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Abstract  

EVALUATION OF NON-INVASIVE IMAGING METHODS FOR 

QUANTIFICATION OF TREATMENT RESPONSE 

by 

Benjamin A. Hoff 

Chair: Craig J. Galbán 

 

Therapeutic response assessment of cancer has long been facilitated by non-invasive imaging methods 

such as magnetic resonance imaging (MRI) and x-ray computed tomography (CT) in the clinic. Standards 

of patient care are designed around the most common cases, which may not always be efficacious. 

However, through evidence-based medicine there has begun a shift toward more individualized care. 

Standard clinical practice for cancer response assessment utilizes only volumetric change, measured prior 

and following the completion of therapy, providing no opportunity to adjust the treatment. In addition, 

novel targeted therapies, which may not result in a substantial decrease in tumor volume, are becoming 

more prevalent in the treatment of tumors. There is a clear need for non-invasive biomarkers that provide 

near real-time information on the anatomical and physiological makeup of the tumor post-treatment 

initiation. Tools for assessing early treatment response may allow physicians to dynamically optimize 

treatments individually, enhancing patient prognoses and avoiding unnecessary patient morbidity. In the 

following studies, I have evaluated various non-invasive imaging tools for early detection of treatment 

response in rodent models of disease. Tissue apparent diffusion coefficients (ADC) are known to correlate 

well with cellular status in cancer, and have shown promise in the detection of early tumor treatment 

response. Several different numerical models of higher-order diffusion signal attenuation were evaluated 

to determine their sensitivity to treatment response compared to the standard diffusion model. Dynamic 

contrast-enhanced (DCE-) MRI has shown sensitivity to vascular changes in cancer and was evaluated as 

an imaging biomarker of treatment response using a novel vascular-targeted therapy. Quantitative indices 

generated from DCE-MRI data were compared to diffusion (ADC) and volumetric MRI readouts for 

response assessment. The utility of imaging readouts from concurrent MRI, CT, bioluminescence, and 

fluorescence imaging was also evaluated in a model of bone metastasis. Further, a new voxel-based 

analytical technique, the parametric response map (PRM), was applied to CT images of metastatic bone 

disease and osteoporosis to evaluate bone response to treatment and hormone deprivation, respectively. 

Use of these tools may help improve the clinical effectiveness of cancer patient therapy as well as drug 

development and testing in preclinical models. 
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 Introduction  Chapter 0:

Diagnosis and assessment of therapeutic response in cancer has long been facilitated by 

non-invasive imaging methods such as magnetic resonance imaging (MRI), x-ray radiographs, 

positron emission tomography (PET), single photon emission computed tomography (SPECT) 

and x-ray computed tomography (CT) in the clinic and more recently optical imaging 

(fluorescence and bioluminescence) for pre-clinical models. On the subject of tumor biology 

there is still much that is not understood, for example some patients given a therapy may exhibit 

a positive outcome while others with the same therapy and clinical histopathological 

characteristics may not. Because of this, evaluation of the effectiveness of a therapy is valuable 

in determining a patientôs treatment strategy and prognosis. Traditional evaluation of cancer 

treatment efficacy has relied heavily on volumetric monitoring of tumor burden, with decreases 

indicating a successful response. These changes, however, may not be detectable until well after 

the treatment regime has been completed, precluding adjustment of the treatment strategy based 

on its efficacy. Development of tools for assessing early treatment response may allow 

physicians to dynamically optimize treatments on an individual level, enhancing patient 

prognoses and avoiding unnecessary patient morbidity. 

Diffusion-MRI is an MRI sequence capable of quantifying the molecular motion of 

protons primarily in water using bipolar motion-sensitive gradients. The magnitude of diffusion 

weighting is measured in b-values, which are a function of gradient strength, duration and 

spacing between gradients. Diffusion weighting can be applied directionally, allowing some 

assessment of the tissue structures as in diffusion tensor imaging (DTI), or isotropically, 

resulting in a general assessment of tissue water diffusion. In the simplest case only two 

diffusion-weighted images at a low and nominal b-value (~0 and ~1000 s/mm
2
, respectively) are 

required to generate the quantitative metric, the apparent diffusion coefficient (ADC) map, 

assuming mono-exponential decay in the MRI signal with increasing b-value. ADC has been 



2 

 

shown to be indicative of cellular status in cancer treatment [1-12]. Increases in ADC have 

correlated well with tumor cell death caused by cytotoxic therapies and are well-documented for 

nominal diffusion weighting. Recent studies, however, have shown that at high diffusion 

weighting (b-value) the signal attenuation curve deviates from a true mono-exponential behavior 

[9, 13-21]. Although no single theory has yet been embraced, the most popular models either use 

the sum of two diffusion populations (proposed as intra- and extra-cellular water) or a spectrum 

of diffusion rates attributed to the continuum of water hydration shells surrounding biological 

structures. Changes in these non-mono-exponential metrics may prove sensitive for detecting 

treatment response. 

Dynamic contrast-enhanced- (DCE-) MRI is a technique using small-molecule 

paramagnetic contrast-enhancing tracers injected intravenously to extract tissue vascular 

properties from time-course T1-weighted MR images. Contrast enhancement of the T1-weighted 

signal is proportional to the voxel concentration of contrast agent, allowing the extraction of 

pharmacokinetic tissue properties through modeling. Growing interest has been apparent in 

targeted cancer therapies, one focus of which is anti-vascular drugs such as Bevacizumab and 

Aflibercept. These targeted agents inhibit cellular signaling and resulting angiogenesis, the 

growth and recruitment of blood vessels, within the tumor. DCE-MRI has been shown to detect a 

reduction in vascular leakiness and blood volume within a treated tumor. In the following, both 

DCE- and DW-MRI were used to evaluate treatment response in a 9L rat gliosarcoma model 

treated with the new therapeutic agent, Aflibercept. A few different widely-used analytical 

models were also compared on the same data to assess variation of response sensitivity in these 

models. 

