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ABSTRACT

Intermediate markers: surrogacy assessment using principal stratification and
multi-state models

by

Anna S.C. Conlon

Co-chairs: Jeremy M.G. Taylor and Michael R. Elliott

Intermediate markers can be useful in clinical trials as either surrogate markers in-

tended to replace the true outcome of interest or as auxiliary variables intended to

improve efficiency in the analysis of the true outcome. We explore methods pertain-

ing to both of these roles of intermediate markers. First, we propose methods for

assessing the validity of a potential surrogate marker. Working under the principal

stratification approach for surrogacy validation proposed by Frangakis and Rubin

(2002), we propose quantities to evaluate surrogacy when the joint distribution of

the potential surrogate and final outcomes is multivariate normal. The multivariate

normality assumption is then relaxed and a Gaussian copula model is used to model

the joint distribution of surrogate and final outcomes, and quantities are derived from

this model to determine surrogacy. For both the multivariate normal model and the

Gaussian copula model, a Bayesian estimation strategy is used and, as some param-

eters are not identifiable from the data, we explore the use of informative priors that

xiii



are consistent with reasonable assumptions in the surrogate marker setting to aid in

estimation.

Methods for utilizing an intermediate marker as an auxiliary variable to improve

efficiency in the analysis of the true outcome are then considered. A multi-state model

with an incorporated cured fraction is used to model recurrence and death in colon

cancer. The model is used to assess how individual covariates affect the probability

of being cured of disease and the transition rates between the various disease states.

Once parameter estimates from the model are obtained, survival probabilities can be

estimated with gains in efficiency obtained as compared to Kaplan-Meier estimates.

The model is then used in a multiple imputation strategy which imputes death times

for censored subjects. By using the joint model, recurrence is used as an auxiliary

variable in predicting survival times. We explore the use of a hierarchical model

and model adaptations that can be made to potentially further the efficiency gains

obtained through the multiple imputation procedure. We demonstrate the potential

use of the proposed methods in shorting the length of a trial and reducing sample

sizes.
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CHAPTER I

Introduction

There is much interest in the use of intermediate outcome variables as either surro-

gate endpoints or as auxiliary variables for the true outcome of interest in randomized

clinical trials, as they may allow trials to be run more quickly and inexpensively. A

surrogate endpoint (S) is one that is intended to replace the true endpoint (T ) in

evaluating therapy and an auxiliary variable is one that is intended to be used to

improve the efficiency of the analysis of the true endpoint. In this dissertation we

will consider both of these uses of an intermediate marker. First, we explore methods

of validating a surrogate endpoint that is intended to replace a true endpoint. We

propose surrogate validation measures for multivariate normal surrogate and outcome

data, with extensions to non-normally distributed data through the use of a Gaussian

copula model. We then look at methods to jointly model an intermediate outcome and

final outcome with a goal of utilizing the information from the intermediate variable

to improve the analysis on the true endpoint of interest. We propose a multi-state

model with an incorporated cured fraction to jointly model colon cancer recurrence

and survival and employ the model to utilize recurrence as an auxiliary variable for

overall survival.

1
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Chapters II and III consider the use of an intermediate marker, S, as a surrogate

maker for the true endpoint, T , and explore methods of validating S as a surrogate.

In both of these chapters, we work under the principal surrogacy framework of causal

inference proposed by Frangakis and Rubin (2002). In Chapter II, we propose quan-

tities to evaluate surrogacy when the joint distribution of the potential outcomes of S

and T follow a multivariate normal distribution. Many previous methods of surrogate

validation rely on models for the conditional distribution of T given the treatment (Z)

and S. However, S is a post-randomization variable, and unobserved, simultaneous

predictors of S and T may exist. When such confounders exist, these methods will

not have a causal interpretation. Therefore, there has been much recent work in the

area of surrogacy assessment under the principal surrogacy approach, which looks at

the distribution of the potential outcomes of T conditional on principal strata based

on the joint distribution of the potential outcomes of S, which are pre-randomization

variables. Treatment effect estimates that condition on these principal strata are

therefore causal estimates. Existing literature on methods of surrogacy assessment

using principal stratification has examined settings in which both S and T are binary

(Li, et al. 2010), or in which S is continuous with binary T (Gilbert and Hudgens,

2008; Zigler and Belin, 2012). Work in the principal stratification setting when both

S and T are continuous has been discussed in the application to partial compliance

(Bartolucci and Grilli, 2011; Schwartz, et al. 2011), where the conditional distribution

for each of the potential outcomes of T are modeled separately. Here, we consider the

entire joint distribution of the potential outcomes of S and the potential outcomes

of T when both S and T are continuous and their joint distribution is multivariate

normal. Once parameter estimates from this model are obtained, we examine vari-

ous causal quantities that may aid in the assessment of S as a surrogate marker for
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T . As the model is not fully identifiable from the data, we propose some reasonable

prior distributions and assumptions that can be placed on non-identified parameters

to aid in the Bayesian estimation scheme. We explore the relationship between our

surrogacy measures and the surrogacy measures proposed by Prentice (1989). The

method is applied to data from a macular degeneration study where change in visual

acuity at six months is assessed as a surrogate for change in visual acuity at one year,

and to data from an ovarian cancer study where progression free survival is assessed

as a surrogate for overall survival.

In Chapter III, we again consider surrogacy validation measures using the prin-

cipal stratification framework, but relax the multivariate normality assumption. In

this setting, a Gaussian copula model can be used to model the joint distribution of

the counterfactual surrogate and final outcome measures. We address the scenario

of an ordinal categorical variable as a surrogate for a censored failure time true end-

point. The use of a copula model to assess surrogacy in this setting was explored

by Burzykowski, et al. (2004), where a Plackett copula was used to jointly model

observed tumor response and survival in advanced colorectal cancer. De Leon and

Wu (2011) explored the use of the Gaussian copula to jointly model a bivariate dis-

crete and continuous outcome. Here, we extend these ideas by employing a four

dimensional Gaussian copula model to jointly model the potential outcomes of an

ordinal surrogate marker and the potential outcomes of a censored time to event fi-

nal outcome and derive quantities from this model to assess surrogacy. A Bayesian

estimation strategy is used to aid in the estimation of non-identified parameters, and

the use of some prior distributions that are consistent with reasonable assumptions in

the surrogacy setting are assessed. We apply the method to data from an advanced

colorectal cancer clinical trial where tumor response is assessed as a surrogate for
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overall survival.

Chapters IV and V consider the use of S as an auxiliary variable that is meant to

aid in the efficiency of the estimation of T . In Chapter IV, we propose a multi-state

model with an incorporated cured fraction to jointly model recurrence and death

in colon cancer. The multi-state model and cure model have each been separately

considered with both parametric and non-parametric assumptions. Here our proposed

model combines aspects of both of these models, providing insight into how individual

covariates affect the probability of being cured of disease and the time to recurrence,

time to death and time to death after recurrence, as well as the association of the two

endpoints of interest, recurrence and death. A Bayesian MCMC estimation strategy

is used to obtain parameter estimates. Checks for the adequacy of the model fit

and for the functional forms of covariates are explored through the use of Cox-Snell

residual plots and deviance residual plots, respectively. These model assessments are

natural to consider for multi-state models, but we are unaware of literature on using

them in cure models. The methods are applied to data from 12 randomized Phase III

trials of colon cancer, where there is interest in exploring common covariate effects

on each aspect of the disease process across all 12 trials.

Chapter V uses the proposed multi-state model with a cured fraction detailed in

Chapter IV to explore the use of recurrence as an auxiliary variable for improving

efficiency in estimating the treatment effect on overall survival. Estimates of overall

survival and disease free survival can be derived from the model with efficiency gains,

as compared to Kaplan-Meier estimates, obtained by utilizing recurrence information

and the parametric assumptions of the model. Alternatively, efficiency gains can be

achieved by using the model in a multiple imputation procedure to impute death times

for censored subjects. Treatment effect estimates on overall survival are then obtained



5

by combining results from the multiply imputed data sets. As the multi-state model

jointly models time to recurrence and time to death, recurrence is an auxiliary variable

in the imputation procedure, and treatment effect estimates from the imputed data

sets often result in an efficiency gain as compared to the original data, resulting in

the potential to shorten the length of the trial. The multiple imputation procedure

explored here extends that proposed by Conlon, et al. (2011), where recurrence

and death were modeled separately. In their procedure, a cure model was used to

model recurrence and for death, a proportional hazards model with Weibull baseline

hazard and recurrence as a time dependent covariate was used. Here, our proposed

model jointly models recurrence and death, and through the Bayesian estimation

procedure, the use of some restrictive priors can be explored as a way to further the

efficiency gains obtained through the imputation procedure. Additionally, the use

of a hierarchical model to facilitate information sharing of common covariate effects

across the 12 trials is considered as a modeling strategy, with the goal of improving

upon the efficiency gains from the imputed data.



CHAPTER II

Surrogacy Assessment Using Principal

Stratification When Surrogate and Outcome

Measures are Multivariate Normal

2.1 Introduction

A surrogate endpoint (S) is an intermediate outcome variable occurring in between

the treatment (Z) and the outcome of interest (T ). The surrogate is usually known

to be involved in the mechanism of the disease process and can be measured at an

earlier time than the desired outcome. Therefore, there is considerable interest in

the use of surrogate markers in clinical trials, as they offer the potential to run trials

more cheaply and quickly by extracting information regarding the treatment effect

on T through the earlier measured S. Examples of established surrogate markers

include blood pressure under anti-hypertensive drug treatment as a surrogate for

cardiovascular disease (Weir and Walley, 2006), and three year disease free survival

as a surrogate for five year overall survival in colorectal cancer (Sargent, et al. 2007).

We examine two data examples in the application of our method. The first concerns

patients with age-related macular degeneration and considers the use of change in

visual acuity at 6 months after starting treatment as a surrogate marker for change

6
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in visual acuity at 1 year. The second concerns ovarian cancer and assesses progression

free survival as a surrogate for overall survival.

Before a surrogate can be used in practice, it must be shown to be a valid surrogate

for the outcome of interest. In a landmark paper, Prentice (1989) proposed a formal

definition of surrogacy along with a validation strategy. Prentice’s criteria require

that S and T be correlated and the treatment effect on T be fully captured by

S. Other methods for surrogacy evaluation have since been proposed, including the

proportion of treatment effect explained by S (Freedman, Graubard, and Schatzkin,

1992), and individual-level and trial-level surrogacy association measures in meta-

analyses (Buyse, et al. 2000).

Surrogacy assessments like these that rely on adjusting for surrogate markers

measured after randomization result in estimates that will not have a causal inter-

pretation since the markers are measured after randomization (Rosenbaum, 1984).

Therefore, Frangakis and Rubin (2002) (henceforth FR) introduced a definition of a

surrogate endpoint, called a “principal surrogate”, based on a principal stratification

approach. In this framework, each subject has two potential outcomes corresponding

to each treatment, denoted S(Z) and T (Z), for Z = 0, 1. The principal surrogacy

approach looks at the distribution of the potential outcomes of T conditional on prin-

cipal strata based on the joint distribution of S(0) and S(1). The principal strata are

unaffected by treatment, and are thus pre-randomization variables. Treatment effect

estimates that condition on these principal strata are therefore causal estimates when

treatments are randomly assigned.

The rationale for considering whether the principal stratification approach is ap-

propriate for assessing surrogacy has been discussed in the literature, with some

support provided in the discussion by VanderWeele (2011) and by Zigler and Belin
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(2012). In this approach, the value of S as a surrogate for T is determined by the

extent to which the causal effect of treatment on S can reliably predict the causal

effect of treatment on T . The rationale for considering principal surrogacy or more

generally considering the joint distribution of S(0), S(1), T (0), T (1) is most easily ex-

plained in the case where S and T are binary. In this case, the joint distribution

of S(0), S(1), T (0), T (1) amounts to a partition of the population into cells with a

probability attached to each cell. These probabilities completely characterize the

population and from them an assessment of surrogacy can be made. For example,

one can consider the fraction of the population for which T (0) is not equal to T (1)

amongst those who have S(0) not equal to S(1). Then additionally, this fraction

might be contrasted with the fraction of the population for which T (0) is not equal

to T (1) amongst those who have S(0) equal to S(1). As we will describe below, other

summary measures that can be obtained from the joint distribution might also be con-

sidered. When S and T are continuous, the joint distribution of S(0), S(1), T (0), T (1)

again completely characterizes the population, from which summary measures for as-

sessing surrogacy, such as the distribution of T (1) − T (0) given S(1) − S(0), can

be obtained. If one accepts that the joint distribution completely characterizes the

population, then the challenges are determining what useful summary measures to

extract from this distribution, and the estimation of this distribution.

We note that the principal stratification approach to assessing surrogacy uses

a causal framework, but the causal framework it uses differs from the framework

presented by Pearl (1995) and discussed in Joffe and Greene (2009). In the principal

stratification framework, there are only two causal effects, one on S and one on T and

we are interested in the association between these two. The other causal framework,

while it may also be interesting to consider, does require additional consideration of
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the effect of S on T , requiring hypothetical manipulations of S. This alternative

causal framework is more mechanistic and allows notions of direct and indirect effects

of Z on T . We will not pursue it in this paper.

Existing literature on methods for surrogacy assessment using the principal strat-

ification approach has examined settings in which both S and T are binary (Li et

al. 2010), or in which S is continuous with binary T (Gilbert and Hudgens, 2008;

Zigler and Belin, 2012). For a binary S and T , Li, et al. (2010) developed an es-

timation method for the causal quantities associated with the cross classification of

the potential outcomes using a log-linear model and Bayesian estimation procedure.

Gilbert and Hudgens (2008) (henceforth GH) used the framework of FR to develop

an estimand, termed the causal effect predictiveness (CEP) surface for evaluating

surrogacy when S is continuous or categorical and T is binary. Work in the principal

surrogacy framework when both S and T are continuous has been discussed in the

application to partial compliance (Bartolucci and Grilli, 2011; Schwartz, et al. 2011).

In this context, the joint distribution of the potential outcomes of the intermediate

variable, in this case degree of compliance, is modeled either parametrically or semi-

parametrically with principal causal effects measured by comparisons of the potential

outcomes of T conditional on S, where the conditional distributions for T (0) and T (1)

are modeled separately. Qin, et al. (2008) used a principal stratification approach in

the assessment of a continuous surrogate with a time to event outcome.

Here, we consider the entire joint distribution of (Si(0), Si(1), Ti(0), Ti(1)) and

propose estimands to evaluate principal surrogacy when both S and T are continuous

and the joint distribution of the potential outcomes is multivariate normal. Once

parameter estimates for this distribution are obtained, various causal quantities that

may aid in the assessment of S as a surrogate marker for T may be examined. Specific



10

quantities of interest include E[T (1)− T (0)|S(1)− S(0)], P (T (1)− T (0) > 0|S(1)−

S(0)), and the correlation between T (1)−T (0) and S(1)−S(0). The use of cor(T (1)−

T (0), S(1)−S(0)) has been discussed by Wang, et al. (2012), who specifically contrast

it with the observable correlation between S and T , given the treatment group.

Because some parameters of the joint distribution are not fully identifiable from

the data, we use a Bayesian estimation procedure with plausible prior distributions

and some reasonable constraints on model parameters to reduce the non-identifiability

problem of modeling counterfactual observations and to aid in estimation of the quan-

tities of interest. In order to facilitate the consideration of reasonable constraints we

found it convenient to decompose the covariance matrix, Σ of (Si(0), Si(1), Ti(0), Ti(1))

as Σ = QRQ (Barnard, McCulloch and Meng, 2000), and place constraints on the

correlations R, rather than on the covariance terms in Σ. We also explore the re-

lationship between some of the proposed surrogacy assessment quantities and those

based on the Prentice criteria. In Section 2.2, we describe the model and possible

constraints that could be made to facilitate estimation. In Section 2.3, we introduce

surrogacy measures based on the potential outcomes framework. Section 2.4 describes

the Bayesian estimation procedure that we use and Section 2.5 provides simulation

results from this procedure. In Section 2.6 we apply these methods to the macular

degeneration data and ovarian cancer data. Section 2.7 concludes with a discussion.

2.2 Potential Outcomes Model

For a randomized trial with treatment assignment Z (Z = 1 or 0), continuous

surrogate marker S and continuous true endpoint T , each subject i, i = 1, ..., n,

has two potential outcomes for each of Si and Ti, denoted by Si(zi) and Ti(zi).
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Only one outcome, corresponding to the received treatment for subject i in each

of the pairs (Si(0), Si(1)) and (Ti(0), Ti(1)) can be observed. The joint distribution

of (Si(0), Si(1), Ti(0), Ti(1)) describes the causal associations between Z, S and T .

