential formalisms are provided. Metric maps, overlaid on T2-

weighted images of a rat brain, were acquired at days 0 (a, b, c) and 6 (d, e, f) post-treatment 

initiation. Line plots (g, h, i) consist of mean values and standard errors from control and treated 

groups over the entire experiment. Data are presented as the mean ± the standard error of the 

mean. The symbols † and * designate significant differences from baseline and between groups, 

respectively. Statistical significance was assessed at P < 0.05. 
 

As discussed previously, a comparison of the absolute numerical value of 

nonmonoexponential metrics is not meaningful because of differences in how these parameters 

are defined. Qualitatively, RTP was most sensitive to treatment exhibiting the largest percent drop 

from baseline values (Figure 1.1.6). The remaining parameters showed similar qualitative trends 

from baseline to day 6 post-treatment-initiation. A significant drop from pretreatment values was 

observed at day 6 for RTP (11%),  (7%), and V2 (6%). RTP and  continued to have 

significantly lower values to baseline at day 9, which was not established by V2 because of 

scatter in the data. Group differences were only found at day 6 for RTP and . The ratio of D2 and 
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D1, as obtained from the biexponential formalism, provided analogous results to RTP (data not 

shown). Although the mean value of D2/D1 decreased by more than 15%, these results were not 

found to be statistically different from the controls. 

1.1.4: Discussion 

DW MRI has shown potential as a surrogate biomarker for treatment response in cancer 

patients [37-40]. Acquisition of diffusion maps is typically performed at relatively moderate 

diffusion weighting, i.e., b-values that typically span the 0–1000 sec/mm
2
 range. It is speculated 

that water diffusion measurements at higher b-values may provide increased sensitivity to 

relevant drug-induced changes in tumor composition by virtue of possible therapeutic alteration 

of cellular constituents responsible for the “slow diffusion” components of signal decay observed 

at relatively high b-values. This study sought to determine the sensitivity of diffusion parameters 

derived from various mathematical formalisms of nonmonoexponential water diffusion to 

treatment-induced tissue alteration following treatment of the 9L glioma model. 

Previous work by our group using the 9L brain tumor model has shown that ADC 

calculated using moderate b-values can increase by up to 60% within a week following a single 

dose (13.3 mg/kg) of BCNU (3). As measured in this study, parameters sensitive to “fast 

diffusion” showed similar trends following a single bolus (9.98 mg/kg) of BCNU, all peaking by 

day 6 post-treatment-initiation. The maximum percent change in parameter value from baseline 

was observed in D1. This is expected because D1 is a more specific measurement of “fast 

diffusion” than DDC and ADC120–1200, which are not completely devoid of the “slow diffusion” 

properties in the signal decay curve. A positive therapeutic effect was confirmed by an increased 

overall survival (Figure 1.1.2) as well as direct evidence from histological tumor sections 

comparing treated versus untreated tumors (Figure 1.1.3). Another characteristic trend of ADC 

following treatment, which has been observed here and by others, is the temporally evolving 

descent to baseline values. This has been found to correlate with tumor cell repopulation, which 

has been reported in the literature [28]. In contrast, those indices specifically sensitive to “slow 

diffusion” exhibited a negligible change post-treatment initiation until day 9 where a drop had 

occurred in both parameter values when compared with baseline. The lack of response following 

treatment and the sudden drop in ADC2000–4000 and D2 during cell repopulation, which is reflected 

in the diffusion coefficients sensitive to “fast diffusion” descent to baseline, is quite perplexing, 
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suggesting independent mechanisms affecting the “fast” and “slow” diffusion properties of the 

tissue. Additional mechanisms, such as macrophage infiltration and clearance of 

macromolecules, may also contribute to our observations. Despite subtle variations in the trends 

of the parameters with either “fast” or “slow” diffusion properties, there was no significant 

difference in the percent change from baseline between diffusion parameters with like properties. 

As opposed to the diffusion coefficients, the nonmonoexponential metrics, RTP, , and 

V2, are defined differently and thus cannot have the same interpretation, even though they have 

similar trends. Consequent to the negligible change in ADC2000–4000, RTP is driven almost 

exclusively by ADC120–1200 for most of the study. Not until day 9, did we see a divergence from 

this dependence, which is partly attributed to the mirrored descent observed in ADC2000–4000 to 

ADC120–1200 resulting in a negligible change in RTP from day 6 to day 9 post-treatment initiation. 

Analogous but not significant results were observed for D2/D1. Large variability in the 

measurements of D1 and D2 (Figs. 4 and 5) from the nonlinear fit most likely contributed to the 

non-statistical difference in D2/D1 between groups. In contrast, the slow diffusion signal fraction, 

V2, defines the proportion of water signal in the slow compartment independent of water 

diffusivity. The drop in V2 suggests shrinkage of the slow compartment volume fraction, 

conversely an expansion of the fast compartment volume fraction, following treatment initiation. 

The anomalous exponent  represents the deviation of signal attenuation from mono-exponential 

behavior ( = 1). This perturbation is assumed to be attributed to increased heterogeneity within 

the tissue. The decrease in  seen in Figure 1.1.6h suggests an increase in tumor intravoxel 

heterogeneity that maximizes at day 6 and continues to day 9. Following treatment of the tumor 

with BCNU, a loss in tumor cellularity (Figure 1.1.3) pushed the attenuation curve further from 

monoexponential behavior than what was observed from control and baseline values (Table 1.1). 

Because of similar trends in the nonmonoexponential metrics and the lack of response to 

treatment of the “slow diffusion” indices, one may speculate that the “fast diffusion” properties 

within the tumor dominate what we observe for RTP, , and V2 following treatment. Various 

theories have been proposed to provide a physical account of the deviation in diffusion-sensitive 

signal attenuation from monoexponential behavior in biological tissue [20, 21, 41]. Use of these 

theories to determine the exact physical properties that govern nonmonoexponential water 

diffusion warrants further investigation but is beyond the scope of this study. 
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Irrespective of the mechanisms driving nonmonoexponential behavior in diffusion-

sensitive signal attenuation, high b-value DWI provides additional advantages over conventional 

mono-exponential ADC measurements that may provide a more sensitive biomarker for tumor 

treatment response and characterization. The conventional approach for measuring ADC, b-

values around 1000 sec/mm
2
, is hindered by the presence of highly diffuse tissue, such as cysts 

and necrotic areas, which may reside within or around the tumor volume adding increasing 

difficulty in localizing viable tumor. At higher b-values, these rapidly diffusing regions within 

tumors are essentially filtered out leaving only densely packed tumor that has lower ADC values. 

Recent research investigating the sensitivity of high b-value DWI for treatment assessment has 

shown promising results. Mardor et al. have demonstrated in patients with malignant brain 

lesions that the ratio of D1 and V2 [defined as R in Eq. 1 [6]] is highly sensitive to radiation-

induced changes in the tumor. This parameter not only demonstrated a significant change from 

baseline as early as 1 week post-treatment initiation but was capable of predicting clinical 

outcome in all of the studied patients. In contrast, conventional mono-exponential ADC 

(comparable to ADC120–1200 in this study) was only capable of predicting response in about half 

of their patient population. It is not clear whether R, as presented by Mardor et al., is driven by 

D1 or V2, or if D1 or V2 alone would provide ample sensitivity to predict tumor response to 

treatment as this analysis was not provided in their study. We further evaluated the approach 

proposed by Mardor et al. [6] (D1/V2) using our data. The percentage change in D1/V2 from 

baseline was ~42% in the treated group at day 6 post-treatment, which was significantly different 

from controls [2% (P = 0.002)]. Although, D1/V2 demonstrated a percentage change 1.6x 

greater than that generated by D1, this increase was not statistically different (P = 0.15). The 

probable cause for the lack of significance was the additional scatter in the data as a result of the 

nonlinear fit. Unlike DWI at moderate b-values, acquisition of diffusion-sensitized signal at b-

values of >2000 sec/mm
2
 is not trivial. This is attributed to the exponential loss of signal due to 

increased attenuation at high b-values. As signal approaches the noise floor, artificial 

nonmonoexponential trends in the signal profile are observed, adversely affecting the slow 

diffusion measurements. To accommodate these losses, images must be acquired with sufficient 

SNR resulting in longer scan times, which may not result in patient compliance. Additional 

computational time is also required when fitting the biexponential formalism to the DWI data. In 
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this study, ~30 min per dataset was required for the voxel-wise nonlinear fit. The stretched-

exponential formalism does not suffer from this deficiency because it can be linearized and 

solved using an algebraic solution of the linear least squares. Numerically fitting two parameters 

for the stretched exponential model can also be more stable relative to fitting three parameters 

required by the biexponential model. 

There are several limitations to our experimental approach that must be discussed. Scan 

time was limited to no more than 2 h. This in turn limited the signal averaging, i.e., SNR, and 

range and number of b-values used per scanning session. As discussed, large slice thicknesses 

and small matrix sizes were used to maintain our self-imposed constraint of SNR > 6. This likely 

resulted in unavoidable partial volume averaging in the tumor, which would be less with thinner 

slices. Another area of concern was the lack of sufficiently high b-values, which are most 

sensitive to “slow diffusion” rates. This could have possibly led to an overestimation of the D2 in 

the biexponential fit. Using the mean D1 and D2 determined at day 6 post-treatment initiation, we 

found in treated tumor tissue (1.7 x 10
-3

 mm
2
/sec and 0.6 x 10

-3
 mm

2
/sec), less than 4% 

(exp(2000*0.0017) ~3.3%) of the fast diffusion signal was still present at a b-value of 2000 

sec/mm
2
, whereas 29.9% of the slow diffusion component signal was still available. Finally, the 

biexponential diffusion coefficients, D1 and D2, acquired here for healthy striatum varied by only 

a factor of 2, contrary to the factor of 5–10 typically observed in the literature. Based on the 

observations of biexponential diffusion in rodent models, D1 as measured in this study is in 

accordance with literature results (0.88 here, compared to 0.82 and 0.77 x 10
-3

 mm
2
/sec in the 

literature), whereas D2 appears to be overestimated by a factor of 2 (0.43 here, compared to 0.17 

and 0.18 x 10
-3

 mm
2
/sec in the literature) [28, 41]. The discrepancy in D2 is most probably due to 

the lack of sufficiently high b-values used in this study. Finally, the filtering of low SNR voxels 

from our whole-tumor analysis may have inadvertently removed necrotic regions in the tumor. 

Signal intensity within regions of high diffusivity or short T2 due to blood products is prone to 

have low signal at high b-value. As discussed earlier, the contribution of noise in our data was 

reduced by filtering voxels whose SNR < 6 on the highest weighted DWI (4000 sec/mm
2
). This 

maintained voxels having high SNR at high b-values but removed regions of high diffusivity or 

low SNR (i.e., necrosis, cystic, and blood products) from the whole-tumor analysis. To avoid 

excessive loss of tumor volume while maintaining SNR  6, image matrix size and slice 
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thickness were set to maintain adequate SNR at a cost of resolution. The volume fraction of 

tumor analyzed at days 6 and 9 post-treatment initiation in treated animals was 93.5% ± 11.3% 

and 94.5% ± 9.9% (means 6 SD), respectively. Based on these values, filtering tumor regions 

that contribute to low SNR in DWI at high b-value did not result in excessive loss of tumor 

volume for our analysis in this study. 

We have demonstrated the sensitivity of various nonmonoexponential diffusion 

formalisms for monitoring early response to chemotherapeutic treatment for brain tumors in an 

animal model. The extent of the response varied, with the fast diffusion component of the 

biexponential formalism exhibiting the largest percent change from baseline than other diffusion 

coefficient; slightly more than was observed in the conventional monoexponential ADC and 

DDC measurements. However, for this 9L glioma model treated with a single dose of BCNU, the 

more complicated formalisms provided no additional sensitivity to treatment response over what 

was observed using conventional mono-exponential ADC measured over the standard modest b-

value range. 

1.2: Diffusion Model Sensitivity Analysis 

1.2.1: Introduction 

As was discussed in the previous section, true water diffusion in living tissues is very 

complex, relying on various structural and chemical properties intrinsic to the tissue. In finding 

useful quantitative readouts from the limited information obtained from diffusion-weighted 

imaging, it is necessary to distill the assumed phenomenon down to a simpler, more manageable 

model. In measuring tissue response, the model readouts must be related to real physical 

properties in order to derive meaning from the data. 

Due to the unavoidable noise associated with quantitative image values, it is important to 

characterize the error associated with parameter readouts when fitting the model to data. In 

performing a sensitivity analysis of the model, we can determine which model parameters most 

affect the output as well as which will show the greatest sensitivity to a small change in the 

acquired data. A greater magnitude change in the sensitivity coefficient is indicative of a greater 

ability of the model to detect a change in the image data curve, which would be a useful property 

for an imaging biomarker. Also, by assessing the sensitivity of the fit parameters to noise we 
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may determine the expected accuracy of a measurement based on the image noise associated 

with data acquisition. 

In this section I will perform two types of analyses to characterize model sensitivity and 

robustness: sensitivity analysis and noise analysis. Local sensitivity analysis is a tool that can be 

used to quantify the reaction of the model relative to a change in an individual input parameter, 

one parameter at a time. This local sensitivity coefficient will be evaluated near the input space 

of a known reference point as optimized from real data from the previous section. Parameters 

that show relatively low sensitivity may have higher error in their optimization readout due to the 

smaller effect they have on the model. It is also important to determine the sensitivity of 

optimized parameters to noise in the data. For this analysis multiple optimizations were 

performed, each time fitting the model to simulated noisy data. It is expected that greater noise in 

the data will produce greater error in the modeled parameters. By comparing the parameter and 

noise sensitivities between models, a measure of model robustness and stability may be 

determined. Both methods were used on the previously-mentioned diffusion models and results 

are presented below. 

 

Table 1.2: Baseline diffusion model parameters for sensitivity analysis. 

 

1.2.2: Methods 

For each model (mono-exponential, bi-exponential, and stretched exponential), an initial 

fit was performed on a representative data set to obtain a set of model parameters to base 

sensitivity metrics upon. The fit was obtained using a manually-delineated volume-averaged 

signal intensity encompassing an untreated intra-cranial 9L tumor in a rat brain, approximating 

general tumor characteristics [42]. Baseline parameters for each model are shown in Table 1.2. 
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Model Sensitivity to Parameter Changes 

 A parameter local normalized model sensitivity coefficient, SC, was quantified as the 

partial derivative of the signal intensity model,  (        ), with respect to the parameter of 

interest, xi, at the reference parameter point, [            ], both normalized by their reference 

values [43] (Appendix A):  

    
  (            )

   
 

  

 (            )
.  [1.2.1] 

The values of SC were evaluated over the study’s range of b-values. 

Model Fitting Sensitivity to Noise 

Noise, in the case of MRI magnitude images used in this experiment, was modeled as a 

Rician distribution [44], which for high SNR can be approximated as Gaussian: 

  ( )  
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where A is the true image intensity,  is the standard deviation of the Gaussian noise, and I0 is 

the modified zero
th

-order Bessel function of the first kind. This noise model can be combined 

with the assumed noise-less image intensity curve using the following equation: 
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, [1.2.3] 

where the subscript i represents the i
th

 b-value, Si’ is the noisy signal, S is the noise-less signal, 

Ni() is a random number from the Normal distribution with standard deviation . Noise was 

tested at values of  set from 1 to 20% of the baseline voxel intensity values for each b-value. 

Since acquisitions using the diffusion sequence in the previous section were optimized for each 

diffusion-weighting separately, SNR was modeled as being equal for each b-value in the model. 

Noise simulation and subsequent fits were performed 500 times for each noise level. Curve-

fitting was performed in Matlab (The MathWorks, Inc., Natick, MA), using an un-weighted non-

linear least-squares algorithm and an initial guess based on findings in the previous section. 

Mean parameter error was determined by the following equation: 

  ( )  
∑ (     )

 
   

    
    , [1.2.4] 

where p0 is the true parameter value and pi is the fitted parameter value from the i
th

 fit with noise 

standard deviation .  
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1.2.3: Results 

 

Figure 1.2.1: Plots of parameter sensitivity analysis for each diffusion model, sensitivity 

coefficient vs. b-value, for: (A) mono-exponential, (B) stretched-exponential, and (C) bi-

exponential. Each plot shows three curves using varying reference values for the parameter of 

interest (blue = low, green = middle, and red = high). 

Model Sensitivity to Parameters 

Plots of the sensitivity coefficients over the range of b-values used in the previous section 

are shown in Figure 1.2.1A-C, with the zero-sensitivity threshold plotted as a gray horizontal 

line. Each plot shows the model sensitivity to the indicated parameter at three different levels of 

that value. All input parameters for all models have minimal sensitivity at low b-values, with 

general increases in sensitivity with b-value, and lower sensitivity over the range of b-values for 

lower values of the parameter. The mono-exponential ADC sensitivity coefficient (Figure 

1.2.1A) decreases linearly with b-value, resulting in high negative sensitivity at higher b-values. 