For the development and evaluation of new cancer pharmaceuticals, non-invasive 

imaging biomarkers have proven very useful in reducing total necessary animal populations as 

well as expediting the measurement of a therapeutic response. Quantification of treatment 

response in bone metastases has proven to be an elusive task, with currently no clinically-

accepted criteria. Recent studies have shown a critical link between metastatic cancer and its 

micro-environment, coined the ñseed and soilò [22]. Through interaction with bone, certain 

cancer phenotypes are spurred to grow and proliferate, resulting in a vicious cycle of bone 

remodeling and tumor growth. With the wide variety of available imaging modalities, a great 

deal of physiological information can now be obtained from a single subject longitudinally over 
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the course of the study. With the combination of imaging modalities, researchers are now able to 

quantify multiple treatment responses at essentially the same time as well as longitudinally, in 

this case both bone and tumor response. In the following, an animal model of boney metastasis is 

presented, and treatment response is evaluated by DW-MRI, quantitative CT, bioluminescence 

(BLI), and fluorescence (FLI) imaging after treatment with the bisphosphonate, zoledronic acid, 

or the cytotoxic agent, docetaxel. These two therapies serve to highlight the two extreme 

treatment cases: anti-tumor-environment or anti-tumor, respectively, and are both clinically 

relevant therapies. Using multiple readouts, a more comprehensive perspective for new drug 

evaluation and efficacy screening can be achieved. 

Traditionally, quantitative cancer imaging has been evaluated using whole-tumor 

statistics such as the mean or histogram-based analyses. A new voxel-wise approach to detecting 

treatment response, the function diffusion map (fDM), has successfully been applied to DW-

MRI, resulting in increased sensitivity to localized diffusion changes over mean volume statistics 

[23-28]. This technique uses spatially aligned serial images to compare diffusion images both 

spatially and temporally. This same technique, now termed the parametric response map (PRM), 

has already been expanded to other images, including DCE- and dynamic susceptibility contrast 

(DSC-) MRI. In the following, this PRM analysis will be applied to bone CT images (in 

Hounsfield units, HU) to evaluate localized bone changes both in animal models and clinical 

metastatic cancer patients. Sensitivity of PRMHU to bone changes was validated through a well-

establish ovariectomy-induced osteoporosis model in rats, and further characterized in both 

osteolytic and osteoblastic models of bone metastasis in mice. 

In conclusion, there exists a great variety of quantitative imaging options for the 

assessment of cancer treatment response, particularly in pre-clinical imaging where tissue depths 

are not enough to inhibit optical imaging modalities. Through early detection of treatment 

response clinical patient treatments may be individualized, allowing the option to adjust 

treatments virtually ñon the flyò. In addition, through the use of a multimodal quantitative 

imaging approach, tailored to a focused treatment or effect, a more comprehensive and efficient 

evaluation of mixed treatment effects can be possible. Even for a single imaging modality, for 

example DCE-MRI, it is important to understand the accuracy and limitations of the model to be 

used in order to extract valid conclusions from the results. In the following chapters various 

analytical models for multi-exponential diffusion MRI and DCE-MRI are evaluated for both 
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sensitivity to physiological or model parameter change and sensitivity to noise in the images. 

The use of a multi-modality imaging strategy is also evaluated, using MRI, x-ray CT, 

bioluminescence, and fluorescence imaging, for a more comprehensive evaluation of 

tumor/stroma treatment response using a limited study population. Finally, a new method for 

evaluating spatially-localized changes in 3D images is evaluated on CT images of the bone. This 

method may see its greatest use for evaluation of bone metastases, which currently have no 

official criteria for assessing treatment response in the clinic. This manuscript provides an 

evaluation of several methods for quantifying physiological changes in vivo.  
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 Non-Mono -exponential Diffusion  Chapter 1:

1.1: Chemotherapeutic Treatment Response  
Included with permission from John Wiley and Sons: 

Hoff BA, Chenevert TL, Bhojani MS, Kwee TC, Rehemtulla A, Le Bihan D, Ross BD, Galbán CJ. 

Assessment of multiexponential diffusion features as MRI cancer therapy response metrics. Magn Reson 

Med. 2010 Nov;64(5):1499-509. 

1.1.1:  Introduction  

Diffusion-weighted magnetic resonance imaging (DWI) shows promise as an imaging 

biomarker for treatment response in glioma patients [1-9] as well as in a variety of other clinical 

tumor types [10-16]. Routine in almost all preclinical and clinical scanners, diffusion maps can 

be generated from a minimum of two images acquired at low (b-value ~ 100 sec/mm
2
) and high 

(b-value ~ 1000 sec/mm
2
) diffusion weightings. Assuming mono-exponential signal attenuation 

with b-value, the apparent diffusion coefficient (ADC) can be calculated analytically. The 

application of diffusion MRI for the detection of early tumor treatment response was first 

reported using a rodent glioma model using diffusion weightings at nominal b-values (¢ 1000 

sec/mm
2
) [17]. This initial report has been verified and expanded by ensuing publications using 

different tumor models and therapeutic agents [1, 18, 19], supporting the use of diffusion MRI as 

a sensitive imaging biomarker capable of detecting early cellular changes in treated tumors 

which precede macroscopic volumetric response. 

The efficacy of this technique lies in its sensitivity to the molecular motion of water, 

which is affected by cellular, subcellular, and macromolecular elements that impede otherwise 

free diffusion of water. Thus, therapeutic changes within the tumor at the cellular level can be 

monitored by serial diffusion measurements [20-23]. Through thermal random motion, water 

molecules sample the surrounding microarchitecture within tissues at length scales (few microns) 

much smaller than typical MRI voxel resolution (~millimeter). The theoretical basis for diffusion 
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analysis is that cell membranes and other structures hinder the diffusion of molecules [20, 24]. 

The magnitude of diffusion-driven displacement is altered by tortuosity and hindering effects and 

can therefore be used to infer their presence and density. Studies have revealed that in biological 

systems water proton signal attenuation due to diffusion weighting does not follow mono-

exponential decay, and the deviation from mono-exponential behavior is best observed at 

relatively high b-values (² 3000 sec/mm
2
). A more accurate description of signal attenuation 

with b-value over this wide b-value range requires more complex biophysical models [25-28]. 