In the continuous setting where (Si(0), Si(1), Ti(0), Ti(1)) is multivariate normal with

mean µ and covariance matrix Σ, we have the following joint distribution:

Si(0)

Si(1)

Ti(0)

Ti(1)


∼ N





µS0

µS1

µT0

µT1


,



σ2
S0

ρsσS0σS1 ρ00σS0σT0 ρ01σS0σT1

σ2
S1

ρ10σS1σT0 ρ11σS1σT1

σ2
T0

ρtσT1σT0

σ2
T1




The mean µ and the variances corresponding to the diagonal elements of Σ, along

with the correlations between (Si(0), Ti(0)) and (Si(1), Ti(1)) corresponding to ρ00

and ρ11, are fully identifiable from the data. Because only one of the counterfactual

pairs of outcomes is observed for each subject, ρs, ρt, ρ01, and ρ10 are not identifiable.

However, the identifiable correlation parameters together with the requirement that

Σ be positive definite places boundary constraints on these non-identified parame-

ters, which, along with other plausible assumptions that we can make, aids in their

estimation.

We make the standard assumptions of ignorable treatment assignments (Ru-

bin, 1978) and the stable unit treatment value assumption (SUTVA). Ignorable

treatment assignment implies that Z is independent of (S(0), S(1), T (0), T (1)) and

holds for blinded, randomized trials. SUTVA implies that the potential outcomes

(Si(0), Si(1), Ti(0), Ti(1)) are independent of the treatment assignments of other sub-

jects. This allows us to write the potential outcomes for subject i as a function of Zi

rather than of the entire vector of subject treatment assignments.
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Other context specific constraints can be added, such as all ρ’s ≥ 0, a plausible

assumption for most variables S that would be under consideration as a potential

surrogate for T , and especially when the identifiable Pearson correlation coefficients,

ρ̂00 and ρ̂11, are positive. Other plausible assumptions are ρ01 < min(ρ00, ρ11, ρs, ρt),

and ρ10 < min(ρ00, ρ11, ρs, ρt), indicating a belief that the correlation between the

surrogate response and final outcome response in opposite treatment arms is less

than the correlation between the surrogate response and final outcome response within

the same treatment arm, or the correlation between the surrogate responses or final

treatment responses across treatment arms.

2.3 Assessing Surrogacy Using Potential Outcomes Frame-
work

2.3.1 Definitions of Surrogacy

Because S is a post-randomization variable, unobserved simultaneous predictors

of both S and T may exist. In this case, methods of surrogacy assessment that

require conditioning on S do not result in causal estimates (Rosenbaum, 1984). When

baseline covariates account for all common causes of S and T , surrogacy measures that

condition on S will be causal. However, the assumption of no unmeasured confounders

of S and T is untestable, potentially leading to noncausal estimates (Gilbert, et

al. 2009). Therefore, FR proposed a definition of principal surrogacy (PS), which

uses a principal stratification approach to assess the validity of a surrogate marker.

This framework focuses on the distribution of p(T (0), T (1)|S(0), S(1)). Since S(1)

and S(0) are unaffected by treatment assignment, they can be treated as baseline

covariates. Quantities estimated from this distribution will therefore always have
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a causal interpretation. FR proposed two measures of surrogacy, the “dissociative

effect” given by E(Ti(1)− Ti(0)|Si(1) = Si(0)), and the “associative effect” given by

E(Ti(1)− Ti(0)|Si(1) 6= Si(0)).

For the multivariate normal distribution, the distribution of (T (1)− T (0)|S(1)−

S(0) = s) is normal with mean given by E[Ti(1)−Ti(0)|Si(1)−Si(0) = s] = γ0 +γ1s,

where

γ0 = (µT1 − µT0)−
(
ρ11σS1

σT1
−ρ10σS1

σT0
−ρ01σS0

σT1
+ρ00σS0

σT0

σ2
S0

+σ2
S1
−2ρsσS0

σS1

)
(µS1 − µS0)

γ1 =
(
ρ11σS1

σT1
−ρ10σS1

σT0
−ρ01σS0

σT1
+ρ00σS0

σT0

σ2
S0

+σ2
S1
−2ρsσS0

σS1

)
and variance given by

σ2
T0

+ σ2
T1
− 2ρtσT0σT1 −

(ρ11σS1
σT1
−ρ10σS1

σT0
−ρ01σS0

σT1
+ρ00σS0

σT0)
2

σ2
S0

+σ2
S1
−2ρsσS0

σS1
.

The value of γ0 is then a measure of the “dissociative effect”. Values of γ0 near zero

indicate that the causal effect of treatment on the final outcome is near zero when the

causal effect of treatment on the surrogate is near zero, a characteristic that a good

principal surrogate should possess. When γ0 6= 0, there can be a causal effect of the

treatment on the final outcome even if there is no causal effect of the treatment on the

surrogate, implying that the treatment affects the outcome through pathways that do

not involve the surrogate. The value of γ0+γ1s is a measure of the “associative effect”.

A good principal surrogate should result in a large associative effect, indicating that

as the treatment effect on the surrogate increases, the treatment effect on the final

outcome increases as well, thus this measures the extent to which the effect of Z on

S is associated with an effect of Z on T (VanderWeele, 2011).

GH suggest a refined definition of a principal surrogate endpoint. In their setting

with binary T they define two properties, “average causal necessity” (ACN) and “av-

erage causal sufficiency” (ACS), that a valid surrogate marker should satisfy. ACN
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is satisfied if risk(1)(s1, s0) = risk(0)(s1, s0) for all s1 = s0, where risk(z)(s1, s0) =

p(T (Z) = 1|S(1) = s1, S(0) = s0). ACS is satisfied if there exists some constant

C ≥ 0 such that risk(1)(s1, s0) 6= risk(0)(s1, s0) for all |s1 − s0| > C. In our setting

of continuous T , we can consider the joint conditional distribution of (T (0), T (1)).

Specific summaries of this joint distribution which are of major interest include

E[T (1) − T (0)|S(1) − S(0) = s] for s = 0 and |s| > C for some C ≥ 0, P (T (1) >

T (0)|S(1)−S(0) = s) and the correlation between T (1)−T (0) and S(1)−S(0). Also

of interest is the “causal effect predictiveness (CEP ) surface” proposed by GH which

considers the entire surface of E[T (1)− T (0)|S(1), S(0)]. In the case of a binary out-

come, the definitions of ACN and ACS are equivalent to the conditional expectations

of T (0) and T (1). GH suggest that their framework is also applicable in the setting of

continuous endpoint, with the expressions for P (T (z) = 1 | ·) replaced by E(T (z) | ·).

We can therefore consider ACN satisfied if E[T (1)− T (0) | S(1)− S(0) = 0] = 0 and

ACS satisfied if E[T (1)−T (0) | S(1)−S(0) = s] 6= 0 for all |s| > C, corresponding to

γ0 = 0 and γ1 6= 0. In the setting of a continuous endpoint, we may also consider the

entire conditional distribution of T (1) and T (0). In this case, ACN in distribution is

satisfied if P (T (1) − T (0) > 0 | S(1) − S(0) = 0) = 0.5 and ACS in distribution is

satisfied if P (T (1)−T (0) > 0 | S(1)−S(0) = s) 6= 0.5. For multivariate normal data

this conditional probability is:

Φ10(s) = P (T (1)− T (0) > 0|S(1)− S(0) = s) = Φ

 γ0 + γ1s√
σ2
T0

+ σ2
T1
− 2ρtσT0σT1 − γ2

1(σ2
S0

+ σ2
S1
− 2ρsσS0σS1 )



In the multivariate normal setting, the metrics of ACN and ACS based on the

entire conditional distribution and based only on the conditional expectation are
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closely related. If ACN in expectation holds (γ0 = 0), then ACN in distribution will

also hold (Φ10(0) = 0.5 when S(1)−S(0) = 0). If both ACN and ACS in expectation

hold (γ0 = 0 and γ1 6= 0), then Φ10(s) 6= 0.5 for s 6= 0, satisfying ACS in distribution.

Therefore, validation of S as a surrogate can be done by evaluating either γ0 = 0,

γ1 6= 0 or Φ10(0) = 0.5, Φ10(s) 6= 0.5 for s 6= 0.

Another potentially useful measure to assess surrogacy is the correlation between

T (1) − T (0) and S(1) − S(0), which we denote by ρST . It can be shown that ρST is

given by

ρST =
ρ11σS1

σT1
−ρ10σS1

σT0
−ρ01σS0

σT1
+ρ00σS0

σT0√
σ2
S0

+σ2
S1
−2ρsσS0

σS1

√
σ2
T0

+σ2
T1
−2ρtσT0

σT1

= γ1

√
σ2
S0

+σ2
S1
−2ρsσS0

σS1

σ2
T0

+σ2
T1
−2ρtσT0

σT1

When ρST = 0, γ1 will also be 0, hence ACS in expectation will not be met, and S

cannot be a valid principal surrogate for T . When ρST > 0, γ1 > 0, thus satisfying

ACS. A positive value of ρST does not, however, provide information about γ0, and

therefore cannot alone determine whether or not S is a valid surrogate marker. A

final way that we consider summarizing the conditional distribution of T (1) − T (0)

given S(1) − S(0) = s, is through the CEP graph, which is a plot of E[T (1) −

T (0)|S(1)− S(0) = s] versus s, which in the multivariate normal setting, is simply a

plot of γ0 + γ1s versus s.

One issue that arises in the validation of surrogate markers is the presence of

the “surrogate paradox” (Chen et al., 2007; VanderWeele, 2013) where there is a

positive effect of treatment on the surrogate, the surrogate and outcome are positively

correlated, but there is a negative effect of treatment on the outcome. VanderWeele,

(2013) notes that the principal surrogacy criteria capture the notion of surrogacy well

and conceptually avoid the surrogate paradox. However, he also points out that while

theoretically appealing, due to lack of identifiability, the criteria may be difficult to
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use in practice. It is easy to see that if both ACN and ACS hold (γ0 = 0 and γ1 6= 0,

respectively), then E[T (1) − T (0) | S(1) − S(0) = s] will be in the same direction

as S(1) − S(0) = s as long as γ1 > 0, thus avoiding the surrogate paradox. If ACN

is not perfectly satisfied (i.e. γ0 6= 0), then there is a small range of s for which the

surrogate paradox can occur. If γ0 < 0, then E[T (1) − T (0) | S(1) − S(0) = s] < 0

for s ∈ [0,−γ0/γ1]. If γ0 > 0, then E[T (1) − T (0) | S(1) − S(0) = s] > 0 for

s ∈ [−γ0/γ1, 0]. Wu et al. (2011) provide methods for detecting the presence of the

surrogate paradox based on the observed data.

2.3.2 Relationship Between Principal Surrogacy Measures and Prentice
Surrogacy Criteria

The ACN and ACS measures corresponding to conditional expectation can be

linked to the original surrogacy definition proposed by Prentice (1989). Prentice’s

criteria for a valid surrogate require that f(T |Z) 6= f(T ), f(S|Z) 6= f(S), f(T |S) 6=

f(T ), and f(T |S,Z) = f(T |S). In the normal setting, the observed variables have

the following distributions: Si

Ti

| Zi = 1

 ∼ N

 µS1

µT1

 ,

σ2
S1

ρ11σS1
σT1

σ2
T1


 and

 Si

Ti

| Zi = 0

 ∼ N

µS0

µT0

 ,

σ2
S0

ρ00σS0
σT0

σ2
T0


.

While Z is independent of the (pre-randomization) joint distribution of (S(0), S(1)),

it is not independent of the observed S. Thus, assuming the probability of being

randomized to either Z = 1 or Z = 0 is 0.5, the conditional expectation of T is

linear in S, and can be written as E[Ti | Si] = µ0 + µ1Si, where µ0 = 1
2
(µT1 +

µT0)− 1
2
(
ρ11σT1

σS1
µS1 +

ρ00σT0

σS0
µS0) and µ1 = 1

2
(
ρ11σT1

σS1
+

ρ00σT0

σS0
)Si. Furthermore, E[Ti|Zi] =

θ0 + θ1Zi where θ1 = µT1 − µT0 , E[Si|Zi] = α0 + α1Zi where α1 = µS1 − µS0 , and

E[T |S,Z] = β0 +β1Z+β2S+β3SZ where β1 = (µT1−µT0)−
(
ρ11σT1

σS1
µS1 −

ρ00σT0

σS0
µS0

)
,

β2 =
ρ00σT0

σS0
, and β3 =

ρ11σT1

σS1
− ρ00σT0

σS0
. The Prentice criteria are satisfied when θ1 6= 0,
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α1 6= 0, µ1 6= 0, β1 = 0, β2 6= 0, and β3 = 0. It can be shown that when

ρ11σT1

σS1

=
ρ00σT0

σS0

(II.1)

and

ρ00ρs =
1

2

(
ρ10 + ρ01

σS0σT1

σS1σT0

)
(II.2)

we have γ1 = β2 = µ1, γ0 = β1 and β3 = 0. Therefore, under these conditions, the

Prentice criteria and the principal surrogacy criteria requiring that both ACN and

ACS be met (or γ0 = 0 and γ1 6= 0) will reach the same conclusions regarding the

validity of S as a surrogate. When the above conditions are not met, conflicting

conclusions may be drawn by the Prentice criteria and principal surrogacy criteria.

As we regard principal surrogacy to be the main objective in surrogacy assessment,

approaching the question of surrogacy using the Prentice criteria in this case may

lead to erroneous conclusions.

In any real setting we would not expect the conditions in equations II.1 and II.2

to be exactly satisfied. However, in many settings we can see that the Prentice

criteria and principal surrogacy criteria will reach similar conclusions. Often σS0 ≈

σS1 , σT0 ≈ σT1 and we might expect ρ00 to be similar to ρ11, thus equation II.1 is

approximately satisfied. Similarly for any candidate surrogate, we may expect the

average of the “across treatment arm” correlations, ρ01 and ρ10, to be less than the

“within treatment arm” correlation ρ00, and the correlation of the surrogate marker

across treatment arms, ρs; thus departures from equality in equation II.2 may not be

large.
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2.3.3 Parameter Identifiability and Restrictions

Given the identified parameters, the positive definite restriction on R, and plausi-

ble assumptions about correlation values, we can gain some insight into the possible

ranges, or “identification regions” (Gustafson, 2010) for the partially identified pa-

rameters and examine scenarios within this space which lead to different surrogacy

conclusions. Under the restriction that all ρ’s are non-negative, and the simplifying

assumptions that ρ01 = ρ10, ρ11 = ρ00, and σS0 = σS1 = σT0 = σT1 , the top half

of Figure 2.1 displays the possible ranges for ρ01 = ρ10 across different values of ρs

and ρt for a given ρ11 = ρ00, where ρ11 and ρ00 are the identifiable Pearson corre-

lation coefficients between Si(1) and Ti(1), and Si(0) and Ti(0), respectively. The

length of the identification region for ρ01 and ρ10 is smallest when ρ11 and ρ00 are

large. For all values of ρ11 and ρ00, the length of the identification region for ρ01 and

ρ10 decreases as ρs and ρt increase. The bottom half of Figure 2.1 provides ranges

for these parameters under the additional restriction that ρ01 < min(ρ00, ρ11, ρs, ρt).

