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CHAPTER I

Introduction

There has been substantial interest in the joint contribution of genetic (G) and envi-

ronmental (E) factors to disease etiology, especially for complex human diseases. The

definition of ‘environment’ can be quite broad, including demographic factors (age, gen-

der), behavioral factors (smoking, alcohol consumption, medication use) and external fac-

tors (exposure to air pollution, radio-active substances). Different study designs can be

gainfully employed depending on the nature of environmental exposure. This dissertation

evolves around the theme of characterizing effect of environmental exposure on health out-

comes under complex sampling designs in the first two projects. In the latter two, we con-

sider the problem of meta-analysis of G-E interactions and how G-E independence and

environmental heterogeneity across studies could influence the operating characteristics of

several meta-analysis approaches. Thus, the dissertation makes important contributions to

environmental epidemiology and its intersection with genetic epidemiology.

In the first project, we considered distance-odds models to investigate elevated dis-

ease odds around point sources of exposure, where there are sub-types within cases un-

der a matched case-control design. We consider models analogous to the polychotomous

logit models and adjacent-category logit models for categorical outcomes and extend them

to the non-linear distance-odds context. Different inference methods including maxi-
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mum likelihood, profile likelihood, iteratively re-weighted least squares and a hierarchical

Bayesian approach using Markov chain Monte Carlo techniques were evaluated under

these distance-odds models. We compare these methods using an extensive simulation

study with multiple outcome categories and a non-linear distance-odds model. Bayesian

methods appear to have advantages in terms of estimation stability, precision and inter-

pretation over frequentist alternatives we considered. The proposed methods were applied

to a population-based matched case-control study investigating associations between acute

asthma outcomes and proximity of residence to major roads by analyzing Medicaid claims

data for the pediatric asthma population in Detroit, MI, from 2004-2006, as part of the

‘Detroit Asthma Morbidity, Air Quality and Traffic’ (DAMAT) study.

The second project considered Bayesian analysis of time-series data under case-crossover

designs. Case-crossover designs are widely used to study short-term exposure effects on

the risk of acute adverse health events. While the frequentist literature on this topic is vast,

there is no Bayesian work in this general area. The contribution of this project is two-fold.

First, we establish Bayesian equivalence results that require characterization of the set of

priors under which the posterior distributions of the risk ratio parameters based on a case-

crossover and time-series analysis are identical. Second, we study more general inferential

issues under case-crossover designs in a Bayesian framework. Traditionally, a conditional

logistic regression is used for inference on risk-ratio parameters in case-crossover stud-

ies. We consider instead a more general full likelihood-based approach which makes less

restrictive assumptions on the health risk models and exposure series. Formulation of a

full likelihood leads to growth in the number of parameters proportional to the sample

size and consequently maximum likelihood estimates are not consistent. We propose a

semi-parametric Bayesian approach using a Dirichlet process prior to handle the random

nuisance parameters that appear in a full likelihood formulation. We carry out a simula-



3

tion study to compare the Bayesian methods based on full and conditional likelihood with

standard frequentist approaches for case-crossover and time-series analysis. The proposed

methods are also illustrated through the DAMAT study, but instead of the distance to the

major roads, we focus on the effect of ambient air pollutant concentrations on the acute

asthma risk.

The third project considered meta-analysis of G-E interaction for quantitative traits.

With heterogeneity in environmental covariate distributions across cohorts and obvious

challenges with data harmonization involving various data sources, meta-analysis of stud-

ies of G-E interaction can often involve subtle statistical issues. In this project we study

the effect of environmental covariate heterogeneity (within and between cohorts) on two

approaches for fixed-effects meta-analysis: the standard inverse variance weighted meta-

analysis and a meta-regression approach. Both are easily implemented for large scale as-

sociation studies using summary statistics or published results. Though meta-regression is

bias-prone and lacks power, the advantage is that the estimates corresponding to marginal

genetic association analysis could be regressed on study-level environmental covariate

means to screen for G-E interaction. Akin to the results obtained in Simmonds and Hig-

gins (2007) in the context of detecting treatment-covariate interactions for randomized

clinical trials, we obtain analytical efficiency/power expressions for both methods under

the assumption of G-E independence. The relative efficiency/power of the two methods

depend on the ratio of within versus between cohort variance of the environmental covari-

ate.

In this project, instead of discretely choosing meta-analysis versus meta-regression

based on this ratio as prescribed in Simmonds and Higgins (2007), or collecting multi-

variate summary statistics, we propose to use an adaptive combination of meta-analysis

and meta-regression estimates that can be used as a default choice, retaining full efficiency
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of the ‘gold standard’ pooled analysis for the interaction parameter using individual pa-

tient data (IPD) under certain natural assumptions. Lin and Zeng (2010) showed that a

multivariate inverse-variance weighted estimator is asymptotically equivalent to the IPD

estimator, given that all the common parameters with full information matrix under the

fixed-effects model are pooled across all studies. They also characterized and quantified

the efficiency loss of using an univariate (as a proper subset of the common parameters)

inverse-variance estimator. We showed connection of our work to Lin and Zeng (2010).

Essentially, the adaptive estimator gains efficiency by combining both meta-analysis ver-

sus meta-regression and using only univariate summary statistics from each study: es-

timates of marginal genetic association, interaction, their standard errors, as well as the

mean of the environmental covariate. As a result, the adaptive approach bypasses issues

with sharing of individual data across studies without sacrificing efficiency. We study the

performance of all the methods under several common scenarios: (1) departures from G-

E independence; (2) heterogeneity in minor allele frequencies across cohorts; (3) lack of

common set of confounders to adjust in each study; (4) misspecification of the genetic sus-

ceptibility model (dominant/co-dominant/additive); (5) non-linear interaction. The results

were illustrated through meta-analysis of interaction between Single Nucleotide Polymor-

phisms (SNPs) on the FTO gene and body mass index on high-density lipoprotein choles-

terol data from a large consortium (Finland-United States Investigation of Noninsulin-

dependent diabetes mellitus (FUSION) genetics study) of Type 2 diabetes.

The last project extends the work of project 3 to dichotomous traits under case-control

studies. Gaining efficiency in studies of G-E interaction by exploiting independence be-

tween G and E under case-control sampling has been noted in multiple papers (Piegorsch

et al. (1994); Umbach and Weinberg (1997); Chatterjee and Carroll (2005)). However,

methods that use G-E independence assumption might produce severely biased estimates
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if the assumption is violated. Several studies have addressed this issue and proposed more

robust strategies for testing G-E interaction (Mukherjee and Chatterjee (2008), Mukher-

jee et al. (2008); Li and Conti (2009); Murcray et al. (2009)). Mukherjee and Chatterjee

(2008) proposed a solution to the bias versus efficiency dilemma, using a retrospective

method that allows for uncertainty around the assumption of G-E independence. Mukher-

jee and Chatterjee (2008) used the estimate of the uncertainty parameter in an empirical

Bayes (EB) fashion to obtain a shrinkage estimator that ’shrinks’ the maximum likelihood

estimates (MLEs) of disease odds ratio parameters under G-E dependence to those under

G-E independence, and showed how the shrinkage factor depends on these MLEs and

their corresponding variances. Further theoretical development regarding this shrinkage

estimator is presented in Chen et al. (2009). It was noted that this EB estimate can op-

timally trade off between bias and efficiency and provide increased power compared to

a standard case-control analysis, with superior control of type 1 error when compared to

a case-only analysis. As the G-E interactions detected so far only have small to modest

effects, there are increasing demands for large sample sizes and collaboration across dif-

ferent study sites in order to perform a pooled or meta-analysis with high confidence and

power. However, there are no papers thus far to study the role of G-E independence in a

meta-analysis setting where the assumption could vary within each study.

In this project, we consider possible extensions of EB shrinkage estimators for a

multiple-study setting, which uses the retrospective likelihood as the basis for influence

and leverages the G-E independence assumption in a data-adaptive way. To handle this

multiple-study problem, we particularly consider strategies to obtain a shrinkage factor in

the EB estimator that can borrow strength across studies, under both IPD analysis using in-

dividual level data and meta-analysis using study level summary statistics. The proposed

shrinkage estimator provides optimal choices for weights corresponding to constrained
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and unconstrained models by using information on G-E association parameters derived

from multiple studies/cohorts. Our work showed that this novel estimator has better MSE

properties than IVW estimator pooling study specific constrained, unconstrained or EB

estimators. The results were illustrated through the FUSION consortium, which has 6 dif-

ferent case-control studies that were treated as independent contributors to the analysis.

We conducted an IPD/meta-analysis of interactions between SNPs on the FTO gene and

environmental factors on the type 2 diabetes.

In the following chapters 2-5, I described the four dissertation projects sequentially.

More specific background and literature review for these projects appear in their cor-

responding chapters. To summarize, this dissertation work is expected to contribute to

important analytical, methodological questions that have relevance and applications in ge-

netic and environmental epidemiology.



CHAPTER II

Point source modeling of matched case-control data with
multiple disease sub-types

2.1 Introduction

In case-control designs, matching is commonly implemented in order to avoid bias

due to potential confounders. In an individually matched case-control study, effects of

potential risk factors are typically ascertained through a conditional likelihood approach

such as conditional logistic regression (CLR) (Breslow et al. 1978). Extension of CLR to

situations with multiple sub-types of cases or controls has been made through polychoto-

mous CLR (PCLR), which is more efficient than carrying out separate CLRs for sub-

groups (Liang and Stewart 1987). Liang and Stewart (1987), Becher and Jöckel (1990),

and Becher (1991) applied PCLR models to matched case-control studies with two control

groups, typically hospital and population controls. Thomas et al. (1986) and Dubin and

Pasternack (1986) applied PCLR models to analyze multiple disease groups with one set

of controls. Sinha et al. (2004) considered a Bayesian semiparametric model for analyz-

ing matched case-control data with multiple disease states and missing exposure values.

Mukherjee et al. (2007) considered cases having multiple disease states with a natural or-

dering in matched case-control studies. Mukherjee et al. (2009) proposed a methodology

to fit stratified proportional odds models by amalgamating conditional likelihoods obtained

from all possible binary collapsings of the ordinal scale.

7
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Studies since 1990’s (Diggle (1990); Lawson (1993); Diggle and Rowlingson (1994);

Diggle et al. (1997)) have investigated elevated risk of respiratory diseases around puta-

tive point sources of environmental pollution. Diggle and Rowlingson (1994) extended

the exponential decay function described in Diggle (1990) to a situation where the decay

function will equal to 1 after a certain threshold from the source. Diggle et al. (1997) then

considered another threshold effect where the decay function does not decrease up to a

certain distance from the source. Diggle et al. (2000) described an extension to matched

case-control designs of the parametric modeling framework in Diggle (1990) using a con-

ditional likelihood approach. Asthma and chronic obstructive airways disease were as-

sociated with proximity of residence to major roads in East London. There has been

an increasing interest in modeling disease risk in relation to point sources of pollution

in a Bayesian framework (Wakefield and Morris (2001); Lawson et al. (2003); Congdon

and Congdon (2003)). Wakefield and Morris (2001) described a Bayesian hierarchical

modeling of disease risk around a point source, embedding models proposed by Diggle

et al. (1997). Issues of the sensitivity to prior specification for this class of models were

discussed. Dreassi et al. (2008) performed a sensitivity analysis to investigate how the

specification of the distance-odds functions and the choice of prior distributions affect re-

sults under case-control studies (Dreassi et al. 2008). Rodrigues et al. (2010) provided a

semi-parametric approach for point process modeling using generalized additive model,

and illustrated the flexibility of this approach with applications in epidemiology and crim-

inology. All of the above spatial environmental epidemiology studies considered only the

standard binary case-control states.

The purpose of this project is to incorporate the distance-odds model around point

sources into the analysis of matched case-control data with multiple disease or control

states. We extend the idea of the polychotomous logit model and the adjacent-category
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logit model from the standard categorical data literature (Agresti 2002) to the non-linear

distance-odds model framework. The extensions with non-linear odds function lead to

some unique observations specific to the distance odds model. Maximum likelihood, pro-

file likelihood, iteratively re-weighted least squares (IRLS) and a hierarchical Bayesian

approach using MCMC are evaluated under the proposed models. Inference methods and

various types of point source models are compared using an extensive simulation study.

Simulation studies that compare the frequentist properties (such as bias, mean squared er-

ror (MSE) and coverage probability) of the proposed methods and models are not available

in the literature, not even for binary case-control states.

2.2 Methods

Diggle et al. (1990 and 1994) proposed the distance-odds model for characterizing ele-

vated risk around putative point sources of environmental pollution in case-control studies.

The model assumes that the odds of disease, r(x) as a function of distance x from the point

source, is proportional to the decay function f(x), as given below:

(2.1)
P (Y = 1|x)

P (Y = 0|x)
=

p(x)

1− p(x)
= r(x) = ρf(x) and f(x) = 1 + α exp (−(x/β)2),

where Y is the disease status (Y = 1: case; Y = 0: control), x is the distance from the

point source, ρ is the background odds of disease in the case-control population. (For a

case-control study that is embedded in a cohort study, ρ is typically given by ρ = (q1/q2)κ,

where κ is the background odds of disease in the study cohort, q1 and q2 are the proportions

of cases and controls sampled from the cohort respectively.) The parameters (α, β) in

model (2.1) have a natural interpretation: α is proportional to the disease odds at the point

source (α = [r(0)/ρ] − 1); β measures the rate of decay with increasing distance from

the point source, in the unit of distance x. (α, β) ∈ (−1,∞) × (0,∞). Under this model

setting, as x → ∞, we have f(x) → 1 and the risk function p(x) = P (Y = 1|x) =
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ρf(x)/(1 + ρf(x)) → ρ/(1 + ρ), i.e. the background risk in the case-control population

(Diggle et al. 2000). Note that, if f(x) = exp (βx) is chosen with r(x) = ρf(x) in

model (2.1), then one would have that log(r(x)) = log(ρ) + βx, which becomes the

usual logistic regression model that assumes a linear distance-odds relationship with log

odds ratio β and intercept log(ρ). However, usually the odds of disease changes non-

linearly with increasing distance from the point source, e.g., with increasing distance to

an industrial park, the odds of asthma might decrease much faster within 0-200 meters

than within 1000-1200 meters. Another possible disadvantage of the log-linear model is

that for β < 0 (that implies increasing odds with decreasing distance), r(x) → 0 and

p(x) → 0 as x → ∞, but these do not converge to background odds or risk which would

be a desirable property. For non-rare diseases such as asthma, the log-linear distance-odds

model is questionable. These disadvantages of log-linear model lead us to focus on the

non-linear distance-odds model (2.1) proposed by Diggle (1990).

As an extension to model (2.1), Diggle and Rowlingson (1994) assumed multiplicative

risk factors for the combined effects of S point sources, and allowed for covariate adjust-

ment via additional log-linear terms. In the presence of S point sources and W spatially

referenced covariates Zw(x), w = 1, ...,W , the resulting distance-odds model is

(2.2) r(x) = ρf(x) and f(x) = exp (
W∑
w=1

φwZw(x))
S∏
s=1

fs(xs),

where x = (x1, ..., xS), xs and fs(xs) are the distance and the decay function for the s-th

point source respectively. Here each fs(xs) takes the same functional form as in model

(2.1), that is, fs(xs) = 1 + αs exp (−(xs/βs)
2).

For a 1:M matched case-control study with N matched pairs, the risk of disease for an

individual at distance x in the i-th stratum can be expressed as Diggle et al. (2000)

Pi(Y = 1|x) =
ri(x)

1 + ri(x)
=

ρif(x)

1 + ρif(x)
, i = 1, ..., N,
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where the baseline odds ρi for the i-th stratum can potentially vary across matched pairs

under the matched case-control design. The conditional likelihood, given the exposure at

distance xi = (xi1, xi2, ..., xi(M+1)) for the i-th stratum, that the case is at distance xi1 is

Li(α, β) = P (Yi1 = 1, Yi2 = ... = Yi(M+1) = 0|Yi1 + Yi2 + ...+ Yi(M+1) = 1,xi)

=

ρif(xi1)∏M+1
j=1 (1+ρif(xij))

ρif(xi1)∏M+1
j=1 (1+ρif(xij))

+ ρif(xi2)∏M+1
j=1 (1+ρif(xij))

+ · · ·+ ρif(xi(M+1))∏M+1
j=1 (1+ρif(xij))

=
f(xi1)∑M+1
j=1 f(xij)

,(2.3)

where Yij and xij are the disease status and distance for the j-th individual in the i-th

stratum respectively, i = 1, ..., N ; j = 1, ...,M + 1. The general form of the conditional

likelihood is (2.3). For one point source binary model, f(x) is as given in (2.1), where

as for multiple point sources binary model (with possible covariate adjustment) f(x) is as

given in (2.2).

Denote the conditional likelihood by L, the corresponding log-likelihood by l (l =

log(L) =
∑N

i=1 log(Li) =
∑N

i=1 li), and the parameters to be estimated by θ. The maxi-

mum likelihood estimates (MLEs) of θ = (α, β) in the one point source binary outcome

model can be obtained by maximizing the logarithm of the conditional likelihood

l(α, β) =
N∑
i=1

log
( f(xi1)∑M+1

j=1 f(xij)

)
=

N∑
i=1

log
( 1 + α exp (−(xi1/β)2)∑M+1

j=1 [1 + α exp (−(xij/β)2)]

)
.

Similarly, the MLEs of θ = (α,β,φ) = (α1, ..., αS, β1, ..., βS, φ1, ..., φW ) in the S point

sources binary outcome model with W covariates can be obtained by maximizing

l(α,β,φ) =
N∑
i=1

log
( exp (

∑W
w=1 φwZw(xi1))

∏S
s=1(1 + αs exp (−(xi1s/βs)

2))∑M+1
j=1

[
exp (

∑W
w=1 φwZw(xij))

∏S
s=1(1 + αs exp (−(xijs/βs)2))

]),
where xij = (xij1, ..., xijS) and xijs is the distance of the j-th individual in the i-th stratum

from the s-th point source. More detailed discussion of parameter estimation and inference

for the models with binary outcomes can be found in Diggle et al. (2000).
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2.2.1 Distance-odds model with polychotomous outcome

In this section, the distance-odds model is extended to situations where cases can have

multiple disease states. Without loss of generality, the methods and formulation in the

following sections are illustrated for a 1:M matched case-control data set with N matched

pairs, where outcomes can belong to one of the K disease categories (For example, with

K = 2. poor prognosis: Y = 2; fair prognosis: Y = 1) and one control group (Y = 0).

These methods can be readily applied to situations with multiple control states, and to

situations with variable matching ratios. The distance-odds model is adapted to both

polychotomous-category model (PCM) and adjacent-category model (ACM) setting. The

PCMs are considered when one tries to distinguish nominal disease sub-types to the con-

trols. The ACMs are more appropriate when there is a natural ordering of the disease

sub-classifications.

Polychotomous-category distance-odds model

For the polychotomous-category model, the odds of disease for the j-th individual in

the i-th stratum at distance xij is modeled as

(2.4)

rk(xij) =
P (Yij = k|xij)
P (Yij = 0|xij)

= ρikfk(xij), i = 1, ..., N ; j = 1, ...,M + 1; k = 1, ..., K,

where the baseline odds ρik can potentially vary across matched pairs i and disease cat-

egories k, and the distance-odds function fk(x) can also vary among disease categories.

Note that, if fk(x) = exp (βkx) is chosen in model (2.4) with multiplicative nuisance

parameters ρik = γi × λk, one would have that

(2.5) log(rk(xij)) = log
(P (Yij = k|xij)
P (Yij = 0|xij)

)
= log(γi) + log(λk) + βkxij,
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which becomes the polychotomous logistic regression models (Agresti 2002) that assumes

a linear distance-odds relationship. Non-linear distance-odds models such as (2.1) are

desired, with advantages over log-linear models. Using the K equations in (2.4) along

with one more constraint that
∑K

k=0 P (Yij = k|xij) = 1, the risk of disease can be written

in terms of ρik and fk for the corresponding individual, i.e.

P (Yij = 0|xij) =
1

1 +
∑K

k=1[ρikfk(xij)]
,

P (Yij = k|xij) =
ρikfk(xij)

1 +
∑K

k=1[ρikfk(xij)]
, k = 1, ..., K.

Let ki denote the disease states of the case subject in matched set i, ki ∈ (1, ..., K). The

conditional likelihood for the i-th stratum, given a matched case-control pair at distance

xi = (xi1, xi2, ..., xi(M+1)), that the case (in category ki) is at distance xi1 is

Lkii = P (Yi1 = ki, Yi2 = ... = Yi(M+1) = 0|Yi1 + Yi2 + ...+ Yi(M+1) = ki,xi)

=
ρikifki(xi1)/

∏M+1
j=1 [1 +

∑K
k=1 ρikfk(xij)]∑M+1

j=1 ρikifki(xij)/
∏M+1

j=1 [1 +
∑K

k=1 ρikfk(xij)]

=
fki(xi1)∑M+1
j=1 fki(xij)

.(2.6)

The general form of the conditional likelihood is (2.6). For one point source PCM, fk(x) is

given as fk(x) = 1+αk exp (−(x/βk)
2); for multiple point sources PCM fk(x) is given as

fk(x) = exp (
∑T

t=1 φktZkt(x))
∏S

s=1 fks(xs) where fks(xs) = 1 + αks exp (−(xs/βks)
2).

Adjacent-category distance-odds model

For the adjacent-category model setting, the adjacent odds of disease between category

K versus K − 1 for the j-th individual in the i-th stratum can be modeled as

(2.7)

rk(xij) =
P (Yij = k|xij)

P (Yij = k − 1|xij)
= ρikfk(xij), i = 1, ..., N ; j = 1, ...,M+1; k = 1, ..., K.
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Again, the baseline odds ρik can vary across matched pairs i and disease categories k,

and the distance-odds function fk(x) can vary across disease categories. One point source

ACM and multiple point sources ACM (with possible covariate adjustment) can be formu-

lated similarly as PCM with different choices of fk. For these non-linear settings, ACM

can not be represented as a re-parameterization of PCM as in log-linear models. Thus,

both ACM and PCM are needed for ordered and nominal disease sub-classifications re-

spectively. Note that if fk(x) = exp (β∗kx) is chosen in model (2.7) with multiplicative

nuisance parameters ρik = γ∗i × λ∗k, one would have that

(2.8) log(rk(xij)) = log
( P (Yij = k|xij)
P (Yij = k − 1|xij)

)
= log(γ∗i ) + log(λ∗k) + β∗kxij,

which reduces to the polychotomous logistic regression models in adjacent category set-

ting (Agresti 2002) that assumes a linear distance-odds relationship. The risk of disease

can be represented in terms of ρik and fk as

P (Yij = 0|xij) =
1

1 +
∑K

k=1[
∏k

h=1 ρihfh(xij)]
,

P (Yij = k|xij) =

∏k
h=1 ρihfh(xij)

1 +
∑K

k=1[
∏k

h=1 ρihfh(xij)]
, k = 1, ..., K.

It follows that the conditional likelihood for the i-th stratum is

Lkii = P (Yi1 = ki, Yi2 = ... = Yi(M+1) = 0|Yi1 + Yi2 + ...+ Yi(M+1) = ki,xi)

=

∏ki
h=1 ρihfh(xi1)/

∏M+1
j=1

[
1 +

∑K
k=1[

∏k
h=1 ρihfh(xij)]

]∑M+1
j=1 [

∏ki
h=1 ρihfh(xij)]/

∏M+1
j=1

[
1 +

∑K
k=1[

∏k
h=1 ρihfh(xij)]

]
=

∏ki
h=1 fh(xi1)∑M+1

j=1 [
∏ki

h=1 fh(xij)]
.(2.9)

One special case of interest is the homogeneity of the adjacent odds ratios (homogeneous

ACM) with one unit increase in distance across case categories,

rK(x+ 1)

rK(x)
=
rK−1(x+ 1)

rK−1(x)
= · · · = r1(x+ 1)

r1(x)
, ∀x ⇔

α1 = α2 = ... = αK and β1 = β2 = ... = βK .(2.10)
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2.2.2 Estimation and inference

Maximum likelihood approach

Without loss of generality, the first subject in each stratum is always considered as the

case when deriving the likelihood and fitting the models, i.e., Yi1 = ki, ki ∈ (1, ..., K).

Thus, the actual contribution of the i-th stratum to the conditional likelihood is Lkii as given

in (2.6) for PCM or as given in (2.9) for ACM respectively. For example, the MLEs for

ACM can be obtained by maximizing the logarithm of the conditional likelihood

N∑
i=1

log
(
Lkii (α,β)

)
=

N∑
i=1

log
( ∏ki

h=1(1 + αh exp (−(xi1/βh)
2))∑M+1

j=1

∏ki
h=1(1 + αh exp (−(xij/βh)2))

)
,

(2.11)

or the following in the most general case with multiple sources and covariate adjustment

N∑
i=1

log
( ∏ki

h=1[exp (
∑W

w=1 φhwZhw(xi1))
∏S

s=1(1 + αhs exp (−(xi1s/βhs)
2))]∑M+1

j=1

∏ki
h=1[exp (

∑W
w=1 φhwZhw(xij))

∏S
s=1(1 + αhs exp (−(xijs/βhs)2))]

)
.

(2.12)

Under the homogeneity assumption in (2.10), maximizing (2.11) or (2.12) would be re-

duced to the constrained optimization problem with restriction (α1 = ... = αK , β1 = ... =

βK) or (α1s = ... = αKs, β1s = ... = βKs,∀s) respectively. The MLEs of PCMs can

be obtained similarly. Standard errors of the parameter estimates can be calculated from

the square root of the diagonal elements of the inverse of the Hessian matrix of the cor-

responding conditional likelihood, and then the 95% Wald-type confidence intervals (CI)

can be constructed.

Parameter estimates and CIs can also be obtained using the profile likelihood. This

approach reduces the number of independent parameters by expressing some of them as

functions of the others, instead of dealing with all the parameters simultaneously. It is

helpful in the presence of many parameters, such as in (2.11) and (2.12).
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Remark 2.1: Identifiability and Monte Carlo tests. The likelihood based inference described

above assumes that usual regularity conditions hold (Breslow et al. 1980). Under these

regularity conditions, approximate CIs for the MLEs can be derived from the asymptotic

multivariate normality of the MLEs and the estimated Hessian matrix. The likelihood ra-

tio statistics for testing H0 : f(x) = 1 has an asymptotic chi-squared distribution under

the same regularity conditions. Diggle et al. (2000) pointed out that with an insufficient

sample size, the log-likelihood surface of (α, β) may be far from quadratic and standard

likelihood-based asymptotics are unreliable. Moreover, these models have an irregularity

at the null hypothesis of H0 : f(x) = 1, since f(x) = 1 corresponds to one of the two

parameters of (α, β) equal to 0 with the other indeterminate, in the situation where there

is no covariate adjustment. Monte Carlo tests can be used as an alternative. 1000 data sets

can be simulated under the null and the observed values of the likelihood ratio statistics

LR = 2 × (l(α̂, β̂) − l(α = 0 or β = 0)) = 2(l(α̂, β̂) − N log( 1
M+1

)) can be ranked

among the 1000 simulated LR values. If the observed LR ranks k-th largest among 1000

simulated values, the p-value of the Monte Carlo test is k/1001 and the test is exact (Diggle

et al. 2000).

Iteratively reweighted least square regression

Another alternative approach is IRLS regression. As the strata are mutually indepen-

dent under the matched case-control design, it is not necessary to further consider the cor-

relation between the residuals from different strata. Typically, one can write the non-linear

regression model with binary response Yi as

Yi = pi(xi, θ) + εi,

where Yi is the observed binary response, pi(xi, θ) is the predicted probability from the

model for subject i, and εi ∼ N(0, σ2) are independent and identically distributed random
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errors, i = 1, ..., N . Under the conditional framework given there being a matched case-

control pair at distance xi, we can treat each stratum as a single ‘subject’ with response∑M+1
j=1 I(Yij = ki) = I(Yi1 = ki) (assumed the first subject to be the case) and predicted

probability Lkii . One can further assume that the variance structure of the errors to be

εi ∼ N(0, σ2
k) for {i : ki = k}, i.e., for all the strata where case response equals to k.

Then the IRLS estimation can be realized by iteratively minimizing the weighted SSE

SSE(θ,Σ) =
K∑
k=1

[ ∑
i:ki=k

(
I(Yi1 = k)− Lki (xi, θ)

)
Σ−1
k

(
I(Yi1 = k)− Lki (xi, θ)

)]
,

(2.13)

where Σk is the pooled variance of errors from all strata where the case response equals

k. In the initial step of IRLS, θ is estimated by minimizing the weighted SSE with all

Σ
(0)
k set to identity. An estimate for Σ

(1)
k is then calculated by (1/dfk)

∑
i:ki=k

r
(0)2
i , where

the residuals r(0)
i = I(Yi1 = ki) − Lkii1(xi, θ̂

(0)) and dfk is the degree of freedom (the

size of the set {i : ki = k} minus the number of parameters in the model). The estimated

Σ̂
(1)
k are used as the weights in the next step of IRLS to minimize the weighted SSE. Pa-

rameter estimation is simply realized by iterating this process further, calculating updated

estimates for Σk’s, estimating the model parameters θ with updated weights and iterating

until convergence. The standard errors can be calculated from the Hessian matrix of the

corresponding log likelihood

K∑
k=1

∑
i:ki=k

[
− 1

2
log(2πσ2

k)−
1

2

(I(Yi1 = k)− Lki (xi, θ)

σk

)2]
.

IRLS estimate and MLE were shown to be consistent and asymptotically normal under

the assumption that the errors are normally distributed as εi ∼ N(0, σ2
k) for {i : ki = k}

(Gallant 2009).

For the three methods described above, instead of working directly on (αks, βks) with

a range of (−1,∞)× (0,∞), we performed unrestricted optimizations on the one-to-one
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transformed parameters (uks, vks) = (log(1 + αks), log(βks)) that span the whole real

plane, and then transformed the results back in terms of the original parameters (αks, βks).

Bayesian approach

The Bayesian approach provides an alternative to the frequentist inferential strategies.

A proper Bayesian approach would be to use the full likelihood and specify a prior distri-

bution on the nuisance parameters ρ = (ρ1, ..., ρN). However, the full likelihood approach

would encounter the difficulty of prior specification and estimation of ρ. One can use a

marginal likelihood instead, that integrates out the nuisance parameters with respect to a

random distribution. The equivalence between the use of conditional and marginal likeli-

hoods for matched case-control study was discussed by Rice (2008). Diggle et al. (2000)

pointed out that the conditional likelihood approach is consistent with the full likelihood

approach for the binary outcome model with independent priors for ρ and θ (Diggle et al.

2000). Therefore, we proceed with the conditional likelihood as the basis for Bayesian

inference.

The following sets of mutually independent prior distributions on (u,v) = (u11, ..., uKS,

v11, ..., vKS) were primarily considered,

log(1 + αks) = uks ∼ N(µuks , σ
2
uks

),

log(βks) = vks ∼ N(µvks , σ
2
vks

), k = 1, ...K; s = 1, ...S,

where the mean and variance of αks are µαks = exp(µuks + 1
2
σ2
uks

) − 1 and σ2
αks

=

(exp(σ2
uks

) − 1) exp(2µuks + σ2
uks

) respectively. Similarly, µβks = exp(µvks + 1
2
σ2
vks

)

and σ2
βks

= (exp(σ2
vks

) − 1) exp(2µvks + σ2
vks

). Both informative and noninformative (or

vague) prior distributions were considered. For informative priors, based on our knowl-

edge of roadway effects on asthma and the literature reviewed in introduction, the prior
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distribution of αks was set with mean µαks = 0.5 and variance σ2
αks

= 0.25 (thus P (0.1 <

αks < 1.0) ≈ 0.95). For other types of health outcomes or pollution sources, different

informative priors could be used. Given the fact that the point source effects on health

outcomes (e.g. roadway effects on asthma) last only for a few hundred meters in most

of the literature, prior distributions of βks were set with means µβks = 400 and variance

σ2
βks

= 150 (thus P (50 < βks < 750) ≈ 0.95). For noninformative priors, the same mean

(µαks , µβks) = (0.5, 400) with large variance (σ2
αks
, σ2

βks
) = (0.5, 400) were used for (αks,

βks). It follows that P (−0.2 < αks < 2.0) ≈ 0.95 and P (50 < βks < 1500) ≈ 0.95,

which should contain the prior knowledge about (α, β). For the rest of this chapter, we

focus on (α,β) and primarily proceed using models without covariate adjustment.

A sensitivity analysis is performed by comparing the posterior distributions derived

from various normal priors with the same means of (µuks , µvks) but different choices of

(σ2
uks
, σ2

vks
). Wakefield and Morris (2001) suggested using independent Uniform prior

distribution on (α, β) on the range of (−1, αmax) × (0, βmax) for the one point source

binary model (2.1), where αmax and βmax are the maximum plausible values based on

current epidemiological knowledge. This Uniform prior distribution on (αks, βks) with

different choices of αmax and βmax is also considered as part of the sensitivity analysis.

Since the full conditional distributions of the parameters do not follow a standard dis-

tributional form, the MCMC method is used to generate random draws from the posterior

distributions. For two-parameter models such as the one point source homogeneous ACM,

the random walk Metropolis-Hastings algorithm is used to generate a Markov chain which

has the limit distribution equal to the target posterior distribution. For four(or more)-

parameter models such as one point source ACM, computationally it is hard to draw si-

multaneously from the joint distribution using Metropolis-Hastings algorithm. Instead,

we use a component-wise Metropolis-Hastings within Gibbs algorithm. The computa-
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tional strategy corresponding to these MCMC algorithms is discussed in Appendix B.1.

The convergence of these Markov chains are examined using Gelman and Rubin’s conver-

gence diagnostic (Gelman and Rubin 1992). In this study, the random walk Metropolis-

Hastings or Metropolis-Hastings within Gibbs algorithm for the proposed models converge

to their limit distributions after 2000-4000 runs. The chains have auto-correlations up to

20. Therefore, the chains are refined by choosing a common burn-in period of 5000, and a

common thinning frequency of 20. These MCMC algorithms were performed for a length

of T = 45000. After burn-in and thinning, the resulting Markov chains of length 2000 are

treated as random draws from the target posterior distribution.

As a Bayesian counterpart to the Monte Carlo test, Bayes factors (Kass and Raftery

1995) are considered to test the null hypothesis that H0 : f(x) = 1. The Bayes factor

for comparing the current model M1 to the null model M0 is defined as the ratio of the

posterior probability to the prior probability, which is given by

B =
P (M1|Y )/P (M0|Y )

P (M1)/P (M0)
=

∫
θ
π(Y |θ,M1)π(θ|M1)dθ∫

φ
π(Y |φ,M0)π(φ|M0)dφ

=
P (Y |M1)

P (Y |M0)
.

The calculation of the Bayes factor B is not straightforward using MCMC. We used the

importance sampling estimator 1
T

∑T
t=1[l(θt)π(θt)/g(θt)] as suggested by Diggle et al.

(2000), where the prior distribution on θ is used as the importance distribution g(θ), and

θt are sampled from g(θ). Kass and Raftery (1995) suggested calculating 2 log(B) as a

Bayesian analogue of a log-likelihood ratio statistics or deviance. Values greater than 2

indicate increasing evidence against M0: between 2 and 6 is ‘positive’ evidence, 6 to 10

is ‘strong’ and over 10 is ‘very strong’ evidence against M0 (Diggle et al. (2000)Kass and

Raftery (1995)). A number of alternatives can be found in DiCiccio et al. (1997).
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2.3 A Simulation Study

Simulation scenarios

Two case subgroups (K = 2) and one control group, and up to two point sources

are considered in the following simulation study. Specifically, four different settings of

simulations are conducted where the true models are: 1) one point source PCM; 2) one

point source ACM; 3) one point source homogeneous ACM; and 4) two point sources

homogeneous ACM.

A large cohort of L = 1, 000, 000 people is generated initially. Two independent risk

factors, age and gender, are included for this cohort, of which the distributions are set sim-

ilar to those for the pediatric population of the Detroit Medicaid data source. Specifically,

gender is generated from a Bernoulli distribution with probability 0.55 for being a male;

age is generated from a piecewise Uniform distribution with a range of 2-18, and then

rounded to integer values. The exposure variable, distance to the point source, is gener-

ated from a mixture distribution of Uniform and Gamma. Specifically, distances (in me-

ters) from the first and second sources are generated from 0.15 ·Uniform(0, 500) + 0.85 ·

Gamma(shape = 3, rate = 0.003) and 0.2 ·Uniform(0, 500) + 0.8 ·Gamma(shape =

3, rate = 0.005) respectively. Simulation studies are based on this fixed cohort with mu-

tually independent covariates of age, gender and distances with distributions described

above.

The disease status for the cohort would be different for different choices of distance-

odds model or true parameter settings. For example, one point source ACM, the disease

states (k = 0, 1, 2) are generated using the subject specific risk functions p(x) in (2.14)

with certain fixed values of (α1, β1, α2, β2). Specifically, the outcome for the l-th patient
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Yl is generated from the multinomial distribution with probabilities

P (Yl = 0|xl) =
1

1 + ρl1f1(xl) + ρl1ρl2f1(xl)f2(xl)
,

P (Yl = 1|xl) =
ρl1f1(xl)

1 + ρl1f1(xl) + ρl1ρl2f1(xl)f2(xl)
,

P (Yl = 2|xl) =
ρl1ρl2f1(xl)f2(xl)

1 + ρl1f1(xl) + ρl1ρl2f1(xl)f2(xl)
, l = 1, ..., L.(2.14)

The subject specific nuisance parameter for the l-th patient can be generated using ρlk =

exp(b0k + b1 × agel + b2 × genderl), k = 1, 2. The parameters (b01, b02, b1, b2) can be

obtained from the Detroit Medicaid data. Here b1 = −0.05 and b2 = 0.3 are used. The

intercepts b01 and b02 can be varied within a range of (−2.0,−0.5) to generate different

desired disease prevalence. Typically, about 20% subjects of the cohort are generated

as cases, of which all disease sub-categories have roughly the same proportion (k = 1,≈

10%; k = 2,≈ 10%). After the disease status is generated for the cohort,R = 500 matched

case-control data sets are then generated, each withN 1:1 matched pairs. Different sample

sizesN = 500, 1000 and 2000 are also considered. Specifically, for each of theRmatched

case-control data sets, N cases are randomly drawn from the cohort, and then they are

randomly matched with controls by age (within 2 years) and gender. Covariate adjustment

was not considered in the simulation study since both covariates of age and gender are

matched.

Under each model setting, parameter estimates with 95% CIs are calculated using

MLE, profile likelihood and IRLS. Due to the identifiability problem of the likelihoods

for the proposed models, there are a few runs (< 5%) that fail to converge, or converge for

the point estimates but can not obtain CIs (for example, failure to invert the Hessian ma-

trix using maximum likelihood method). The non-converged data sets among theR = 500

ones were removed. The simulation results are summarized on the remaining R′ data sets

where all three frequentist methods converge. The R′ estimates are summarized in terms
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of relative bias (e.g. relative bias for a parameter θ is ( 1
R′

∑R′

i=1 θ̂(i)− θtrue)/θtrue×100%),

MSE (e.g. MSE = 1
R′

∑R′

i=1(θ̂(i) − θtrue)2) and coverage probability (the proportion that

the 95% CIs cover the true value is calculated as an ad hoc estimate of the true coverage

probability among these R′ runs). For the Bayesian approach, the posterior mode as well

as 95% highest posterior density (HPD) interval are estimated based on 2000 draws (after

burn-in and thinning) from the posterior distribution. Since the posterior distributions of α

and β are both positively skewed (a heavy right tail for β), the posterior mean is not used.

In order to compare with the frequentist results such as MLE, the posterior mode is used

instead of the median because the posterior mode asymptotically converges to MLE. The

R′ posterior modes are summarized in terms of relative bias and MSE for the same R′ data

sets. The coverage probability is calculated as the proportion of times that the 95% HPD

intervals cover the true value.

Simulation results

A summary of the simulation results comparing convergence rate, relative bias and

coverage probability by different methods and by different sample sizes is shown in Table

2.1, for the four distance-odds models (i.e. one point source PCM, ACM and homogeneous

ACM, and two point sources homogeneous ACM). The MSE comparison is summarized

in Figure 2.1. Since the three frequentist methods of MLE, Profile likelihood and IRLS

regression provide very similar and consistent results, we primarily focus on the difference

between the broad class of frequentist and Bayesian approaches which is described below

in terms of convergence, relative bias, MSE and coverage probability separately. Addi-

tionally, the following results hold for α’s and β’s. The complete numerical simulation

results can be found in Appendix A.1.

Convergence: For all four distance-odds models with a large sample size such as N =
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2000, the frequentist methods perform well in terms of convergence with a joint conver-

gence rate R′/R > 90%. Typically, less than 5% of runs failed to converge for each of

the three frequentist methods. With a decreased sample size of N = 500, the 90% joint

convergence rate remains for the two homogeneous models. However, failures increase to

30% for one point source PCM and ACM using frequentist methods. Thus, the simula-

tions for these two models were performed and presented for a sample size of N = 1000

in Table 2.1, where a joint convergence rate of 85% occur using frequentist methods. In

the Bayesian approach we numerically assessed the convergence of the posterior chains

by the Gelman-Rubin convergence diagnostic (Gelman and Rubin 1992). No problems

were detected either numerically or via examining the trace plots in our limited simulation

study. The MCMC method does not require the usual regularity conditions (Breslow et al.

1980) or any asymptotic normality assumption, and it yields exact posterior distributions

for all sample sizes. It also avoids the identifiability issue, but needs a careful choice of

the covariance matrix of the proposal distribution because of the strong correlations among

the model parameters.

Relative bias: When N = 2000, low relative biases (with range (−9.2, 10.7)% for α’s

and (−2.9, 4.2)% for β’s) are observed for both frequentist and Bayesian methods for all

models with different choices of true parameter settings (shown in Table 2.1, numerical

details can be found in Appendix A.1). Thus, both methods have performed well with

large sample size in terms of relative bias. For smaller sample sizes (N = 500 for the two

homogeneous models; N = 1000 for one point source PCM and ACM), relative biases of

α are usually as high as 25%, while relative biases of β are still well controlled (< 5%,

except few extreme setting). Note that, estimates of α are biased upwards (Table 2.1)

using frequentist methods with these small sample sizes, while Bayesian methods do not

suffer as much. The above results are consistent across inference methods for each model
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as shown in Table 2.1.