An early interpretation of multiexponential diffusion patterns was that water moves 

within two or more compartments representing pools of ñfastò (extracellular) and ñslowò 

(intracellular) diffusion components in the signal. At low b-values the ñfastò diffusion pool 

dominates signal attenuation, whereas at high b-values the ñslowò diffusion pool dominates 

leading to a biexponential form for signal decay. Biexponential signal attenuation in DWI has 

been studied extensively in a variety of biological systems, and the physical mechanisms that 

govern nonmonoexponential decay continue to be an area of debate. An alternative formalism for 

the nonmonoexponential decay incorporates the underlying complexity in the diffusion medium 

as a continuous distribution of diffusion coefficients arising from a multiplicity of pools. Termed 

the ñstretched-exponentialò formalism, Bennett et al. [29] provided an analytical representation 

of the signal attenuation as a function of the probability density with a particular diffusion 

coefficient. Although this formalism can be used to infer the intravoxel diffusion heterogeneity 

within a biological system, it does not lend itself to straightforward association between 

biophysical compartments and signal decay. Although the ñstretched-exponentialò formalism has 

not been evaluated for its sensitivity to treatment response in tumors, this method has shown 

promise for characterizing tumors in brain cancer patients [30, 31]. 

Research investigating the sensitivity of high b-value DWI for treatment assessment has 

shown promising results [6, 32]. Mardor et al. have demonstrated in patients with malignant 

brain lesions that the ratio of the diffusion coefficient from the óófastôô pool and the ñslowò pool 

signal fraction is highly sensitive to radiation-induced changes in the tumor. This parameter not 

only demonstrated a significant change from baseline as early as 1 week post-treatment initiation 

but was capable of predicting clinical outcome in all of the studied patients [6]. In contrast, 

conventional mono-exponential ADC (in their study, low and high b-values were 120 and 1200 
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sec/mm
2
, respectively) was found to be predictive of outcome in only half of the patient 

population studied. Sensitivity of high b-value DWI to treatment was also observed in a colon 

cancer mouse model [32]. These authors used the area under the normalized 

nonmonoexponential diffusion curve to quantify the diffusion characteristics of the tissue. This 

diffusion index was found to provide early prognostic information on animal responsiveness to 

treatment. 

In this study, three nonmonoexponential diffusion formalisms applied over an extended 

range of b-values (120ï4000 sec/mm
2
) were tested against the conventional two-point ADC 

measurement to determine their sensitivity to therapy-induced changes of tissue using a rodent 

brain tumor model. Results showed similar time response curves for all diffusion indices 

following treatment. Although the highest fractional change following treatment was observed 

using the biexponential formalism, these results were not significantly different from those 

observed using the conventional two-point ADC calculation. 

1.1.2: Methods  

Animal  Tumor Models  

9L gliosarcoma cells were obtained from the Brain Tumor Research Center at the 

University of California in San Francisco. The cells were grown as monolayers in 10 cm
2
 sterile 

plastic flasks in DMEM with 10% fetal bovine serum, 100 IU/mL penicillin, 100 mg/mL 

streptomycin, and 2 mM L-glutamine in an incubator held at 37̄ C and 95%/5% air/CO2 

atmosphere. Before implantation, cells were harvested by trypsinization, counted, and re-

suspended in serum-free medium for injection.  

Tumor implantation was performed on Male Fischer 344 rats (Harlan Sprague-Dawley, 

Indianapolis, IN), weighing ~125ï150 g, as previously described [33]. Briefly, animals were 

anesthetized with a ketamine/xylazine mixture (87/13 mg/kg) administered intraperitoneal. A 

small incision was then made over the right hemisphere of the cranium. A 1 mm diameter burr 

hole was drilled through the skull using a high-speed surgical drill, and a 5 mL suspension 

containing 1 x 10
5
 9L cells was injected through the burr hole to a depth of 3 mm. After injection 

of the cells, the burr hole was filled with bone wax to prevent extra-cranial extension of the 

tumor, and the surgical area was cleaned using 70% ethanol. Vetbond (3M, St. Paul, MN) was 

used to close the incision until healed. 
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Chemotherapy  

Once the tumors reached 40ï80 mm
3
 as quantified using T2-weighted MRI, pretreatment 

diffusion-weighted (DW) images (details below) were acquired for all animals. At the time of 

treatment, 1,3-bis(2-chloroethyl)-1-nitrosourea (BCNU) (LKT Laboratories, St. Paul, MN) was 

freshly prepared and formulated to a final concentration of 5 mg/mL BCNU in 10% ethanol. 

Subsequent to their pretreatment DWI scan, animals either received a single bolus intraperitoneal 

injection of BCNU (9.98 mg/kg; n = 13) or 10% ethanol as the control vehicle (n = 10). 

Typically, tumors increased in volume by 400% over the duration of the study (2 weeks post-

treatment initiation), and euthanasia was accomplished by CO2 overdose. 

MRI Scans  

During MRI examinations, animals were anesthetized with 1ï2% isoflurane/air, and body 

temperature was maintained by blowing warm air through the bore of the magnet using an Air-

Therm (World Precision Instruments, Sarasota, FL). MR scans were performed immediately 

before treatment and every 3 days thereafter using a 9.4 T, 16 cm horizontal bore Varian (Palo 

Alto, CA) Direct Drive system with a quadrature rat head coil (Doty Scientific, Inc., Columbia, 

SC). DW images were acquired using a spin-echo sequence, with a navigator echo and gradient 

waveforms sensitive to isotropic diffusion [34], with the following parameters: repetition time 

(TR)/echo time (TE) = 4000/41 ms, field of view (FOV) = 30 mm, matrix size = 64 x 64, slice 

thickness = 2 mm, number of slices = 8, sweep width = 50 kHz, gradient pulse width = 10.5 ms, 

gradient pulse separation = 25 ms, and b-values (x-gradient, y-gradient, and z-gradient 

amplitudes) of 120 (5.3, 4.8, and 4.2 G/cm), 1200 (16.6, 15.0, and 13.1 G/cm), 1600 (19.1, 17.3, 

and 15.6 G/cm), 2000 (21.3, 19.2, and 17.4 G/cm), 3000 (25.9, 23.4, and 21.3 G/cm), and 4000 

sec/mm
2
 (29.7, 26.9, and 24.6 G/cm) with averages of 1, 1, 1, 1, 4, and 16, respectively. DWI 

scans were constrained to a total scan time of 2 h based upon an institutionally approved animal 

protocol. In addition to the time constraint, only voxels in the tumor with a signal to noise (SNR) 

> 6 at high diffusion weighting (i.e., b = 4000 sec/mm
2
) were evaluated. The first step in 

maintaining this constraint was to determine a voxel size that provides adequate SNR and 

resolution within a 2 h MR experiment. As observed in Chenevert et al. [3], 9L rodent brain 

tumors treated with 13.3 mg/kg BCNU can exhibit an ADC as high as 1.5 x 10
-3
 mm

2
/sec. A 

sucrose phantom of 15% sucrose/water, with a measured ADC of 1.4 x 10
-3
 mm

2
/sec over the b = 
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120ï1200 sec/mm
2
 range, was used to determine sequence parameters (i.e., FOV, slice thickness, 

and averages) that provide a SNR > 6 at b = 4000 sec/mm
2
 [35].  