28 

 

This indicates that a small increase in ADC will have a drastic effect on high b-value diffusion 

image signal intensity. Sensitivity plots of ADC and DDC (Figure 1.2.1B) look very similar, but 

when SCDDC is analyzed at lower values of 0 (higher diffusion coefficient heterogeneity) the 

shape shifts from negative linear to exponential with diminishing slope magnitude at higher b-

values (not shown). The stretched-exponential parameter, , also has very low sensitivity and 

actually has zero sensitivity around b = 1000 s/mm
2
 in this case. Looking back at the model, this 

occurs where         and   ( )    (Appendix A). In the case of the bi-exponential model 

(Figure 1.2.1C), however, Df reaches a maximum sensitivity at high values of Df,0 and starts to 

decrease with b-value after it reaches that peak. That peak is never reached in the lowest Df,0 

value (7x10
-4

 mm
2
/s) within the selected range of b-values. The diminishing magnitude of 

sensitivity to Df is balanced by the increasing sensitivity magnitude of Ds and fs. In general for 

these models, the sensitivity coefficient also has a trend of decreasing the individual parameter 

sensitivity with an increasing number of input parameters to the model.  

Model Fitting Sensitivity to Noise 

Plots in Figure 1.2.2 show results from model fits to simulated noisy data, presented as 

the mean absolute parameter measurement error plotted against the signal-to-noise ratio (SNR) 

and separated by model. As would be expected, lower SNR resulted in exponentially greater 

error in parameter estimation. The mono-exponential model (Figure 1.2.2A) showed the least 

sensitivity to noise, with ~6% measurement error at an SNR of 10. The bi-exponential model 

(Figure 1.2.2B) on the other hand had the greatest sensitivity to noise overall, with average errors 

at SNR=10 of 57%, 104%, and 392% in Df, Ds, and fs, respectively. At SNR=100 errors in ADC, 

DDC, and  were less than 2%, but bi-exponential parameter errors were still fairly significant 

with means of 7%, 41%, and 79% for Df, Ds, and fs, respectively. Figure 1.2.2d shows an 

increasing trend of diffusion coefficient optimization error with the number of model inputs, with 

0.7% deviation in ADC (one input parameter) compared to almost 7% deviation in Df (three 

inputs). 
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Figure 1.2.2: Plots of noise analysis results, with (A-C) mean absolute percent change 

plotted against baseline SNR and (D) comparison between diffusion coefficients of the three 

models at SNR=100. Errors are shown as ± SEM (too small to see on the mono-exponential 

plot). 

1.2.4: Discussion 

Diffusion MRI has been shown to be useful in detecting tumor response to therapy using 

various pre-clinical tumor models as well as clinical studies. Recent findings of non-mono-

exponential diffusion behavior in living tissue spurred increased interest in determining a more 

suitable diffusion model for quantification of these images [21]. For the purpose of this 

manuscript, two established models (stretched-exponential [29] and bi-exponential [21]) were 

evaluated against the traditional mono-exponential formalism in order to determine their stability 

and sensitivity in detecting changes in tumors due to therapy. 

Noise in magnitude MRI has been well-characterized [44], and its effect is critical to 

diffusion MRI in which signal is expected to significantly drop at high b-values. In order to 

maintain high SNR in high b-value images, multiple averages are often used on an image-by-

image basis, allowing SNR not to vary over the course of diffusion weighting. However, this 

limits the practical range of b-values by time limitations of image acquisition. Deviation from 
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mono-exponential diffusion behavior has been shown to occur only at high b-values (> 2000 

mm
2
/s), which can be seen in the sensitivity plots as an increasing SC with b-value when 

evaluating  in the stretched-exponential model and Ds and fs in the bi-exponential model 

(Figure 1.2.2). Due to the limited range of diffusion weighting, the high end of the diffusion 

curve is often under-sampled, as seen in the higher overall sensitivity of ADC, DDC, and Df 

compared to other parameters in this range, and leading to elevated measurement error in those 

model parameters. This can be seen in Figure 1.2.2 with very high error in fs and Ds compared to 

the stability of ADC, which even at SNR of 10 provides measurements with only 6% error. In 

fact, the bi-exponential model was found to be highly un-stable, with varying results depending 

on the initial parameter guess in the fitting algorithm. Introduction of a weighting factor based on 

SNR or higher b-values may help to stabilize bi-exponential results, but was not performed in 

this study. It is also generally found that an increase in the number of input parameters to a 

model increases the likelihood of non-negligible interactions among the parameters [43], which 

can be seen by the increasing measurement error of the “fast” diffusion coefficient with 

increasing number of input parameters at SNR of 100 (Figure 1.2.2D). 

In conclusion, more complex models of the underlying diffusion mechanism may provide 

useful insight into the biological response to treatment. However, increasing model complexity 

may also be expected to result in an increase in the uncertainty of the optimization which 

introduces greater error into the measured parameters. For the purpose of detecting diffusion 

changes in living tissue, the traditional mono-exponential model appears to be the most stable 

while still providing the necessary sensitivity to detect small changes. Within this range of b-

values, the bi-exponential model has insufficient data to be able to accurately measure the slow 

diffusion coefficient, and consequently has trouble separating Ds from Df, resulting in very high 

error in fs. Therefore, within the currently feasible range of diffusion weighting (i.e. b-values), 

the standard mono-exponential model provides the most robust readout as an imaging biomarker 

for therapeutic response assessment in tumors. 
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 Permeability (DCE)-MRI Chapter 2:

2.1: Permeability-MRI Treatment Response to VEGF Blockade 
Included with permission from John Wiley and Sons: 

Hoff BA, Bhojani MS, Rudge J, Chenevert TL, Meyer CR, Galbán S, Johnson TD, Leopold JS, Rehemtulla 

A, Ross BD, Galbán CJ. DCE and DW-MRI monitoring of vascular disruption following VEGF-Trap 

treatment of a rat glioma model. NMR Biomed. 2012 Jul;25(7):935-42. 

2.1.1: Introduction 

In Phase III clinical testing, Stupp and colleagues demonstrated the efficacy of concurrent 

temozolomide and radiation for treating newly diagnosed glioblastoma [1]. With an 

improvement of median survival from 12 months to 14 months, this treatment regimen has 

become the standard of care. Although radiotherapy plus concomitant temozolomide provides a 

clinically meaningful and significant survival benefit, the prognosis remains poor for most 

patients with malignant gliomas. A number of molecularly targeted therapies are being 

investigated for their potential to significantly improve the outcome for these patients [2, 3].  

Anti-angiogenic and antivascular therapies are at the forefront of development as viable 

treatment options for solid tumors [4, 5]. Recent clinical trials have shown that such agents, e.g. 

Bevacizumab, provide improved efficacy for the treatment of recurrent brain tumors [6]. The 

requirement of malignant gliomas for a continual supply of nutrients and oxygen provided by a 

vast network of newly forming intratumoral vessels provides a sound scientific rationale for 

targeting tumor angiogenesis. Vascular Endothelial Growth Factor (VEGF) is one of the 

principal driving forces for tumors to maintain their highly proliferative potential. Elevated 

stimulation of angiogenesis through the production of VEGF occurs predominantly in high-grade 

tumors [7]. Recent studies have also shown a significant reduction in both vascular permeability 

and neovascular formation in tumors treated with VEGF inhibitors [8-14] and have shown tumor 

regression in some cases [15]. VEGF-Trap (Regeneron Pharmaceuticals, Inc., Tarrytown, NY), 
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currently in clinical trials, is a decoy receptor protein effective in inhibiting VEGF signaling by 

binding with a high affinity to all isoforms of VEGF-A and placental growth factor [9-11, 15-

20]. Preclinical studies have shown that this agent, when combined with standard treatments 

encompassing chemotherapy as well as radiotherapy, results in improved efficacy [21-23]. 

Ultimately, these treatments are aimed at indirectly inhibiting tumor growth and possibly 

inducing cell death by limiting the availability of vital nutrients, which may improve the 

effectiveness of conventional therapies [21, 22]. 

Efforts are being made to evaluate imaging modalities to provide biomarkers of 

therapeutic-induced alterations in the tumor vasculature. Monitoring of volumetric changes prior 

to and following treatment initiation is the current standard of practice for assessing treatment 

effects. Although effective in predicting clinical outcome to therapy, prognosis may take 2–3 

months following the start of treatment. Functional imaging complements traditional anatomical 

imaging for improved diagnosis and response assessment. Hemodynamic imaging techniques 

including dynamic contrast enhanced (DCE) and dynamic susceptibility contrast (DSC) MRI 

provide insights into tumor blood flow, blood volume and vessel permeability, which have 

shown promise as sensitive biomarkers of treatment-induced response [23]. Most notably, DCE-

MRI uses low contrast agent concentrations to produce signal enhancement, which can be 

tracked and fit to a pharmacokinetic model to extract such values as volume transfer constant 

(K
trans

), the flux rate constant between the extravascular extracellular space and plasma (kep), and 

blood plasma volume fraction (vp) [24-26]. DCE-MRI has been used successfully to show 

decreased K
trans

 in tumors very early after anti-VEGF treatments [8, 12, 13]. A decrease in K
trans

 

has been correlated with decreased growth rates and decreased levels of free VEGF, indicating 

effective drug targeting. The apparent diffusion coefficient (ADC), a quantitative measure of 

water mobility calculated from diffusion weighted (DW) MRI, has shown promise as a sensitive 

and reliable biomarker for cytotoxic therapies [27-30] that elicits a treatment-induced reduction 

in tumor cellularity [31]. Increased cell death has been correlated with an increase in ADC. In 

this study, DCE- and DW-MRI were used to evaluate cellular and hemodynamic response of 9L 

rat brain tumors to a VEGF-Trap antibody regimen. 
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2.1.2: Methods 

Animal tumor models 

9L glioma cells were obtained from the Brain Tumor Research Center at the University 

of California at San Francisco. The cells were grown as monolayers in 10 cm
2
 sterile plastic 

flasks in Dulbecco’s Modified Eagle Medium with 10% fetal bovine serum, 100 IU/mL 

penicillin and 100 mg/mL streptomycin, and 2 mM L-glutamine in a 37C incubator. Prior to 

implantation, cells were harvested by trypsinization, counted, and re-suspended in serum-free 

medium for injection. 

Tumor implantation was performed in 17 male Fischer-344 rats, 7 to 9 weeks old (Harlan 

Sprague–Dawley, Indianapolis, IN) weighing between 125 and 150 g. Briefly, animals were 

anesthetized with a ketamine/xylazine mixture (87/13 mg/kg) administered intraperitoneally. A 

small incision was made over the right hemisphere of the cranium. A 1-mm diameter burr hole 

was drilled through the skull using a high-speed surgical drill, and a 5-mL suspension containing 

2x10
5
 9L cells was slowly injected at a depth of 3 mm. The burr hole was filled with bone wax, 

and the surgical area was cleaned using 70% ethanol. Vetbond
®

 (3 M, St. Paul, MN) was used to 

close the incision until healed. 

Anti-angiogenic therapy 

Once tumor volumes reached 20–60 mm
3
 as determined using MRI, pre-treatment DCE 

and DW-MR images were acquired for all animals. Animals were then separated into two groups 

and were treated with either 25 mg/kg VEGF-Trap (n = 10) or 12.5 mg/kg human Fc (vehicle 

protein) (n = 7). Treatments were administered subcutaneously twice weekly for two weeks 

(Figure 2.1.1A). 

MRI scans 

MRI scans were performed on a 9.4 T, 16 cm horizontal bore Varian (Palo Alto, CA) 

DirectDrive system with a quadrature rat head coil (Doty Scientific, Inc., Columbia, SC). During 

all MRI procedures, animals were anesthetized with a 1–2% isofluorane/air mixture and body 

temperature was maintained using a heated air system (Air-Therm, World Precision Instruments, 

Sarasota, FL). MR images were acquired 24 h prior to treatment initiation and 24 h after each 

treatment (Figure 2.1.1A). Each MR experiment consisted of a fast spin-echo-based T1-mapping 
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sequence and DCE- and DW-MRI sequences with a total overall acquisition time for each 

imaging session of approximately 45 min. 

 

 

Figure 2.1.1: Diagrammatic presentation of study time points (A). Treatments are 

highlighted in green, MRI (both DCE and DWI) are highlighted blue, MRI and blood serum 

collection were performed on Day 11 (red), and histological samples were taken at 

approximately Day 12 (yellow). Plot showing relative change in tumor volume in control 

(diamond, solid line) and treated (square, dotted line) groups over the study time period (B). 

Treated animals generally showed a significant slowing of tumor growth compared to controls. 

Doubling times in the control and treated groups were 3.76 (± 0.325) and 5.32 (± 0.319) days, 

respectively (p = 0.004). Significance in relative change in volume between groups occurred at 

days 8 and 11 post-therapy. Data are presented as means ± SEM. Significance was assessed at 

p<0.05 and indicated by *. 
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DW-MRI was performed using a spin-echo sequence with a navigator echo for motion 

correction and gradient waveforms sensitive to isotropic diffusion [32]. Images were acquired 

using the following parameters: repetition time/echo time (TR/TE) = 4000/47 ms, field of view 

(FOV) = 30 mm, matrix size = 128 x 64, slice thickness = 1 mm, slice number = 13, and b-values 

(diffusion weighting) of 120 and 1200 s/mm
2
. 

DCE-MRI was performed using a T1-weighted gradient-echo sequence with the 

following parameters: TR/TE = 85/3.2 ms, flip angle = 20, FOV = 30 mm, matrix size = 128 x 

64, slice thickness = 1 mm, slice number = 13 and averages = 2. Image datasets were acquired 

over a 15-min period with a time resolution of 10.9 s. Following 1 min of scanning (~6 images), 

a bolus dose of gadolinium-DTPA (Magnevist, Bayer Healthcare Pharmaceuticals; 0.15 

mmol/kg, diluted 1:8.3 from 0.5 mmol/mL in 0.9% saline solution to 0.06 mmol/ml) was 

administered via tail-vein catheter at a rate of 4 mL/min. 

Image reconstruction and analysis 

Tumors were manually contoured on the low-b images from the DW-MRI sequence (b = 

120 s/mm
2
). These volumes of interest (VOI) were used to determine tumor volume and whole-

tumor mean values generated from quantification of DW-MRI and DCE-MRI data. Tumor 

doubling times were calculated for each animal from exponential fits in Excel (Microsoft, 

Redmond, WA) to each individual growth time course [33].  

Apparent diffusion coefficients were calculated from the two diffusion weightings (b-

values) using the following equation: 

        
  (

  
  
)

(     )
⁄ , [2.1.1] 

where S1 and S2 are the signal intensities at b-values b1 = 120 s/mm
2
 and b2 = 1200 s/mm

2
, 

respectively, and ADC1-2 is the apparent diffusion coefficient obtained using b1 and b2. 

Tumor kinetic parameters were determined by a voxel-wise three-parameter fit on the 

acquired time-resolved T1-weighted images using a tri-exponential arterial input function (AIF) 

for blood plasma concentration (Cp) (12): 

   ( )     
(    )     

(    )     
(    ), [2.1.2] 

with A1 = 0.8259, A2 = 0.2230, A3 = 0.1565 mM, 1 = 1.220, 2 = 0.156, and 3 = 0.017 min
-1

. 

In this study, we followed the referenced contrast injection procedure used for this AIF and 
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assumed negligible differences in AIF over time as well as between animals. This AIF was 

incorporated into a generalized kinetic model, equivalent to the efflux-corrected Patlak model 

[34, 35]: 

   ( )        
∫   ( ) 

(    (   ))       ( )
 

 
, [2.1.3] 

where K
trans

 is the volume transfer constant, kep is the flux rate constant between extravascular 

extracellular space (EES) and plasma, and vp is the blood plasma volume fraction. Fits were 

performed using an un-weighted non-linear least-squares algorithm with an initial parameter 

guess based on literature values, and goodness-of-fit (GoF) was monitored to confirm reliable 

results; GoF was defined as the normalized root mean square error. Baseline signal intensity was 

calculated as a mean from the first ~6 images before contrast injection excluding the first image 

due to non-steady-state signal. Tissue concentrations of contrast agent were determined using the 

following equation: 1/T1 = R*[Gd-DTPA]+ 1/T10. The relaxivity (R) was determined to be 5.5 

ml/(mmols) by acquiring T1 maps of 1 cm
3
 syringes filled with saline (0.5 M) and 13 Gd-DTPA 

concentrations ranging from 0 to 10 mM. The relaxation constant was assumed constant between 

animals and time points. T10 is the T1 of the tumor tissue prior to injection of contrast agent. T10 

was set to 2.5 s which was the average of T1 measurements obtained in each animal pre-therapy 

using a fast spin-echo sequence with the following parameters: five TR values of 5, 1.5, 1, 0.8 

and 0.6 s, with 1, 1, 1, 2, and 4 averages, respectively; effective echo time (TE)= 39.68 ms, echo 

train length (ETL) = 4, 2 dummy scans, matrix size= 128 x 256, FOV = 3 cm, slice thickness = 

1mm. Parameter maps of K
trans

, kep, vp, and GoF were saved for the tumor VOI. Non-enhancing 

tumor tissue within the VOI was excluded from the analysis due to the model’s inability to 

accurately describe the tissue’s kinetic properties. Therefore, voxels with lower than 0.35 GoF or 

0.002 vp were excluded in mean tumor measurements. All reconstruction and analyses were 

performed using in-house programs written in MATLAB (The Mathworks, Natick, MA, USA). 