Mean squared error: When the sample size N = 2000, the MSEs are consistent across

methods for each distance-odds models with different true parameters. Figure 2.1 shows

the MSEs corresponding to each method with smaller sample sizes of N = 500 or 1000.

The three frequentist approaches using MLE, profile and IRLS method show very similar

MSE values, while the Bayesian approach shows consistently lower MSEs than frequentist

approach for each distance-odds model regardless of true parameters values. Note that,

for the Bayesian approach, the MSEs derived from informative priors are much lower

than those from noninformative (vague) priors for each setting as expected. Thus, if prior

knowledge is available, it should be used to enhance precision for these distance-odds

models.

Coverage probability: In Table 2.1, when N = 2000, the coverage probabilities are

around 95% for all the models and methods in our simulation study. For smaller sample

sizes of N = 500 or 1000, the coverage probabilities fall below the nominal level for

some parameter settings, however, they are still around 95% on average (shown in Table

2.1, numerical details can be found in Appendix A.1). Note that these percentages are

estimated based on the R′ data sets where all three frequentist methods converge. In

addition, the Bayesian approach provides comparable percentages based on all R = 500

data sets. Therefore, it is more stable than the frequentist methods in terms of coverage

probability and convergence.

In summary, Bayesian methods, especially incorporated with prior knowledge, have

advantages in terms of estimation stability and precision for the proposed non-linear distance-

odds models with multiple disease sub-types.
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2.4 Application: Data analysis for the DAMAT Study

The Detroit asthma morbidity, air quality and traffic study describes a population-based

matched case-control analysis investigating associations between acute asthma outcomes

and proximity of residence to major roads in Detroit, MI. We examined the pediatric pop-

ulation (2-18 years of age) served by Medicaid for the study period 2004 through 2006.

The Medicaid data provide the most complete and readily available source of healthcare

utilization across Detroit. The population consists mainly of African American children

from lower income families, and is considered a high risk population for asthma-related

events. The data included an encrypted Medicaid identifier, age, sex, race/ethnicity, uti-

lization dates and diagnostic codes for inpatient admissions and emergency department

visits, and geo-coded home residence at the time of each health care visit. To ensure a

full claims history, the study population was restricted to those with continuous Medicaid

enrollment (more than 11 months in each year), full Medicaid coverage, and no other in-

surance. Asthma cases were identified as all children who made at least one asthma claim

during the three-year study period, indicated by primary diagnostic code 493.X (Interna-

tional Classification of Diseases, 9th Revision, Clinical Modification). Controls were de-

fined as children whose primary diagnosis was injury or poisoning. Each asthma case was

matched with one control based on gender, race and age (within 2 years). Asthma cases

were further grouped into multiple disease categories (K = 2), based on the frequency of

acute asthma outcomes (Y = 2: claimants with 2 or more asthma claims; Y = 1 claimants

with exactly 1 asthma claim). Details on the descriptive analysis of this data set can be

found in Li et al. (2011).

The geo-coded residence information was used to estimate the distance to major roads

in Detroit, defined as state and interstate freeways and major arterials with annual average
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daily traffic (AADT) flows exceeding 50,000 and 20,000 vehicles per day, respectively.

The freeways and the arterials are considered as the first and second point sources re-

spectively. Shape files providing coordinates of road centerlines were obtained from the

Southeast Michigan Council of Governments. These files and the geo-coded claim data

were merged into ARCGIS 9.3 to determine the proximity to each major road. Due to

confidentiality concerns, claim locations were reported only to the closest 10 m. The road

centerline does not account for the width of the highway and median strip, if any, which

can exceed 30 m for sections of some freeways. Taken together, these factors suggested

that differences on the order of at least 20 to 50 m would be meaningful.

Separate analyses were performed for one and two point source(s) models. For one

point source (freeways) models, the study region was restricted to 1,000 m buffer of free-

ways, which consisted of 2669 1:1 matched case-control pairs. For two point sources

(freeways and arterials) models, the study region was restricted to 1,000 m buffer of free-

ways or arterials, which consisted of 4081 1:1 matched case-control pairs. Figure 2.2 illus-

trates the natural spline fit and 95% confidence band for the relationship between distance

to roadways and odds of being an asthma claimant, using a CLR model with only spline

of distance as its argument. These plots provide an exploratory analysis of the data which

indicate increasing risk with proximity to both types of roads, where the freeways appear

to have stronger effects. There may be a threshold distance beyond which the roadway

effect vanishes. The increase of odds at 600m of freeways is not statistically significant,

which could be an artifact of the smoothing parameter (df = 3 in the natural spline).

Method comparison: The frequentist methods of MLE, profile likelihood and IRLS pro-

vide similar point estimates and CIs with essentially the same Akaike information criterion

(AIC) values for each distance-odds model. Thus, we primarily discuss results as frequen-

tist method (MLE as demonstration) versus Bayesian method in the main text. Table 2.2



28

shows the parameter estimates and 95% CIs using likelihood method and posterior modes

with 95% HPD intervals using Bayesian methods, for one point source models. Note that

these log-likelihood surfaces are not far from quadratic in shape given the large sample

size of 2669 asthma cases in the DAMAT study. Note also that the contour lines near

u = 0 (or equivalently α = 0 ) are almost vertical, which implies the identifiability issue

that a wide range of β can provide the same value of likelihood values. Fortunately, the

peaks of the likelihood surfaces are not close to the null for these one point source models.

For the Bayesian method, the locations of the posterior modes for one point source models

are close to each other for the two prior choices for each parameter under each model.

Posterior densities of β are highly right-skewed, especially for noninformative prior dis-

tribution with much wider HPDs than those derived from informative priors (shown in

Table 2.2). Thus, the frequentist likelihood based inference method or a noninformative

Bayesian method should be avoided for these distance-odds models in presence of well

elicited prior knowledge.

Model selection: Generally, the distance-odds models are selected a priori in the study

design stage. For example, different choices of the numbers of point sources would pro-

vide different study regions with different sample sizes. The choice between PCMs and

ACMs can also be considered a priori based on the interest of nominal or ordered disease

sub-classifications. Model selection can also be based on AICs for frequentist method or

DICs for Bayesian method. For example, ACM (homogeneous) has the smallest AIC value

among the four one point source models as shown in Table 2.2. However, the differences

among these AICs are very small and of little practical concern. In this case, all these

one point source models fit almost equally well. For both informative and noninformative

priors, one point source PCM and ACM have similar and relatively lower DIC values than

the other two models. There is evidence that the more sophisticated models that allow
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different functional forms of odds between case sub-types are preferred even after penal-

izing for the additional number of parameters using the Bayesian approach. Therefore, a

PCM (smallest DIC) with informative priors is the preferred approach among all one point

source models for the DAMAT study (different numbers of point sources with different

sample sizes are not directly comparable). Similarly, Table 2.3 shows the corresponding

results for the two point sources binary model and homogeneous ACM, where the later

one with an informative prior Bayesian approach is preferred.

Estimation and interpretation: Table 2.2 shows the parameter estimates and 95% CIs

using MLE, and posterior modes with 95% HPD intervals using Bayesian methods, for

the one point source models (binary/ACM/PCM). Generally, the point estimates of α̂ and

β̂ lay within 0.1− 0.4 and 100− 300 respectively for the one point source models, which

implies that the roadway effect on asthma only lasts up to a few hundred meters and that

the increase in risk is modest. Take the one point source PCM that has the smallest DIC

as an example, the MLE (or Posterior Mode) α̂2 = 0.39(0.32) is slightly larger than

α̂1 = 0.21(0.25) as shown in Table 2.2. It implies that, at the point source, the odds of

asthma for claimants with 2 or more claims (k = 2) versus controls is slightly higher than

the odds for claimant with exactly 1 claim (k = 1) versus controls. Table 2.3 shows the

results for two point sources models. In general, we have α̂11 > α̂12 and β̂11 > β̂12, which

implies the odds of asthma at freeways is higher than the odds at arterials, and the freeways

effects last longer than arterials. Figure 2.3 shows the estimated distance-odds functions

f̂k for the one point source PCM, using MLE and Bayesian method with informative

priors. Note that the Bayesian method with prior knowledge provides consistently higher

estimates of fk than MLE. For both case subgroups, f̂k deceases rapidly within 0 − 300

meters, and then the roadway effect on asthma lasts up to 400 meters off freeways using

MLE method and 600 meters using Bayesian method respectively. The 95% credible
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regions are above unity up to a distance of 350 meter. Note that the MLE of fk(α,β) is

estimated by plugging in the MLE of (α,β) using their invariant property; the posterior

distribution of fk(α,β) is estimated by draws from the posterior distribution of (α,β)

for fixed grid values of distance x (every half meter). Note also that, for interval estimates

of a function of parameters, the 95% Bayesian credible region can be directly obtained

from the draws, however, the calculation of the frequentist confidence bands for the MLE

of fk(α,β) is not straight forward, this requires the Delta theorem (calculation of the

first and second derivatives of the complex likelihood function) and relies on asymptotic

properties needing a large sample size.

Table 2.4 shows the p-values of the Monte Carlo test and Bayes factors for testing

H0 : f(x) = 1 for one and two point source(s) distance-odds models. Evidence of asso-

ciations (H1 : f(x) > 1) is found for most models using the MC test (P-value< 0.05) or

Bayes factors (B > 2). Strongest associations are found for PCM among one point source

models and for homogeneous ACM among two point sources models respectively, which

is consistent with the results in Tables 2.2 and 2.3.

Sensitivity analysis: The results in Tables 2.2, 2.3 and 2.4 show consistency for different

choices of the distance-odds models under a matched case-control study. Similar con-

clusion can be drawn using these models that there is evidence of the roadway effect on

asthma, and that the effect is modest and only lasts up to a few hundred meters. As a

sensitivity analysis of the prior specification, posterior densities are derived and compared

from different choices of prior distributions for the one point source PCM. For normal pri-

ors on (u, v) with different variances (σ2
u, σ

2
v), the posterior modes are close to each other

for each parameter under each model (shown in Appendix A.1). However, the posterior

modes are sensitive to the choice of αmax and βmax using Uniform priors on (−1, αmax)

and (0, βmax). When αmax and βmax are large, these Uniform priors still put equals weights
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on the whole range of (−1, αmax) and (0, βmax) that may overly weight the upper extreme

values. Wakefield and Morris (2001) have also pointed out the influence of the Uniform

priors, which reflects the fact that there is little information in the likelihood due to sparsity

of data in the upper extremes. Thus the parameterization (u, v) with normal priors appear

to be more robust.

2.5 Discussion

In this chapter, we extended the distance-odds model of Diggle et al. (2000) to models

where there are sub-types within cases under a matched case-control design. The extension

to sub-classification within cases is non-trivial with these non-linear odds functions under a

matched design. Maximum likelihood, profile likelihood, IRLS and a Bayesian approach

using MCMC methods were evaluated under the proposed models. We compared these

methods via an extensive simulation study evaluating frequentist properties such as relative

bias, MSE and coverage probability, and showed that Bayesian methods have advantages

in terms of estimation stability, precision and interpretation. The Bayesian methods are

able to yield direct HPD for complex non-linear distance-odds functions, and does not re-

quire large sample approximation. There is no simulation study in literature that compares

the convergence, relative bias, MSE or coverage probability for these point source models,

even for the basic binary outcome model. The proposed models and methods are applied

to a population-based matched case-control study investigating associations between acute

asthma outcomes and proximity of residence to major roads by analyzing Medicaid claims

data for the pediatric asthma population in Detroit, MI, from 2004-2006. We also perform

a sensitivity analysis to investigate how the choice of distance-odds models and specifica-

tion of the prior distributions affect the results. Typically, the results were consistent for

different choices of models and normal prior distributions on the transformed parameters
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for the DAMAT study.

The current study has several limitations which may lead to future research. The ex-

tension of the non-linear distance-odds model to the proportional odds model setting is

not considered in the study, which is most commonly used for ordered data. We realize

that the conditional likelihood does not apply to this model due to the nuisance parameters

remaining in the non-linear odds functions. The prospective-retrospective conversion for

case-control data is only valid for a multiplicative intercept model. Moreover, the way of

modeling the point source as a function of distance assumed that the distance is the only

factor that matters but not the other factors at the position where the individual lives (e.g.

wind speed, wind direction, barrier not allowing the pollution to travel). Two individuals

could live at the same distance from the freeway but in two different residence and experi-

ence different amount of air pollution simply because of the way the wind usually blows.

One way to handle this problem is to replace the odds ratio function with a Gaussian

correlation function that is not isotropic. Examples of anisotropic correlation functions

can be found in Banerjee et al. (2003) and Baddeley et al. (2010). Many literatures (HEI

2010) have addressed the issues of modeling near-road concentrations that take wind speed

and wind direction into account, e.g. a reduced-form dispersion model (Batterman et al.

2010). However, in this project we only considered point source modeling as a function of

distance only, which can be assumed as a model where the average effect of all the other

factors (e.g. the wind direction across time for a three-year period) are canceled out. These

issues remain to be explored in future research.
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Figure 2.1: Mean squared errors for two settings of true parameter values under vari-
ous distance-odds models, using MLE, profile likelihood, IRLS and Bayesian
methods with R = 500 simulations. Bayesian P1 and P2 refer to two
choices of prior distributions; Prior 1: (µα, µβ) = (0.5, 400) and (σ2

α, σ
2
β) =

(0.25, 150); Prior 2: (µα, µβ) = (0.5, 400) and (σ2
α, σ

2
β) = (0.5, 400). Y-axis

(MSE values) is scaled by a multiplier of 100.
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(a) one point source homogeneous adjacent category model. Sample size
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(b) one point source adjacent category model. Sample size N = 1000; Settings I and II refer
to (α1, β1, α2, β2) = (0.3, 300, 0.7, 500) and (0.4, 500, 0.4, 500) respectively.
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(c) one point source polychotomous category model. Sample size N = 1000; Settings I and
II refer to (α1, β1, α2, β2) = (0.3, 300, 0.7, 500) and (0.4, 500, 0.4, 500) respectively.
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(d) two point sources homogeneous adjacent category model. Sample sizeN = 500; Settings
I and II refer to (α11, β11, α12, β12) = (0.5, 500, 0.3, 300) and (0.4, 500, 0.4, 500) respectively.
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Figure 2.2: Estimated natural spline terms of distance showing the distance-odds relation-
ships for asthma claimants versus controls, using (binary) conditional logistic
regression model with spline of distance as its argument. The solid lines show
the point estimates; the dashed lines show the 95% confidence bands.
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Table 2.2: Parameter estimates with 95% confidence intervals for one point source mod-
els using MLE, profile likelihood and IRLS methods; and posterior modes with
95% highest posterior density (HPD) credible intervals using MCMC.

MLEa Binary Model α β AIC
Estimate 0.258 174.1 3699.9
CIa (-0.042, 0.558) (55.7, 292.4)

ACM (Homogeneous) α1 β1

Estimate 0.188 168.8 3699.8
CI (-0.023, 0.398) (57.8, 279.8)

ACM (General) α1 β1 α2 β2

Estimate 0.215 176.0 0.130 153.4 3703.7
CI (-0.126, 0.557) (41.6, 310.4) (-0.484, 0.744) (87.5, 394.2)

PCM α1 β1 α2 β2

Estimate 0.208 191.8 0.392 154.1 3703.6
CI (-0.118, 0.534) (9.1, 374.6) (-0.242, 1.025) (26.5, 281.7)

Bayesian P1a Binary Model α β DIC
Posterior mode 0.247 228.6 3686.2
Posterior median 0.289 290.7
CI (HPD)a (0.034, 0.487) (121.0, 592.1)

ACM (Homogeneous) α1 β1

Posterior mode 0.177 182.7 3686.8
Posterior median 0.156 202.5
CI (HPD) (0.025, 0.361) (118.1, 550.0)

ACM (General) α1 β1 α2 β2

Posterior mode 0.194 192.5 0.242 222.5 3675.3
Posterior median 0.244 287.2 0.261 326.8
CI (HPD) (0.004, 0.461) (125.5, 667.8) (-0.072, 0.505) (116.7, 623.3)

PCM α1 β1 α2 β2

Posterior mode 0.246 231.3 0.320 259.0 3674.9
Posterior median 0.298 256.8 0.366 269.7
CI (HPD) (0.028, 0.514) (113.3, 737.8) (0.049, 0.649) (115.3, 602.6)

Bayesian P2a Binary Model α β DIC
Posterior mode 0.285 152.7 3682.7
Posterior median 0.203 398.2
CI (HPD) (0.027, 1.308) (154.6, 1401.2)

ACM (Homogeneous) α1 β1

Posterior mode 0.192 160.5 3683.2
Posterior median 0.216 395.2
CI (HPD) (0.005, 1.086) (79.3, 1263.2)

ACM (General) α1 β1 α2 β2

Posterior mode 0.212 177.5 0.162 172.5 3670.4
Posterior median 0.312 425.7 0.188 256.7
CI (HPD) (-0.039, 0.896) (96.5, 1347.8) (-0.181, 0.840) (39.5, 1123.9)

PCM α1 β1 α2 β2

Posterior mode 0.258 243.2 0.286 147.0 3669.4
Posterior median 0.346 566.4 0.367 218.9
CI (HPD) (-0.056, 0.822) (76.5, 1490.9) (-0.080, 0.818) (44.9, 1267.8)

a MLE: maximum likelihood estimate; CI: confidence/credible interval; HPD: highest posterior density; Bayesian P1
and P2 refer to two settings of prior choice; Prior 1: (µα, µβ) = (0.5, 400) and (σ2

α, σ
2
β) = (0.25, 150); Prior 2:

(µα, µβ) = (0.5, 400) and (σ2
α, σ

2
β) = (0.5, 400).
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Table 2.3: Parameter estimates with 95% confidence intervals for two point sources mod-
els using MLE, profile likelihood and IRLS methods; and posterior modes with
95% highest posterior density (HPD) credible intervals using MCMC.

First point source Second point source
MLEa Binary Model α11 β11 α12 β12 AIC

Estimate 0.228 309.2 -0.098 180.5 5657.5
CI (-0.177, 0.663) (97.3, 575.8) (-0.420, 0.223) (17.4, 376.2)

ACM (Homogeneous) α11 β11 α12 β12

Estimate 0.179 283.6 -0.134 114.8 5656.0
CI (0.001, 0.360) (68.4, 535.1) (-0.357, 0.093) (6.5, 233.2)

Bayesian P1a Binary Model α11 β11 α12 β12 DIC
Posterior mode 0.280 257.9 0.061 270.0 5609.1
Posterior median 0.304 302.1 0.089 300.1
CI (HPD)a (0.127, 0.462) (171.9, 533.2) (-0.072, 0.200) (132.1, 543.7)

ACM (Homogeneous) α11 β11 α12 β12

Posterior mode 0.205 294.0 0.019 261.4 5593.8
Posterior median 0.212 360.2 0.021 340.4
CI (HPD) (0.075, 0.354) (155.0, 509.8) (-0.083, 0.122) (143.1, 633.2)

Bayesian P2a Binary Model α11 β11 α12 β12 DIC
Posterior mode 0.248 327.5 0.007 182.3 5604.6
Posterior median 0.303 430.2 0.011 434.6
CI (HPD) (0.069, 0.474) (122.9, 627.2) (-0.131, 0.134) (75.1, 1225.7)

ACM (Homogeneous) α11 β11 α12 β12

Posterior mode 0.186 228.0 -0.006 149.4 5595.2
Posterior median 0.222 340.4 0.011 480.9
CI (HPD) (0.051, 0.354) (129.0, 645.8) (-0.120, 0.108) (70.1, 1243.2)

a MLE: maximum likelihood estimate; CI: confidence/credible interval; HPD: highest posterior density; Bayesian P1
and P2 refer to two settings of prior choice; Prior 1: (µα, µβ) = (0.5, 400) and (σ2

α, σ
2
β) = (0.25, 150); Prior 2:

(µα, µβ) = (0.5, 400) and (σ2
α, σ

2
β) = (0.5, 400).

Table 2.4: Monte Carlo test p-values and Bayes factors 2 log(B) for the null hypothesis
thatH0 : f(x) = 1 for various point source(s) models. Bayesian P1 and P2 refer
to two settings of prior choice; Prior 1: (µα, µβ) = (0.5, 400) and (σ2

α, σ
2
β) =

(0.25, 150); Prior 2: (µα, µβ) = (0.5, 400) and (σ2
α, σ

2
β) = (0.5, 400).

Models MC test Bayes factors
p-values P1 P2

One point source
Binary model 0.04 3.52 2.89
ACM (Homogeneous) 0.06 4.32 3.41
ACM (General) 0.02 6.29 6.16
PCM < 0.01 7.12 6.04

Two point source
Binary model 0.04 3.11 2.57
ACM (Homogeneous) < 0.01 6.69 5.98



CHAPTER III

Bayesian analysis of time-series data under case-crossover
designs

3.1 Introduction

Case-crossover design, originally proposed by Maclure (1991), has been widely used

to study the effect of short-term exposure on the risk of acute adverse health events, such

as temperature on mortality (Basu et al. 2005) and ambient air pollution on asthma (Li

et al. 2011). Under this design, exposure at the event time of each case is compared

to exposure at some referent times (times within a certain period where the same case

did not experience any event). For each case, a ‘referent window’ is defined as a set

of time points consisting of the event time and all referent times for the same case. It

can be viewed as a hybrid of case-control (comparing exposure distribution of cases and

controls through a retrospective design) and crossover (the case serves as its own control)

studies. The case-crossover design inherently controls for time-invariant confounders (e.g.

gender and race) by making within-person comparisons, and controls for potential time-

varying confounders (e.g. seasonal trends) by proper choice of the referent times. The

time-stratified case-crossover design divides time a priori into disjoint strata, uses the

event time to determine which stratum is selected, and selects all or a sub-sample of the

remaining times in the stratum as referent times for a given case (Janes et al. 2005a). For

example, time stratum based on the same day of the week in the same calender month that

38
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controls for confounding due to day of the week, seasonal and long-term effects is often

recommended (Janes et al. 2005a).

The design and analytic issues related to the referent time selection have been com-

prehensively discussed (Lumley and Levy (2000); Levy et al. (2001); Janes et al. (2005a);

Janes et al. (2005b); Mittleman (2005)). The traditional approach for analyzing case-

crossover data is to treat them as coming from a matched case-control structure, where

each stratum consists of exposures at event and referent times of a given case. A con-

ditional logistic regression (CLR) is routinely used to obtain estimates of the underlying

risk ratio parameters. In terms of referent time selection, a ‘non-localizable’ design (Janes

et al. 2005a) is a case-crossover design for which the CLR estimating equation under the

choices of referent times is biased, such as unidirectional (Maclure 1991), bidirectional

(Navidi 1998) and symmetric bidirectional designs (SBD) (Bateson and Schwartz 1999).

The bias has been termed ‘overlap bias’ (Lumley and Levy 2000). In contrast, a ‘local-

izable’ design (Janes et al. 2005a) is a case-crossover design for which there exists an

unbiased CLR estimating equation, such as the time-stratified design (TSD) (Janes et al.

2005a) and semi-symmetric bidirectional design (Navidi and Weinhandl 2002). Appendix

A.2 Figure 1 shows several illustrations of common referent time selection strategies. The

TSD is generally preferred compared to any of the alternatives thus far proposed (Janes

et al. (2005b); Mittleman (2005)). Based on a 2010 review article (Carracedo-Martı́nez

et al. 2010), though 42% of case-crossover studies during 1999-2008 used SBD, the TSD

has become the most popular design since 2005.

An alternative analysis of such exposure and event series data is to use a standard

time-series analysis. Lu and Zeger (2007) have shown that the traditional CLR approach

to analyze case-crossover data can be viewed as a time-series analysis with an underlying

log-linear model of a specific form. This equivalence has also been noted in special cases
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by Levy et al. (2001) and by Janes et al. (2005a).

Bayesian data analysis under case-crossover designs appear to be non-existent in the

literature though there is substantial work on Bayesian modeling of matched case-control

data (Ghosh and Chen (2002); Sinha et al. (2004)). It is true that the use of CLR remains

identical in the two contexts for certain ‘localizable’ designs. However, the assumptions

and the data structure make the statistical points of discussion distinct in a case-crossover

study compared to a matched case-control study under a Bayesian paradigm. In this chap-

ter we consider a comprehensive treatment of the problem starting with some posterior

equivalence results, followed by alternative Bayesian proposals beyond using CLR as the

basis for inference in case-crossover studies.

This chapter is structured as follows. In section 3.2, we describe the disease-exposure

association model, underlying assumptions and two potential likelihood formulations, the

conditional and the full likelihood, under the case-crossover design. We then consider

equivalence results analogous to Lu and Zeger (2007) in a Bayesian framework under

both formulations. Bayesian equivalence results are intended to characterize the priors

that ensure identical posterior inference regarding the risk ratio parameters as derived un-

der case-crossover designs and from time-series analysis. Bayesian equivalence results

for case-control studies, relating prospective and retrospective likelihoods appear in sev-

eral recent papers (Seaman and Richardson (2004); Staicu (2010); Ghosh et al. (2012)).

The full likelihood formulation requires less restrictive assumptions than the conditional

one, however, it involves a set of nuisance parameters corresponding to each individual or

day that grows with sample size. Thus maximum likelihood estimators (MLE) of the risk

ratio parameters can be potentially inconsistent. We present a semi-parametric Bayesian

approach using a Dirichlet process prior (Ferguson (1973); Antoniak (1974); Müller and

Quintana (2004)) to handle the random nuisance parameters in the full likelihood formu-
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lation. Section 3.3 presents a simulation study where we evaluate the performance of

both conditional and full likelihood approaches under two common referent time selection

strategies: TSD (‘localizable’) and SBD (‘non-localizable’). We study frequentist proper-

ties such as bias and mean-squared error (MSE) of the proposed methods. Our numerical

results indicate that Bayesian analysis based on the full likelihood has advantages in re-

laxing certain model assumptions and reducing bias, but both Bayesian and frequentist

inference based on conditional likelihood are fairly robust with respect to design choices

and model assumptions. Section 3.4 demonstrates the proposed methods through a study

examining the association between acute asthma risk and ambient air pollutant concentra-

tions. We discussed how to use information from published studies through formulation

of an informative prior in the context of the example.

We would like to highlight the two fundamentally novel aspects of our study. The

present study is the first to consider Bayesian equivalence results between case-crossover

and time-series analysis. The proposal to use a full likelihood and use semi-parametric

Bayes technique to make the estimation of the nuisance parameters feasible is also com-

pletely new in the case-crossover context. The numerical comparison of all proposed

Bayesian methods with frequentist alternatives is an added asset of the chapter.

3.2 Methods

3.2.1 Case-crossover and time-series: disease risk model

Suppose that a population ofN+M initially disease-free individuals are being followed

forward in time. Let time point t (follow-up day, say) stand for the time interval [t, t + 1)

throughout this chapter. Let Yit be the binary indicator whether subject i has the disease

occurring at time t (Yit = 1 if yes; Yit = 0 if no). LetN and T be the total number of cases

at the end of the follow-up period and the total number of the discrete set of time points t
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respectively, and let, without loss of generality, the first N of the N+M individuals denote

the cases. We start with the risk ratio model using similar notation as in Lu and Zeger

(2007), where the risk of an event for individual i at time t is assumed as

P
(
Yit = 1 |X it

)
=

λ0it exp(β>X it)

1 + λ0it exp(β>X it)
.(3.1)

X it = (Xit1, ..., Xitp)
> is the p-dimensional exposure variable for individual i at time t,

β = (β1, ..., βp)
> is the common set of log risk ratio parameters. Each individual i is

assumed to have his/her own baseline risk λ0it.

If the risk of the disease for individual i at time t is small, it will imply the following:

Assumption 3.1. P
(
Yit = 1 | X it

)
= λ0it exp(β>X it)/{1 + λ0it exp(β>X it)} ≈

λ0it exp(β>X it).

For the case-crossover analysis, we do not require assumption 3.1 and can proceed with

the likelihood governed by model (3.1); while for the time-series analysis, assumption 3.1

is required.

A traditional conditional likelihood approach

The log risk ratio parameter β in model (3.1) can be ascertained under a case-crossover

design. We consider the situation where the diseased individuals can have multiple occur-

rences of events during the whole follow-up period, but the referent windows correspond-

ing to these multiple events from the same individual must not overlap. We ignore the

within-individual correlation among the multiple occurrences of events, and treat these

multiple events as independent ‘cases’. Without loss of generality, we still denote N as

the number of ‘cases’.

Let ti and Wi be the event time and referent window for case i. The following assump-

tion on the baseline risk is often made under a case-crossover design, which is natural if

the length of Wi is short (typically a month, as in Janes et al. (2005a)).
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Assumption 3.2. For each case iwith event time ti, the baseline risk λ0it is constant within

the referent window Wi, i.e., λ0it = λ0iti , for any t ∈ Wi, i = 1, ..., N .

Given the exposure X = (X it)N×T , the referent windows Wi’s and that
∑

t∈Wi
Yit =

1, the conditional likelihood corresponding to a case-crossover design can be derived as

Lcc(β,λ) =
N∏
i=1

P
(
Yiti = 1, Yis = 0,∀s 6= ti |X,Wi,

∑
t∈Wi

Yit = 1
)

=
N∏
i=1

P
(
Yiti = 1, Yis = 0,∀s 6= ti |X,Wi

)∑
t∈Wi

P
(
Yit = 1, Yis = 0,∀s 6= t |X,Wi

)
=

N∏
i=1

λ0iti exp(β>X iti)∑
t∈Wi

λ0it exp(β>X it)
=

N∏
i=1

exp(β>X iti)∑
t∈Wi

exp(β>X it)
= Lcc(β).(3.2)

In (3.2), the third equality holds under a ‘localizable’ design (Lumley and Levy (2000),

Janes et al. (2005b)), under which an unbiased estimate of β can be obtained using a

CLR. Under assumption 3.2, the fourth equality holds. The nuisance parameter λ0iti was

eliminated by conditioning on the sufficient statistic
∑

t∈Wi
Yit.

The case-crossover design is similar to a matched case-control design in the sense that

the exposure at the event time of each case is compared to exposures at all referent times

for the same case, i.e., a matched set of exposures corresponding to each Wi. Lumley and

Levy (2000) discussed the differences between the two designs, such as the dependency

of exposures between and within stratum. Due to these dependencies, they showed that

(3.2) can be treated as a conditional likelihood of a matched case-control study only under

‘localizable’ referent window. They also showed that, with a ‘non-localizable’ referent

window such as a SBD, ti and Wi are simple functions of each other (ti is the mid-point

of Wi), and P
(
Yit = 1, Yis = 0,∀s 6= t | X,Wi

)
= I(t = ti) is deterministic. Thus,

Lcc(β,λ) = 1, i.e., uninformative. The estimating equation for β corresponding to Lcc(β)

is biased under ‘non-localizable’ designs, and ‘overlap bias’ is incurred if β is naively

estimated using Lcc(β) (Lumley and Levy (2000)).
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The case-crossover design is commonly used in ecological studies concerning issues

such as effect of climate change and air pollution on human health, where personal ex-

posure is often not assessed at an individual level. For example, ambient air pollutant

concentrations are usually measured from monitoring sites representing the exposure of

the nearby population.

Assumption 3.3. The study population has experienced shared exposure at each time t

such thatX it = X t, for i = 1, ..., N+M .

Under assumption 3.3, the conditional likelihood in (3.2) can be rearranged in terms

of the number of events (e.g. daily mortality) at each follow-up time t (e.g. day) and

expressed as

Lcc(β) =
T∏
t=1

{ ∏
i:Yit=1

exp(β>X it)∑
s∈Wi

exp(β>X is)

}
=

T∏
t=1

{ exp(β>X t)∑
s∈W (t) exp(β>Xs)

}Yt
,

(3.3)

where W (t) is the referent window containing t as the event time, Yt =
∑N

i=1 Yit is the

count of events at time t. Assumption 3.3 can be relaxed and individual exposure values

can be accommodated as in our earlier formulation (3.1) or (3.2).

A full likelihood approach

We propose an alternative full likelihood formulation of model (3.1). From (3.1), be-

fore enforcing either assumption 3.2 or 3.3, the full likelihood of a case-crossover design

is expressed in terms of individual level exposure and baseline risk as

LNTfull(β,λ) =
N∏
i=1

P
(
Yiti = 1, Yis = 0,∀s 6= ti, s ∈ Wi |X

)
=

N∏
i=1

λ0iti exp(β>X iti)∏
s∈Wi

{
1 + λ0is exp(β>X is)}

,(3.4)

which allows for a completely general form of λ0it. We refer to LNTfull(β,λ) in (3.4) as

full likelihood with individual and day level intercepts. If the baseline risk for individual i
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does not change in its referent window and depends only on the event time ti as in assump-

tion 3.2, then we can write (3.4) as LNfull(β,λ) =
∏N

i=1

[
λ0iti exp(β>X iti)/

∏
s∈Wi

{
1 +

λ0iti exp(β>X is)}
]
. We refer to LNfull(β,λ) as full likelihood with individual level inter-

cepts. In this case, the full likelihood LNfull(β,λ) under a case-crossover design is exactly

analogous to deriving the full likelihood of a matched case-control study under a stratified

logistic regression model logitP (Yis = 1 | X is) = log(λ0iti) + β>X is, s ∈ Wi, i =

1, ..., N . Under both assumptions 2 and 3, one can alternatively translate the likelihood in

terms of common nuisance parameters log(λ0iti) = νti for all cases i that have event time

ti. Then LNfull(β,λ) can be aggregated as

LTfull(β,ν) =
T∏
t=1

[ exp(νt + β>X t)∏
s∈W (t){1 + exp(νt + β>Xs)}

]Yt
,(3.5)

where ν = (ν1, .., νT ). We refer to LTfull(β,ν) as full likelihood with day level intercepts.

Time-series Analysis

The log risk ratio parameter β in model (3.1) can also be estimated using an alter-

native time-series analysis. The expected number of events at time t can be expressed

as the sum of the individual level probabilities (3.1) over the population. Under both

assumptions 1 and 3, log(E(Yt)) = log(
∑N+M

i=1 E(Yit)) = β>X t + log(
∑N+M

i=1 λ0it).

For exposures varying at an individual level X it, generally one can not aggregate the risk

λ0it exp(β>X it) as above to obtain a standard time-series structure involving the day level

counts and exposures. Consider log(
∑N+M

i=1 λ0it) as a function of time only, say St. Then

β can be estimated through the log-linear Poisson model

(3.6) log(E(Yt)) = β>X t + St,

where St is typically modeled as parametric (e.g., season) and/or non-parametric (e.g.,

natural spline of time) terms. The likelihood corresponding to the log-linear model in



46

(3.6) is given by

(3.7) Lll(β, St) ∝
T∏
t=1

{exp(β>X t + St)}Yt exp{− exp(β>X t + St)}.

Frequentist equivalence between time-series analysis and case-crossover design using
conditional likelihood

The two estimating equations for β corresponding to (3.3) and (3.6) are Ucc(β) =∑T
t=1 Xt

{
Yt−exp(β>Xt)

∑
s∈W (t) Ys/

∑
r∈W (s) exp(β>Xr)

}
andUll(β) =

∑T
t=1Xt

{
Yt−

exp(β>Xt + St)
}

respectively. By comparing Ucc(β) and Ull(β), Lu and Zeger (2007)

showed that, for a certain choice of window W (t) in (3.3) of a ‘localizable’ design, there

exists a choice of St in log-linear model (3.6) such that the two estimating equations pro-

vide the same estimate of β. For example, for a TSD withW (t) representing the time stra-

tum containing time t, if Ŝt(β) = log[{
∑

s∈W (t) Ys}/{
∑

s∈W (t) exp(β>Xs)}], then log-

linear model (3.6) will provide the same estimate of β as (3.3). Note that Ŝt′(β) = Ŝt(β)

for any t′ ∈ W (t), implying St is a step function of t with a separate value at each time

stratum. As the conditional likelihood is uninformative under a ‘non-localizable’ design,

there is no equivalence between time-series analysis using a log-linear model and case-

crossover design.

Frequentist equivalence using full likelihood

Similarly, by comparing the two estimating equations corresponding to LTfull(β,ν) and

Lll(β, St), we showed (in Appendix B.2) that, for a certain choice of window W (t) of a

‘localizable’ design, there exists a choice of St in the log-linear model such that the two

estimating equations provide the same estimate of β. Under a TSD, while the conditional

likelihood approach or an equivalent log-linear model would only allow the baseline risk to

change discontinuously among different time strata, the full likelihood approach does not
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require such constraints. However, both the full likelihood method and its equivalent log-

linear model encounter difficulty in estimating β in the presence of T day level nuisance

parameters using maximum likelihood. As an alternative estimation strategy, a random ef-

fects Bayesian approach could be used to handle these random nuisance parameters under

the full likelihood formulations, which are described in section 3.2.3.

3.2.2 Bayesian equivalence between case-crossover design and time-series model

Bayesian equivalence with conditional likelihood

We focus on the posterior distributions of the log risk ratio parameter β derived under

case-crossover and time-series analysis. The Bayesian equivalence result for β requires

that the posterior distribution of β derived from Lcc(β) in (3.3) and from Lll(β, St) in

(3.7) are identical under certain forms of St and certain prior distributions on β and St.

The validity of using a conditional likelihood as the basis for Bayesian inference has been

discussed in previous studies. For example, Rice (2004) and Rice (2008) discussed the

equivalence between the use of conditional and marginal likelihoods for matched case-

control study. Since the conditional likelihood approach is only valid for a ‘localizable’

design, we restrict our attention specifically to a TSD in this section.

THEOREM 3.1. Suppose the follow-up time points t = 1, ..., T are divided a priori

into K disjoint time strata ts(k) under a TSD, k = 1, ..., K. If St in log-linear model (3.6)

is defined as a step function with distinct values of St be S ′k on ts(k), k = 1, ..., K, and

if independent improper priors π(S ′k) ∝ 1 for S ′k and a proper prior π(β) for β are used

where S ′k and β are mutually independent, then the posterior distribution of β derived

from Lcc(β) in (3.3) is identical to the marginal posterior distribution of β derived from

Lll(β, St) in (3.7).

Proof of Theorem 3.1 is given in Appendix B.2. We showed that, given the choice of St
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and prior distribution on St and β as in Theorem 3.1, the marginal posterior distribution of

β derived fromLll(β, St) is π(β |X,Y ) ∝
∫
· · ·
∫
π(β)π(S ′1, ..., S

′
K)Lll(β, St)dS

′
1 · · · dS ′K

∝ π(β)Lcc(β), i.e., the posterior distribution of β derived from Lcc(β).

With shared exposure data across all individuals, the time-series model in (3.6) is more

flexible than a case-crossover design using conditional likelihood, in the sense that model

(3.6) allows various smoothing functions of time for St where one special choice is equiv-

alent to the analysis of data under case-crossover design. Log-linear models can also

account for over-dispersion of the Poisson variance that is typically present in air pollu-

tion studies, while case-crossover studies can not. In contrast, case-crossover design has

the advantage of controlling for personal level confounders, and modeling individual level

exposures over time-series models.

Bayesian equivalence with full likelihood

We aim to show the marginal posterior distribution ofβ derived fromLTfull(ν,β) under

the shared exposure assumption is identical to that derived from a Poisson likelihood. Let

ys1t and ys0t be the numbers of potential event and referent times that equals to t in the

s-th time stratum. ysdt is assumed to follow a Poisson distribution Poisson(µsdt) with

mean µsdt = exp(φst + d(νs + β>X t)), d = 0, 1; s = 1, ..., T ; t = 1, ..., T . The Poisson

likelihood with ancillary parameters φst is given by,

Lp(φ,ν,β) =
T∏
s=1

T∏
t=1

1∏
d=0

[
exp{φst + d(νs + β>X t)}

]ysdt exp
[
− exp{φst + d(νs + β>X t)}

]
With independent improper priors π(φst) ∝ 1 and proper prior on ν and β, the joint

posterior distribution of (ν,β) derived (in Appendix B.2) from Lp(φ,ν,β) is

π(ν,β |X,Y ) ∝
∫
π(φ,ν,β)Lp(φ,ν,β)dφ ∝ π(ν,β)LTfull(ν,β).
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So the marginal posterior distribution of β derived from Lp(φ,ν,β) and from LTfull(ν,β)

are the same. This method is inspired by the Multinomial-Poisson transformation (Baker

1994) and its Bayesian counterpart (Seaman and Richardson (2004); Ghosh et al. (2006)).

Though this proves theoretical Bayesian equivalence between using a case-crossover full

likelihood and a Poisson likelihood, the Poisson model has a large number of nuisance

parameters φ. Moreover, the interpretation of the artificially constructed Poisson model

is practically not very meaningful. Thus, we focus on full likelihood based methods with

more flexible semi-parametric prior distributions on the intercepts in the following section,

instead of an equivalent time-series formulation.

3.2.3 Bayesian inference

Traditionally, CLR models were routinely used for frequentist inference on β under

case-crossover designs. A naive approach would be to also use the conditional likelihood

Lcc(β) as the basis for Bayesian inference, where prior specification on only β is needed.

The posterior distribution of β is not a standard distribution, but posterior draws could be

generated by using a Gibbs sampler (Appendix B.2).

For the full likelihood approach, though the number of nuisance parameters grows with

the sample size, a random effects model can be used to reduce the problem to estimating

the parameters corresponding to the random effects distribution. For example, the stratified

logistic regression model with likelihoodLTfull(β,ν) in (3.5) can be readily fitted through a

generalized linear mixed model with νt
iid∼ N(µν , σ

2
ν). Methods such as penalized pseudo-

likelihood (Breslow and Clayton 1993) can be used for inference in such models, which is

available in standard statistical software.

The misspecification of the random effects distribution could lead to potential bias

in the estimation of β (Mukherjee et al. 2009). To avoid assuming a parametric nor-
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mal distribution on the nuisance parameters, we consider a more robust semi-parametric

Bayesian approach that allows the random effects to have a nonparametric distribution. To

this end, we use the Dirichlet process prior (Ferguson (1973); Antoniak (1974); Müller

and Quintana (2004)) to handle the random intercepts. In particular, for example with

LTfull(β,ν) in (3.5), we assume νt | G
iid∼ G, where G is a random distribution generated

from a Dirichlet process with concentration parameter α and base distribution G0, i.e.,

G | α,G0 ∼ DP (α,G0). Let ν−t = (ν1, ..., νt−1, νt+1, ..., νT ), for t = 1, ..., T . The joint

prior distribution π(ν) can be represented in terms of leave-one-out conditional distribu-

tions as νt | ν−t ∼ α
T−1+α

G0 + 1
T−1+α

∑T
s=1, s 6=t Iνs(·) (Blackwell and MacQueen 1973).