This restriction greatly reduces the range of possible values for the partially identi-

fied parameters, and has implicit effects on the possible ranges for γ0 and γ1. Under

these restrictions, γ1 must be greater than 0, implying that ACS always holds. In

this scenario where ACS always holds, poor principal surrogates can be characterized

by large values of γ0, implying that the treatment can effect the outcome without ef-

fecting the surrogate. Alternatively, a poor surrogate would have a small value of γ1,

implying that there is still a positive, but weak association between causal effects on

the surrogate and causal effects on the outcome. These restrictions seems reasonable,

as S is typically known to somehow be associated with or a relevant aspect of the

disease process, so even if it is not a valid principal surrogate from an ACN and ACS



19

perspective, we expect there to be at least a small association of treatment effects on

S with treatment effects on T . The solid points in each figure are parameter values

under which the Prentice criteria and PS criteria are in agreement. In this restricted

space the deviation between the Prentice criteria and the PS criteria are less than in

the unrestricted space, however we see that scenarios can arise in which the Prentice

criteria lead to incorrect conclusions regarding the validity of a principal surrogate.
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(f) ρ00 = ρ11 = 0.3

Figure 2.1: Identification regions of unidentified parameters in MVN model
Plots (a), (b), and (c): under restriction ρ’s ≥ 0

Plots (d), (e), and (f): under restriction ρ’s ≥ 0, ρ01 < min(ρ00, ρ11, ρs, ρt)
Solid points: PS criteria and Prentice criteria in agreement
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2.4 Estimation Procedure

A Bayesian approach is used to estimate parameters. Unobserved potential out-

comes are treated as missing data and imputed from the appropriate posterior distri-

bution at each iteration of the Markov chain. The covariance matrix Σ is decomposed

as QRQ, where Q is the diagonal matrix of standard deviations and R is the cor-

relation matrix. Assuming a priori independence, this allows us to factor the prior

distribution p(µ,Σ) as p(µ)p(R)p(Q) and to place non-informative priors on the fully

identified parameters µ, Q, ρ00, and ρ11. Specifically, the prior for µ is N4(0,Σ0),

where Σ0 = diag(106), and the prior for each diagonal element of Q is p(σj) ∝ 1,

for j = (S(0), S(1), T (0), T (1)). We place marginal priors on each of the correlation

parameters in R and explore the use of four different prior assumptions. For each of

these there is the additional assumption that R must be positive definite. The four

priors are

(a) Jointly uniform prior such that for each of the six correlations p(ρ) ∼ Unif(−1, 1)

(b) Jointly uniform prior such that for each of the six correlations p(ρ) ∼ Unif(0, 1)

(c) All ρ′s ≥ 0, ρ01 < min(ρ00, ρ11, ρs, ρt), and ρ10 < min(ρ00, ρ11, ρs, ρt)

(d) Beta priors such that:

• p(ρ11) ∼ Unif(0, 1)

• p(ρ00) ∼ Unif(0, 1)

• p(ρ10) and p(ρ01) ∼ Beta(3α0, 3− 3α0) such that P (ρ01, ρ10 ≤ min(ρ̂00, ρ̂11)) = 0.80

• p(ρs) and p(ρt) ∼ Beta(3α1, 3− 3α1) such that P (ρs, ρt ≥ E[ρ10]) = 0.80
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where ρ̂00 and ρ̂11 are the Pearson correlation coefficients estimated from the observed

data and E[ρ10] is the expected value under the Beta(3α0, 3−3α0) distribution. Prior

assumption (a) is a non-informative prior on all of the correlations. Under scenario

(b), all correlations are constrained to be positive, a plausible assumption especially

when ρ̂00 and ρ̂11 are positive. In scenario (c), in addition to the positivity assumption,

we restrict ρ01 and ρ10 to be smaller than the other four correlation parameters.

This seems reasonable as ρ01 and ρ10 are measures of the correlation between the

surrogate response and final outcome response in opposite treatment arms, which is

unlikely to be larger than the correlation between the surrogate response and final

outcome response within the same treatment arm, or the correlation between the

surrogate responses or final treatment responses across treatment arms. Finally, prior

assumption (d) places similar restrictions on the correlations as assumption (c), but

is a little more flexible as ρ01 and ρ10 are only assumed to be smaller than the other

correlations with a probability of 0.8. Appendix A provides density plots of the Beta

priors when ρ̂00 and ρ̂11 are equal to 0.8, 0.5, and 0.3.

Posterior estimates of the unobserved potential outcomes, parameter values, and

the causal quantities of interest, γ0, γ1, Φ10(0), ρST , and the CEP curve at the points

(µS1 − µS0) ± 2SD(S(1) − S(0)), where SD(S(1) − S(0)) is the standard deviation

of (S(1) − S(0)), are obtained using the Gibbs sampler. Each component of Q and

R are drawn one at a time. When drawing each element of R, the range of possible

values must first be determined in order to satisfy the positive definite requirement,

given that the other correlations are held fixed. The range of values corresponding

to a positive definite matrix are those in the interval determined by the roots of the

quadratic equation that result from solving |R| = 0. The specific equations solved to

obtain parameter ranges are provided in Appendix B.
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As the posterior distributions for the components of Q and R can not be easily

sampled from, draws are made using the griddy Gibbs sampler (Ritter and Tanner,

1992). Details of the Gibbs sampler are provided in Appendix C.

2.5 Simulations

We conduct simulations to evaluate the performance of the above methods of

surrogacy assessment. We consider the scenarios where under the true parameter

values of the simulated data, surrogate validity is the same (S is valid, or S is invalid)

under both the Prentice criteria and PS criteria. We also consider the two cases where,

under the true parameter values of the simulated data, S is valid under Prentice

but not under PS, and S is valid under PS but not under Prentice. In this paper

we interpret the results from the perspective that principal surrogacy is the correct

approach. We investigate whether the wrong conclusions would be reached if the

Prentice criteria were used instead, and whether it is easier to validate a principal

surrogate depending on whether or not the Prentice criteria are also satisfied.

We first explore the sensitivity of the estimation to the plausible prior restric-

tions on R that we might make. For each simulation, we simulate 200 data sets,

each with a sample size of 300. For each of the four different surrogacy scenarios

we perform four simulations, with the estimation procedure done using each of the

priors outlined in Section 2.4. Table 2.1 provides the posterior means and standard

deviations of the Bayesian estimates and means of the posterior standard devia-

tions ( ¯PSD) for the model parameters, the quantities of interest from the Prentice

model, and the causal quantities of interest, γ0, γ1, ρST , Φ10(0) and the CEP curve

at (µS1 − µS0) ± 2SD(S(1) − S(0)). The identified parameters are not sensitive to
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changes in the prior specifications (only results under the Beta priors shown) while

the unidentified parameters are quite sensitive to prior assumptions. In all four sce-

narios, the standard deviation of the Bayesian estimates is smaller than ¯PSD for

the unidentified parameters. There is very little bias in estimating β1, β2, and β3,

while there is some bias in estimating γ0, γ1, ρST , Φ10(0) and the CEP points. The

estimation performed using Beta priors appears to provide the best estimation for the

unidentified parameters across these four models. While this prior does not always

perform best in terms of bias, it has on average better coverage of the parameters

across the different scenarios than the other models.

Using the Beta priors, Table 2.2 provides an estimate of the proportion of times

that S would be considered a valid principal surrogate based on the proposed mea-

sures. This means that 0 is in the 95% credible interval for γ0, and outside of the 95%

credible interval for γ1. For Φ10(0) this means that 0.5 is in the 95% credible interval.

For ρST , we look at the proportion of times that its credible interval is outside of 0, and

for the CEP curve we look at the proportion of times that the 95% credible intervals

at the points (µS1 −µS0) + 2SD(S(1)−S(0)) and (µS1 −µS0)− 2SD(S(1)−S(0)) do

not overlap (denoted by CEPU
−2SD < CEPL

+2SD). Table 2.2 also provides an estimate

of the proportion of times that S would be a valid surrogate based on the Prentice

criteria (0 in the 95% confidence interval for β̂1, and β̂3 and 0 outside of the 95%

confidence interval for β̂2) The entire CEP curve, shown in Figure 2.2, is also used to

visually assess principal surrogacy and the expected treatment effect on T at relevant

values of S(1)− S(0).

Our estimation procedure for γ0 and γ1 reaches the correct conclusion regarding

surrogate validity when principal surrogacy is unmet, regardless of whether or not

the Prentice criteria are met under the true parameters. We correctly identify S as
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Figure 2.2: Simulation results: CEP curves
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an invalid principal surrogate 99% of the time in the scenario in which S is invalid

under the Prentice criteria, and 85% of the time when S is valid under the Prentice

criteria. In comparison, the Prentice criteria incorrectly determine S to be a valid

surrogate 26% and 92% of the time, respectively, in these two scenarios. When S is

a valid principal surrogate, our procedure most reliably determines surrogate validity

when the Prentice criteria would also conclude that S is a valid surrogate. In this

scenario, we correctly identify S as a valid principal surrogate 94% of the time, while

the Prentice criteria conclude S to be a valid surrogate 95% of the time. When S is a

valid principal surrogate but the Prentice criteria show S to be invalid, our estimation

procedure and the Prentice approach have a similar ability to detect surrogacy, with
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neither approach providing reliable surrogacy conclusions.

We note that by basing surrogacy assessment on the criteria that γ0 = 0, we do

not avoid the problem in the Prentice criteria of proving a null hypothesis, namely

that certain parameters assume the value of 0. Therefore, we can also examine the

other proposed estimands to aid in validating S as a surrogate. The tests of ρST = 0

and CEPU
−2SD < CEPL

+2SD have similar power to correctly determine surrogacy, and

are nearly equivalent to evaluating surrogacy based on the requirement of ACS in

expectation that γ1 6= 0. The criterion of Φ10(0) = 0.5 being included in the 95%

credible interval is equivalent to evaluating surrogacy based on the requirement of

ACN in expectation that γ0 = 0 and does reasonably well at determining surrogacy

when the Prentice criteria and PS criteria are in agreement, but is unable to reliably

distinguish valid principal surrogates from invalid ones with the two criteria disagree.

We perform additional simulations to assess the robustness of our procedure when

joint normality does not hold. We consider three scenarios. In the first, joint normal-

ity does not hold, but each of the marginal distributions are normal. In the second,

the joint distribution of the counterfactuals is a multivariate t3 distribution, and in

the third, each of the marginal distributions are lognormally distributed. For each of

these scenarios, we generate multivariate normal data with the same mean and covari-

ance structure as the non-normal data to compare the performance of the estimation

procedure. When multivariate normality does not hold, the point estimates of the

Prentice and PS parameters are nearly identical to the multivariate normal models,

but with larger posterior standard deviations and lower coverage rates. There is little

difference between the non-multivariate normal models and the multivariate normal

models in terms of the assessment of S as a valid surrogate marker, indicating that

the procedure is fairly robust to model misspecification. Appendix D provides details
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of these simulations.

2.6 Applications

2.6.1 Visual acuity in age-related macular degeneration

We apply our estimation method to a clinical trial of interferon-α for 183 patients

with age-related macular degeneration (Buyse, et al. 2000). These data come from

a multicenter trial comprised of 36 different centers. The number of patients per

center ranges from 2 to 18. The treatment indicator (Zi) equals 0 for placebo and 1

for the treatment. The surrogate marker (Si) is change in visual acuity at 6 months

after starting treatment and the final endpoint (Ti) is change in visual acuity at 1

year. We subtract off the Best Linear Unbiased Predictor estimates from Si and Ti

to account for random center effects. Appendix E provides histograms and normal

QQ plots of the observed data to assess the marginal normality of S and T in each

treatment group and the bivariate normality of S and T within each treatment group.

The assumption of marginal normality appears to hold, except potentially for T in

the control group. Bivariate normality of S and T within each treatment group

appears to hold approximately. The estimates used in assessing the Prentice criteria

are as follows: θ̂1 = −3.34(SE = 2.13, P = 0.12), α̂1 = −2.03(SE = 1.90, P =

0.29), µ̂1 = 0.65(SE = 0.07, P < 0.0001), β̂1 = −2.67(SE = 1.94, P = 0.17),

β̂2 = 0.69(SE = 0.09, P < 0.0001), and β̂3 = −0.11(SE = 0.14, P = 0.44).

As θ1 and α1 are not statistically significant, the Prentice criteria are not met.

Using our approach with Beta priors for the correlation parameters, we get the fol-

lowing posterior estimates for the principal surrogacy parameters of interest, γ0 =

−1.62(−5.49, 2.16), and γ1 = 0.60(−0.24, 1.43). As γ1 contains 0 within its 95%
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credible interval, we conclude that change in visual acuity at 6 months is not a valid

principal surrogate for change in visual acuity at 12 months. The average Pearson

correlation, ¯ρST of Ti(1)− Ti(0) and Si(1)− Si(0) was 0.48 (-0.16, 0.92), also indica-

tive of a poor principal surrogate. This is in agreement with the conclusion reached

by Buyse, et al. (2000). Figure 2.3(a) shows a plot of the (CEP ) curve, where

CEP = E[T (1)−T (0)|S(1)−S(0) = s] with a 95% credible interval for each value of

s. The middle dashed line indicates the posterior mean of µS1−µS0 , and the outer two

dashed lines show the posterior means of µS1 −µS0 ± 2SDS(1)−S(0), where SDS(1)−S(0)

is the standard deviation of S(1)−S(0), given by
√
σ2
S0

+ σ2
S1
− 2ρsσS0σS1 . The plot

shows that 0 is contained within the credible interval at almost all values of s, indicat-

ing that there could be large effects of treatment on the surrogate with no expected

effect of treatment on the outcome. Similarly, when there is no treatment effect on

S, there could still be a sizeable treatment effect on T .

2.6.2 Progression free survival as a surrogate for overall survival in an
ovarian cancer trial

This trial was analyzed by Buyse, et al. (2000) using a meta-analytic validation

method. A total of 274 women were treated for ovarian cancer in two treatment

arms. Of these patients, 201 experienced a clinical progression of the disease prior to

death, and 43 died without a clinical disease progression. The remaining 30 patients

were censored for death and not considered in the analysis. There are 126 subjects in

the control arm and 118 in the treatment arm. The surrogate marker is progression

free survival (PFS) time, in months and the final endpoint is overall survival (OS)

time, in months. As both of these outcomes were right skewed, the fourth root

of each was taken to approximately normalize the data, as shown in Appendix F.
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Estimates of parameters used to assess the validity of the Prentice criteria are as

follows: θ̂1 = 0.08(SE = 0.10, P = 0.41), α̂1 = 0.14(SE = 0.09, P = 0.14), µ̂1 =

0.95(SE = 0.02, P < 0.0001), β̂1 = −0.12(SE = 0.13, P = 0.36), β̂2 = 0.94(SE =

0.03, P < 0.0001), and β̂3 = 0.02(SE = 0.04, P = 0.60). θ1 and α1 are not statistically

significant, and the Prentice criteria are therefore unmet. The posterior estimates for

the causal quantities of interest using Beta priors on the unidentified parameters gives

γ0 = −0.05(−0.12, 0.03), and γ1 = 0.93(0.81, 1.07). The 95% credible interval for γ0

contains 0 while the 95% credible interval for γ1 does not and ¯ρST was 0.92 (0.85,

0.96). We therefore conclude that progression free survival time is a marginally valid

principal surrogate for overall survival. This agrees with the findings of Buyse, et al.

(2000). Figure 2.3(b) provides a plot of the CEP curve and 95% credible interval

at each S(1) − S(0) = s, for the fourth roots of S and T . The middle and two

outer dashed lines indicate the posterior mean and 95% credible interval of µS1−µS0 ,

respectively. The plot shows that when there is no treatment effect on S, there is

little or no expected treatment effect on T , and as the treatment effect on S increases,

the treatment effect on T is also expected to increase.

2.7 Discussion

In this chapter, we develop a method for the assessment of surrogate markers

within the principal surrogate framework. We assume a multivariate normal distri-

bution for the potential surrogate outcomes and potential final outcomes and derive

quantities that may be useful in determining the validity of a surrogate marker.

Through our model setup, context specific assumptions can be incorporated into the

prior distributions of unidentified parameters to aid in estimation. The estimation
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procedure can be extended to scenarios where T is partially missing, or to the multiple

trial setting.

We compare some of the proposed quantities for surrogate validation to the origi-

nal validation criteria put forth by Prentice and show that, in many settings, we might

expect the Prentice and principal surrogacy criteria to be in agreement. Based on our

simulation study, it appears that when principal surrogacy is present, it is most ac-

curately determined in cases where the Prentice criteria would also correctly identify

surrogacy. When principal surrogacy is not present, it can be determined both when

the Prentice criteria are able to correctly identify S as invalid and when the Prentice

criteria incorrectly deem S to be valid. We note that even with the use of informative

priors to aid in the estimation of the partially identified parameters, the coverage

rates in many cases are not ideal. Due to the nonidentifiability of some parameters



30

in our model, certain assumptions on the relationships between nonidentifiable as-

sociations were made and informative priors were used for unidentified parameters

to aid in estimation. The use of other priors or other context specific assumptions

about parameters could be made. Zigler and Belin (2012) also explore the effects of

various model assumptions in a principal surrogacy estimation procedure. They use

a Bayesian estimation approach for the CEP surface when S is continuous and T is

binary. In their procedure, priors are placed on the regression coefficients of the CEP

surface, and an independence assumption is made for T (1) and T (0) conditional on

the surrogate and other baseline covariates.

Each of the proposed quantities have merits and drawbacks in terms of their ability

to characterize surrogacy. The proposed γ0 and γ1 quantities are easily interpretable,

but proving that γ0 is equal to 0, a necessary condition for a valid surrogate, is diffi-

cult to do in practice. The correlation measure, ρST , captures the causal correlation

between the treatment effect on the surrogate and the treatment effect on the out-

come, but fails to capture the concept of ACN. The CEP graph provides a way to

estimate expected treatment effects on T when treatment effects on S are at relevant

clinical values, but does not offer a single summary of the value of S as a surrogate.