Parameter maps shown in Figure 2.1.2 were interpolated to 256 x 256 matrix size for display 

only. 

Histology 

Three representative animals were randomly selected from each group for tumor 

histology at approximately 12 days post-treatment initiation (Figure 2.1.1A). 9L tumors from 

control and treated animals were placed in buffered formalin overnight, dehydrated in 70% 
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ethanol, and subsequently embedded in paraffin. Tissue sections were prepared for histological 

processing by routine techniques. Briefly, paraffin sections (5 mm thick) were cut on a 

microtome and heated for 20 min at 65C. Slides were de-paraffinized in xylene with three 

changes for 5min each, then rehydrated through an alcohol gradient for 2min each (100%alcohol, 

95%alcohol, 70% alcohol). Some sections were first stained using a Gill’s 2X hematoxylin 

solution followed by eosin, while others were stained using the rabbit polyclonal antibody to 

Von Willebrand Factor III (vWf) to highlight tissue vasculature, and counterstained for the 

nuclei. For counting tumor vasculature, representative fields were obtained from the vWf-stained 

slides at random on each of three controls and three treated tumor slices. Brown-stained areas 

greater than about 10 mm in diameter were considered positive stains for the purpose of 

counting. Positive stains were counted using ImageJ software (NIH) and used to quantify the 

difference between groups. On additional sections, ApopTag or Ki-67 stains were performed 

using standard techniques to highlight apoptotic or proliferating cells in the tumor, respectively. 

Assessment of free and bound VEGF 

Blood serum samples were collected through a tail-vein catheter 24 h after the final dose 

of VEGF-Trap (n = 7) or vehicle (n = 3) (Figure 2.1.1A). Samples were stored short-term in a 

3C refrigerator until being shipped on ice to Regeneron Pharmaceuticals for analysis.  

Free VEGF trap was measured using a sandwich ELISA method in which hVEGF165 

(Regeneron Pharmaceuticals, Inc.) diluted in 0.05 M carbonate-bicarbonate buffer was used as 

the capture protein at a concentration of 2 g/mL. The antigen was VEGF-Trap (Regeneron 

Pharmaceuticals, Inc.) prepared in 1% BSA (KP Labs). Samples and standard were incubated for 

2 h at room temperature and the excess was removed in subsequent washes. The bound material 

was then reported with a mouse monoclonal antibody (P10 G1F6, Regeneron Pharmaceuticals, 

Inc.) then a secondary antibody was used. Anti-mouse HRP (Jackson Laboratories) TMB 

substrate (Sigma, T8665) was used in the color development, the plates were read at 450–570 nm 

and results analyzed using the SoftMax Pro 5.3 (Molecular Devices). 

Bound endogenous rat VEGF was determined by an ELISA developed using the antibody 

to Rat VEGF164 affinity purified polyclonal antibody (R&D Systems, Cat#AF564) as the 

capture antibody. The antigen was prepared fresh with rVEGF bound to two molar quantities of 

the VEGF-Trap and allowed to incubate at room temperature for 1 h. This complex was used to 
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generate a standard curve. Samples were bound to the plate, and after washing away the unbound 

rVEGF the unknown and controls were reported with an anti-human Fc IgG (Sigma, A-0170). 

The captured protein used in this assay was recombinant rat VEGF at 2 mg/mL in 0.05 M 

carbonate-bicarbonate buffer. The antigen used was the mouse monoclonal antibody P10 

(Regeneron Pharmaceuticals, Inc.), which was reported using a goat anti-mouse antibody 

(Jackson Laboratories) and the samples were reported with an anti-rat antibody (Promega). The 

samples were diluted 1:1000 to dilute out the serum effects of this assay. 

Statistics 

A paired Student’s t-test was used to compare the percent change of parameter values 

between pre- and post-therapy time points for each animal. An unpaired Student’s t-test was used 

to perform group comparisons in percent change of parameter values at each time point and 

tumor doubling times. Results were declared statistically significant at the two-sided 5% 

comparison-wise significance level (p<0.05). Values are given as means ± SEM. 

2.1.3: Results 

Therapeutic intervention was initiated at tumor volumes of 35.8 ± 5.0 mm
3
 and 36.4 ± 8.6 

mm
3
 for VEGF-Trap therapy and vehicle-treated control animals, respectively. Based on ELISA 

analyses, VEGF-Trap proved effective at binding to virtually all endogenous VEGF with no 

detectable VEGF and excess VEGF-Trap within the blood samples tested (Table 2.1). Data for 

the control group were not presented due to the absence of VEGF-Trap and VEGF levels being 

below quantification. Low levels of endogenous VEGF in non-VEGF-Trap treated animals have 

been reported in previous studies [20, 36]. As shown in Figure 2.1.1B, inhibition of VEGF 

signaling within the tumor resulted in significantly larger percentage changes in control tumor 

volumes at 8 and 11 days post-treatment initiation than those observed for VEGF-Trap treated 

tumors (p<0.05). Tumor volume doubling times were also affected as evidenced by values of 

3.76 (± 0.325) and 5.32 (± 0.319) days for vehicle and VEGF-Trap groups, respectively (p = 

0.004). 
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Table 2.1: ELISA analysis of endogenous VEGF. 

 

 

Figure 2.1.2: T2-weighted images with color overlays of parametric maps are shown for a 

representative animal in the control group (A–D) and the VEGF-Trap-treated group (E–H) prior-

to (Day -1, left image) and following (Day 1, right image) the initial treatment. The initial drop 

for the VEGF-Trap-treated group in K
trans

 (-27%), kep (-12%), and vp (-64%) can clearly be seen 

here (E–G). ADC shows a small, but significant drop (-7%) by the first day post-therapy (H). 

Tumor heterogeneity was observed at individual time points. Nevertheless response to VEGF-

Trap did not vary spatially throughout the tumor. 
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Figure 2.1.3: Plots of relative change in kinetic and diffusion parameters for the treated 

group (diamond, dotted line) shown together with the control (square, solid line). A significant 

decrease in K
trans

 and vp occurred on the first day post-therapy and persisted throughout the 

study. Tumor ADC steadily decreased in VEGF-Trap treated tumors up to 15% from the initial 

value. In contrast, kep continued to decrease throughout the study. Data are presented as means ± 

SEM. Significance was assessed at p<0.05 and indicated by * under their respective p-values. 

Baseline parameter values for vehicle and VEGF-Trap treated animals are: for K
trans

, 2.4±0.1 

(x10
-4

) /s and 2.3±0.1 (x10
-4

) /s (p=0.7), respectively; vp, 7.6±1.3 (x10
-3

) and 8.1±0.5 (x10
-3

) 

(p=0.7), respectively; kep, 1.9±0.1 (x10
-3

) and 1.9±0.1 (x10
-3

) (p=0.8), respectively; and ADC, 

1.1±0.02 (x10
-3

) mm
2
/s and 1.0±0.02 (x10

-3
) mm

2
/s (p = 0.1), respectively. 

 

Representative vascular kinetic and diffusion parameter maps are shown as color 

overlays in Figure 2.1.2. Partial-volume effects are apparent in Figure 2.1.2, evidenced by 

reduced kinetic measurements on the periphery of the color overlays. In vehicle-treated animals, 

negligible changes in parameter values were observed one day post-treatment initiation 

compared to the pre-treatment baseline (Figure 2.1.2A–D). In striking contrast, a single treatment 

with VEGF-Trap resulted in a substantial decrease in all kinetic parameters (Figure 2.1.2E–H) 

consistent with successful drug targeting. In general, all kinetic parameters showed spatial 
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variability within the 9L tumors at any given time point. Nevertheless, a spatially uniform 

response to VEGF-Trap was observed throughout the tumor for all kinetic metrics. 

The two kinetic transfer constants, K
trans

 and kep, and blood volume fraction (vp) were 

found to be dependent on VEGF-Trap treatment, again consistent with strong effectiveness in 

target modulation by the drug (Figure 2.1.3). The reduction in K
trans

 was observed following the 

first day of treatment, with a significant difference in K
trans

 (27 ± 3.1%, p = 0.002) when 

compared to vehicle-treated animals. Similar trends were observed for vp with a change of 63 ± 

2.3% (p<0.001). Subsequent to the initial decrease, parameter values plateaued and remained 

stable throughout the rest of the treatment cycle. A gradual reduction in kep resulted in significant 

differences between the two treatment groups by Day 3 post-treatment initiation (Figure 2.1.3). 

The maximum change in kep (34.6 ± 5.8%, p = 0.007) was observed at Day 11. 

In line with the kinetic parameters, ADC values declined following VEGF-Trap treatment 

(Figure 2.1.3). Although not as pronounced as the changes in kinetic metrics, a significant 

reduction in the change in ADC values was observed in VEGF-Trap treated tumors when 

compared to controls for all time points after treatment. ADC values did not reach a minimum 

value until Day 8 with a percentage decrease of 17.8 ± 3.2% (p = 0.027). Although ADC values 

for VEGF-Trap animals increased slightly from Day 8 to 11, this change was not significant. 

Histological sections of representative animals from control (n = 3) and treated (n = 3) 

groups taken 24 hours after the last treatment (11 days post-initial-treatment) were subjected to 

H&E, Ki-67, Von Willebrand / Factor VIII (vWF) and ApopTag staining. As observed in Figure 

2.1.4, a 14% reduction in Ki-67 staining was observed for VEGF-Trap treated tumors. This 

difference, although consistent with reduced proliferative potential, was not significant (p = 

0.25). In contrast, vWF stained sections revealed that vessel numbers were significantly lower in 

VEGF-Trap-treated versus vehicle-treated animals (p = 0.011; Figure 2.1.5). Interestingly, 

ApopTag staining revealed that apoptosis appeared to be localized within the endothelial cells of 

the vasculature, as shown by heavily stained regions in Figure 2.1.6. In contrast, tumor tissue did 

not show significant staining, and was therefore not quantified and compared between groups. 

The results observed in Figure 2.1.6 are consistent with the loss in vessel number (Figure 2.1.5) 

as well the reduction in MRI-determined kinetic measures (Figure 2.1.3). However, loss of 

vasculature due to VEGF inhibition did not result in a reduction in tumor cellularity as depicted 



45 

 

by visual inspection of tumor nuclear staining as well as lack of significant ApopTag staining in 

the tumor (Figure 2.1.6). 

 

Figure 2.1.4: The proliferative potential of tumors following treatment with vehicle (A) 

or VEGF-Trap (B) was determined by Ki-67 staining of samples taken on Day 12. Positively 

identified nuclei were counted in randomly selected fields. Representative micrographs for each 

group are shown. The quantification of the nuclei for each treatment group in 3–6 randomly 

selected fields per subject (C). Insignificant differences in Ki-67 positive nuclei were observed 

between treatment groups (p = 0.25). Bar plots are presented as the mean number of nuclei and 

SEM. Images were acquired at 40x magnification. 
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Figure 2.1.5: Tumor vasculature following treatment with vehicle (A) or VEGF-Trap (B) 

was determined by Von Willebrand factor staining of samples taken on Day 12. Positively 

stained vessels were counted in randomly selected fields. Representative micrographs for each 

group are shown. The quantification of the vessels for each treatment group in 2–3 randomly 

selected fields per subject (C). A significant decrease in the number of vessels occurred in 

VEGF-Trap treated animals (p = 0.011). Bar plots are presented as the mean number of nuclei 

and SEM. Images were acquired at 10x magnification. 
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Figure 2.1.6: Apoptosis and tumor cellularity following treatment with vehicle (A) or 

VEGF-Trap (B) was determined by ApopTag staining of samples taken on Day 12, 

superimposed on H&E. Extent of apoptosis and tumor cellularity were assessed by visual 

inspection. Representative micrographs for each group are shown. Treatment by VEGF-Trap 

resulted in massive apoptotic events in the tumor vasculature but negligible change in tumor 

cellularity when compared to vehicle-treated tumors. Healthy and apoptotic vessels are indicated 

by yellow and red arrows, respectively. A closer representative VEGF-Trap treated sample is 

shown in C, highlighting the border between tumor epithelial and vessel endothelial cells. 

Images were acquired at 20x (A&B) or 40x (C) magnification. 
 

2.1.4: Discussion 

The development of molecular targeted cancer therapies represents an area of intense 

investigation. Consequently, a number of clinical trials are underway encompassing a diverse 

array of targets and agents. However, the primary endpoint used for assessing therapeutic 

response continues to be gross tumor volumetric change. This endpoint may not be the best 

choice for measuring the effectiveness of those molecularly targeted agents that do not uniformly 

elicit a significant reduction in tumor volume [37-39]. Therefore, there is an impetus to explore 
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non-invasive quantitative imaging modalities, such as MRI and positron emission tomography 

(PET), for their potential to provide non-invasive biomarkers of treatment response. In fact, 

DCE-MRI and DW-MRI metrics have shown significant promise as biomarkers of early cancer 

therapeutic response [40, 41]. The goal of this study was to evaluate DCE-MRI and DW-MRI for 

their ability to detect and quantify the therapeutic response of glioma-bearing animals treated 

with VEGF-Trap. 

VEGF-Trap is extremely effective in binding VEGF and PGF [15, 18]. The extent of 

VEGF-Trap binding to endogenous VEGF was virtually complete following two weeks of 

treatment (Table 2.1). This strong binding affinity to endogenous VEGF was clearly evident 

early in our MRI measurements. Vascular kinetic rates and blood plasma volume fraction as 

measured by DCE-MRI were highly sensitive to VEGF-Trap treatment. Subsequent to the first 

treatment, both K
trans

 and vp diminished by approximately 30% and 60%, respectively, 

suggesting an extremely rapid response of tumor vasculature to VEGF-Trap. These vascular 

changes are reflected in our vWF and ApopTag histological stains (Figs 5 and 6), which show a 

lower number of vWF-positive-stained blood vessels and greater ApopTag staining of vessel 

endothelial cells in treated animals. These trends agree with those observed in both preclinical 

and clinical investigations of tumor response to anti-angiogenic and antivascular agents as 

measured by DCE-MRI [8, 41]. 

An increase in tumor water mobility as determined by ADC measurements has been 

associated with a reduction of tumor cellularity as a consequence of massive cell kill [27]. 

Treatment by VEGF-Trap elicited no such response in ADC values, suggesting no substantial 

decrease in tumor cellularity due to cell death. Staining by H&E and ApopTag corroborated what 

was observed by ADC. In fact, ADC values decreased significantly following VEGF-Trap 

treatment with a significant drop observed as early as one day post-treatment. Reiger and 

colleagues monitored changes in DSC-MRI and DW-MRI quantitative metrics during 

Bevacizumab treatment in glioma patients, observing a similar trend in ADC [41]. In their 

clinical study, a drop in tumor blood volume as well as water mobility within the tumor was 

reported by 8 weeks post-treatment initiation. The reduction of ADC was attributed to 

pathological changes in the tumor, which may result in a decrease in extracellular water content 

and narrowing of extracellular space due to treatment-induced hypoxia. This would result in an 

increase in tumor cellularity per unit volume, which is inversely related to ADC values.  
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Numerous models for assessing pharmacokinetic qualities in vivo with varying 

assumptions have been proposed. In this study we used an established model that assumes the 

fast exchange limit to analyze our DCE-MRI data. This technique has been well-documented but 

recent studies have provided more robust models including the shutter-speed approach developed 

by Yankeelov and colleagues in 2003 [35]. This model has shown greater accuracy in 

quantifying permeability kinetics but has only recently seen more extensive application. 

Although more accurate, the sensitivity of the newer models to therapeutic response have yet to 

be tested against established pharmacokinetic models. Such an analysis is beyond the scope of 

this study.  