Thus, (ν1, ..., νT ) will be adaptively reduced to fewer distinct clusters with positive proba-

bility. As α → ∞, the Dirichlet process model reduces to specifying a parametric model

νt
iid∼ G0; whereas α → 0 implies a parametric model with a common stratum effect,

namely νt = ν∗ for t = 1, ..., T , where ν∗ ∼ G0.

To complete the hierarchy, independent hyperpriors are considered as follows: α |

a0, b0 ∼ Gamma(a0, b0), G0 ∼ N(µ, σ2), µ | µ0, σ0 ∼ N(µ0, σ
2
0), σ−2 | c0, d0 ∼

Gamma(c0, d0). We consider mutually independent normal priors β ∼ N(µβ, σ
2
βIp).

The posterior distributions of ν and β can be obtained by using a Metropolis-Hastings

within Gibbs algorithm as described in Neal (2000) and Sinha et al. (2004). The details

are presented in Appendix B.2. Similarly, for the individual specific stratum effects in

LNfull(β,λ), we assume log(λ0iti) | G
iid∼ G, for i = 1, 2, ..., N . For LNTfull(β,λ), we only

consider a special case by assuming a multiplicative structure on the nuisance parameters:

λ0it = λ0i exp(ωt), where λ0i is a constant frailty for person i and ωt is the time varying

effect on the risk. We model log(λ0i) and ωt through random distributions generated from

two independent Dirichlet processes.
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3.3 A Simulation Study

Simulation scenarios

In our simulation, we used λ0it = λ0i exp(ωt) as the form of the true baseline risk.

Under both assumptions 1 and 3, we have log(E(Yt)) = β>X t + log(
∑N+M

i=1 λ0it) =

β>X t + ωt + η, where η = log(
∑N+M

i=1 λ0i). We generated the number of events per day

from a Poisson model

(3.8) Yt ∼ Poisson(µt), where µt = exp(β>X t + ωt + η).

We considered various simulation scenarios with different choices of time effects ωt on the

baseline risk, true effect sizes β∗, and exposure series Xt. Without loss of generality, we

considered β and X t to be univariate in our simulation study. We convert the time-series

data in the form of individual event referent times according to a given case-crossover

design.

Temporal trends on the baseline risk: In order to examine whether the full likelihood

method under a case-crossover design is more robust to various baseline risk specifica-

tions than the conditional likelihood method, we considered three forms of time-varying

effect ωt involved in the baseline risk. In particular, B1: ωt = ω that satisfies assumption

3.2; B2: ωt = c(1 − 0.001t)[1 + 0.5cos(2πt/365)] that combines seasonal and long-term

decreasing trends, where c is a positive scaling factor; B3: B3 is a mixture of B2 (with

probability 0.9) and random spikes (with probability 0.1), where the spikes follow a uni-

form distribution U(2c, 4c). Note that B2 and B3 both violate assumption 3.2.

Effect sizes: We considered two typical true effect sizes β∗ = 0.1 (a risk ratio of 1.1,

e.g. reflecting the effect of 10 µgm−3 increase of PM2.5 (particulate matter less than 2.5

micrometers in diameter) on the risk of acute asthma (Li et al. 2011) or 10 degree (F)

change of temperature on mortality risk (Basu et al. 2005)) and β∗ = 1 (a risk ratio of 2.7,
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e.g. reflecting the effect of medication use on preventing elderly falls in case-crossover

intervention trials (Luo and Sorock 2008)).

Exposure series: We simulated exposure series Xt over a 3-year (T=1096) period under

two settings. E1: Xt has auto-correlation structureAR(1) (ρ = 0.6); E2: Xt has long-term

decreasing trend plus seasonal and day of week effects, with the same auto-correlation

structure as in E1. We generated E1 and E2 to have the same marginal distributions.

Likelihoods/Methods: We would like to compare time-series analysis using log-linear

models with the analysis under case-crossover designs. The methods can broadly be di-

vided into three classes in terms of likelihoods we considered. In particular, M1: log-linear

models, adjusted for the true temporal trend ωt as offset (this is the closest to the true gen-

erating model) or adjusted for a natural spline term on time t; M2: conditional likelihood

approach under a case-crossover design, using both frequentist and Bayesian treatment;

M3: full likelihood approach under a case-crossover design, with the random intercepts

handled by a Dirichlet process. Within case-crossover analysis, we also compared the two

commonly used referent time selection strategies, TSD with SBD, to possibly quantify the

‘overlap bias’.

Prior choices: Within the Bayesian alternatives we implemented two choices of prior dis-

tributions on β: non-informative and informative. For non-informative prior, we used a

vague prior β ∼ N(0, 102); for informative prior, we considered β ∼ N(µβ, σ
2
β) with µβ

and σβ potentially elicited from historical data. We described the details of incorporating

historical data to construct informative priors under a concrete data example framework

in section 3.4. We used β ∼ N(0.08, 0.032) when β∗ = 0.1, and β ∼ N(0.8, 0.22) when

β∗ = 1 in our simulations. Justification for these prior choices on µβ and σβ as well as on

the full set of parameters are provided in Appendix B.2.

The simulation was repeated 1000 times under each scenario. We summarized the
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results in terms of relative bias (RB = ( 1
1000

∑1000
i=1 β̂i − β∗)/β∗ × 100%) and MSE

(MSE = 1
1000

∑1000
i=1 (β̂i − β∗)2) corresponding to the log risk ratio parameter β. Ta-

bles 3.1 and 3.2 present results corresponding to 6 baseline×exposure (3× 2) settings, for

β∗ = 0.1 and 1 respectively. As the individual level model LNTfull(β,λ) and LNfull(β,λ) are

computationally intensive with large N (N ≈ 20, 000 for β∗ = 0.1 in our simulations),

we only considered LTfull(β,ν) under β∗ = 0.1. We considered all three versions of full

likelihoods under β∗ = 1 with N ≈ 1000.

Simulation results

Likelihoods/Methods: We present the estimates from the log-linear model using offset

terms to be the true values of ωt as a reference benchmark, against which each of our

methods is compared. In practice, while carrying out a time-series analysis, one will not

know the true time effect terms and will use a flexible nonparametric spline term (Dominici

et al. (2002), Dominici et al. (2003)). The log-linear model adjusted for a natural cubic

spline term of time with 7 degrees of freedom per year approximates the true model quite

accurately. The two log-linear models both have smaller bias and MSE than the case-

crossover designs, especially under B2 or B3. Note that the log-linear models fitted here

were not chosen to be the equivalent models to case-crossover designs.

(a) Design effect: In comparing the two designs, we found that the TSD generally has

smaller bias and MSE than the SBD. Under B1, the only source of bias is the ‘overlap

bias’ of a SBD. We observed up to 5% difference in bias between TSD and SBD (Tables

3.1 and 3.2). However, the magnitude and direction of the ‘overlap bias’ depend on the

particular exposure series and effect size, as previously noted in Janes et al. (2005a).

(b) Conditional versus full likelihood formulation (with non-informative priors): The

conditional likelihood Lcc(β) as well as the full likelihood LNfull(β,λ) and LTfull(β,ν)
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require assumption 3.2 of constancy of ωt in each referent window and only allows the

risk to change discontinuously across referent windows. The most general form of the full

likelihood LNTfull(β,λ) does not require this assumption. As for bias, we note that the bias

due to violation of assumption 3.2 (under B2 and B3) is typically very small (< 1%) when

β∗ = 0.1 (Table 3.1), and up to 3% when β∗ = 1 (Table 3.2). However, full likelihood

methods have greater MSE than conditional counterparts under non-informative priors.

This is expected as another level of hierarchy was added to model the uncertainty in the

random nuisance parameters.

Prior sensitivity: Both conditional and full likelihood methods show substantial reduction

in MSE when informative priors on β are used as shown in Tables 3.1 and 3.2, which also

lead to substantial shrinkage towards the prior mean. Thus, given the context of the study

and prior information, Bayesian methods that utilize informative priors can potentially

have advantage over their frequentist counterparts in terms of MSE.

Remark 3.1: Note that the full likelihood has additional analytic flexibility to handle indi-

vidual level data and incorporate interaction terms that account for subject level covariates.

We generated time-series data with shared exposure for the present simulation study for

illustration purposes, leading to best performance by the log-linear models. If we had gen-

erated individual level data with personal factors, the time-series analysis would have been

more susceptible to residual bias from ignoring personal level confounders.

3.4 Application: Data analysis for the DAMAT Study

We illustrate the proposed methods through the ‘Detroit Asthma Morbidity, Air Qual-

ity and Traffic’ (DAMAT) study originally analyzed by Li et al. (2011). One primary goal

of the study was to examine the association between acute asthma risk and ambient air pol-

lutant levels, especially PM2.5, for the pediatric (children 2-18 years) Medicaid population
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in Detroit, Michigan, during the 2004-2006 study period (T = 1096 days). Daily counts

of asthma events, including emergency department visits and hospitalizations, were used

as the outcome series Yt, for t = 1, ..., 1096. Figure 3.1 shows the smoothed trend of Yt

indicating a strong seasonal pattern, with the highest frequency during fall, and the lowest

during summer. A total of 12,933 asthma events were observed during the 1096 days, rep-

resenting an average rate of 11.8 events per day. Daily PM2.5 concentration was computed

as the average concentration across the air quality monitoring sites in the Detroit area.

Daily PM2.5 data also show a strong seasonal pattern with a mean level of 15.0 µgm−3.

Daily meteorological variables, including temperature (TP) and relative humidity (RH),

were obtained similarly. To account for other temporal trends that were not controlled by

the case-crossover design, a natural quadratic spline term (denoted by ns(·)) was used on

the TP variable.

Likelihoods: Under the case-crossover design, the conditional likelihood is given by

Lcc(β) =
1096∏
t=1

[ exp{βPM2.5PM2.5, t + βRHRHt + ns(TPt)}∑
s∈W (t) exp{βPM2.5PM2.5, s + βRHRHs + ns(TPs)}

]Yt
,(3.9)

where we used the 5-day moving average of PM2.5 concentration prior to the asthma events

on day t as PM2.5, t. The Medicaid data was also analyzed using the equivalent log-linear

model of (3.9). In particular, for a TSD with time stratum as the same day of the week in

the same calender month, we compare it with the following equivalent log-linear model

log(E(Yt)) = β0 + βPM2.5PM2.5, t + βRHRHt + ns(TPt) + St,(3.10)

where St represents all possible combinations among the three factors of day of the week,

month and year, having a total of 7× 12× 3 = 252 levels. We refer to (3.10) as the time-

stratified log-linear (TSLL) model. For inference on β, models (3.9) and (3.10) are equiv-

alent under both the frequentist and Bayesian framework (with prior specification as de-

scribed in Theorem 3.1). Similarly, a case-crossover SBD using referent times as 7 and 14
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days before and after the event day was compared to the corresponding symmetric bidirec-

tional log-linear (SBLL) model with St = log[
∑

s=t, t±7, t±14{Ys/
∑

r=s, s±7, s±14 exp(β>Xr)}].

Joint estimation of β and St was performed iteratively as St potentially depends on β. The

comparison between SBD and SBLL is pertinent only under the frequentist framework.

Prior choices: We used LTfull(β,ν) under the full likelihood approach. We first consid-

ered the random effects model assuming νt
iid∼ N(0, 102) without further prior specifi-

cation on β, and proceeded with the marginal likelihood to estimate β. Then we con-

sidered the full Bayesian treatment using Dirichlet process prior νt | G
iid∼ G where

G | α,G0 ∼ DP (α,G0). α ∼ Gamma(0.5, 0.1), G0 ∼ N(µ, σ2), µ ∼ N(0, 10)

and σ−2 ∼ Gamma(4, 1) were used as the base prior setting in our data example. As part

of our sensitivity analysis, we varied the priors on α across four Gamma distributions,

and two extreme cases when α → 0 (corresponding to νt = ν∗ for t = 1, ..., T , where

ν∗ ∼ G0) and α→∞ (corresponding to νt
iid∼ G0). More details were provided in Figure

3.2(c).

We considered both informative and non-informative priors on βPM2.5 . For nonin-

formative prior, we used a vague prior βPM2.5 ∼ N(0, 102). For informative prior, we

considered an ad-hoc way of eliciting prior information from published results. From a

recent review (Li et al. 2011), we a priori postulated that the asthma-PM2.5 association

is in general modest with a risk ratio ranging in (1.01-1.09) for 10 µgm−3 increase in

PM2.5. Assuming βPM2.5 ∼ N(µβ, σ
2
β), if we believed that the 95% confidence interval

(CI) for exp(βPM2.5) is (1.01,1.09), the approximate values for µβ and σβ can be obtained

as µβ = [log(1.09) + log(1.01)]/2 = 0.05 and σβ = [log(1.09) − log(1.01)]/4 = 0.02.

Then our informative prior was chosen as N(0.05, 0.022). There is no general consensus

on the best way to elicit a subjective prior though this topic has been studied vastly (Dey

and Liu 2007).
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While non-informative or non-subjective priors are often quite adequate as default pri-

ors for many Bayesian analyses, prior elicitation when possible can lead to more meaning-

ful results from the data. This is especially true in the presence of historical data, available

from series of past studies, e.g., past studies relating asthma-PM2.5 associations in our

context. These elicited priors based on historical data, when proper, have an operational

advantage over non-subjective improper priors. Proper priors are required for computing

Bayes factors and posterior model probabilities.

Ibrahim and Chen (2000) proposed a particular approach towards the development of

priors based on historical data. They referred to these priors as ‘power priors’. Specifically,

if D0 denotes the historical data from a previous study, the power prior for β is defined

as π(β|D0, a0, c0) ∝ La0(β|D0)π0(β|c0). Here π0(β|c0) is the initial prior before the data

D0 were observed and c0 is a specified hyperparameter. The parameter a0 ∈ [0, 1] is a

scalar parameter which controls the influence of the historical data on the current data. In

particular, a0 = 1 corresponds to the past posterior which has become the present prior.

On the other hand, a0 = 0 corresponds to a prior specification which ignores completely

the historical data. While one can do the analysis by simply assigning also a prior on a0,

we will pursue our analysis both when a0 is fixed or random, assigning Beta priors to a0 in

the latter case. If π0(β|c0) is proper, then the power prior π(β|D0, a0, c0) is guaranteed to

be proper; further, π(β|D0, a0, c0) can be proper under certain regression settings even if

π0(β|c0) is an improper uniform prior (Ibrahim and Chen 2000). We used a vague initial

prior N(0, 102) for π0(β|c0), such that the prior π(β|D0, a0, c0) is a handy proper prior.

L(β|D0) was constructed based on several published studies of asthma-PM2.5 associations

reviewed in (Li et al. 2011). Further details regarding the construction of L(β|D0) are

given in Appendix B.2.

Results: The results are shown in Table 3.3 and Figure 3.2. In general, evidence of signif-
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icant increases in acute asthma risk was found with 10 µgm−3 increase in PM2.5 concen-

trations leading to a risk ratio ranging from 1.02 to 1.06 across different methods.

(a) Design effect: Comparing TSD with SBD, β̂PM2.5 estimated under a TSD (ranging

from 1.05 to 1.06 in Table 3.3) are larger than those estimated under a SBD (from 1.02 to

1.04). The overall pattern of the attenuated effects under the SBD is probably due to the

choice of the window and potential ‘overlap bias’, though this direction does not hold in

general as noted in our simulation study.

Comparing the case-crossover TSD with corresponding TSLL model (in Table 3.3),

we noted that they provided identical numerical results for β̂PM2.5 under both frequentist

and Bayesian framework (except possible Monte Carlo errors), indicating the numerical

validity of our equivalence results. Frequentist equivalence results also appear to hold

numerically for the case-crossover SBD and the corresponding time-series SBLL.

(b) Conditional versus full likelihood: Under a case-crossover TSD, full likelihood meth-

ods provided slightly stronger effects (risk ratio ranging from 1.05 to 1.06 in Table 3.3)

than those derived using conditional likelihood (from 1.04 to 1.05). As noted in our sim-

ulation study, the violation of the constant baseline risk assumption within each window

probably led to this difference. We also fit a log-linear model adjusted for a natural cubic

spline term of time with 7 degrees of freedom per year, which shows an estimate of 1.055

(95% CI: (1.027, 1.084)) that is similar to the results using LTfull(β,ν). Under SBD, there

is no substantial difference of using full versus conditional likelihood.

Prior sensitivity: (a) Priors on βPM2.5: When a vague prior βPM2.5 ∼ N(0, 102) is used,

the Bayesian approaches yielded results that are quite similar to maximum likelihood-

based inferences (Table 3.3). It is reassuring that with modest to large sample sizes, we

observed similar results from Bayesian and frequentist methods. With a smaller sample

size using only one-year data (T = 365), even the use of non-informative prior increased
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the precision as compared to the frequentist methods. In Table 3.3, the use of informative

priors (including the ad-hoc prior 2 and the four power priors) increased the precision as

compared to the results under the vague prior. Given one historical study having relatively

larger effect (Appendix B.2), the use of power priors 2 (a0 = 1) and 4 (a0 ∼ Beta(50, 1)

with prior mean ≈ 1) provided stronger effects than those under power priors 1 (a0 = 0.5)

and 3 (a0 ∼ Beta(20, 20) with prior mean 0.5), because power priors 2 and 4 put more

weight on L(β|D0). The use of another layer of uncertainty on a0 (power priors 3 and 4)

creates a heavier tail for the marginal power prior distribution of βPM2.5 than that using a

fixed a0 (power priors 1 and 2), and thus provides wider HPD credible intervals.

(b) Priors on ν: Figure 3.2(c) shows the posterior distributions of βPM2.5 derived under

the 6 different prior settings on α, where the posterior distributions of βPM2.5 remain ro-

bust. We observed that the random effects model and the Dirichlet process prior model

provided very similar results in Table 3.3. Although the prior support allows the number

of clusters ranging from 1 to 252, we observed only 1 cluster under 4 out of the 6 prior set-

tings (shown in Appendix A.2 Table 1). The results suggested that a parametric constant

random intercept model was adequate for this data set.

(c) Priors on St: For TSLL (3.10), we considered a sensitivity analysis of prior on St in-

stead of the flat prior (∝ 1) indicated in Theorem 3.1. In particular, a Dirichlet process

prior as well as an i.i.d. normal prior N(0, 102) on S ′k was also used. Figure 3.2(d) shows

that the posterior distribution of βPM2.5 remained very similar for all these priors on S ′k.

So there is evidence that the results in Theorem 3.1 are robust with respect to prior speci-

fication on St.
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3.5 Discussion

The chapter presents two novel ideas in the context of case-crossover studies, and

it is the first treatment of the problem in a Bayesian domain. The first contribution is

to study equivalence properties in terms of obtaining identical posterior inference under

case-crossover and time-series analysis. The second and more important contribution is

to propose different forms of full likelihood and strategies for flexible semi-parametric

Bayesian estimation and inference under such likelihoods. Our numerical example and

simulation studies illustrate that the Bayesian specification has advantages in terms of

robustness to model misspecification on the baseline risks and efficiency advantages if

an informative prior is used on the risk ratio parameter. A major potential advantage for

using the full likelihood could be to include individual level data. This formulation makes

it possible to test for evidence of effect modification of exposure effect by individual level

factors, an analysis that is not feasible under a conditional likelihood formulation.

This work leads to many other potential extensions where a Bayesian analysis may

have attractive features under a case-crossover design. For example, extensions to dis-

tributed lag linear/non-linear models (Welty et al. (2009); Gasparrini et al. (2010)), hierar-

chical models for meta-analysis (e.g., Dominici et al. (2000), Dominici et al. (2002)), and

recurrent events (Luo and Sorock 2008) are natural directions to pursue.
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Figure 3.1: Temporal trend of daily counts of acute asthma events (shown as points) for the
pediatric Medicaid population in Detroit, Michigan, 2004-2006, as obtained in
the DAMAT study. The overlaying smooth curve is created by using locally
estimated scatter-plot smoother.
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(b) Posterior densities using likelihood under SBD
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(c) TSD using LTfull(β,ν) and 6 different DP priors
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(d) TSLL using 3 different priors on St

Figure 3.2: Posterior density plots for the log risk ratio parameter βPM2.5 correspond-
ing to acute asthma events for a 10 µgm−3 increase in PM2.5 based on
data from the DAMAT study, where vague prior βPM2.5 ∼ N(0, 102) was
used. Panels (a) and (b) used the base prior setting as described in section
3.4. Panels (c) and (d) varied prior choices on ν and St as a sensitivity analysis.

[Priors on ν (panel (c)): A: νt = ν∗ for t = 1, ..., 1096, where ν∗ ∼ N(0, 102); B:

νt
iid∼ N(0, 102);

G1: α ∼ Gamma(0.5, 0.1); G2: α ∼ Gamma(2, 0.2); G3:
α ∼ Gamma(10, 0.5); G4: α ∼ Gamma(20, 1).
Priors on St (panel (d)): S1: π(S′k) ∝ 1; S2: S′k

iid∼ N(0, 102); S3: S′k | G
iid∼ G,

where G | α,G0 ∼ DP (α,G0).]

[TSD: time-stratified design; SBD: symmetric bidirectional design; TSLL:
time-stratified log-linear; DP: Dirichlet process.]
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Table 3.3: Risk ratios of acute asthma events corresponding to a 10 µgm−3 increase in
PM2.5 in the DAMAT study. The model was adjusted for temperature and rela-
tive humidity.

TSDa SBDa

Frequentist MLEa 95% CIa MLE 95% CI
Conditional likelihood 1.049 (1.019, 1.080) Conditional likelihood 1.022 (0.992, 1.052)
TSLLa 1.049 (1.019, 1.080) SBLLa 1.022 (0.992, 1.052)
Full likelihood REMa(T) 1.055 (1.026, 1.085) Full likelihood REM (T) 1.020 (0.991, 1.048)

Bayesian (prior 1b) Bayesa 95% HPDa Bayes 95% HPD
Conditional likelihood 1.049 (1.021, 1.081) Conditional likelihood 1.023 (0.993, 1.053)
TSLL 1.049 (1.021, 1.081)
Full likelihood DPb(T) 1.055 (1.026, 1.086) Full likelihood DP (T) 1.020 (0.992, 1.049)

Bayesian (prior 2b) Bayes 95% HPD Bayes 95% HPD
Conditional likelihood 1.052 (1.027, 1.075) Conditional likelihood 1.035 (1.012, 1.058)
TSLL 1.052 (1.028, 1.076)
Full likelihood DP (T) 1.055 (1.030, 1.076) Full likelihood DP (T) 1.034 (1.011, 1.056)

Bayesian (power prior 1b) Bayes 95% HPD Bayes 95% HPD
Conditional likelihood 1.045 (1.024, 1.068) Conditional likelihood 1.033 (1.010, 1.059)
TSLL 1.045 (1.024, 1.068)
Full likelihood DP (T) 1.049 (1.025, 1.069) Full likelihood DP (T) 1.031 (1.008, 1.058)

Bayesian (power prior 2b) Bayes 95% HPD Bayes 95% HPD
Conditional likelihood 1.054 (1.027, 1.080) Conditional likelihood 1.040 (1.015, 1.068)
TSLL 1.054 (1.027, 1.080)
Full likelihood DP (T) 1.059 (1.036, 1.085) Full likelihood DP (T) 1.041 (1.014, 1.070)

Bayesian (power prior 3b) Bayes 95% HPD Bayes 95% HPD
Conditional likelihood 1.046 (1.018, 1.075) Conditional likelihood 1.031 (1.007, 1.063)
TSLL 1.046 (1.017, 1.074)
Full likelihood DP (T) 1.050 (1.022, 1.076) Full likelihood DP (T) 1.030 (1.005, 1.063)

Bayesian (power prior 4b) Bayes 95% HPD Bayes 95% HPD
Conditional likelihood 1.055 (1.027, 1.084) Conditional likelihood 1.041 (1.012, 1.070)
TSLL 1.055 (1.027, 1.083)
Full likelihood DP (T) 1.060 (1.030, 1.087) Full likelihood DP (T) 1.040 (1.011, 1.069)

a TSD: time-stratified design; SBD: symmetric bidirectional design; TSLL: time-stratified log-linear;
SBLL: symmetric bidirectional log-linear; REM: random effects model; MLE: maximum likelihood
estimate (penalized pseudo-likelihood for REM); CI: confidence interval; Bayes: Bayes estimates in
terms of posterior mean; HPD: highest posterior density.

b DP (T): Dirichlet process prior DP (α,G0) on ν in LTfull(β,ν) under the base prior setting described
in section 3.4; Prior 1: non-informative prior βPM2.5 ∼ N(0, 102); Prior 2: informative prior βPM2.5 ∼
N(0.05, 0.022); Power prior 1: a0 = 0.5; Power prior 2: a0 = 1.0; Power prior 3: a0 ∼ Beta(20, 20)
with mean 0.50 and variance 0.08; Power prior 4: a0 ∼ Beta(50, 1) with mean 0.98 and variance 0.02.



CHAPTER IV

The role of covariate heterogeneity in the meta-analysis of
gene-environment interactions on quantitative traits

4.1 Introduction

Genome-wide association studies (GWAS) provide tremendous opportunities for large-

scale exploration of associations between genetic variants and complex human traits. Search-

ing genetic associations based on GWAS has been successfully identifying many suscep-

tibility loci for a wide spectrum of phenotypes, e.g. type 2 diabetes (T2D) (Scott et al.

(2007), Zeggini et al. (2008), Morris et al. (2012), Saxena et al. (2013)), cardiovascular

outcomes (Psaty et al. (2009), Sarwar et al. (2012)) and breast cancer (Song et al. 2013).

Many studies have found that the risk of most complex traits are influenced by both genetic

and environmental factors. The definition of ‘environment’ can be quite broad, including

demographic factors (age, gender etc.), behavioral factors (smoking, alcohol consumption,

diet, medication use etc.), and external factors (exposure to air pollution, radio-active sub-

stances etc.). The agnostic discovery strategy of GWAS may also be used to detect gene-

environment interactions (GEI) that explain components of the unexplained heritability.

Detecting reproducible GEI can help to further characterize the genetic architecture of hu-

man traits through sub-group or joint effects (Khoury and Wacholder (2009); Mukherjee

et al. (2012)). Therefore, researchers are now looking beyond the marginal genetic ef-

fects and searching for GEI, with limited number of findings so far. For example, body

66
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mass index (BMI) and PPARG variants appear to have a synergistic effect on fasting in-

sulin levels and T2D (Manning et al. 2011); physical activity has been shown to attenuate

the effect of fat mass associated (FTO) gene variants on obesity risk (Kilpeläinen et al.

2011). The associated common variants or GEIs detected so far, typically have only small

to modest effects, warranting the need for large sample sizes and collaboration across dif-

ferent study sites for joint or meta-analysis. A number of new loci have been discovered,

as well as existing loci that were initially ambiguous from individual GWAS have been

validated, with high confidence through GWA meta-analysis (GWAMA) (e.g. Zeggini

et al. (2008), Voight et al. (2010), Morris et al. (2012)). Many consortia have been formed

to share individual level data from multiple GWAS of related traits, e.g. the DIAGRAM

(T2D) (Zeggini et al. (2008), Voight et al. (2010), Morris et al. (2012)), MAGIC (glu-

cose and insulin) (Dupuis et al. (2010), Scott et al. (2012)), CHARGE (heart and aging

research) (Psaty et al. 2009), GIANT (anthropometrics) (Speliotes et al. 2010), and Global

Lipids (Teslovich et al. 2010) GWAS consortia. There are also computationally efficient

tools to implement GWAMA (e.g. METAL (Willer et al. 2010)). While the work on the

meta-analysis of marginal genetic association effects on a binary or quantitative trait is

vast, currently there are relatively few papers that explore analytical issues associated with

meta-analysis of GEI (e.g. Manning et al. (2011), Aschard et al. (2011)).

There is a large variety of literature on meta-analytical technique for randomized clin-

ical trials that can be implemented in genetic epidemiology, e.g., the fixed-effects model

(FEM) (Whitehead and Whitehead 1991) and random-effects model (REM) (DerSimo-

nian and Laird 1986). The term FEM in the classical literature (Fleiss 1993) most often

refer to a model with fixed and common or identical effect. In general, a fixed-effects

model only requires that there are fixed and unrelated effects in each study, irrespective of

similarity of these effects across studies. However, one has to be cautious about the sci-
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entific interpretation of a standard inverse-variance weighted (IVW) estimator under the

general fixed-effects model where the corresponding parameters could vary across studies

as opposed to a single common parameters. The REM on the other hand assumes that the

parameters in each study represent random draws from a single mixing distribution. The

parameters of this mixing distribution are fit by available data. The choice of FEM versus

REM depends on whether the population of studies is limited to only the ones presented

in meta-analysis or a larger population of studies from which the current studies are a ran-

domly drawn sample. Even without the common effect assumption, assessment of effect

homogeneity may be desirable in FEM. The most commonly used test of homogeneity is

the Cochran’s Q-test (Cochran 1954). In all our subsequent discussions, we will assume a

common fixed effect model, consider estimation of the corresponding common parameter

and testing the null hypotheses that this common parameter is zero.

The joint analysis of individual patient data (IPD) from all studies is typically regarded

as the ‘gold standard’ for evidence synthesis. However, considerable time and resources

are required to share individual level data even in an existing consortium. We refer to

the joint analysis of IPD as IPD analysis (also called mega-analysis in some papers, e.g.

Lin and Zeng (2010), LZ from now on), and classify the methods that combine summary

statistics derived from analysis of different cohorts as meta-analysis. A natural question

to ask is how much efficiency gain can be achieved by analyzing IPD over meta-analysis.

Recently, LZ had considered a general multivariate inverse-variance weighted (MIVW)

estimator. MIVW estimator was shown to be asymptotically equivalent to the IPD estima-

tor, given that all the common parameters with full covariance matrix under the underlying

FEM are pooled across studies in the MIVW. However, in meta-analysis of published re-

sults, it is often difficult to obtain the full covariance matrix, while univariate summary

statistics (e.g. estimate and standard error) for the effects of interest are in general readily
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available. LZ also characterized and quantified the efficiency loss of using an univariate

IVW (UIVW) versus a MIVW estimator. The results of LZ are in a general setting but

do not target towards interactions. In this chapter, we specifically focus on the estimation

and testing of GEI parameter under a meta-analytic setting, and propose an adaptively

weighted estimator (AWE) that uses univariate summary statistics and achieves the same

asymptotic efficiency as IPD or MIVW estimator.

Another pragmatic question to ask is whether we can detect GEI from summary statis-

tics obtained from previously conducted genome-wide meta-analysis of marginal genetic

effects, without the knowledge of IPD. Meta-regression (MR) is a regression-based tech-

nique to investigate whether some particular study-level covariates explain heterogeneity

among effect estimates from multiple studies. Many studies (e.g., Simmonds and Hig-

gins (2007), SH from now on; Kovalchik (2013)) have compared aggregate data analysis

(e.g. MR) with IPD analysis to detect treatment-covariate interactions for randomized

clinical trials (analogous to gene-environment interactions in our case). SH showed that,

under the three methods of IPD, UIVW and MR, analytical power formula to detect in-

teractions can be expressed in terms of total, within and between study sum of squares

corresponding to the covariate under certain natural assumptions. In absence of IPD, SH

recommended using UIVW versus MR if the within study heterogeneity exceeds between

study heterogeneity in covariates and vice versa. We borrow from their work to derive

similar analytical expressions for testing GEI.

The novel adaptively weighted estimator (AWE), instead of a discrete choice of UIVW

versus MR, combines UIVW and MR to archive the same asymptotic efficiency as the

IPD estimator under certain conditions. The AWE has some advantages over the MIVW

estimator: (1) AWE requires only univariate summary statistics from each study (study-

specific estimate and standard error for the marginal association of G and GEI parameter,
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and study-level mean of E); and (2) when the effect of G or E are uncommon across

studies, or when covariate E is centered (very common in interaction models), MIVW

will lose precision but AWE is robust to these situations.

The rest of the chapter is organized as follows. In the methods section we describe

different strategies for meta-analysis of GEI, followed by analytical results on bias, vari-

ance and power properties of these estimators. A comprehensive simulation study was

performed to assess the performance of the meta-analysis methods under a variety of sce-

narios. We primarily explore the issue of covariate heterogeneity, but also explore sev-

eral other important factors that could potentially affect the relative performance of these

methods: (1) departures from gene-environment (GE) independence; (2) heterogeneity in

minor allele frequencies (MAFs) across cohorts; (3) lack of a common set of confounders

to adjust for in individual studies; (4) misspecification of the genetic susceptibility model

(dominant/co-dominant/additive); and finally (5) the presence of a non-linear form of in-

teraction. In the results section, we report simulation findings followed by an illustrative

example, where we examine whether Single Nucleotide Polymorphisms (SNPs) in FTO

gene modify the effect of environmental factors (age and BMI) on high-density lipopro-

tein cholesterol (HDL-C) levels, a T2D related quantitative trait. We hope this chapter to

provide useful insight and guidelines while conducting meta-analysis of GEI.

4.2 Methods

4.2.1 Detecting GEI via meta-analysis

Consider a quantitative trait Y , a continuous environmental exposureE and a bi-allelic

genetic locus G with genotypes of AA, Aa and aa, where A is the minor allele. Suppose

that there are K independent studies and a total of N participants, with nk participants

in the k-th study, k = 1, ..., K,
∑K

k=1 nk = N . Let Yki, Eki and Gki be the pheno-
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type, environmental exposure and genotype for participant i in study k respectively, for

i = 1, ..., nk, k = 1, ..., K. We consider the possibility of adjusting for demographic co-

variates/confounders Z in the model. The true model for individual responses follows the

FEM

(4.1) Yki = αk+βGGki+βEEki+δGkiEki+β
>
ZZki+εki, i = 1, ..., nk, k = 1, ..., K,

where αk is the study specific intercept, βG and βE are the main effects corresponding to

the genetic factor and environmental exposure respectively, δ is the GEI effect of interest,

and βZ is the effect of covariates Z. β = (βG, βE, δ,βZ) is assumed to be fixed and

common across studies under model (4.1). We will further discuss certain situations where

the ‘common’ effect assumption can be relaxed in later sections. The random errors εki’s

were assumed as εki ∼ N(0, σ2
k). Various susceptibility models including dominant model

(G = 1 if AA and Aa; G = 0 if aa), recessive model (G = 1 if AA; G = 0 if Aa and

aa), additive model (G = 2 if AA; G = 1 if Aa; G = 0 if aa) and co-dominant model

(G = AA,Aa or aa with aa as the reference level) are considered. For co-dominant

models, βG = (βAaG , βAAG ) and δ = (δAa, δAA) in model (4.1), corresponding to genotypes

Aa and AA respectively.

We first describe three traditional approaches to detect GEI under model (4.1) but

without Z to simplify the presentation, including IPD analysis, standard meta-analysis

(using UIVW or MIVW), and MR. For the sake of completeness, we also describe REM

meta-analysis as well as a two-step estimator previously suggested by SH. We then propose

an AWE that combines UIVW and MR estimator, which is shown to be an unbiased and

fully efficient estimator as the IPD estimator under certain plausible assumptions, but using

only univariate summary statistics.
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Existing methods

(i) Individual patient data analysis: The IPD analysis fits model (4.1) using the individ-

ual level data. The weighted least square (WLS) method can be used to deal with the

heterogeneous σ2
k across studies. Instead, for our IPD analysis, we assume σ2

k = σ2 for

k = 1, ..., K. Let X be the design matrix and Y be the response in model (4.1). The

maximum likelihood estimate (MLE) of δ under linear regression model (4.1) (denote as

δ̂IPD) can be obtained through the corresponding element of (X>X)−1X>Y , and its es-

timated variance v̂(δ̂IPD) can be obtained through the corresponding diagonal element of

(X>X)−1σ̂2. Throughout this chapter, we use the generic notation v(δ̂) for the asymp-

totic model based variance (covariance matrix for multivariate δ̂) of any given estimator

δ̂, and v̂(δ̂) for the corresponding estimated variance. We will present some simplified

expressions for v̂(δ̂) under specific structures ofX>X in section 4.2.2.

(ii) Meta-analysis using inverse-variance weighted estimator: Since the data required

to perform IPD analysis are often not available in published results, meta-analysis that

combines summary statistics from individual studies may be what is practically feasible.

We consider some variants of IVW estimator under the FEM (4.1).

(ii.A) UIVW: A UIVW estimator needs the collection of the MLEs δ̂k and v̂(δ̂k) estimated

from model (4.1) using data from only study k. A FEM assumes that δ̂k
iid∼ N(δ,v(δ̂k)),

where v(δ̂k) is the model based asymptotic variance of δ̂k. Let Xk be the design matrix

andY k be the response of study k. δ̂k and v̂(δ̂k) can be obtained through the corresponding

element of (X>kXk)
−1X>k Y k and (X>kXk)

−1σ̂2
k respectively. Then the UIVW estimator

under a FEM is given by

δ̂UIVW =
{∑

k

v̂(δ̂k)
−1
}−1

∑
k

v̂(δ̂k)
−1δ̂k with variance v̂(δ̂UIVW) =

{∑
k

v̂(δ̂k)
−1
}−1

.

The validity of the method requires certain ‘standard condition’, namely: for a large study
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k, δ̂k is asymptotically normal δ̂k
iid∼ N(δ,v(δ̂k)) and the true asymptotic variance v(δ̂k)

can be estimated by v̂(δ̂k) with negligible error (Whitehead and Whitehead 1991). We

refer to the condition as ‘standard’ throughout, and we note that it is often implicitly

assumed to hold in classic meta-analysis literature (e.g., DerSimonian and Laird (1986),

Whitehead and Whitehead (1991), LZ).

(ii.B) MIVW: Let β̂k = (β̂Gk, β̂Ek, δ̂k) be the MLE of β from study k with estimated vari-

ance v̂(β̂k) obtained through the corresponding sub-matrix of (X>kXk)
−1σ̂2

k. When both

β̂k and v̂(β̂k) are available from each study, we consider the MIVW estimator following

LZ,

β̂
MIVW

=
{∑

k

v̂(β̂k)
−1
}−1

∑
k

v̂(β̂k)
−1β̂k with variance v̂(β̂

MIVW
) =

{∑
k

v̂(β̂k)
−1
}−1

.

Then δ̂MIVW and v̂(δ̂MIVW) corresponding to the interaction parameter δ can be obtained

from the corresponding element of β̂
MIVW

and v̂(β̂
MIVW

) respectively. LZ showed that

δ̂MIVW has full asymptotic efficiency as δ̂IPD under a FEM. However, v̂(β̂k) may be diffi-

cult to acquire in meta-analysis of published results, and δ̂UIVW is the one most commonly

used.

(ii.C) REM: Alternatively, if the set of studies are considered to be a random sample from

the population of studies, one can use a REM assuming δ̂k|δk
iid∼ N(δk,v(δ̂k)), where

δk|δ, τ 2 ∼ N(δ, τ 2) and v(δ̂k) is the same asymptotic variance used in UIVW. Following

DerSimonian and Laird (1986),

δ̂REM =
[∑

k

{
τ̂ 2 + v̂(δ̂k)

}−1]−1[∑
k

{
τ̂ 2 + v̂(δ̂k)

}−1
δ̂k
]
,

v̂(δ̂REM) =
[∑

k

{
τ̂ 2 + v̂(δ̂k)

}−1]−1
,

where τ̂ 2 = max
[
0, Q−(K−1)∑

k v̂(δ̂k)−1−{
∑
k v̂(δ̂k)−2/

∑
k v̂(δ̂k)−1}

]
. Here Q =

∑
k v̂(δ̂k)

−1(δ̂UIVW −

δ̂k)
2 is the Cochran’s Q statistic (Cochran (1954)) used to test homogeneity of δk, i.e.,

H0 : δ1 = δ2 = · · · = δK . Note that, if τ̂ 2 = 0, δ̂REM = δ̂UIVW and v̂(δ̂REM) = v̂(δ̂UIVW).
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(iii) Meta-regression: The IPD model (4.1) implies that the marginal genetic effect de-

pends linearly on E. We consider a linear MR model to reveal the underlying depen-

dence between the marginal genetic effects and the study mean values of E (say mk =∑
iEki/nk). Screening for the marginal effect of G is routinely performed as the first step

in GWA analysis. For each study k, we first consider the marginal genetic association

model

(4.2) Yki = λ0k + λkGki + ηki, i = 1, ..., nk.

where the errors ηki ∼ N(0, σ2
ηk). At the second step, the MLE λ̂k is regressed on mk

through the MR model

(4.3) λ̂k = γ0 + γmk + νk, k = 1, ..., K.

Denote v̂(λ̂k) as the model based variance estimated from (4.2). To account for the poten-

tial heterogeneity in v̂(λ̂k) across studies, we consider the WLS estimator of γ (denoted as

δ̂MR) in model (4.3) with weightwk = v̂(λ̂k)
−1 assumed as known, i.e., νk ∼ N(0, v̂(λ̂k)).

Let m = (
∑

k wkmk)/(
∑

k wk), δ̂MR and v̂(δ̂MR) can be derived as

δ̂MR = {
∑
k

wk(mk −m)2}−1{
∑
k

wk(mk −m)λ̂k},

v̂(δ̂MR) = {
∑
k

wk(mk −m)2}−1.

The advantage of MR approach is that one can identify GEI with only limited summary

data on E (only the mean mk’s) and published results of marginal genetic effects (λ̂k and

v̂(λ̂k)).

(iv) Two-stage estimator: Let m =
∑

k, i Eki/N denote the overall sample mean of E,

s2
E = N−1

∑
k, i(Eki−m)2 denote the total sample variance ofE, and s2

Ek = n−1
k

∑nk
i=1(Eki−

mk)
2 denote the sample variance of E within the k-th study. Denote the population pa-

rameters for m, mk, s2
E , s2

Ek as µ, µk, σ2
E , σ2

Ek respectively. We make the usual par-
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tition of the total sum of squares (TSS) of E as the sum of the within-study sum of

squares (WSS) and between-study sum of squares (BSS), i.e., TSS = WSS + BSS,

where TSS =
∑

k, i(Eki −m)2 = Ns2
E , WSS =

∑
k

∑
i(Eki −mk)

2 =
∑

k nks
2
Ek and

BSS =
∑

k nk(mk −m)2. Throughout this chapter, we assume nk/N → rk ∈ (0, 1) as

N →∞. Consider the estimands tss = σ2
E , wss =

∑
k rkσ

2
Ek and bss =

∑
k rk(µk−µ)2.