Finally, the Φ10 quantity provides information about the entire conditional distribu-

tion, as opposed to just the expectation, but is more difficult to estimate and seems

to have poor properties. While no single parameter estimate can completely assess

principal surrogacy, a variety of measures that consider the distribution of the causal

effect of treatment on the outcome conditional on the causal effect of treatment on

the surrogate can be used in combination to provide evidence as to whether or not S

is a valid surrogate for T .
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Table 2.1: MVN model simulation results under different prior specifications

Identified Parameters

S Valid PS, S Invalid PS, S Invalid PS S Valid PS
S Invalid Prentice S Valid Prentice & Prentice & Prentice

Prior True 95% True 95% True 95% True 95%
Parameter Scenario Value Mean (SD) ¯PSD Coverage Value Mean (SD) ¯PSD Coverage Value Mean (SD) ¯PSD Coverage Value Mean (SD) ¯PSD Coverage

µs0 4 4 3.99(0.08) 0.08 0.96 4 4.01(0.08) 0.08 0.95 4 3.99(0.08) 0.08 0.95 4 4.00(0.08) 0.08 0.98
µs1 4 6 6.01(0.08) 0.08 0.95 6 5.99(0.08) 0.08 0.95 6 5.99(0.08) 0.08 0.95 6 5.99(0.09) 0.08 0.91
µt0 4 7.8 7.78(0.08) 0.08 0.95 9 9.00(0.08) 0.08 0.96 8.5 8.49(0.07) 0.08 0.94 8.5 8.40(0.08) 0.08 0.95
µt1 4 10 10.01(0.09) 0.08 0.91 10 10.00(0.08) 0.08 0.94 10 10.00(0.08) 0.08 0.95 10 10.00(0.09) 0.08 0.92
σs0 1 1 0.99(0.06) 0.06 0.93 1 1.01(0.06) 0.06 0.96 1 1.00(0.06) 0.06 0.94 1 0.99(0.06) 0.06 0.96
σs1 4 1 1.00(0.06) 0.06 0.93 1 1.01(0.05) 0.06 0.96 1 1.01(0.05) 0.06 0.98 1 0.99(0.06) 0.07 0.95
σt0 4 1 1.00(0.06) 0.06 0.95 1 1.01(0.06) 0.06 0.97 1 1.01(0.06) 0.06 0.94 1 0.99(0.05) 0.06 0.96
σt1 4 1 1.01(0.06) 0.06 0.94 1 1.00(0.06) 0.06 0.96 1 1.01(0.06) 0.06 0.96 1 0.99(0.06) 0.06 0.96
ρ00 4 0.7 0.68(0.04) 0.04 0.99 0.5 0.48(0.06) 0.06 0.94 0.2 0.20(0.07) 0.07 0.95 0.8 0.79(0.03) 0.03 0.95
ρ11 4 0.7 0.69(0.04) 0.04 0.97 0.5 0.49(0.06) 0.06 0.95 0.2 0.20(0.06) 0.07 0.97 0.8 0.78(0.03) 0.03 0.95

Unidentified Parameters

ρs 1 0.5 -0.35(0.23) 0.33 0.20 0.5 -0.22(0.22) 0.35 0.48 0.2 -0.15(0.23) 0.37 0.93 0.4 -0.35(0.24) 0.34 0.38
2 0.32(0.08) 0.19 0.95 0.39(0.07) 0.22 1 0.37(0.08) 0.22 1 0.24(0.07) 0.15 0.91
3 0.34(0.06) 0.13 0.82 0.45(0.05) 0.16 1 0.46(0.06) 0.21 1 0.22(0.04) 0.10 0.54
4 0.47(0.07) 0.18 1 0.43(0.06) 0.20 1 0.34(0.06) 0.21 1 0.43(0.08) 0.16 0.995

ρ01 1 0.15 -0.45(0.21) 0.29 0.51 0.45 -0.28(0.21) 0.33 0.42 0.04 -0.18(0.23) 0.35 0.97 0.32 -0.48(0.22) 0.29 0.29
2 0.32(0.08) 0.19 0.99 0.39(0.07) 0.22 1 0.37(0.06) 0.22 0.97 0.24(0.07) 0.15 0.995
3 0.14(0.04) 0.11 1 0.16(0.03) 0.10 0.04 0.06(0.02) 0.04 1 0.09(0.03) 0.07 0.25
4 0.40(0.08) 0.20 0.95 0.28(0.07) 0.19 1 0.14(0.04) 0.15 1 0.40(0.09) 0.18 1

ρ10 1 0.15 -0.37(0.21) 0.32 0.63 0.45 -0.28(0.24) 0.34 0.40 0.04 -0.16(0.23) 0.35 0.97 0.32 -0.39(0.21) 0.33 0.44
2 0.34(0.08) 0.19 0.995 0.39(0.07) 0.22 1 0.37(0.07) 0.22 0.94 0.24(0.07) 0.15 1
3 0.15(0.04) 0.11 1 0.16(0.02) 0.11 0.05 0.06(0.02) 0.04 1 0.10(0.03) 0.08 0.25
4 0.42(0.08) 0.19 0.86 0.28(0.07) 0.19 0.995 0.14(0.03) 0.14 1 0.42(0.08) 0.17 0.99

ρt 1 0.18 -0.47(0.19) 0.27 0.43 0.5 -0.32(0.23) 0.32 0.27 0.3 -0.18(0.22) 0.36 0.82 0.4 -0.53(0.18) 0.28 0.14
2 0.31(0.08) 0.19 1 0.37(0.07) 0.22 1 0.37(0.07) 0.22 1 0.24(0.06) 0.16 0.91
3 0.32(0.05) 0.13 0.99 0.44(0.05) 0.16 1 0.46(0.06) 0.21 1 0.21(0.04) 0.09 0.42
4 0.45(0.07) 0.19 0.91 0.42(0.06) 0.20 1 0.34(0.05) 0.21 1 0.42(0.08) 0.17 1

Simulation results: Bias, variability and coverage rate of surrogacy parameters
β1 1 0.8 0.81(0.42) 0.51 0.99 0 0.06(0.60) 0.56 0.93 1.1 1.15(0.59) 0.59 0.96 0 0.05(0.36) 0.47 0.99

2 0.82(0.45) 0.44 0.96 0.02(0.51) 0.52 0.96 1.18(0.54) 0.54 0.96 0.03(0.37) 0.37 0.95
3 0.84(0.44) 0.43 0.94 0.04(0.56) 0.52 0.93 1.07(0.51) 0.55 0.98 -0.01(0.35) 0.07 0.96
4 0.78(0.43) 0.44 0.94 0.004(0.51) 0.52 0.95 1.10(0.54) 0.54 0.96 0.04(0.37) 0.38 0.95

β2 1 0.7 0.68(0.06) 0.07 0.96 0.5 0.49(0.08) 0.08 0.94 0.2 0.19(0.08) 0.08 0.96 0.8 0.78(0.05) 0.07 0.97
2 0.69(0.06) 0.06 0.97 0.49(0.07) 0.07 0.96 0.21(0.07) 0.08 0.97 0.79(0.05) 0.05 0.96
3 0.69(0.06) 0.06 0.96 0.49(0.08) 0.07 0.93 0.20(0.07) 0.07 0.94 0.78(0.05) 0.05 0.93
4 0.68(0.06) 0.06 0.97 0.49(0.07) 0.07 0.94 0.20(0.07) 0.07 0.95 0.79(0.05) 0.05 0.97

β3 1 0 0.004(0.08) 0.10 0.99 0 -0.008(0.12) 0.11 0.95 0 -0.0007(0.11) 0.11 0.96 0 -0.004(0.07) 0.09 0.98
2 0.001(0.08) 0.09 0.96 0.002(0.10) 0.10 0.95 -0.01(0.10) 0.10 0.96 0.001(0.07) 0.07 0.94
3 -0.002(0.08) 0.08 0.95 -0.001(0.11) 0.10 0.92 0.004(0.10) 0.11 0.97 0.007(0.07) 0.07 0.96
4 0.010(0.08) 0.08 0.96 0.006(0.10) 0.10 0.95 0.003(0.10) 0.10 0.96 -0.002(0.07) 0.07 0.96

γ0 1 0 0.54(0.23) 0.38 0.72 0.8 -0.33(0.33) 0.54 0.27 1.1 0.81(0.41) 0.66 0.97 0 -0.25(0.21) 0.33 0.96
2 1.09(0.26) 0.52 0.49 0.64(0.28) 0.70 1 2.07(0.28) 0.65 0.69 0.12(0.17) 0.37 1
3 0.54(0.15) 0.31 0.70 -0.30(0.23) 0.50 0.01 0.82(0.22) 0.45 1 -0.19(0.11) 0.20 0.92
4 1.10(0.26) 0.63 0.60 0.18(0.26) 0.67 0.96 1.30(0.20) 0.48 0.99 0.20(0.22) 0.51 1

γ1 1 1.1 0.83(0.11) 0.19 0.68 0.1 0.66(0.16) 0.26 0.27 0.2 0.34(0.20) 0.32 0.97 0.8 0.92(0.10) 0.16 0.94
2 0.55(0.12) 0.26 0.48 0.28(0.13) 0.35 1 -0.29(0.12) 0.32 0.64 0.74(0.08) 0.18 1
3 0.83(0.06) 0.15 0.63 0.65(0.10) 0.24 0 0.34(0.10) 0.22 1 0.90(0.04) 0.09 0.91
4 0.55(0.12) 0.31 0.60 0.41(0.12) 0.33 0.97 0.11(0.08) 0.23 1 0.70(0.11) 0.25 1

ρST 1 0.86 0.77 (0.06) 0.11 0.97 0.1 0.60 (0.11) 0.18 0.26 0.21 0.31 (0.16) 0.26 0.99 0.8 0.85 (0.04) 0.08 0.95
2 0.53(0.10) 0.20 0.54 0.17 (0.10) 0.29 1 -0.27 (0.10) 0.27 0.63 0.73(0.06) 0.12 1
3 0.81(0.04) 0.09 1 0.62 (0.06) 0.15 0 0.31 (0.07) 0.14 1 0.89 (0.02) 0.05 0.73
4 0.52(0.09) 0.23 0.68 0.38(0.09) 0.26 0.97 0.10(0.07) 0.20 1 0.66(0.08) 0.17 0.99

CEP+2SD 1 4.4 4.86 (0.39) 0.57 0.90 1.2 2.97 (0.49) 0.67 0.27 2.0 2.47 (0.52) 0.80 0.96 3.35 4.59 (0.37) 0.57 0.31
2 3.45 (0.28) 0.50 0.46 1.37 (0.26) 0.64 1 0.89 (0.25) 0.61 0.56 3.40 (0.24) 0.38 0.99
3 4.08 (0.21) 0.32 0.93 2.31 (0.20) 0.39 0 2.10 (0.18) 0.28 1 3.81 (0.18) 0.24 0.49
4 3.31 (0.26) 0.55 0.36 1.82 (0.23) 0.58 0.96 1.74 (0.19) 0.45 1 3.02 (0.27) 0.45 0.96

CEP−2SD 1 0 -0.47 (0.38) 0.57 0.87 0.8 -1.00 (0.47) 0.67 0.25 0.99 0.51 (0.52) 0.79 0.95 -0.15 -1.39 (0.40) 0.57 0.31
2 0.96 (0.30) 0.50 0.44 0.63 (0.27) 0.64 1 2.11 (0.26) 0.61 0.58 -0.19 (0.24) 0.38 0.99
3 0.31 (0.22) 0.32 0.91 -0.30 (0.23) 0.39 0.02 0.88 (0.18) 0.28 1 -0.62 (0.17) 0.24 0.45
4 1.14 (0.26) 0.54 0.32 0.18 (0.25) 0.58 0.96 1.29 (0.20) 0.45 0.97 0.18 (0.25) 0.45 0.96

Φ10(0) 1 0.5 0.69 (0.08) 0.13 0.72 0.79 0.40 (0.09) 0.16 0.24 0.83 0.70 (0.10) 0.16 0.95 0.5 0.39 (0.08) 0.14 0.96
2 0.84 (0.06) 0.13 0.49 0.70 (0.08) 0.20 1 0.95 (0.02) 0.07 0.69 0.55 (0.08) 0.18 1
3 0.77 (0.07) 0.15 0.70 0.38 (0.08) 0.19 0.16 0.78 (0.06) 0.15 1 0.36 (0.07) 0.14 0.92
4 0.85 (0.07) 0.16 0.60 0.56 (0.09) 0.23 0.96 0.86 (0.04) 0.10 1 0.58 (0.10) 0.23 1

1: No restrictions on ρ
2: ρ ≥ 0
3: ρ ≥ 0 and ρ10, ρ01 < ρs, ρt, ρ00, ρ11

4: Beta priors
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Table 2.2: MVN model simulation results: principal surrogacy assessment

Model 1 2 3 4
Truth
PS satisfied Yes No No Yes
Prentice satisfied No Yes No Yes
Estimation Results
γ0 Not Rejected, Reject γ1 = 0 0.37 0.15 0.01 0.94
γ0 = 0 Not Rejected 0.60 1 0.20 1
Reject γ1 = 0 0.57 0.15 0.01 0.94
Reject ρST = 0 0.57 0.17 0.01 0.94
CEPU

−2SD < CEPL
+2SD 0.55 0.15 0.01 0.93

Φ10(0) = 0.5 Not Rejected 0.60 1 0.20 1
Prentice Criteria Not Rejected 0.52 0.92 0.26 0.95



CHAPTER III

Surrogacy Assessment Using Principal

Stratification and a Gaussian Copula Model

3.1 Introduction

In Chapter II we described an approach for assessing surrogacy for multivariate

normal distributions. Here, we extend these ideas by relaxing the multivariate nor-

mality assumption and consider scenarios in which the surrogate marker, S and the

final outcome, T arise from non-normal distributions. A surrogate endpoint (S) is an

intermediate outcome variable occurring in between the treatment (Z) and the out-

come of interest (T ). Surrogate markers offer the potential to run trials more cheaply

and quickly by extracting information regarding the treatment effect on T through

the earlier measured S, however, demonstrating the validity of a given surrogate for

the outcome of interest can be difficult. Prentice (1989) proposed a formal definition

of surrogacy along with a validation strategy, requiring that S and T be correlated

and the treatment effect on T be fully captured by S. Other methods for surrogacy

evaluation include the proportion of treatment effect explained by S (Freedman, et

al. 1992), and individual-level and trial-level surrogacy association measures in meta-

analyses (Buyse, et al. 2000). As these methods rely on estimating treatment effects

33
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by adjusting for a variable measured after randomization, there may be unmeasured

confounders in the pathway between the surrogate and final outcome. Thus, the

resulting estimates may not have a causal interpretation (Rosenbaum, 1984). There-

fore, much recent work has been done on the evaluation of surrogate endpoints using

the “principal surrogacy” (PS) framework introduced by Frangakis and Rubin (2002)

(henceforth FR). In this framework, each subject has two potential outcomes for each

of the surrogate and final endpoints corresponding to each treatment, denoted by

S(Z) and T (Z), for Z = {0, 1}. The principal surrogacy approach looks at the dis-

tribution of the potential outcomes of T conditional on principal strata based on the

joint distribution of S(0) and S(1). The principal strata are unaffected by treatment,

and are thus pre-randomization variables. Treatment effect estimates that condition

on these principal strata are therefore causal estimates when treatments are randomly

assigned.

Existing literature on methods for surrogacy assessment using the principal strat-

ification approach has examined settings in which both S and T are binary (Li, et al.

2010), or in which S is continuous with binary T (Gilbert and Hudgens, 2008; Zigler

and Belin, 2011). Work in the PS framework when both S and T are continuous

has been discussed in the application to partial compliance (Schwartz, et al. 2011).

Bartolucci and Grilli (2011) used a Plackett copula to model the joint counterfac-

tual distribution of partial compliances, and then proposed separate models for the

conterfacutal outcomes, conditional on compliance. In Chapter II, we explored the

scenario where the joint distribution of the counterfactual observations of S and T is

multivariate normal and proposed quantities derived from this distribution to assess

surrogacy. We extend this work on surrogacy validation in the multivariate normal

setting by relaxing the multivariate normality assumption and considering the sce-
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nario in which S and T arise from non-normal distributions. Given the marginal

distributions of S(1), S(0), T (1), and T (0), a Gaussian copula model can be used

to obtain the joint distribution. In our proposed model, we explore the use of the

Gaussian copula in the setting where S is a discrete ordinal random variable and

T is a continuous time-to-event random variable. The values of S(0) and S(1) are

assumed to arise from separate underlying latent normal random variables, denoted

S̃(0) and S̃(1).