The impairment of VEGF signaling activity in the 9L glioma model resulted in apoptosis 

of the vascular endothelial cell population, which likely contributed to the overall reduction in 

tumor vessel numbers. The observed decrease in tumor vessel density is also in agreement with 

previously reported results of the use of antivascular agents on gliomas [42-45]. However, in 

these previous studies, apoptosis of endothelial cells was not reported following VEGF-Trap 

treatment. Erber and colleagues showed that targeting VEGFR-2 and PDGFR-b signaling using 

the tyrosine kinase inhibitor SU6668 in a C6 rat tumor model resulted in endothelial cell 

apoptosis and reduced tumor growth rate [46]. This is in agreement with our results, which show 

a similar reduced growth rate as reflected in our volume measurements as well as Ki-67 staining 

(Figure 2.1.1B and Figure 2.1.4) that show a slightly diminished fraction of proliferating cells. 

In conclusion, this study supports the utility of DCE- and DW-MRI in monitoring the 

effectiveness of angiogenesis-targeted cancer therapy, in this case response to VEGF-Trap. The 

ability to track therapeutic effectiveness with non-invasive imaging biomarkers is especially 

important for gliomas because biopsies during the course of treatment are not an option (unlike 

most other histotypes that are amenable to pharmacodynamic biomarkers). The use of these MRI 

modalities is especially compelling as angiogenesis targets are prominently being tested in the 

glioma population. Besides Aflibercept (VEGF-Trap), there are a number of other targeted 

agents in current clinical trials for treating glioma patients, e.g. Zactima (vandetanib, 

ClinicalTrials. gov ID: NCT00272350), cediranib (AZD2171) [34], ramucirumab 

(ClinicalTrials.gov ID: NCT00895180), BIBF1120 (ClinicalTrials.gov ID: NCT01380782), as 

well as numerous bevacizumab (Avastin; ClinicalTrials.gov ID: NCT00782756) [47-49] 

combination trials. Studies are underway to extend this proof-of-principle to the study of the 
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broader angiogenesis portfolio to build a compelling case for clinical trial incorporation. Overall, 

MRI biomarkers have significant potential for not only monitoring treatment effects but also for 

optimization of drug dose and schedules. 
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2.2: Comparison of DCE-MRI Models 

2.2.1: Introduction 

Paramagnetic gadolinium chelates have been extensively used as contrast agents (CA) for 

both qualitative and quantitative MRI. Signal enhancement in contrast-enhanced MRI is due to 

an interaction between the injected paramagnetic contrast agent, usually Gd chelates, and the 

protons on water molecules commonly detected in MRI due to the high abundance of water and 

high gyromagnetic ratio of protons. These agents shorten the T1 relaxation time proportional to 

their concentrations, within a certain range, resulting in increased T1-weighted signal intensity. 

The injected CA, typically an intravascular agent, travels through the blood to a tissue of interest 

and in the case of aggressive tumors were vessels are compromised is able to leak into the 

extracellular extravascular space (EES).  

In order to quantify tissue vascular properties, the signal enhancement kinetics seen in the 

images resulting from a bolus injection of CA are fit to a pharmacokinetic model, most often a 

two compartment transfer model between blood and the EES [26]. Physical tissue properties 

such as a vessel permeability constant (K
Trans

) and the fractional volume of EES (ve) are typical 

model parameters that are quantified in DCE-MRI. Although these models work very well in 

fitting to dynamic data and produce reasonable measurements of the desired tissue properties, the 

physics of MRI signal enhancement are much less direct than these purely pharmacokinetic 

models would imply.  

A more recently developed model for use in DCE-MRI takes into account the mechanism 

of contrast enhancement in MRI as well as two-site water exchange between intra- and extra-

cellular water pools, named the shutter-speed model (SSM) [35]. Contrast agents are not able to 

enter the intra-cellular space, but water molecules are mostly found within the cell and are able 

to penetrate the cell membrane. Due to the non-instantaneous measurement of the water signal, 
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there will inevitably be some exchange of water between the intra- and extra-cellular spaces, 

resulting in a modulation in the detected signal intensity. This shutter-speed effect has been 

shown to result in significant underestimation of parameters values, as much as 50% [35]. The 

shutter-speed model takes this water exchange into account when determining the contrast 

enhancement, and provides an extra parametric readout of the mean intra-cellular water molecule 

lifetime. 

In the following, three popular DCE models are compared for the detection of parameter 

changes after VEGF blockade, using the same animal tumor model as was presented in the 

previous section. Similar parameters between the models are compared over the time course of 

anti-VEGF therapy and highlight differences in sensitivity for detecting tumor treatment 

response. 

2.2.2: Methods 

The data extracted from the animal experiments discussed in section 2.1 was used to 

explore several popular models of DCE-MRI signal enhancement due to contrast agent 

distribution in tissues [26, 35].  

Models: 

Tofts-Kermode (TK) 

   ( )        ∫   ( ) 
(    (   ))

  
 

 
 [2.2.1] 

This model considers tissue concentration change as the exchange of contrast agent (CA) 

between two compartments, blood plasma and extra-vascular extra-cellular space (EES). Here, 

Cp is the blood plasma concentration of CA, and the two optimized parameters are K
Trans

, the CA 

transfer rate constant between blood and EES, and ve, the tissue volume fraction of EES. 

Efflux-Corrected (Patlak) 

   ( )        ∫   ( ) 
(    (   ))

       ( )
 

 
 [2.2.2] 

This model is similar to the TK formalism, but takes into account a blood plasma tissue 

volume fraction term, vp, to account for signal gain directly due to the arterial input function.  
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Shutter-Speed Method (SSM) 

   ( )  

        [   ]( ) 
        

 
  ⁄

  
 √(

 

  
    [   ]( ) 

        
 

  ⁄

  
)

 

 
 (    )

  
   

 
 [2.2.3] 

 [   ]   ∫   ( ) 
(  (   ))  

 

 
 [2.2.4] 

This model combines two-site-exchange processes (between intra- and extra-cellular 

water) with the pharmacokinetic model of CA dynamics, resulting in an additional time constant 

term, τi, which describes the mean intracellular lifetime of a water molecule in the voxel. In this 

formalism, the parameters L and p0 may be translated to K
Trans

 and ve (for comparison to the 

other two models) by the following relations, where fw is the tissue water volume fraction 

(assumed to be 0.8 [35]): 

          [2.2.5] 

                     [2.2.6] 

Area Under the Curve (AUC) 

The AUC was determined as the integral of the signal enhancement curve over the time 

course of the experiment. This measurement gives a general sense of the mean signal 

enhancement over the entire time course, with leakier tumors having higher values and normal 

tissue with low values. 

Statistics 

In fitting the model to data, a goodness of fit (GoF) was also calculated as the normalized 

root mean squared deviation (NRMSD, between model and data) on a voxel-wise basis and 

averaged over the tumor volume. All significant differences between like parameters were 

evaluated at individual time points using a Student’s two-tailed paired t-test and significance was 

assessed at values below p=0.05. Data in the plots are presented as the mean with error bars 

representing the standard error of the mean. 

2.2.3: Results 

For the purpose of model comparison, SSM model parameters, p0 and L, were converted 

to values of ve and K
Trans

 using the above equations 2.2.4-5, respectively. Figure 2.2.1 shows 

plots over the course of treatment of the percent change in average tumor (A-C) model 

parameters and (D) area under the curve (AUC) as well as (E) a measure of the average modeled 
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goodness of fit to the DCE data. A significant decrease in K
Trans

 is present one day after 

treatment initiation, and was maintained throughout the study period, for all models. Significant 

differences were also seen at almost all time points and between all models, with the exception 

of day 4 post-treatment between the TK and SSM models (p=0.06). Values for ve only 

significantly changed from baseline levels on day 4 as determined by Patlak and SSM, but not 

TK. Also on day 4, the SSM model detected a significantly greater decrease in ve than the Patlak 

and TK models, and the percent change was also significantly lower than the TK model on day 

11. Both vp and τi, in the Patlak and SSM models, respectively, dropped significantly by day 1 

and remained low until the end of the study. AUC also dropped significantly after treatment, 

indicating an overall decrease in signal enhancement within the tumor. 

 

 

Figure 2.2.1: Plots over time show differences between models in comparable parameters 

means of (A) K
Trans

, (B) ve, and (C) tertiary parameters (τi from SSM and vp from the Patlak 

model). Plots over time of the (D) mean tumor area under the signal intensity curve (AUC) and 

(E) goodness of fit. Errors are presented as standard error of the mean (SEM). 
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As seen in Figure 2.2.1E, the Patlak model generally had the best fit to the data, but no 

significant difference in GoF was found between any of the models at any time point. For all 

models, the NRMSD increased after treatment and remained elevated throughout the study 

(significantly higher on days 1 and 4). 

2.2.4: Discussion 

VEGF, which is often over-expressed in cancer cell lines, is known to stimulate the 

formation of blood vessels critical for the continual growth of the lesion. Neovasculature has 

been shown to have more irregular spacing and results in greater leakiness than established 

vessels. From the perspective of DCE modeling, this results in a high transfer rate, K
Trans

, from 

the blood to the EES, as well as a high fractional blood volume in the tumor. VEGF inhibition 

would therefore be expected to decrease both K
Trans

 and vp, which was observed in this study.  

In searching for an imaging biomarker, the observed readout should be related to a 

specific physiological response as well as providing the greatest contrast between pre- and post-

therapy states. Overall, the SSM model parameters appear to be the most sensitive to anti-VEGF 

treatment, with substantial drops in both K
Trans

 (-57%) and τi (-35%) within one day of the first 

treatment, even though the model seemed to result in the poorest fit to the data. Values of K
Trans

 

determined by the TK (1.6 ± 0.1 [x10
-4

] /s) and Patlak (1.3 ± 0.1 [x10
-4

] /s) models on day -1 

were approximately 28% or 40% lower than those found using the SSM model (2.7 ± 0.5 [x10
-4

] 

/s), respectively, similar to findings reported by Yankeelov et al. [35]. This underestimation of 

K
Trans

, however, did not persist after treatment, which agrees with the significant drop in the 

SSM parameter, τi, and indicates a faster water exchange between intra- and extra-cellular water. 

The Patlak model’s vp parameter was also very sensitive, with a 60% drop within the first day, 

but it had the least sensitive K
Trans

 (-24%) readout compared to both other models. For all 

models, ve was found to be an insensitive biomarker for this type of therapy. The increase in 

NRMSD for all models after treatment corresponds well with the decrease in AUC, indicating an 

intuitively increased error due to lower signal. 

In conclusion, all models were sensitive to vascular changes induced by this VEGF 

inhibition therapy. Although the Patlak model fit the data significantly better than the SSM, both 
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models’ parameters (K
Trans

, vp, and τi) were significantly more sensitive than the TK (K
Trans

), 

indicating that they would be better-suited as an imaging biomarker in this case. 

2.3: DCE Model Sensitivity Analysis 

2.3.1: Introduction 

As was previously mentioned (Section Diffusion Model Sensitivity Analysis), when 

determining a model’s usefulness in providing sensitive biomarkers for indication of treatment 

response it is important to understand the reliability of its readout.  

2.3.2: Methods 

Analytical methods of testing local parameter sensitivity and model sensitivity to noise 

are described previously (p. 25). The base model is in the form of either tissue gadolinium 

concentration, Ct (TK, Patlak), or R1 (SSM), which can be translated to signal-based models, and 

thus the sensitivity coefficient (SC), using the chain rule (Appendix A). Sensitivity coefficients 

were evaluated over the time course of the experiment. Baseline parameters for each model are 

shown in Table 2.2. 

 

Table 2.2: Baseline DCE model parameter values. 

 

2.3.3: Results 

Model Sensitivity to Parameter Changes 

Figure 2.3.1 shows plots over the imaging time course of SC for each model: (A) TK, (B) 

Patlak, and (C) SSM. For the SSM, sensitivity for the parameters L and p0 are shown, but their 

sensitivity coefficients are equal to those of their converted counterparts, K
Trans

 and ve, 

respectively. 
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Figure 2.3.1: Plots over the time course of DCE model sensitivity coefficient for (A) 

Tofts-Kermode, (B) efflux-corrected Patlak, and (C) shutter speed (SSM) models. For the 

purpose of comparison of SSM parameters to the others, SC(L) is equivalent to SC(K
Trans

) and 

SC(p0) is equivalent to SC(ve). Each plot shows dS/dpi, where pi is the parameter of interest, for 

three reference values of pi (blue = low, green = mid, and red = high). 
 

All parameters show zero sensitivity at the beginning due to the delay between the start 

of imaging and the arrival of the CA bolus to the tissue. K
Trans

 and ve sensitivities are almost 

identical between the TK and Patlak models, as the only difference between the two is the 

additive vp term in the Patlak model. All models’ K
Trans

 values show similar trends, with an early 

increase to peak, then fall past 0 to greater negative magnitudes toward the end. L, in the SSM 

model, however is about 1/10 the SC(K
Trans

) in the other two models and has a very sharp peak, 

coinciding with the bolus of CA and indicative that it is highly influenced by Cp. This is similar 

to vp sensitivity from the Patlak model, which is more directly affected by Cp, but vp has a high 

sensitivity compared to ve and K
Trans

. A greater difference in SC shape can be seen between the 

parameters ve and p0, where SC(p0) reaches a peak around 290 seconds while SC(ve) does not 

peak within the time of the experiment.  
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A general trend within almost all parameters is that higher reference parameter values 

result in higher overall sensitivity coefficients. The exception is τi, which has lower sensitivity 

with higher reference value. 

Model Fitting Sensitivity to Noise 

 

 

Figure 2.3.2: Resulting mean absolute error plotted against SNR for Tofts-Kermode 

(blue), Patlak (red), and Shutter-Speed (green) models. K
Trans

 and L parameter errors (A) are very 

similar between models, as are ve and p0 parameter errors (B), with ve from the Patlak model 

substantially lower than the other two above SNR=15. Additional DCE parameter errors, for vp 

(Patlak) and τi (SSM), are shown in (C). Parameter errors were also plotted against each other for 

a SNR of 25 (D), which is typical for DCE-MRI images. Error bars are standard error of the 

mean. 
 

Figure 2.3.2 shows plots of parameter errors over a range of SNR, from 10 to 100, for (A) 

K
Trans

 (and L), (B) ve (and p0), and (C) vp and τi. In all models, K
Trans

 (L for the SSM model, 

Figure 2.3.2A) has very similar sensitivity to noise, with slightly higher error in the SSM model. 

Measurement errors of ve (p0 for the SSM model, Figure 2.3.2B) were also very similar between 

models, with the Patlak model’s error lower than the other two. Tertiary parameter errors for the 
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Patlak and SSM models, vp and τi (Figure 2.3.2C), respectively, show a very low error in τi 

above SNR=15 and a very high error in vp under SNR=50. Figure 2.3.2D compares these 

parameters for SNR=25, which is typical for pre-clinical DCE-MRI acquisitions.  Of all models, 

the parameter with the highest sensitivity to noise was vp, with 40% error at SNR=20, and the 

lowest sensitivity to noise was τi, with 1% error at SNR=16.7. 

2.3.4: Discussion 

The sensitivity analysis presented here demonstrates how similar parameters from 

different models can have drastically varying behaviors. Although the TK and Patlak models 

behave very similarly due to the minimal difference between them, the SSM model exhibits less 

sensitivity to the transfer rate constant (L) than the other two (K
Trans

) by an order of magnitude. 

Despite this difference, K
Trans

 and ve parameters exhibit very similar noise error behavior. The 

Patlak model’s vp parameter had the highest SC overall, but was also very sensitive to noise, 

making it an unreliable readout at low SNR. On the other hand, the τi parameter in the SSM 

model also had high SC, but was the least sensitive to noise, making it a very good candidate for 

an imaging response biomarker. 

DCE-MRI images are acquired using a T1-weighted gradient echo sequence that typically 

has SNR on the order of 25, which, according to the above simulations, may result in possible 9-

12% errors in K
Trans

 or L readouts and 3-10% errors in ve or p0 readouts. Based on this sensitivity 

analysis, the SSM model appears to be the best choice for accurately detecting treatment 

response in this model as long as τi is expected to change. The high model sensitivity to τi and 

low sensitivity to noise coupled with the drop in both K
Trans

 and τi seen in section 2.2 make this 

model stand above the TK and Patlak models.   
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 Multimodality Imaging Chapter 3:

3.1: Multimodality Imaging of Bone Metastatic Cancer 
Included with permission from the editor of Translational Oncology: 

Hoff BA, Chughtai K, Jeon YH, Kozloff K, Galbán S, Rehemtulla A, Ross BD, Galbán CJ. Multimodality 

imaging of tumor and bone response in a mouse model of bony metastasis. Transl Oncol. 2012 

Dec;5(6):415-21. 

