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Abstract

EVALUATION OF NON-INVASIVE IMAGING METHODS FOR
QUANTIFICATION OF TREATMENT RESPONSE

by
Benjamin A. Hoff
Chair: Craig JGalban

Therapeutic response assessneéiancer has long been facilitated by +iovasive imaging methods
such as magnetic resonance imaging (MRI) angyxcomputed tomography (CT) in the clinic. Standard
of patient care are designed around the most conmaeeswhich may not always be efficacious
However throughevidencebased medicine there has begughdt toward more individualized care
Standard clinical practice fomncer responsassessmentitilizes only volumetric changeneasuregbrior
and following the completion of therapy, providing no opportunity to adjust the treatmeuition,

novel targetdtherapies, which may not result in a substantial decrease in tumor volume, are becoming
more prevalent in the treatment of tumors. There is a clearfaeadninvasive biomarkers that provide
near reatime information on the anatomical and physiological makeup of the tumetrpashent
initiation. Tools for assessing early treatment resgomay allow physicians to dynamically optimize
treatments individudl, enhancing patient prognoses and avoiding unnecessary patient mohittigy.
following studies, haveevaluatd various norinvasive imaging tools for early detection of treatment
responsén rodent models of diseasBssue apparent diffusion coefficients (AD&kknown to correlate
well with cellular status in cancer, ahdveshown promise in the detection of early tumor treatment
responseSeveraldifferent numerical models dfigherorderdiffusion signal attenuatiowereevaluated

to determine their sensitivity to treatment response compared to the standard diffusion model. Dynamic
contrastenhanced (DCH MRI has shown sensitivity to vascular changes in casedwasevaluded as

an imaging biomarker of treatment respousimga novel vasculatargeted therapy. Quantitative indices
generated from DCBIRI datawerecompared taliffusion (ADC) and volumetridMRI readoutgor
response assessmenhe utility of imaging readouts from concurrent MRI, CT, bioluminescence, and
fluorescence imagingasalso evaluated in a model of bone metastasis. Further, a newbasazd
analytical technique, the parametric response (R&M), wasapplied to CT imges of metastatic bone
diseaseand osteoporosi® evaluate bone response to treatnaet hormone deprivation, respectively
Use of these tools may help improve the clinical effectiveness of cancer patient tieveglyas drug
development and testing preclinical models
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Chapter O: Introduction
Diagnosisand assessment of therapeutic respansanceras long been facilitated by

noninvasive imaging methods such as magnetic resonance imaging (M&Y) radiographs,

positron emission tomography (PET), single photon emission computed tomography (SPECT)
and xray computed tomography (Cif) the clinic and more recently optical imaging

(fluorescence and bioluminescence) for-glirical models On the subject of tumor dliogy

there is still much that is not understood, for example some patients given a therapy may exhibit
a positive outcome while others with the same therapy and clinical histopathological
characteristics may ndBecause of this, evaluation of the effeetiess of a therapy is valuable

in determining a patientodés treatment strategy
treatment efficacy has relied heavily on volumetric monitoring of tumor burden, with decreases
indicating a successful responsée$e changes, however, may not be detectable until well after
the treatment regime has been completed, precluding adjustment of the treatment strategy based
on its efficacy. Development ¢dols for assessingarly treatment response may allow

physiciansa@ dynamically optimize treatments on an individual level, enhancing patient

prognoses and avoiding unnecesgstentmorbidity.

Diffusion-MRI is an MRI sequence capable of quantifying the molecular motion of
protons primarily in water using bipolar matisensitive gradients. Theagnitudeof diffusion
weighing is measurd in b-values, which are a function of gradient strength, duration and
spacing between gradienBiffusion weighting can be applied directionally, allowing some
assessment of the tisssteuctures as in diffusion tensor imaging (DTI), or isotropically,
resulting in a general assessment of tissue water diffusidime simplest case only two
diffusion-weighted images at a low and nominatdue (~0 and ~1000 s/nfnrespectively) are
required to generatthe quantitativemetric, the apparent diffusion coefficient (ADC) map

assuming monexponential decay in the MRI signal with increasirgabue ADC has been
1



shown to be indicative of cellular status in cancer treatfieb®]. Increases in ADC have
correlated well with tumor cell deataused byytotoxic therapieand arevell-documentedor
nomiral diffusion weightingRecent studies, however, have shown that at high diffusion
weighting (bvalue) the signal attenuation curve deviates from a true fagponential behavior
[9, 13-21]. Although no single theory has yet been embraitedmost popular models either use
the sum of two diffusion populations (proposed as iraral extracellular waer) or a spectrum

of diffusion rates attributed to the continuum of waigdrationshells surrounding biological
structuresChanges in these nanonc-exponential metrics may prove sensitive for detecting
treatment response.

Dynamic contrasenhanced(DCE-) MRI is a technique using smatiolecule
paramagneticontrastenhancingracers injected intravenoudiy extract tissue vascular
properties from timeourseT;-weighted MRimages.Contrast enhancement of theweighted
signal is proportional to the voxel concentration of contrast agent, allowing the extraction of
pharmacokinetic tissue properties through modelBrgwing interest has been apparent in
targeted cancer therapies, one focus of which isvaisttuar drugs such as Bevacizumab and
Aflibercept. Theseargeted agents inhilsellular signahg and resultingangiogenesis, the
growth and recruitment dflood vessel within the tumor DCE-MRI has been shown to detect a
reduction in vascular leakineasdblood volume within a treated tumor. In the following, both
DCE- and DWMRI were used to evaluate treatment response in a 9L rat gliosarcoma model
treated with the new therapeugigent Aflibercept. A few different widehused analytical
models were alsoompared on the same data to assess variation of response sensitivity in these
models.