In our data example, we consider the use of the ordinal variable “tumor response”

as a surrogate for overall survival in advanced colorectal cancer. Tumor response

and overall survival are common endpoints of interest in cancer clinical trials, and

there is a large literature on the use of tumor response as a surrogate marker for

overall survival (Ellenberg and Hamilton, 1989; Torri, et al. 1992; Buyse and Pied-

bois, 1996). In this setting of mixed discrete and continuous outcomes, surrogacy

validation methods have been explored by Molenberghs, et al. (2001), where a joint

model for the underlying continuous latent variable of the observed discrete surrogate

marker and the observed continuous final outcome was developed. The use of cop-

ula models in this setting has been explored in by Burzykowski, et al. (2004), who

proposed a bivariate Plackett copula to jointly model tumor response and survival in

advanced colorectal cancer, and assessed surrogacy using a meta-analytic approach.

The application of a Gaussian copula model to jointly model bivariate discrete and

continuous outcomes was examined by de Leon and Wu (2011). Here, we extend

the use of this Gaussian copula model to a four dimensional model, two for the po-

tential surrogate marker values under each treatment arm and two for the potential

outcomes under each treatment arm, and derive quantities from it to determine surro-

gacy. Unlike in the multivariate normal setting explored in Chapter II, these principal
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surrogacy measures will no longer be analytically estimable, but can be obtained from

the posterior predictive distributions of the potential markers and outcomes under

the Gaussian copula model. Because some parameters of the joint distribution are

not fully identifiable from the data, we use a Bayesian estimation procedure with

plausible prior distributions and some reasonable constraints on model parameters to

reduce the non-identifiability problem of modeling counterfactual observations and to

aid in estimation of the quantities of interest. In Section 3.2, we describe the model.

Section 3.3 outlines the proposed surrogacy measures and Section 3.4 outlines the

estimation strategy. Simulation results are presented in Section 3.5, and in Section

3.6 the estimation procedure is applied to data from a meta-analysis in advanced

colorectal cancer. Section 3.7 concludes with a discussion.

3.2 The Model

3.2.1 Potential Outcomes

For a randomized trial with treatment assignment Z (Z = 1 or 0), surrogate

marker S and true endpoint T , each subject i, i = 1, ..., n, has two potential out-

comes for each of Si and Ti, denoted by Si(Zi) and Ti(Zi). Only one outcome, cor-

responding to the received treatment for subject i in each of the pairs (Si(0), Si(1))

and (Ti(0), Ti(1)) can be observed. The joint distribution of (Si(0), Si(1), Ti(0), Ti(1))

describes the causal associations between Z, S and T . We denote the marginal cumu-

lative distributions of Si(0), Si(1), Ti(0) and Ti(1) by FSi(0), FSi(1), FTi(0) and FTi(1),

respectively. We make the standard assumptions of ignorable treatment assignments

(Rubin, 1978) and the stable unit treatment value assumption (SUTVA).
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3.2.2 Copulas

Sklar (1959) provided the basis for multivariate modeling using copulas. A mul-

tivariate function C = C(u1, ..., uk) is a copula if it is a continuous distribution

function and each marginal is a uniform distribution function. That is, C is a

mapping of (0, 1)k → (0, 1), with C(u) = p(Ui ≤ u1, ..., Uk ≤ uk), where each

Ui ∼ Unif(0, 1). Using known marginal distributions F1(y1), ..., Fk(yk), the func-

tion C(F1(y1), ..., Fk(yk)) = G(y) defines a joint distribution for y1, ..., yk (Nelsen,

2006).

In this paper, we focus on the Gaussian copula, denoted as

CΦ(u|Γ) = Φk{Φ−1(u1), ...,Φ−1(uk)|Γ}

where Φ is the standard normal cumulative distribution function and Φk(x|Γ) is a

k-variate normal cumulative distribution function with covariance matrix Γ. The

density of the Gaussian copula is given by

|Γ|− 1
2 exp{1

2
qT(Ik − Γ−1)q}

where q = (q1, ..., qk)
T with qj = Φ−1(uj), q ∼ Nk(0,Γ) and Γ is a correlation matrix

(Song, 2000). The copula framework can then be used to obtain a multivariate

distribution with specified marginals.

3.2.3 Gaussian Copula Regression Model

In the setting of a single surrogate and single outcome, each measured at one

time point, we have n observations each of dimension four, corresponding to the four

potential outcomes for each subject. Let yi = (Si(0), Si(1), Ti(0), Ti(1)) represent the

set of observations from subject i. For continuous S and T , the Gaussian copula
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regression model can be obtained by taking qij = hij(yij; θj) = Φ−1{Fj(yij; θj)} where

θj is the parameter vector for marginal distribution j, where j = 1, ..., 4 corresponds

to the four marginal distributions for Si(0), Si(1), Ti(0), and Ti(1), respectively. By

this construction, we have:

qi = [Φ−1{F1(Si(0))},Φ−1{F2(Si(1))},Φ−1{F3(Ti(0))},Φ−1{F4(Ti(1))}] ∼ N4(0,Γ)

and the density of yij is given by:

f(yij |θ,Γ) =
∏n
i=1

[
|Γ|−

1
2 exp{1

2qi(I4 − Γ−1)qTi }f1(Si(0); θ1)f2(Si(1); θ2)f3(Ti(0); θ3)f4(Ti(1); θ4)
]

When the marginal distributions of S and T are integer valued, the density can

be found by taking Radon-Nikodym derivative of CΦ(u|Γ) with respect to counting

measure (Song, 2000), so that

P (Y = y) =
2∑

l1=1

2∑
l2=1

2∑
l3=1

2∑
l4=1

(−1)l1+l2+l3+l4CΦ(F1(S(0))l1 , F2(S(1))l2 , F3(T (0))l3 , F4(T (1))l4|Γ)

where Fj(yj)1 = Fj(yj) and Fj(yj)2 = Fj(yj − 1).

In the setting that we consider, S is an ordinal categorical variable and T is

a failure-time random variable. Let Vi(Z) = min(Ti(Z),Wi(Z)) be the minimum

of the observed failure time, Ti(Z), and censoring time, Wi(Z), and let ∆i(Z) =

I(Wi(Z) > Ti(Z)) be the censoring indicator. Then, for each subject we have the

observed data Si(Z), Vi(Z), and ∆i(Z). We make the ignorable censoring assumption,

Ti(Z) ⊥ Wi(Z), reasonable in cases where censoring is administrative and enrollment

times are simultaneous or otherwise unrelated to the outcome. In our estimation

procedure, we iteratively impute survival times for censored subjects so that each

subject has the vector of outcomes yi = (Si(0), Si(1), Ti(0), Ti(1)). Let S̃i(Z) be a

latent, Gaussian continuous random variable underlying the surrogate endpoint Si(Z)

such that
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Si(Z) =



1Z , if S̃i(Z) ∈ (−∞, α1Z )

2Z , if S̃i(Z) ∈ (α1Z , α2Z )

...

MZ , if S̃i(Z) ∈ (α(M−1)Z ,∞)

where α1Z < α2Z < . . . < α(M−1)Z are unknown cutpoints with α0Z = −∞ and

αMZ
=∞. We assume a cumulative probit model for the cutpoints of the underlying

continuous random variables of S(0) and S(1) and a proportional hazards model with

a Weibull baseline hazard function for the marginal distributions of T (0) and T (1).

These models are given by:

Φ−1{P (Si(Z) ≤ kZ)} = αkZ

λ(Ti(Z)) =
(
γTZ
λTZ

)(
Ti(Z)
λTZ

)γTZ−1

where λ(Ti(Z)) is a hazard function for a Weibull distribution with scale parameter

λTZ and shape parameter γTZ . Let ỹi = (S̃i(0), S̃i(1), Ti(0), Ti(1)) represent the set of

counterfactual latent surrogate and final outcomes for subject i. We assume that the

joint cumulative distribution of S̃i(0), S̃i(1), Ti(0), Ti(1) is generated by the Gaussian

copula function:

Fỹi
(ỹi) = Φ4{Φ−1(F1̃(S̃i(0))),Φ−1(F2̃(S̃i(1))),Φ−1(F3(Ti(0))),Φ−1(F4(Ti(1))) | Γ},

where the subscripts 1̃ and 2̃ correspond to the CDF of the underlying latent variables

of S(0) and S(1), respectively, Φ is the standard normal distribution and Φ4 is the

standard four-variate normal distribution with correlation matrix:

Γ =



1 ρs ρ00 ρ01

1 ρ10 ρ11

1 ρt

1


.
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As S̃i(Z) is assumed to be Gaussian, the terms Φ−1(F1̃(S̃i(0))) and Φ−1(F2̃(S̃i(1)))

are simply S̃i(0) and S̃i(1), respectively. The joint distribution of Si(0), Si(1), Ti(0),

and Ti(1) under these distributional assumptions is then given by:

P (Si(0) = k0, Si(1) = k1, Ti(0) ≤ t0, Ti(1) ≤ t1)

= [Fỹi
(αk0 , αk1 , t0, t1)−Fỹi

(α(k0−1), αk1 , t0, t1)−Fỹi
(αk0 , α(k1−1), t0, t1)+Fỹi

(α(k0−1), α(k1−1), t0, t1)].

When both Ti(0) and Ti(1) are uncensored observations, the joint density of Si(0), Si(1), Ti(0),

and Ti(1) is given by: fyi
(k0, k1, t0, t1) = ∂2

∂t0∂t1
P (Si(0) = k0, Si(1) = k1, Ti(0) ≤ t0, Ti(1) ≤ t1),

where the derivative of Fỹi
(αk0 , αk1 , t0, t1) with respect to t1 and t0 is given by:

∂2Fỹi
(αk0

,αk1
,t0,t1)

∂t0∂t1
=

φ

(
Φ−1(F3(t0))−ρtΦ

−1(F4(t1))√
1−ρ2t

)
√

1−ρ2
t

Φ2[S0|0:1, S1|0:1|Γ|0:1] f4(t1)f3(t0)
φ(Φ−1(F3(t0)))

for

S0|0:1 =

(
αk0
−ρ01Φ−1(F4(t1))√

1−ρ201

)
−
(

ρ00−ρ01ρt√
1−ρ201

√
1−ρ2t

)(
Φ−1(F3(t0))−ρtΦ

−1(F4(t1))√
1−ρ2t

)
√√√√1−

(
ρ00−ρ01ρt√
1−ρ201

√
1−ρ2t

)2

S1|0:1 =

(
αk1
−ρ11Φ−1(F4(t1))√

1−ρ211

)
−
(

ρ10−ρ11ρt√
1−ρ211

√
1−ρ2t

)(
Φ−1(F3(t0))−ρtΦ

−1(F4(t1))√
1−ρ2t

)
√√√√1−

(
ρ10−ρ11ρt√
1−ρ211

√
1−ρ2t

)2

where:

f3(t0) =
(
γT0
λT0

)(
t0
λT0

)γT0
−1
exp

(
−
(

t0
λT0

)γT0
)

,

f4(t1) =
(
γT1
λT1

)(
t1
λT1

)γT1
−1
exp

(
−
(

t1
λT1

)γT1
)

,

F3(t0) = 1− exp
(
−
(

t0
λT0

)γT0
)

,

F4(t1) = 1− exp
(
−
(

t1
λT1

)γT1
)

and

Γ|0:1 =



1

(
ρs−ρ11ρ01√
1−ρ211

√
1−ρ201

)
−
(

ρ00−ρ01ρt√
1−ρ201

√
1−ρ2t

)(
ρ10−ρtρ11√
1−ρ211

√
1−ρ2t

)
√√√√1−

(
ρ00−ρ01ρt√
1−ρ201

√
1−ρ2t

)2
√√√√1−

(
ρ10−ρ11ρt√
1−ρ211

√
1−ρ2t

)2

(
ρs−ρ11ρ01√
1−ρ211

√
1−ρ201

)
−
(

ρ00−ρ01ρt√
1−ρ201

√
1−ρ2t

)(
ρ10−ρtρ11√
1−ρ211

√
1−ρ2t

)
√√√√1−

(
ρ00−ρ01ρt√
1−ρ201

√
1−ρ2t

)2
√√√√1−

(
ρ10−ρ11ρt√
1−ρ211

√
1−ρ2t

)2
1


.

The scale parameters, λT0 and λT1 , and shape parameters, γT0 and γT1 from the

Weibull models as well as the cutpoints of the latent distributions for S(0) and S(1)

are identifiable from the data. The correlation coefficients ρ00 and ρ11 are the Pearson
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correlation coefficients between S̃(0) and the normally transformed T (0) and between

S̃(1) and the normally transformed T (1), respectively, and can be seen as a proxy

for the polyserial correlations between T (0) and S(0) and between T (1) and S(1)

(de Leon and Wu, 2011). These polyserial correlations are estimable from the data

(Olsson, et al. 1982). Because only one of the counterfactual pairs of outcomes is

observed for each subject, ρs, ρt, ρ01, and ρ10 are not identifiable. However, the

identifiable correlation parameters together with the requirement that the correlation

matrix be positive definite place boundary constraints on these non-identified param-

eters, which, along with other plausible assumptions that we can make, aids in their

estimation.

3.2.4 Prior Distributional Assumptions

We place non-informative priors on the fully identified parameters λTZ , γTZ , and

αkZ ’s. Specifically, the priors for log(λTZ ) and the αkZ ’s are N(0, 102) and the priors

for γTZ are gamma distributions with mean 1 and standard deviation 3. We place

marginal priors on each of the correlation parameters in Γ and following Chapter II,

we consider four different sets of prior assumptions. For each of these there is the
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additional assumption that Γ must be positive definite. The four priors are

(a) Jointly uniform prior such that for each of the six correlations p(ρ) ∼ Unif(−1, 1)

(b) Jointly uniform prior such that for each of the six correlations p(ρ) ∼ Unif(0, 1)

(c) All ρ′s ≥ 0, ρ01 < min(ρ00, ρ11, ρs, ρt), and ρ10 < min(ρ00, ρ11, ρs, ρt)

(d) Beta priors such that:

• p(ρ11) ∼ Unif(0, 1)

• p(ρ00) ∼ Unif(0, 1)

• p(ρ10) and p(ρ01) ∼ Beta(3α0, 3− 3α0) such that P (ρ01, ρ10 ≤ min(ρ̃00, ρ̃11)) = 0.80

• p(ρs) and p(ρt) ∼ Beta(3α1, 3− 3α1) such that P (ρs, ρt ≥ E(ρ10)) = 0.80

where ρ̃00 and ρ̃11 are the polyserial correlation coefficients for T (0), S(0) and T (1),

S(1), respectively, estimated from the observed data using the “polyserial” function

in R and E(ρ10) = E(ρ01) is the mean under the Beta(3α0, 3−3α0) distribution. Prior

assumption (a) is a non-informative prior on all of the correlations. Under scenario

(b), all correlations are constrained to be positive, a plausible assumption especially

when ρ̃00 and ρ̃11 are positive. In scenario (c), in addition to the positivity assumption,

we restrict ρ01 and ρ10 to be smaller than the other four correlation parameters.

This seems reasonable as ρ01 and ρ10 are measures of the correlation between the

surrogate response and final outcome response in opposite treatment arms, which is

unlikely to be larger than the correlation between the surrogate response and final

outcome response within the same treatment arm, or the correlation between the

surrogate responses or final treatment responses across treatment arms. Finally, prior
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assumption (d) places similar restrictions on the correlations as assumption (c), but

is a little bit more flexible.

3.3 Measures of Surrogacy from Gaussian Copula Models

To determine the validity of S as a surrogate marker for T , we work within the

principal surrogacy (PS) framework proposed by FR which uses a principal strati-

fication approach to assess the validity of a surrogate marker. This framework fo-

cuses on the distribution of p(T (0), T (1)|S(0), S(1)). Since S(1) and S(0) are un-

affected by treatment assignment, they can be treated as baseline covariates and

quantities estimated by conditioning on them will always have a causal interpreta-

tion. This framework therefore avoids the potentially noncausal estimates that can

result from surrogacy measures that condition on the observed post-randomization

variable S. FR proposed two measures of surrogacy, the “associative effect” and the

“dissociative effect”. In our setting, a measure of the dissociative effect is given by

E(log(Ti(1)/Ti(0))|Si(1) = Si(0)) and a measure of the associative effect is given by

E(log(Ti(1)/Ti(0))|Si(1) 6= Si(0)). Values of the dissociative effect near zero indicate

that the causal effect of treatment on the final outcome is near zero when the causal

effect of treatment on the surrogate is near zero, a characteristic that a good principal

surrogate should possess. When the dissociative effect is large, there can be a causal

effect of the treatment on the final outcome even if there is no causal effect of the

treatment on the surrogate. The value of the associative effect provides information

on how the causal treatment effect on the outcome changes as the causal effect of the

treatment on the surrogate changes. A good principal surrogate should result in a

large associative effect, which would occur if as the treatment effect on the surrogate
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increases, the treatment effect on the final outcome increases as well. Also of interest

is the “causal effect predictiveness’ (CEP) surface proposed by Gilbert and Hudgens

(2008), which considers the entire curve of E[log(T (1))/log(T (0)) | S(1)− S(0)] and

provides a measures of the treatment effect on T within subgroups defined by the

treatment effect on the surrogate.