3.1.1: Introduction 

Bone metastases occur in more than 70% of advanced breast cancer patients with 

complications including bone fracture, pain, and spinal compression [1]. More than 250,000 

patient deaths worldwide result from breast cancer, mainly attributed to metastatic disease [1]. 

Current treatments include systemic cytotoxic drugs, as well as bisphosphonates used for 

inhibition of bone loss, and are limited in their efficacy for combating bony metastasis [2, 3]. 

Much recent research has been focused on targeted agents that disrupt specific closely involved 

signaling pathways in cancer. Effects of these treatments can be highly complex, which present 

challenges for the characterization of treatment response owing to the numerous mechanisms 

involved [4]. For example, recent studies in skeletal metastases have revealed important 

interactions between the tumor and its microenvironment [5-9]. It is well known that bone tissue 

harbors a latent pool of transforming growth factor–β (TGF-β) that when released by bone 

resorption propagates cancer growth in skeletal regions [2, 10-12]. The discovery of this 

interdependency has spurred development of new targeted drugs to inhibit this cycle, resulting in 

a spectrum of agents targeting various stages of the cycle including TGF-β receptors in cancer 

cells, RANK in osteoclast precursors, cathepsin-K, and bisphosphonates for inhibiting osteoclast 

activity [11]. Conventional anatomic imaging and histologic techniques for quantifying response 

to therapy are insufficient for capturing the time-dependent interactions and targeted mechanisms 

of this complex system. Conventional approaches to monitoring cancer response to therapy are 
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limited, with the most prevalent being changes in tumor volume followed by quantitative 

measurements of tissue perfusion and diffusion. Because of the unconventional action these 

agents have on metastatic breast cancer to the bone, a more comprehensive assessment of tumor 

biology and response to intervention would provide investigators developing new targeted agents 

with improved insights into the complicated interrelationships of the signaling pathways and 

their role in tumor growth and cell death. 

In this study, a multimodality approach to imaging treatment response was undertaken in 

an effort to more fully delineate the underlying biologic responses to bisphosphonate and taxane 

treatment using a mouse model of established breast cancer metastasis to the bone. Molecular 

resonance imaging (MRI) was used to monitor tumor soft tissue volumetric response and 

cellularity; micro-computed tomography (μCT) was used to monitor bone characteristics; 

bioluminescence imaging (BLI) was used to monitor apoptosis by measuring caspase-3–linked 

activation; and fluorescent probes targeting bone mineralization and cathepsin-K activity were 

used to provide information related to bone remodeling activity. Noninvasive imaging provided 

for longitudinal assessment of differential treatment effects on bone and tumor following 

administration with docetaxel and zoledronic acid (ZA). Imaging readouts were able to follow 

signatures unique to response of tumor and bone, revealing the capability of applying imaging 

modalities to “unmix” the complex biologic responses to individual therapies, thus providing 

opportunities for assessing more complex treatments targeting mixed osteoblastic and 

osteoclastic phenotypes. Overall, the application of multiple imaging approaches described 

herein provide a more comprehensive and robust process than any single-modality approach for 

new drug evaluation and efficacy screening through delineation of treatment effects on tumor 

and bone morphology as well as functional and signaling pathways. 

3.1.2: Materials 

Animal Tumor Model 

Female severe combined immunodeficiency mice were subject to intratibial implantation 

of MDA-MB-231 breast cancer sub-line 1833 cells transfected with a luciferase reporter on 

caspase-3 (Figure 3.1.1, PPOP [13], Promega Corporation, Madison, WI) in the right leg with 

10
5
 cells in 5μl of serum-free medium suspension. Briefly, mice were anesthetized with an 

intraperitoneal injection of ketamine and then leg hair was removed using Nair. An empty 0.5-
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cm
3
 insulin syringe was used to bore a hole down into the tibial marrow space through the tibial 

plateau through which a Hamilton syringe was then used to insert the cell suspension. A sham 

injection of media alone was performed on the left leg as a surgical control.  

 

Figure 3.1.1: Diagram of the split luciferase construct used in this model. A split-

luciferase complex is expressed in the cells with a DEVD sequence between the N- and C-Luc 

domains, keeping the enzyme inactive through steric hindrance. When caspase-3 is expressed in 

the cell, signaling the cell to begin apoptotic events, active caspase-3 cleaves the DEVD 

sequence from the rest of the enzyme. Active luciferase then metabolizes luciferin substrate and 

emits light. 

Treatments 

Once tumor size reached a volume of 10 to 20 mm
3
 (as measured by MRI), mice were 

separated into treatment groups of ZA (n = 16), docetaxel (n = 7), or control (n = 17). ZA 

treatment was administered subcutaneously as 100μg in 100μl of phosphate-buffered saline 

(PBS, 5mg/kg) per mouse twice weekly for four treatments, docetaxel was administered 

intravenously at a dose of 20mg/kg weekly for three cycles, and control mice were administered 

PBS with the same schedule as ZA. Control animals treated with 10% ethanol were also 

considered but were found not to differ from PBS controls so are not shown. 

Imaging and Analysis 

Molecular Resonance Imaging 

MRI was performed using a 7-T, 16-cm horizontal bore DirectDrive System (Agilent 

Technologies, Palo Alto, CA) with a quadrature mouse head coil (m2m Imaging Corp, 
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Cleveland, OH). Images of the tumor-bearing leg were acquired twice weekly starting from the 

day before treatment initiation. Diffusion-weighted images were acquired using a spin-echo 

sequence with navigator echo motion correction and gradient waveforms sensitive to isotropic 

diffusion [14] using the following parameters: repetition time/echo time = 4000/37 ms, field of 

view = 20 × 20 mm, matrix size = 128 × 64, slice thickness = 0.5mm, slice number = 25, and b-

values (diffusion weighting) of 120 and 1200s/mm
2
. Following image acquisition, data that 

included manually drawing volumes of interest on the high diffusion-weighted image to compute 

tumor volumes and diffusion values were stored for analysis. Tumor volumes and apparent 

diffusion coefficient (ADC) values were quantified over time to monitor tumor burden and 

cellularity, respectively.  

Micro Computed Tomography 

μCT imaging was performed weekly starting from the day before treatment initiation 

using a Siemens Inveon System with the following parameters: 80kVp, 500μA, 300-ms 

exposure, 501 projections over 360 degrees, and 49.2-mm field of view (56-μm voxel size). 

Volumes of interest were drawn over the tibia from the tibia-fibula junction to the tibial plateau, 

measuring mean bone volume and mineral density throughout the study to monitor bone 

resorption. 

Bioluminescence Imaging 

For imaging of the PPOP-transfected cells, mice were injected with 200 mg/kg luciferin 

(Promega), and up to five mice were imaged in a single BLI scan, acquiring a series of images to 

find the total photon peak flux over a whole-leg region of interest (ROI) for each animal. Images 

were acquired on the day of treatment initiation and days 7, 10, 14, 21, and 28 afterward. BLI 

data were quantified as total photon peak flux normalized by tumor volume as measured by MRI. 

Fluorescence Imaging 

Fluorescence images were acquired on an IVIS Spectrum System (PerkinElmer, Inc, 

Walther, MA) every other week using the two probes: Osteosense 800 and CatK 680-FAST 

(PerkinElmer, Inc). Fluorescent probes were injected intravenously 24 hours before imaging, and 

hair was removed from the hind legs the same day using Nair lotion. The following optical filter 

sets were used for each acquisition: 
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Excitation (nm) Emission (nm) 

430 500 580 640 

675 720 740 760 

745 800 820 840 

After acquisition, images were spectrally unmixed using Living Image software (Caliper Life 

Sciences) to separate the two probe signals from each other and autofluorescence. ROIs with the 

same area were placed over both the left and right legs and signal was measured as the ratio 

(right/left) of mean radiant efficiency to account for variation in fluorophore injection, 

physiology, and possible accumulation of fluorescent agent because of the high frequency of 

imaging.  

Statistics 

A Student’s t test was used to compare means between groups at each time point. Results 

with P < 0.05 were considered statistically significant. All plots represent mean ± SEM. 

 

Figure 3.1.2: (A) Plots of percent change in tumor volume for each group show 

significant cell kill in the docetaxel group, but no significant effect in the ZA group. (B) Plots of 

percent change in tumor ADC show elevated values in the docetaxel group after day 6, but no 

significant change in the ZA group. (C) Representative ADC overlays show isolated areas of 

increased ADC in the docetaxel group (red) as well as a dramatic decrease in tumor volume seen 

at day 20. * indicates a significant difference from the control group (p<0.05). 
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3.1.3: Results 

MRI was performed to monitor tumor volume and water diffusivity (ADC) twice weekly 

throughout the study (Figure 3.1.2). This modality was able to detect a significant retardation of 

tumor growth (Figure 3.1.2A) in the docetaxel-treated group by day 6 compared to the control 

and ZA-treated groups, which was followed by tumor shrinkage with no recovery within the 

study time frame. In addition, ADC values of the docetaxel-treated group were found to 

significantly increase by day 6 (Figure 3.1.2B), indicating that significant tumor cell death in the 

docetaxel group had occurred following treatment initiation. The ZA group, however, showed no 

significant difference from control tumor ADC values over the duration of the study although 

both trended downward, indicating that increasing density or packing of tumor cells occurred 

during the multifold volumetric increase in tumor size. Representative ADC map overlays for 

each of the animal groups (Figure 3.1.2C) revealed consistently low ADC values in the control 

and ZA groups, whereas localized regions in the docetaxel-treated tumors became elevated 

before and during tumor shrinkage. 

 

Figure 3.1.3: (A) Plots of overall luminescence of the tumor-bearing leg over time. 

Values are shown as the percent change of total photon flux (over a fixed-area ROI) normalized 

by tumor volume (as measured by MRI). (B) Representative radiance overlays show increased 

caspase-3 activity in the docetaxel group and minimal change in the control and ZA groups. * 

indicates a significant difference from the control group (p<0.05). 
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BLI of the PPOP reporter (Figure 3.1.3) revealed an increase in caspase-3 activity in the 

docetaxel group within 1 week of treatment, which remained elevated until the end of the study. 

Control and ZA groups both remained at baseline levels throughout the study, indicating that no 

significant apoptotic activation occurred. Representative bioluminescence images for each of the 

three groups (Figure 3.1.3B) showed that a stable low level of photons were emitted from the 

tumor sites in the control and ZA groups over time, whereas an increase in photon counts in the 

docetaxel group occurred (Figure 3.1.3B).  

 

Figure 3.1.4: (A) Plots of tumor-bearing bone volume from CT. The control group 

remained stable over the first two weeks followed by a sharp decline beginning at week 3. An 

increase in the ZA group was seen by the first week and remained elevated, while a significant 

increase was not seen in the docetaxel group until week 3 and almost reached the ZA group by 

week 4. (B) Representative image isosurfaces in the three groups. Controls presented successive 

bone degradation throughout the study. ZA-treated animals showed minimal changes in bone 

structure, with only fracturing caused by tumor growth. Docetaxel-treated animals showed some 

initial degradation through week 2 followed by recovery seen by week 4. * indicates a significant 

difference from the control group (p<0.05). 

 

To monitor bone changes with therapy, μCT imaging was performed weekly and bone 

volume within the proximal tibia was quantified over the 4-week duration of the study (Figure 

3.1.4A). Within 1 week of treatment with ZA, a significant increase in bone volume was 

detected, which remained elevated throughout the study. The docetaxel group showed a delayed 

bone response, with a significant increase in bone volume observed at week 3. Control mice 

were found to have a stable total bone volume until week 3 followed by significant bone 
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degradation. Representative images (Figure 3.1.4B) show progressive bone degradation in the 

control group throughout the study, whereas the ZA mouse’s bone seemed to have stabilized 

even though growth of the soft tissue tumor appears to be fracturing the bone in certain 

weakened locations. Docetaxel-treated mice showed delayed bone response, with significant 

recovery by week 4. 

 

Figure 3.1.5: Bar plots of fluorescent signals in the tumor-bearing leg from (A) 

Osteosense
 
800 and (B) CatK

 
680-FAST are presented as values normalized by the non-tumor-

bearing leg. The ZA group showed no significant difference from controls with either fluorescent 

probe, but the docetaxel group showed significant increases in Osteosense
 
800 uptake (A, black 

bar) on weeks 2 and 4 and a significant drop in CatK
 
680-FAST signal (B, black bar) on week 4. 

* indicates a significant difference from the control group (p<0.05). 

 

Fluorescence imaging (FLI) was performed to obtain a more functional assessment of 

bone remodeling, with Osteosense 800 indicating the extent of bone reformation and activatable 
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CatK 680-FAST indicating the level of osteolytic activity. The plots in Figure 3.1.5 show that 

significant bone remodeling changes occurred at weeks 2 and 4 in the docetaxel-treated group, 

whereas there was no significant change detected in the ZA or control group. The progressive 

increase in relative Osteosense 800 signal for the docetaxel group indicated that there was a 

significant amount of bone reformation by week 2, earlier than the CT-evaluated bone response, 

which was maintained until the end of the study. CatK 680-FAST signal also showed a 

significant reduction compared to controls in the docetaxel group by week 4. The control group 

showed a progressive increase in CatK 680-FAST signal, indicating tumor growth and increased 

activation of osteoclasts. The ZA group did show attenuated CatK 680-FAST activation, which 

would be consistent with the reduction in bone loss seen by CT but was not found to be 

significant, compared to controls. 

3.1.4: Discussion 

The goal of this study was to investigate the use of multiple imaging biomarker readouts 

to interrogate interrelated biologic responses involved in the treatment of bony cancers in an 

effort to provide a more complete understanding of the overall biologic effects in vivo. Current 

preclinical studies rely heavily on histologic analysis, where a number of subjects must be 

sacrificed at each time point in the study to assess tissue responses. However, with the increasing 

variety of noninvasive imaging tools available, successful longitudinal studies may be 

strategically planned to reduce total subject numbers while maximizing the amount of 

information that can be extracted from each subject. This method will be increasingly useful for 

the evaluation of new therapies that may have multiple targets and require simultaneous 

monitoring of multiple processes. In the case of metastatic bone disease, assessments of 

treatments that affect both the soft tissue tumor and mineralized bone are important because of 

the known biologic interactions between the two as well as clinical implications in avoiding 

skeletal-related events, e.g., fracture. As newer treatments may not be directly involved in 

causing cell death or other conventionally quantifiable tissue responses, optical imaging 

techniques can be applied to assess treatment-related alterations in multiple cellular processes in 

vivo simultaneously and longitudinally over time. Optical readouts of treatment effects can be 

obtained from activatable and targeted FLI probes as well as genetically engineered tumor cells 
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whose molecular signaling events can be monitored noninvasively by BLI, which compliment 

more traditional imaging techniques such as MRI and CT. 

The use of MRI and CT for evaluation of soft tissues and bone, respectively, has long 

been established. Quantification of tissue response to therapy using these imaging modalities has 

classically been through morphologic changes such as tumor or bone volume, with the more 

recent development of functional imaging techniques such as diffusion MRI [14-19] and 

perfusion measurements acquired by MRI or CT [20-23]. The recent trend in therapeutic 

research, however, is toward modification of specific cellular signaling pathways using targeted 

agents that may not have such drastic morphologic effects. With these new agents, conventional 

imaging approaches may not have enough sensitivity or specificity to determine treatment effects 

in vivo. In this study, we have presented a multimodality approach to evaluate treatment response 

using readouts obtained through pathway-specific optical imaging techniques backed by 

conventional μCT and MRI, which are clinically relevant modalities that provide more general 

information on morphology and gross tissue characteristics. We evaluated two treatments 

representing the extremes of either tumor-specific or bone-specific therapies to more easily 

illustrate the separate effects of these agents on the complex tumor-stromal interaction. Tumor 

ADC response has been tested on a broad range of cases and shown to correlate with cell death 

and often preclude any detectable change in tumor volume [14-19], however, ADC alone cannot 

determine the mechanism of cell death. The inclusion of caspase-3–coupled bioluminescence in 

this case provides the link between treatment and the specific mechanism. The significant 

increase in normalized BLI signal in the docetaxel group over the controls indicates that, through 

caspase-3 signaling, cells are undergoing apoptotic cell death. Tumor ADC values did not show a 

significant difference between docetaxel and control groups before tumor volume. This is 

attributed to MDA-MB-231 cell lines aggressiveness and high sensitivity to docetaxel. 