For the development and evaluation of new cancer pharmaceuticaiayasive
imaging biomarkers have proven very useful in reducing total necessary animal popakations
well as expediting the measurement of a therapeutic resg@uaastification of treatment
response in bone metastases has proven to be an elusive task, with currently no-<clinically
accepted criteria. Recent studies have shown a critical link betwdastatie cancer and its
microenvi r onment , ¢ oi 22 dThrougheintefiastienevth bane,aertairo i | 0
cancer phenotypes are spurred to grow and proliferate, resulting in a vicious cycle of bone
remodeling and tumor growtkVith the wide variety of available imaging modieig, a great

deal of physiological information can now be obtained from a sswgdectiongitudinally over
2



the course of the studWith the combination of imaging modalities, researchers are now able to
guantify multiple treatment responses at esséytia¢ same time as well as longitudinally

this case both bone and tumor respoiiséhe following, an animal model of boney metastasis is
presented, and treatment response is evaluated bivBYWquantitative CT, bioluminescence
(BLI), and fluorescece (FLI) imaging after treatment with the bisphosphonate, zoledronic acid,
or the cytotoxic agent, docetaxel. These two therapies serve to highlight the two extreme
treatment cases: afitimorenvironment or antiumor, respectively, and are both clinigall

relevant therapies. Using multiple readouts, a more comprehensive perspective for new drug
evaluation and efficacy screening can be achieved.

Traditionally, quantitative cancer imaging has been evaluated using-tinaobe
statistics such as the mean @tbgrambased analysef. newvoxelwise approach to detecting
treatment responséhe function diffusion map (fDMhas successfully been appliedXav-

MR, resulting in increased sensitivity to localized diffusion changes over mean volume statistics
[23-28]. This technique uses spatially aligned serial images to compare diffusion images both
spatially and tempatly. This same technique, now termed the parametric response map (PRM),
has already been expanded to other images, including &@Edynamic susceptibility contrast
(DSG) MRIU. In the following, this PRM analysis will be applied to bone CT imdues

Hounsfield units, HUYo evaluate localiz&bone changes both in animal models and clinical
metastatic cancer patiengensitivity of PRMy to bone changes was validated through a-well
establish ovariectominduced osteoporosis model in rats, and further characterized in both
osteolytic and osteoblastic models of bone metastasis in mice.

In conclusion, there exists a great variety of quantgamaging options for the
assessment of cancer treatment response, particularly-afirpoal imaging where tissue depths
are not enough to inhibit optical imaging modalities. Through early detection of treatment
response clinical patietteatmentsnay be individualizedallowing the option to adjust
treatmendv i r t ual | y In&addition, hrbugh tHe bsg af multimodalquantitative
imagingapproachtailored to a focused treatment or effect, a more comprehensive and efficient
evaluation of nxed treatment effects can be possible. Even for a single imaging modality, for
example DCEMRI, it is important to understand the accuracy and limitations of the model to be
used in order to extract valid conclusions from the results. In the followingerkavarious

analytical models for mukexponential diffusion MRI and DGHEIRI are evaluated for both
3



sensitivity to physiological or model parameter change and sensitivity to noise in the images.
The use of a mukimodality imaging strategy is also evatad, using MR, xay CT,
bioluminescence, and fluorescence imaging, for a more comprehensive evaluation of
tumor/stroma treatment response using a limited study population. Finally, a new method for
evaluating spatialijocalized changes in 3D imagesigluated on CT images of the bone. This
method may see its greatest use for evaluation of bone metastases, which currently have no
official criteria for assessing treatment response in the clinic. This manuscript provides an

evaluation of several methotts quantifying physiological chang@svivo.
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Chapter 1: Non-Mono -exponential Diffusion

1.1: Chemotherapeutic Treatment Response
Included with pernssion fromJohn Wiley and Sons

Hoff BA, Chenevert TL, Bhojani MS, Kwee TC, Rehemtulla A, Le Bihan D, Ross BD, Galban CJ.
Assessment of multiexponential diffusion features as MRI cancer therapy response metrics. Magn Reson
Med. 2010 Nov;64(5):149509.

1.1.1: Introduction
Diffusion-weighted magnetic resonance imaging (DWI) shows promise as an imaging

biomarker for treatment response in glioma patigh® as well as in a variety of other clinical
tumor typeq10-16]. Routine in almost all preclinical and clinical scanners, diffusion maps can
be generated from a minimum of two images acquired at leval(ee ~ 100 sec/mfhand high
(b-value ~ 1000 sémnr) diffusion weightings. Assuming morexponential signal attenuation
with b-value, the apparent diffusion coefficient (ADC) can be calculated analytically. The
application of diffusion MRI for the detection of early tumor treatment response was first
reported using a rodent glioma model using diffusion weightings at nomirslbs ¢ 1000
sec/mm) [17]. This initial report has been verified and expanded by ensuing publications using
different tumor modls and therapeutic ageiis 18, 19|, supporting the use of diffusion MRI as
a sensitive imaging biomarker capable of detecting early cellular changes in tieabesi

which precede macroscopic volumetric response.

The efficacy of this technique lies in its sensitivity to the molecular motion of water,
which is affected by cellular, subcellular, and macromolecular elements that impede otherwise
free diffusion of water. Thus, therapeutic changes within the tumoe aettular level can be
monitored by serial diffusion measureme®8-23]. Through thermal random motion, water
molecules sample the surrounding microarchitecture within tissues at length scales (few microns)

much smaller than typical MRI voxel resolution (~millimeter). The theoretical basis for diffusion



analysis is that cell membranes and other structures hinder the diffusion of mdl20utds.

The magnitude of diffusicdriven displacement is altered by tortuosity and hindering effects and
can therefore be used tder their presence and density. Studies have revealed that in biological
systems water proton signal attenuation due to diffusion weighting does not follow mono
exponential decay, and the deviation from merponential behavior is best observed at
relatively high bvalues ¥ 3000 sec/mr). A more accurate description of signal attenuation

with b-value over this wide{value range requires more complex biophysical md@&8§].