We have TSS/N
p→ tss, WSS/N

p→ wss, BSS/N
p→ bss, as N →∞.

Inspired by our analytical result (shown later in section 4.2.2) that the asymptotic rel-

ative efficiency (ARE) between δ̂MR and δ̂UIVW is bss/wss, we define QE = BSS/WSS

as a statistic for measuring heterogeneity of E between studies relative to the within study

heterogeneity, and consider a two-stage approach

δ̂TS =

 δ̂UIVW, if QE ≤ 1;

δ̂MR, if QE > 1,

i.e., using δ̂UIVW instead of δ̂MR if WSS ≥ BSS and vice versa. This is an ad-hoc

procedure of discretely determining which method to use. QE is one of the two-stage test

statistics suggested in SH.

Adaptively weighted estimator

We note that, using only summary statistics, both δ̂UIVW and δ̂MR can potentially

lack precision. Moreover, δ̂MR can be subject to significant ecological bias (Morgenstern

(1982), Greenland (1987), Schwartz (1994), Berlin et al. (2002)). Thus, we propose an

adaptive estimator that combines δ̂UIVW and δ̂MR to improve efficiency. We first prove the

following lemma.

Lemma 1. Let Yi be independent random variables with equal variance, for i = 1, ..., n,

and let Xj = (X1j, ..., Xnj)
> be the j-th predictor, j = 1, ..., p+ q. Let ζ̂j (j = 1, ..., p)

and θ̂j (j = 1, ..., p+ q) be the MLEs of the parameters under the two nested linear
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regression models

Yi = ζ0 +

p∑
j=1

ζjXij + ηi and Yi = θ0 +

p+q∑
j=1

θjXij + εi,

then ζ̂ = (ζ̂1, ..., ζ̂p) and θ̂2 = (θ̂p+1, ..., θ̂p+q) are asymptotically independent.

Proof of Lemma 1 is presented in Appendix B.3. The notations used in Lemma 1 are

generic and unrelated to the ones defined elsewhere in this chapter. Applying Lemma 1 to

model (4.1) and (4.2), the marginal genetic association λ̂k and GEI δ̂k are asymptotically

independent for each study k, as they are coming from two nested linear regression models.

Note that δ̂UIVW is a linear combination of δ̂k, and that δ̂MR is a linear combination of λ̂k,

then the following corollary holds.

Corollary 4.1. δ̂UIVW and δ̂MR are asymptotically independent.

Borrowing the classic idea of an IVW estimator along with the standard condition, we

propose an AWE of the form

δ̂AWE = {v̂(δ̂UIVW)−1 + v̂(δ̂MR)−1}−1{v̂(δ̂UIVW)−1δ̂UIVW + v̂(δ̂MR)−1δ̂MR},

which combines δ̂UIVW and δ̂MR using the inverse-variances as weights. In order to calcu-

late δ̂AWE, summary statistics of study-specific effect estimates (δ̂k, v̂(δ̂k), λ̂k and v̂(λ̂k))

and study-level covariate means mk are needed from each study k. The intuitive ratio-

nale behind the AWE is that, when v̂(δ̂UIVW) is relatively smaller than v̂(δ̂MR), δ̂AWE puts

more weight on δ̂UIVW and vice versa. The estimated weights can be translated in terms of

the ratio of WSS versus BSS as presented in section 4.2.2. Theorem 4.1 establishes that

with this particular choice of weights, δ̂AWE has the maximal precision within the class of

weighted estimators of the form δ̂AWE(w) = wδ̂UIVW + (1− w)δ̂MR, 0 ≤ w ≤ 1.
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Theorem 4.1. For the class of weighted estimators δ̂AWE(w) = wδ̂UIVW + (1− w)δ̂MR,

0 ≤ w ≤ 1, v(δ̂AWE(w))−1 attains its maximum at v(δ̂UIVW)−1 + v(δ̂MR)−1 if and only if

the weight w = v(δ̂MR)/{v(δ̂UIVW) + v(δ̂MR)}.

Proof of Theorem 4.1 is presented in Appendix B.3. A consequence of Theorem 4.1 is that

the precision of δ̂AWE is the sum of the precisions of δ̂UIVW and δ̂MR. Under the standard

condition, v̂(δ̂AWE)−1 = v̂(δ̂UIVW)−1 + v̂(δ̂MR)−1. We will further show that δ̂AWE is fully

efficient as δ̂IPD under certain natural assumptions described in section 4.2.2.

Remark 4.1: Co-dominant model. For the co-dominant model that δ = (δAa, δAA), it is

straightforward to modify the proposed methods to their bivariate counterparts. In par-

ticular, δ̂
IPD

and v̂(δ̂
IPD

) can be obtained from (4.1); δ̂
UIVW

and v̂(δ̂
UIVW

) can be ob-

tained as
{∑

k v̂(δ̂k)
−1
}−1∑

k v̂(δ̂k)
−1δ̂k and

{∑
k v̂(δ̂k)

−1
}−1; δ̂

MIVW
and v̂(δ̂

MIVW
)

can be obtained from β̂
MIVW

and v̂(β̂
MIVW

); MR model can be modified as a multi-

ple response regression λ̂k = γ0 + γmk + νk, where λ̂k = (λ̂Aak , λ̂AAk )> and νk
iid∼

N(0, v̂(λ̂k)). Corollary 4.1 and Theorem 4.1 also hold following Lemma 1 for bivariate

δ. A bivariate form of AWE can be considered as δ̂
AWE

= {v̂(δ̂
UIVW

)−1 + v̂(δ̂
MR

)−1}−1

{v̂(δ̂
UIVW

)−1δ̂
UIVW

+ v̂(δ̂
MR

)−1δ̂
MR
}.

4.2.2 Analytical results

This section shows the analytical results regarding bias, variance and power to provide

theoretical support for the proposed methods described in section 4.2.1.

Bias

Following classic linear regression and meta-analysis results, δ̂IPD, δ̂UIVW, δ̂REM and

δ̂MIVW are all asymptotically unbiased estimators of δ. However, δ̂MR is not necessarily

unbiased for δ in general. The relationship between the marginal effect of G and the

study-specific meansmk may differ from the underlying relationship between the marginal
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effect of G and individual level data for E. This phenomenon was termed as ‘ecological

bias’ or ‘ecological fallacy’, and well characterized in the literature (Morgenstern (1982),

Greenland (1987), Schwartz (1994)). However, we note that δ̂MR is an unbiased estimator

of δ under the following GE independence assumption. We use the generic notation P (·)

to denote the distribution of a random variable.

Assumption 4.1. P (G,E| study = k) = P (G| study = k)P (E| study = k), for

k = 1, ..., K, i.e., G and E are independent within each study.

Proposition 4.1. Under assumption 4.1, δ̂MR of model (4.3) is asymptotically unbiased

for δ.

Proof of Proposition 4.1 is presented in Appendix B.3. Proposition 4.1 holds for dominant,

recessive, additive and co-dominant genetic susceptibility models. If the independence as-

sumption is relaxed, a slightly more complex MR model can lead to an unbiased estimator

of δ under each susceptibility model (shown in Appendix B.3). Our simulation study

shows that the bias of δ̂MR is not to a level of practical concern under the current setting of

a linear interaction betweenG and continuousE, even when there is evidence of departure

from GE independence. Therefore, we focus on model (4.3) in order to demonstrate our

results under a global and simple MR model for all the susceptibility models regardless of

GE dependence.

Remark 4.2: Bias of δ̂MR in terms of tss/bss. Without assumption 4.1, we showed (un-

der certain assumptions in Appendix B.3) that the limiting value of the bias of δ̂MR is

proportional to the ratio tss/bss and the correlation between G and E. If the correlations

within each study is 0, then E(δ̂MR)− δ p→ 0. If assumption 4.1 holds, δ̂AWE is an asymp-

totically unbiased estimator of δ under the standard condition, as both components are

unbiased. Moreover, we showed later that the limiting value of the weight corresponding
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to δ̂MR in δ̂AWE is bss/tss. So δ̂AWE adaptively puts less weight on δ̂MR when the bias of

δ̂MR increases.

Variance

Explicit variance formulae v̂(δ̂) as well as the corresponding asymptotic variance v(δ̂)

for each estimator was derived under GE independence assumption (shown in Appendix

B.3). Because the simple linear regression likelihood
∏

k,i P (Yki|Gki, Eki) corresponding

to model (4.1) does not use any assumptions about the joint stochastic distribution of G

and E, the role of the GE independence assumption in this chapter is only to provide the

explicit variance expression. This is different from case-control studies where assuming

GE independence and using the retrospective likelihood leads to huge gain in efficiency

(Piegorsch et al. (1994), Umbach and Weinberg (1997), Chatterjee and Carroll (2005)).

In this section, we assume σ2
k = σ2 for k = 1, ..., K, and consider a dominant sus-

ceptibility model for stating Theorems 4.2 and 4.3. We discuss extension to additive and

co-dominant models later in this section. Let G = 1 (G = 0) indicate whether an individ-

ual is a carrier (non-carrier) of the minor allele A, and let pk denote P (G = 1| study = k)

the carrier frequencies in study k, k = 1, · · · , K.

Theorem 4.2. Under assumption 4.1,

v(δ̂IPD)−1 ≥ v(δ̂UIVW)−1 + v(δ̂MR)−1 = v(δ̂AWE)−1. The equality holds if and only if

pk = p, for k = 1, 2, ..., K, where p is the common carrier frequencies across all studies.

Proof of Theorem 4.2 is shown in Appendix B.3. Under assumption 4.1, the precision of

δ̂IPD is in general greater than that of δ̂AWE. However, under the additional assumption of

homogeneity of the MAFs, we have v(δ̂IPD) = v(δ̂AWE). We call this assumption 4.2.

Assumption 4.2. The MAFs corresponding to the susceptible SNP are constant across all

studies, i.e. pk = p, for k = 1, 2, ..., K.
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Theorem 4.3. Under assumptions 4.1 and 4.2,

v(δ̂IPD)−1 = v(δ̂AWE)−1 = v(δ̂UIVW)−1 + v(δ̂MR)−1, where

v(δ̂UIVW) = {Np(1− p)wss}−1σ2, v(δ̂MR) = {Np(1− p)bss}−1σ2 and

v(δ̂IPD) = v(δ̂AWE) = {Np(1− p)tss}−1σ2.

Proof of Theorem 4.3 is shown in Appendix B.3. Following Theorem 4.3, the asymp-

totic model based variances v(δ̂IPD),v(δ̂UIVW), v(δ̂MR) and v(δ̂AWE) are all translated in

terms of covariate heterogeneity of E. ARE between δ̂UIVW (δ̂MR) and δ̂IPD is wss/tss

(bss/tss). v(δ̂UIVW) ≤ v(δ̂MR), if wss ≥ bss, and vice versa. For the extreme case,

when there is no between-study heterogeneity in the study means of E (i.e. µk = µ),

v(δ̂UIVW) = v(δ̂IPD); in contrast, if all σ2
Ek = 0 (i.e. E is constant within each study),

v(δ̂MR) = v(δ̂IPD). This result is consistent with LZ, as their equality condition for

v(δ̂UIVW) = v(δ̂IPD) reduces to µk = µ in our case.

The limiting weight of δ̂AWE can be simplified asw = v(δ̂MR)/{v(δ̂UIVW)+v(δ̂MR)} =

bss−1/{wss−1 + bss−1} = wss/tss. Since WSS/TSS
p→ wss/tss and BSS/TSS

p→

bss/tss, as N → ∞, we can use the estimated weights WSS/TSS and BSS/TSS in

δ̂AWE, which leads to

δ̂AWE =
WSS

TSS
δ̂UIVW +

BSS

TSS
δ̂MR.

δ̂AWE adaptively captured the precision trade-off between the two estimators: δ̂AWE puts

more weight on δ̂UIVW if WSS is relatively larger than BSS, and vice versa. In summary,

under assumptions 4.1 and 4.2, δ̂AWE is consistent, unbiased, and asymptotically fully ef-

ficient estimator, which uses only univariate summary statistics without the knowledge of

the original IPD. The operating characteristics for the proposed meta-analytic methods are

summarized in Table 4.1. When assumption 4.1 or 4.2 is relaxed, the statements in Theo-

rems 4.2 and 4.3 are numerically evaluated through a comprehensive simulation study.
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Remark 4.3: Additive and co-dominant models. Following LZ, asymptotically v̂(δ̂UIVW) ≥

v̂(δ̂IPD) = v̂(δ̂MIVW). One sufficient condition for the equality is mk = m, i.e., when δ̂MR

undefined. In general, we have difficulties to show the analytical results of δ̂AWE in The-

orems 4.2 and 4.3 for additive and co-dominant models, though we can directly translate

Theorems 4.2 and 4.3 for δAa and δAA respectively under a co-dominant model if we use

diag(v̂(λ̂Aak ), v̂(λ̂AAk )) for v̂(λ̂k) in the MR model, i.e., two separated MRs. The state-

ments in Theorems 4.2 and 4.3 are numerically evaluated for additive and co-dominant

models through comprehensive simulation studies with/without assumption 4.1 and 4.2.

Remark 4.4: Centering of covariate E. Centering is often made for continuous E to fa-

cilitate the interpretation of βG as the main effect of G at the mean value of E. Under a

meta-analysis set-up, it is natural to consider each study k has E centered at study specific

mean mk and fit the model Yki = α′k + β′GGki + β′EE
′

ki + δ′GkiE
′

ki + εki, i = 1, ..., nk,

where E ′ki = Eki − mk. When the IPD are available, it is natural to consider that E is

centered at the overall mean m (an IPD analysis using data centered at study mean mk

for each study is not valid) and fit the model Yki = α?k + β?GGki + β?EE
?
ki + δ?GkiE

?
ki +

εki, i = 1, ..., nk, k = 1, ..., K, where E?
ki = Eki − m. In this new parametrization,

we have (β′E, δ
′) = (βE, δ) and β′G = βG + mkδ depending on k, denoted as β′Gk;

(β?E, δ
?) = (βE, δ) and β?G = βG + mδ?. It is clear that δ̂IPD, δ̂UIVW, δ̂REM, δ̂MR

and δ̂AWE remain invariant with centered E since δ′ = δ? = δ. Thus, results anal-

ogous to Theorems 4.1-4.3 concerning δ̂IPD, δ̂UIVW, δ̂MR and δ̂AWE also hold for the

centered models. However, results corresponding to δ̂MIVW need to be modified. De-

note δ̂MIVW′ as the MIVW estimator obtained by pooling (β′Gk, β
′
E, δ

′) with 3×3 covari-

ance matrix and denote δ̂MIVW2′ as the MIVW estimator obtained by pooling the two

common effects (β′E, δ
′) with 2×2 covariance matrix from the centered model. We can

show that v(δ̂UIVW) ≥ v(δ̂MIVW2′) = v(δ̂MIVW′) ≥ v(δ̂IPD) (in Appendix B.3). These
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results are consistent with LZ, as the true model has three common fixed-effects and

there is efficiency loss by pooling a subset of the common parameters. For the centered

model, the MIVW estimator is not fully efficient. A solution is to consider an alterna-

tive AWE as δ̂AWE2′ = {v(δ̂MR)δ̂MIVW2′ + v(δ̂MIVW2′)δ̂MR}/{v(δ̂MIVW2′) + v(δ̂MR)}.

Under assumption 4.1, we have (shown in Appendix B.3) v(δ̂IPD)−1 = v(δ̂AWE2′)−1 =

v(δ̂MIVW2′)−1 + v(δ̂MR)−1 ≥ v(δ̂UIVW)−1 + v(δ̂MR)−1 = v(δ̂AWE)−1. The equality holds

if and only if pk = p, for k = 1, 2, ..., K. So δ̂AWE2′ is fully efficient under assumption

4.1.

Remark 4.5: Fixed and uncommon parameters (βGk, βEk). When the uncommon param-

eters (βGk, βEk) and a common δ are considered in the true IPD model (4.1), it is clear that

results regarding UIVW and MR still hold as they focus only on the common parameter

δ (MR model (4.3) needs to be changed as λ̂k = γ0k + γmk + νk). However, according

to discussion in Remark 4.4, δ̂MIVW would lose precision since (βGk, βEk) are uncom-

mon across studies. Actually, v(δ̂MIVW) = v(δ̂UIVW) in this case. Moreover, we have

v(δ̂AWE) < v(δ̂MIVW) since δ̂AWE has the sum of the precision of δ̂UIVW and δ̂MR, when

the effect of G or E are uncommon across studies.

Power

For dominant and additive models, we consider the Wald-type test statistic T = v̂(δ̂)−
1
2 δ̂

for testing the null hypothesis H0: δ = 0 against H1: δ 6= 0. The power to detect an effect

size δ∗ at level α is approximately Pw(δ̂, δ∗) = Φ(−zα
2

+v̂(δ̂)−
1
2 δ∗)+Φ(−zα

2
−v̂(δ̂)−

1
2 δ∗),

where Φ is the cumulative distribution function (CDF) of a standard normal variable z and

zα
2

is the corresponding α
2

th upper percentile. For co-dominant models, we consider a

joint Wald test statistic T = δ̂
>
v̂(δ̂)−1δ̂

H0∼ χ2
2 for testing H0: δ = 0 against H1: δ 6= 0,

where χ2
2 is a Chi-square distribution with two degrees of freedom. The power is ap-
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proximately Pw(δ̂, δ∗) = 1 − Φχ2
2
(χ2

2,α − δ∗>v̂(δ̂)−1δ∗), where Φχ2
2

is the CDF for a χ2
2

distributed random variable and χ2
2,α is the corresponding α th upper percentile.

The power function Pw(δ̂, δ∗) for a given δ∗, or simply Pw(δ̂), is strict decreasing

function of the variance v̂(δ̂). Thus, the results regarding variances in Theorems 4.1-4.3

can be directly translated in terms of power.

4.3 A simulation study

In the simulation study, we considered a continuousE and a bi-allelicGwith genotype

of AA, Aa and aa. In order to study the role of GE independence (assumption 4.1) and

homogeneity in MAFs across cohorts (assumption 4.2), we considered P (G,E) under

four different settings, which reflect (a) both assumptions 4.1 and 4.2 hold; (b) assumption

4.1 holds but not 4.2; (c) assumption 4.2 holds but not 1; (d) neither assumption 4.1 nor

2 holds. To study the role of covariate heterogeneity in E, we considered both cases that

wss is greater or smaller than bss for a fixed value of tss. The details of generating the

gene environment data pair (Gki, Eki) for the i-th subject in the k-th study are described

in Appendix B.3. Given (Gki, Eki), we generated the continuous trait Yki under the IPD

model (4.1), where the study specific intercepts were sampled from αk
iid∼ U(1.3, 1.5),

the true effect sizes (β∗E, β
∗
G, δ

∗) are determined such that E, G and GEI explain 10%,

1% and 0-1% of the total variation in Y respectively, in terms of partial R2. The random

residuals follow a N(0, σ2
k) distribution. The choice of σ2

k leads to a marginal distribution

of Y ∼ N(1.4, 0.42). The choice of U(1.3, 1.5) and N(1.4, 0.42) are motivated by the

distribution of HDL-C (mmol/l) in our T2D data set. We generated K = 20 studies

with different sample sizes involving a total of N = 10, 000 participants (nk = 200, for

k = 1, ..., 6; nk = 400, for k = 7, ..., 11; nk = 500, for k = 12, ..., 17; n18 = 800;

n19 = 1000; n20 = 2000).
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We calculated δ̂ and v̂(δ̂) corresponding to each proposed estimator, including δ̂IPD,

δ̂UIVW, δ̂REM, δ̂MIVW, δ̂MR, δ̂TS and δ̂AWE. We carried out R = 1, 000 replications under

each setting, and summarized the results in terms of relative bias (RB = ( 1
R

∑R
r=1 δ̂(r) −

δ∗)/δ∗ × 100%), mean of model based variance v̂(δ̂) (MV = 1
R

∑R
r=1 v̂(δ̂(r))), empirical

variance (EV = 1
R−1

∑R
r=1(δ̂(r)− δ̂(r))

2), mean squared error (MSE = 1
R

∑R
r=1(δ̂(r)−δ∗)2)

and power (the proportion of simulations that reject the null hypothesis using the Wald test

for H0 : δ = 0). When the data is generated under the null, this proportion reduces to an

empirical estimate of the Type-I error.

Lack of common set of confounders to adjust in each study: We then considered the

situation where there exists additional explanatory variables Z in the true IPD model

Yki = αk + βGGki + βEEki + δGkiEki + β>ZZki + εki. We consider Z = (Z1, Z2, Z3)

mimicking typical covariates like (age, gender, race). In particular, age (Z1) is continu-

ous and associated with E, gender (Z2) is binary and independent of both (G,E), race

(Z3) is a 3-level categorical variable and associated with both (G,E), and the true effect

size β∗Z is determined such that the Type-III partial R2 corresponding to (Z1, Z2, Z3) is

(2%, 1%, 1%) respectively. Let Zk be the set of covariates for the k-th study. We con-

sider an analysis where Zk is only partially available from individual studies, and refer to

this situation as ‘lack of common set of confounders to adjust’. In particular, we consider

Zk = (Z1
k , Z

2
k , Z

3
k) for k = 1, 2, 3; Zk = (Z1

k , Z
2
k) for k = 4, 5, 6; Zk = (Z1

k , Z
3
k) for

k = 7, 8, 9; Zk = (Z2
k , Z

3
k) for k = 10, 11, 12; Zk = Z1

k for k = 13, 14; Zk = Z2
k for

k = 15, 16; Zk = Z3
k for k = 17, 18; No Zk for k = 19, 20. For IPD analysis without

any imputation of covariates, one can only obtain an IPD estimator based on the common

subset of variables available across all studies, which reduces to an unadjusted model in

our setting. We considered it as a naive IPD estimator (δ̂NIPD), and compared it to the

true gold standard IPD estimator (δ̂IPD) as well as to the other estimators. For the meta-



85

analysis, we obtained δ̂UIVW, δ̂MIVW and δ̂REM from the k-th study model adjusted for

Zk, for k = 1, ..., K. For MR, we adjusted Zk at the first stage in the marginal genetic

association model, and regressed the MLEs of adjusted effects of G on mk.

Non-linear GEI model: We consider a non-linear GEI model where the phenotype-genotype

association parameter βG(E) varies withE through a sigmoid function βG(E) = 2 exp(E − 50)

/{1 + exp(E − 50)} + 2, as shown in Figure 4.1. In this case, βG(E) changes at differ-

ent rates on different ranges of E (sharper around the mean value of E but relatively flat

at more extreme values of E), which leads to non-linear interaction. In Figure 4.1, most

studies only contribute to a restricted range of E, leading to heterogeneity of individual

interaction estimates across studies. In this case, meta-analysis with a misspecified linear

interaction model might fail to detect interaction. In the simulation study, we generated

K = 20 studies, where 4 studies have relatively larger within study variability (studies

5, 10, 11, 15 in Figures 4.1 and 4.2) as compared to the other 16 studies. The complete

description of nk, mk and σEk for the 20 studies are given in Figures 4.1 and 4.2. We

generated Y through the non-linear interaction model Yki = αk+βG(Eki)Gki+εki, where

εki
iid∼ N(0, σ2

k). The within study relationship βG(E) are substantially different across

studies. The effect heterogeneity and non-linearity might influence the relative perfor-

mance of the proposed methods where a linear form of interaction is assumed. Therefore,

we evaluated the robustness of the proposed meta-analysis estimators under this non-linear

GEI model.

Simulation results

Comparison of methods: The relative performances of the methods are very similar

across all susceptibility models and under all four settings, among which we only present

the most general setting (d), where the data are generated without either assumption 4.1
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or 2. In the main text, we compare the proposed methods in terms of power using the

Wald test. In Figure 4.3, we observed three groups among the proposed methods: IPD,

UIVW, REM, MIVW, MR, TS and AWE. Group 1: IPD, MIVW and AWE; group 2:

UIVW, REM; group 3: MR. As expected, group 1 has the most powerful tests, which is

consistent with LZ and our analytical results; group 2 is more powerful than group 3 if

QE < 1, and vice versa. TS performs similarly as the better group between groups 2 and

3. Pw(δ̂UIVW) is slightly greater than Pw(δ̂REM) since the underlying model is FEM. The

empirical estimates of Type-I error are close to the true 0.05 level for all tests under all

three susceptibility models and all four settings. Power curves under settings (a)-(c) are

given in Appendix A.3, where similar results were shown. Additional simulation results

for RB, MV, EV and MSE are given in the Appendix A.3.

Covariate heterogeneity in E: We observed that the ARE between δ̂UIVW (δ̂MR) and δ̂IPD

can be well characterized in terms ofwss/tss (bss/tss) respectively. We found that δ̂UIVW

was more efficient than δ̂MR if wss > bss, and vice versa. The precision trade-off is

captured well by the adaptively determined weights in δ̂AWE. We observed that δ̂AWE is

more efficient than the usual meta-analytic estimators δ̂UIVW, δ̂REM, δ̂MR or δ̂TS, and had

almost the same efficiency as δ̂IPD and δ̂MIVW under all three susceptibility models and all

four settings. The findings are consistent with LZ and our analytical results in Theorems

4.2 and 4.3.

Gene-environment independence: Comparing settings (a) to (c) (or alternatively com-

paring settings (b) to (d)), where the only difference is the dependence between G and E,

we observed no substantial difference in RB for all of the proposed estimators, including

the potentially biased estimators δ̂MR and δ̂AWE. When assumption 4.1 is relaxed (settings

(c) and (d)), the magnitude of bias of δ̂MR (up to ±3%) and δ̂AWE (up to ±2%) is not

yet to a level of practical concern compared to the Monte Carlo error (up to ±3% even
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for the unbiased estimators). For variance, we did not observe precision gain by making

the GE independence assumption as expected. When assumption 4.1 is relaxed, results in

Theorem 4.2 hold numerically for all three genetic susceptibility models.

Homogeneity in allele frequencies across cohorts: Comparing settings (a) to (b) (or al-

ternatively comparing settings (c) to (d)), we did not observe precision gain when the MAF

is homogeneous across studies (settings (a) and (c)). When assumption 4.2 is relaxed, re-

sults in Theorem 4.3 hold numerically for all three genetic susceptibility models.

Lack of common set of confounders to adjust in each study: Figure 4.4 shows the power

curves under this situation without either assumption 4.1 or 2. Compared to the basic set-

ting without covariate adjustment (Figure 4.3), there is no substantial difference in the

relative performances of testing among these methods. We observed that the GEI estimate

δ̂ and variance v̂(δ̂) was fairly unchanged, though the main effects of β̂G and β̂E were

substantially influenced under this situation. VanderWeele et al. (2012) also showed sim-

ilar results that, under GE independence, there is no effect of unmeasured environmental

confounding on the GEI parameter; and that if G and E are dependent, the environmental

confounding needs to be very strong to incur substantial bias in GEI. Power curves under

settings (a)-(c) are given in Appendix A.3, where similar results were shown.

Misspecification of the genetic susceptibility model: We examined the power under mis-

specified susceptibility models (dominant/additive), where the true generating model is

co-dominant. When δAA = 1.5δAa (we accordingly choose βAAG = 1.5βAaG ), i.e., the sec-

ond copy of A has an effect size between the two assumed in dominant (δAA = δAa) and

additive (δAA = 2δAa) models, there is no substantial difference of power between the

misspecified dominant/additive model and co-dominant model (shown in Appendix A.3),

because the misspecification is not strong and the fitted dominant or additive models used

one less parameter. When δAA = −δAa (we accordingly choose βAAG = −βAaG ), i.e., the
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second copy of A has a reverse effect, the fitted dominant or additive models had much

less power than the co-dominant model (shown in Figures 4.5). Thus, it could happen that

the co-dominant model has more power compared to other simpler models, though it uses

two additional parameters for capturing GEI.

Non-linear GEI model: When the IPD were generated under the non-linear GEI model,

the power to detect GEI from individual studies were very low (< 0.25), except study

10 where the sample size n10, effect size (depends on E) and variance σ2
E10

are all rela-

tively greater than the other studies (Figure 4.2). In Table 4.2, Pw(δ̂IPD), Pw(δ̂MIVW) and

Pw(δ̂AWE) show the highest powers. Pw(δ̂MIVW) is close to Pw(δ̂IPD) because the model

based standard errors of δ̂IPD and δ̂MIVW are asymptotically the same. Because most of

the 20 studies were unable to represent the true non-linear GEI, especially those with very

short range ofE, the non-linearity of GEI lead δ̂UIVW and δ̂REM to be low. In this particular

example, we observed that Pw(δ̂MR) is greater than Pw(δ̂UIVW). Instead of choosing alter-

natively between δ̂UIVW and δ̂MR, we can use δ̂AWE as the default meta-analytic estimator.

The relative performance of δ̂AWE is close to δ̂IPD. This is a practically noteworthy finding

as a linear interaction model is typically the initial screening tool, and the AWE is able

to pick up signals under model misspecification that univariate meta-analysis methods can

not.

Alternatively, one can consider a stratified analysis where the 3 strata consist of study k

withmk falling into the three intervalsmk ≤ 48, 48 < mk < 52 and 52 ≤ mk respectively

such that the value of GEI is close within each stratum (refer to Figure 4.1). Then δ̂UIVW

was used for meta-analysis of GEI within each stratum. We observed a power of 0.80 for

stratum (48, 52), and only around 0.15 for the other two strata. The Wald test of δ̂UIVW

were still powerful around the mean value of E but lack of power at more extreme values

of E.
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4.4 Application: Data analysis for a set of studies investigating type 2
diabetes

The proposed methods were applied to a set of studies investigating T2D, including

8 European cohorts: D2D2007, DIAGEN, DPS, FUSION FSIGT, FUSION S2, HUNT,

METSIM and TROMSO. A number of SNPs in the FTO gene region (16q12.2) have pre-

viously been identified to be associated with T2D and BMI in the DIAGRAM consortium

(Zeggini et al. (2008), Voight et al. (2010)). Variants at FTO are known to influence T2D

predisposition through an effect on BMI (Freathy et al. (2008), Voight et al. (2010)). Age,

BMI and gender are all known risk factors for T2D and a T2D related quantitative trait

HDL-C (Scott et al. (2012), Morris et al. (2012)). In this chapter, we investigated whether

SNPs in FTO gene modifies the effect of environmental factors (e.g. age and BMI) on

HDL-C. No association between SNPs in FTO and HDL-C or SNP×BMI interaction on

HDL-C has ever been noted.

Among the 8 cohorts, the T2D patients were identified by the glucose tolerance cate-

gory (fasting glucose≥ 7.0 mmol/l or two-hour glucose≥ 11.1 mmol/l). We genotyped

all the T2D patients and portions of non-T2D participants under budget allowance. Thus,

T2D patients were over sampled in the genotyped data set as compared to the overall co-

horts. The descriptive summary statistics for the genotyped data sets from the 8 cohorts

are shown in Table 4.3. We have a total of N = 11, 729 genotyped participants who have

HDL-C levels available, with sample sizes nk ranging between 172 and 2,730. Since the

SNPs in the FTO gene we examined (10 strongest SNPs associated with T2D/obesity/BMI

that listed on the National Human Genome Research Institute (NHGRI) GWAS catalog)

are in high linkage disequilibrium and show very similar results. Thus, we present our

results for one representative SNP, rs1121980, only. The SNP follows Hardy-Weinberg

equilibrium (HWE), and no imputation was needed as the missing genotype proportion
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is < 0.1%. The MAF of rs1121980 ranges 0.40-0.49 across cohorts, as an evidence for

supporting assumption 4.2. In Table 4.3, the mean age ranges from 56-69 (years) except

FUSION FSIGT cohort (mean age=39). FUSION FSIGT cohort appears younger because

either spouse or offspring of T2D sibpairs were selected as a follow-up to the FUSION

study. The mean BMI ranges from 26-28 (kg/m2) except the DPS cohort (mean BMI=31),

because the DPS cohort has an inclusion criterion requiring all subjects have BMI> 25 at

baseline. Thus, the covariate heterogeneity of E are small, with BSSage/TSSage = 14%

and BSSBMI/TSSBMI = 2% respectively. The two ‘outlier’ cohorts both have only very

small sample sizes compared to the other studies, so their influence on UIVW and MIVW

should be small. However, the influence on MR could be very substantial due to a small

number of studies.

Analysis Model: The IPD model we fitted is given by

log(HDL-Cki) = αk + βGGki + δGki×Eki

+ βageageki + βBMIBMIki + βgendergenderki + εki,(4.4)

for k = 1, ..., 8; i = 1, ..., nk. In model (4.4), SNP rs1121980 was used for G; BMI or

age was considered as E in two separate models for rs1121980×BMI and rs1121980×age

interactions respectively; HDL-C was log-transformed in order to reduce the skewness of

its distribution. The proposed methods, including IPD, UIVW, REM, MIVW (MIVW2’),

MR, TS and AWE (AWE2’), were implemented and compared. GE independence does not

appear to hold for rs1121980×BMI analysis (Spearman correlations across studies were

reported in Table 4.3). This is expected as FTO is an obesity related gene. GE indepen-

dence appears to hold for rs1121980×age (Table 4.3). We also considered adjusting for

the T2D status in model (4.4). Since the results are very similar, we only show the results

corresponding to model (4.4) for demonstration purpose.
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Results: Figure 4.6 shows the forest plots of estimated GEI from individual cohorts (δ̂k)

as well as the combined estimates using joint or meta-analysis. The corresponding nu-

merical results were provided in Table 4.4. There was no evidence of effect heterogene-

ity for both rs1121980×BMI (P = 0.59) and rs1121980×age (P = 0.81) interaction

based on Cochran’s Q test, and UIVW and REM showed similar results. We observed

that, under rs1121980×BMI model, v̂(δ̂IPD)/v̂(δ̂UIVW) is 0.94; v̂(δ̂IPD)/v̂(δ̂MIVW) is

0.95; v̂(δ̂IPD)/v̂(δ̂AWE) is 0.98. Under rs1121980×age model, v̂(δ̂IPD)/v̂(δ̂UIVW) is 0.75;

v̂(δ̂IPD)/v̂(δ̂MIVW) is 0.90; v̂(δ̂IPD)/v̂(δ̂AWE) is 0.98. These ratios were potentially de-

termined by the covariate heterogeneity of E. All these meta-analytical methods UIVW,

REM, MIVW (MIVW2′) and AWE (AWE2′) showed very similar results as IPD, espe-

cially for rs1121980×BMI interaction. The marginal SNP effects of rs1121980 against

mean covariate values of age and BMI across cohorts are shown in Appendix A.3. MR

was very sensitive to outliers when the number of cohorts was small (K=8), and showed

quite different results from the other methods due to outliers (Table 4.4). MR also lacked

efficiency for a small K and small ratio BSS/WSS. δ̂AWE was robust to the bias from

δ̂MR since it only assigned weight v̂(δ̂MR)−1/{v̂(δ̂UIVW)−1 + v̂(δ̂MR)−1} = 0.04 on δ̂MR.

This is further evidence that δ̂AWE can data adaptively shrink to the ‘better’ estimator.

Moreover, δ̂AWE showed almost full efficiency as compared to δ̂IPD.

In the model that drops the interaction term in (4.4), no significant marginal effect of

rs1121980 was found (at 0.05 level) after adjusting for the risk factors of age, gender and

BMI. It is expected since SNPs in FTO are known to influence T2D predisposition through

the effect on BMI. These risk factors themselves were strongly significant. Mean HDL-C

level decreased by: 0.10% (95% CI: (0.05, 0.14)%) for 1 year increase in age; 1.65% (95%

CI: (1.56, 1.75)%) for a 1 kg/m2 increase in BMI; 20.0% (95% CI: (18.7, 21.1)%) from

female to male, conditional on the other risk factors in the model.
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In our interaction model (4.4), positive rs1121980×BMI interactions were found under

all proposed methods (except MR) in Table 4.4, with P-values range from 0.005 to 0.007

(for additive model). In particular, the estimates obtained from model (4.4) when con-

verted in terms of percentage change in actual HDL-C levels, indicated that: with 1 kg/m2

increase in BMI, (1) under additive model, on average HDL-C level decreased by 1.73%

(95% CI: (1.57, 1.90)%) given rs1121980=GG, by 1.54% (95% CI: (1.44, 1.64)%) given

rs1121980=AG or GA; and by 1.35% (95% CI: (1.17, 1.53)%) given rs1121980=AA; (2)

under co-dominant model, HDL-C level decreased by 1.70% (95% CI: (1.51, 1.88)%)

given rs1121980=GG, by 1.58% (95% CI: (1.44, 1.72)%) given rs1121980=AG or GA;

and by 1.31% (95% CI: (1.10, 1.53)%) given rs1121980=AA. The results under addi-

tive and co-dominant models were very close. The trend of the effects of BMI among

the three groups defined by rs1121980 indicated that the presence of minor allele A in

rs1121980 attenuated the negative association between BMI and HDL-C. We did not find

similar rs1121980×BMI interaction effect on other lipid traits related to T2D, including

low-density lipoprotein cholesterol (LDL-C), total cholesterol and LDL-C/HDL-C ratio

(P-value = 0.08).

4.5 Discussion

In this chapter, we proposed and compared a set of meta-analysis approaches for ana-

lyzing GEI. We showed the proposed AWE, as a combination of meta-analysis and meta-

regression estimators, performed better than alternatively choosing between the two esti-

mators in terms of precision and power. We showed that the precision trade-off between

the two components in AWE depends on the covariate heterogeneity of E, and that the

weights in AWE can adaptively capture this trade-off. The resulting AWE retains full ef-

ficiency of the ‘gold standard’ joint analysis using IPD under certain natural assumptions.



93

We suggest to use AWE as a default choice for the meta-analysis of GEI based on sum-

mary data. We studied several key features that could potentially influence the efficiency

and power for meta-analysis of GEI, and hoped to provide useful insight and guidelines

for such studies. The features included: (1) departures from GE independence; (2) hetero-

geneity in MAFs across cohorts; (3) lack of a common set of confounders to adjust for in

individual studies; (4) misspecification of the genetic susceptibility model (dominant/co-

dominant/additive); and (5) the presence of a non-linear form of interaction. Under all the

above situations, we found the relative performance of AWE is close to IPD estimator. We

especially would like to point out the simulation findings under the non-linear interaction

model setting, where standard meta-analytical technique failed and the AWE was able to

capture the lost efficiency based on the summary data. We also reported some evidence

for GEI between rs1121980 and BMI on HDL-C levels.

We have mainly focused on quantitative traits with an underlying FEM. The potential

limitation is that the results might not be able to directly translate to dichotomous traits

under a case-control design, where assuming GE independence leads to huge gain in ef-

ficiency (Piegorsch et al. (1994), Umbach and Weinberg (1997), Chatterjee and Carroll

(2005)). We plan to extend our methods using a retrospective likelihood framework under

a case-control design. Investigating the results under a truly random effects meta-analysis

model is another possible extension to our work.
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Figure 4.1: Non-linear GEI model: the (red) sigmoid curve shows the true relationship
between Y -G association and E, βG(E) = 2 exp(E − 50)/{1 + exp(E −
50)} + 2; the boxplots show the covariate heterogeneity of E across studies
where the dots show the corresponding means.
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Figure 4.3: Comparison of the proposed meta-analytical methods (in terms of power) un-
der different scenarios of susceptibility models and covariate heterogeneity
through a simulation study, where no assumption of G-E independence or ho-
mogeneity in allele frequencies is assumed.
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Figure 4.4: Comparison of the proposed meta-analytical methods (in terms of power) un-
der different scenarios of susceptibility models and covariate heterogeneity
through a simulation study (for the situation of lack of common set of con-
founders to adjust), where no assumption of gene-environment independence
or homogeneity in allele frequencies is assumed.
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Figure 4.5: Power curves under misspecified susceptibility models (dominant/additive),
where the generating co-dominant model has δAA=−δAa, and no assumption
of gene-environment independence or homogeneity in allele frequencies is as-
sumed.
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Figure 4.6: Forest plots showing the estimated gene-environment interactions (under ad-
ditive model of rs1121980) across the 8 European cohorts, as well as the
combined estimates through meta-analysis. [IPD: individual patient data;
UIVW: univariate inverse-variance weighted estimator; REM: random ef-
fect model; MIVW: multivariate inverse-variance weighted estimator pool-
ing (βG, βE, δ); MIVW2′: MIVW estimator pooling (β′E, δ

′) under a centered
model; AWE: adaptively weighted estimator combining UIVW and Meta-
regression; AWE2′: AWE combining MIVW2′ and Meta-regression.]
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Table 4.1: Operating characteristics for the meta-analysis of GEI. [IPD: individual patient
data analysis; UIVW: univariate inverse-variance weighted estimator; MIVW:
multivariate inverse-variance weighted estimator; MR: Meta-regression; AWE:
adaptively weighted estimator.]

Methods Data shared Bias AREa

IPD individual level data unbiased 1
UIVW δ̂k, v̂(δ̂k) unbiased wss/tss
MIVW β̂k, v̂(β̂k) unbiased 1
MR λ̂k, v̂(λ̂k) and mk unbiased under assumption

4.1 ecological bias in gen-
eral

bss/tss

AWE δ̂k, v̂(δ̂k), λ̂k, v̂(λ̂k) and mk unbiased under assumption
4.1 bias adaptively con-
trolled

1

a ARE: asymptotic relative efficiency as compared to δ̂IPD under assumptions 1
and 2.

Table 4.2: Comparison of methods in terms of estimate, variance and power, under a
simulation study of non-linear GEI. [IPD: individual patient data; UIVW:
univariate inverse-variance weighted estimator; REM: random effect model;
MIVW: multivariate inverse-variance weighted estimator pooling (βG, βE, δ);
MIVW2′: MIVW estimator pooling (β′E, δ

′) under a centered model; MR:
Meta-regression; AWE: adaptively weighted estimator combining UIVW and
MR; AWE2′: AWE combining MIVW2′ and MR; TS: two-stage approach.]