Post -processing of Diffusion -Weighted Images  

All MRI data were transferred to a PC, interpolated to a matrix size of 256 x 256, and 

analyzed using in-house software developed in MATLAB (The MathWorks, Inc., Natick, MA). 

Curve-fitting was performed using an un-weighted non-linear least-squares algorithm using an 

initial parameter guess based on literature values. Diffusion signal decay, found to follow a 

nonmonoexponential trend in healthy brain tissue and tumor from our animal model, was 

analyzed using three diffusion approaches. 

Two-Point Analytical Formalism  

The simplest of all three techniques investigated captures the nonmonoexponential trends 

observed in the DW images from a two-point subsampling of the signal decay curve using the 

following equation: 

 ὃὈὅρ ς
ὰὲὛρὛς
ὦς ὦρ

, [1.1.1] 

where S1 and S2 are the signal intensities at b-values b1 and b2, respectively, and ADC1ï2 is the 

diffusion coefficient obtained using b1 and b2. The conventional mono-exponential ADC was 

calculated using b-values of 120 and 1200 sec/mm
2
 (ADC120ï1200), which captures the rapid 

diffusion decay in the nominal-b regime while avoiding perfusion effects observed at very low b-

value (<100 sec/mm
2
). Slow diffusion decay, observed in the high-b regime, was captured by 

determining the ADC using b-values of 2000 and 4000 sec/mm
2
 (ADC2000ï4000). The ratio of 

ADC2000ï4000/ADC120ï1200, defined as RTP, was used as an empiric index of nonmonoexponential 

behavior derived from the piece-wise two-point formalism. An RTP close to one implies mono-

exponential behavior, whereas a decreasing RTP implies greater disparity in signal decay between 

low-b and high-b regimes, thus greater multiexponential behavior. 

Stretched Exponential Formalism  

This formalism defines the divergence of a diffusible particle from mono-exponential 

trends as anomalous diffusion (29,36). Referred to as the stretched exponential, this formalism 

portrays molecular diffusion in a locally nonhomogeneous environment, which is represented by 

the equation: 
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 Ὓὦ ὛὩ ᶻ , [1.1.2] 

where S is the signal intensity at a given b-value, S0 is the signal intensity with no diffusion 

weighting, DDC is the distributed diffusion coefficient, and a is the anomalous exponent bound 

between 0 and 1 [29, 36]. By inspection of Eq. 2, it should be clear that Ŭ = 1 is equivalent to 

monoexponential diffusion signal decay. Conversely, an a approaching 0 indicates a high degree 

of multiexponential signal decay, thus a will be used as the nonmonoexponential index derived 

from the stretched exponential formalism. This convention maintains consistency with Bennett et 

al.ôs [29] definition of a as a diffusion heterogeneity index, although we remind the reader that a 

numerically high a value (~1) represents a low intravoxel diffusion heterogeneity approaching 

monoexponential decay, whereas a numerically low a value represents a high degree of diffusion 

heterogeneity exhibited as multiexponential decay. It is also worth emphasis that the term 

ñheterogeneityò in this context refers to intravoxel heterogeneity of exponential decays, as 

opposed to intervoxel heterogeneity of diffusion coefficients as often is the case, particularly in 

tumor. Parameter maps of DDC and a were calculated by linearizing the stretched exponential 

equation and then fitting it to the DW images in a pixel-wise manner over all b-values using a 

linear least-squares technique. 

Biexponential Model  

Calculation of the biexponential diffusion components was performed by a pixel-wise fit 

to all DW images of the following equation: 

 Ὓὦ Ὓ ὠὩ ὠὩ , [1.1.3] 

where S and S0 are signal intensities at a given b-value and no diffusion weighting, respectively, 

D1 and D2 are the fast and slow diffusion coefficients, respectively, and V1 and V2 are the fast 

and slow signal fraction contributions, respectively. The fractional signal components are related 

by the expression V2 = 1 ï V1. The fit was performed using a nonlinear least-squares technique. 

Image Analysis  

Volumes of interest (VOI) over the tumors were manually contoured on the low b-value 

DWI, which exhibits T2-weighted contrast and serves for quantification of tumor volume. Low 

SNR voxels were excluded before calculation of mean parameter values within the VOI from 

each diffusion formalism. To accomplish this, voxels having SNR ¢ 6 on the b = 4000 sec/mm
2
 

DWI were identified by software in a binary 3D mask. The mask was then applied to all DW 
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images guaranteeing that only those voxels with a SNR > 6 were evaluated. Regions of necrosis 

or blood pools, typically observed as hypo-intense on T2-weighted images, were manually 

omitted from the VOIs. Parameter change with respect to treatment was assessed using the 

percent change of the mean of each parameter (100x [PostTherapy ï PreTherapy] / PreTherapy). 

Histology  

An additional six animals were used for obtaining histology of the tumors for control (n = 

3) and treated animals (n = 3) 6 days post-treatment. 9L tumors from these animals were placed 

in buffered formalin overnight, dehydrated in 70% ethanol, and subsequently embedded in 

paraffin. Tissue sections were prepared for histological processing by routine techniques. Briefly, 

paraffin sections (5 mm thick) were cut on a microtome and heated for 20 min at 65̄C. Slides 

were deparaffinized in xylene with three changes for 5 min each and then rehydrated through an 

alcohol gradient for 2 min each (100% alcohol, 95% alcohol, and 70% alcohol). Sections were 

first stained using a Gillôs 2x hematoxylin solution and then subsequently stained with eosin. 

Statistics  

A paired Studentôs t-test was used to assess significance between the percent changes in 

each parameter post-treatment initiation from pretreatment values and between the percent 

change in similar parameters for each formalism at individual time points in the treated group. 

Group comparisons were assessed for each parameter at individual time points using an 

independent sample Studentôs t-test. Treatment efficacy on overall survival was assessed by log-

rank test and displayed using a Kaplan-Meier survival curves. All statistical computations were 

performed with a statistical software package (SPSS Software Products, Chicago, IL). Statistical 

significance was assessed at P < 0.05.  