An early interpretation of multiexponential diffusion patterns was that water moves
within two or more compartments representing
(intracellular) diffusion componesin the signal. At low {values thdffas diffusion pool
dominates signal attenuation, whereas at highdbl ues t he fAsl owo di ffusio
leading to a biexponential form for signal decay. Biexponential signal attenuation in DWI has
been studieéxtensively in a variety of biological systems, and the physical mechanisms that
govern nonmonoexponential decay continue to be an area of debate. An alternative formalism for
the nonmonoexponential decay incorporates the underlying complexity in t@ahfinedium
as a continuous distribution of diffusion coefficients arising from a multiplicity of pools. Termed
the fAseéexpowrcbdridi al 0 f o r[29plrovidedran anBlgicalreptedentatidn a |
of the signal attenuation as a function of the probability density with a particular diffusion
coefficient. Although this formalism can be usedri@i the intravoxel diffusion heterogeneity
within a biological system, it does not lend itself to straightforward association between
bi ophysical compartments andexpgmaht ida&lcayf orAm:
not been evaluated for is&nsitivity to treatment response in tumors, this method has shown
promise for characterizing tumors in brain cancer pati@¥s31].

Research investigating the sensitivity of higladbue DWI for treatment assessment has
showvn promising resultgs, 32]. Mardor et al. have demonstrated in patients with malignant
brain | esions that the ratio of the diffusion
signal fraction is highly sensitive to radiatiorduced changes in the tom This parameter not
only demonstrated a significant change from baseline as early as 1 wesle@imséent initiation
but was capable of predicting clinical outcome in all of the studied paf@nta contrast,

conventional mon@xponential ADC (in their study, low and higkvhlues were 120 and 1200



sec/mmi, respectively) was found to be predictive of outcome in only half of the patient
population studi@. Sensitivity of high bvalue DWI to treatment was also observed in a colon
cancer mouse modg2]. These authors used the area under the normalized
nonmonoexponential diffusion curve to quantify thiusion characteristics of the tissue. This
diffusion index was found to provide early prognostic information on animal responsiveness to
treatment.

In this study, three nonmonoexponential diffusion formalisms applied over an extended
range of bvalues {20/ 4000 sec/mr) were tested against the conventional-aint ADC
measurement to determine their sensitivity to theiaguced changes of tissue using a rodent
brain tumor model. Results showed similar time response curves for all diffusion indices
following treatment. Although the highest fractional change following treatment was observed
using the biexponential formalism, these results were not significantly different from those

observed using the conventional twoint ADC calculation.

1.1.2: Methods

Animal Tumor Models
9L gliosarcoma cells were obtained from the Brain TuResearch Center at the

University of California inSan Francisco. The cells were grown as monolayek® onf sterile
plastic flasks in DMEM with 10% fetal bovirserum, 100 IU/mL peniltin, 100 mg/mL
streptomycinand 2 mML-glutamine in an incubator held2f C and 95%/5% air/C©
atmosphere. Before implantatiarells were harvested by trypsinization, countedj re
suspended in serufmee medium for injection.

Tumor implantatiorwas performed on Male Fischg44 rats (Harlan Spragizawley,
Indianapolis, IN)weighing~125 150 g, as previously describg2B]. Briefly, animals were
anesthetized with a ketamine/xylazmeéxture (87/13 mg/kg) administered intraperitonéal.
small incision was then made over the right hemispbktiee cranium. A 1 mm diametburr
hole wadrilled through the skull using a higipeed surgicalrill, and a 5 mL suspension
containing 1x 10° 9L cellswas injected through the burr hole to a depth of 3 rifiter injection
of the cells, the burr hole was filled witlone wax to preent extracranial extension of the
tumor,and the surgical area was cleaned using 70% ethégiblond (3M, St. Paul, MN) was

used to close the incisiamtil healed.



Chemotherapy
Once the tumors reachedi®0 mn? as quantified using,-weighted MRI, preeatment

diffusion-weighted (DW)images (details below) were acquired for all animalghattime of
treatment, 1,dis(2-chloroethyl}1-nitrosoureg BCNU) (LKT Laboratories, St. Paul, MN) was
freshlyprepared and formulated to a final concentration miggbmL BCNU in 10% ethanol.
Subsequent to their pretreatm@&W!I scan, animals either received a singbéus intraperitoneal
injection of BCNU (9.98 mg/kg; B 13) or 10% ethanol as the control vehicle=(20).

Typically, tumors increased in volume BY0% over the duratioof the study (2 weeks pest
treatment initiation)and euthanasia was accomplished by 6¢@rdose.

MRI Scans
During MRI examinations, animals were anesthetizéd 1i 2% isoflurane/air, and body

temperature wahaintained by blowingvarm air through the bore of tineagnet using an Air
Therm (World Precision Instrumen@arasota, FL). MR scans were performed immediately
before treatment and every 3 days thereafter usthg @, 16 cm horizontal bore Varian (Palo
Alto, CA) Direct Drive system with a quadrature rat head coil (O#&tientific, Inc., Columbia,
SC). DW images were acquireding a spirecho sequence, with a navigator echo gradlient
waveforms sensitive to isotropic diffusigdd], with the following parameters: repetition time
(TR)/echatime (TE)= 4000/41 msfield of view (FOV)= 30 mm,matrix size= 64 x 64, slice
thickness= 2 mm, numbeof slices= 8, sweep widtlx 50 kHz, gradient pulseidth =10.5 ms,
gradient pulse separatier?5 ms,and bvalues (xgradient, ygradient, and-gradient
amplitudes) ofL20 (5.3, 4.8, and 4.2 G/cm), 1200 (14.6,0, and 13.1 G/cm), 1600 (19.1, 17.3,
and 15.6 G/cm)2000 (21.3, 19.2, and 17.4 G/cm), 3000 (25.9, 23.42ar®1G/cm), and 4000
sec/mm (29.7, 26.9, and 24.6 G/cm) with averages of 1, 1, 1, 1, 4, and 16, respebtitiély.
scans were constrained to a total scan time db&slked upon an institutionally approved animal
protocol.In addition to the time constraint, only voxels in thmor with a signal to noise (SNR)
> 6 at high diffusiorweighting (i.e., b= 4000 sec/mf) were evaluated. Thest step in
maintaining this constraint was to determaneoxel size that provides adequate SNR and
resolutionwithin a 2 h MR experiment. As obsex/in Chenevemtt al.[3], 9L rodent brain
tumors treated with 13.3 mg/lBCNU can exhibit an ADC as high as ¥80° mnf/sec. A

sucrose phantom of 15% sucrose/water, witheasured ADC of 1.4 10° mn/sec over the b
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1201 1200 sec/m? range, was used to determine sequgrazameters (i.e., FOV, slice thickness,
and averages) thatovide a SNR > 6 at$H 4000 sec/mm[35].