Methods Estimate SEa Power
IPD 0.21 0.045 0.98
UIVW 0.18 0.070 0.69
REM 0.19 0.076 0.67
MIVW2′ 0.18 0.070 0.73
MIVW 0.21 0.045 0.98
MR 0.23 0.060 0.82
AWE 0.21 0.045 0.98
AWE2′ 0.21 0.045 0.98
TS 0.85
a SE: standard error.
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Table 4.3: Summary statistics for the genotyped data set from the 8 European cohorts.
HDL-C (mmol/l) rs1121980 Age (year) BMI (kg/m2) Gender SNP*Age SNP*BMI

Cohorts N Mean (SD) MAFa Mean (SDa) Mean (SD) Female (%) Corr (P)b Corr (P)
D2D2007 2693 1.44 (0.35) 0.41 59.9 (8.4) 27.5 (4.8) 52 -0.03 (0.16) 0.03 ( 0.19)
DIAGEN 1510 1.45 (0.47) 0.46 63.3 (14.3) 27.9 (5.2) 55 -0.01 (0.76) 0.03 ( 0.24)
DPS 433 1.22 (0.29) 0.44 55.1 (7.1) 31.3 (4.6) 68 -0.02 (0.69) 0.16 (<.01)
FUSION-FS 172 1.29 (0.32) 0.43 38.6 (10.9) 26.2 (4.9) 55 0.04 (0.56) 0.23 (<.01)
FUSION-S2 2730 1.45 (0.41) 0.40 57.2 (8.4) 27.9 (5.1) 44 -0.02 (0.23) 0.06 (<.01)
HUNT 1324 1.26 (0.38) 0.47 67.2 (13.1) 28.0 (4.4) 48 <.01 (0.94) 0.06 ( 0.03)
METSIM 1456 1.42 (0.40) 0.44 56.3 (6.6) 27.9 (4.7) 0 -0.05 (0.08) 0.03 ( 0.32)
TROMSO 1411 1.43 (0.42) 0.49 59.9 (12.5) 27.6 (4.7) 50 <.01 (0.91) 0.04 ( 0.15)
Entire study 11729 1.41 (0.40) 0.43 59.6 (11.1) 27.9 (4.9) 44 <.01 (0.97) 0.05 (<.01)
a SD: standard deviation; BMI: body mass index; MAF: minor allele frequency;
b Corr(P): Spearman correlation between SNP rs1121980 and environmental factor with corresponding P-value.

Table 4.4: IPD/Meta-analysis results of GEI for the T2D study, where the log transformed
HDL-C level was regressed on SNP, age, BMI, gender, cohorts, and either
SNP×BMI or SNP×age interaction in the IPD model. Estimates, SEs and CIs
have been multiplied by 1000.

Methodsa rs1121980 (additive) × BMI P-value*
Estimate SEb 95% CIb Additive Co-dominant

IPD 1.880 0.679 (0.548, 3.212) 0.006∗? 0.013∗

UIVW 1.936 0.700 (0.565, 3.308) 0.006∗ 0.018∗

REM 1.936 0.700 (0.565, 3.308) 0.006∗ 0.018∗

MIVW2′ 1.955 0.698 (0.587, 3.324) 0.005∗ 0.017∗

MIVW 1.957 0.698 (0.589, 3.325) 0.005∗ 0.017∗

MR -0.062 3.484 (-6.890, 6.767) 0.986 0.630
AWE 1.859 0.686 (0.514, 3.204) 0.007∗ 0.016∗

AWE2′ 1.877 0.685 (0.536, 3.219) 0.006∗ 0.015∗

rs1121980 (additive) × age Additive Co-dominant
IPD 0.381 0.314 (-0.235, 0.998) 0.225 0.324?

UIVW 0.354 0.364 (-0.360, 1.068) 0.331 0.372
REM 0.354 0.364 (-0.360, 1.068) 0.331 0.372
MIVW2′ 0.415 0.362 (-0.295, 1.124) 0.252 0.387
MIVW 0.458 0.332 (-0.193, 1.109) 0.168 0.397
MR 0.666 0.633 (-0.575, 1.906) 0.293 0.471
AWE 0.432 0.316 (-0.187, 1.050) 0.172 0.191
AWE2′ 0.477 0.314 (-0.140, 1.093) 0.129 0.184

a IPD: individual patient data; UIVW: univariate inverse-variance weighted estimator;
REM: random effect model; MIVW: multivariate inverse-variance weighted estimator
pooling (βG, βE , δ); MIVW2′: MIVW estimator pooling (β′E , δ

′) under a centered
model; MR: Meta-regression; AWE: adaptively weighted estimator combining UIVW
and MR; AWE2′: AWE combining MIVW2′ and MR.

b SE: standard error; CI: confidence interval.
* indicating significance at α = 0.05 level.
? indicating whether additive or co-dominant model has smaller AIC under the IPD model.



CHAPTER V

Meta-analysis of gene-environment interaction on
dichotomous traits under case-control studies

5.1 Introduction

5.1.1 The role of G-E independence in case-control studies of G-E interaction

Gaining efficiency in studies of gene-environment interaction (GEI) by exploiting in-

dependence between the genetic (G) and environmental (E) factors under case-control

sampling has been noted in multiple papers (Piegorsch et al. (1994); Umbach and Wein-

berg (1997); Chatterjee and Carroll (2005), CC from now on). Piegorsch et al. (1994)

showed that one can estimate multiplicative GEI in logistic model with data from cases

alone, provided that G and E are independent in the population and the disease is rare.

Under such assumptions, the GEI parameter is obtained as the odds ratio between G and

E among cases, which is more precise than that obtained from a case-control analysis us-

ing logistic regression. However, the case-only method can only make inference on the

GEI parameter without getting the corresponding main effect simultaneously. Umbach

and Weinberg (1997) showed that, with data available on both cases and controls, one

can estimate the main effects and interaction, by fitting a suitably constrained log-linear

model under the rare disease assumption and the G-E independence assumption, which

has the same precision of the GEI parameter derived under the case-only method. How-

ever, methods in Piegorsch et al. (1994) and Umbach and Weinberg (1997) only work for

99
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categorical E. CC proposed a semi-parametric maximum likelihood method to estimate

all the logistic regression parameters under a retrospective likelihood with continuous E

and possible covariate adjustment. Their method addressed many of the limitations of the

existing methods as discussed above, e.g. the rare disease assumption, categoricalE. They

also considered the issue of population stratification whereG-E independence assumption

only holds conditional on the set of stratification variables. However, methods that use G-

E independence assumption might produce severely biased estimates if the assumption is

violated. Several studies have addressed this issue and proposed more robust strategies for

testing GEI (Mukherjee and Chatterjee (2008), MC from now on; Mukherjee et al. (2008);

Li and Conti (2009); Murcray et al. (2009)). MC proposed a solution to the bias versus

efficiency dilemma, using a retrospective method that allows for uncertainty around the as-

sumption of G-E independence. MC used the estimate of the uncertainty parameter in an

empirical Bayes (EB) fashion to obtain a shrinkage estimator that ’shrinks’ the maximum

likelihood estimates (MLEs) of disease odds ratio parameters under G-E dependence to

those under G-E independence, and showed how the shrinkage factor depends on these

MLEs and their corresponding variances. The following is a detailed review.

5.1.2 Review of MC’s empirical Bayes approach

Let D be the binary indicator of presence (D = 1) or absence (D = 0) of a disease.

Let G, E and S be the genotype, environmental exposure and stratification factor (such as

ethnicity). MC considered the following factorization of the retrospective likelihood for a

case-control study,

LR = P (G,E, S|D) =
P (D|G,E, S)P (G|E, S)P (E, S)∑

G,E,S P (D|G,E, S)P (G|E, S)P (E, S)
.

MC considered (1) a logistic disease incidence model P (D|G,E, S) = H{γ0 + γGG +

γEE + γGEGE + γSS}, where H(u) = {1 + exp(−u)}−1; (2) a logistic model P (G =



101

1|E, S) = H{η0 + θE + ηS} for a binary genetic factor G; (3) the joint distribution for

(E, S) to be nonparametric. In (2), θ is a measure of dependence between G and E condi-

tional on S. Under G-E independence conditional on S, P (G|E, S) = P (G|S). One can

reduce the model for G to P (G = 1|S) = H{η0 + ηS}. Throughout this chapter, we refer

to the model with (without)G-E independence assumption as constrained (unconstrained)

model respectively.

The EB estimator in MC is under a general framework, where one is interested in

inference on a set of focus parameters β in the presence of prior information only on a

set of nuisance parameters θ. For example, under the above formulation (1)-(3), β =

(γ0,γ, η0, η) and θ = θ (We use θ instead of θ below for the general case). Denote

the MLE for β under the unconstrained and constrained model as β̂ and β̂0 respectively.

Denote β̂(θ) as the profile MLE of β for fixed θ, then β̂ = β̂(θ̂) and β̂0 = β̂(0). Denote

β(θ) as the limiting value of β̂(θ). Following the invariant property of MLE, we have

β(θ̂) ∼ MVN(β(θ),Vβ(θ̂)). We use the generic notation V(·) to denote the variance of

(·). Assumes θ ∼ MVN(0,A). Applying Taylor’s expansion around θ = 0, MC used

the linear approximation β(θ) ∼ MVN(β(0),∆>A∆), where ∆> = ∂β(θ)/∂θ|θ=0 is

the Jacobian matrix evaluated at 0. For the Gaussian-Gaussian model, MC proposed an

approximation to the Bayes estimator of β(θ) for a fixedA as

β̂(θ) = ∆>A∆{Vβ(θ̂) + ∆>A∆}−1β(θ̂) + Vβ(θ̂){Vβ(θ̂) + ∆>A∆}−1β(0).

MC further used the profile MLE β̂(θ) for β(θ), the estimated asymptotic variance V̂β̂ for

Vβ(θ̂), ∆̂ = ∂β̂>(θ)/∂θ|θ=0 for ∆, and a conservative estimator Â = θ̂θ̂
>

for A. Then

the resulting ad hoc EB estimator is given by

β̂EB = ∆̂>Â∆̂ {V̂β̂ + ∆̂>Â∆̂}−1 β̂ + V̂β̂{V̂β̂ + ∆̂>Â∆̂}−1 β̂0.

The variance V̂β̂EB of β̂EB can be estimated using the multivariate Taylor’s expansion. A
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Wald-type test can be constructed based on the statistic β̂
>
EBV̂

−1

β̂EB
β̂EB.

Alternatively, one can write β̂EB = β̂+K(β̂0−β̂), whereK = V̂β̂{V̂β̂+∆̂>Â∆̂}−1.

The shrinkage factor K determines the amount of shrinkage between the unconstrained

and constrained MLEs. When K → 1 (evidence of G-E independence), we have β̂EB =

β̂0; when K → 0 (departure from G-E independence), we have β̂EB = β̂. So MC’s

EB shrinkage estimator can relax the G-E independence assumption in a data-adaptive

fashion. Further theoretical development regarding this shrinkage estimator is presented

in Chen et al. (2009). It was noted that this EB estimate can trade off between bias and

efficiency and provide increased power compared to a standard case-control analysis, with

superior control of type 1 error when compared to a case-only analysis. This performance

is noted for modest sample sizes, whereas asymptotically the EB estimator β̂EB converges

to the unconstrained estimator β̂

As the GEIs detected so far only have small to modest effects, there are increasing

demands for large sample sizes and collaboration across different study sites in order to

perform a pooled or meta-analysis with high confidence and power. In this chapter, we

consider possible extensions of EB type shrinkage estimators for a multiple-study set-

ting. To handle this multiple-study problem, we particularly consider strategies to obtain

a shrinkage factor in the EB estimator that can borrow strength across studies, under both

individual patient data (IPD) analysis using individual level data and meta-analysis using

study level summary statistics.

5.2 Methods

5.2.1 Model formulation under multiple-study setting

Suppose there are K independent studies and a total of N participants, with nk par-

ticipants in the k-th study, k = 1, ..., K,
∑K

k=1 nk = N . Let D, G, E and S denote the
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phenotype, genotype, environmental exposure and stratification factor. Let subscript (i, k)

stand for participant i in study k, for i = 1, ..., nk; k = 1, ..., K. Consider the following

factorization of the retrospective likelihood LR =
∏K

k=1 L
R
k ,

LRk =

nk∏
i=1

P (Gki, Eki, Ski|Dki)

=

nk∏
i=1

P (Dki|Gki, Eki, Ski)P (Gki|Eki, Ski)P (Eki, Ski)∑
Gki,Eki,Ski

P (Dki|Gki, Eki, Ski)P (Gki|Eki, Ski)P (Eki, Ski)
.

The three components P (D|G,E, S), P (G|E, S) and P (E, S) in LRk are modeled in the

following way:

(i) P (D|G,E, S): We consider a logistic disease incidence model P (Dki|Gki, Eki, Ski) =

H{γ0k + γGGki + γEEki + γGEGkiEki + γSSki}. Without loss of generality, we have

assumed γ = (γG, γE, γGE, γS) is the common set of parameters of interest.

(ii) P (G|E, S): For a dominant susceptibility model of G, we consider a logistic model

P (Gki = 1|Eki, Ski) = H{η0k + ηkSki + θkEki},(5.1)

where θk (ηk) is a measure of dependence between G and E (S) in the k-th study. Under

G-E independence conditional on S within each study k, model (5.1) can be reduced to

P (Gki = 1|Eki, Ski) = H{η0k + ηkSki}.(5.2)

For additive susceptibility model ofG, one may consider a proportional odds model to han-

dle P (G|E, S); similarly, for co-dominant susceptibility model, one may consider poly-

chotomous logistic model. Alternatively, in this chapter, we consider a logistic model to

handle the minor allele frequency (MAF) under the Hardy-Weinberg equilibrium (HWE)

assumption (Chen et al. 2009). Let q(Eki, Ski) be the MAF for given (Eki, Ski). We

model the MAF as q(Eki, Ski) = H{η0k + ηkSki + θkEki}, which can be reduced to

q(Eki, Ski) = H{η0k + ηkSki} under G-E independence conditional on Ski.
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(iii) P (E, S): The joint distribution function for (E, S) is allowed to remain completely

nonparametric as in CC.

Remark 5.1. Let γ0 = (γ01, ..., γ0K), (η0;η) = (η01, ..., η0K ; η1, ..., ηK) and θ = (θ1, ..., θK).

Let β = (γ,γ0,η,η0) and θ be the full set of parameters under the unconstrained model.

In models (i)-(iii), we consider γ as our common set of parameters across studies, (γ0,η,η0)

as study level fixed nuisance parameters, and θ as study level random nuisance parameters

(under the EB framework). This formulation is flexible. For example, one may use a sub-

vector of γ as the common parameters with the remaining of γ varying on k; one may also

assume ηk = η for k = 1, ..., K in models (5.1) and (5.2), i.e., a common G-S association

across studies, and treat (γ, η) as the common set of parameters. Then the methods in the

following sections can be modified accordingly. Without loss of generality, we consider

γ as our common set of disease odds ratio parameters that is of interest throughout this

chapter.

Estimation. The MLE of (β,θ) (only β under the constrained model) can be obtained

by the profile-likelihood techniques in CC. In particular, the MLEs under LR can be equiv-

alently obtained by maximizing a pseudo-likelihood L∗, in which estimation of the high

dimensional nuisance parameters involved in the specification of P (E, S) is not required.

More details of the pseudo-likelihood method were provided in CC. The MLEs of (β,θ)

can be estimated using the R ‘CGEN’ package (Bhattacharjee et al. 2012).

5.2.2 Empirical Bayes estimator under multiple-study setting

In this section, we consider both IPD analysis and meta-analysis to handle the multiple-

study problem. An IPD analysis can be performed when the individual level data are

available. The MLEs of γ under the unconstrained and constrained models can be obtained

directly by using the profile-likelihood techniques in CC, and are denoted as γ̂ and γ̂0
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respectively. We then propose an EB shrinkage estimator of γ that combines γ̂ and γ̂0 for

an IPD analysis. When the IPD are not available, e.g. in published results, we alternatively

consider meta-analysis that combines study level summary statistics across studies. Based

on the data from each study k, one collects the MLE γ̃k (with covariance matrix Ṽγ̃k) and

θ̃k (with variance σ̃2
θk

) from the unconstrained model; and collects γ̃0
k and Ṽγ̃0

k
from the

constrained model. We then consider EB shrinkage estimators that combine these study

level summary statistics under a meta-analysis framework, where the shrinkage factors are

estimated by borrowing strength across studies.

Under both IPD analysis and meta-analysis framework, we propose two variants of

the EB estimator, MC type and partially Bayes (PB) type, and show consistency between

the two approaches under certain formulations/assumptions. Throughout this chapter, for

the EB estimator, we consider a strategy for conducting inference on γ with prior dis-

tribution on θ and no further prior specification on β. We consider θk
iid∼ N(0, τ 2),

in matrix notation, i.e., θ ∼ MVN(0,A) where A = diag(τ 2, ..., τ 2)(K×K). Here

diag(a1, ..., aK)(K×K) stand for a K × K diagonal matrix whose diagonal entries are

(a1, ..., aK). In order to borrow strength across studies, we have assumed the uncertainty

around the G-E independence assumption is constant (τ 2) across studies.

IPD analysis

(i) MC-type EB estimator: We propose an EB shrinkage estimator, in the spirit of MC,

combining γ̂ and γ̂0 under the multiple-study setting. We worked with β̂(θ) directly

rather than its limiting value β(θ) as suggested by Meng (2010). Let γ̂(θ) be the sub-

vector of β̂(θ) corresponding to γ. Following Taylor’s expansion, we have the linear

approximation γ̂(θ) ∼ MVN(γ̂(0),∆>A∆), where ∆> = ∂γ̂(θ)/∂θ|θ=0. Following

the invariant property of MLE, we have γ̂(θ̂) ∼MVN(γ̂(θ),Vγ̂(θ̂)). Under the Gaussian-
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Gaussian model, we propose a Bayes estimator (posterior mean) of γ̂(θ) of the form

∆>A∆{Vγ̂(θ̂) + ∆>A∆}−1γ̂ + Vγ̂(θ̂){Vγ̂(θ̂) + ∆>A∆}−1γ̂0,(5.3)

where γ̂ and γ̂0 are the MLEs of γ under the unconstrained and constrained models re-

spectively. As in MC, we consider an ad hoc EB estimator γ̂MC-EB for γ̂(θ) by plugging

the estimates of the weights ∆>A∆{Vγ̂(θ̂) + ∆>A∆}−1 and Vγ̂(θ̂){Vγ̂(θ̂) + ∆>A∆}−1 in

(5.3). The components of the weights can be obtained as follows:

(i.a) Vγ̂ : We use V̂γ̂ for Vγ̂ in (5.3). Denote I as the full observed information matrix

under the unconstrained model; denote Î as I evaluated at the MLE. V̂γ̂ can be obtained

as the corresponding sub-matrices of Î−1.

(i.b) ∆: MC proposed to use an approximation IθγI−1
γγ |θ=0, where Iθγ and Iγγ are the cor-

responding sub-matrices of I . The appropriateness of using IθγI−1
γγ |θ=0 is verified in Ap-

pendix B.4. Note that, applying Taylor’s expansion, we have γ̂(θ̂) ≈ γ̂0+{∂γ̂(θ)/∂θ}|θ=0θ̂,

and then we have an approximation {∂γ̂(θ)/∂θ}|θ=0 ≈ (γ̂ − γ̂0)θ̂
>

(θ̂θ̂
>

)−1. We use

∆̂> = (γ̂ − γ̂0)θ̂
>

(θ̂θ̂
>

)−1 for ∆ in (5.3). Note that ∆̂ depends only on the MLEs γ̂, γ̂0

and θ̂, which bypasses the calculation of IθγI−1
γγ |θ=0.

(i.c)A: We use EB estimator Â for A. Let θ̂k be the MLE of θk under the unconstrained

model, with variance σ̂2
θk

. We assume θ̂k | θk ∼ N(θk, σ̂
2
θk

). Note that marginally θ̂k ∼

N(0, τ 2 + σ̂2
θk

). We consider EB estimator of A using the following strategies: (1) a

conservative estimator Â = θ̂θ̂
>

as in MC; (2) Â = diag(τ̂ 2, ..., τ̂ 2)(K×K), where τ̂ 2 is

the MLE that maximizes the marginal likelihood of θ̂; (3) Â = diag(τ̄ 2, ..., τ̄ 2)(K×K),

where τ̄ 2 is the estimated posterior mean of τ 2|θ̂ in the spirit of Morris (1983). The details

are shown in Appendix B.4.

Following (i.a)-(i.c), the resulting MC-type EB estimator is given by

γ̂MC-EB = ∆̂>Â∆̂{V̂γ̂ + ∆̂>Â∆̂}−1γ̂ + V̂γ̂{V̂γ̂ + ∆̂>Â∆̂}−1γ̂0.(5.4)
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Denote γ̂MC-EB1, γ̂MC-EB2 and γ̂MC-EB3 as the MC-type EB estimators of γ̂(θ) with Â fol-

lowing strategies (1), (2) and (3) in (i.c) respectively.

(ii) Partially Empirical Bayes (PEB) estimator: An alternative strategy is to consider an

EB estimator under the ‘partially Bayes’ framework of Meng (2010). We extend it into a

more general case with multiple parameters and unrestricted variance-covariance matrix

structure. In particular, under the unconstrained model, we have that γ̂

θ̂

 = MVN


 γ
θ

 ,
 Iγγ Iγθ

Iθγ Iθθ


 , where

 Iγγ Iγθ

Iθγ Iθθ

(5.5)

is the model based asymptotic covariance matrix of (γ̂, θ̂) obtained from the correspond-

ing blocks of I−1. Note that Îγγ = V̂γ̂ and Îθθ = V̂θ̂. Before any prior knowledge, the

profile MLE of γ for fixed θ under model (5.5) can be derived as

γ̂(θ) = γ̂ + Iγθ(Iθθ)−1(θ − θ̂).(5.6)

Given the data (γ̂ and θ̂), the only unknown quantity in γ̂(θ) in (5.6) is θ. Under the PB

framework, we can make inference on γ̂(θ) as a function of θ. Let Γ> = Iγθ(Iθθ)−1|θ=0.

Substituting Γ> for Iγθ(Iθθ)−1 in (5.6), we have an approximated distribution γ̂(θ) ∼

MVN(γ̂(0),Γ>AΓ). We use the posterior expectation of γ̂(θ) as the PB estimator of

γ̂(θ) (for a fixedA), which can be given as

Γ>AΓ{Vγ̂ + Γ>AΓ}−1γ̂ + Vγ̂{Vγ̂ + Γ>AΓ}−1γ̂0.(5.7)

Again, we consider an ad hoc EB estimator γ̂PEB for γ̂(θ) by plugging the estimated

weights in (5.7). We use V̂γ̂ for Vγ̂ . Following (5.6), γ̂ = γ̂0 + Iγθ(Iθθ)−1|θ=0θ̂,

and then we can use (γ̂ − γ̂0)θ̂
>

(θ̂θ̂
>

)−1 as an estimator of Γ> in (5.7), i.e., Γ̂> =

(γ̂ − γ̂0)θ̂
>

(θ̂θ̂
>

)−1. We use the EB estimator Â for A in (5.7) following the strategies

described in section 5.2.2(i.c). The resulting PEB estimator γ̂PEB can be written as

γ̂PEB = Γ̂>ÂΓ̂{V̂γ̂ + Γ̂>ÂΓ̂}−1γ̂ + V̂γ̂{V̂γ̂ + Γ̂>ÂΓ̂}−1γ̂0,(5.8)



108

Note that, since Γ̂ = ∆̂, we have γ̂PEB = γ̂MC-EB.

Meta-analysis

(i) MC-type EB estimator. We propose to use (multivariate) inverse variance weighted

(IVW) estimator γ̃ =
{∑

k Ṽ
−1
γ̃k

}−1∑
k Ṽ

−1
γ̃k
γ̃k to combine γ̃k under the unconstrained

model across studies; and similarly use γ̃0 =
{∑

k Ṽ
−1
γ̃0
k

}−1∑
k Ṽ

−1
γ̃0
k
γ̃0
k to combine γ̃0

k

under the constrained model. In order to construct an EB estimator combining γ̃ and γ̃0

in the spirit of MC, we first prove the following Lemma.

Lemma 1. For the unconstrained model, Vγ̃ = Vγ̂ ; γ̃ and γ̂ have the same limiting normal

distribution MVN(γ,Vγ̂). For the constrained model, Vγ̃0 = Vγ̂0; γ̃0 and γ̂0 have the

same limiting normal distribution MVN(γ(0),Vγ̂0).

Proof: Follow Lin and Zeng (2010).

Lemma 2. θ̃k = θ̂k and σ̃2
θk
≥ σ̂2

θk
, for k = 1, ..., K.

Proof: shown in Appendix B.4.

Because γ̂ = γ̂(θ̂) ∼ MVN(γ̂(θ),Vγ̂(θ̂)), along with Lemma 1, we have γ̃ ∼

MVN(γ̂(θ),Vγ̃). Under prior distribution θ ∼ MVN(0,A), we can obtain an approxi-

mated distribution for γ̂(θ) asMVN(γ̂(0),∆>A∆) following Taylor’s expansion. Along

with Lemma 1, γ̂(θ) ∼ MVN(γ̃0,∆>A∆) asymptotically. For the Gaussian-Gaussian

model, we consider an MC-type EB estimator combining γ̃ and γ̃0 as

γ̃MC-EB = ∆̃>Ã∆̃{Ṽγ̃ + ∆̃>Ã∆̃}−1γ̃ + Ṽγ̃{Ṽγ̃ + ∆̃>Ã∆̃}−1γ̃0.(5.9)

Again, estimated weights have been used in (5.9). In particular, Ṽγ̃ =
{∑

k Ṽ
−1
γ̃k

}−1, Ã

is the EB estimator ofA calculated based on the study level statistics θ̃k and σ̃2
θk

under the

strategies described in section 5.2.2(i.c), and ∆̃ = (γ̃−γ̃0)θ̃
>

(θ̃θ̃
>

)−1. Following Lemma

1 and 2, ∆̃ and ∆̂ have the same limiting value, so we have used ∆̃ as an approximate
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estimator for ∆. Note that all the components in γ̃MC-EB in (5.9) are obtained using only

study level summary statistics.

(ii) PEB estimator. Note that the k-th study only involves parameters βk = (γ, γ0k,

η0k, ηk) and θk. Let β̃k(θk) be the profile MLE of βk for fixed θk for the k-study, and

γ̃k(θk) be the sub-vector of β̃k(θk) corresponding to γ. From each study k, we have the

study level data γ̃k, θ̃k and the full observed information matrix Ĩk under the unconstrained

model, and γ̃0
k under the constrained model, for k = 1, ..., K. Under the unconstrained

model, we have that γ̃k

θ̃k

 = MVN


 γ

θk

 ,
 Ikγγ Ikγθk

Ikθkγ Ikθkθk


 , where

 Ikγγ Ikγθk

Ikθkγ Ikθkθk


(5.10)

is the model based asymptotic covariance matrix of (γ̃k, θ̃k) obtained from the correspond-

ing blocks of I−1
k . Note that Ĩkγγ = Ṽγ̃k and Ĩkθkθk = σ̃2

θk
. Before any prior knowledge,

the MLE of γ under model (5.10) is
{∑

k Ṽ
−1
γ̃k

}−1∑
k Ṽ

−1
γ̃k
γ̃k, i.e. γ̃; the MLE of θk

is θ̃k. The conditional distribution γ̃k|θ̃k ∼ MVN(γ + Ikγθk(Ikθkθk)−1(θ̃k − θk), Ikγγ −

Ikγθk(Ikθkθk)−1Ikθkγ). Then we have the profile MLE γ̃k(θk) = γ̃k+Ikγθk(Ikθkθk)−1(θk−

θ̃k), with variance Vγ̃k(θk) = Ikγγ − Ikγθk(Ikθkθk)−1Ikθkγ for fixed θk and Vγ̃k(θ̃k) = Ikγγ

for θk = θ̃k. It follows that the profile MLE γ̃(θ) under model (5.10) can be derived as

γ̃(θ) =
{∑

k

V −1
γ̃k(θk)

}−1
∑
k

V −1
γ̃k(θk)γ̃k(θk).(5.11)

Then γ̃(θ̃) =
{∑

k Ṽ
−1

γ̃k(θ̃k)

}−1∑
k Ṽ

−1

γ̃k(θ̃k)
γ̃k(θ̃k) = γ̃ and γ̃(0) =

{∑
k Ṽ

−1
γ̃0
k

}−1∑
k Ṽ

−1
γ̃0
k

γ̃0
k = γ̃0.

Given the study level data γ̃k and θ̃k, the only unknown quantity in γ̃(θ) in (5.11) is

θ. Under the PB framework, we can make inference on γ̃(θ) as a function of θ. Again,

applying Taylor’s expansion at θ = 0, we have the linear approximation γ̃(θ) ≈ γ̃(0) +
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{∂γ̃(θ)/∂θ}|θ=0θ, and then we have the approximated distribution γ̃(θ) ∼MVN(γ̃(0),

Λ>AΛ), where Λ> = ∂γ̃(θ)/∂θ|θ=0. Since γ̃ ≈ γ̃0 + {∂γ̃(θ)/∂θ}|θ=0θ̃, we can ap-

proximate Λ> by (γ̃ − γ̃0)θ̃
>

(θ̃θ̃
>

)−1 to avoid the calculation of the derivative of the

profile function γ̃(θ). We consider a PEB estimator γ̃PEB for γ̃(θ) as

γ̃PEB = Λ̃>ÃΛ̃{Ṽγ̃ + Λ̃>ÃΛ̃}−1γ̃ + Ṽγ̃{Ṽγ̃ + Λ̃>ÃΛ̃}−1γ̃0,(5.12)

Again, estimated weights have been used in (5.9), where Ṽγ̃ =
{∑

k Ṽ
−1
γ̃k

}−1, Λ̃> =

(γ̃ − γ̃0)θ̃
>

(θ̃θ̃
>

)−1, and Ã is the EB estimator of A calculated based on the study level

statistics θ̃k and σ̃2
θk

under the strategies described in section 5.2.2(i.c). Since Λ̃ = ∆̃, we

have γ̃PEB = γ̃MC-EB.

Remark 5.2: Equivalence between MC-type EB and PEB estimator. Among the proposed

EB estimators, we note that the MC-type EB and PEB estimator are equivalent under either

IPD analysis or meta-analysis, i.e., γ̂MC-EB = γ̂PEB and γ̃MC-EB = γ̃PEB. Therefore, we no

longer distinguish between MC-type EB and PEB estimators under the Gaussian-Gaussian

model. Denote the proposed EB estimator under the IPD analysis and meta-analysis as γ̂EB

and γ̃EB. Under the IPD analysis (meta-analysis) framework, denote γ̂EB1, γ̂EB2 and γ̂EB3

(γ̃EB1, γ̃EB2 and γ̃EB3) as the EB estimators with Â (Ã) following strategies (1), (2) and

(3) in (i.c) respectively.

Remark 5.3: The conservative estimator Â = θ̂θ̂
>

. Let ψ̂ = γ̂− γ̂0. For the conservative

estimator Â = θ̂θ̂
>

, then ∆̂>Â∆̂ = ψ̂θ̂
>

(θ̂θ̂
>

)−1Â(θ̂θ̂
>

)−1θ̂ψ̂
>

= ψ̂θ̂
>

(θ̂θ̂
>

)−1θ̂ψ̂
>

= ψ̂ψ̂
>

. Here it is easy to verify that θ̂
>

(θ̂θ̂
>

)−1θ̂ = 1. Note that θ̂
>

(θ̂θ̂
>

)−1θ̂ is a

scalar. Let θ̂
>

(θ̂θ̂
>

)−1θ̂ = λ, then λθ̂
>

= θ̂
>

(θ̂θ̂
>

)−1θ̂θ̂
>

= θ̂
>

, so λ = 1. For the IPD

analysis, we have a conservative EB estimator γ̂EB1 of the form

γ̂EB1 = ψ̂ψ̂
>
{V̂γ̂ + ψ̂ψ̂

>
}−1γ̂ + V̂γ̂{V̂γ̂ + ψ̂ψ̂

>
}−1γ̂0.(5.13)

Similarly, if we use the conservative estimator Ã = θ̃θ̃
>

, then ∆̃>Ã∆̃ = ψ̃θ̃
>

(θ̃θ̃
>

)−1θ̃ψ̃
>
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= ψ̃ψ̃
>

. For the meta-analysis, we have a conservative EB estimator γ̃EB1 of the form

γ̃EB1 = ψ̃ψ̃
>{Ṽγ̃ + ψ̃ψ̃

>}−1γ̃ + Ṽγ̃{Ṽγ̃ + ψ̃ψ̃
>}−1γ̃0.(5.14)

According to lemma 1 and 2, γ̃ and γ̂ have the same limiting normal distribution; γ̃0 and

γ̂0 have the same limiting normal distribution; the corresponding weights have the same

limiting value. Thus, γ̂EB1 and γ̃EB1 converge to the same limiting distribution.

(iii) Inverse variance weighted approach. From each study k, one can obtain an EB esti-

mator γ̃EBk following MC as

γ̃EBk = ∆̃>k Ãk∆̃k{Ṽγ̃k + ∆̃>k Ãk∆̃k}−1γ̃k + Ṽγ̃k{Ṽγ̃k + ∆̃>k Ãk∆̃k}−1γ̃0
k,

where ∆̃>k Ãk∆̃k is calculated similarly as before but using the data from study k only. In

particular, ∆̃>k = (γ̃k − γ̃0
k)θ̃−1

k and Ãk follows (i.c), e.g. Ãk = θ̃2
k for the conservative

estimator. A naive approach to obtain a pooled EB estimator across studies is just to use

the IVW average of γ̃EBk, which is given by

γ̃IVW-EB =
{∑

k

Ṽ −1
γ̃EBk

}−1
∑
k

Ṽ −1
γ̃EBk
γ̃EBk.

Alternatively, we can estimate the approximated prior variance ∆>A∆ of γ̂(θ) borrowing

strength across all the study, and consider an hybrid EB estimator γ̃EBk of the form

γ̃ ′EBk = ∆̃>Ã∆̃{Ṽγ̃k + ∆̃>Ã∆̃}−1γ̃k + Ṽγ̃k{Ṽγ̃k + ∆̃>Ã∆̃}−1γ̃0
k

for each study k. Here, ∆̃>Ã∆̃ in γ̃ ′EBk is the same as that in (5.9). We consider hybrid

IVW (HIVW) EB estimator given by

γ̃HIVW-EB =
{∑

k

Ṽ −1
γ̃′EBk

}−1
∑
k

Ṽ −1
γ̃′EBk
γ̃ ′EBk.

5.2.3 Asymptotic variance

Under the IPD analysis, for γ̂EB1, the variance V̂γ̂EB1
can be obtained by viewing γ̂EB1

as a function of the MLE (γ̂, θ̂, γ̂0). The joint asymptotic multivariate normal distri-
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bution for these three estimates can be obtained in terms of the associated score func-

tions and information matrices. An application of the Delta method provides the asymp-

totic variance-covariance matrix for γ̂EB1. For γ̂EB2 and γ̂EB3 of the more general form

γ̂EB = ∆̂>Â∆̂{V̂γ̂ + ∆̂>Â∆̂}−1γ̂ + V̂γ̂{V̂γ̂ + ∆̂>Â∆̂}−1γ̂0, it is hard to apply the Delta

method to obtain a variance formula for the EB estimator since Â does not have a closed

form expression in terms of (γ̂, θ̂, γ̂0). Instead, we consider an ad hoc way to calculate

the variance. The derivation and expression of V̂γ̂EB1
, V̂γ̂EB2

and V̂γ̂EB3
is deferred to

Appendix B.4. A Wald-type test can be constructed based on the statistic γ̂>EBV̂
−1
γ̂EB
γ̂EB.

Under the meta-analysis scenario, Ṽγ̃EB1 , Ṽγ̃EB2 and Ṽγ̃EB3 can be obtained similarly. For

γ̃IVW-EB, V̂γ̃IVW-EB =
{∑

k Ṽ
−1
γ̃EBk

}−1. The validity of the above form of V̂γ̃IVW-EB requires

that the true asymptotic variance Vγ̃EBk is estimated with negligible error. We note that this

assumption is often implicitly assumed to hold in classic meta-analysis literature dealing

with Gaussian models (e.g., DerSimonian and Laird (1986), Whitehead and Whitehead

(1991), LZ). As the components of V̂γ̃IVW-EB , Ṽγ̃EBk for the EB estimator γ̃EBk was derived

using a Delta’s method as an approximation, we would evaluate the performance of V̂γ̃IVW-EB

by comparing it with its empirical value, and similarly for V̂γ̃HIVW-EB .

5.2.4 Empirical linear Bayes rule

MC-type EB estimator is derived under the usual Gaussian-Gaussian hierarchical model,

however, the PB approach can be generalized to non-normal cases. In particular, for a gen-

eral prior on θ, we can derive the posterior of θ | θ̂, and then make inference on γ̂(θ) as a

function of θ. We use the posterior expectation Eθ{γ̂(θ)} = γ̂ +Eθ{Iγθ(Iθθ)−1(θ− θ̂)}

as the PB estimator of γ̂(θ), whereEθ is the expectation taken with respect to the posterior

distribution of θ (for fixed hyperparameters of θ, e.g. τ 2). If we replace Iγθ(Iθθ)−1 by

Îγθ(Îθθ)−1, then Eθ{γ̂(θ)} = γ̂ + Îγθ(Îθθ)−1{Eθ(θ)− θ̂}.
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Consider the model θ̂k | θk ∼ N(θk, σ̂
2
θk

) and θk
iid∼ (Mk, Vk). The notation indicating

θk has mean Mk and variance Vk with no other assumptions about the distribution on

θk. Let Wk = Vk/(Vk + σ̂2
θk

). Following Efron (1973), we have the ‘linear Bayes rule’

Mk + Wk(θ̂k −Mk) for the posterior mean of θk | θ̂k. Let M = (M1, ...,MK)>, V =

(V1, ..., VK)> and W = diag(W1, ...,WK)(K×K). The ‘linear Bayes rule’ for θ | θ̂ in

matrix form is M + W (θ̂ −M). Thus, the partially linear Bayes (PLB) estimator for

fixedM and V can be given by

γ̂PLB = γ̂ + Îγθ(Îθθ)−1(1−W )(M − θ̂),

It is easy to show that Vγ̂PLB ≤ Vγ − Iγθ(Iθθ)−1(1−W )Iθθ(1−W )(Iθθ)−1Iθγ ≤ Vγ̂ .

Here we follow the definition that a matrix is greater than the other iff the corresponding

subtracted matrix is symmetric positive definite (SPD). So γ̂PLB has more precision than

γ̂. IfM andW are unknown, we can use the ‘empirical linear Bayes rule’ M̂ + Ŵ (θ̂−

M̂ ) with M̂ and Ŵ estimated from the data (Efron 1973). Then it results in a partially

empirical linear Bayes (PELB) estimator of γ̂(θ) of the form

γ̂PELB = γ̂ + Îγθ(Îθθ)−1{(1− Ŵ )(M̂ − θ̂)}.

We consider a typical example of a mixture distribution θk ∼ p δ(0) + (1 − p)N(0, τ 2),

where δ(0) is a point mass at 0 reflecting G-E independence. The population level G-E

association structure is assumed as a mixture distribution reflecting that a fraction, say p,

of the studies have G-E independence holding, whereas the remaining studies (a fraction

of 1− p) show some departures from the independence assumption. For this distribution,

we have Mk = 0 and Vk = (1 − p)τ 2 for k = 1, ..., K. So the ‘empirical linear Bayes

rule’ is Ŵ θ̂, where we use Ŵk = (1−p̂)τ̂2
(1−p̂)τ̂2+σ̂2

θk

with p̂ and τ̂ 2 obtained by maximizing the

marginal likelihood of θ̂k ∼ pN(0, σ̂2
θk

) + (1− p)N(0, σ̂2
θk

+ τ 2). The details are shown in

Appendix B.4.
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5.3 A Simulation Study

Simulation scenarios

We considered a simulation study to compare the relative performances of the proposed

methods, including (a) the standard logistic regression analysis; (b) the constrained and

unconstrained estimator based on the retrospective likelihood method; (c) the proposed EB

estimator (EB1, EB2 and EB3) that combines the constrained and unconstrained estimator.

The relative performances were also compared under both IPD and meta-analytic setting.

We considered S = (S1, S2), where S1 is a binary variable with P (S1 = 1) = 0.55

and P (S1 = 0) = 0.45, and S2 is a continuous variable follows N(0, 1). We generated the

environmental covariate as E = min(10, exp(X)), where X follows a normal distribution

with the mean parameter depends on S1. In particular, X|S1 = 0 ∼ N(0, 1) and X|S1 =

1 ∼ N(0.05, 1). Conditional on (E,S), we generated a binary genetic factor G through a

logistic model of the form

P (Gki = 1|Eki,Ski) = H{η∗0k + η∗>k Ski + θ∗kEki},

where η∗>k = (η∗1k, η
∗
2k). We set η∗1k

iid∼ Uniform(0.1, 0.3) and η∗2k
iid∼ Uniform(0, 0.2)

to reflect a strong G-S association. To explore the role of departure from G-E inde-

pendence (conditional on S), the G-E association is set as θ∗k = 0 corresponding to G-

E independence; and set as θ∗k
iid∼ Uniform(−c, c) corresponding to G-E dependence,

where we considered c = 0.2 and 0.5 corresponding to modest and strong G-E associ-

ations. We also considered the situation where G-E associations follow a mixture dis-

tribution θ∗k ∼ p δ(0) + (1 − p)Uniform(−c, c) (choices of p and c are given in Table

5.3). Here a fraction (say p) of the studies have G-E independence holding, whereas

the remaining studies show some departures from the independence assumption. We set

η∗0k
iid∼ Uniform(−1.6,−1.3) so that the MAF of G is 0.2. Conditional on (G,E,S), we
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generated a binary disease outcome D from the logistic regression model

P (Dki = 1|Gki, Eki,Ski) = H{γ∗0k + γ∗GGki + γ∗EEki + γ∗GEGkiEki + γ∗>S Ski}.

We set (γ∗G, γ
∗
E, γ

∗
GE;γ∗>S ) = (0.2, 0.1, 0.1; 0.1, 0.05) to reflect small to modest main and

interaction effects between G and E, along with a modest stratification risk factor S. We

set γ∗0k
iid∼ Uniform(−4.6,−4.2) such that the marginal probability of the disease in the

population is 2%. When θ∗k = 0, the low disease prevalence leads to G-E independence in

controls approximately.