FLI results using our two probes shed further light on the bone remodeling processes 

resulting from the tumor and treatments. Where μCT provides a high-resolution view of the 

current state of the bone, FLI is sensitive to the balance between processes of bone formation and 

erosion. The significant increase in the Osteosense 800 signal and dampening of the CatK 680-

FAST signal for the docetaxel group indicates that induction of tumor cell kill and subsequent 

reduction in tumor burden has inhibited the tumor-stromal interaction, i.e., “vicious cycle” [2], 

and shifted the balance of osteoblastic and osteolytic activities toward recovery. Tumor 
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apoptosis, following effective treatment by docetaxel, led to a reduction in osteoclast recruitment 

and subsequently fewer cathepsin-K–expressing cells in that region, where even MDA-MB-231 

cells have been shown to express cathepsin-K [24]. In addition, the disruption of the tumor-

stromal interaction allowed for an up-regulation of osteoblastic activity as evidenced by an 

increase in Osteosense 800 signaling. As expected, treatment with ZA had no effect on tumor 

burden, suggesting that tumor signaling to the stroma was undisrupted during treatment. In 

contrast to what we observed using docetaxel, ZA did not significantly affect the Osteosense 800 

signal ratio that would have been presumed based on the μCT results where an increase in bone 

volume was observed. Although not significant, the CatK 680-FAST signaling was slightly 

reduced in the ZA group when compared to controls. This may indicate that ZA protects the 

bone by reducing the extent of osteolytic activity, in essence shifting total bone turnover in the 

presence of a tumor from bone erosion to bone formation [14-23, 25-30]. 

When using a strategy for assessing the efficacy of a therapy using a multimodality 

imaging approach, it is important to take into account the limitations of the desired imaging 

modalities when planning a study. MRI and CT are both able to capture relatively high-

resolution images, providing easily quantified volume and ADC measurements, as well as being 

translated to the clinic. These two modalities, however, do not provide any information about the 

signals or mechanics of the biologic system. In contrast, the optical techniques described here 

provide detailed information on biologic processes and signaling but are confined to preclinical 

use. BLI and FLI are known to present challenging hurdles for in vivo quantification, such as 

assumptions of light attenuation and scattering through tissues, limited spatial resolution, and 

error in the injected probe/substrate. In the presented work, the fluorescent signal in the tumor-

bearing leg was normalized by the signal in the sham leg to account for variability of injection 

and heightened Osteosense 800 signal in the growth plates. The poor image resolution of FLI 

complicates matters further by having to contend with spillover signal from the growth plates. 

Nevertheless, with an established imaging protocol for acquiring data, care in image post-

processing, and an appropriate model, these limitations can be overcome to provide a full picture 

of the effects of a therapeutic agent on a tumor-stromal microenvironment. 

Overall, the experiments presented here demonstrate the use of multimodality imaging 

techniques for detection and quantification of multiple interrelated biologic processes affected by 

therapeutic intervention in a model of metastatic bone disease. Although the treatments were 
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selected on the basis of their current clinical relevance and their targeted effects on bone or 

tumor cells, this generalizable approach is anticipated to be useful in future studies identifying 

responses to experimental agents by obtaining a more complete understanding of the signaling 

pathways affected. These and other cancer cell lines have already been successfully engineered 

to express luciferase linked to cellular signals such as AKT, TGF-β, c-MET, epidermal growth 

factor receptor (EGFR), and others [25, 28, 30-32]. In addition, a wide variety of in vivo 

fluorescent agents (activatable and targeted) are already available, for imaging of many diseases. 

Selection of optical imaging agents, cell lines, and other imaging modalities, such as 

permeability MRI for measuring tumor vasculature, requires careful evaluation of which 

experimental readouts provide the most relevant information for assessing the efficacy of a novel 

agent as a single or combination therapy. 

In summary, experimental therapeutic agents have traditionally relied on anatomic and 

functional imaging readouts of treatment response. With the emergence of optical imaging 

approaches including reporter cell–based constructs and activatable and targeted exogenously 

administered probes, the interdependence of treatment responses due to complex tumor-host 

interactions can be more fully delineated. BLI and FLI in vivo methods may be tailored to most 

diseases and treatment interventions and are complementary to MRI and CT imaging readouts. 

The use of a multimodality imaging strategy is anticipated to provide the pharmaceutical 

industry with cost-effective and efficient options for furthering overall drug development 

strategies. 
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 Parametric Response Map of CT Bone Chapter 4:

4.1: Detection of Bone Loss in a Rodent Model of Osteoporosis 
Included with permission from Elsevier: 

Hoff BA, Kozloff KM, Boes JL, Brisset JC, Galbán S, Van Poznak CH, Jacobson JA, Johnson TD, Meyer 

CR, Rehemtulla A, Ross BD, Galbán CJ. Parametric response mapping of CT images provides early 

detection of local bone loss in a rat model of osteoporosis. Bone. 2012 Jul;51(1):78-84. 

4.1.1: Introduction 

Osseous bone is a dynamic system naturally altering its microenvironment through 

osteolytic and osteoblastic processes throughout an individual's life. Factors that include lifestyle 

changes, pregnancy, hormonal status, disease and age can alter the homeostasis of bone resulting 

in increasing bone loss. This will lead to bone weakening and possibly orthopedic complications, 

such as fractures, that will have a direct effect on a patient's quality of life. Approximately 50% 

of women and 25% of men over age 50 will have osteoporosis-related fractures in their 

remaining lifetime [1] with 71% of patients over 90 years old showing signs of osteoporosis [2]. 

Osteoporosis is both a clinical as well as a financial burden with costs from osteoporosis-related 

fractures projected to reach 25.3 billion by 2025 [3]. Current clinical management of these 

patients is to continually evaluate bone mineral content in an effort to identify weakened limbs 

and avoid skeletal-related events (SRE). 

Dual-energy X-ray absorptiometry (DXA), a planar imaging technique, is employed as a 

quantitative imaging tool for the diagnosis of bone mineral insufficiency [4-7]. This imaging 

method provides a highly accurate measure of bone mineral density with subjective spatial 

context. Quantitative measurements from DXA are typically obtained through summary statistics 

from a region of interest where inclusion of healthy bone with those showing weakening will 

attenuate the sensitivity at identifying early bone loss. Three-dimensional imaging techniques, 

such as computed tomography (CT), have led to the development of protocols to quantify local 

bone changes over time [8]. Although CT provides higher spatial detail over DXA, as of yet no 
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real clinical gains have been made as CT suffers from the same deficiencies when acquiring 

quantitative measurements of bone loss as DXA. With increasing therapeutic options for treating 

osteoporosis such as bisphosphonates and RANKL inhibitors, there is a clear unmet clinical need 

to identify early and locally weakened bones to circumvent the onset of SREs. With the correct 

tools, treatment decisions could be made quickly, based on imaging results, to individually 

optimize therapy and orthopedic correction surgeries. 

Since its introduction in 2005, the parametric response map (PRM) when applied to 

quantitative imaging has been shown to improve the sensitivity at identifying early treatment 

response in cancer patients and is predictive of overall survival over what can be achieved using 

summary-statistical methods [9-15]. In brief, the PRM method involves spatially aligning serial 

pre- and mid-therapy quantitative images then individually classifying voxels based on the extent 

of change in the quantitative metric within the voxel. As such, the quantitative value within a 

tumor voxel may increase, decrease, or remained unchanged following treatment. Relative 

volumes of the three classifications are determined and used as outcome measures of response. 

At present, PRM has been demonstrated on different MRI-based quantitative imaging 

approaches, such as diffusion and perfusion MRI (in the case of diffusion MRI, PRM was 

referred to as the functional diffusion map) [10-18], as well as a variety of tumor types and 

locations [9-15, 17]. 

Although PRM analysis has been used exclusively for assessing therapeutic response in 

cancer, this technique may also offer a sensitive measure of bone tissue changes in patients 

suffering from bone loss, such as osteoporosis. To test its efficacy at identifying local changes in 

bone density resulting from an intervention (e.g. disease or treatment), we applied the PRM 

method to serially acquired CT data from a well-established rat model of osteoporosis [19, 20]. 

Animals were subject to ovariectomy (OVX) procedures, or sham for control, and legs were 

monitored weekly using CT imaging for four weeks following surgery. In the OVX model, it has 

been well documented that removal of the ovaries initiates bone degradation due to hormone 

deprivation that results in reproducible bone loss, characterized by site-dependent decreases in 

overall bone mass as well as diminished trabecular structure and cortical expansion [19, 20]. 

Volume fractions of increased Hounsfield unit (HU) value (PRMHU+) or decreased HU value 

(PRMHU−) as well as total bone volume (BV) and bone mineral density (BMD) were assessed 

temporally as clinically relevant measures of bone loss. After the fourth week of imaging, 
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animals were sacrificed and tibiae were harvested for μCT ex vivo imaging. We found that 

PRMHU− was able to detect bone mineral changes in the OVX model as early as two weeks post-

surgery while providing detailed spatial information on the extent and location of bone loss, 

while standard in vivo measurements of BMD changes based on statistical summary techniques 

were not detectable until 3 weeks post-surgery. Assessment of these clinically relevant measures 

of bone loss suggests that PRM may provide additional sensitivity as well as spatial information 

over standard approaches that can be used by clinicians for the early diagnosis of bone 

weakening and osteoporosis. 

4.1.2: Methods 

Animal model 

Twelve female Sprague Dawley rats, 16 weeks old, were obtained from Charles River 

Labs and housed randomly in cages (2 per cage) fed with standard rat chow and tap water. Rats 

were randomly divided into ovariectomized (OVX, n=8) and sham-operated control (n=4) 

groups. When the rats were 17 weeks old, bilateral ovariectomy operation from a dorsal 

approach was performed on the OVX group, while surgery with no ovary removal was 

performed on the Sham animals. Ovariectomy was performed using standard protocols [21]. 

Briefly, animals were given 0.3 mg/kg buprenorphine pre-operatively and anesthesia was 

achieved using 5% isofluorane in 1 l/min oxygen until unconscious. The eyes were lubricated 

and all animals received a bolus dose of 5 ml warmed Lactated Ringers subcutaneously. Rats 

were then maintained on a warming table during surgery. The site of incision as shaved and then 

prepped using warm chlorhexidine and saline. Skin incisions were made from the second to fifth 

lumbar vertebrae on each side, about 2 cm in length, using a scalpel blade. The retroperitoneal 

incisions were made ventral to the rector spinae muscles just caudal to the last rib. The ovaries 

were exteriorized by gentle retraction, and then a 5–0 Vicryl suture was placed around the cranial 

portion of the uterus and uterine vessels followed by removal of the ovary, oviduct and a small 

portion of the uterus. Skin and peritoneum incisions were closed with 5–0 Vicryl sutures, and 

then rats were recovered under heat lamp until ambulatory. A second dose of buprenorphine was 

administered 8 h post-surgery and incisions were observed daily until fully healed. The animal 

experiments described in this study complied with all relevant federal and institutional policies. 
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μ Computed tomography (μCT) 

In vivo imaging was performed on a Siemens Inveon system with the following 

acquisition parameters: 80 kVp, 500 μA, 300 ms exposure time, 501 projections over 360°, 49.2 

mm field of view (FOV, 96.1 μm isotropic voxel size). Imaging was performed one day prior to 

surgery and days 6, 13, 20, and 27 post-surgery, capturing both tibiae as well as the distal femora 

of each rat. Right tibiae and femora were excised on day 28 post-surgery and stored in PBS-

soaked gauze at −20 °C until ex vivo μCT imaging was performed.  

Ex vivo μCT imaging was performed on a General Electric eXplore Locus SP system 

with the following parameters: 80 kVp, 80μA, 1600 ms exposure time, 400 projections, 0.5° per 

projection, 4 frames averaged per projection, 18 μm isotropic voxel size. For imaging, the 

sample was submerged in water, and X-rays were pre-filtered using 0.02” aluminum. Each image 

captured the proximal tibia, from the tibial head to about 20 mm distally. 

In vivo image analysis 

PRM analysis was performed using Matlab (Natick, MA) algorithms developed in-house. 

In vivo CT images were converted to Hounsfield units using a 0 HU phantom on each time point. 

All post-OVX image time points were registered to baseline images using mutual information as 

an objective function and simplex as an optimizer [22]. Registration was automatic and assumed 

rigid-body geometry, meaning rotation and translation only. Bone volumes of interest (VOI) 

were contoured on the baseline image using an automatic segmentation algorithm, selecting the 

tibia from the tibia/fibula junction to the proximal tibial head. Images were analyzed for bone 

volume fraction relative to total bone volume (BV/TV) and bone mineral density (BMD) using a 

threshold of 600 HU for selecting mineralized bone tissue. Parametric response maps of 

quantitative CT as expressed in Hounsfield units (PRMHU) were generated over the same region 

by first calculating the difference between the Hounsfield units (ΔHU = HUpost-surgery−HUpre-

surgery) for each voxel within the bone pre- and post-surgery. Individual voxels were classified 

based on the extent of change observed in ΔHU. Voxels yielding a ΔHU greater than a pre-

determined threshold were designated red, decreased by more than the threshold were designated 

blue, and otherwise designated green (indicating no significant change from pre-surgery). 

Volume fractions of the total bone were calculated for the three classifications: PRMHU+ (red 

voxels denoting increased HU), PRMHU− (blue voxels denoting decreased HU), and PRMHU0 

(green voxels denoting unchanged HU). The threshold that designates a significant change in HU 



81 

 

within a voxel was empirically calculated from one random subject imaged twice on the same 

day, separated by an interval of one hour. Following registration and conversion to HU of the 

two images from the same animal, a linear least squares analysis was performed and the 95% 

confidence interval was determined for use as the PRM threshold, which was set as ± 391 HU. 

Ex vivo image analysis 

Ex vivo images were analyzed at week 4 post-surgery to verify that significant changes in 

bone microenvironment had occurred following ovariectomy in this well-established model of 

osteoporosis relative to sham animals. Images were analyzed using MicroView (GEHC). 

Trabecular VOI were drawn by hand and extrapolated between slices over a 3 mm-long region 

near the proximal tibia. Measures of mean trabecular thickness (Tb.Th), trabecular spacing 

(Tb.Sp), total bone volume (BV), bone volume fraction (BV/TV), mean bone mineral density 

(BMD), and structure model index (SMI) were analyzed. Cortical bone VOI were automatically 

delineated over the bottom four slices from the trabecular VOI. Measures of mean cortical 

thickness, cross-sectional area, and inner and outer perimeters were analyzed. 

Data and statistical analysis 

Data is presented as the mean ± the standard error of the mean (SEM). Differences in 

outcome measures between groups at each time point was determined by a two-tailed, unpaired 

Student's t-test with p < 0.05 denoting significance.  

4.1.3: Results 

Comparison of PRMHU and standard whole-bone analyses  

To assess the effectiveness of the PRM method at identifying bone loss we analyzed 

weekly μCT images using PRM compared to mean BV/TV and BMD between groups. Analysis 

was constrained to tibial bone from proximal tibial plateau distally to tibia/fibula junction 

segmented on the baseline image. The results in Figure 4.1.1 show that BV/TV and BMD were 

significantly different between groups by week 3. In the OVX group, BV/TV decreased by 3.1 ± 

0.6% at the end of the study. BMD decreased by 4.2 ± 1.0% on week 3 but saw no further 

change the following week (week 4).  
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Figure 4.1.1: Plots of relative change in (A) bone volume fraction, BV/TV, and (B) bone 

mineral density, BMD, over the study time period. Quantitative values from registered images 

were determined from a volume-of-interest over the proximal tibial plateau distally to the 

tibia/fibula junction on baseline images. Differences between groups were not seen in either 

BV/TV or BMD until week 3 post-OVX, with decreases of 4.4±1.0% (p=0.002) and 3.4±1.1% 

(p<0.001), respectively, in the OVX group at the end of the study. Data is presented as group 

mean ± SEM. Significant difference between groups was assessed at p<0.05 and indicated by *. 
 

 

Figure 4.1.2: Bar plots showing the volume fraction of (A) increased HU, PRMHU+,  and 

(B) decreased HU, PRMHU-. The OVX group showed a significant increase in PRMHU+ on week 

2 which disappeared at later time points and a progressive increase in PRMHU- until the end of 

the study. For week 1 PRMHU-, group differences were nearly significant, with p=0.08. Data is 

presented as a group mean ± SEM. Significant difference between groups was assessed at p<0.05 

and indicated by *. 
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Figure 4.1.3: Representative PRM images from (A) an OVX animal and (B) a sham 

animal, displayed as an axial slice over time (from left to right: weeks 0 to 4, respectively). The 

position of the slice shown is indicated by the yellow box on the surface rendering to the left of 

the PRM results. For each representative animal, (i) grayscale images, (ii) PRM overlays, and (ii) 

PRM scatterplots of individual voxel changes show a decrease in cancellous bone mineral over 

time (blue in the PRM). 
 