Post -processing of Diffusion -Weighted Images
All MRI data were transferred to a PC, interpolated toadrix size of 25& 256, and

analyzed using Hnousesoftware developed in MATLAB (The MathWorks, Inblatick, MA).
Curvefitting was performed usinghaunweightednontlinear leastsquares algorithm using an
initial parameteguess based on literature valuggfusion signal decay, found to follow a
nonmonoexponential trend in healthy brain tissuetantbr from our animal model, as

analyzed using thregiffusion approaches.

Two-Point Analytical Formalism
The simplest of all three techniques investigated captiieesonmonoexponential trends

observed in th®W images from a twgoint subsampling of the signéécay curve using the

following equation:

009 %— [1.11]
where $and $ are the signal intensities atvialues b and b, respectively, and AD£x is the
diffusion coefficientobtained using{and b. The conventional morexponentiaADC was
calculated using{values of 12@nd 1200 sec/mM{ADC12q 12009, Which captures theapid
diffusion decay in the nomindd regime whileavoiding perfusion effects observed at very low b
value(<100 sec/mr). Slow diffusiondecay, observed in thegh-b regme, was captured by
determining the ADQising bvalues of 2000 and 4000 sec/AMADCoooq 4000). The ratio of
ADC 2000 400dADC120 1200 defined aftp, was used as an empiric index of nonmonoexponential
behavior derived from the pieagise twaepoint formalsm. An Ryp close to one implies moro
exponentiabehavior, whereas a decreaskg implies greater disparityr signal decay between

low-b and highb regimesthus greater multiexponential behavior.

Stretched Exponential Formalism
This formalism definethe divergence of a diffusible partidl®m moneexponential

trends as anomalous diffusi@9,36). Referred to as the stretched exponeitial formalism
portrays molecular diffusion in a localhonhomogeneous environment, which is represented by
theequaiton:
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YO YQ ° , [1.12]
where S is the signal intensity at a givenabtue, 3 is the signal intensity with no diffusion
weighting, DDC ighe distributed diffusion coefficient, amdis the anomalousxponent bound
between 0 and [29, 36]. By inspection of Eq. 4t should be cleathatU= 1 is equivalento
monoexponential diffusion signal decay. Conversahga approaching O indicates a high degree
of multiexponential signal decay, thaswill be used as theonmonoexponential index derived
from the stretchedxponential formalism. This convention maintains consistenttyBennett et
a | [29 definition ofa as a diffusioimeterogeneity index, although we remind tbader that a
numerically high a value-Q) represents lw intravoxel diffusion heterogeneity approaching
monoexponential decay, whereas a numerically lalae represents a high degree dfudion
heterogeneitgxhibited as multiexponential decay. It is also worth emphlaaithe term
fiheterogeneityin this context refert intravoxel heterogeneity of exponential decays, as
opposed to intervoxel heterogeneity of diffusion coefficiastsften is the case, particularly in
tumor. Parametanaps of DDC an@d were calculated by linearizirthe stretched exponential
equation and then fitting it tilhe DW images in a pixalise manner over all-aluesusing a

linear leastsquares technique.

Biexponential Model
Calculation of the biexponential diffusion componemé&s performed by a pixalise fit

to all DW images ofthe following equation:

YO Y ©@Q wQ [1.13]
where S and §&are signal intensities at a givervllueand nodiffusion weighting, respectively,
D, and By arethe fast and slow diffusion coefficients, respectively, ¥ndnd \4 are the fast
and slow signal fraction contributiongspectively. The fractional signal componentsralated
by the expression )&= 17 V. The fit was performedsing a nonlinear leastjuares technique.

Image Analysis
Volumes of interest (VOI) over the tumors were manuatigtoured on the low-talue

DWI, which exhibits B-weighted contrast and serves for quantification of tuvmetume. Low
SNR voxels were excluded before calculadmean parameter values within the VOI from
eachdiffusion formalism. To accomplish this, voxels havBi§R ¢ 6 on the b= 4000 sec/mm

DWI were identifiedoy software in a binary 3D mask. The mask weshapplied to all DW
12



images guaranteeing that only thesaels with a SNR > 6 were evaluated. Regions of necrosis
or blood pools, typically observed as hyiptense ol ,-weighted images, were manually
omitted from the/Ols. Parameter change with respt treatment waassessed using the

percent change of the mean of egarameter (100[PosiTherapyi PreTherapy]/ PreTherapy).

Histology
An additional six animals were used for obtaining histoloigthe tumors for control (7

3) and treated animafa = 3) 6 days postreatment. 9L tumors from these animaksre placed
in buffered formalin overnight, dehydrated70% ethanol, and subsequently embedded in
paraffin. Tissue sections were prepared for histologicadessing by routine techniques. Bigief
paraffin sectiong5 mm thick) were cut on a microtome and hedte®0 min at 65C. Slides
were deparaffinized in xylengith three changes for 5 min each and then rehydthtedgh an
alcohol gradient for 2 min each (100% alcol®&% alcohol, an@0% alcohol). Sections were

firstst ai ned u xhematoxydin sGlutibnladdshesibsequently stained with eosin.

Statistics
A pair ed -teSttwasdiged tb dssesstsignificanewveen the percent chasge

each parameter peseatmeninitiation from pretreatment values and betwdenpercent
change in similar parameters for each formakgnmdividual time points in the treated group.
Groupcomparisons were assessed for each parameter at inditideigdoints using an
independent sampl St utdestnTreatment efficacy on overall survival veasessed by leg
rank test and displayed using a KapMaier survival curves. All statistical computations were
performed with a statistical software package (SPSS Softvarhicts, Chicagol). Statistical

significance wasssessed at P < 0.05.