1.1.3: Results  

Representative DW images, acquired at b-values of 120, 1200, 3000, and 4000 sec/mm
2
, 

are demonstrated in Figure 1.1.1. Using low b-value images, delineation of tumor extent allowed 

for tumor volumes to be measured over time. Although the tumor volume in treated animals did 

appear to have a slower rate of growth than controls, this did not result in statistical differences 

in tumor volume between groups at individual time points (Figure 1.1.2a). Nevertheless, as 

presented in Figure 1.1.2b, the median survival of treated animals (9 days with a 95% confidence 

interval of 8.2ï9.8 days) was found to be significantly longer than control animals (5 days with a 
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95% confidence interval of 3.8ï6.2 days; P = 0.001). Increased longevity in treated animals was 

consequent to tumor cell death, which was verified by histology. Histological sections of 

representative control and treated animals at day 6 post-treatment initiation are presented in 

Figure 1.1.3. Following BCNU treatment, fewer nuclei were observed in the treated tumor than 

control, suggesting massive cell kill in the tumor volume of treated animals. An increase in 

pleomorphism and giant cells was also evident in the treated tumors. Tumor growth rate kinetics 

and histology were consistent with previous findings using the 9L gliosarcoma rat brain tumor 

model [6]. 

 

Figure 1.1.1 Representative diffusion-weighted images of a rat brain harboring a 9L 

gliosarcoma acquired at b-values of (a) 120, (b) 1200, (c) 2000, and (d) 4000 sec/mm
2
. Images 

were independently scaled for better visualization at higher b-values. 

 

Presented in Table 1.1 is a summary of the parametric indices generated from the three 

formalisms for control and treated tumor groups acquired at baseline. Significant differences in 

indices with similar diffusion properties were observed between all formalisms. In contrast, 

group comparisons did not result in statistical differences for any given parameter. To verify the 

accuracy of our biexponential fit to the data, pretreatment values were calculated in healthy rat 

striatum. Biexponential results of D1 and V1 (0.88 x 10
-3
 mm

2
/sec and 0.79) were found to be 

comparable with previous values in brain tissue [28]. In contrast, D2 (0.42 x 10
-3
 mm

2
/sec) was 
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2.5x that of Niendorf et al.ôs measurement [28] of 0.165 x 10
-3

 mm
2
/sec, which could be a result 

of higher diffusion weighting, up to 10
4
 s/mm

2
 as opposed to the 4000 s/mm

2
 used here. 

 

Figure 1.1.2: (a): Plot over time of the mean tumor volume. Data presented as mean ± 

SEM. Significant difference in mean tumor volume between groups was assessed using an 

unpaired Studentôs t-test. P values are provided at individual time points. (b): Kaplan-Meier 

survival plot for overall survival is presented for control and treated animals. Controls are shown 

as solid line with diamond markers and treated are shown as dashed lines with square markers. 

Significant differences in overall survival were observed between groups as assessed using a log-

rank test (P = 0.001). 
 

Table 1.1: Mean Parameter Values at Baseline. Pre-treatment data are presented for 

controls (n=10; top) and treated animals (n=13; bottom) as means (SEM). 
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Figure 1.1.3: Hematoxylinïeosin-stained sections of intracerebral 9L tumors for 

representative (a) control and (b) BCNU-treated animals on day 6 post-treatment. 
 

As shown in Figure 1.1.4, maps of parameters more sensitive to ñfast diffusionò 

properties pretreatment (left column) and 6 days following BCNU treatment (right column) were 

generated over the tumor volume and superimposed on T2-weighted images. Top-row images 

(Figure 1.1.4a,d) represent ADC120ï1200, middle-row images (Figure 1.1.4b,e) are DDC, and 

bottom-row images (Figure 1.1.4c,f) are D1. In addition, the full time course of ADC120ï1200, 

DDC, and D1 expressed as percent change from pretreatment values are illustrated in Figure 

1.1.4gïi, respectively. D1 was found to be significantly larger than ADC120ï1200 and DDC at 

baseline (Table 1.1) and at day 6 post-treatment initiation as well as having, in absolute terms, a 

larger dynamic range (~1.5ï3.0 x 10
-3
 mm

2
/sec) within the tumor volume allowing easier 

visualization of tumor features (Figure 1.1.4c,f). As for the responsiveness of these indices to 

treatment, the percent change from baseline peaked at day 6 post-treatment initiation, followed 

by a descent toward baseline at day 9 (Figure 1.1.4gïi). Near identical trends were observed for 

ADC120ï1200 and DDC with significant group and baseline value differences observed on days 3 

and 6. Similar results were observed for D1 except for the negligible group differences at day 3 

post-treatment-initiation, which is attributed to the slower rate of ascent from baseline (Figure 

1.1.4i). Although change in D1 was found to be most responsive to treatment with a ~25% 

increase at day 6 from baseline, it was not found to be significantly larger at this time point or 
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any other time point from what was observed for change in ADC120ï1200 and DDC (P = 0.204 and 

P = 0.711, respectively, for day 6). 

 

 

Figure 1.1.4: Representative maps and line plots of percent change in parameters 

sensitive to óófast diffusionôô generated using (a, d, g) twopoint, (b, e, h) stretched-exponential, 

and (c, f, i) biexponential formalisms are provided. Diffusion maps, overlaid on T2-weighted 

images of a rat brain, were acquired at days 0 (a, b, c) and 6 (d, e, f) post-treatment initiation. 

Line plots (g, h, i) consist of mean values and standard errors from control and treated groups 

over the entire experiment. Data are presented as the mean ± the standard error of the mean. The 

symbols À and * designate significant differences from baseline and between groups, 

respectively. Statistical significance was assessed at P < 0.05. 