We generated data (D,G,E,S) from a large cohort including a total of 5, 000, 000

patients, divided by K = 10 sub-cohorts with different sample sizes (N1 = 1, 000, 000;

N2 = 750, 000; Nk = 500, 000, for k = 3, 4; Nk = 400, 000, for k = 5, .., 9; N10 =

250, 000). In each replication of our simulation, we constructed a case-control data set

with case-control ratio 1:1 and a total sample size N = 5000 from the same cohort. In

particular, we sampled nk = Nk/1000 patients (0.5nk cases and 0.5nk controls) from

each study k (n1 = 1000; n2 = 750; nk = 500, for k = 3, 4; nk = 400, for k = 5, 9;

n10 = 250). Then we analyzed the case-control data set (including K sub-studies) using

the proposed IPD and meta-analytical methods under each replication.

We carried out R = 1, 000 replications under each setting, and summarized the results

in terms of relative bias (RB = ( 1
R

∑R
r=1 γ̂(r) − γ∗)/γ∗ × 100%), mean of model based

variance (MV = 1
R

∑R
r=1 v̂(γ̂(r))), empirical variance (EV = 1

R−1

∑R
r=1(γ̂(r)− γ̂(r))

2) and

mean squared error (MSE = 1
R

∑R
r=1(γ̂(r) − γ∗)2).

Simulation results

The simulation results are shown in Tables 5.1 and 5.2 with G-E independence and

dependence holding respectively.
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Comparison of methods: As for comparison across methods, we make the following key

observations in Tables 5.1 and 5.2: (1) When G and E are independent conditional on

S, all the methods are unbiased for all the regression parameters; when G and E are

dependent given S, the bias for the constrained estimator could be very large, especially

when G-E association is strong (c = 0.5). In this case, the EB estimators controlled

the bias by putting less weight on the constrained estimator. EB1 is more robust to this

bias compared to EB2 and EB3 especially when G-E association is strong (c = 0.5).

(2) Regardless of the G-E association, there is a precision gain for both γG and γGE

using the constrained estimator as compared to the unconstrained estimator, and the gain

is quite dramatic for γGE . EB1 had greater SE compared to EB2 and EB3 since EB1

is a conservative estimator. The performance of EB2 and EB3 were very similar across

all setting in terms of RB, SE and MSE. (3) Given the total sample size N = 5000,

as comparing the empirical standard errors with the means of the model based standard

errors, we found that the proposed variance estimator for each method (except for γ̃IVW-EB)

performed well, when G-E association is not very strong (c = 0, 0.2). The proposed

variance estimator of the EB estimator underestimate the variance when G-E association

is strong (c = 0.5). (4) when G-E are independent conditional on S, the constrained

estimator had the smallest MSE; in this case, the estimated τ 2 were very close to 0 in both

EB2 and EB3, so EB2 and EB3 showed very similar results to the constrained estimator.

When G and E are dependent conditional on S, EB 1-3 had smaller MSE as compared

to constrained/unconstrained estimators. In particular, when G-E association is modest

(c = 0.2), EB2 and EB3 had smaller MSE compared to EB1; when G-E association is

strong (c = 0.5), EB2 and EB3 had greater MSE compared to EB1.

In summary, as for comparison of the methods, when G and E are independent condi-

tional on S, all the methods are unbiased, and the constrained estimator has smallest SE.
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The EB estimators (especially EB2 and EB3) retain this precision gain by putting more

weight on the constrained estimator. When G and E are dependent conditional on S, the

bias for the constrained estimator could be very large. However, the EB estimators can

control for the bias by putting less weight on the constrained estimator while retaining

certain amount of precision gain, and show advantage in terms of MSE. We also compared

the proposed methods in terms of power and type 1 error. The proposed EB estimators

provide increased power compared to a standard case-control analysis, when G and E

are independent; and have superior control of type 1 error as compared to a constrained

estimator, when G and E are dependent.

Comparison of IPD analysis and meta-analysis: Regardless of the G-E association, we

found that the two analysis showed very similar results in terms of RB, SE and MSE,

under each of the method. This is expected from our theoretical results. As for γ̃IVW-EB,

we observed that it had greater SE and MSE compared to EB1-3, especially whenG-E are

dependent, implying that pooling the original EB estimator across studies is less efficient

than modifying the weights to borrow strength across studies.

5.4 Application: Data analysis for the type 2 diabetes study

The proposed methods were applied to the data from a set of studies investigating T2D,

which has been used as the data example in chapter 4 as well. A number of SNPs in the

FTO gene region (16q12.2) have previously been identified to be associated with T2D and

BMI in the DIAGRAM consortium (Zeggini et al. (2008), Voight et al. (2010)). Variants

at FTO are known to influence T2D predisposition through an effect on BMI (Freathy

et al. (2008), Voight et al. (2010)). Age, BMI and gender are all known risk factors for

T2D. In this chapter, we investigate whether SNPs in FTO gene modifies the effect of

environmental factors (e.g. age and BMI) on T2D.
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Among the 8 cohorts, the T2D case-control status was identified by the glucose toler-

ance category, case: fasting glucose≥ 7.0 mmol/l or two-hour glucose≥ 11.1 mmol/l;

control: fasting glucose< 6.1 mmol/l and two-hour glucose< 7.8 mmol/l. We geno-

typed all the T2D cases and portions of controls under budget allowance. FUSION-FSIGT

and DPS cohort are not valid for a case-control study. The descriptive summary statistics

for the genotyped case-control data sets from the remaining 6 cohorts (D2D2007, DIA-

GEN, FUSION S2, HUNT, METSIM, TROMSO) are shown in Table 4.3, by case-control

status. We have a total of N = 7597 individuals (3120 cases and 4477 controls), with

sample sizes nk relatively constant but the case-control ratio varying across studies (Ta-

ble 5.5). The case group has significantly older age (62.7 v.s. 59.2, P-value<0.001),

higher BMI (29.8 v.s. 26.3, P-value<0.001), lower percentage of females (39% v.s.

47%, P-value<0.001) than those in the control group. We examined 9 SNPs in the FTO

gene including rs1121980, rs11642841, rs12149832, rs1421085, rs17817449, rs8050136,

rs9930506, rs9941349 and rs6499640, which are in high linkage disequilibrium. For each

SNP, the MAF ranges 0.4-0.5 and very constant across studies. This is not surprising since

the study populations are all European (most are Finnish).

For demonstration purpose, we present our analysis for three representative scenarios:

(1) weak G-E association between age and rs11642841 (supporting G-E independence);

(2) modest G-E association between BMI and rs1121980; and (3) strong G-E association

between BMI and rs6499640 (supporting G-E dependence), which are reflected in the

(conditional) G-E association in the control group across the 6 case-control studies. The

corresponding G-E correlations were shown in Table 5.5. We explored GEIs on T2D (Y )

under the three scenarios. We consider S = (S1, S2) as the stratification variable, in which

S1 is age (BMI) when E is BMI (age), and S2 is gender.

Comparison of methods: The results comparing across methods, under both IPD analysis
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and meta-analysis, were shown in Table 5.6. Regardless of the G-E association, we ob-

served a precision gain for γGE using the constrained or EB estimators, as compared to

the unconstrained or logistic regression estimator. In particular, we make the following

two key observations: (1) For age×rs11642841 (weak G-E association), all the methods

provide very close estimates for all the regression parameters. The constrained model pro-

vided the smallest SE; since the estimated τ 2 was 0 in both EB2 and EB3, they showed

the same results as the constrained estimator. (2) For BMI×rs1121980 (modest) and

BMI×rs6499640 (strong G-E association), the constrained estimate was quite different

from the unconstrained estimate for γGE . The EB estimates (EB1-3) were intermediate,

and relatively close to the unconstrain estimates. Moreover, the EB estimators improved

the precision substantially as compared to the unconstrained or logistic regression estima-

tor.

Comparison of IPD analysis and meta-analysis: We found that the two analyses showed

very consistent results for each of the method in terms of estimates and SEs. As for the

IVW EB estimator, we observed that it had greater SE compared to EB2 and EB3 for the

GEI parameter γGE , especially when G-E association is strong.

Results: Under an additive model, with 1 kg/m2 increase in BMI, the odds ratio of T2D

is 1.17 (95% CI: (1.15, 1.19)) given rs6499640=GG, 1.20 (95% CI: (1.17, 1.24)) given

rs6499640=AG or GA; and 1.22 (95% CI: (1.19, 1.26)) given rs6499640=AA. The trend

of the odds ratios of T2D among the three groups defined by rs6499640 indicated that the

presence of minor allele A in rs6499640 enhanced the association between BMI and T2D.

5.5 Discussion

There has been abundance of literature on using G-E independence for case-control

studies of G-E interaction. However, there are no papers thus far to study the role of G-
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E independence in a meta-analysis setting where the assumption could vary within each

study/cohort. In this chapter, we proposed a meta-analysis approach that uses retrospec-

tive likelihood as the basis for influence and leverages the G-E independence assumption

in a data-adaptive way. The proposed shrinkage estimator provides optimal choices for

weights corresponding to constrained and unconstrained models by using information on

G-E association parameters derived from multiple studies/cohorts. Our work showed that

this novel estimator has better MSE properties than IVW estimator pooling study spe-

cific constrained, unconstrained or EB estimators. Our work also lead to many possible

extensions such as a mixture distribution prior on the G-E association parameters.
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Table 5.1: Comparison of the proposed methodsa when G-E independence holds, strati-
fied by IPD analysis and meta-analysis.

Method a E G GXE
IPD analysis RBb SE1b SE2b MSEb RB SE1 SE2 MSE RB SE1 SE2 MSE
Standard logistic -0.001 0.020 0.020 0.412 0.006 0.067 0.065 4.151 0.016 0.025 0.024 0.603
Unconstrained -0.007 0.018 0.019 0.353 0.014 0.064 0.062 3.816 -0.023 0.023 0.022 0.461
Constrained -0.004 0.016 0.017 0.276 0.023 0.056 0.054 2.975 -0.036 0.011 0.011 0.127
EB1 -0.007 0.016 0.018 0.310 0.016 0.055 0.058 3.323 -0.026 0.016 0.016 0.254
EB2 -0.004 0.016 0.017 0.276 0.023 0.056 0.054 2.976 -0.036 0.011 0.011 0.128
EB3 -0.004 0.016 0.017 0.276 0.022 0.056 0.054 2.973 -0.036 0.011 0.011 0.127
Meta-analysis RB SE1 SE2 MSE RB SE1 SE2 MSE RB SE1 SE2 MSE
Standard logistic (IVW) 0.009 0.020 0.020 0.407 -0.018 0.066 0.064 4.114 -0.011 0.025 0.023 0.534
Unconstrained (IVW) -0.025 0.018 0.018 0.345 0.035 0.064 0.061 3.766 -0.012 0.024 0.022 0.498
Constrained (IVW) -0.024 0.017 0.016 0.273 0.014 0.056 0.054 2.931 -0.034 0.012 0.011 0.123
EB1 -0.018 0.015 0.017 0.300 0.033 0.053 0.057 3.284 -0.025 0.015 0.015 0.276
EB2 -0.024 0.017 0.016 0.273 0.015 0.056 0.054 2.927 -0.025 0.012 0.011 0.124
EB3 -0.024 0.017 0.016 0.273 0.015 0.056 0.054 2.931 -0.026 0.012 0.011 0.125
EB (IVW) -0.030 0.017 0.017 0.294 0.017 0.057 0.056 3.133 -0.013 0.017 0.015 0.329
EB (HIVW) -0.026 0.017 0.017 0.289 0.016 0.057 0.056 3.081 -0.019 0.016 0.015 0.302
a Constrained/unconstrained: the retrospective likelihood method with/without G-E independence assumption. EB1-3: EB

estimators of Â using the following strategies: (1) a conservative estimator θ̂θ̂
>

; (2) Â = diag(τ̂ 2, ..., τ̂ 2)(K×K), where τ̂ 2

is the MLE that maximizes the marginal likelihood of θ̂; (3) Â = diag(τ̄ 2, ..., τ̄ 2)(K×K), where τ̄ 2 is the estimated posterior
mean of τ 2|θ̂. EB (IVW): Inverse variance weighted EB estimator combining EB estimators across study.

b RB: relative bias; SE1: mean of model based standard error; SE2: empirical standard error; MSE: mean squared error.
(MSEs have been multiplied by 1000.)
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Table 5.2: Comparison of the proposed methodsa when G-E independence is violated,
stratified by IPD analysis and meta-analysis.

θ∗k
iid∼ Uniform(−0.2, 0.2) E G GXE

IPD analysis RBb SE1b SE2b MSEb RB SE1 SE2 MSE RB SE1 SE2 MSE
Standard logistic -0.001 0.018 0.019 0.395 0.001 0.066 0.063 3.982 -0.013 0.024 0.025 0.619
Unconstrained 0.020 0.018 0.019 0.428 0.029 0.064 0.062 4.022 -0.020 0.023 0.023 0.595
Constrained 0.062 0.016 0.017 0.419 0.070 0.056 0.054 3.841 -0.177 0.012 0.011 0.630
EB1 0.030 0.016 0.018 0.402 0.037 0.055 0.058 3.603 -0.063 0.015 0.018 0.439
EB2 0.048 0.016 0.017 0.407 0.038 0.055 0.054 3.654 -0.072 0.012 0.012 0.384
EB3 0.053 0.016 0.017 0.416 0.039 0.055 0.054 3.639 -0.071 0.012 0.012 0.381
Meta-analysis RB SE1 SE2 MSE RB SE1 SE2 MSE RB SE1 SE2 MSE
Standard logistic(IVW) 0.027 0.019 0.019 0.370 -0.017 0.066 0.062 4.047 -0.026 0.024 0.025 0.629
Unconstrained(IVW) 0.025 0.018 0.018 0.383 0.019 0.064 0.061 4.118 -0.025 0.023 0.023 0.595
Constrained(IVW) 0.071 0.016 0.016 0.387 0.056 0.056 0.054 3.847 -0.246 0.012 0.011 0.727
EB1 0.039 0.015 0.017 0.384 0.036 0.052 0.057 3.635 -0.066 0.015 0.017 0.424
EB2 0.043 0.016 0.016 0.384 0.039 0.055 0.054 3.612 -0.085 0.012 0.011 0.391
EB3 0.042 0.016 0.016 0.383 0.038 0.055 0.054 3.608 -0.084 0.012 0.011 0.392
EB (IVW) 0.071 0.017 0.017 0.364 0.038 0.059 0.057 3.593 -0.066 0.018 0.023 0.573
EB (HIVW) 0.062 0.017 0.017 0.374 0.038 0.057 0.057 3.533 -0.062 0.015 0.019 0.413

θ∗k
iid∼ Uniform(−0.5, 0.5) E G GXE

IPD analysis RB SE1 SE2 MSE RB SE1 SE2 MSE RB SE1 SE2 MSE
Standard logistic 0.028 0.018 0.017 0.293 -0.040 0.064 0.058 3.462 0.036 0.020 0.019 0.365
Unconstrained 0.041 0.018 0.017 0.300 -0.048 0.063 0.057 3.346 0.011 0.019 0.018 0.353
Constrained -0.221 0.017 0.015 0.719 -0.245 0.058 0.055 5.358 0.414 0.011 0.010 1.808
EB1 -0.002 0.016 0.017 0.303 -0.073 0.054 0.057 3.446 0.073 0.012 0.019 0.345
EB2 -0.112 0.016 0.017 0.408 -0.153 0.058 0.056 4.014 0.240 0.012 0.016 0.616
EB3 -0.105 0.016 0.017 0.396 -0.147 0.058 0.056 3.960 0.229 0.012 0.016 0.675
Meta-analysis RB SE1 SE2 MSE RB SE1 SE2 MSE RB SE1 SE2 MSE
Standard logistic(IVW) 0.015 0.018 0.017 0.277 -0.042 0.065 0.057 3.278 -0.023 0.020 0.019 0.351
Unconstrained(IVW) 0.023 0.018 0.017 0.278 -0.035 0.063 0.056 3.219 -0.033 0.020 0.018 0.344
Constrained(IVW) 0.008 0.017 0.015 0.217 -0.202 0.058 0.053 4.436 0.563 0.014 0.010 3.275
EB1 0.023 0.016 0.016 0.272 -0.042 0.056 0.056 3.206 -0.002 0.014 0.018 0.323
EB2 0.022 0.017 0.016 0.250 -0.082 0.058 0.055 3.245 0.160 0.013 0.018 0.567
EB3 0.023 0.017 0.016 0.252 -0.078 0.058 0.055 3.233 0.143 0.013 0.018 0.522
EB (IVW) 0.091 0.018 0.017 0.376 -0.013 0.063 0.060 3.597 -0.153 0.019 0.022 0.709
EB (HIVW) 0.067 0.017 0.017 0.296 -0.012 0.059 0.060 3.467 -0.147 0.017 0.019 0.653
a Constrained/unconstrained: the retrospective likelihood method with/without G-E independence assumption. EB1-3: EB

estimators of Â using the following strategies: (1) a conservative estimator θ̂θ̂
>

; (2) Â = diag(τ̂ 2, ..., τ̂ 2)(K×K), where τ̂ 2

is the MLE that maximizes the marginal likelihood of θ̂; (3) Â = diag(τ̄ 2, ..., τ̄ 2)(K×K), where τ̄ 2 is the estimated posterior
mean of τ 2|θ̂. EB (IVW): Inverse variance weighted EB estimator combining EB estimators across study.

b RB: relative bias; SE1: mean of model based standard error; SE2: empirical standard error; MSE: mean squared error. (MSEs
have been multiplied by 1000.)
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Table 5.3: Comparison of the proposed methodsa when G-E independence is violated (G-
E associations follow a mixture distribution), stratified by IPD analysis and
meta-analysis.

θ∗k
iid∼ 0.4δ(0) + 0.6U(−0.3, 0.3) E G GXE

IPD analysis RBb SE1b SE2b MSEb RB SE1 SE2 MSE RB SE1 SE2 MSE
Standard logistic -0.013 0.018 0.018 0.336 0.016 0.064 0.065 4.317 0.019 0.022 0.022 0.489
Unconstrained -0.004 0.018 0.018 0.322 0.015 0.063 0.063 3.944 0.004 0.021 0.021 0.431
Constrained -0.058 0.017 0.017 0.333 0.027 0.056 0.055 3.185 0.055 0.011 0.011 0.136
EB1 -0.036 0.015 0.017 0.317 0.026 0.054 0.058 3.515 0.017 0.015 0.016 0.250
EB2 -0.053 0.016 0.017 0.325 0.028 0.056 0.056 3.232 0.030 0.011 0.012 0.138
EB3 -0.052 0.016 0.017 0.324 0.028 0.056 0.056 3.239 0.029 0.011 0.012 0.140
Meta-analysis RB SE1 SE2 MSE RB SE1 SE2 MSE RB SE1 SE2 MSE
Standard logistic(IVW) -0.027 0.018 0.018 0.326 0.010 0.065 0.064 4.249 -0.052 0.022 0.021 0.478
Unconstrained(IVW) -0.025 0.018 0.018 0.315 0.020 0.063 0.062 3.904 -0.047 0.021 0.020 0.434
Constrained(IVW) 0.008 0.017 0.017 0.279 0.044 0.056 0.054 3.115 0.101 0.012 0.011 0.214
EB1 -0.005 0.015 0.017 0.287 0.034 0.050 0.058 3.551 -0.013 0.014 0.017 0.302
EB2 0.007 0.016 0.017 0.278 0.034 0.056 0.055 3.218 0.060 0.012 0.012 0.182
EB3 0.007 0.016 0.017 0.278 0.035 0.056 0.055 3.231 0.056 0.012 0.012 0.183
EB (IVW) 0.031 0.017 0.017 0.309 0.078 0.061 0.061 4.311 -0.138 0.018 0.021 0.617
EB (HIVW) 0.026 0.016 0.017 0.289 0.064 0.059 0.060 3.957 -0.103 0.016 0.018 0.412

θ∗k
iid∼ 0.4δ(0) + 0.6U(−0.5, 0.5) E G GXE

IPD analysis RB SE1 SE2 MSE RB SE1 SE2 MSE RB SE1 SE2 MSE
Standard logistic 0.008 0.018 0.017 0.297 -0.020 0.064 0.062 3.749 0.031 0.021 0.021 0.454
Unconstrained 0.040 0.018 0.017 0.310 -0.022 0.063 0.060 3.633 -0.027 0.020 0.020 0.407
Constrained -0.107 0.017 0.016 0.380 -0.096 0.057 0.054 3.262 0.284 0.012 0.011 0.593
EB1 -0.007 0.016 0.017 0.302 -0.027 0.052 0.058 3.351 0.029 0.014 0.018 0.334
EB2 -0.069 0.016 0.017 0.324 -0.064 0.057 0.055 3.175 0.122 0.012 0.013 0.312
EB3 -0.066 0.016 0.017 0.321 -0.061 0.057 0.055 3.179 0.116 0.012 0.013 0.309
Meta-analysis RB SE1 SE2 MSE RB SE1 SE2 MSE RB SE1 SE2 MSE
Standard logistic(IVW) -0.006 0.018 0.017 0.279 -0.011 0.065 0.061 3.811 -0.031 0.021 0.021 0.448
Unconstrained(IVW) 0.019 0.018 0.017 0.280 -0.011 0.063 0.060 3.630 -0.031 0.020 0.020 0.460
Constrained(IVW) 0.080 0.017 0.016 0.315 -0.022 0.058 0.053 2.818 0.240 0.013 0.010 0.673
EB1 0.033 0.016 0.016 0.274 -0.002 0.054 0.058 3.382 -0.037 0.014 0.020 0.400
EB2 0.064 0.017 0.016 0.287 0.003 0.057 0.055 2.979 0.087 0.012 0.016 0.322
EB3 0.062 0.017 0.016 0.285 0.003 0.057 0.055 3.003 0.076 0.012 0.016 0.320
EB (IVW) 0.060 0.017 0.016 0.290 -0.002 0.061 0.059 3.438 -0.130 0.018 0.021 0.594
EB (HIVW) 0.060 0.017 0.016 0.288 -0.001 0.060 0.059 3.295 -0.117 0.018 0.020 0.578
a Constrained/unconstrained: the retrospective likelihood method with/without G-E independence assumption. EB1-3: EB

estimators of Â using the following strategies: (1) a conservative estimator θ̂θ̂
>

; (2) Â = diag(τ̂ 2, ..., τ̂ 2)(K×K), where τ̂ 2

is the MLE that maximizes the marginal likelihood of θ̂; (3) Â = diag(τ̄ 2, ..., τ̄ 2)(K×K), where τ̄ 2 is the estimated posterior
mean of τ 2|θ̂. EB (IVW): Inverse variance weighted EB estimator combining EB estimators across study.

b RB: relative bias; SE1: mean of model based standard error; SE2: empirical standard error; MSE: mean squared error. (MSEs
have been multiplied by 1000.)
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Table 5.4: Comparison of the proposed IPD/meta-analytical methods in terms of power
and Type-I error, where E is standardized.

Power (γ∗GE = 0.2) Type-I error (γ∗GE = 0)
IPD analysis θ∗k = 0 θ∗k

iid∼ U(−0.5, 0.5) θ∗k = 0 θ∗k
iid∼ U(−0.5, 0.5)

Standard logistic 0.69 0.70 0.05 0.05
Unconstrained 0.71 0.72 0.05 0.06
Constrained 0.92 0.95 0.06 0.38
EB1 0.81 0.78 0.05 0.07
EB2 0.84 0.81 0.06 0.11
EB3 0.82 0.80 0.06 0.12
Meta-analysis
Standard logistic 0.68 0.69 0.05 0.05
Unconstrained 0.70 0.72 0.05 0.06
Constrained 0.92 0.94 0.06 0.35
EB1 0.79 0.78 0.05 0.06
EB2 0.81 0.82 0.06 0.10
EB3 0.81 0.81 0.05 0.12
EB (IVW) 0.77 0.81 0.05 0.14
EB (HIVW) 0.80 0.82 0.05 0.11
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Table 5.6: Results comparing the proposed IPD and meta-analytical methods under differ-
ent scenarios of G-E dependence/independence for the T2D study, where we
used type 2 diabetes for Y , SNPs on FTO gene for G, either age or BMI for E
(the other for S1) and gender for S2.

Methods a age∗∗∗ rs11642841∗ age×rs11642841
IPD analysis Estb SEb 95% CIb Est SE 95% CI Est SE 95% CI
Standard logistic 0.398 0.039 0.321 0.475 0.733 0.369 0.009 1.456 -0.025 0.034 -0.091 0.042
Unconstrained 0.403 0.037 0.329 0.476 0.731 0.370 0.005 1.457 -0.020 0.031 -0.081 0.041
Constrained 0.410 0.034 0.343 0.477 0.724 0.369 0.001 1.448 -0.028 0.025 -0.077 0.021
EB1 0.410 0.035 0.340 0.479 0.725 0.347 0.044 1.406 -0.027 0.029 -0.084 0.029
EB2 0.410 0.034 0.343 0.477 0.724 0.369 0.001 1.448 -0.028 0.025 -0.077 0.021
EB3 0.410 0.034 0.343 0.477 0.724 0.369 0.001 1.448 -0.028 0.025 -0.077 0.021
Meta-analysis Est SE 95% CI Est SE 95% CI Est SE 95% CI
Standard logistic 0.358 0.039 0.280 0.435 0.789 0.379 0.047 1.531 -0.026 0.034 -0.093 0.040
Unconstrained 0.352 0.038 0.278 0.426 0.753 0.378 0.013 1.493 -0.019 0.031 -0.080 0.042
Constrained 0.357 0.034 0.290 0.424 0.724 0.371 -0.002 1.451 -0.027 0.025 -0.075 0.022
EB1 0.357 0.036 0.286 0.427 0.726 0.348 0.045 1.407 -0.026 0.030 -0.084 0.032
EB2 0.357 0.034 0.290 0.424 0.724 0.371 -0.002 1.451 -0.027 0.025 -0.075 0.022
EB3 0.357 0.034 0.290 0.424 0.724 0.371 -0.002 1.451 -0.027 0.025 -0.075 0.022
EB (IVW) 0.350 0.035 0.280 0.419 0.787 0.376 0.051 1.524 -0.016 0.028 -0.070 0.038
EB (HIVW) 0.353 0.035 0.282 0.422 0.767 0.374 0.042 1.484 -0.024 0.029 -0.081 0.033

BMI∗∗∗ rs6499640 BMI×rs6499640∗

IPD analysis Est SE 95% CI Est SE 95% CI Est SE 95% CI
Standard logistic 1.568 0.093 1.386 1.750 -0.225 0.378 -0.967 0.516 0.229 0.090 0.053 0.405
Unconstrained 1.590 0.085 1.424 1.756 -0.216 0.374 -0.949 0.517 0.202 0.074 0.057 0.347
Constrained 1.735 0.073 1.591 1.878 -0.484 0.365 -1.200 0.232 0.018 0.048 -0.076 0.113
EB1 1.608 0.068 1.474 1.742 -0.251 0.344 -0.924 0.423 0.179 0.052 0.076 0.281
EB2 1.609 0.078 1.456 1.761 -0.252 0.385 -1.006 0.502 0.178 0.061 0.059 0.297
EB3 1.603 0.079 1.448 1.758 -0.241 0.386 -0.998 0.516 0.185 0.064 0.061 0.310
Meta-analysis Est SE 95% CI Est SE 95% CI Est SE 95% CI
Standard logistic 1.452 0.093 1.268 1.635 -0.147 0.387 -0.906 0.612 0.222 0.091 0.044 0.400
Unconstrained 1.479 0.085 1.311 1.646 -0.160 0.381 -0.906 0.586 0.202 0.074 0.056 0.348
Constrained 1.630 0.074 1.485 1.775 -0.447 0.372 -1.175 0.282 0.015 0.048 -0.080 0.110
EB1 1.498 0.070 1.361 1.634 -0.196 0.350 -0.882 0.490 0.179 0.053 0.076 0.282
EB2 1.499 0.078 1.345 1.652 -0.198 0.392 -0.966 0.571 0.177 0.061 0.057 0.297
EB3 1.493 0.080 1.336 1.649 -0.186 0.394 -0.958 0.586 0.185 0.064 0.060 0.310
EB (IVW) 1.572 0.077 1.421 1.724 -0.440 0.375 -1.174 0.294 0.107 0.067 -0.026 0.239
EB (HIVW) 1.543 0.077 1.416 1.718 -0.375 0.381 -1.012 0.286 0.147 0.060 0.029 0.264

BMI∗∗∗ rs1121980 BMI×rs1121980∗

IPD analysis Est SE 95% CI Est SE 95% CI Est SE 95% CI
Standard logistic 1.703 0.100 1.507 1.898 0.476 0.370 -0.250 1.201 0.049 0.087 -0.121 0.218
Unconstrained 1.691 0.090 1.514 1.868 0.466 0.368 -0.256 1.188 0.061 0.073 -0.081 0.204
Constrained 1.621 0.076 1.472 1.769 0.593 0.360 -0.113 1.300 0.142 0.047 0.049 0.235
EB1 1.661 0.071 1.522 1.801 0.520 0.313 -0.094 1.134 0.095 0.050 -0.002 0.193
EB2 1.658 0.074 1.514 1.802 0.525 0.369 -0.197 1.248 0.099 0.043 0.016 0.182
EB3 1.665 0.075 1.517 1.813 0.513 0.372 -0.216 1.241 0.091 0.047 0.001 0.182
Meta-analysis Est SE 95% CI Est SE 95% CI Est SE 95% CI
Standard logistic 1.578 0.101 1.379 1.777 0.578 0.378 -0.164 1.320 0.060 0.088 -0.112 0.232
Unconstrained 1.579 0.091 1.400 1.757 0.563 0.375 -0.172 1.298 0.064 0.073 -0.080 0.207
Constrained 1.514 0.077 1.364 1.664 0.662 0.367 -0.057 1.381 0.138 0.048 0.045 0.232
EB1 1.548 0.071 1.408 1.688 0.609 0.315 -0.008 1.227 0.099 0.049 0.003 0.194
EB2 1.543 0.074 1.398 1.687 0.618 0.372 -0.112 1.347 0.105 0.040 0.026 0.184
EB3 1.549 0.075 1.402 1.696 0.608 0.374 -0.126 1.342 0.098 0.043 0.013 0.182
EB (IVW) 1.511 0.086 1.343 1.679 0.662 0.370 -0.064 1.388 0.137 0.065 0.009 0.264
EB (HIVW) 1.526 0.082 1.356 1.677 0.632 0.371 -0.043 1.418 0.142 0.052 0.029 0.262
a Constrained/unconstrained: the retrospective likelihood method with/withoutG-E independence assumption. EB1-3:

EB estimators of Â using the following strategies: (1) a conservative estimator θ̂θ̂
>

; (2) Â = diag(τ̂ 2, ..., τ̂ 2)(K×K),
where τ̂ 2 is the MLE that maximizes the marginal likelihood of θ̂; (3) Â = diag(τ̄ 2, ..., τ̄ 2)(K×K), where τ̄ 2 is the
estimated posterior mean of τ 2|θ̂. EB (IVW): Inverse variance weighted EB estimator combining EB estimators
across study.

b Est: estimate; SE: standard error; CI: confidence interval. (All numbers have been multiplied by 10 to compare the
results in 3 significant digits.)
∗ ∗ < 0.05; ∗∗ < 0.01; ∗ ∗ ∗ < 0.001.



CHAPTER VI

Conclusion

My dissertation work is around the theme of Bayesian modeling for environmental

association and gene-environment interaction under complex epidemiologic study designs.

The first two projects considered the problems of characterizing effect of environmental

exposure on health outcomes under complex sampling designs, in particular, a matched

case-control study with multiple disease sub-types and nonlinear odds ratio functions for

point source modeling in project 2 and Bayesian analysis of time-series data under case-

crossover designs under project 3. In the last two projects, we addressed several important

issues in meta-analysis ofG-E interactions. We studied the role ofG-E independence and

environmental heterogeneity across studies on the characteristics of several meta-analysis

approaches. We focused on quantitative traits in project 3 and dichotomous traits under

case-control sampling in the last project. The following paragraphs list the corresponding

conclusion remarks for each chapter respectively.

In the first project, we considered sub-types within cases under a matched case-control

design for point sources modeling with nonlinear odds ratio functions. Frequentist and

Bayesian inference methods were evaluated. With multiple parameters and non-linear

model, Bayesian methods using MCMC techniques appear to have advantages in terms of

estimation stability and precision over the frequentist alternatives. Moreover, the posterior

127
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estimate of the odds ratio function f̂k and the corresponding HPD interval can be obtained

based on exact posterior draws that avoids large sample approximation such as the Delta

theorem for a frequentist MLE. For a MLE, the asymptotic properties might not hold for

the complex likelihood derived from the non-linear models, especially when the sample

size is not large. The proposed methods were applied to a population-based matched case-

control study investigating associations between acute asthma outcomes and proximity

of residence to major roads by analyzing Medicaid claims data for the pediatric asthma

population in Detroit, MI, from 2004-2006. We addressed the research problem regarding

associations between acute asthma risk and proximity of residence to major roads, and

showed that the proposed PCM offered better fit compared to the model with standard

case-control status. The results indicated that the odds ratio at the point source is 1.2-1.3

as compared to the background odds of disease in the case-control population, and the

freeway effect on asthma lasts up to around 500 meters where the first 250 meters have

stronger influence.

The second project considered Bayesian analysis of time-series data under case-crossover

designs. The contribution of this project is two-fold. First, we established Bayesian equiv-

alence results that require characterization of the time function St in a log-linear model

for a given choice of window W (t) under a particular case-crossover design, and re-

quire characterization of the set of priors under which the posterior distributions of the

risk ratio parameters based on a case-crossover design and log-linear model are identical.

Second, we considered a more general full likelihood-based approach which made less

restrictive assumptions on the baseline risk models and exposure series. We proposed a

semi-parametric Bayesian approach using a Dirichlet process prior to handle the random

nuisance parameters that appear in a full likelihood formulation under a case-crossover

design. This work leads to many potential extensions where a Bayesian analysis may have
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attractive features, such as distributed lag linear/non-linear models and hierarchical mod-

els for meta-analyses. The proposed methods were illustrated through the DAMAT study,

but instead of the distance to the major roads, we focused on the effect of ambient air pol-

lutant concentrations on the acute asthma risk. Evidence of significant increases in acute

asthma risk was found with 10 µgm−3 increase in PM2.5 concentrations leading to a risk

ratio ranging from 1.02 to 1.06 across different methods.

The third project considered meta-analysis of G-E interaction for quantitative traits.

In this project, we studied the effect of environmental covariate heterogeneity (within and

between cohorts) on two approaches for fixed-effects meta-analysis: the standard inverse-

variance weighted meta-analysis and a meta-regression approach. Akin to the results ob-

tained in Simmonds and Higgins (2007), we obtain analytical efficiency expressions for

both methods under the assumption of gene-environment independence. The relative effi-

ciency of the two methods depend on the ratio of within versus between cohort variance of

the environmental covariate. We propose to use an adaptively weighted estimator (AWE),

as a combination of meta-analysis and meta-regression estimators, that can be used as a

default choice, retaining full efficiency of the ‘gold standard’ joint analysis for the in-

teraction parameter using individual level data under certain natural assumptions. The

AWE improves efficiency by combining meta-analysis and meta-regression based on only

univariate summary statistics from each study, and bypasses issues with sharing of indi-

vidual level data or multivariate information matrices across studies without sacrificing

efficiency. AWE also has advantage over MIVW when the effect of G or E are uncom-

mon across studies. We compared the performance of the proposed methods under a wide

spectrum of scenarios and showed that the AWE can serve as a default estimator. The

methods were illustrated through meta-analysis of GEI between SNP in the FTO gene and

BMI on HDL-C data from a set of T2D studies. Under an additive model, with 1 kg/m2
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increase in BMI, HDL-C level on average decreased by 1.73% (95% CI: (1.57, 1.90)%)

given rs1121980=GG, by 1.54% (95% CI: (1.44, 1.64)%) given rs1121980=AG or GA;

and by 1.35% (95% CI: (1.17, 1.53)%) given rs1121980=AA. The results indicated that

the presence of minor allele A in rs1121980 attenuated the negative association between

BMI and HDL-C.

The last project extended the work of project 3 to dichotomous traits under case-control

studies. In this project, we proposed a meta-analysis approach that uses retrospective like-

lihood as the basis for inference and leverages the G-E independence assumption in a

data-adaptive way. The proposed shrinkage estimator provides optimal choices for weights

corresponding to constrained and unconstrained models by using information on G-E as-

sociation parameters derived from multiple studies/cohorts. Our work showed that this

novel estimator has better MSE properties than IVW estimator pooling study specific con-

strained, unconstrained or EB estimators. The results were illustrated through the T2D

studies as well. We used T2D status as the case-control outcome and studied the GEI be-

tween SNPs in the FTO gene and environmental factors such as age and BMI for demon-

stration purpose. Under an additive model, with 1 kg/m2 increase in BMI, the odds ratio

of T2D is 1.17 (95% CI: (1.15, 1.19)) given rs6499640=GG, 1.20 (95% CI: (1.17, 1.24))

given rs6499640=AG or GA; and 1.22 (95% CI: (1.19, 1.26)) given rs6499640=AA. The

trend of the odds ratios of T2D among the three groups defined by rs6499640 indicated

that the presence of minor allele A in rs6499640 enhanced the association between BMI

and T2D.

In summary, my dissertation work is expected to contribute to important analytical

and methodological issues that have relevance and applications in the area of genetic and

environmental epidemiology.
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APPENDIX A

(Appendix Figures and Tables)

A.1 Supplementary Figures and Tables for Chapter 2

Figure A.1: Estimated posterior densities for different settings of prior choices for the one
point source polychotomous category model for the Detroit Medicaid data,
as a sensitivity analysis.
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(a) Estimated posterior densities using normal priors on log (1 +α) and log (β)
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(b) Estimated posterior densities using uniform priors on (−1, αmax) and
(−1, βmax)
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Figure A.2: Estimated posterior densities for different settings of prior choices for the one
point source binary model and homogeneous adjacent category model for
the Detroit Medicaid data. Prior 1: (µα, µβ) = (0.5, 400) and (σ2

α, σ
2
β) =

(0.25, 150); Prior 2: (µα, µβ) = (0.5, 400) and (σ2
α, σ

2
β) = (0.5, 400).

α

0.0 0.2 0.4 0.6 0.8

β
200 400 600 800 1000

posterior density (P1)
posterior density (P2)

(a) one point source binary model
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(b) one point source homogeneous adjacent category model
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Figure A.3: Estimated posterior densities for different settings of prior choices for the one
point source adjacent category model and polychotomous category model
for the Detroit Medicaid data. Prior 1: (µα1 , µβ1) = (µα2 , µβ2) = (0.5, 400)
and (σ2

α1
, σ2

β1
) = (σ2

α2
, σ2

β2
) = (0.25, 150); Prior 2: (µα1 , µβ1) = (µα2 , µβ2) =

(0.5, 400) and (σ2
α1
, σ2

β1
) = (σ2

α2
, σ2

β2
) = (0.5, 400).
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Table A.1: Summary statistics across the five inference methods for the one point source
adjacent category model (homogeneousness), based onR = 500 simulations
with sample sizeN = 500.

Sample size N=500 u = log(1 + α) v = log(β)

(α, β) Methoda RBb(%) MSEb CPb(%) RB(%) MSE CP(%)
(0.7, 500) MLE 19.6 0.036 97 1.7 0.113 92

Profile 12.9 0.024 98 0.3 0.089 90
IRLS 13.0 0.024 98 0.2 0.088 90
Bayesian P1 -10.3 0.006 98 -0.6 0.017 99
Bayesian P2 5.7 0.008 98 1.2 0.055 98

(0.7, 300) MLE 9.4 0.018 95 0.9 0.087 90
Profile 9.0 0.017 98 -0.8 0.076 91
IRLS 9.4 0.018 98 -0.8 0.076 90
Bayesian P1 -14.2 0.010 93 3.3 0.049 94
Bayesian P2 -1.4 0.010 99 2.0 0.055 93

(0.4, 500) MLE 24.8 0.021 96 -0.2 0.228 80
Profile 24.7 0.023 98 -0.2 0.218 92
IRLS 24.8 0.021 98 -0.2 0.199 92
Bayesian P1 4.4 0.003 100 -0.8 0.016 99
Bayesian P2 17.6 0.009 95 2.7 0.112 98

(0.4, 300) MLE 25.6 0.025 96 -0.3 0.196 87
Profile 25.3 0.025 96 -0.3 0.196 88
IRLS 25.6 0.025 96 -0.3 0.196 88
Bayesian P1 4.1 0.003 100 4.5 0.080 97
Bayesian P2 13.4 0.008 96 4.9 0.204 96

(0.5, 200) MLE 16.2 0.026 98 -0.3 0.192 81
Profile 16.3 0.026 99 -0.3 0.192 89
IRLS 16.2 0.026 99 -0.2 0.192 90
Bayesian P1 -15.8 0.007 96 5.3 0.321 91
Bayesian P2 -5.1 0.007 99 6.0 0.539 86

a MLE: Maximum likelihood estimate; Profile: Profile likelihood based estimate
and confidence interval; IRLS: iteratively re-weighted least squares; Bayesian P1
and P2 refer to two settings of prior choice; Prior 1: (µα, µβ) = (0.5, 400) and
(σ2

α, σ
2
β) = (0.25, 150); Prior 2: (µα, µβ) = (0.5, 400) and (σ2

α, σ
2
β) = (0.5, 400).

b RB: relative bias; MSE: mean squared error; CP: coverage probability.
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A.2 Supplementary Figures and Tables for Chapter 3

Figure A.4: Referent time selections for case-crossover designs.