Ex vivo μCT measurements of tibial trabecular and cortical bone 

The PRM method, with spatial sensitivity, revealed trabecular bone loss as well as 

cortical expansion in the OVX group. Figure 4.1.2 shows PRM analysis with a representative 

axial slice through the CT image (i–ii) and the scatter plot with pre-surgery HU on the x-axis and 

post-surgery HU at a specific time on the y-axis for the entire VOI (iii) over the study time 

period. The representative slice shown near the proximal tibial plateau was chosen to include 

changes in both trabecular and cortical bone. Trabecular degradation is apparent in the OVX 

animal, PRMHU−, seen as blue in the PRM overlay and scatterplot. Also in the OVX group, 

PRMHU+ (red voxels) indicates a shift in the cortical bone outward, reflecting cortical expansion. 
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These two changes in bone structure are typical of this osteoporosis model [19]. In contrast to the 

OVX animal, the sham animal had very little change in PRM metrics. The few red and blue 

pixels observed were the result of natural bone growth and reflected modeling changes 

associated with skeletal growth. 

 

 

Figure 4.1.4: Representative images of ex vivo images of proximal tibiae four weeks post-

surgery. (A) Surface renderings show regions used for ex vivo analysis (yellow boxes) of 

trabecula (left) and cortex (right).  (B) Maximum intensity projections from a middle slab 

(200m thick) show a clear difference between OVX and Sham animals. (C) Surface renderings 

of OVX (Left) and Sham (Right) trabecular bone (location indicated by yellow box in B) show a 

significant drop in trabecular structure following OVX surgery. (D) Surface rendering of region 

used for cortical analysis, excluding the trabecular region. (E) Parameters obtained from 

trabecular (left) and cortical (right) analyses. 
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Table 4.1.1: ex vivo Trabecular Bone Analysis. 

 

Table 4.1.2: ex vivo Cortical Bone Analysis 

 

The mean volume fractions, PRMHU+ and PRMHU−, from both groups were monitored 

over the study time period (Figure 4.1.3). The PRMHU+ results showed a temporary increase on 

week 2 over control values. This significant difference was lost after week two indicating a 

transient remodeling effect on OVX animals. The PRM map shows that the majority of PRMHU+ 

is along the bone's outer edge, indicating that this increase is due mainly to cortical expansion. 

The subsequent loss of significance between groups is likely normal bone growth in the sham 

group catching up with the remodeling effect in the OVX group. The PRMHU− plot (Figure 

4.1.3B) reflects progressive bone loss which is characteristic of this animal model, with 

significantly higher PRMHU− values observed in OVX than sham animals at all time-points after 

week 1 post-surgery. As shown in Figure 4.1.2, PRMHU− voxels are primarily found in the 

cancellous bone space and indicate loss in trabecular bone mass. The increase is nearly 

significant even at the week 1 imaging time point (p=0.083). By the end of the study, at 4 weeks 

post-surgery, OVX and sham groups resulted in bone loss as measured by PRMHU− of 16.0% (± 

2.3) and 2.5% (± 0.8), respectively (p < 0.001). 

To verify that OVX animals had undergone extensive bone loss following surgery 

relative to sham, we performed ex vivo μCT after 4 weeks on all animals in the study. Images 

were acquired with 18 μm resolution allowing quantification of trabecular structures. Figure 
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4.1.4 illustrates the process of analysis for both trabecula and cortex, with resulting 

measurements. Figure 4.1.4A indicates the location of the trabecular analysis slab (left), region 

for maximum intensity projection (MIP) in B (middle), and slab for cortical analysis (right) as a 

yellow box. Figure 4.1.4B shows representative MIP images for OVX and sham animals, with a 

clearly lower trabecular bone mass in the OVX animal. Figure 4.1.4C shows representative 

isosurfaces for the two groups, taken from the yellow region indicated in B. Figure 4.1.4D shows 

an isosurface of the cortical bone from a representative animal, which was used for cortical 

analysis. Resulting measurements are listed in Figure 4.1.4E, and group means are shown in 

Tables 4.1.1 and 4.1.2 for trabecular bone and cortical bone, respectively. Significant differences 

were seen between groups in all trabecular measurements, indicating degradation of trabecular 

structure. Structural model index (SMI) measurements quantify the extent of rod- or disk-like 

shaping of the trabecular lattice, with higher values indicating more rod-like and lower indicating 

more disk-like shaping. Cortical measurements of average thickness, inner, and outer perimeters 

also showed significant differences between groups. Larger perimeters and decreased cortical 

thickness in the OVX group indicate significant cortical expansion, which is consistent with this 

model. No significant change in cross-sectional area indicates that remodeling occurred without 

significant loss of total cortical bone. 

4.1.4: Discussion 

The goal of this study was to evaluate voxel-based PRM analysis of bone mineral 

changes using in vivo μCT and compare these results to those determined using conventional 

measures of bone mineral density and bone volume. Toward this end we used a well-documented 

model of osteoporosis in rats in which removal of the ovaries initiates bone degradation due to 

hormone deprivation. This animal model has been shown to result in highly-reproducible bone 

loss, characterized by site-dependent decreases in overall bone mass as well as diminished 

trabecular structure and cortical expansion [19, 20]. Clinical osteoporosis is characterized by 

decreases in either bone mineral density (BMD) or bone mineral content (BMC) of over 2.5 

standard deviations below the young adult reference mean (−2.5 T-score), which leads to 

increased fragility and consequently a greater risk of SREs [19]. It is reported that the earliest 

time of statistically detectable cancellous bone loss is approximately 14 days post-OVX in this 

animal model [19, 23]. In this study, PRM showed a near-significant change in PRMHU− by one 
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week post-surgery, which became significant 2 weeks post-OVX, well before any significant 

difference in BMD was detected. In addition to being an early biomarker of bone remodeling, 

PRM also provided locally-resolved spatial information revealing bone degradation and growth 

which was not attainable by BMD measurements.  

Historically, the most utilized method of tracking bone mineral changes in vivo has been 

dual-energy X-ray absorptiometry (DXA). This method, although highly accurate in its 

measurements, is limited in its ability to provide spatial information. The attractiveness of DXA 

in most cases is its measurement accuracy as well as its minimal exposure to ionizing X-rays. 

Doses from quantitative CT imaging can be hundreds of times higher than DXA, but provide 3D 

voxel sizes able to resolve bone micro-structures. Despite the widespread usage of BMD, recent 

studies have indicated that measurement of BMD alone is insufficient for evaluation of bone 

strength [24-27]. Recent studies have explored the use of high resolution CT imaging to model 

bone mechanical characteristics in order to predict fracture risk through finite element analysis 

(FEA) [25, 28-30]. Until recently, mechanical properties of bone were tested ex vivo, requiring 

the use of a large number of animals to provide sufficient data points. Several recent studies have 

shown great accuracy in predicting fractures in femoral and vertebral cases using FEA [29, 31]. 

However very powerful computing hardware is necessary for this technique, especially when 

using nonlinear modeling strategies and the constraints and limitations in application are not yet 

fully understood. Using the spatially resolved bone changes obtained from PRM analysis, 

evaluation of increased fracture risk may be predictable without such rigorous computational 

modeling making this technique more clinically relevant. PRM has the capability of monitoring 

global bone mass changes as well as identification of focal bone loss which would otherwise be 

attenuated in global bone measurements that use summary statistical methods (e.g. mean value 

over a region of interest). For this reason PRM may provide a better foundation for determining 

correctional orthopedic strategies. 

The tradeoff between resolution and imaging time (and therefore radiation dose) is well 

known. For the purposes of this study and its future clinical implications, image resolution was 

sacrificed in order to prioritize low radiation doses, below known tissue response limits [32, 33]. 

Due to the lower resolution of our in vivo measurements, quantification of such trabecular 

parameters as thickness, spacing, and SMI were not feasible. The voxel-wise comparison of HU 

in PRM, however, was able to detect loss in trabecular bone structure as a decrease in HU rather 
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than the loss in binary threshold bone volume that is typically monitored in higher resolution ex 

vivo images. PRM maps are also able to spatially resolve these changes in 3Dspace, allowing for 

focal changes in bone mineral density to be identified and quantified.  

Previous studies have reported results from using a longitudinal voxel-wise comparison 

approach, similar to PRM, to subjectively show spatial changes in bone mass in vivo [34-36]. 

Even though these studies performed voxel-wise comparison, it was used only for qualitative 

presentation and not quantified statistically. Schulte et al. [8] used registered high resolution μCT 

to extrapolate measures of bone formation and resorption rates in the trabecula of mouse 

vertebrae. The study focused primarily on bone histomorphometry and the processes of bone 

adaptation, and would result in high doses of ionizing radiation (IR) to achieve the level of 

resolution necessary, therefore the approach was not designed for clinical application. Since 

PRM compares quantitative Hounsfield units and not binary bone images it is able to detect bone 

structural changes without requiring excessively small resolution (and thus high IR doses). The 

experiments presented here are the first to use PRM to quantify voxel-based changes in bone 

mass in vivo. 

Although PRM was demonstrated here on a model of osteoporosis, PRM analysis may 

have wider clinical applications. Bisphosphonates, used clinically for several years, inhibit the 

resorption of bone by osteoclasts [37]. Interestingly, the degree of fracture risk reduction 

following bisphosphonate therapy is not well explained for by changes in bone mass alone. 

Following 1 year of Risedronate therapy in 2087 individuals, Watts et al. [38] found that fracture 

risk reduction was not dependent on change in BMD, indicating that other factors such as 

remodeling of bone geometry, etc. must play significant roles. PRM analysis may provide a 

sensitive biomarker of bone response to these therapies, leading to prediction of overall outcome 

by direct observation of local sites of anabolic or anti-catabolic effect. Another application of 

PRM is in the assessment of bone response to metastatic cancer [35] where diseases 

characterized by low bone mass and deterioration of microarchitecture often lead to bone 

fragility [5, 19, 39]. Skeletal metastases develop in approximately 70–80% of patients with 

breast or prostate primary cancer, with over 250,000 and 100,000 deaths worldwide each year 

from breast and prostate cancer, respectively [40]. Cancer that has metastasized to the bone may 

present osteolytic, osteoblastic, or a mix of these characteristics. Patients presenting with these 

diseases have a high risk of incurring fractures, resulting in patient pain and increased morbidity. 
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Local changes in bone mass due to metastatic disease can significantly impact the mechanical 

integrity of the skeleton, leading to focal sites of high fracture susceptibility [41]. PRM analysis 

may provide a unique and sensitive measure in differentiating the osteoblastic and osteolytic 

sites which would be highly valuable in strategizing corrective therapy based on local fragility. 

Recent studies have uncovered a close interaction between bone and cancer metastases through 

molecular signaling [42], in which growth of the cancer is highly dependent on the remodeling of 

the surrounding bone. PRMHU analysis may also prove clinically useful in the identification of 

initial forming micro-metastases in the bone and in assessing treatment efficacy for targeted 

therapies that disrupt the molecular signaling between bone and cancer. 

In conclusion, PRM proved highly sensitive in the detection and spatial localization of 

bone mass changes resulting from osteoporosis. Spatial identification of focal sites of bone loss 

over time will provide many new opportunities for clinical application. The voxel-wise analysis 

of registered serial data is a highly flexible tool, and can be applied to a variety of bone disease 

pathologies to provide for detection of spatially varying changes in CT skeletal images over 

time. 

4.2: PRM Detection of Bone Metastasis Response 

4.2.1: Introduction 

Prostate cancer is a leading cause of death in men, with the highest overall incidence rate 

[43] and the majority of fatal cases resulting from metastatic disease. Approximately 90% of 

patients presenting with advanced prostate cancer develop bone lesions [44]. At present there are 

no approved methods for quantifying treatment response in boney metastases. Although 

quantification of systemic plasma levels of prostate-specific antigen (PSA) has shown promise as 

a surrogate biomarker of treatment response, it has not been validated in clinical trials as a 

reliable predictor of patient survival. The high prevalence of this disease and lack of quantitative 

readouts of treatment response highlight the need for new imaging and analysis strategies for the 

evaluation of metastatic bone disease. 

Metastatic bone lesions may affect the surrounding bone by either breaking it down 

(osteolytic) or building/remodeling (osteoblastic), both of which may result in compromised 

bone structure and risk of skeletal-related events. The dependence of metastatic tumor growth on 

its local environment is well documented. Tumor-stroma interaction in the case of bone 
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metastases relies heavily on the release of bone-derived Transforming Growth Factor (TGF-)  

through tumor-initiated bone erosion and remodeling [45]. This interaction has spurred interest 

in developing therapies that treat not only the tumor, but the bone as well. As understanding of 

the cellular mechanisms of this cancer growth, new treatment strategies are continually under 

development. It is also now apparent that assessment of treatment response may benefit greatly 

from evaluation of both soft-tissue tumor changes as well as changes in the tumor micro-

environment. For bone metastases this would mean detecting bone density changes, for which x-

ray CT imaging is well-equipped.  

The PRM method has shown promise in detecting soft-tissue changes after chemotherapy 

in apparent diffusion coefficient (ADC) maps [9-11, 14-16, 46], and more recently in bone 

density changes, as changes in Hounsfield units (HU), in a well-established animal model of 

osteoporosis (Chapter 4.2.1, [47]). The OVX animal model produced predictable systemic bone 

mineral density decreases which were detected very early after ovariectomy by PRMHU. One of 

the great strengths of PRM analysis, however, is its ability to detect localized changes. Most 

bone changes due to metastatic involvement occur at the border of the lesion. PRM analysis, 

applied to CT images of bone metastases, may provide an invaluable tool for assessing localized 

response to treatments targeting the tumor-stromal interaction.  

In this study, PRMHU was evaluated as a biomarker for assessing bone response to 

treatments targeting either the bone (zoledronic acid, ZA) or the tumor (docetaxel). Two prostate 

cancer cell lines, with distinctly different osteolytic/osteoblastic activity, were used to evaluate 

PRM at detecting early bone turnover following metastases and treatment by either ZA or 

docetaxel. The results showed that PRMHU analysis provided early predictive value in assessing 

response to both of these treatments and in both tumor models. A clear distinction between the 

two cell lines was also present, which may provide useful insight into the behavior of an 

individual lesion. PRM results also correlated well with measurements of tumor volume and 

water diffusion changes in the tumor. In conclusion, PRMHU analysis shows a high potential for 

evaluation of boney metastasis. 
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4.2.2: Methods 

Tumor Models 

The internal University Committee on Use and Care of Animals (UCUCA) approved the 

experimental protocols used for this study. Before implantation, cells were harvested by 

trypsinization, counted, and re-suspended in serum-free medium for injection. Male severe 

combined immune-deficient (SCID) mice were implanted with intra-tibial injections of or 5x10
5
 

in 10l at about 4-6 weeks of age as previously described (p.64). Animals were maintained 

according to the NIH standards established in the “Guidelines for the Care and Use of 

Laboratory Animals”.  

PC3: Osteolytic Prostate Cancer 

Androgen independent (hormone refractory) human prostate cancer (PC3) cells were 

initiated from a bone metastasis of a grade IV prostatic adenocarcinoma from a 62-year-old male 

Caucasian. PC3 cells were transfected with a luciferase-encoding pLazarus retroviral construct 

using Fugene 6 (Roche Applied Science, Indianapolis, IN) per manufacturer’s instructions.  

LAPC-9: Osteoblastic Prostate Cancer 

LAPC-9 xenografts were derived as previously described [48, 49]. The clinical material 

was propagated as sub-cutaneous xenografts in SCID mice until implantation [50]. 

Treatments 

Zoledronic Acid 

The effect of zoledronic acid (ZA, LKT Laboratories, St. Paul, MN) treatment was 

evaluated on an early-metastasis PC3 tumor model (n=9) and compared to controls (n=4, treated 

with a equivalent volume of PBS). For those mice implanted with PC3, treatment was 

administered subcutaneously in doses of 5mg/kg twice weekly for four treatments, starting three 

days post-implantation, immediately after imaging. 

Docetaxel 

The effect of docetaxel (Taxotere, Sanofi-Aventis, Bridgewater, NJ) was evaluated on the 

LAPC-9 established tumor model (treated: n=3; controls: n=6). Mice were administered a single 

intraperitoneal dose of 20mg/kg in 10% DMSO solution. Treatments were administered starting 

when tumor volumes, as measured by anatomical MRI, reached 7-15mm
3
. For the purposes of 

this manuscript, the day of the first treatment administration will be referred to as day 0. 
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Imaging 

µComputed Tomography 

Imaging of the early-metastasis PC3 animals were imaged on days 0, 3, 7, and then 

weekly post-implant, and LAPC-9 animals were imaged weekly. μCT images were acquired 

using a Siemens Inveon system with the following parameters: 80 kVp, 500 μA, 300-ms 

exposure, 501 projections over 360 degrees, and 49.2-mm field of view (56-μm voxel size). 