  

Analogous parametric maps and line plots to Figure 1.1.4 are illustrated in Figure 1.1.5 

for quantities sensitive to the ñslow diffusionò component of the decay curve, namely ADC2000ï

4000 (Figure 1.1.5a,c,e) and D2 (Figure 1.1.5b,d,f). In general, ADC2000ï4000 and D2 showed little 

change in day 6 values from baseline (Figure 1.1.5aïd). Percent change in the mean values over 

time corroborates observations found in the maps from the representative animal (Figure 1.1.5aï
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d) with ADC2000ï4000 and D2 peaking at less than 10% of baseline. Group differences were only 

observed at day 3 for D2, partly attributed to a drop in control D2. Interestingly, both ADC2000ï

4000 and D2 resulted in ~7% decrease from baseline on day 9 post-treatment initiation (Figure 

1.1.5h,i), which correlated with the descent back to pretreatment values observed in diffusion 

coefficients sensitive to ñfast diffusionò (Figure 1.1.4).  

 

 

Figure 1.1.5: Representative maps of the óóslow diffusionôô coefficients and line plots of 

percentage change in parameters generated using (a, c, e) two-point and (b, d, f) biexponential 

formalisms are provided. Diffusion maps, overlaid on T2-weighted images of a rat brain, were 

acquired at days 0 (a, b) and 6 (c, d) post-treatment initiation. Line plots (e, f) consist of mean 

values and standard errors from control and treated groups over the entire experiment. Data are 

presented as the mean ± the standard error of the mean. The symbols À and * designate 

significant differences from baseline and between groups, respectively. Statistical significance 

was assessed at P < 0.05. 
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Figure 1.1.6: Representative nonmonoexponential metric maps and line plots of 

percentage change in parameters generated using (a, d, g) two-point, (b, e, h) stretched-

exponential, and (c, f, i) biexponential formalisms are provided. Metric maps, overlaid on T2-

weighted images of a rat brain, were acquired at days 0 (a, b, c) and 6 (d, e, f) post-treatment 

initiation. Line plots (g, h, i) consist of mean values and standard errors from control and treated 

groups over the entire experiment. Data are presented as the mean ± the standard error of the 

mean. The symbols À and * designate significant differences from baseline and between groups, 

respectively. Statistical significance was assessed at P < 0.05. 
 

As discussed previously, a comparison of the absolute numerical value of 

nonmonoexponential metrics is not meaningful because of differences in how these parameters 

are defined. Qualitatively, RTP was most sensitive to treatment exhibiting the largest percent drop 

from baseline values (Figure 1.1.6). The remaining parameters showed similar qualitative trends 

from baseline to day 6 post-treatment-initiation. A significant drop from pretreatment values was 

observed at day 6 for RTP (-11%), a (-7%), and V2 (-6%). RTP and a continued to have 

significantly lower values to baseline at day 9, which was not established by V2 because of 

scatter in the data. Group differences were only found at day 6 for RTP and a. The ratio of D2 and 



20 

 

D1, as obtained from the biexponential formalism, provided analogous results to RTP (data not 

shown). Although the mean value of D2/D1 decreased by more than 15%, these results were not 

found to be statistically different from the controls. 

1.1.4: Discussion  

DW MRI has shown potential as a surrogate biomarker for treatment response in cancer 

patients [37-40]. Acquisition of diffusion maps is typically performed at relatively moderate 

diffusion weighting, i.e., b-values that typically span the 0ï1000 sec/mm
2
 range. It is speculated 

that water diffusion measurements at higher b-values may provide increased sensitivity to 

relevant drug-induced changes in tumor composition by virtue of possible therapeutic alteration 

of cellular constituents responsible for the ñslow diffusionò components of signal decay observed 

at relatively high b-values. This study sought to determine the sensitivity of diffusion parameters 

derived from various mathematical formalisms of nonmonoexponential water diffusion to 

treatment-induced tissue alteration following treatment of the 9L glioma model. 

Previous work by our group using the 9L brain tumor model has shown that ADC 

calculated using moderate b-values can increase by up to 60% within a week following a single 

dose (13.3 mg/kg) of BCNU (3). As measured in this study, parameters sensitive to ñfast 

diffusionò showed similar trends following a single bolus (9.98 mg/kg) of BCNU, all peaking by 

day 6 post-treatment-initiation. The maximum percent change in parameter value from baseline 

was observed in D1. This is expected because D1 is a more specific measurement of ñfast 

diffusionò than DDC and ADC120ï1200, which are not completely devoid of the ñslow diffusionò 

properties in the signal decay curve. A positive therapeutic effect was confirmed by an increased 

overall survival (Figure 1.1.2) as well as direct evidence from histological tumor sections 

comparing treated versus untreated tumors (Figure 1.1.3). Another characteristic trend of ADC 

following treatment, which has been observed here and by others, is the temporally evolving 

descent to baseline values. This has been found to correlate with tumor cell repopulation, which 

has been reported in the literature [28]. In contrast, those indices specifically sensitive to ñslow 

diffusionò exhibited a negligible change post-treatment initiation until day 9 where a drop had 

occurred in both parameter values when compared with baseline. The lack of response following 

treatment and the sudden drop in ADC2000ï4000 and D2 during cell repopulation, which is reflected 

in the diffusion coefficients sensitive to ñfast diffusionò descent to baseline, is quite perplexing, 
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suggesting independent mechanisms affecting the ñfastò and ñslowò diffusion properties of the 

tissue. Additional mechanisms, such as macrophage infiltration and clearance of 

macromolecules, may also contribute to our observations. Despite subtle variations in the trends 

of the parameters with either ñfastò or ñslowò diffusion properties, there was no significant 

difference in the percent change from baseline between diffusion parameters with like properties. 

As opposed to the diffusion coefficients, the nonmonoexponential metrics, RTP, a, and 

V2, are defined differently and thus cannot have the same interpretation, even though they have 

similar trends. Consequent to the negligible change in ADC2000ï4000, RTP is driven almost 

exclusively by ADC120ï1200 for most of the study. Not until day 9, did we see a divergence from 

this dependence, which is partly attributed to the mirrored descent observed in ADC2000ï4000 to 

ADC120ï1200 resulting in a negligible change in RTP from day 6 to day 9 post-treatment initiation. 

Analogous but not significant results were observed for D2/D1. Large variability in the 

measurements of D1 and D2 (Figs. 4 and 5) from the nonlinear fit most likely contributed to the 

non-statistical difference in D2/D1 between groups. In contrast, the slow diffusion signal fraction, 

V2, defines the proportion of water signal in the slow compartment independent of water 

diffusivity. The drop in V2 suggests shrinkage of the slow compartment volume fraction, 

conversely an expansion of the fast compartment volume fraction, following treatment initiation. 