1.1.3: Results
Representative DW images, acquired-ahies of 120, 1200, 3000, and 4000 sec/mm

are demonstrated Figurel.11. Using low bvalue images, delineation of tumor extent allowed
for tumor volumes to be measured over time. Although the tumor volume in treated animals did
appear to have a slower rate ofwtio than controls, this did not result in statistical differences
in tumor volume between groups at individual time poikigyrel.12a). Nevertheless, as
presentedn Figurel.12b, the median survival of treated animals (9 days with a 95% confidence
interval of 8.29.8 days) was found to be significantly longer than contriohals (5 days with a
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95% confidence interval of 3.8.2 days; P = 0.001). Increased longevity in treated animals was
consequent to tumor cell death, which was verified by histology. Histological sections of
representative control and treated animals at6dagsttreatment initiation are presented in
Figurel.13. Following BCNU treatment, fewer nuclei were observed in the treated tumor than
control, suggesting massieell kill in the tumor volume of treated animals. An increase in
pleomorphism and giant cells was also evident in the treated tumors. Tumor growth rate kinetics
and histology were consistent with previous findings using the 9L gliosarcoma rat brain tumor
model[6].

Figurel.11 Representative diffusieweighted images of a rat brain harboring a 9L
gliosarcomaacquired at bvalues of (a) 120, (b) 1200, (c) 2000, and (d) 4000 set/inmages
were independently scaled for better visualization at highvales.

Presented iTablel.1is a summary of the parametric indices generated from the three
formalisms for control and treated tumor groups acquired at baseline. Significant differences in
indices with similar diffusion properties were observed between all formalismsnirast,
group comparisons did not result in statistical differences for any given parameter. To verify the
accuracy of our biexponential fit to the data, pretreatment values were calculated in healthy rat
striatum. Biexponential results of,Bnd V4 (0.88x 10° mmf/sec and 0.79) were found to be

comparable with previous values in brain tisg2. In contrast, B(0.42 x 10° mm?/sec) was
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25xthaté Ni endor f et [28 of 0.165 x 161 mm’sag whicmeould be a result
of higher diffusion weighting, up to 18/mnf as opposed to the 4000 s/fmsed here
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Figurel.12: (a): Plot over time of the mean tumor volume. Data presented as mean +
SEM. Significant difference in mean tumor volume between groups was assessed using an
unpai r ed -teStt Ruvdles daredpsovided at individual time points.KbaplanMeier
survival plot for overall survival is presented for control and treated animals. Controls are shown
as solid line with diamond markers and treated are shown as dashed lines with square markers.
Significant differences in overall survival wesbserved between groups as assessed using a log
rank test (P = 0.001).

Tablel.1: Mean Parameter Values at Baseline -freatment data are presented for
controls (n=10; top) and treated animals (n=13; bottom) as means (SEM).

Two-Point Stretched Exponential Biexponential

ADC 1201200 [X10° mm3/s] DDC [x10° mm3/s] D, [<10° mm?/s]

1.02(0.02) 0.97 (0.02) 1.39(0.05)

0.99 (0.03) 0.95 (0.02) 1.38 (0.05)
ADC 20004000 X107 mm?/s] D, [x10° mm?3/s]

0.71 (0.02) 0.68 (0.03)

0.69 (0.01) 0.62(0.02)

R7p a Vz
0.71 (0.02) 0.83 (0.01) 0.39 (0.01)*
0.71 (0.02) 0.87 (0.01) 0.35 (0.01)
ADC20.1200/Rep DDC/a DV,
1.46 (0.07) 1.10 (0.04) 3.99(0.18)
1.48 (0.05) 1.09 (0.03) 3.74(019)
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Figurel.13: Hematoxyliri eosinstained sections of intragdbral 9L tumors for
representative (a) control and (b) BChil@ated animals on day 6 pdstatment.

As shown inFigurel.14, maps of parameters more sensit
properties pretreatment (left column) and 6 days following BCNU treatment (right column) were
generated over the tumor volume and suppadsed on Fweighted images. Tepw images
(Figurel.l4a,d) represent AD{q 1200 Middlerow images figurel.14b,e) are DDC, and
bottomrow imagesftigurel.1l4c,f) are O. In addition, the full time course of AD& 1200
DDC, and D expressed as percent change from pretreatment values are illustraigdren
1.14qgi i, respectively. Pwas found to be significantly larger than ABg&1200and DDC at
baseline Tablel.1) and at day 6 podteatment initiation as well as having, in absolute terms, a
larger dynamic range (~1.8.0 x 10° mn¥/sec) within the tumovolume allowing easier
visualization of tumor feature§igurel.14c,f). As for the responsiveness of these indices to
treatment, the percent change from baselirsk@e at day 6 posgteatment initiation, followed
by a descent toward baseline at da¥igrel.14qgii). Near identical trends were observed for
ADC124 1200and DDCwith significant group and baseline value differences observed on days 3
and 6. Similar results were observed fareRcept for the negligible group differences at day 3
posttreatmeninitiation, which is attributed to the sloweate of ascent from based (Figure
1.14i). Although change iD; was found to be most responsive to treatment witBh586
increase at day 6 from baseline, it was not fawnge significary larger at this time point or
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any othettime point from what was observed for chang&D1C; 24 1200and DDC (P=0.204 and
P=0.711, respectivelyffior day 6).
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Figurel.14: Representative maps and line plots of percent change in parameters

sensitive to o00fast diffusiond66 g-expomentwmf ed usi

and (c, f, 1) biexponential formalisms are provided. Diffusion maps, overlaid eveighted

images of a rat brain, were acquired at days O (a, b, ¢) and 6 (d, e;theptrsent initiation.

Line plots (g, h, i) consist of mean values and standard errors from control and treated groups
over the entire experiment. Data are presented asdha + the standard error of the mean. The

symbolsAand * designate significant differences from baseline and between groups,
respectively. Statistical significance was assessed at P < 0.05.