(a) non-localizable designs

(b) time-stratified design
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A.3 Supplementary Figures and Tables for Chapter 4

Figure A.5: Comparison of the proposed meta-analytical methods (in terms of power) un-
der different scenarios of susceptibility models and covariate heterogeneity
through a simulation study. Setting (a), under both assumptions 1 and 2.
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Figure A.6: Comparison of the proposed meta-analytical methods (in terms of power) un-
der different scenarios of susceptibility models and covariate heterogeneity
through a simulation study. Setting (b), under assumption 1 but not 2.
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Figure A.7: Comparison of the proposed meta-analytical methods (in terms of power) un-
der different scenarios of susceptibility models and covariate heterogeneity
through a simulation study. Setting (c), under assumption 2 but not 1.
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Figure A.8: Comparison of the proposed meta-analytical methods (in terms of power) un-
der different scenarios of susceptibility models and covariate heterogeneity
through a simulation study, for the situation of lack of common set of con-
founders to adjust under both assumptions 1 and 2 (setting a).
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Figure A.9: Comparison of the proposed meta-analytical methods (in terms of power) un-
der different scenarios of susceptibility models and covariate heterogeneity
through a simulation study, for the situation of lack of common set of con-
founders to adjust under assumption 1 but not 2 (setting b).
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Figure A.10: Comparison of the proposed meta-analytical methods (in terms of power)
under different scenarios of susceptibility models and covariate heterogene-
ity through a simulation study, for the situation of lack of common set of
confounders to adjust under assumption 2 but not 1 (setting c).
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Figure A.11: Power curves under misspecified susceptibility models (dominant/additive),
where the generating co-dominant model has δAA = 1.5δAa, and no assump-
tion of gene-environment independence or homogeneity in allele frequencies
is assumed.
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Figure A.12: Marginal SNP (rs1121980) effect against mean covariate values of age and
BMI across cohorts in the FUSION study. Solid line: Meta-regression line;
Dashed line: Meta-regression line without outlier (cohort FUSION-FS for
age and cohort DPS for BMI).
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Table A.6: Comparison of the proposed meta-analytical methods under different scenar-
ios of susceptibility models and covariate heterogeneity through a simulation
study. Setting (a): under both assumptions 1 and 2.

E(WSS/BSS)=2 E(BSS/WSS)=2
Methoda RBb(%) MVb EVb MSEb Power RB (%) MV EV MSE Power

R2=0 Dominant IPD 1.14 1.12 1.12 0.04 1.15 1.12 1.12 0.05
UIVW 1.73 1.71 1.71 0.05 3.39 3.46 3.46 0.05
REM 2.08 1.78 1.78 0.04 4.07 3.58 3.57 0.04
MIVW 1.13 1.12 1.12 0.05 1.15 1.12 1.12 0.05
MR 3.91 4.06 4.06 0.07 1.95 1.82 1.82 0.08
AWE 1.13 1.19 1.19 0.06 1.16 1.19 1.19 0.07

Additive IPD 0.75 0.75 0.75 0.06 0.76 0.68 0.68 0.05
UIVW 1.15 1.11 1.11 0.05 2.25 2.39 2.38 0.06
REM 1.38 1.15 1.15 0.04 2.69 2.44 2.44 0.06
MIVW 0.75 0.75 0.75 0.06 0.76 0.68 0.68 0.04
MR 2.62 2.55 2.55 0.06 1.25 1.24 1.25 0.06
AWE 0.75 0.79 0.79 0.06 0.76 0.72 0.72 0.05

R2= 0.05% Dominant IPD 0.44 1.14 1.15 1.15 0.56 -1.78 1.13 1.29 1.29 0.59
UIVW 1.60 1.71 1.75 1.75 0.39 0.11 3.31 3.28 3.28 0.24
REM 1.67 2.06 1.79 1.79 0.33 0.02 3.98 3.42 3.42 0.20
MIVW 0.42 1.13 1.15 1.15 0.56 -1.78 1.13 1.29 1.29 0.58
MR 0.27 4.05 4.20 4.20 0.24 -2.14 1.90 2.01 2.01 0.44
AWE 0.50 1.13 1.21 1.21 0.56 -1.90 1.13 1.36 1.36 0.57

Additive IPD 0.64 0.75 0.76 0.76 0.55 -0.81 0.75 0.79 0.79 0.59
UIVW -0.85 1.14 1.14 1.14 0.41 2.12 2.19 2.35 2.35 0.24
REM -0.52 1.34 1.17 1.16 0.36 2.11 2.60 2.38 2.38 0.20
MIVW 0.71 0.75 0.76 0.76 0.54 -0.66 0.75 0.80 0.80 0.58
MR 5.59 2.64 2.89 2.90 0.22 -1.25 1.26 1.24 1.24 0.43
AWE 1.15 0.75 0.81 0.81 0.54 -0.59 0.75 0.83 0.83 0.58

R2= 0.15% Dominant IPD 1.29 1.11 1.26 1.26 0.98 -0.28 1.14 1.44 1.44 0.99
UIVW 1.22 1.69 1.78 1.78 0.92 -1.14 3.31 3.38 3.38 0.72
REM 1.62 2.01 1.84 1.84 0.88 -1.50 4.00 3.52 3.53 0.66
MIVW 1.33 1.10 1.26 1.26 0.98 -0.34 1.14 1.44 1.44 0.98
MR 1.50 3.95 4.57 4.57 0.63 0.02 1.95 2.46 2.46 0.90
AWE 1.47 1.11 1.34 1.34 0.98 -0.29 1.14 1.53 1.53 0.98

Additive IPD -0.20 0.73 0.76 0.76 0.99 -0.32 0.75 0.95 0.95 0.99
UIVW 0.33 1.12 1.10 1.10 0.93 0.09 2.20 2.46 2.46 0.69
REM 0.58 1.33 1.14 1.14 0.89 0.27 2.68 2.58 2.58 0.62
MIVW -0.18 0.73 0.76 0.76 0.99 -0.30 0.75 0.96 0.96 0.99
MR -2.43 2.59 2.61 2.61 0.67 0.06 1.30 1.45 1.45 0.90
AWE -0.39 0.74 0.81 0.81 0.99 -0.36 0.76 1.02 1.02 0.99

R2= 0.25% Dominant IPD 0.44 1.11 1.30 1.30 1.00 0.66 1.11 1.71 1.71 1.00
UIVW 0.36 1.68 1.97 1.97 0.98 0.12 3.28 3.79 3.79 0.85
REM 0.30 1.97 2.00 2.00 0.97 -0.00 3.93 4.02 4.02 0.81
MIVW 0.47 1.11 1.30 1.30 1.00 0.70 1.11 1.72 1.72 1.00
MR 0.20 4.02 4.31 4.31 0.82 0.75 1.90 2.48 2.48 0.98
AWE 0.50 1.12 1.37 1.37 1.00 0.73 1.12 1.79 1.79 1.00

Additive IPD 0.13 0.74 0.87 0.86 1.00 -0.30 0.74 1.02 1.02 1.00
UIVW -0.34 1.12 1.22 1.22 0.99 -0.31 2.18 2.49 2.48 0.85
REM -0.40 1.31 1.26 1.26 0.97 -0.42 2.67 2.60 2.60 0.80
MIVW 0.12 0.73 0.87 0.87 1.00 -0.27 0.74 1.03 1.02 1.00
MR 0.48 2.73 2.79 2.79 0.80 0.02 1.25 1.59 1.58 0.98
AWE -0.01 0.75 0.89 0.89 1.00 -0.03 0.74 1.07 1.07 1.00

a IPD: individual patient data analysis; UIVW: univariate inverse-variance weighted estimator; REM: random effect model; MIVW:
multivariate inverse-variance weighted estimator; MR: Meta-regression; AWE: adaptively weighted estimator.

b RB: relative bias; MV: mean of model based variance; EV: empirical variance; MSE: mean squared error. (MV, EV and MSE have been
multiplied by 100.)
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Table A.7: Comparison of the proposed meta-analytical methods under different scenar-
ios of susceptibility models and covariate heterogeneity through a simulation
study. Setting (b): under assumption 1 but not 2.

E(WSS/BSS)=2 E(BSS/WSS)=2
Methoda RBb(%) MVb EVb MSEb Power RB (%) MV EV MSE Power

R2= 0 Dominant IPD 1.16 1.21 1.21 0.05 1.18 1.04 1.04 0.03
UIVW 1.79 1.89 1.88 0.04 3.49 3.35 3.36 0.04
REM 2.09 1.92 1.92 0.04 4.15 3.42 3.43 0.04
MIVW 1.16 1.21 1.21 0.05 1.17 1.04 1.04 0.03
MR 4.18 4.20 4.20 0.06 1.96 1.78 1.78 0.05
AWE 1.19 1.28 1.28 0.07 1.18 1.08 1.08 0.04

Additive IPD 0.75 0.75 0.75 0.05 0.77 0.81 0.81 0.06
UIVW 1.17 1.18 1.18 0.05 2.28 2.50 2.50 0.06
REM 1.37 1.19 1.19 0.05 2.75 2.56 2.56 0.04
MIVW 0.75 0.75 0.75 0.05 0.77 0.81 0.81 0.06
MR 2.70 2.54 2.54 0.05 1.32 1.31 1.31 0.07
AWE 0.77 0.81 0.81 0.06 0.78 0.86 0.86 0.07

R2= 0.05 Dominant IPD -0.13 1.15 1.15 1.15 0.56 -1.93 1.16 1.23 1.23 0.57
UIVW 0.88 1.78 1.86 1.86 0.40 -2.00 3.45 3.65 3.65 0.25
REM 0.89 2.13 1.91 1.91 0.34 -1.88 4.15 3.74 3.74 0.21
MIVW -0.13 1.15 1.16 1.16 0.56 -1.95 1.16 1.23 1.23 0.57
MR -0.80 4.11 4.00 4.00 0.25 -2.55 2.00 2.02 2.02 0.40
AWE 0.45 1.17 1.26 1.26 0.54 -2.03 1.19 1.30 1.30 0.56

Additive IPD -0.78 0.75 0.79 0.79 0.56 -1.15 0.76 0.83 0.83 0.57
UIVW 0.05 1.16 1.22 1.21 0.39 -0.10 2.27 2.40 2.39 0.23
REM 0.06 1.39 1.28 1.28 0.34 1.20 2.72 2.51 2.51 0.19
MIVW -0.84 0.75 0.80 0.80 0.56 -1.24 0.76 0.83 0.83 0.57
MR -3.05 2.72 2.79 2.79 0.25 -1.25 1.29 1.34 1.34 0.38
AWE -0.98 0.77 0.86 0.86 0.56 -0.81 0.77 0.87 0.87 0.55

R2= 0.15 Dominant IPD -0.00 1.14 1.16 1.16 0.99 0.82 1.15 1.51 1.51 0.98
UIVW -1.33 1.75 1.67 1.68 0.94 0.28 3.42 3.73 3.73 0.66
REM -1.15 2.10 1.73 1.73 0.90 0.41 4.09 3.81 3.81 0.58
MIVW -0.02 1.13 1.17 1.17 0.99 0.80 1.15 1.52 1.52 0.98
MR 2.56 4.23 3.95 3.96 0.60 0.99 2.02 2.25 2.25 0.89
AWE -0.13 1.17 1.24 1.24 0.99 0.90 1.17 1.56 1.56 0.98

Additive IPD -0.65 0.74 0.82 0.82 0.99 0.57 0.75 0.97 0.96 0.99
UIVW -0.81 1.15 1.23 1.23 0.92 1.35 2.24 2.34 2.34 0.66
REM -0.90 1.37 1.26 1.26 0.90 1.30 2.71 2.44 2.44 0.59
MIVW -0.73 0.74 0.82 0.82 0.99 0.57 0.75 0.97 0.97 0.99
MR -0.29 2.76 2.58 2.58 0.63 -0.05 1.32 1.51 1.51 0.89
AWE -0.63 0.77 0.87 0.87 0.99 0.36 0.77 1.01 1.01 0.98

R2= 0.25 Dominant IPD -0.38 1.13 1.18 1.18 1.00 -0.32 1.13 1.75 1.75 1.00
UIVW -0.95 1.74 1.85 1.85 0.99 -0.33 3.38 4.08 4.07 0.84
REM -1.08 2.06 1.91 1.91 0.98 -0.48 4.07 4.17 4.16 0.80
MIVW -0.35 1.12 1.19 1.19 1.00 -0.39 1.13 1.76 1.76 1.00
MR -0.58 4.08 4.39 4.39 0.82 -0.92 1.97 2.57 2.57 0.98
AWE -0.59 1.15 1.28 1.28 1.00 -0.43 1.17 1.86 1.86 1.00

Additive IPD 0.77 0.74 0.84 0.84 1.00 1.17 0.74 1.15 1.15 1.00
UIVW 0.07 1.15 1.24 1.24 0.99 1.71 2.22 2.69 2.70 0.83
REM 0.16 1.37 1.26 1.26 0.97 1.55 2.67 2.72 2.72 0.79
MIVW 0.81 0.74 0.84 0.84 1.00 1.10 0.74 1.15 1.15 1.00
MR 2.13 2.76 2.86 2.87 0.78 0.88 1.28 1.81 1.81 0.98
AWE 0.74 0.77 0.90 0.90 1.00 1.34 0.76 1.20 1.21 1.00

a IPD: individual patient data analysis; UIVW: univariate inverse-variance weighted estimator; REM: random effect model; MIVW:
multivariate inverse-variance weighted estimator; MR: Meta-regression; AWE: adaptively weighted estimator.

b RB: relative bias; MV: mean of model based variance; EV: empirical variance; MSE: mean squared error. (MV, EV and MSE have
been multiplied by 100.)
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Table A.8: Comparison of the proposed meta-analytical methods under different scenar-
ios of susceptibility models and covariate heterogeneity through a simulation
study. Setting (c): under assumption 2 but not 1.

E(WSS/BSS)=2 E(BSS/WSS)=2
Methoda RBb(%) MVb EVb MSEb Power RB (%) MV EV MSE Power

R2= 0 Dominant IPD 1.21 1.30 1.30 0.06 1.19 1.24 1.24 0.05
UIVW 1.92 1.98 1.98 0.05 3.76 3.95 3.96 0.06
REM 2.28 2.03 2.03 0.04 4.56 4.13 4.14 0.05
MIVW 1.21 1.30 1.30 0.06 1.19 1.24 1.24 0.05
MR 4.01 3.82 3.82 0.06 2.05 1.97 1.97 0.07
AWE 1.22 1.41 1.41 0.08 1.24 1.41 1.41 0.07

Additive IPD 0.76 0.73 0.73 0.04 0.76 0.75 0.75 0.05
UIVW 1.18 1.17 1.17 0.06 2.30 2.24 2.24 0.05
REM 1.40 1.20 1.20 0.04 2.78 2.26 2.25 0.03
MIVW 0.76 0.73 0.73 0.04 0.76 0.75 0.75 0.05
MR 2.61 2.56 2.56 0.07 1.37 1.44 1.44 0.06
AWE 0.76 0.79 0.79 0.06 0.80 0.83 0.83 0.06

R2= 0.05 Dominant IPD 2.60 1.20 1.34 1.34 0.54 1.44 1.17 1.20 1.20 0.56
UIVW 0.14 1.90 1.99 1.98 0.40 4.08 3.73 3.74 3.74 0.21
REM 0.09 2.28 2.05 2.05 0.35 3.14 4.46 3.84 3.84 0.18
MIVW 2.68 1.19 1.35 1.35 0.55 1.34 1.17 1.20 1.20 0.56
MR 6.78 3.99 4.18 4.20 0.24 0.55 2.09 2.20 2.19 0.39
AWE 2.25 1.21 1.39 1.39 0.54 1.06 1.24 1.36 1.36 0.54

Additive IPD 1.66 0.75 0.78 0.78 0.55 -1.80 0.76 0.86 0.86 0.58
UIVW 2.22 1.16 1.24 1.24 0.39 -5.26 2.28 2.30 2.30 0.25
REM 2.64 1.38 1.25 1.25 0.34 -4.94 2.73 2.38 2.39 0.22
MIVW 1.85 0.75 0.78 0.78 0.55 -1.73 0.75 0.86 0.86 0.57
MR 2.33 2.67 2.83 2.83 0.25 0.72 1.36 1.40 1.40 0.40
AWE 2.56 0.76 0.85 0.85 0.54 -1.42 0.80 0.96 0.96 0.56

R2= 0.15 Dominant IPD -0.20 1.18 1.20 1.20 1.00 -0.93 1.19 1.63 1.63 0.99
UIVW -0.32 1.86 1.85 1.85 0.94 -1.91 3.66 4.26 4.26 0.70
REM -0.10 2.23 1.93 1.93 0.89 -1.68 4.42 4.35 4.35 0.63
MIVW -0.17 1.18 1.20 1.20 1.00 -0.95 1.18 1.62 1.62 0.99
MR -0.78 4.09 3.86 3.85 0.69 -0.52 2.19 2.67 2.67 0.90
AWE -0.11 1.21 1.26 1.26 0.99 -0.82 1.26 1.72 1.72 0.98

Additive IPD 0.10 0.74 0.76 0.76 0.99 -0.39 0.76 1.08 1.08 0.99
UIVW 0.12 1.14 1.15 1.15 0.93 -1.12 2.23 2.35 2.35 0.71
REM -0.01 1.36 1.19 1.19 0.90 -1.13 2.72 2.48 2.48 0.65
MIVW 0.12 0.74 0.77 0.77 0.99 -0.34 0.76 1.08 1.08 0.99
MR -0.29 2.69 2.65 2.65 0.64 -0.19 1.43 1.83 1.83 0.88
AWE -0.26 0.75 0.80 0.80 0.99 -0.34 0.81 1.19 1.19 0.98

R2= 0.25 Dominant IPD -0.66 1.15 1.35 1.35 1.00 -0.70 1.13 1.77 1.77 1.00
UIVW -0.51 1.84 2.09 2.09 0.99 -1.03 3.60 4.24 4.24 0.84
REM -0.29 2.16 2.15 2.15 0.97 -1.43 4.31 4.34 4.35 0.79
MIVW -0.71 1.15 1.36 1.36 1.00 -0.70 1.12 1.79 1.79 1.00
MR -1.69 3.94 4.03 4.04 0.87 -1.01 1.99 2.61 2.62 0.97
AWE -1.10 1.18 1.49 1.49 1.00 -1.19 1.20 1.94 1.95 1.00

Additive IPD -1.31 0.73 0.88 0.89 1.00 0.93 0.73 1.04 1.04 1.00
UIVW -1.19 1.13 1.27 1.27 0.99 1.15 2.21 2.49 2.49 0.85
REM -1.29 1.35 1.31 1.31 0.98 1.20 2.67 2.56 2.56 0.79
MIVW -1.36 0.72 0.89 0.89 1.00 0.90 0.72 1.04 1.04 1.00
MR -2.50 2.56 2.84 2.85 0.84 0.26 1.38 1.71 1.71 0.96
AWE -1.68 0.74 0.95 0.96 1.00 0.46 0.79 1.19 1.19 1.00

a IPD: individual patient data analysis; UIVW: univariate inverse-variance weighted estimator; REM: random effect model; MIVW:
multivariate inverse-variance weighted estimator; MR: Meta-regression; AWE: adaptively weighted estimator.

b RB: relative bias; MV: mean of model based variance; EV: empirical variance; MSE: mean squared error. (MV, EV and MSE have
been multiplied by 100.)
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Table A.9: Comparison of the proposed meta-analytical methods under different scenar-
ios of susceptibility models and covariate heterogeneity through a simulation
study. Setting (d): without assumption 1 or 2.

E(WSS/BSS)=2 E(BSS/WSS)=2
Methoda RBb(%) MVb EVb MSEb Power RB (%) MV EV MSE Power

R2= 0 Dominant IPD 1.23 1.21 1.21 0.04 1.22 1.16 1.16 0.04
UIVW 1.99 2.08 2.08 0.06 3.89 4.02 4.02 0.05
REM 2.40 2.13 2.13 0.04 4.68 4.18 4.18 0.04
MIVW 1.22 1.22 1.22 0.04 1.22 1.16 1.16 0.04
MR 4.05 4.13 4.13 0.07 2.12 2.05 2.06 0.06
AWE 1.26 1.35 1.35 0.05 1.29 1.33 1.33 0.06

Additive IPD 0.76 0.74 0.74 0.05 0.78 0.76 0.75 0.04
UIVW 1.20 1.21 1.21 0.05 2.35 2.42 2.42 0.06
REM 1.43 1.24 1.24 0.04 2.84 2.48 2.48 0.04
MIVW 0.76 0.74 0.74 0.04 0.77 0.75 0.75 0.04
MR 2.67 2.66 2.66 0.07 1.38 1.35 1.35 0.06
AWE 0.78 0.84 0.84 0.05 0.81 0.85 0.85 0.06

R2= 0.05 Dominant IPD -2.87 1.21 1.21 1.21 0.59 0.54 1.21 1.34 1.34 0.55
UIVW -3.68 1.95 2.11 2.12 0.42 1.82 3.81 4.03 4.03 0.23
REM -3.78 2.34 2.18 2.19 0.37 1.18 4.66 4.12 4.12 0.19
MIVW -2.96 1.20 1.22 1.22 0.59 0.51 1.21 1.35 1.34 0.56
MR 0.19 4.17 4.03 4.02 0.26 -0.59 2.16 2.45 2.45 0.40
AWE -3.18 1.25 1.32 1.32 0.57 0.04 1.29 1.46 1.46 0.53

Additive IPD 0.23 0.75 0.80 0.80 0.55 -0.16 0.77 0.83 0.83 0.57
UIVW 1.14 1.18 1.22 1.22 0.37 0.85 2.31 2.46 2.46 0.23
REM 1.40 1.40 1.27 1.27 0.33 1.21 2.80 2.52 2.52 0.19
MIVW 0.35 0.75 0.81 0.81 0.55 -0.18 0.77 0.84 0.84 0.57
MR 0.93 2.67 2.96 2.95 0.24 -0.10 1.44 1.35 1.35 0.37
AWE 0.84 0.77 0.86 0.86 0.54 -0.15 0.82 0.93 0.93 0.54

R2= 0.15 Dominant IPD 0.52 1.19 1.25 1.25 0.99 0.09 1.17 1.51 1.51 0.98
UIVW 1.30 1.92 2.00 2.01 0.91 0.03 3.75 4.13 4.13 0.65
REM 1.18 2.28 2.08 2.08 0.87 0.16 4.50 4.21 4.21 0.59
MIVW 0.58 1.18 1.26 1.26 0.99 0.14 1.17 1.52 1.52 0.98
MR -0.82 4.04 4.28 4.28 0.67 -0.31 2.07 2.45 2.45 0.90
AWE 0.62 1.23 1.36 1.36 0.99 0.01 1.25 1.63 1.63 0.98

Additive IPD 0.85 0.74 0.78 0.78 0.99 0.74 0.75 0.86 0.86 0.99
UIVW 0.40 1.17 1.24 1.24 0.92 1.29 2.27 2.28 2.28 0.67
REM 0.63 1.41 1.29 1.28 0.87 1.40 2.73 2.36 2.37 0.59
MIVW 0.85 0.74 0.78 0.78 0.99 0.73 0.75 0.86 0.86 0.99
MR 1.62 2.70 2.56 2.56 0.65 0.05 1.40 1.60 1.60 0.87
AWE 0.78 0.76 0.86 0.86 0.98 0.87 0.80 0.95 0.95 0.97

R2= 0.25 Dominant IPD -0.54 1.18 1.36 1.36 1.00 -0.04 1.16 1.62 1.62 1.00
UIVW 0.09 1.90 2.17 2.17 0.98 -0.13 3.75 4.32 4.32 0.82
REM 0.15 2.23 2.19 2.19 0.97 -0.21 4.54 4.45 4.45 0.77
MIVW -0.54 1.18 1.37 1.37 1.00 -0.05 1.15 1.63 1.63 1.00
MR -1.68 4.22 4.43 4.43 0.83 0.18 2.04 2.66 2.66 0.98
AWE -0.63 1.23 1.51 1.51 1.00 0.19 1.24 1.82 1.82 1.00

Additive IPD -1.22 0.74 0.85 0.85 1.00 -0.28 0.74 1.13 1.13 1.00
UIVW -0.98 1.15 1.22 1.22 0.99 -0.50 2.28 2.73 2.73 0.83
REM -0.98 1.38 1.27 1.27 0.97 -0.65 2.74 2.75 2.75 0.80
MIVW -1.26 0.73 0.85 0.85 1.00 -0.28 0.74 1.14 1.14 1.00
MR -2.67 2.73 3.00 3.02 0.83 0.32 1.41 1.84 1.84 0.96
AWE -1.23 0.76 0.93 0.93 1.00 -0.12 0.81 1.25 1.25 1.00

a IPD: individual patient data analysis; UIVW: univariate inverse-variance weighted estimator; REM: random effect model; MIVW:
multivariate inverse-variance weighted estimator; MR: Meta-regression; AWE: adaptively weighted estimator.

b RB: relative bias; MV: mean of model based variance; EV: empirical variance; MSE: mean squared error. (MV, EV and MSE have
been multiplied by 100.)
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APPENDIX B

(Technical Details)

B.1 Technical details for chapter 2

B.1.1 Computational details for Bayesian inference

(i) Random walk Metropolis-Hastings algorithm

Without loss of generality, take one point source homogeneous ACM as an example of

two-parameter model. The following mutually independent priors are considered

log(1 + α) = u ∼ N(µu, σ
2
u),

log(β) = v ∼ N(µv, σ
2
v).

The joint posterior distribution of (u, v) is

π(u, v|X, Y ) ∝ π(u, v)︸ ︷︷ ︸
Prior

×

N∏
i=1

[1 + (exp (u)− 1) · exp (−(xi1/ exp (v))2)]ki∑M+1
j=1 [1 + (exp (u)− 1) · exp (−(xij/ exp (v))2)]ki

× exp (Ku+Kv)︸ ︷︷ ︸
Jacobian︸ ︷︷ ︸

likelihood in terms of (u,v)

.

A random walk Metropolis-Hastings algorithm is used to generate the desired draws from

the target posterior distribution. The bivariate normal distributionBV N(M ,V ) is chosen

as the proposal distribution. Initially, the mean M (0) and variance V (0) of this bivariate

normal distribution are estimated using the Laplace transform of the posterior distribution.

Then the Random walk Metropolis-Hastings algorithm can be proceeded as follows:
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• Step 1: The Markov chain starts with a random initial guess of (u(0), v(0)).

• Step 2: In the t-th step (t ≥ 1), the proposal distribution follows (u(t−1), v(t−1))T +

ωZ, where ω is the step size and Z ∼ BV N(0,V ). A random draw (u∗, v∗) is

generated from this proposal distribution.

• Step 3: The ratio R = π(u∗, v∗|X, Y )/π(u(t−1), v(t−1)|X, Y ) is calculated, and the

draw (u∗, v∗) is accepted with probability of P = min(R, 1), i.e,

(u(t), v(t)) = (u∗, v∗), if 0 ≤ π ≤ P,

= (u(t−1), v(t−1)), if P < π ≤ 1,

where π ∼ Uniform(0, 1).

• Step 4: Step 2 and 3 was repeated T times to generate a Markov chain of length T ,

i.e. (u(t), v(t)), t = 1, 2, ..., T .

The accept ratio of (u, v) is defined as the proportion of times that the proposed draws

(u∗, v∗)’s are accepted. The step size ω in step 2 is chosen such that the accept ratios laid

within (0.25, 0.40).

(ii) Metropolis-Hastings within Gibbs algorithm

Without loss of generality, take one point source ACM as an illustration example. The

following mutually independent priors are considered

log(1 + αi) = ui ∼ N(µui , σ
2
ui

),

log(βi) = vi ∼ N(µvi , σ
2
vi

), i = 1, ..., K.
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The joint posterior distribution of (u,v) is

π(u,v|X, Y ) ∝ π(u,v)︸ ︷︷ ︸
Prior

× exp
K∑
i=1

(ui + vi)︸ ︷︷ ︸
Jacobian

×

N∏
i=1

∏ki
h=1[1 + (exp (uh)− 1) · exp (−(xi1/ exp (vh))

2)]∑M+1
j=1

∏ki
h=1[1 + (exp (uh)− 1) · exp (−(xij/ exp (vh))2)]︸ ︷︷ ︸

likelihood in terms of (u,v)

.

A Metropolis-Hastings within Gibbs algorithm is used to generate the draws from the

above posterior distribution. In the t-th step of the block Gibbs algorithm, (u
(t)
1 , v

(t)
1 ) is

supposed to be drawn from the conditional distribution π(u1, v1|u(t−1)
2 , v

(t−1)
2 , ..., u

(t−1)
K ,

v
(t−1)
K ,X, Y ), and then (u

(t)
2 , v

(t)
2 ) is supposed to be drawn from the conditional distribution

π(u2, v2|u(t)
1 , v

(t)
1 , u

(t−1)
3 , v

(t−1)
3 , ..., u

(t−1)
K , v

(t−1)
K , X, Y ) with updated draws of (u

(t)
1 , v

(t)
1 ),

and so on. However, the above conditional densities are not from standard distributions.

Instead, random walk Metropolis-Hastings algorithm is used to generate the desired draws

from these full conditional distribution. The bivariate normal distribution BV N(M ,V )

is chosen as the proposal distribution. Initially, the mean M (0) and variance V (0) of

this bivariate normal distribution are estimated using the Laplace transform of the poste-

rior distribution. The Metropolis-Hastings within Gibbs algorithm can be proceeded as

follows:

• Step 1: The Markov chain starts with a random initial guess of (u(0),v(0)).

• Step 2: In the t-th step, (u(t),v(t)) is supposed to be generated by

drawing (u
(t)
1 , v

(t)
1 ) from π(u1, v1|u(t−1)

2 , v
(t−1)
2 , ..., u

(t−1)
K , v

(t−1)
K , X, Y )

drawing (u
(t)
2 , v

(t)
2 ) from π(u2, v2|u(t)

1 , v
(t)
1 , u

(t−1)
3 , v

(t−1)
3 , ..., u

(t−1)
K , v

(t−1)
K , X, Y )

· · ·

drawing (u
(t)
K , v

(t)
K ) from π(uK , vK |u(t)

1 , v
(t)
1 , ..., u

(t)
K−1, v

(t)
K−1, X, Y )
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However, these conditional densities are not from standard distributions. Step 2 is

actually proceeded as

– Step 2.1: The proposal distribution of the full conditional π(u1, v1|u(t−1)
2 , v

(t−1)
2 ,

..., u
(t−1)
K , v

(t−1)
K , X, Y ) follows (u

(t−1)
1 , v

(t−1)
1 )T + ω1Z, where ω1 is the step

size for (u1, v1) and Z ∼ BV N(0,V ). A random draw (u∗1, v
∗
1) is generated

from this proposal distribution.

– Step 2.2: The ratioR =
π(u∗1,v

∗
1 |u

(t−1)
2 ,v

(t−1)
2 ,...,u

(t−1)
K ,v

(t−1)
K ,X,Y )

π(u
(t−1)
1 ,v

(t−1)
1 |u(t−1)

2 ,v
(t−1)
2 ,...,u

(t−1)
K ,v

(t−1)
K ,X,Y )

is calculated.

– Step 2.3: (u∗1, v
∗
1) is accepted with probability of P = min(R, 1), i.e,

(u
(t)
1 , v

(t)
1 ) = (u∗1, v

∗
1), if 0 ≤ π ≤ P,

= (u
(t−1)
1 , v

(t−1)
1 ), if P < π ≤ 1,

where π ∼ Uniform(0, 1).

– Step 2.4: Step 2.1-2.3 is repeated for the other pairs of sub-parameter (u2, v2)

to (uK , vK) to generate (u(t),v(t)) = (u
(t)
1 , v

(t)
1 ,..., u(t)

K , v
(t)
K ).

• Step 3: Step 2 is repeated T times to generate a Markov chain of length T , i.e.

(u(t),v(t)), t = 1, 2, ..., T .

The accept ratio of (uk, vk) is defined as the proportion of times that the proposed draws

(u∗k, v
∗
k) is accepted, k=1,...,K. The step size ωk in step 2 is chosen such that the accept

ratios laid within (0.25, 0.40).
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B.2 Technical details for chapter 3

B.2.1 Proofs of the equivalence results

Frequentist equivalence using full likelihood

log(LTfull(β, ν)) =
∑T

t=1 Yt

[
νt + β>X t −

∑
s∈W (t) log{1 + exp(νt + β>Xs)}

]
and

then the estimating equation for β is

UT
full(β) =

T∑
t=1

YtX t −
T∑
t=1

T∑
s=1

Yt
I(s ∈ W (t)) exp(νt + β>Xs)Xs

1 + exp(νt + β>Xs)

=
T∑
t=1

YtX t −
T∑
t=1

T∑
s=1

Ys
I(t ∈ W (s)) exp(νs + β>X t)X t

1 + exp(νs + β>X t)

=
T∑
t=1

YtX t −
T∑
t=1

X t exp(β>X t)
{ T∑

s=1

YsI(s ∈ R(t)) exp(νs)

1 + exp(νs + β>X t)

}
=

T∑
t=1

X t

{
Yt − exp(β>X t)

∑
s∈R(t)

Ys exp(νs)

1 + exp(νs + β>X t)

}
,

where R(t) is the set of days that contain day t in their reference window. For SBD and

TSD but not more generally, R(t) = W (t) (Lu and Zeger 2007). Comparing with the

log-linear model estimating equation corresponding to β

Ull(β) =
T∑
t=1

X t

{
Yt − exp(β>X t + St)

}
,

So, if Ŝt(ν,β) = log(
∑

s∈R(t) Ys exp(νs)/{1 + exp(νs + β>X t)}), then UT
full(β) will

provide the same estimate for β as Ull(β). Under a TSD, while the conditional likelihood

approach or an equivalent log-linear model would only allow the risk changes abruptly

among different time stratifications, the full likelihood approach does not require such

constraint because Ŝt′(ν,β) is not necessarily equal to Ŝt(ν,β) for t′ ∈ W (t) and t′ 6= t.
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Bayesian equivalence using conditional likelihood

Proof of Theorem 3.1:

Lll(β, St) ∝
K∏
k=1

∏
t: t∈ts(k)

{
exp(β>X t + S ′k)

}Yt
exp{− exp(β>X t + S ′k)}.

Let ϕk = exp(S ′k). The marginal posterior distribution of β derived from Lll(β, St) is

π(β |X,Y ) ∝
∫
π(β)π(S ′1, ..., S

′
K)Lll(β, St)dS

′
1 · · · dS ′K

∝ π(β)

∫ K∏
k=1

∏
t: t∈ts(k)

{
exp(β>X t + S ′k)

}Yt
exp{− exp(β>X t + S ′k)}dS ′1 · · · dS ′K

= π(β)
[ T∏
t=1

{
exp(β>X t)

}Yt] K∏
k=1

∫
ϕ−1
k

∏
t: t∈ts(k)

[
ϕYtk exp{−ϕk exp(β>X t)}

]
dϕk

= π(β)
[ T∏
t=1

{
exp(β>X t)

}Yt] K∏
k=1

∫ [
ϕ
∑
t: t∈ts(k) Yt−1

k exp{−ϕk
∑

t: t∈ts(k)

exp(β>X t)}
]
dϕk

= π(β)
[ T∏
t=1

{
exp(β>X t)

}Yt] K∏
k=1

{
∑

t: t∈ts(k)

exp(β>X t)}−
∑
t∈ts(k) Yt

= π(β)
[ T∏
t=1

{
exp(β>X t)

}Yt] K∏
k=1

∏
t: t∈ts(k)

{
∑

s∈W (t)

exp(β>Xs)}−Yt

= π(β)
[ T∏
t=1

{
exp(β>X t)

}Yt] T∏
t=1

{
∑

s∈W (t)

exp(β>Xs)}−Yt

= π(β)
T∏
t=1

{ exp(β>X t)∑
s∈W (t) exp(β>Xs)

}Yt
= π(β)Lcc(β),

which is the marginal posterior distribution of β derived from Lcc(β).
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Bayesian equivalence using full likelihood

Let ys·t = ys1t + ys0t, and let Φst = exp(φst). Then

π(ν,β |X,Y ) ∝
∫
π(φ,ν,β)Lp(φ,ν,β)dφ ∝ π(ν,β)

T∏
t=1

{
exp(νt + β>X t)

}Yt
×
∫
π(φ)

T∏
s=1

T∏
t=1

[exp(φst)]
ys·t exp{− exp(φst)[1 + exp(νs + β>X t)]}dφ

= π(ν,β)
T∏
t=1

{
exp(νt + β>X t)

}Yt T∏
s=1

T∏
t=1

∫
Φys·t−1
st exp

{
− Φst[1 + exp(νs + β>X t)]

}
dΦst

= π(ν,β)
T∏
t=1

{
exp(νt + β>X t)

}Yt T∏
s=1

T∏
t=1

{ 1

1 + exp(νs + β>X t)

}ys·t
= π(ν,β)

T∏
t=1

{
exp(νt + β>X t)

}Yt T∏
s=1

T∏
t=1

{ 1

1 + exp(νs + β>X t)

}ysI(s∈R(t))

= π(ν,β)
T∏
t=1

{
exp(νt + β>X t)

}Yt T∏
t=1

T∏
s=1

{ 1

1 + exp(νt + β>Xs)

}ytI(s∈W (t))

= π(ν,β)
T∏
t=1

[{
exp(νt + β>X t)

}Yt ∏
s∈W (t)

{ 1

1 + exp(νt + β>Xs)

}yt]

= π(ν,β)
T∏
t=1

[ exp(νt + β>X t)∏
s∈W (t){1 + exp(νt + β>Xs)}

]Yt
= π(ν,β)LTfull(ν,β)

B.2.2 Computational details for Bayesian inference

Metropolis-Hastings within Gibbs algorithm

Sampling of β under conditional likelihood formulation: We take conditional likelihood

under the shared exposure as an example. For mutually independent normal priors β ∼

N(µβ, σ
2
βIp), the joint posterior distribution of β = (β1, ..., βp)

> is not a standard distri-

bution. Let π(θ | ·) denote the full conditional distribution as a function of θ given the

data and all other parameters. The posterior distribution π(β | X,Y ) can be obtained
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using a Gibbs sampler through the following full conditional distributions,

π(βr| ·) = exp
{
− (βr − µβr)2

2σ2
βr

} T∏
t=1

{ exp(βrXtr)∑
s∈W (t) exp(β>Xs)

}Yt
, r = 1, ..., p.

To sample from π(βr | ·), we followed these steps of a Metropolis-Hastings algorithm:

• Step 1. Start with initial value β(0) = (β
(0)
1 , ..., β

(0)
p )>.

• Step 2. For r = 1, ..., p, at the k-th iteration with the current value as β(k) =

(β
(k)
1 , ..., β

(k)
r−1, β

(k−1)
r , ..., β

(k−1)
p )>. Generate a new value β∗r from a candidate den-

sity g(βr) and replace β(k)
r by β∗r with probability min

{
1, π(β∗r |·)g(β

(k−1)
r )

π(β
(k−1)
r |·)g(β∗r )

}
. We chose

the candidate density g(βr) as the prior density π(βr). Since the full conditional

density π(βr | ·) ∝ π(βr)L(βr | ·), then the acceptance probability reduces to

min
{

1, L(β∗r |·)
L(β

(k−1)
r |·)

}
. Then β(k)

r , 1, ..., p, is updated accordingly.

• Step 3. Run the chain with 10,000 iterations.

Sampling of (ν,β) under full likelihood formulation: We take full likelihood LTfull(β,ν)

under the shared exposure as an example. To sample from the posterior distribution of ν

and β, we adopted a componentwise Metropolis-Hastings algorithm. The full conditional

distributions used are:

π(βr| ·) ∝ exp
{
− (βr − µβr)2

2σ2
βr

} T∏
t=1

{ exp(βrXtr)∏
s∈W (t)[1 + exp(νt + β>Xs)]

}yt
, r = 1, ...., p

π(νt| ·) ∝
{ 1∏

s∈W (t)[1 + exp(νt + β>Xs)]

}yt
×

{ α

T − 1 + α

exp(µyt +
y2t σ

2

2
)

√
2πσ2

× exp
[
− (νt − µ− ytσ2)2

2σ2

]
+

exp(ytνt)

T − 1 + α

T∑
s=1, s 6=t

I(νs = νt)
}
,

At each iteration, we first update the value of β similarly as described above, and then

move on to the cycle for ν with the updated value of β substituted. Particularly, given

current values of β, ν is updated in the following way:
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• Step 1. As a metropolis-Hastings step, ν∗t was drawn from the candidate distribution

of π(νt | ν−t), namely from α
T−1+α

N(µ, σ2) + 1
T−1+α

∑T
s=1, s 6=t I(νs = νt). In

particular, one either get a distinct value for ν∗t from the normal component with

probability α
T−1+α

or get a draw of ν∗t with equal probability from the current set of

the (T − 1) entries of ν−t. We adopt the algorithm in to generate observations from

this candidate density.

• Step 2. Set the new value of νt to ν∗t , with acceptance probability min
{

1,
L(ν∗t |·)
L(ν
′
t |·)

}
,

where ν ′t is the current working value of νt.

• Step 3. Repeat steps 1-2 5 times and consider the last of these updates of νt as the

value of ν(k)
t , say at the k-th iteration.

• Step 4. Repeat steps 1-3 for all ν(k)
t for t = 1, ..., T . One complete iteration of the

Markov chain consists of the foregoing updates for both the parameters β and ν.

Given current values of β(k) and ν(k), we can go to the next iteration for β(k+1) and

ν(k+1). We run the chain with 10,000 iterations.

Prior choices under the simulation study

Assume the informative prior on β has the form β ∼ N(µβ, σ
2
β). According to the ad-

hoc prior eliciting strategy for the DAMAT study, when β∗ = 0.1 we a priori postulated a

95% confidence interval (1.02, 1.15) for exp(β), and solved for the approximated values

of (µβ, σβ) as (0.05, 0.02). Thus our informative prior was chosen as N(0.08, 0.032) when

β∗ = 0.1. Similarly, when β∗ = 1 we presumed a 95% confidence interval (0.4, 1.2) for

exp(β) and deduced the corresponding informative prior β ∼ N(0.8, 0.22). To complete

the hierarchy, we have used α ∼ Gamma(2, 0.1); G0 ∼ N(µ, σ2), µ ∼ N(0, 10) and

σ−2 ∼ Gamma(4, 1) in all our simulations.
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Construction of power priors for the DAMAT study data example

Asthma risk has been associated with PM2.5/PM10 in many studies using both time-

series and case-crossover designs. Among recent papers, an Alaskan study (Chimonas

et al., 2007) found that a 10 µgm−3 increase in PM10 was associated with a 0.6% (95%

CI: 0.1%, 1.3%) increase in outpatient asthma visits, and a 1.8% (95% CI: 0.6%, 3.0%)

increase in inhaled quick-relief mediation prescriptions. In Rio de Janeiro (Moura et al.,

2009), a 10 µgm−3 increase of PM10 was found to be associated with 6.7% (95% CI:

1.8%, 11.5%) increase for bronchial obstruction. In two Idaho cities (Ulirsch et al., 2007),

a 24.3 µgm−3 increase in PM10 was associated with 4.3% increase for respiratory disease.