MRI 

MRI was performed using a 9.4-T, 12-cm horizontal bore DirectDrive System (Agilent 

Technologies, Palo Alto, CA) with a quadrature mouse head coil (m2m Imaging Corp, 

Cleveland, OH). Images of the tumor-bearing leg were acquired twice weekly starting from the 

day before treatment initiation. Diffusion-weighted images were acquired using a spin-echo 

sequence with navigator echo motion correction and gradient waveforms sensitive to isotropic 

diffusion [51] using the following parameters: repetition time/echo time = 4000/37 ms, field of 

view = 20 × 20 mm, matrix size = 128 × 64, slice thickness = 0.5mm, slice number = 25, and b-

values (diffusion weighting) of 120 and 1200s/mm
2
. Following image acquisition, data that 

included manually drawing volumes of interest on the high diffusion-weighted image to compute 

tumor volumes and diffusion values were stored for analysis. Tumor volumes and apparent 

diffusion coefficient (ADC) values were quantified over time to monitor tumor burden and 

cellularity, respectively.  

Image Analysis 

Volumes-of-interest (VOI) were generated using image thresholding to encompass the 

bone volume (including marrow/trabecular space) surrounding the tumor location, specifically 

the tibia from tibial plateau to tibia/fibular junction. 

Parametric response maps (PRM) were generated by first co-registering post-treatment 

images to corresponding pre-treatment images, and then each image voxel was categorized into 

one of three groups: increase (PRMHU+, red), decrease (PRMHU-, blue), or no significant change 

(PRMHU0, green).  Image co-registration was performed using an automated iterative image 

warping algorithm with a cost function of mutual information (MIAMI Fuse™, University of 

Michigan). A voxel value change was considered significant (red or blue category) if |ΔHU| was 
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greater than 391 HU. This cutoff was pre-determined as the 95% confidence interval for these 

models. 

Statistics 

Significant difference between groups was assessed using an unpaired Student’s t-test 

with p < 0.05, and designated with an asterisk on plots. All data on plots are presented as mean ± 

standard error of the mean (SEM). 

4.2.3: Results 

Treatment with zoledronic acid administered early in the establishment of PC3 intra-tibial 

tumors resulted in bone protection from the tumor’s osteolytic activity and resulting retardation 

of tumor growth (Figure 4.2.1A), with significantly smaller tumors than ZA treatment animals at 

3 weeks post-implantation (p=0.005). Control tumors were un-inhibited in their bone erosion, as 

seen in Figure 4.2.1 B-top and D as progressive increase in PRMHU- (blue). In contrast, animals 

treated with ZA showed a marked increase in bone density as indicated by PRMHU+ (red) (Figure 

4.2.1B-bottom and C) with no significant increase in PRMHU- (Figure 4.2.1D). Surface 

renderings of the tibiae from control animals (Figure 4.2.1B) show the progressive deterioration 

of the bone leading to nearly complete bone destruction in the vicinity of the implant site. Three 

weeks post-implantation, water diffusivity in the tumor, as quantified as ADC, was significantly 

lower in the ZA group than controls (p=0.036), however due to the very small size of the lesions 

and limitations in image resolution this may simply be a partial-volume effect. Although not 

significant at 3 days post-treatment initiation, animals treated with ZA were found to have 

substantially higher bone density than controls as determined by PRMHU+ (p=0.06). A significant 

difference between groups was reached at one week post-treatment initiation. An increase in 

bone density was also observed in the non-tumor-bearing tibiae, with a significant difference 

between groups at two weeks post-treatment (p=0.013, not shown). 
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Figure 4.2.1: PC3 implantations treated with zoledronic acid show a bone-protective 

effect. (A) MRI tumor volume and ADC determined at day 21 post-treatment-initialization 

shows a retardation of tumor growth and significantly lower ADC in the zoledronic acid treated 

animals. (B) Representative images for a control (top) and ZA-treated (bottom) mouse showing 

(from top to bottom) an isosurface, CT slice, PRM overlay, and PRM scatterplot from pre-

treatment to 21 days post-treatment. (C) PRMHU+ bar plot shows significantly higher volume of 

bone that increased in density after treatment compared to controls. (D) PRMHU- bar plot shows 

minimal loss of bone in the ZA-treated group, compared to progressively increasing bone loss in 

the controls. 
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Figure 4.2.2: LAPC-9 tumors showed a slower mixed PRMHU+/- response with docetaxel 

treatment compared to PC3. (A) Time plots of tumor volume (solid line) and ADC (dashed line) 

show successful response to treatment as volume shrinkage and ADC increase. (B) 

Representative images for a control (top) and docetaxel-treated (bottom) mouse showing (from 

top to bottom) an isosurface, CT slice, PRM overlay, and PRM scatterplot from pre-treatment to 

21 days post-treatment. (C) PRMHU+ bar plot over time shows more bone density increase in the 

docetaxel-treated group compared to controls, significant on days 14 and 21. (D) PRMHU- bar 

plot over time shows very little bone loss in the treated group compared to elevated bone mineral 

loss in the controls (though not significant in this study). 
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Figure 4.2.3: PRMHU plots over time compare un-treated bone changes in PC3 

(diamonds, solid line) to LAPC-9 (squares, dashed line) intra-tibial tumors as quantified by (A) 

PRMHU+ and (B) PRMHU-. Significant difference between groups is denoted by an asterix, *. 

 

Chemotherapy of the established LAPC-9 tumor model resulted in bone normalization 

following tumor therapeutic response (Figure 4.2.2). Tumors were observed to show a 

substantial drop in volume (48 ± 3.7% by week two) and increase in ADC (13 ± 1.2% by week 

two) characteristic of an effective treatment (Figure 4.2.2A). PRMHU analysis (Figure 4.2.2B-D) 

revealed mixed bone remodeling due to the tumor’s known osteolytic and osteoblastic activity, 

with progressive increases in both PRMHU+ and PRMHU- in the control group. Chemotherapeutic 

intervention in this model resulted in higher values in PRMHU+, significant at week 2 (p=0.007), 

and a general decline in PRMHU-. Surface rendering of the tibiae (Figure 4.2.2B) shows 

progressive deformation of the bone in the control group as the tumor grows. In contrast, tibiae 
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from treated animals were found to have re-normalization of the bone structure. No significant 

differences in PRMHU- were found between groups due to the wide variance in the controls. 

PRM results from control (i.e. untreated) animals were also compared between PC3 

(osteolytic) and LAPC-9 (mixed osteolytic/-blastic) tumor models to contrast the different 

phenotypes (Figure 4.2.3). The PC3 tumor model elicited an approximately exponential increase 

in PRMHU- as a result of substantial bone loss, mirroring the expected growth of the tumor (time-

course volume data not obtained). Both PRM readouts for the PC3 model were significantly 

higher than the LAPC-9 model (PRMHU+: p=0.003 at 1 week and p=0.001 at 2 weeks; PRMHU-: 

p<0.001 at 2 weeks).  

4.2.4: Discussion and Conclusions 

The purpose of this study was to evaluate the PRM method on CT images of boney 

metastasis. Two tumor models were evaluated: one highly osteolytic model highlighting early 

establishment of metastases (PC3) with bisphosphonate intervention, and the other a mixed-

phenotype model (LAPC-9) with chemotherapeutic intervention of well-established tumors. Both 

are prostate cancer cell lines, but have greatly differing characteristics. The breast cancer cell line 

previously reported in this manuscript was also considered for comparative analysis; however 

initial analyses were problematic due to the rapid tumor growth fragmenting the bone instead of 

eroding. For this reason, the 1833 model was considered sub-optimal for the purposes of this 

study and was not included. 

The PC3 cell line is well-documented and known to exhibit highly osteolytic behavior. 

Bone erosion, measured by PRMHU-, in untreated lesions exhibited an exponential trend, 

assumed to follow the growth of the tumor. PRMHU+ also showed a significant increase in the 

controls, which may be attributed to a combination of (1) bone healing from the initial cell 

implantation, (2) bone remodeling away from the lesion due to the loss of structural integrity 

around the lesion, (3) the elevated levels of mineral available in the bone environment due to the 

erosion around the lesion, (4) natural bone growth due to the young age of the mice and (5) a 

combination of the above processes. This effect may be mitigated by selecting bone regions only 

in the immediate vicinity of the tumor instead of a fixed length of bone. Treatment with ZA, 

however, had a drastic effect on the bone, increasing bone density throughout the tibia and 

resulting in significantly elevated levels of PRMHU+ over controls and very little PRMHU-. 
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Although this bone-targeted therapy was not able to completely stop tumor growth in this model, 

it did greatly inhibit tumor growth, resulting in smaller lesions after three weeks. Although ADC 

values were significantly diminished in the treated tumors, this difference may have simply been 

a result of partial-volume effects due to the small size of the lesions. PRM analysis was nearly 

able to capture these effects three days post-treatment (PRMHU+, significant at one week). The 

corresponding PRM overlay was also useful in localizing bone changes, with a large region of 

blue apparent (PRMHU-) in the tumor region of control animals compared to the red region in the 

ZA group (PRMHU+) corresponding to healing from the implantation burr hole. 

LAPC-9 tumors are also well-established, but are known to grow much slower than PC3 

tumors and exhibit both osteolytic and osteoblastic behaviors, resulting in more bone remodeling 

than bone loss. This can be seen in the PRM results for the control group (Figure 4.2.2C-D), with 

progressively increasing fractions of both PRMHU+ and PRMHU-. A chemotherapeutic response is 

observed as a decrease in tumor volume and an increase in ADC in the treatment group. In 

addition, an apparent shift in bone remodeling toward PRMHU+ and almost zero PRMHU- is also 

suggestive of a treatment induced response. The high percentage of PRMHU+ and low PRMHU- is 

indicative of a progression from the disorganized state of the bone that resulted from tumor 

involvement back toward the natural stromal structure. The observed elevated values of PRMHU+ 

in the treated group persisted throughout the time course of the study as consequence of the 

already significantly remodeled bone (significant tumor volumes) at baseline that is required for 

MRI analysis. 

In comparing LAPC-9 to PC3 PRMHU results, only data that was acquired without any 

treatment was used (data from treatment groups were included until the first post-treatment time 

point) and day 0 refers to the day of cell implantation. The slower growth of LAPC-9 tumors is 

apparent in the slow and steady increases in both PRMHU+ and PRMHU- compared to PC3. Future 

results may be clarified by the use of older mice whose bones are not still growing and possibly a 

less-damaging tumor implantation method to avoid the natural growth and healing effects present 

in the current study.  

In conclusion, this study presents clear evidence of the utility of PRM analysis for 

detecting bone changes due to varying phenotypes of boney metastasis and their treatment 

strategies. Spatially delineated characterization of bone changes using PRM is able to show 

localized treatment response in order to better understand the mechanisms and side-effects of its 
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actions. PRM methodology may be applied to bone analysis in both clinical patients and pre-

clinical studies to enhance the quantitative readouts of bone change. 
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 Conclusions Chapter 5:

Accuracy in the diagnostic interpretation of radiological images is dependent upon many 

variables and resulting image quality. Conventional image characteristics such as voxel size and 

gray scale bit depth are important factors, but significant improvements in diagnosis will likely 

rely on post-processing methods aimed toward facilitating the delineation of radiological 

findings, improving both the confidence and accuracy of the interpreter. The overarching goal of 

this research effort was to advance the development of non-invasive imaging biomarkers through 

appropriate and optimized techniques. This research effort explored the improvement of 

quantitative readout sensitivity for assessment of treatment efficacy through complementary 

multimodal imaging platforms. While region-specific histogram analysis was used, this research 

effort also explored the value of voxel-by-voxel analysis of changes in imaging readouts over 

time as a more sensitive and accurate approach for delineation of disease-related and treatment-

associated changes in the tissue of interest. Thus the proper selection of image modalities and 

post-processing techniques is most likely to significantly advance radiological practice and 

improve overall patient care. 

In my search for novel imaging biomarkers of therapeutic efficacy, I investigated the 

value in DW-MRI acquisition of extended b-values and non-linear parametric models for 

improved sensitivity and interpretation. For assessment of cancer chemotherapeutic response in 

this study, high b-value diffusion models did in fact provide a better fit to the attenuation curve 

observed in living tissue. However, my results also showed that these higher-order models did 

not necessarily provide additional information, and in fact were much less stable and required 

significantly greater imaging and post-processing time. The main, or “fast”, diffusion parameters 

all had similar sensitivity to response, but the standard mono-exponential model was found to be 

much less sensitive to noise. Thus, after careful evaluation of the possible acquisition variables 

involved with the generation of DW-MR images, it was found that due to the simplicity of its 
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analytical calculation and faster acquisition time, use of a limited number of lower b-values are 

overall more appropriate for routine clinical use.  

An additional aspect of my research effort was to investigate the use of combined 

imaging metrics from multi-modal readouts. In this regard, assessment of targeted anti-vascular 

response was undertaken utilizing DW- along with DCE-MRI. My results revealed the role of 

each modality and their relative contributions in predicting cancer response to this class of 

agents. Although there was a clear and strong response in vascular-sensitive imaging readouts 

(DCE-MRI), there was no increase in tumor ADC values which would be expected if a drop in 

tumor cellularity occurred. In fact, I observed a significant drop in ADC which was attributed to 

a decrease in tumor edema, secondary to the drug-induced decrease in neovascular leakiness. 

Thus the use of multi-modal approaches for assessment of anti-vascular treatment effects was 

shown to more fully characterize the responses of the tumor in which transient growth control 

occurred but without appreciable mortality of tumor cells. 

Imaging not only allows observations to be made on the tumor itself, but also on the host 

tissue which is important, as tumor-host interactions are well known to occur in cancer biology. 

The interactions between metastatic lesions and their micro-environment are a complex 

phenomenon which can progress to tumor propagation and infiltration into the local stroma. 

Current therapy research is aimed at disrupting this interaction, resulting in re-normalization of 

the microenvironment as well as tumor cell kill. In this context, a multi-modality imaging 

approach was explored for characterization of tumor-stromal response to standard therapies in a 

mouse model of boney metastasis. Image analysis allowed for exploration of the overall balance 

and dynamics between osteolytic and osteoblastic activity during tumor growth and therapeutic 

interventions. It was found that the complementary use of clinically-applicable and pre-clinical 

optical imaging readouts was able to provide a more comprehensive understanding of tumor-

local response to both bone-protective and tumor-targeted therapies. These findings present 

opportunities for improvement in clinical evaluation of therapeutic response as well as our 

understanding of the interconnected signaling pathways associated with tumor-stromal 

interactions using non-invasive imaging. 

Additionally, the development of improved image post-processing algorithms was 

undertaken through evaluation of a novel voxel-based analytical method termed the parametric 

response map (PRM). When applied to CT imaging, this method was shown to be sensitive in the 
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detection and quantification of spatially-varying alterations in mineral density using preclinical 

models of osteoporosis and bone metastasis. More detailed studies were also undertaken to 

evaluate the capabilities of this imaging approach for distinguishing osteolytic from osteoblastic 

phenotypes of bone metastasis in an effort to identify unique biomarker signatures for each. 

These studies demonstrated that PRM provided the capability for non-invasive detection of 

important tumor characteristics as well local bone response to interventions designed to reduce 

the process of bone erosion. These research findings are an important contribution toward 

providing new image-based diagnostic capabilities which can provide additional information to 

assist with clinical decision-making for patients with high risk of incurring skeletal related 

events. 

In conclusion, there is a strong need for optimization of imaging protocols in order to 

provide for improved diagnostic medicine as well as treatment response sensitivity. This research 

effort identified several key areas for optimizing radiological contributions towards improved 

patient management: 

• Optimized acquisition of images 

• Improvements in image post-processing 

• Multimodal image combinations to enhance diagnosis 

• Voxel-by-voxel, PRM-based analysis of images 

Overall, quantitative imaging is linked to physiological mechanisms through simplified 

mathematical models. Care must be taken in model selection to ensure accuracy and robustness 

of quantitative readouts as well as sensitivity to a physiological change. Also, multi-modal 

imaging is critical for forming a comprehensive understanding of tumor treatment response that 

can be used to inform pharmaceutical development as well as clinical care. Cancer is a highly 

complex disease, changing its micro-environment in order to thrive. Assessment of tumor and 

stromal treatment effects is critical for improved understanding of the underlying biological 

processes involved, which are needed to make progress in the treatment of this disease. The work 

presented here signifies a push toward the development and clinical implementation of new non-

invasive biomarkers for assessment of cancer therapeutic efficacy.
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Appendix A: Calculation of Local Model Sensitivity 

Model sensitivity to individual input parameters was calculated as the partial derivative 

of the signal-intensity equation with respect to each parameter. Sensitivity was assessed at static 

values of all input parameters and a fixed range of b-values or times (for diffusion or 

permeability models, respectively). Analytical derivative solutions are shown below:  
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Permeability: 
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