Analogous parametric maps and line plot&igurel.14 areillustrated inFigurel.15
forr quant i t i e sslowddfas®nocompomrent bfdthe debag cuifve, namACaooq
a000(Figurel.1l5a,c,e) and B(Figurel.15b,d,f). In generalADCgoq 4000and B> showed little
change in day 6 valuésom baselineKigurel.15ai d). Percent change in theean values over

time corroborates observations foundhe maps from the representative aninkadgre1.1.5a
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d) with ADCy0004000and b peaking at less than 10% ladiseline. Group tferences were only
observed at day fr D, partly attributed to a drop in controb.Dnterestingly both ADGygoa
ao00and D2 resulted ir7% decrease from baseline on day 9 gosatment initiatior(Figure
1.15h,i), which correlated with the descent baclptetreatment values observed in diffusion

coefficientssensitive tdifast diffusiord (Figurel.1.4).
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Figurel.15:Represent ative maps of the 66sl ow di f
percentage change in parameters generated using (a, c;@ihivand (b, d, f) biexponential
formalisms are provided. Diffusion maps, overlaid orWiéglghted images of a rat brain, were
acquired at days 0 (a, b) and 6 (c, d) gosatment initiation. Line plots (e, f) consist of mean
values and standard errors froontrol and treated groups over the entire experiment. Data are
presented as the mean + the standard error of the mean. The siattls designate
significant differences from baseline and between groups, respectively. Statistical significance
was assessed at P < 0.05.
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Figurel.16: Representative nonmonoexponential metric mapsiaadglots of
percentage change in parameters generated using (a, d;ppitwo(b, e, h) stretched
exponential, and (c, f, i) biexponential formalisms are provided. Metric maps, overlaid on T2
weighted images of a rat brain, were acquired at daysi) ¢aand 6 (d, e, f) posteatment
initiation. Line plots (g, h, i) consist of mean values and standard errors from control and treated
groups over the entire experiment. Data are presented as the mean * the standard error of the
mean. The symbolaand* designate significant differences from baseline and between groups,
respectively. Statistical significance was assessed at P < 0.05.

As discussed previously, a comparison of the absaolugerical value of
nonmonoexponential metrics is moeaningfulbecause of differences in how these parameters
are defined. Qualitatively,fR was most sensitive toeatment exhibiting the largest percent drop
from baselinevalues Figurel.16). The remaining parameters shovesailar qualitative trends
from baseline to day 6 pestatmentinitiation. A significant drop from pretreatmevdlues was
observed at day 6 for{R(- 11%),a (- 7%), and M (- 6%). Rrp anda continued to have
significantlylower values to baseline at day 9, which watsestablished by Abecause of

scatter in the dat&roup differences were only found at day 6 fes Brda. The ratio of D and
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Di, as obtained from the biexponenfiaimalism, provided analogous results tg-Rdata not
shown). Although the mean value of/D; decreased by more than 15%, these results were not

found to be statistically different from the controls.

1.1.4: Discussion
DW MRI has shown potential as a surrogate bionraidetreatment response in cancer

patientg 37-40]. Acquisition of diffusion maps is typically performed at relatively moderate
diffusion weighting, i.e., tvalues that typically spahé¢ Q 1000 sec/mrirange. It is speculated
that water diffusion measurements at highealues may provide increased sensitivity to
relevant drugnduced changes in tumor composition by virtue of possible therapeutic alteration
of cellular constituentsrpsonsi bl e for the fAslow diffusiono c
at relatively high bvalues. This study sought to determine the sensitivity of diffusion parameters
derived from various mathematical formalisms of nonmonoexponential water diffusion to
treatmentinduced tissue alteration following treatment of the 9L glioma model.

Previous work by our group using the 9L brain tumor model has shown that ADC
calculated using moderatevialues can increase by up to 60% within a week following a single
dose( 13. 3 mg/ kg) of BCNU (3). As measured in th
di ffusiono showed similar trends foll owing a
day 6 postreatmentnitiation. The maximum percent change in parameter iatue baseline
was observed in DThis is expected because B a more specific measurementitdst
diffusiond than DDC and AD&q 1200 Which are not completely devoid of ti&ow diffusiord
properties in the signal decay curve. A positive therapetfect was confirmed by an increased
overall survival Figure1.12) as well as direct evidence from histological tumor sections
comparing treated versus untreatechors Figurel.13). Another characteristic trend of ADC
following treatment, which has been observed here and by others, is the temporally evolving
descent to basele values. This has been found to correlate with tumor cell repopulation, which
has been reported in the literat{28]. In contrast, those indices specifically sensitivésiow
diffusiono exhibited a negligible change pdstatment initiation until day 9 where a drop had
occurred in both parameter values when compared with baseline. The lack of response following
treatment and the sudden drop in Algfg s000and B during cell epopulation, which is reflected

in the diffusion coefficients sensitive fifast diffusiord descent to baseline, is quite perplexing,
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suggesting independent mechanisms affectingftisd andfslowo diffusion properties of the
tissue. Additional mechanisnsuch as macrophage infiltration and clearance of
macromolecules, may also contribute to our observations. Despite subtle variations in the trends
of the parameters with eithBiasb or fislowo diffusion properties, there was no significant
difference inthe percent change from baseline between diffusion parameters with like properties.
As opposed to the diffusion coefficients, the nonmonoexponential metfics ,Rnd
V,, are defined differentlgnd thus cannot have the same interpretation, neeighthey have
similar trends. Consequent to the negligitth@nge in ADGooq 4000 Rrp is driven almost
exclusively by ADG2q 1200f0or most of the study. Naintil day 9, did we see a divergence from
this dependencevhich is partly attributed to the mirrorel@scenbbserved in ADGyoq 4000t0
ADC124 1200resulting in anegligible change in 2 from day 6 to day 9 podteatmentnitiation.
Analogous but not significant resultere observed for #D;. Large variability in the
measuremestof D; and B (Figs. 4 and 5) from the nonlinefitrmost likely contributed to the
non-statistical differencén D,/D; between groups. In contrast, the slow diffussaynal fraction,
V3, defines the proportion of watsignal in the slow compartment independent aiewa
diffusivity. The drop in \§ suggests shrinkage of tslow compartment volume fraction,
conversely an expansiaf the fast compartment volume fraction, followitngatment initiation.
The anomalous exponeatrepresentshe deviation of signal attentian from moneexponential
behavior & = 1). This perturbation is assumeda® attributed to increased heterogeneity within
the tissueThe decrease ia seen inFigure1l.1.6h suggests ammcrease in tumor intravoxel
heterogeneity that maximizes day 6 and continues to day 9. Following treatroéthie tumor
with BCNU, a loss in tumor cellularitfFigure1.1.3) pushedhe attenuation curvieirtherfrom
monoexponential behar than what was observed frarantrol and baseline valueBablel.1).
Because of similairends in the nonmonoexponential metrics and thedaoksponse to
t r e at me sldw diffusiora indiees,dhe may speculate that tfiast diffusiord properties
within the tumor dominate what we observe fgg,R, and \, following treatment. Various
theories have begiroposed to provide a physical account of the deviatialiffusion-sensitive
signal attenuation from monoexponenbahavior in biolgical tissug 20, 21, 41]. Use ofthese
theories to detenine the exact physical propertigsit govern nonmonoexpential water
diffusion warrantgurther investigation but is beyond the scopéhas study.