In the Detroit Medicaid population (Li et al., 2011), we found a 3-7% increase in asthma

risks for a 9.2 µgm−3 increase in PM2.5. Larger effects were found when only the warmer

season was considered (Villeneuve et al., 2007). These results are converted in terms of

risk ratios in the following table. More detailed reviews can be found in Li et al. (2011).

Study Risk Ratios∗

Chimonas et al., 2007 1.006, 1.018

Moura et al., 2009 1.065

Ulirsch et al., 2007 1.017

Li et al., 2011 1.03-1.09

∗ Risk ratios exp(β̂PM2.5) and exp(β̂PM10) corresponding to 10 µgm−3 increase in PMx concentrations

Based on these studies where different cohorts, statistical models, and variant asthma

outcomes were used, we have a belief that the asthma-PM2.5 association is in general

modest with an odds ratio ranging (1.01-1.09) for a 10 µgm−3 increase in PM2.5 (if

we assume that effect of PM10 has no substantial difference from that of PM2.5). In

our DAMAT data analysis section, we constructed a presumed 95% confidence interval

(1.01,1.09) based on the above information, and took the prior mean to be the center
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(µβ = [log(1.09) + log(1.01)]/2 = 0.05) and the prior standard deviation to be one-

fourth the width of the interval (σβ = [log(1.09) − log(1.01)]/4 = 0.02), i.e., βPM2.5 ∼

N(0.05, 0.022).

For the power priors, suppose we observed D0 in terms of summary statistics from

previous studies, e.g. the MLEs β̂k’s with variance σ̂2
β̂k

’s. We assume the sampling distri-

bution of β̂k is normal, namely, β̂k|β ∼ N(β, σ̂2
β̂k

), k = 1, ..., K. Assuming the studies

were independent and equally weighted, then

L(β|D0) ∝
K∏
k=1

exp(−(β − β̂k)2

2σ̂2
β̂k

).

In particular, we considered K = 3 prior studies having small, modest and strong ef-

fect sizes (β̂1, β̂2, β̂3) = (0.02, 0.05, 0.08) with (σ̂2
β̂1
, σ̂2

β̂2
, σ̂2

β̂3
) = (0.02, 0.02, 0.03) respec-

tively, to reflect PM2.5-asthma association (change in asthma risk for a 10 µgm−3 increase

in PM2.5) based on the evidence in a recent review paper (Li et al. 2011). L(β|D0) is then

described by the product of the three independent normal likelihoods.
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B.3 Technical details for chapter 4

B.3.1 Proofs of the theoretical results

Proof of Lemma 4.1 and Theorem 4.1

(1) Proof of Lemma 4.1: Let X1 = (X1, ..., Xp) and X2 = (Xp+1, ..., Xp+q). Then ζ̂ =

(X>1X1)−1X>1 Y

and

 θ̂1

θ̂2

 =

 X>1X1 X>1X2

X>2X1 X>2X2


−1 X>1 Y

X>2 Y

 .

Let A = I −X1(X>1X1)−1X>1 , then θ̂2 can be written as (X>2AX2)−1X>2AY . We

have

Cov(ζ̂, θ̂2) = Cov{(X>1X1)−1X>1 Y , (X>2AX2)−1X>2AY }

= (X>1X1)−1X>1 Cov(Y ,Y )A>X2(X>2AX2)−1

= (X>1X1)−1X>1 Cov(Y ,Y ){I −X1(X>1X1)−1X>1 }X2(X>2AX2)−1

= V ar(Yi){(X>1X1)−1X>1 − (X>1X1)−1X>1 }X2(X>2AX2)−1

= 0

Because the MLEs ζ̂ and θ̂2 are asymptotically normal, then ζ̂ and θ̂2 are asymptotically

independent.

(2) Proof of Theorem 4.1: Follow lemma 4.1, δ̂k and λ̂k are asymptotically independent

because they come from two nested linear regression models. So cov(δ̂k, λ̂k) = 0. We

also have cov(δ̂j, λ̂k) = 0 for j 6= k among the K independent studies. Under the standard

condition, δ̂UIVW is a linear combination of δ̂k and δ̂MR is a linear combination of λ̂k, it

follows cov(δ̂UIVW, δ̂MR) = 0.

For δ̂AWE(w) = wδ̂UIVW + (1 − w)δ̂MR, 0 ≤ w ≤ 1, we have v(δ̂AWE(w)) =

w2v(δ̂UIVW) + (1 − w)2v(δ̂MR) + 2w(1 − w)cov(δ̂UIVW, δ̂MR) = w2v(δ̂UIVW) + (1 −
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w)2v(δ̂MR) = {v(δ̂UIVW)+v(δ̂MR)}[w−v(δ̂MR)/{v(δ̂UIVW)+v(δ̂MR)}]2+v(δ̂UIVW)v(δ̂MR)

/{v(δ̂UIVW)+v(δ̂MR)}. So v(δ̂AWE(w)) reaches its minimum if and only if w = v(δ̂MR)/

{v(δ̂UIVW) + v(δ̂MR)}. With this choice of w, v(δ̂AWE)−1 = v(δ̂UIVW)−1 + v(δ̂MR)−1.

Proof of Proposition 4.1

(1) Proof of Proposition 4.1: Assumption 4.1 implies the distributions P (E|G = g) are

the same for g = 0, 1, 2 (corresponding to (aa,Aa,AA) respectively), within each study

as well as for the whole population. Let ngk =
∑

i:Gki=g
1, Gk =

∑nk
i=1Gki/nk, mgk =∑

i:Gki=g
Eki/ngk; and µgk = E(Eki|Gki = g, study = k), µk = E(Eki|study = k).

Assumption 4.1 implies: (i) µgk = µk; (ii)
∑nk

i=1(Gki −Gk)Eki → 0 as nk →∞; and (iii)∑nk
i=1(Gki −Gk)GkiEki∑nk
i=1(Gki −Gk)Gki

=

∑
g=1,2{

∑
i:Gki=g

(g −Gk)gEki}∑
g=1,2{

∑
i:Gki=g

(g −Gk)g}
=

∑
g=1,2{(g −Gk)gngkmgk}∑
g=1,2{(g −Gk)gngk}

→ µk,

as ngk →∞. We have λ̂k =
∑nk

i=1(Gki −Gk)Yki/
∑nk

i=1(Gki −Gk)Gki. So

E(λ̂k) = αk

∑nk
i=1(Gki −Gk)∑nk

i=1(Gki −Gk)Gki

+ βG + βE

∑nk
i=1(Gki −Gk)Eki∑nk
i=1(Gki −Gk)Gki

+ δ

∑nk
i=1(Gki −Gk)GkiEki∑nk
i=1(Gki −Gk)Gki

→ βG + δµk, as ngk →∞

So δ̂MR is asymptotically unbiased for δ under assumption 4.1. The above calculation

holds for dominant, recessive and additive genetic susceptibility models. For co-dominant

model, the calculation holds for AA and Aa respectively.

(2) Unbiased MR when assumption 4.1 is relaxed: If assumption 4.1 is relaxed, unbiased

estimator of δ can still be found through different MR models for different susceptibility

model. For example, under dominant model,

E(λ̂k) = βG + βE(
n1km1k + n2km2k

n1k + n2k

−m0k) + δ(
n1km1k + n2km2k

n1k + n2k

);

under additive model,

E(λ̂k) = βG + βE
−Gkn0km0k + (1−Gk)n1km1k + (2−Gk)n2km2k

(1−Gk)n1k + 2(2−Gk)n2k

+ δ (1−Gk)n1km1k + 2(2−Gk)n2km2k

(1−Gk)n1k + 2(2−Gk)n2k

.
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(3) Bias of δ̂MR in terms of bss/tss: For simplicity, we derive the bias of δ̂MR under as-

sumption 4.2 for a dominant model. Let the sample mean of E for the carrier (non-carrier)

group be m1k (m0k) for the k-th study. We have

E(δ̂MR) = {
∑
k

wk(mk −m)2}−1{
∑
k

wk(mk −m)E(λ̂k)},

where wk = n−1
k n1kn0k, m = (

∑
k n
−1
k n1kn0kmk)/(

∑
k n
−1
k n1kn0k) and E(λ̂k) = βG +

βE(m1k − m0k) + δm1k. We have n1k/nk → p, mk
p→ µk, m

p→ µ, s2
Ek

p→ σ2
Ek, as

nk →∞. Suppose nk/N → rk ∈ (0, 1) as N →∞. Then

E(δ̂MR)
p→ {
∑
k

rk(µk − µ)2}−1
∑
k

rk(µk − µ){βE(µ1k − µ0k) + δµ1k}.

Denote the sample Pearson correlation coefficient between G and E in study k as

ρ̂k =

∑nk
i=1(Gki −Gk)Eki

{
∑nk

i=1(Gki −Gk)Gki}
1
2{nks2

Ek}
1
2

,

then we can write

m1k −mk = n−1
k n0k(m1k −m0k) = n−1

k n0k

∑nk
i=1(Gki −Gk)Eki∑nk
i=1(Gki −Gk)Gki

= n−1
k n0kρ̂k{

nks
2
Ek

n−1
k n0kn1k

}
1
2 .

Asymptotically, µ1k − µk = (1− p)(µ1k − µ0k) = (1− p)ρk[σ2
Ek/{p(1− p)}]

1
2 . The bias

of δ̂MR

E(δ̂MR)− δ p→ {
∑
k

rk(µk − µ)2}−1
∑
k

rk(µk − µ){βE(µ1k − µ0k) + δ(µ1k − µk + µ)}

= {p(1− p)}−
1
2{
∑
k

rk(µk − µ)2}−1
∑
k

rk(µk − µ)σEk[βEρk + δ(1− p)ρk].

Clearly, if assumption 4.1 holds (implying ρk = 0, for k = 1, ..., K), E(δ̂MR)− δ p→ 0. If

not, we have 0 ≤ βEρk + δ(1− p)ρk ≤ βE + δ(1− p). From Cauchy-Schwarz inequality,

we have
∑

k rk(µk−µ)σEk ≤ (bss×wss) 1
2 , and then {

∑
k rk(µk−µ)σEk}/{

∑
k rk(µk−

µ)2} ≤ (wss/bss)
1
2 . When N is large, the limiting value of E(δ̂MR)− δ is bounded from

above by {βE + δ(1− p)}{p(1− p)}− 1
2 (wss/bss)

1
2 . Given p, βE and δ, the upper bound
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increases aswss/bss increases, or equivalently, as bss/tss decreases. So δ̂AWE can control

for the bias by putting less weight on δ̂MR when the bias of δ̂MR increases.

Derivation of v̂(δ̂) and v(δ̂) under G-E independence assumption

Under the dominant model, for the k-th study, denote n1k (n0k) as the number of car-

riers (non-carrier), for k = 1, ..., K; denote the sample mean of E for the carrier (non-

carrier) group as m1k (m0k), and denote the sample variance of E for carrier (non-carrier)

group as s2
E1k (s2

E0k), where 1
n1k

∑
i:Gki=1(Eki − m1k)

2. Approximately, m1k = m0k =

mk, s
2
E1k = s2

E0k = s2
Ek under assumption 4.1. v̂(δ̂) can be derived as follows:

(1) IPD analysis: Under model (1), v̂(β̂IPD) is the sub 3×3 matrix of (X>X)−1σ̂2, where

(X>X)−1 =



n1 0 · · · 0 n11 n1m1 n11m1

n2
... n12 n2m2 n12m2

. . . 0
...

...
...

nK n1K nKmK n1KmK∑
k n1k

∑
k n1kmk

∑
k n1kmk∑

k, iE
2
ki

∑
k, i:Gki=1E

2
ki∑

k, i:Gki=1E
2
ki



−1

(K+3)(K+3)

=


. . . · · ·

...


∑

k n
−1
k n0kn1k 0

∑
k n
−1
k n1kn0kmk∑

k nks
2
Ek

∑
k n1ks

2
E1k∑

k(n1ks
2
E1k + n−1

k n1kn0km
2
k)


−1

3×3


(K+3)(K+3)

.

v̂(δ̂IPD) = v̂(β̂IPD)(3,3) =
{

(
∑
k

n1ks
2
E1k)(

∑
k

n0ks
2
E0k)/(

∑
k

nks
2
Ek) +

∑
k

n−1
k n1kn0k(mk −m)2

}−1σ̂2.

(2) Inverse-variance weighted estimator: v̂(β̂k) is the sub 3 × 3 matrix of (X>k Xk)
−1σ̂2

k,
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where (X>k Xk)
−1 =



nk n1k nkmk n1kmk

n1k n1kmk n1kmk∑
iE

2
ki

∑
i:Gki=1E

2
ki∑

i:Gki=1E
2
ki



−1

=


· · · ·

...


n−1
k n0kn1k 0 n−1

k n1kn0kmk

nks
2
Ek n1ks

2
E1k

n1ks
2
E1k + n−1

k n1kn0km
2
k


−1

 .

Compare v̂(β̂k)
−1 with v̂(β̂IPD)−1, we have v̂(β̂MIVW) =

{∑
k v̂(β̂k)

−1
}−1

= v̂(β̂IPD),

which implies v̂(δ̂MIVW) = v̂(δ̂IPD) =
{∑

k v̂(β̂k)
−1
}−1

(3,3)
. For δ̂k, we have v̂(δ̂k) =

v̂(β̂k)(3,3) = nks
2
Ekσ̂

2
k/ (n1ks

2
E1kn0ks

2
E0k). Then

v̂(δ̂UIVW) =
{∑

k

v̂(δ̂k)
−1
}−1

=
{∑

k

(n1ks
2
E1kn0ks

2
E0k)/(nks

2
Ekσ̂

2
k)
}−1

.

(3) Meta-regression: We have λ̂k =
∑nk

i=1(Gki−Gk)Yki/
∑nk

i=1(Gki−Gk)Gki and v̂(λ̂k) =

n−1
1k n

−1
0k nkσ̂

2
ηk. m can be simplified as (

∑
k n
−1
k n1kn0kσ̂

−2
ηkmk)/(

∑
k n
−1
k n1kn0kσ̂

−2
ηk ). Then

the weighted simple linear meta-regression yields that

v̂(δ̂MR) = {
∑
k

wk(mk −m)2}−1 = {
∑
k

n−1
k n1kn0kσ̂

−2
ηk (mk −m)2}−1.

(4) Asymptotic model based variance v(δ̂): Suppose nk/N → rk ∈ (0, 1) as N → ∞. If

we assume σ2
k = σ2 for k = 1, ..., K, we have σ̂2 p→ σ2, σ̂2

k

p→ σ2, as N → ∞. Under

the IPD model, where the homoscedasticity assumption has been implicitly made for the

regression model, we have v(Yki|Xki) = σ2 that does not depend on Xki. Therefore,

v(λ̂k) = n−1
1k n

−1
0k nkv(Yki) = n−1

1k n
−1
0k nk σ

2. Moreover, under assumption 4.1, we have

the facts that: (i) m1k
p→ µk, m0k

p→ µk, mk
p→ µk, as nk → ∞; (ii) s2

E1k

p→ σ2
Ek,

s2
E0k

p→ σ2
Ek, s

2
Ek

p→ σ2
Ek, as nk → ∞. For dominant model, n1k/nk → pk, as nk → ∞.

Let µ = {
∑

k nkpk(1− pk)µk}/{
∑

k nkpk(1− pk)}. m
p→ µ as N →∞. The asymptotic
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model based variance can be derived as follows

v(δ̂IPD) =
{

(
∑
k

nkpkσ
2
Ek)(

∑
k

nk(1− pk)σ2
Ek)/(

∑
k

nkσ
2
Ek) +

∑
k

nkpk(1− pk)(µk − µ)2
}−1σ2,

v(δ̂UIVW) =
{∑

k

nkpk(1− pk)σ2
Ek

}−1
σ2,

v(δ̂MR) = {
∑
k

nkpk(1− pk)(µk − µ)2}−1 σ2.

By Slutsky’s theorem, for large N , v̂(δ̂IPD), v̂(δ̂MIVW), v̂(δ̂UIVW), v̂(δ̂MR) are consistent

estimators of v(δ̂IPD), v(δ̂MIVW), v(δ̂UIVW), v(δ̂MR) respectively.

Proof of Theorem 4.2

We first prove the following four propositions.

Propositions. Under assumption 4.1, we have

P1. v(δ̂MIVW′) = v(δ̂MIVW2′).

P2. v(δ̂IPD)−1 = v(δ̂MIVW2′)−1 + v(δ̂MR)−1.

P3. v(δ̂UIVW) ≥ v(δ̂MIVW2′). The equality holds if and only if pk = p, for k = 1, 2, ..., K.

P4. For δ̂AWE2′ = wδ̂MIVW2′ + (1−w)δ̂MR, 0 ≤ w ≤ 1, we have that v(δ̂AWE2′)−1 attains

its maximum at v(δ̂MIVW2′)−1 + v(δ̂MR)−1 if and only if w = v(δ̂MR)/{v(δ̂MIVW2′) +

v(δ̂MR)}.

Proof of P1: For the centered model, we have

(X
′>
k X

′

k)
−1 ≈


nk n1k 0 0

n1k 0 0∑
iE

′ 2
ki

∑
i:Gki=1E

′ 2
ki∑

i:Gki=1E
′ 2
ki



−1

, then

v(β̂MIVW2′) =
(∑

k

v(β̂′Ek, δ̂
′
k)
−1
)−1

=

 ∑
k nkσ

2
Ek

∑
k nkpkσ

2
E1k∑

k nkpkσ
2
E1k


−1

σ2 and
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v(β̂MIVW′) =
(∑

k

v(β̂′k)
−1
)−1

=


∑

k nkpk(1− pk) 0 0∑
k nkσ

2
Ek

∑
k nkpkσ

2
E1k∑

k nkpkσ
2
E1k


−1

σ2, so

v(δ̂MIVW′) = v(δ̂MIVW2′) =

∑
k nkσ

2
Ek

{
∑

k nkpkσ
2
Ek}{

∑
k nk(1− pk)σ2

Ek}
σ2.

There is no efficiency gain by pooling all three parameters (β′Gk, β
′
E, δ

′) over polling the

two common parameters (β′E, δ
′) under a centered model.

Proof of P2:

v(δ̂IPD)−1 =
[

(
∑
k

nkpkσ
2
Ek)(

∑
k

nk(1− pk)σ2
Ek)/(

∑
k

nkσ
2
Ek)︸ ︷︷ ︸

v(δ̂MIVW2′ )−1σ2

+
∑
k

nkpk(1− pk)(µk − µ)2

︸ ︷︷ ︸
v(δ̂MR)−1σ2

]
σ−2.

Proof of P3: To show v(δ̂UIVW) ≥ v(δ̂MIVW2′), it is sufficient to show
(∑

k nkpk(1 −

pk)σ
2
Ek

)
(
∑

k nkσ
2
Ek)≤ (

∑
k nkpkσ

2
Ek)(

∑
k nk(1−pk)σ2

Ek), or equivalently,
∑

k n
2
kpk(1−

pk)σ
4
Ek +

∑
i 6=j ninjpi(1−pi)σ2

Eiσ
2
Ej ≤

∑
k n

2
kpk(1−pk)σ4

Ek +
∑

i 6=j ninjpi(1−pj)σ2
Eiσ

2
Ej .

Then it is sufficient to show for ∀ i, j, ninjpi(1 − pi)σ2
Eiσ

2
Ej + njnipj(1 − pj)σ2

Ejσ
2
Ei ≤

ninjpi(1− pj)σ2
Eiσ

2
Ej +njnipj(1− pi)σ2

Ejσ
2
Ei⇔ ∀ i, j, ninj(pi− pj)2σ2

Eiσ
2
Ej ≥ 0, which

is apparently true. All the above equalities hold if and only if pi = pj, ∀ i, j, i.e., pk = p,

for k = 1, 2, ..., K.

Proof of P4: Following Lemma 4.1, cov(δ̂k, λ̂k) = 0 and cov(β̂Ek, λ̂k) = 0. Because δ̂MR

is a linear combination of λ̂k and β̂MIVW2′ is a linear combination of β̂Ek and δ̂k, we have

cov(δ̂MIVW2′ , δ̂MR) = 0. The rest of the proof is similar as Theorem 4.1.

Denote δ̂MIVW2 as the MIVW pooling (βE, δ) from the un-centered model. We have

δ̂MIVW2 = δ̂MIVW2′ since (βE, δ) = (β′E, δ
′). Propositions P1-P4 still hold if δ̂MIVW2′ is

substituted by δ̂MIVW2.

Proof of Theorem 4.2: Following propositions P1 and P2, v(δ̂IPD)−1 ≥ v(δ̂UIVW)−1 +

v(δ̂MR)−1 under assumption 4.1. The equality holds if and only if pk = p, for k =
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1, 2, ..., K.

Proof of the results in Remark 4.4: According to propositions P1 and P3, v(δ̂IPD)−1 =

v(δ̂AWE2′)−1 under assumption 4.1. Together with the results in Theorem 4.1 and Propo-

sition P2, v(δ̂IPD)−1 = v(δ̂AWE2′)−1 ≥ v(δ̂AWE)−1. The equality holds if and only if

pk = p, for k = 1, 2, ..., K.

Proof of Theorem 4.3

Proof of Theorem 4.3: Under both assumptions 1 and 2, the variance of δ̂IPD, δ̂UIVW and

δ̂MR can be further simplified as v(δ̂IPD) = [p(1 − p)
∑

k nk{σ2
Ek + (µk − µ)2}]−1σ2,

v(δ̂UIVW) = {p(1− p)
∑

k nkσ
2
Ek}−1σ2 and v(δ̂MR) = {p(1− p)

∑
k nk(µk − µ)2}−1σ2.

Now we have v(δ̂IPD)−1 = v(δ̂UIVW)−1 + v(δ̂MR)−1. From Theorem 4.1, v(δ̂AWE)−1 =

v(δ̂UIVW)−1 + v(δ̂MR)−1, then v(δ̂IPD)−1 = v(δ̂AWE)−1.

Suppose nk/N → rk ∈ (0, 1) as N → ∞. We have mk
p→ µk, s2

Ek

p→ σ2
Ek, m

p→ µ,

s2
E

p→ σ2
E , as N → ∞. Then TSS/N = s2

E

p→ σ2
E , WSS/N =

∑
k nks

2
Ek/N

p→∑
k rkσ

2
Ek, BSS/N =

∑
k nk(mk − m)2/N

p→
∑

k rk(µk − µ)2, as N → ∞. Be-

cause TSS = WSS +BSS, TSS/N is both consistent estimator of σ2
E and

∑
k rkσ

2
Ek +∑

k rk(µk − µ)2. So we have σ2
E =

∑
k rk{σ2

Ek + (µk − µ)2}, i.e., tss = wss + bss.

Therefore, v(δ̂UIVW) = {Np(1 − p)wss}−1σ2, v(δ̂MR) = {Np(1 − p)bss}−1σ2 and

v(δ̂IPD) = v(δ̂AWE) = {Np(1− p)tss}−1σ2.

B.3.2 Details of the simulation study

For G, without assumption 4.2, the MAF qk is generated from U(0.15, 0.35) inde-

pendently for each study k, and then Gki is generated as (AA,Aa, aa) with probability(
q2
k, 2qk(1 − qk), (1 − qk)2

)
that follows HWE. With assumption 4.2, the MAF q is gen-

erated from U(0.15, 0.35), and then Gki is generated as (AA,Aa, aa) with probability
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(
q2, 2q(1 − q), (1 − q)2

)
. Susceptibility models including dominant, additive and co-

dominant models are considered under each simulation.

For E, the k-th study mean of E was sampled from µk ∼ N(µ, σ2
µ) with known µ and

between study variance σ2
µ. The k-th study variance σ2

Ek
was sampled from σ2

Ek
∼ σ2

µ ×

U(c1, c2) with choices of constant (c1, c2) satisfy the two cases that E(WSS/BSS) = 2

and E(BSS/WSS) = 2 respectively. With assumption 4.1, the values of E of the k-th

study were sampled from Eki|µk, σ2
Ek
∼ N(µk, σ

2
Ek

) that is independent of G. Without

assumption 4.1, potential G − E dependence was considered through the group mean

µgk as follows. (µ0k, µ1k, µ2k) was calculated from the following equations µknk =∑
g=0,1,2 ngkµgk and µ2k = µ1k + d1σEk = µ0k + d2σEk , where d1 ∼ U(0, 0.5) and

d2 ∼ U(d1, 1). In general, σEk > σEk,w � σEk,w/
√
ngk, where the common within group

variance σ2
Ek,w

is calculated from nkσ
2
Ek

= nkσ
2
Ek,w

+
∑

g=0,1,2 ngk(µgk − µk)2. Thus, the

k-th study mean is µk, and the group means µgk are potentially dependent on G. Then Eki

were sampled from Eki|Gki = g, µgk, σ
2
Ek,w

∼ N(µgk, σ
2
Ek,w

) in order to guarantee that

the k-th study variance of E is σ2
Ek

. Then the first and second moments of E are the same

with or without assumption 4.1. Numerically, E has identical marginal distributions with

or without assumption 4.1, as it has symmetric distributions under this setting.
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B.4 Technical details for chapter 5

Modeling P (G|E,S) under HWE

Let q(Eki,Ski) be the minor allele frequency for given (Eki,Ski). Under the HWE

conditional on (E,S), we have

P (Gki = 0|Eki,Ski) = (1− q(Eki,Ski))2,

P (Gki = 1|Eki,Ski) = 2q(Eki,Ski)(1− q(Eki,Ski)),

P (Gki = 2|Eki,Ski) = q(Eki,Ski)
2.

Then

log
{P (Gki = 1|Eki,Ski)
P (Gki = 0|Eki,Ski)

}
= log(2) + log

{ q(Eki,Ski)

1− q(Eki,Ski)

}
,

log
{P (Gki = 2|Eki,Ski)
P (Gki = 0|Eki,Ski)

}
= 2 log

{ q(Eki,Ski)

1− q(Eki,Ski)

}
.

We can model the MAF as

q(Eki,Ski) = H{η0k + ηkS
>
ki + θkEki},

which can be reduced to

q(Eki,Ski) = H{η0k + ηkS
>
ki}

under G-E independence conditional on Ski.

Chain rule of derivatives: ∆̂ = ∂β̂>(θ)/∂θ|θ=0 ≈ IθβI−1
ββ |θ=0

Using chain rule of derivatives, we have

∂`

∂θ
=

∂`

∂β

∂β(θ)

∂θ
, and then

{∂β(θ)

∂θ

}>
=
{ ∂`

∂θ>
∂`

∂β

}{ ∂`

∂β>
∂`

∂β

}−1

.

Let Iθβ = − ∂2`
∂θ>∂β

and Iββ = − ∂2`
∂β>∂β

be the corresponding sub-matrices of the full ob-

served information matrix under the unconstrained model. SinceE( ∂`
∂θ>

∂`
∂β

) = −E( ∂2`
∂θ>∂β

)
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and E( ∂`
∂β>

∂`
∂β

) = −E( ∂2`
∂β>∂β

), we use IθβI−1
ββ |θ=0 as an approximation to the estimator

∆̂ = ∂β̂>(θ)/∂θ|θ=0.

EB estimator Â

We consider the EB estimator Â using the following strategies: (1) a conservative

estimator θ̂θ̂
>

forA; (2) Â = diag(τ̂ 2, ..., τ̂ 2)(K×K), where τ̂ 2 is the MLE that maximizes

the marginal likelihood of θ̂; (3) Â = diag(τ̄ 2, ..., τ̄ 2)(K×K), where τ̄ 2 is the estimated

posterior mean of τ 2|θ̂.

(1) and (2) Note that θ̂k ∼ N(0, τ 2 + σ̂2
θk

) after marginalizing over θk. clearly, θ̂θ̂
>

can

serve as a conservative estimator forA. One could alternatively estimate τ 2 by maximizing

the marginal likelihood of θ̂k,

m(θ̂k| τ 2) =
K∏
k=1

{2π(τ 2 + σ̂2
θk

)}−
1
2 exp

{
− θ̂2

k

2(τ 2 + σ̂2
θk

)

}
.

We have

d log{m(θ̂k| τ 2)}
d τ 2

= −1

2

K∑
k=1

{ 1

τ 2 + σ̂2
θk

− θ̂2
k

(τ 2 + σ̂2
θk

)2

}
,

then

d log{m(θ̂k| τ 2)}
d τ 2

= 0 ⇒
K∑
k=1

τ 2 − (θ̂2
k − σ̂2

θk
)

(τ 2 + σ̂2
θk

)2
= 0

⇒ τ̂ 2 =

∑K
k=1(θ̂2

k − σ̂2
θk

)(τ̂ 2 + σ̂2
θk

)−2∑K
k=1(τ̂ 2 + σ̂2

θk
)−2

τ̂ 2 does not have a closed form expression, however, we could implement an iterative

scheme to calculate τ̂ 2. If the convergence is to a negative value of τ̂ 2, then the MLE

of τ 2 is probably 0 Berger (1985). If one assumes θk
iid∼ N(0, τ̂ 2) and proceeds with a

Bayesian analysis that ignores the fact τ̂ 2 being estimated, then the errors introduced in

the hyperparameter estimation would not be reflected in the inference.
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(3) Let Bk =
σ̂2
θk

τ2+σ̂2
θk

. The posterior distribution π(θk|θ̂k, Bk) for given Bk (or equivalently

given τ 2) is N(µk,Bk , Vk,Bk), where

µk,Bk = (1−Bk)θ̂k,

Vk,Bk =
τ 2σ̂2

θk

τ 2 + σ̂2
θk

= (1−Bk)σ̂
2
θk
.

Rubin (1981), Morris (1983a and 1983b), Laird and Louis (1987) all introduced a vague

hyperprior distribution on τ 2, say H(τ 2), to derive the marginal posterior distribution of

θk|θ̂k as

m(θk|θ̂) =

∫
π(θk|θ̂, Bk)dH(Bk|θ̂),

where H(Bk|θ̂) is the posterior distribution of the hyperparameters Bk given θ̂. The

marginal posterior mean µk and variance Vk of θk|θ̂ are

µk = E(µk,Bk) = (1− E(Bk))θ̂k,

Vk = E(Vk,Bk) + var(µk,Bk) = (1− E(Bk))σ̂
2
θk

+ var(Bk)θ̂
2
k,

where E(·) and var(·) are taken with respect to H(Bk|θ̂).

To avoid integration in E(Bk) and var(Bk), Morris (1983a and 1983b) used the fol-

lowing estimated posterior mean and variance of Bk (for K ≥ 3, under a flat prior on

τ 2)

B̂k =
K − 2

K

σ̂2
θk

τ̂ 2 + σ̂2
θk

,

ˆvar(B̂k) =
2

K − 2
B̂2
k

τ̂ 2 + σ2
θk

τ̂ 2 + σ̂2
θk

for E(Bk) and var(Bk) respectively, where τ̂ 2 is the MLE derived under m(θ̂k| τ 2) and

σ2
θk

=

∑K
k=1 σ̂

2
θk
/(τ̂ 2 + σ̂2

θk
)∑K

k=1 1/(τ̂ 2 + σ̂2
θk

)
.
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The estimated posterior mean of τ 2|θ̂, τ̄ 2, can be calculated accordingly. The EB estima-

tors for µk and Vk are

µ̂k = (1− B̂k) θ̂k and V̂k = (1− B̂k) σ̂
2
θk

+
2

K − 2
B̂2
k θ̂

2
k

τ̂ 2 + σ2
θk

τ̂ 2 + σ̂2
θk

.

Note that µ̂k reduced to the James-Stein estimator of θk if all σ̂2
θk

are equal (Morris 1983).

The factor K−2
K

in B̂k is used to adjust for the error in the estimation of τ̂ 2. When K

is large, B̂k →
σ̂2
θk

τ̂2+σ̂2
θk

and ˆvar(B̂k) → 0, thus µ̂k = τ̂2

τ̂2+σ̂2
θk

θ̂k and V̂k =
τ̂2σ̂2

θk

τ̂2+σ̂2
θk

. So

a naive analysis by plugging in the estimated prior via MLE τ̂ 2 in N(µk,Bk , Vk,Bk) will

work well when K is large. When K is small or moderate, one must take into account the

uncertainty in τ̂ 2 while obtaining the posterior distribution of θk in the EB spirit (Morris

(1983), Berger (1985)).

Proof of lemma 5.2

(i) Proof of θ̃k = θ̂k: Let `k(βk, θk) = log(LRk (βk, θk)) be the log retrospective likelihood

of the unconstrained model corresponding to the k-study. Let `(β,θ) =
∑

k `k(βk, θk).

We have

max
θ

`(β,θ) = max
θ

∑
k

`k(βk, θk) =
∑
k

max
θk

`k(βk, θk).

Since the MLE for θ under LR is unique, we have

θ̂ = argmax
θ

`(β,θ) = (argmax
θ1

`1(β1, θ1), ..., argmax
θK

`K(βK , θK)) = θ̃.

(ii) Proof of σ̃2
θk
≥ σ̂2

θk
: Let ζk = (γ0k, η0k, ηk) and ζ = (ζ1, ..., ζK). It follows that βk =

(γ, ζk) and β = (γ, ζ). Note that the derivative of the log likelihood `, with respect to any

of the nuisance parameter ζk or θk, only depends on the k-study likelihood `k, i.e.,

∂`

∂θk
=
∂
∑

k `k
∂θk

=
∂`k
∂θk

and
∂`

∂ζk
=
∂`k
∂ζk

.
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Then we have

∂2`

∂θ2
k

=
∂2`k
∂θ2

k

and
∂2`

∂θjθk
= 0 (j 6= k) =⇒ Iθθ = diag(I1θ1θ1 , ..., IKθKθK )

∂2`

∂γ>γ
=
∑
k

∂2`k
∂γ>γ

=⇒ Iγγ =
∑
k

Ikγγ

∂2`

∂γ>θk

∂2`

∂θkγ
=

∂2`k
∂γ>θk

∂2`k
∂θkγ

=⇒ IγθIθγ =
∑
k

IkγθkIkθkγ

Similarly Iζζ = diag(I1ζ1ζ1 , ..., IKζKζK ) and Iθjζk = 0 for j 6= k. Note that

Iββ =

 Iγγ Iγζ

Iζγ Iζζ

 =

 ∑
k Ikγγ (Iγζ1 , ..., IγζK )

(Iγζ1 , ..., IγζK )> diag(I1ζ1ζ1 , ..., IKζKζK )

 .

Then Iββ can be considered as the summation of a sequence of matrices Ck defined as

below, i.e., Iββ =
∑

kCk.

Ck =



Ikγγ 0 · · · Ikγζk · · · 0

0 0

... . . .

Ikζkγ Ikζkζk
... . . .

0 0


Ikβkβk =

 Ikγγ Ikγζk

Ikζkγ Ikζkζk

 .

In above, all the unmarked elements inCk are zero. Ck only has four nonzero blocks (cor-

responding to position (1, 1), (1, k + 1), (k + 1, 1) and (k + 1, k + 1) in terms of block),

which are the same as the blocks in Ikβkβk . Clearly,Ck’s only have nonnegative eigenval-

ues: positive eigenvalues identical to that of Ikβkβk and zero eigenvalues elsewhere. Thus,

all Ck’s are symmetric positive semi-definite.
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Since (Iθθ)−1 = Iθθ − IθβI−1
ββ Iβθ, we can write

σ̂−2
θk

= Ikθkθk − IθkβI−1
ββ Iβθk

= Ikθkθk − (Iθkγ, Iθkζ1 , ..., IθkζK )I−1
ββ (Iθkγ, Iθkζ1 , ..., IθkζK )>

= Ikθkθk − (Ikθkγ,0, ..., Ikθkζk , ...,0)(
∑
k

Ck)
−1(Ikθkγ,0, ..., Ikθkζk , ...,0)>

and σ̃−2
θk

= Ikθkθk − IkθkβkI−1
kβkβk

Ikβkθk

= Ikθkθk − (Ikθkγ, Ikθkζk)I
−1
kβkβk

(Ikθkγ, Ikθkζk)
>.

= Ikθkθk − (Ikθkγ,0, ..., Ikθkζk , ...,0)C−1
k (Ikθkγ,0, ..., Ikθkζk , ...,0)>.

In order to show σ̃2
θk
≥ σ̂2

θk
for k = 1, ..., K, it is sufficient to showC−1

k ≥ (
∑

kCk)
−1 for

each k. It is equivalent to show
∑

j 6=kCj ≥ 0 for each k, which is true because all Ck’s

are symmetric positive semi-definite.

The equality in σ̃2
θk
≥ σ̂2

θk
hold iff Cj = 0 for all j 6= k. The symmetric positive

semi-definite matrix Cj = 0 iff Ikβkβk = 0, i.e., `k contains no information. Therefore,

the inequality in σ̃2
θk
≥ σ̂2

θk
is usually strict in practice. Although each θ̃k is derived under

individual likelihood LRk and θ̂k’s are derived jointly under LR, we actually have θ̃k = θ̂k

and σ̃2
θk
≥ σ̂2

θk
.

Derivation of V̂γ̂EB

(1) cov(γ̂, γ̂0): Denote I (I0) as the full observed information matrix for the uncon-

strained (constrained) model; denote Uki(β,θ) and U0
ki(β) as the individual score func-

tions for subject (k, i) for the unconstrained and constrained models respectively. Asymp-

totically,

√
n

 β̂ − β∗

θ̂ − θ∗

 = n
1
2I−1

∑
k, i

Uki(β,θ) and
√
n(β̂(0)− β(0)) = n

1
2 (I0)−1

∑
k, i

U0
ki(β),
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where β∗ and θ∗ are the true parameter values, and β(0) denotes the limiting value of the

profile MLE β̂(0). The joint asymptotic variance-covariance matrix ΣΩ̂ of Ω̂ = (β̂, θ̂, β̂0)

is  I−1var(
∑

k, i Uki)I
−1 I−1cov(

∑
k, i Uki,

∑
k, i U

0
ki)(I

0)−1

(I0)−1cov(
∑

k, i U
0
ki,
∑

k, i Uki)I
−1 (I0)−1var(

∑
k, i U

0
ki)(I

0)−1

 .

Then cov(γ̂, γ̂0) can be obtained as the corresponding sub-matrix of ΣΩ̂.

(2) V̂γ̂EB1
: We consider γ̂EB1 = ψ̂ψ̂

>
{V̂γ̂+ψ̂ψ̂

>
}−1γ̂+V̂γ̂{V̂γ̂+ψ̂ψ̂

>
}−1γ̂0 = f(γ̂, γ̂0)

as a function of (γ̂, γ̂0). Applying Delta method, the approximate variance-covariance

matrix of γ̂EB1 is given by f ′(γ̂, γ̂0)>cov(γ̂, γ̂0)f ′(γ̂, γ̂0), where f ′ is the p× 2p gradient

matrix that can be derived as

f ′ =
(
−

2ψ̂ψ̂
>
V̂ −1
γ̂

(1 + ψ̂
>
V̂ −1
γ̂ ψ̂)2

+
1p

1 + ψ̂
>
V̂ −1
γ̂ ψ̂

,
2ψ̂ψ̂

>
V̂ −1
γ̂

(1 + ψ̂
>
V̂ −1
γ̂ ψ̂)2

+
ψ̂
>
V̂ −1
γ̂ ψ̂1p

1 + ψ̂
>
V̂ −1
γ̂ ψ̂

)
(3) V̂γ̂EB2

and V̂γ̂EB3
: For γ̂EB2 and γ̂EB3 of the more general form γ̂EB = ∆̂>Â∆̂{V̂γ̂ +

∆̂>Â∆̂}−1γ̂+V̂γ̂{V̂γ̂+∆̂>Â∆̂}−1γ̂0, it is hard to apply the above Delta method to obtain

a variance formula for the EB estimator since Â does not have a closed form expression

in terms of Ω̂. Instead, we consider an ad hoc way to calculate the variance. Let w =

∆>A∆{V̂γ̂ + ∆>A∆}−1. We derive the functional form of Vγ̂EB treating w as fixed,

i.e., γ̂EB = wγ̂ + (1p −w)γ̂0, and then plug in the estimated weight ŵ = ∆̂>Â∆̂{V̂γ̂ +

∆̂>Â∆̂}−1 into the functional form to get V̂γ̂EB . In particular, Vγ̂EB = wV̂γ̂w
> + (1p −

w)V̂γ̂0(1p−w)>+2wcov(γ̂, γ̂0)(1p−w)>. Then the ad hoc estimator V̂γ̂EB = ŵV̂γ̂ŵ
>+

(1p − ŵ)V̂γ̂0(1p − ŵ)> + 2ŵ ˆcov(γ̂, γ̂0)(1p − ŵ)>.

A mixture distribution: θk ∼ p δ(0) + (1− p)N(0, τ 2)

For the mixture distribution θk ∼ p δ(0) + (1 − p)N(0, τ 2), we have E(θk) = 0

and var(θk) = (1 − p)τ 2 (This can be proved via E(θk) = E[E(θk|L)] and V ar(X) =



176

E[V ar(θk|L)] + V ar[E(θk|L)]). For a latent random variable L ∼ Bin(p), θk|L = 1 ∼

δ(0); θk|L = 0 ∼ N(0, τ 2). Marginalizing over θk, it follows that θ̂k|L = 1 ∼ N(0, σ̂2
θk

);

θ̂k|L = 0 ∼ N(0, σ̂2
θk

+τ 2). So marginally, θ̂k has a mixture distribution θ̂k ∼ pN(0, σ̂2
θk

)+

(1 − p)N(0, σ̂2
θk

+ τ 2), which has mean 0 and variance σ̂2
θk

+ (1 − p)τ 2. Similarly, we

estimate the prior hyperparameter p and τ 2 by maximizing the marginal likelihood of θ̂k

m(θ̂k|p, τ 2) =
K∏
k=1

[
p(2πσ̂2

θk
)−

1
2 exp

{
− θ̂2

k

2σ̂2
θk

}
+ (1− p){2π(τ 2 + σ̂2

θk
)}−

1
2 exp

{
− θ̂2

k

2(τ 2 + σ̂2
θk

)

}]
.

Denote the MLE of p and τ 2 by p̂ and τ̂ 2.
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