The anomalous exponent a represents the deviation of signal attenuation from mono-exponential 

behavior (a = 1). This perturbation is assumed to be attributed to increased heterogeneity within 

the tissue. The decrease in a seen in Figure 1.1.6h suggests an increase in tumor intravoxel 

heterogeneity that maximizes at day 6 and continues to day 9. Following treatment of the tumor 

with BCNU, a loss in tumor cellularity (Figure 1.1.3) pushed the attenuation curve further from 

monoexponential behavior than what was observed from control and baseline values (Table 1.1). 

Because of similar trends in the nonmonoexponential metrics and the lack of response to 

treatment of the ñslow diffusionò indices, one may speculate that the ñfast diffusionò properties 

within the tumor dominate what we observe for RTP, a, and V2 following treatment. Various 

theories have been proposed to provide a physical account of the deviation in diffusion-sensitive 

signal attenuation from monoexponential behavior in biological tissue [20, 21, 41]. Use of these 

theories to determine the exact physical properties that govern nonmonoexponential water 

diffusion warrants further investigation but is beyond the scope of this study. 
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Irrespective of the mechanisms driving nonmonoexponential behavior in diffusion-

sensitive signal attenuation, high b-value DWI provides additional advantages over conventional 

mono-exponential ADC measurements that may provide a more sensitive biomarker for tumor 

treatment response and characterization. The conventional approach for measuring ADC, b-

values around 1000 sec/mm
2
, is hindered by the presence of highly diffuse tissue, such as cysts 

and necrotic areas, which may reside within or around the tumor volume adding increasing 

difficulty in localizing viable tumor. At higher b-values, these rapidly diffusing regions within 

tumors are essentially filtered out leaving only densely packed tumor that has lower ADC values. 

Recent research investigating the sensitivity of high b-value DWI for treatment assessment has 

shown promising results. Mardor et al. have demonstrated in patients with malignant brain 

lesions that the ratio of D1 and V2 [defined as R in Eq. 1 [6]] is highly sensitive to radiation-

induced changes in the tumor. This parameter not only demonstrated a significant change from 

baseline as early as 1 week post-treatment initiation but was capable of predicting clinical 

outcome in all of the studied patients. In contrast, conventional mono-exponential ADC 

(comparable to ADC120ï1200 in this study) was only capable of predicting response in about half 

of their patient population. It is not clear whether R, as presented by Mardor et al., is driven by 

D1 or V2, or if D1 or V2 alone would provide ample sensitivity to predict tumor response to 

treatment as this analysis was not provided in their study. We further evaluated the approach 

proposed by Mardor et al. [6] (D1/V2) using our data. The percentage change in D1/V2 from 

baseline was ~42% in the treated group at day 6 post-treatment, which was significantly different 

from controls [-2% (P = 0.002)]. Although, D1/V2 demonstrated a percentage change 1.6x 

greater than that generated by D1, this increase was not statistically different (P = 0.15). The 

probable cause for the lack of significance was the additional scatter in the data as a result of the 

nonlinear fit. Unlike DWI at moderate b-values, acquisition of diffusion-sensitized signal at b-

values of >2000 sec/mm
2
 is not trivial. This is attributed to the exponential loss of signal due to 

increased attenuation at high b-values. As signal approaches the noise floor, artificial 

nonmonoexponential trends in the signal profile are observed, adversely affecting the slow 

diffusion measurements. To accommodate these losses, images must be acquired with sufficient 

SNR resulting in longer scan times, which may not result in patient compliance. Additional 

computational time is also required when fitting the biexponential formalism to the DWI data. In 
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this study, ~30 min per dataset was required for the voxel-wise nonlinear fit. The stretched-

exponential formalism does not suffer from this deficiency because it can be linearized and 

solved using an algebraic solution of the linear least squares. Numerically fitting two parameters 

for the stretched exponential model can also be more stable relative to fitting three parameters 

required by the biexponential model. 

There are several limitations to our experimental approach that must be discussed. Scan 

time was limited to no more than 2 h. This in turn limited the signal averaging, i.e., SNR, and 

range and number of b-values used per scanning session. As discussed, large slice thicknesses 

and small matrix sizes were used to maintain our self-imposed constraint of SNR > 6. This likely 

resulted in unavoidable partial volume averaging in the tumor, which would be less with thinner 

slices. Another area of concern was the lack of sufficiently high b-values, which are most 

sensitive to ñslow diffusionò rates. This could have possibly led to an overestimation of the D2 in 

the biexponential fit. Using the mean D1 and D2 determined at day 6 post-treatment initiation, we 

found in treated tumor tissue (1.7 x 10
-3
 mm

2
/sec and 0.6 x 10

-3
 mm

2
/sec), less than 4% 

(exp(-2000*0.0017) ~3.3%) of the fast diffusion signal was still present at a b-value of 2000 

sec/mm
2
, whereas 29.9% of the slow diffusion component signal was still available. Finally, the 

biexponential diffusion coefficients, D1 and D2, acquired here for healthy striatum varied by only 

a factor of 2, contrary to the factor of 5ï10 typically observed in the literature. Based on the 

observations of biexponential diffusion in rodent models, D1 as measured in this study is in 

accordance with literature results (0.88 here, compared to 0.82 and 0.77 x 10
-3
 mm

2
/sec in the 

literature), whereas D2 appears to be overestimated by a factor of 2 (0.43 here, compared to 0.17 

and 0.18 x 10
-3
 mm

2
/sec in the literature) [28, 41]. The discrepancy in D2 is most probably due to 

the lack of sufficiently high b-values used in this study. Finally, the filtering of low SNR voxels 

from our whole-tumor analysis may have inadvertently removed necrotic regions in the tumor. 

Signal intensity within regions of high diffusivity or short T2 due to blood products is prone to 

have low signal at high b-value. As discussed earlier, the contribution of noise in our data was 

reduced by filtering voxels whose SNR < 6 on the highest weighted DWI (4000 sec/mm
2
). This 

maintained voxels having high SNR at high b-values but removed regions of high diffusivity or 

low SNR (i.e., necrosis, cystic, and blood products) from the whole-tumor analysis. To avoid 

excessive loss of tumor volume while maintaining SNR ² 6, image matrix size and slice 
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thickness were set to maintain adequate SNR at a cost of resolution. The volume fraction of 

tumor analyzed at days 6 and 9 post-treatment initiation in treated animals was 93.5% ± 11.3% 

and 94.5% ± 9.9% (means 6 SD), respectively. Based on these values, filtering tumor regions 

that contribute to low SNR in DWI at high b-value did not result in excessive loss of tumor 

volume for our analysis in this study. 