An additional useful measure to assess surrogacy is the correlation between the

difference in the normal variables, Φ−1(F4(T (1))) − Φ−1(F3(T (0))) and S̃(1) − S̃(0).

Measures of the associative effect, dissociative effect and correlation are not analyti-

cally estimable, but can be obtained from the posterior predictive distributions.

3.4 Estimation Procedure

A Bayesian approach is used to estimate parameters, using the prior assump-

tions detailed in Section 3.2.4. Unobserved potential outcomes are treated as missing

data and imputed from the appropriate posterior distribution at each iteration of the

Markov chain. Posterior estimates of the unobserved potential outcomes and param-

eter values are obtained using a Metropolis Hastings algorithm. When drawing each

element of Γ, the range of possible values must first be determined in order to satisfy

the positive definite requirement, given that the other correlations are held fixed. The

range of values corresponding to a positive definite matrix are those in the interval

determined by the roots of the quadratic equation that result from solving |Γ| = 0.

Each iteration of the Markov chain is done as follows:

• Let α = (α10 , α20 , α30 , α11 , α21 , α31), θ = (λT0 , λT1 , γT0 , γT1),

qi = [Φ−1(FS̃i(0)(S̃(0))),Φ−1(FS̃i(1)(S̃(1))),Φ−1(FTi(0)(T (0))),Φ−1(FTi(1)(T (1)))]

= [S̃(0), S̃(1),Φ−1(FTi(0)(T (0))),Φ−1(FTi(1)(T (1)))]



45

= [S̃(0), S̃(1), qi(Ti(0)), qi(Ti(1))]

• Impute death times for censored subjects by drawing from

P (qi(T (Z)) > qi(T (Z))+v | qi(T (Z)) > qi(T (Z)), qi(T (1−Z)), S̃(0), S̃(1), α, θ) =

P (qi(T (Z))>qi(T (Z)))+v,qi(T (1−Z)),S̃(0),S̃(1),α,θ)

P (qi(T (Z))>qi(T (Z)),qi(T (1−Z)),S̃(0),S̃(1),α,θ)

= P (qi(T (Z))>qi(T (Z))+v|qi(T (1−Z)),S̃(0),S̃(1),α,θ)

P (qi(T (Z))>qi(V (Z))|qi(T (1−Z)),S̃(0),S̃(1),α,θ)
.

For each censored subject, we draw a uniform random variable u ∼ Unif(0, 1)

and solve g−1(u) = v, where g(v) = P (qi(T (Z))>qi(V (Z))+v|qi(T (1−Z)),S̃(0),S̃(1),α,θ)

P (qi(T (Z))>qi(V (Z))|qi(T (1−Z)),S̃(0),S̃(1),α,θ)
.

This can be solved analytically for v by v = F−1[1 − u(1 − F{qi(T (Z))})] −

qi(T (Z)) where F is the CDF of the conditional distribution with mean given

by:

(
ρ0Z ρ1Z ρt

)
1 ρs ρ0(1−Z)

ρs 1 ρ1(1−Z)

ρ0(1−Z) ρ1(1−Z) 1


−1

S̃i(0)

S̃i(1)

qi(Ti(1− Z))

 and variance given by:

1−
(
ρ0Z ρ1Z ρt

)
1 ρs ρ0(1−Z)

ρs 1 ρ1(1−Z)

ρ0(1−Z) ρ1(1−Z) 1


−1

ρ0Z

ρ1Z

ρt

.

• Draw missing counterfactual observations of S̃i(Z) and qi(T (Z)) from their con-

ditional distributions: S̃i(1)
| S̃i(0), qi(Ti(0)), Γ

qi(Ti(1))



∼ N


 ρs ρ10

ρ01 ρt


 1 ρ00

ρ00 1


−1 S̃i(0)

qi(Ti(0))

 ,

 1 ρ11

ρ11 1

−
 ρs ρ10

ρ01 ρt


 1 ρ00

ρ00 1


−1 ρs ρ01

ρ10 ρt




 S̃i(0)
| S̃i(1), qi(Ti(1)), Γ

qi(Ti(0))



∼ N


 ρs ρ01

ρ10 ρt


 1 ρ11

ρ11 1


−1 S̃i(1)

qi(Ti(1))

 ,

 1 ρ00

ρ00 1

−
 ρs ρ01

ρ10 ρt


 1 ρ11

ρ11 1


−1 ρs ρ10

ρ01 ρt




• For unobserved counterfactuals, transform draws to Si(Z), and Ti(Z):

[S̃i(Z) ≤ α1Z ]→ Si(Z) = 1
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[α1Z < S̃i(Z) ≤ α2Z ]→ Si(Z) = 2

[α2Z < S̃i(Z) ≤ α3Z ]→ Si(Z) = 3

[S̃i(Z) > α3Z ]→ Si(Z) = 4

Ti(Z) = λTZ [−log(1− Φ{qi(Ti(Z))}]1/γTZ

• Draw α’s from posterior distribution using a Metropolis Hastings algorithm.

• For observed Si(Z)’s, draw S̃i(Z)’s from a truncated normal distribution, where:

[S̃i(0)|S̃i(1), qi(Ti(0)), qi(Ti(1)),Γ, α, Zi = 0] ∼

N


(
ρs ρ00 ρ01

)
1 ρ10 ρ11

ρ10 1 ρt

ρ11 ρt 1


−1

S̃i(1)

qi(Ti(0))

qi(Ti(1))

 , 1−
(
ρs ρ00 ρ01

)
1 ρ10 ρ11

ρ10 1 ρt

ρ11 ρt 1


−1

ρs

ρ00

ρ01


 I(α(k0−1) <

S̃i(0) ≤ αk0 )

[S̃i(1)|S̃i(0), qi(Ti(0)), qi(Ti(1)),Γ, α, Zi = 1] ∼

N


(
ρs ρ10 ρ11

)
1 ρ00 ρ01

ρ00 1 ρt

ρ01 ρt 1


−1

S̃i(0)

qi(Ti(0))

qi(Ti(1))

 , 1−
(
ρs ρ10 ρ11

)
1 ρ00 ρ01

ρ00 1 ρt

ρ01 ρt 1


−1

ρs

ρ10

ρ11


 I(α(k1−1) <

S̃i(1) ≤ αk1 )

• Use the Metropolis Hastings algorithm to draw λTZ , γTZ , ρs, ρ00, ρ01, ρ10, ρ11, ρt

from their posterior distributions. The posterior distributions for all of the

parameters can be obtained from the product of the observed data likelihood,

detailed in Section 3.2.3 and the prior distributions, described in Section 3.2.4.

The chain is run for a 3,000 iteration burn-in period, and then 2,000 draws

from the posterior distribution of each parameter are saved. All of the proposal

distributions are normal and centered at the most recent parameter draw. The

proposal distribution for γTZ is truncated at 0 and proposal distribution for

each αkZ is truncated by α(k−1)Z and α(k+1)Z . The proposal distribution for

each of the correlation parameters is truncated by the bounds which results in
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a positive definite matrix. For each parameter, the variance of the proposal

distribution is adjusted so that the resulting acceptance rates are close to 40%.

3.5 Simulations

We conduct simulations to evaluate the performance of the above methods of

surrogacy assessment. We consider three scenarios: one where S is a good prin-

cipal surrogate for T , one where it is a moderately good principal surrogate, and

one where it is a poor principal surrogate. In each scenario, a sample size of 300

is used with 150 subjects in each treatment arm and approximately 30% of the sur-

vival outcomes are censored. We first explore the sensitivity of the estimation to the

plausible prior restrictions on Γ that we might make. Figure 3.1 provides plots of

the true relationship between E[log(T (1))/log(T (0)) | S(1)− S(0) = s] for the three

surrogacy scenarios considered. In the case of a poor principal surrogate, the plot

shows that E[log(T (1))/log(T (0)) | S(1) − S(0) = 0] is greater than 0, indicating

the average causal necessity is not met. In the moderate principal surrogate case,

average causal necessity is close to being met and there is a moderate increasing

trend in E[log(T (1))/log(T (0)) | S(1) − S(0) = s] as S(1) − S(0) increases. For

the strong principal surrogate case, average causal necessity is met and there is a

strong increasing trend in E[log(T (1))/log(T (0)) | S(1) − S(0) = s] as S(1) − S(0)

increases. For each of the three different surrogacy scenarios we perform four sim-

ulations, with the estimation procedure done using each of the priors outlined in

Section 3.2.4. This results in a total of 12 simulations, each with 200 simulated

data sets. Tables 3.1 and 3.2 provide the posterior means and standard deviations of

the Bayesian estimates and means of the posterior standard deviations ( ¯PSD). The
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Figure 3.1: Plots of E[log(T (1))/log(T (0)) | S(1)−S(0) = s] for the three simulation
scenarios
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identified parameters are not sensitive to changes in the prior specifications, while

the unidentified parameters are quite sensitive to prior assumptions. The standard

deviation of the Bayesian estimates is generally smaller than ¯PSD for the unidenti-

fied parameters, leading to overcoverage of some of the unidentified quantities. Table

3.3 provides the means and standard deviations of the Bayesian estimates and ¯PSD

for the causal quantities of interest, E(log(Ti(1)/Ti(0)) | Si(1) − Si(0) = s) and

cor(Φ−1(F4(T (1))) − Φ−1(F3(T (0))), S̃(1) − S̃(0)). There is some bias in estimating

these quantities, as these depend on the unidentified parameters. Prior scenarios 3

and 4 appear to perform better than scenarios 1 and 2 in terms of bias and cover-

age rates, generally maintaining conservative coverage and small to moderate biases

across all surrogate scenarios. Under both of these priors, the estimation procedure

does reasonably well at distinguishing the validity of S as a principal surrogate. The

estimates of E(log(Ti(1)/Ti(0)) | Si(1)− Si(0) = 0) are near 0 in the case of a mod-

erate or strong PS, and larger when S is a poor principal surrogate. The estimated

correlation of the causal treatment effects on S and T is largest when S is a strong

principal surrogate and smallest when it is a poor principal surrogate.
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Table 3.1: Copula model simulation results under different prior specifications-
indentified parameters

Moderate PS Poor PS Strong PS
Prior True True True

Parameter Scenario Value Mean (SD) ¯PSD Value Mean (SD) ¯PSD Value Mean (SD) ¯PSD
log(λt0 ) 11 2 2.01 (0.08) 0.08 2 2.01 (0.08) 0.08 2 2.00 (0.08) 0.08

22 2.00 (0.08) 0.08 2.01 (0.09) 0.08 2.01 (0.09) 0.08
33 2.00 (0.09) 0.08 2.01 (0.08) 0.08 2.01 (0.08) 0.08
44 2.02 (0.08) 0.08 2.01 (0.08) 0.08 2.00 (0.08) 0.08

γt0 1 1.2 1.19 (0.09) 0.10 1.2 1.21 (0.10) 0.10 1.2 1.22 (0.11) 0.11
2 1.21 (0.10) 0.10 1.18 (0.10) 0.10 1.20 (0.11) 0.10
3 1.20 (0.11) 0.10 1.20 (0.09) 0.10 1.21 (0.10) 0.10
4 1.22 (0.10) 0.10 1.20 (0.10) 0.10 1.21 (0.11) 0.10

log(λt1 ) 1 2.3 2.32 (0.10) 0.10 2.5 2.51 (0.11) 0.11 2.3 2.31 (0.09) 0.09
2 2.32 (0.10) 0.10 2.51 (0.11) 0.11 2.31 (0.09) 0.09
3 2.31 (0.10) 0.09 2.52 (0.11) 0.11 2.31 (0.09) 0.10
4 2.31 (0.09) 0.09 2.52 (0.12) 0.11 2.31 (0.09) 0.10

γt1 1 1.2 1.21 (0.12) 0.12 1.2 1.20 (0.14) 0.13 1.2 1.23 (0.13) 0.12
2 1.20 (0.12) 0.12 1.20 (0.13) 0.13 1.23 (0.12) 0.12
3 1.22 (0.12) 0.12 1.20 (0.12) 0.13 1.22 (0.11) 0.12
4 1.21 (0.11) 0.12 1.20 (0.13) 0.13 1.21 (0.11) 0.12

α01 1 -0.67 -0.70 (0.11) 0.11 -0.67 -0.68 (0.12) 0.11 -0.67 -0.69 (0.10) 0.11
2 -0.70 (0.12) 0.11 -0.68 (0.11) 0.11 -0.69 (0.11) 0.11
3 -0.68 (0.10) 0.11 -0.69 (0.11) 0.11 -0.70 (0.11) 0.11
4 -0.70 (0.11) 0.11 -0.68 (0.11) 0.11 -0.69 (0.12) 0.11

α02 1 0 -0.008 (0.10) 0.10 0 0.004 (0.10) 0.10 0 0.003 (0.09) 0.10
2 0.001 (0.10) 0.10 -0.002 (0.10) 0.10 -0.0008 (0.10) 0.10
3 0.009 (0.11) 0.10 -0.01 (0.10) 0.10 -0.009 (0.10) 0.10
4 -0.006 (0.10) 0.10 0.007 (0.10) 0.10 0.009 (0.11) 0.10

α03 1 0.67 0.69 (0.11) 0.11 0.67 0.69 (0.11) 0.11 0.67 0.69 (0.11) 0.11
2 0.69 (0.13) 0.11 0.68 (0.12) 0.11 0.69 (0.12) 0.11
3 0.70 (0.11) 0.11 0.69 (0.11) 0.11 0.68 (0.12) 0.11
4 0.68 (0.11) 0.11 0.68 (0.12) 0.11 0.69 (0.12) 0.11

α11 1 -1.28 -1.32 (0.13) 0.14 -0.67 -0.69 (0.11) 0.11 -1.28 -1.34 (0.16) 0.14
2 -1.32 (0.14) 0.14 -0.69 (0.11) 0.11 -1.32 (0.13) 0.14
3 -1.33 (0.15) 0.14 -0.69 (0.10) 0.11 -1.34 (0.14) 0.14
4 -1.31 (0.14) 0.14 -0.68 (0.10) 0.11 -1.31 (0.15) 0.14

α12 1 -0.52 -0.53 (0.11) 0.11 0 0.003 (0.10) 0.10 -0.52 -0.53 (0.10) 0.10
2 -0.53 (0.10) 0.11 0.006 (0.10) 0.10 -0.54 (0.11) 0.10
3 -0.54 (0.11) 0.11 -0.02 (0.10) 0.10 -0.54 (0.11) 0.10
4 -0.53 (0.11) 0.11 -0.003 (0.10) 0.10 -0.54 (0.11) 0.11

α13 1 0.25 0.26 (0.10) 0.10 0.67 0.69 (0.11) 0.11 0.25 0.26 (0.10) 0.10
2 0.27 (0.10) 0.10 0.68 (0.11) 0.11 0.26 (0.10) 0.10
3 0.25 (0.10) 0.10 0.67 (0.12) 0.11 0.26 (0.10) 0.10
4 0.26 (0.11) 0.10 0.67 (0.11) 0.11 0.25 (0.10) 0.10

ρ00 1 0.6 0.58 (0.06) 0.06 0.2 0.18 (0.09) 0.08 0.8 0.78 (0.04) 0.04
2 0.58 (0.07) 0.06 0.20 (0.08) 0.08 0.78 (0.04) 0.04
3 0.57 (0.07) 0.06 0.20 (0.08) 0.09 0.78 (0.04) 0.04
4 0.58 (0.06) 0.06 0.21 (0.08) 0.09 0.79 (0.04) 0.04

ρ11 1 0.6 0.57 (0.07) 0.07 0.2 0.18 (0.09) 0.09 0.8 0.78 (0.04) 0.04
2 0.58 (0.06) 0.06 0.20 (0.09) 0.09 0.78 (0.04) 0.04
3 0.57 (0.07) 0.06 0.20 (0.09) 0.09 0.78 (0.04) 0.04
4 0.58 (0.06) 0.06 0.20 (0.09) 0.09 0.78 (0.04) 0.04