21



Irrespective of the mechanisms driving nonmonoexpondwgiavior in diffusion
sensitive signal attentian, high bvalue DWI provides additional advantages cx@mnventional
monao-exponential ADC measurements thay provide a more sensitive biomarker for tumor
treatmentesponse and characterization. The conventigpatoach for measuring ADGC; b
values aound 1000 sec/mhis hindered by the presence of highly diffuse tissueh as cysts
and necrotic areas, which may resmd#éin or around the tumor volume adding increasing
difficulty in localizing viable tumor. At higher-lalues these rapidly diffusig regions within
tumors are essentialfittered out leaving only densely packed tumor tiad lower ADC values.
Recent research investigating gensitivity of high bvalue DWI for treatment assessmbéas
shown promising results. Mardor et al. haeendnstratedh patients with malignant brain
lesions that theatio of D, and \; [defined as R in Eq. [IB]] is highly sensitive to radiatien
induced changes the tumor.This parameter not only demonstrated a significhahge from
baseline as early dsweek postreatmentinitiation but was capable of predicting clinical
outcomein all of the studied patients. In contrast, conventiomahoexponential ADC
(comparable to ADGq 1200in this study) was only capable of predicting responsbout half
of their patient population. It is not cleahether R, as presented by Mardor et al., is driven by
D, or V,, or if D1 or V, alone would provide ample sensitwto predict tumor response to
treatment as this analysigas not provided in their study. We further evaludtedapproach
proposed by Mardor et 46] (D1/V2) usingour data. The percentage change ifVRfrom
baselinevas~42% in the treated group at day 6 pweatmentwhich was significantly different
from controls { 2% (P = 0.002)]. Although, YV, demonstrated a percentagenge 1.6
greater thathat generated by Dthisincrease was not statistically different£P.15). The
probable cause for the lack sifnificance was the additions¢atter in the data as a result of the
nonlinear fit.Unlike DWI at moderate4values, acquisition diffusion-sensitized signal atb
values of >2000 sec/nfiis not trivial. This is attributed to the exponential lossighal due to
increased attenuation at higtvalues. Assignal approaches the noise floor, artificial
nonmonoexponentidtends in theignal profile are observeddversely affecting the slow
diffusion measurements. Bxcommodate these losses, images must be acquiresfiitient
SNR resulting in longer scan times, which nmay result in patient compliance. Additional

computationatime is also required when fitting the biexponerfmainalism to the BVI data. In

22



this study, ~30 miper dataset was required for the vewase nonlinear fitThe stretched
exponential formalism does not suffesm this deficiency because it can be #need and

solved using an algebraic solution of the linear Isgaaires. Numerically fitting two parameters
for thestretched exponential model can also be more stable reifafivting three parameters
required by the biexponentialodel.

There are seeral limitations to our experimentapproach that must be discussed. Scan
time was limitedo no more than 2 h. This in tulimited the signal averaginge., SNR, and
range and number ofvmlues useger scanning session. As discussed, large shicentbsses
and small matrix sizes were used to maintainselfrimposed constraint of SNR > 6. This likely
resultedin unavoidable partial volume averaging in the tunadrich would be less with thinner
slices. Another area abncern was the lack of suffently high bvalues, whichare most
sensitive tdislow diffusioro rates. This coulthave possibly led to an overestimation of tharD
thebiexponential fit. Using the meam Bnd B determinedht day 6 postreatment initiation, we
found in treated tuor tissue (1.% 10> mm?/sec and 0.& 10° mm?/sec), less than 4%

(exp¢ 2000*0.0017)-3.3%) of thefast diffusion signal was still present at-addue of 2000
sec/mni, whereas 29.9% of the slow diffusion comporsighal was still available. Finallihe
biexponentiadiffusion coefficients, Pand 3, acquired here fdnealthy striatum varied by only
a factor of 2, contrary tthe factor of 510 typically observed in the literatui®ased on the
observations of biexponential diffusionnodent modelsD; as measured in this study is in
accordancevith literature results (0.88 here, compare.&2 and 0.7% 10° mnt/sec in the
literature), whereab, appears to be overestimated by a factor of 2 (0e48, compared to 0.17
and 0.18« 10° mnt/sec intheliterature)[28, 41]. The discrepancy in s most probablylue to
the lack of sufficiently high dwalues sed inthis study. Finally, the filtering of low SNR voxels
from our wholetumor analysis may have inadverterrgynoved necrotic regions the tumor.
Signal intensitywithin regions of high diffusivity or short;[due toblood products is prone to
have bw signal at highb-value. As discussed earlier, the contribution of nmseur data was
reduced by filtering voxels whose SNF6 on the highest weighted DWI (4000 sec/nrihis
maintained voxels having high SNR at highiddues butemoved regions dfigh diffusivity or
low SNR (i.e., necrosigystic, and blood products) from the whalenoranalysis. To avoid

excessive loss of tumor volume whitaintaining SNR 6, image matrix size and slice
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thicknesawvere set to maintain adequate SNR at a costsafiution.The volume fraction of
tumor analyzed at daysahd 9 postreatment initiation in treated animals v8&5%z+ 11.3%
and 94.5%t 9.9% (means 6 SDjespectively. Based on these values, filtering turagions
that contribute to low SNR in DWit&igh bvaluedid not result in excessive loss of tumor
volumefor our analysis in this study.