We have demonstrated the sensitivity of various nonmonoexponential diffusion 

formalisms for monitoring early response to chemotherapeutic treatment for brain tumors in an 

animal model. The extent of the response varied, with the fast diffusion component of the 

biexponential formalism exhibiting the largest percent change from baseline than other diffusion 

coefficient; slightly more than was observed in the conventional monoexponential ADC and 

DDC measurements. However, for this 9L glioma model treated with a single dose of BCNU, the 

more complicated formalisms provided no additional sensitivity to treatment response over what 

was observed using conventional mono-exponential ADC measured over the standard modest b-

value range. 

1.2: Diffusion Model Sensitivity Analysis  

1.2.1: Introduction  

As was discussed in the previous section, true water diffusion in living tissues is very 

complex, relying on various structural and chemical properties intrinsic to the tissue. In finding 

useful quantitative readouts from the limited information obtained from diffusion-weighted 

imaging, it is necessary to distill the assumed phenomenon down to a simpler, more manageable 

model. In measuring tissue response, the model readouts must be related to real physical 

properties in order to derive meaning from the data. 

Due to the unavoidable noise associated with quantitative image values, it is important to 

characterize the error associated with parameter readouts when fitting the model to data. In 

performing a sensitivity analysis of the model, we can determine which model parameters most 

affect the output as well as which will show the greatest sensitivity to a small change in the 

acquired data. A greater magnitude change in the sensitivity coefficient is indicative of a greater 

ability of the model to detect a change in the image data curve, which would be a useful property 

for an imaging biomarker. Also, by assessing the sensitivity of the fit parameters to noise we 
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may determine the expected accuracy of a measurement based on the image noise associated 

with data acquisition. 

In this section I will perform two types of analyses to characterize model sensitivity and 

robustness: sensitivity analysis and noise analysis. Local sensitivity analysis is a tool that can be 

used to quantify the reaction of the model relative to a change in an individual input parameter, 

one parameter at a time. This local sensitivity coefficient will be evaluated near the input space 

of a known reference point as optimized from real data from the previous section. Parameters 

that show relatively low sensitivity may have higher error in their optimization readout due to the 

smaller effect they have on the model. It is also important to determine the sensitivity of 

optimized parameters to noise in the data. For this analysis multiple optimizations were 

performed, each time fitting the model to simulated noisy data. It is expected that greater noise in 

the data will produce greater error in the modeled parameters. By comparing the parameter and 

noise sensitivities between models, a measure of model robustness and stability may be 

determined. Both methods were used on the previously-mentioned diffusion models and results 

are presented below. 

 

Table 1.2: Baseline diffusion model parameters for sensitivity analysis. 

 

1.2.2: Methods  

For each model (mono-exponential, bi-exponential, and stretched exponential), an initial 

fit was performed on a representative data set to obtain a set of model parameters to base 

sensitivity metrics upon. The fit was obtained using a manually-delineated volume-averaged 

signal intensity encompassing an untreated intra-cranial 9L tumor in a rat brain, approximating 

general tumor characteristics [42]. Baseline parameters for each model are shown in Table 1.2. 
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Model Sensitivity to Parameter Changes  

 A parameter local normalized model sensitivity coefficient, SC, was quantified as the 

partial derivative of the signal intensity model, Ὓὼ ȟỄȟὼ , with respect to the parameter of 

interest, xi, at the reference parameter point, ὼȟ ȟỄȟὼȟ , both normalized by their reference 

values [43] (Appendix A):  

 Ὓὅ ȟ ȟỄȟ ȟ Ͻ
ȟ ȟỄȟ ȟ

.  [1.2.1] 

The values of SC were evaluated over the studyôs range of b-values. 

Model Fitting Sensitivity to Noise  

Noise, in the case of MRI magnitude images used in this experiment, was modeled as a 

Rician distribution [44], which for high SNR can be approximated as Gaussian: 

 ὴὼ Ὡὼὴ Ὅ , [1.2.2] 

where A is the true image intensity, s is the standard deviation of the Gaussian noise, and I0 is 

the modified zero
th
-order Bessel function of the first kind. This noise model can be combined 

with the assumed noise-less image intensity curve using the following equation: 

 Ὓ Ὓ ὔ „ ὔ „ , [1.2.3] 

where the subscript i represents the i
th
 b-value, Siô is the noisy signal, S is the noise-less signal, 

Ni(s) is a random number from the Normal distribution with standard deviation s. Noise was 

tested at values of s set from 1 to 20% of the baseline voxel intensity values for each b-value. 

Since acquisitions using the diffusion sequence in the previous section were optimized for each 

diffusion-weighting separately, SNR was modeled as being equal for each b-value in the model. 

Noise simulation and subsequent fits were performed 500 times for each noise level. Curve-

fitting was performed in Matlab (The MathWorks, Inc., Natick, MA), using an un-weighted non-

linear least-squares algorithm and an initial guess based on findings in the previous section. 

Mean parameter error was determined by the following equation: 

 ‐„
В

ᶻ
ρzππ, [1.2.4] 

where p0 is the true parameter value and pi is the fitted parameter value from the i
th
 fit with noise 

standard deviation s.  
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1.2.3: Results  

 

Figure 1.2.1: Plots of parameter sensitivity analysis for each diffusion model, sensitivity 

coefficient vs. b-value, for: (A) mono-exponential, (B) stretched-exponential, and (C) bi-

exponential. Each plot shows three curves using varying reference values for the parameter of 

interest (blue = low, green = middle, and red = high). 

Model Sensitivity to Parameters  

Plots of the sensitivity coefficients over the range of b-values used in the previous section 

are shown in Figure 1.2.1A-C, with the zero-sensitivity threshold plotted as a gray horizontal 

line. Each plot shows the model sensitivity to the indicated parameter at three different levels of 

that value. All input parameters for all models have minimal sensitivity at low b-values, with 

general increases in sensitivity with b-value, and lower sensitivity over the range of b-values for 

lower values of the parameter. The mono-exponential ADC sensitivity coefficient (Figure 

1.2.1A) decreases linearly with b-value, resulting in high negative sensitivity at higher b-values. 
































































































































