1: No restrictions on ρ
2: ρ ≥ 0
3: ρ ≥ 0 and ρ10, ρ01 < ρs, ρt, ρ00, ρ11

4: Beta priors

3.6 Application

We apply our estimation method to data from six clinical trials in advanced col-

orectal cancer (Meta-analysis Group in Cancer, 1998) to determine whether cancer
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Table 3.2: Copula model simulation results under different prior specifications-
unindentified parameters

Moderate PS Poor PS Strong PS
Prior True True True

Parameter Scenario Value Mean (SD) ¯PSD Value Mean (SD) ¯PSD Value Mean (SD) ¯PSD
ρs 1 0.4 0.0006 (0.35) 0.28 0.2 0.004 (0.24) 0.35 0.4 0.08 (0.37) 0.19

2 0.48 (0.12) 0.21 0.41 (0.12) 0.23 0.47 (0.16) 0.17
3 0.51 (0.08) 0.15 0.48 (0.09) 0.22 0.49 (0.14) 0.12
4 0.48 (0.09) 0.20 0.22 (0.07) 0.22 0.57 (0.13) 0.15

ρ01 1 0.3 0.005 (0.34) 0.27 0.04 -0.04 (0.30) 0.33 0.32 0.09 (0.37) 0.18
2 0.46 (0.15) 0.20 0.41 (0.15) 0.21 0.47 (0.18) 0.16
3 0.23 (0.06) 0.12 0.05 (0.03) 0.06 0.33 (0.14) 0.11
4 0.35 (0.12) 0.19 0.12 (0.06) 0.14 0.53 (0.14) 0.15

ρ10 1 0.3 -0.003 (0.34) 0.26 0.04 0.03 (0.31) 0.32 0.32 0.07 (0.37) 0.18
2 0.47 (0.14) 0.20 0.39 (0.13) 0.21 0.49 (0.17) 0.16
3 0.24 (0.06) 0.12 0.05 (0.03) 0.06 0.33 (0.14) 0.11
4 0.35 (0.11) 0.19 0.12 (0.05) 0.14 0.54 (0.15) 0.15

ρt 1 0.4 -0.002 (0.36) 0.26 0.3 -0.01 (0.34) 0.30 0.4 0.08 (0.39) 0.17
2 0.46 (0.14) 0.19 0.41 (0.16) 0.20 0.48 (0.18) 0.15
3 0.52 (0.09) 0.15 0.49 (0.11) 0.21 0.48 (0.15) 0.11
4 0.47 (0.12) 0.18 0.34 (0.09) 0.21 0.57 (0.15) 0.13

1: No restrictions on ρ
2: ρ ≥ 0
3: ρ ≥ 0 and ρ10, ρ01 < ρs, ρt, ρ00, ρ11

4: Beta priors

Table 3.3: Copula model simulation results: bias, variability and coverage rate of
surrogacy parameters

Moderate PS Poor PS Strong PS
Prior True 95% True 95% True 95%

Quantity Scenario Value Mean (SD) ¯PSD Coverage Value Mean (SD) ¯PSD Coverage Value Mean (SD) ¯PSD Coverage
E[log(T (1)/T (0))|S(1)− S(0) =-3] 1 -1.18 -1.60 (0.82) 0.96 0.86 -0.02 -0.02 (0.74) 0.90 0.92 -2.10 -2.18 (0.77) 0.78 0.91

2 -0.37 (0.60) 1.08 0.94 1.32 (0.45) 0.84 0.65 -1.40 (0.69) 0.93 0.87
3 -1.66 (0.34) 0.94 1 -0.17 (0.24) 0.65 1 -2.28 (0.40) 0.79 0.995
4 -0.99 (0.41) 1.07 0.99 0.18 (0.29) 0.75 1 -1.33 (0.62) 0.95 0.88

E[log(T (1)/T (0))|S(1)− S(0) =-2] 1 -0.73 -0.98 (0.54) 0.66 0.89 0.19 0.19 (0.48) 0.58 0.94 -1.39 -1.33 (0.51) 0.48 0.92
2 -0.17 (0.47) 0.81 0.94 1.04 (0.32) 0.56 0.64 -0.91 (0.50) 0.63 0.88
3 -1.16 (0.25) 0.60 0.99 -0.02 (0.22) 0.44 0.99 -1.47 (0.26) 0.44 0.995
4 -0.68 (0.32) 0.77 0.995 0.27 (0.23) 0.47 0.995 -0.88 (0.44) 0.67 0.90

E[log(T (1)/T (0))|S(1)− S(0) =-1] 1 -0.35 -0.47 (0.35) 0.41 0.93 0.33 0.34 (0.28) 0.34 0.96 -0.73 -0.68 (0.32) 0.29 0.91
2 0.006 (0.32) 0.49 0.91 0.80 (0.22) 0.32 0.73 -0.44 (0.33) 0.36 0.87
3 -0.63 (0.18) 0.34 0.98 0.22 (0.17) 0.24 0.98 -0.79 (0.17) 0.23 0.98
4 -0.33 (0.22) 0.46 0.995 0.37 (0.16) 0.27 0.995 -0.43 (0.28) 0.38 0.88

E[log(T (1)/T (0))|S(1)− S(0) =0] 1 0.11 0.07 (0.15) 0.18 0.97 0.49 0.49 (0.14) 0.19 0.99 0.01 -0.001 (0.14) 0.14 0.96
2 0.23 (0.14) 0.17 0.95 0.51 (0.16) 0.16 0.94 0.10 (0.14) 0.14 0.88
3 0.06 (0.11) 0.14 0.98 0.51 (0.13) 0.15 0.98 0.004 (0.10) 0.12 0.96
4 0.13 (0.11) 0.16 0.995 0.50 (0.13) 0.15 0.98 0.11 (0.12) 0.14 0.90

E[log(T (1)/T (0))|S(1)− S(0) =1] 1 0.52 0.55 (0.14) 0.21 0.99 0.69 0.65 (0.28) 0.34 0.95 0.64 0.61 (0.14) 0.16 0.98
2 0.41 (0.16) 0.20 0.94 0.22 (0.23) 0.32 0.73 0.55 (0.14) 0.16 0.92
3 0.60 (0.13) 0.16 0.96 0.79 (0.16) 0.24 0.995 0.66 (0.10) 0.13 0.98
4 0.49 (0.13) 0.19 0.99 0.62 (0.16) 0.28 0.995 0.53 (0.14) 0.16 0.91

E[log(T (1)/T (0))|S(1)− S(0) =2] 1 0.89 1.03 (0.30) 0.37 0.96 0.83 0.80 (0.48) 0.57 0.94 1.24 1.22 (0.28) 0.26 0.91
2 0.58 (0.31) 0.43 0.90 -0.03 (0.33) 0.57 0.66 0.99 (0.29) 0.32 0.87
3 1.13 (0.17) 0.29 0.96 1.03 (0.21) 0.44 0.995 1.30 (0.17) 0.22 0.98
4 0.85 (0.21) 0.40 0.99 0.73 (0.22) 0.47 1 0.95 (0.26) 0.33 0.87

E[log(T (1)/T (0))|S(1)− S(0) =3] 1 1.31 1.69 (0.57) 0.63 0.81 1.01 0.97 (0.74) 0.86 0.94 1.95 2.06 (0.55) 0.45 0.80
2 0.78 (0.48) 0.75 0.95 -0.30 (0.44) 0.83 0.66 1.49 (0.47) 0.58 0.88
3 1.72 (0.25) 0.54 0.98 1.18 (0.22) 0.66 1 2.03 (0.30) 0.42 0.98
4 1.25 (0.33) 0.73 0.99 0.83 (0.28) 0.74 1 1.42 (0.42) 0.62 0.88

cor(q(T (1))− q(T (0)), S̃(1)− S̃(0)) 1 0.50 0.55 (0.20) 0.20 0.81 0.22 0.18 (0.26) 0.28 0.91 0.80 0.74 (0.14) 0.13 0.96
2 0.22 (0.21) 0.31 0.90 -0.35 (0.16) 0.28 0.50 0.57 (0.19) 0.21 0.91
3 0.72 (0.05) 0.16 0.92 0.35 (0.10) 0.17 0.99 0.86 (0.06) 0.10 0.94
4 0.47 (0.13) 0.28 1 0.14 (0.10) 0.23 1 0.57 (0.16) 0.23 0.95

1: No restrictions on ρ
2: ρ ≥ 0
3: ρ ≥ 0 and ρ10, ρ01 < ρs, ρt, ρ00, ρ11

4: Beta priors

progression is a valid surrogate for overall survival. These data, along with 21 ad-

ditional trials comprising four separate meta-analyses, were previously analyzed by

Burzykowski, et al. (2004) where a meta-analytic surrogacy validation method was
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used. All six of the trials considered compared the administration of fluorouracil (5-

FU) by continuous intravenous infusion (CI) to bolus administration of 5-FU. As these

trials all compared the same two treatments and there were no notable differences

in patient characteristics among the trials, we pool the data from these nine trials

in the application of our method. All together, there were 1,216 patients with 609

randomized to the 5-FU by CI arm and 607 randomized to the bolus 5-FU arm. Pa-

tients were followed with tumor response and survival time recorded. Tumor response

was defined by one of four categories: complete response (CR), partial response (PR),

stable disease (SD) and progressive disease (PD). In our analysis, the true endpoint T

is survival time, defined as the time from randomization to death from any cause and

the surrogate end point S is tumor response, defined as a categorical variable with

S = 1, 2, 3, 4 for PD, SD, PR, and CR, respectively. The binary treatment indicator

for treatment Z is set to 0 for 5-FU by CI and 1 for bolus 5-FU. Tumor response was

measured after approximately 3 to six months of follow-up in advance of the recorded

survival time.

The observed tumor response frequencies were 52% for PD, 32% for SD, 14%

for PR and 3% for CR. The response rate (combined percentage of CR and PR) was

higher in the treatment arm, with 20.8% responding compared to 12.8% responding in

the control arm. The odds ratio for response in the treatment vs. control arm was 1.84

(95% CI: 1.35, 2.51). The median survival time was longer for those in the treatment

group (12.1 months) than for those in the control group (11.3 months), with an

estimated hazard ratio of 0.89 (95% CI: 0.79, 1.00) for the treatment vs. control group.

Table 3.4 provides the means and standard deviations of E[log(T (1)/T (0))|S(1) −

S(0) = s] and of the correlation between q(T (1)) − q(T (0)) and S̃(1) − S̃(0) for

each of the four prior scenarios described in the simulation section. We focus on the
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estimation done using priors 3 and 4, as these priors performed better in the simulation

settings. Under these two priors, E[log(T (1)/T (0))|S(1)−S(1) = 0] is approximately

0, indicative of a good principal surrogate, with a fairly large correlation between

the causal standardized treatment effects. We would therefore conclude that tumor

response appears to be a moderately good principal surrogate for overall survival.

Appendix A provides plots of the Kaplan-Meier survival curves for the observed data

and the mean and 95% credible interval of the posterior predictive distribution from

the model for each of the tumor response categories and for each treatment group.

The plots suggest that the model appears to provide an appropriate fit to the data.

We compare the results obtained under the Gaussian copula model to those that

would have been obtained had the data been analyzed as multivariate normal. To

approximately normalize T , we take the third root, and to approximately normalize

S, for each S = s we draw a uniform (s−1, s) random variable. Appendix B provides

histograms and normal QQ plots of this data. Under this model, we assume that the

joint distribution of the counterfactuals is multivariate normal, such that:

Si(0)

Si(1)

Ti(0)1/3

Ti(1)1/3


∼ N





µS0

µS1

µT0

µT1
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σ2
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ρtσT1σT0
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To obtain parameter estimates from this distribution, a Bayesian estimation ap-

proach is used as outlined in Chapter II. Additionally, at the beginning of each

iteration of the chain, a new value for each observed S = s is drawn from a Uni-

form (s − 1, s) distribution and death times are imputed for censored subjects. We

draw a death time from the residual survival distribution, P (T (Z)1/3 > t
1/3
Z + b |

T (Z)1/3 > t
1/3
Z , T (1 − Z)1/3, S(0), S(1), µ,Σ), for observed censoring time t

1/3
Z . Non
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informative priors are placed on the observed parameters. Specifically, the prior for

each µ is N(0, 106), the prior for each σ is ∝ 1, and the priors for ρ00 and ρ11 are

Unif(−1, 1). We place mildly informative Beta priors on the remaining partially

identified parameters, ρs, ρ10, ρ01, and ρt. Table 3.5 provides the results from an-

alyzing the data as multivariate normal. This method of analysis would identify

S as a weaker principal surrogate than under the copula model, as the estimate of

E[log(T (1)/T (0))|S(1)− S(0) = 0] is slightly larger. The results also show a slightly

attenuated increasing trend of E[log(T (1)/T (0))|S(1) − S(0) = s] in s and larger

standard deviations as compared to the estimates obtained from the copula model.

The copula model, therefore provides more efficient estimation of the principal sur-

rogacy quantities when multivariate normality does not hold. Figure 3.2 provides a

plot of E[log(T (1)/T (0))|S(1)− S(0) = s] vs. s estimated from the Guassian copula

model (using the Beta priors) and from the multivariate normal model. The curve

estimated by the copula model is less linear than that estimated by the multivariate

normal model.

Table 3.4: Application of Gaussian copula to colorectal cancer data

ρ’s unrestricted ρ ≥ 0 ρ ≥ 0 and ρ10, ρ01 < ρs, ρt, ρ00, ρ11 Beta priors
Mean (SD) Mean (SD) Mean (SD) Mean (SD)

E[log(T (1)/T (0))|S(1)− S(0) =-3] -1.09 (0.49) -0.47 (0.74) -1.02 (0.53) -1.08 (0.46)
E[log(T (1)/T (0))|S(1)− S(0) =-2] -0.91 (0.30) -0.42 (0.39) -0.79 (0.26) -0.79 (0.20)
E[log(T (1)/T (0))|S(1)− S(0) =-1] -0.67 (0.16) -0.21 (0.21) -0.46 (0.13) -0.49 (0.12)
E[log(T (1)/T (0))|S(1)− S(0) =0] -0.28 (0.08) 0.01 (0.10) -0.005 (0.06) -0.03 (0.07)
E[log(T (1)/T (0))|S(1)− S(0) =1] 0.84 (0.12) 0.43 (0.14) 0.54 (0.12) 0.66 (0.09)
E[log(T (1)/T (0))|S(1)− S(0) =2] 1.74 (0.22) 0.72 (0.26) 0.96 (0.23) 1.22 (0.19)
E[log(T (1)/T (0))|S(1)− S(0) =3] 2.82 (0.38) 1.08 (0.50) 1.35 (0.50) 1.75 (0.44)

cor(q(T (1))− q(T (0)), S̃(1)− S̃(0)) 0.78 (0.10) 0.31 (0.15) 0.63 (0.14) 0.84 (0.10)
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Figure 3.2: Plot of E[log(T (1)/T (0))|S(1)−S(0) = s] vs. s for colorectal cancer data:
estimates from the copula model and from the multivariate normal model
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Table 3.5: Surrogacy assessment of colorectal cancer data, analyzed as normal

Parameter Posterior Mean (SD)
E[log(T (1)/T (0))|S(1)− S(0) =-3] -0.90 (0.77)
E[log(T (1)/T (0))|S(1)− S(0) =-2] -0.66 (0.30)
E[log(T (1)/T (0))|S(1)− S(0) =-1] -0.31 (0.16)
E[log(T (1)/T (0))|S(1)− S(0) =0] 0.08 (0.08)
E[log(T (1)/T (0))|S(1)− S(0) =1] 0.43 (0.13)
E[log(T (1)/T (0))|S(1)− S(0) =2] 0.73 (0.27)
E[log(T (1)/T (0))|S(1)− S(0) =3] 1.06 (0.58)

3.7 Discussion

In this chapter, we develop a method for surrogacy assessment under the princi-

pal stratification framework for an ordinal surrogate marker and time to event final

outcome. We use a Gaussian copula model to jointly model the potential surrogate

outcomes and potential final outcomes, and propose quantities from this model that

can be used to determine the validity of S as a surrogate marker for T . A Bayesian

estimation strategy is used, allowing the use of context specific prior assumptions

on the unidentified parameters to be explored in order to aid in estimation. Our
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simulation results suggest that the estimation procedure is able to distinguish valid

principal surrogates from invalid ones.

In our data example, we compare the results obtained using the proposed Gaussian

copula model to those obtained using a multivariate normal model. The results

show that there is some efficiency gained by fitting the more appropriate marginal

distributions to the data and using the Gaussian copula than by assuming multivariate

normality when it may not hold.

In our model formulation, we assume a cumulative probit model for S and a

proportional hazards model with a Weibull baseline hazard function for T . The use

of different parametric models for these marginal distributions could be explored.

Semi-parametric or non-parametric alternatives for the marginal distributions could

also be used to model the marginal distributions of S and T .