We have demonstrated the sensitivity of various nonmonoexpondifftigion
formalisms for monitoringearly response to chemotherapeutic treatment for braiors in an
animal model. The extent of the respomaged, with the fast diffusion component of the
biexponentiaformalism exhibiting the largest percent chafrgen baseline than other diffusion
coefficient; slightlymore than was observed in the centtonal monoexponenti@dDC and
DDC measurements. However, for tBis glioma model treated with a single dose of BCNU, the
more complicated formalisms provided no additiag@isitivity to treatment response over what
was observedsing conventional morexponential ADC measurexer the standard modest b

value range.

1.2: Diffusion Model Sensitivity Analysis
1.2.1: Introduction

As was discussed in the previous section, true water diffusion in living tissues is very
complex, relying on various structural and chempzabperties intrinsic to the tissue. In finding
useful quantitative readouts from the limited information obtained from diffuseghted
imaging, it is necessary to distill the assumed phenomenon down to a simpler, more manageable
model.In measuring tisue response, the model readouts musglagedto real physical
properties in order to derive meaning from the data.

Due to theunavoidable noise associated with quantitative image vatussmportant to
characterize the error associated with parameiadouts when fitting the model to data.
performing a sensitivity analysis of the model, we can determine which model parameters most
affect the output as well as which will show the greatest sensitivity to a small change in the
acquired data. A gréar magnitude change in the sensitivity coefficient is indicative of a greater
ability of the model to detect a change in the image data curve, which would be a useful property

for an imaging biomarker. Also, by assessing the sensitivity of the fit pagesnetnoise we
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may determine the expected accuracy of a measurement based on the image noise associated
with data acquisition.

In this section | will perform two types of analyses to characterize nsedsltivity and
robustness: sensitivity analysis amalse analysid.ocal £nsitivity analysis is a tool that can be
used to quantify the reaction of the model relative to a chareyeimdividualinput parameter
one parameter at a timehis local sensitivity coefficient will be evaluated near the irgpatce
of a known reference point as optimized from real data from the previous sBetiameters
that show relatively low sensitivity may have higher error in their optimization readout due to the
smaller effect they have on the models also importat to determine the sensitivity of
optimized parameters to noise in the d&ta.this analysisnultiple optimizations were
performed each time fitting the model to simulated noisy détes expected that greater noise in
the data will produce greatemer in the modeled parameteBy comparing the parameter and
noise sensitivities between models, a measure of model robustness and stability may be
determinedBoth methods were used on the previouslntioned diffusion models and results

are presentedelow.

Tablel1.2: Baseline diffusion model parameters for sensitivity analysis.

Mono-Exponential Bi-Exponential Stretched-Exponential
ADC {[mm? /s, 2;(’"'"2[5! DDC {mm?/s,
0.95 x103 1.1x103 1.1x103
 {mn?/s,
0.35 x103
} 7 a
039 0.88

1.2.2: Methods
For each moddimono-exponential, bexponential, and stretched exponentiaf) initial

fit was performed on a representative data set to obtain a set of model parameters to base
sensitivity metrics upon. THé was obtainedising a manuallyglelineated volumaveraged
signal intensity encompassing an untreated-4otaaial 9L timor in a rat brain, approximating
generakumor characteristicl2]. Baseline parameters for each model are showmlie1.2.
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Model Sensitivity to Parameter Changes
A parametetocal normalized modeaensitivity coefficient, SC, was quantified as the

partial derivative of the signal intensity mod&a FE Fo , with respecto the parameter of
interest, x at the reference parameter poidi;; FE ho ;, , bah normalized by their reference

valueg[43] (Appendix A:
hER R

Y6 3 . [1.2.1

FER R

The values of SC were evawbhluest ed over t he stud

Model Fitting Sensitivity to Noise
Noise, in the case of MRI magnitude images used in this experiment, was modeled as a

Rician distributionf44], which for high SNR can be approximated as Gaussian:
nw —Qwnp — 00—, [1.2.2
where A is the true image intensityjs the sandard deviation of the Gaussian noise, amnsl |

the modified zer8-order Bessel function of the first kind. This noise model can be combined

with the assumed noidess image intensity curve using the following equation:

YoYU, o, [1.2.3

wherethe subscript i represents tfiebivalue,S6 i s t he noi sy-lessignaal , S i
Ni(s) is a random number from the Normal distribution with standard devisitibloise was

tested at valuesf s set from1 to 20% of thebaselinevoxelintensity valus for each kvalue

Since acquisitions using the diffusion sequence in the previous section were optimized for each
diffusion-weighting separately, SNR was modeled as being equal for eaahdin the model.

Noise simulation and ssbquentits were performed@® times for each noise lev€lurve

fitting was performed in Matlab (The MathWorks, Inc., Natick, MA), using aweighted non

linear leastsquares algorithm and an initial guess based on findings in the previous section.

Mean parameter error waketermined by the following equation:

- IR p T, [1.2.4]

where pis the true parameter value andspthe fitted parameter value from tHffit with noise

standard deviatios.
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1.2.3: Results

Figurel.21: Plots of parameter sensitivity analysis for each diffusion model, sensitivity
coefficient vs. bvalue, for: (A) moneexponential, (B) stretcheelxponential, and (C) bi
exponential. Each plot shows tha&ves using varying reference values for the parameter of
interest (blue = low, green = middle, and red = high).

Model Sensitivity to Parameters
Plots of the sensitivity coefficientsrer therange of bvaluesused in the previous section

are shown irFigure1.21A-C, with the zeresensitivity threshold plotted as a gray horizontal
line. Each plot shows the model sensitivity to the indicated parameter at three different levels of
that value All input parameters for all modefmve minimal sensitivity at low-balues with
general increases in sensitivity withvalueg and lower sensitivity over the range ef&lues for
lower values of the parametdihe nono-exponential ADC sensitivity coefficienEigure
1.21A) decreases linearly with-talue, resulting in high negative sensitivity at highemahues.
27
















































































































































































































