CHAPTER IV

Using Multi-state Models With a Cured Fraction

to Model Colon Cancer Recurrence and Death

4.1 Introduction

In longitudinal medical studies with a time-to-event final outcome, patients may

experience multiple disease progression events prior to the event of interest. Examples

include CD4 lymphocyte counts in the progression to HIV infection (Foucher, et al.

2005) and cancer progression prior to death in survival studies (Putter, et al. 2006).

The data we examine come from 12 phase III randomized trials in colon cancer where

there is interest in building a joint model for the two event times of interest, time to

recurrence and time to death and investigating how treatment and other covariates

are associated with the event times. A common way to jointly model these disease

progression events is through the use of multi-state models (Anderson and Keiding,

2002; Meira-Machado et al., 2009; Putter et al., 2007), which describe the progressions

and transitions over time to the various disease states. Common forms of multi-state

models include the “progressive three-state model”, in which subjects enter some

intermediate disease state prior to entering the absorbing state, and the “illness-

death model”, where healthy subjects may enter a diseased state prior to death,

56
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or die without disease. In these models, transition intensities, which can include

covariates, provide the hazards for moving between states. Each disease state that a

subject occupies is either a transient state that can be left, such as cancer recurrence,

or an absorbing state, such as death, that can never be left once it is entered.

Different model assumptions can be made about the dependence of the transition

intensities and time. One approach is to take t = 0 as the start of the study and

then all subsequent times t refer to the time since the beginning of the study. Klein

et al. (1994) make this assumption in their analysis of relapse and death in bone

marrow transplant patients. A second approach is to set the clock back to 0 upon

entry into a new state. This approach assumes that the hazard for entry into each

state depends on the entry time into that state. This type of model, termed a semi-

Markov model, has been explored by Dabrowska, et al. (1994) and Lagakos, et al.

(1978). Additionally, in the semi-Markov model the hazard for entry into a new

state could depend on the time at which the current state was entered (Anderson,

et al. 2000). In our data analysis, we use a semi-Markov model with recurrence

time as a covariate in the hazard model for the transition from recurrence to death.

The hazard for moving between states can be modeled either parametrically or semi-

parametrically. Putter, et al. (2006) explore the use of the semi-parametric Cox

model in their analysis of recurrence and survival in breast cancer. Foucher, et al.

(2005) use a generalized Weibull model for the hazard of transitioning between states.

Here, we use a proportional hazards model with a parametric Weibull baseline hazard

for each of the transition rates. There is interest in using these semi-Markov multi-

state models to jointly model disease progression events as they can be used to assess

how individual covariates affect each of the progression rates, and to estimate overall

survival, given the disease history.



58

We propose a semi-Markov model with an incorporated latent cured state to

model colon cancer recurrence and survival. This model structure is motivated by the

disease process of colon cancer. Cure models have been used to model many different

types of cancer where there is known to be a significant proportion of patients whose

tumors are completely eliminated by the treatment, and so will never experience a

clinical recurrence. These patients are considered to be cured of the disease. We

use the mixture model formulation of the cure model, introduced by Berkson and

Gage (1952). This model assumes that a proportion of the population, p will never

experience the event of interest and are therefore cured. The mixture cure model

has been widely discussed in the literature. Yamaguchi (1992) explored the use of a

cure model with a logistic mixture probability model and an accelerated failure time

model with a generalized gamma distribution. Taylor (1995) used a logistic model for

the cure probability and a completely unspecified failure time process. Estimation for

a semi-parametric Cox proportional hazards model for the failure time process has

been explored by Sy and Taylor (2000) and Peng and Dear (2000).

One issue that arises with the use of the cure model is identifiability due to cen-

soring before the end of the follow-up period (Farewell, 1986). Therefore, it can be

difficult to distinguish models with a large population of uncured individuals and long

tails of the failure time process from those with small populations of uncured indi-

viduals and short tails of the failure time process. In general, in order to justify use

of the cure model, there must be sufficient follow-up and a large number of censored

observations after the last event. Problems with identifiability are likely to arise if

the Kaplan-Meier survival plot of all data does not show a clear level plateau. In the

models we propose, the joint modeling of survival time and recurrence time may aid

in the identifiability as subjects with survival times greater than the last observed
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recurrence time are likely to be cured of disease. Additionally, the appropriateness of

the cure fraction in the multi-state model can be assessed through a goodness of fit

comparison with a model that does not assume a cured fraction.

The multi-state model and cure model have each been considered with both non-

parametric and parametric assumptions. Here, our proposed model combines aspects

of both of these models providing insight into the role of covariates on both the curing

of the disease and the disease process, as well as the association of the two endpoints

of interest, recurrence and death. We apply our model separately to each of the 12

colon cancer trials in order to explore which covariates have similar effects on certain

disease aspects across trials performed in different settings. A Bayesian estimation

strategy is used to estimate the parameters of the Weibull model, the covariate effects

for each of the transition times, and the covariate effects for the logistic model for

each trial. As the cured state is only partially observed, we place informative priors

on some model parameters to aid in estimation where there is a scientific rationale for

these parameters to be close to zero. The adequacy of the model fit is assessed through

the use of Cox-Snell residual plots and deviance residual plots are used to determine

the proper functional form of covariates. While these would be natural to consider for

multi-state models (Kneib and Hennerfeind, 2008), we are not aware of any literature

on using them in cure models. The remainder of the paper is organized as follows:

Section 4.2 describes the data and Section 4.3 describes the proposed model. In

Section 4.4, the estimation procedure is outlined and results of the application of the

model to the data from 12 colon cancer clinical trials are provided. Model checking

procedures are described in Section 4.5. Section 4.6 provides simulation results and

Section 4.7 concludes with a discussion.



60

4.2 Data Description

The data we consider consist of a total of 13,983 subjects from 12 randomized

phase III adjuvant trials of locally advanced colon cancer. Ten of the trials are

included in the Sargent, et al. (2005) publication, with two additional new trials.

These 12 trials were previously analyzed by Conlon, et al. (2011), where a separate

cure model and Weibull model were used to model time to recurrence and death,

respectively. Trial enrollment spanned from 1977 to 1999. One trial (7) included 210

patients with stage 1 cancer; these subjects were excluded from this analysis. Due to

differences in the long term follow-up practices between trials, subjects in all trials

except trial 1 were censored at 8 years following the time of the last subject accrual.

Subjects in trial 1 were censored 4.3 years from the last subject accrual due to a large

number of patients administratively censored at this time. The median follow-up

time for subjects alive at their last follow up was 8.2 years. In each trial, subjects

were followed with a specific protocol, with cancer recurrences and deaths recorded

as they occurred. We therefore have two censored event times of interest, recurrence

and death. The censoring times for these two events are not necessarily the same,

as ascertaining a recurrence time requires active follow-up usually involving a scan,

while obtaining a dead or alive status could be obtained through other means. The

average proportion of subjects censored for recurrence prior to their last follow up

was 9.5% across all trials, with a maximum of 16.9% in Trial 2 and a minimum of

0% in Trial 3. Of the 4346 observed recurrences, 3448 (79.3%) occurred within three

years, 4075 (93.8%) occurred within five years, and 4281 (98.5%) occurred within

seven years. This type of event time data where very few events happen after a

fixed window of time is characteristic of a cured group, and for which a cure model
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is appropriate. Kaplan-Meier plots of time to recurrence for the 12 trials, provided

in Appendix I, show a clear leveling off providing a strong empirical rationale for

use of a cure model. Baseline covariates of interest include age, cancer stage and

treatment arm. Each trial compared a different pair of treatments, with one defined

as the control arm and the other as the experimental arm. Five of the trials (1, 2,

3, 6 and 7) compared surgery alone to surgery plus some form of chemotherapy. In

the other seven trials, both arms contained surgery plus some form of chemotherapy.

The primary goal of all 12 trials was to compare overall survival between the pairs

of treatments. Based on a simple log-rank test, three of the trials (3, 8, and 9)

showed a statistically significant treatment effect. Table 4.1 provides a summary of

stage, age and treatment distributions in each trial, as well as the number of recorded

recurrences and deaths and longest follow-up time for each trial. As each of these

trials compared different pairs of treatments, we fit the model to each trial separately,

and then assess which of the covariate effects on the various diseases processes are

similar across the 12 trials.

4.3 Multistate model

We model time to recurrence and time to death using a multi-state model for the

semi-Markov process. We also incorporate a latent cured fraction into the model for

subjects who will never experience a recurrence. The cure model is applied to the

recurrence event and assumes that there is a zero probability that some subjects will

recur. In this setting, the treatment may eliminate the cancer, resulting in a cured

group of patients. Curing of the cancer happens at the time of treatment, but is not

immediately observable. If the cancer is not eliminated, the patient is not cured of
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Table 4.1: Data summary of 12 trials of colon cancer

Study N Recurrences Recurrence Death Total Longest % with % in Age
Without Without Deaths Follow-Up Stage 3 Treatment (mean)
Death Recur (years) Cancer Group

1 247 116 14 13 115 9.9 65.6% 49.0% 60.3
2 408 139 11 44 172 9.1 81.6% 62.5% 61.1
3 926 377 31 76 422 11.4 66.1% 49.4% 60.2
4 914 380 36 106 450 9.9 82.5% 75.2% 62.7
5 878 297 33 74 338 12.6 73.8% 49.8% 61.2
6 724 275 10 132 397 13.2 56.8% 48.2% 59.8
7 683 206 32 129 303 12.9 43.4% 50.1% 63.3
8 1040 356 36 67 387 9.7 72.1% 49.8% 56.1
9 2077 605 57 176 724 9.4 58.7% 66.7% 57.0
10 2128 574 66 192 700 10.3 55.9% 49.8% 58.0
11 1549 394 71 115 438 8 53.5% 50.3% 60.5
12 2409 627 189 106 544 6 71.1% 49.8% 57.9
Total 13983 4346 586 1230 4990 13.2 63.8% 54.3% 59.1

disease and will experience a recurrence when the tumor has regrown to a detectable

size. The observed data provides information about whether the patient was cured

by the treatment. Patients with observed recurrences are known to be in the uncured

group. Patients who do not have an observed recurrence may or may not be cured.

For patients censored for recurrence, the model assumes that a proportion of these

subjects would have never experienced a recurrence even if they had been followed

longer, and are therefore cured. Additionally, some subjects who were censored for

recurrence could have experienced a recurrence after their censoring time had there

been longer follow-up and are therefore in the uncured group with an unobserved

recurrence time (Farewell, 1982). Deaths can occur either without a prior recurrence

or following a recurrence. The deaths that occur without a prior recurrence are

known not to be directly due to the regrowth of the cancer, while deaths following

a recurrence may be due to the cancer or other causes. We do not consider cause of

death in our models. We use the multi-state model to model four transition intensities
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which include the transition from the uncured group to death, the transition from

the cured group to death, the transition from the uncured group to recurrence, and

the transition from recurrence to death.

4.3.1 Notation and model specifications

Let Cir and Tir be the censoring and event times for recurrence and let Cid and

Tid be the censoring and event times for death for the ith subject, i = 1, ...n. Then

Yir = min(Cir, Tir) and the event indicator for recurrence, δir = I(Tir ≤ Cir), and

Yid = min(Cid, Tid) and the event indicator for death, δid = I(Tid ≤ Cid), are observed.

Let Zi, Si and Ai represent the baseline values of treatment group, cancer stage and

age for each subject. Each of these covariates is approximately centered prior to

estimation so that Zi = −0.5 or 0.5 for control and treatment, respectively, Si = −0.5

or 0.5 for stage 2 or stage 3 cancer, respectively, and Ai is age, centered at the mean

age for a given study in units of 10 years. Let pi be the probability that the ith

subject is cured of disease. We define State 1 to be alive and cured of disease, State 2

to be alive and not cured, State 3 to be alive with recurrence and State 4 to be dead,

as illustrated in Figure 4.1. States 1, 2 and 3 are transient states while State 4 is an

absorbing state. We model four transition times, 1 → 4, 2 → 3, 2 → 4, and 3 → 4.

The true state progressions for many subjects are not fully observed. Specifically,

those who were censored for recurrence and alive were either in State 1 or State 2 at

the end of their follow-up, and subjects censored for recurrence and dead either made

a 1 → 4 or a 2 → 4 transition at their time of death. Subjects with an observed

recurrence transitioned from 2 → 3 at their recurrence time and then remained in

State 3 if they were censored for death, or made a 3 → 4 transition at their death

time.
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Figure 4.1: Multi-state cure model structure

Dashed lines represent effect of treatment, solid lines represent transitions between
states.

In the standard setting for cure models there is one event time of interest, and the

mixture model formulation assumes that a proportion of the population, p will never

experience the event of interest, in this case recurrence, and are therefore cured. For

the uncured population, the cure model provides information on the estimated time to

event from the survival distribution. The marginal survival function for recurrence,

S(t), for the entire population is given by S(t) = p + (1 − p)S0(t), where S0(t) is

the conditional survival function for recurrence for the uncured group. It is common

to use a logistic model which includes time independent covariates for the incidence

model. Common choices for S0(t) are the exponential and Weibull distributions.

Non-parametric choices for S0(t) have also been explored. In our more complicated

situation with two event times, the structure of the model is more involved, but we

retain similar elements, that of a cured fraction described by a logistic model, and

distributions of event times given cured status described by proportional hazards

models with Weibull baseline hazard functions.

The proposed model can be used to assess how different covariates affect both

the probability of being cured and the hazard of transitioning to recurrence or death.

Other quantities of interest can also be derived from the model, such as five year

survival within each of the treatment arms. Both the models for the time of entry
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into each state and p can depend on covariates. The probability of being cured, pi, is

modeled using a logistic link function given by:

pi = exp(Xiγ)
1+exp(Xiγ)

.

where Xi is a vector of subject specific covariates that includes the centered co-

variates of treatment group, stage and age, and γ is a vector of coefficients given

by γ = (γ0, γTreatment, γStage, γAge)
T The multi-state process is characterized through

transition intensities defined as:

λkj(t) = lim∆t→0 pkj(t, t+ ∆t)/∆t

where pkj(s, t) = P (M(t) = j|M(s) = k,Hs−) is the probability of being in State j at

time t, given that the process was in State k at time s and the history of the process

Hs−, for states M(t) and M(s) occupied at times t and s, respectively, and s ≤ t.

λkj(t) is then the instantaneous hazard of entering State j, given that the previous

state occupied was State k. From this hazard, we can define the survival distributions

for each transient state. The survival distributions for remaining in States 1, 2, and

3 are:

S1(t) = exp

− t∫
0

λ14(u)du


S2(t) = exp

− t∫
0

λ23(u)du−
t∫

0

λ24(u)du


S3(t|tr) = exp

− t−tr∫
0

λ34(u)du


where tr is the entry time into state 3.

We use a proportional hazards model with a Weibull baseline hazard function to
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model the distribution of waiting times. Specifically, the hazard for transition k → j

for subject i is given by:

λkj(ti;Xi) =
(
ρkj
αkj

)(
ti
αkj

)ρkj−1

exp (Xiβkj)

For transitions 1 → 4 and 2 → 4, ti is a death time. For transition 2 → 3, ti is a

recurrence time and for transition 3 → 4, ti is the gap time between entry into the

recurred state and death. Xi represents a vector of subject specific covariates which

includes the centered covariates of treatment group, stage and age for transitions

1 → 4, 2 → 3, and 2 → 4. For transition 3 → 4, Xi includes the centered covaraites

of treatment group, stage, age and time to recurrence, centered at the mean time

to recurrence for those who recur in a given study in units of years. βkj is a vector

of coefficients given by βkj = (βTreatmentkj , βStagekj , βAgekj)
T for kj = {14, 23, 24} and

β34 = (βTreatment34 , βStage34 , βAge34 , βTr)
T . ρkj and αkj are the shape and scale param-

eters, respectively, for each Weibull model. The covariates can be expected to be

associated with each of the model components in differing ways, as each part of the

model describes a different aspect of the disease process. The probability of being

cured provides information about the tumor and the cell killing effect of the treat-

ment. Transitions 1 → 4 and 2 → 4 give information about the person as opposed

to the cancer and transition 2 → 3 provides information about the tumor regrowth.

Finally, transition 3 → 4 provides information about both the person and the re-

growth of the tumor. Six distinct types of people contribute to the likelihood: those

who recur and are either dead or alive at a later time, those censored for recurrence

at Yir = Yid and either dead or alive at Yid, and those censored for recurrence at Yir

prior to death or censoring at a later time Yid. These likelihood contributions can be
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described by the following three equations:

Recur, dead or alive:

(1− pi)λ23(Yir)S2(Yir)λ34(Yid − Yir)δidS3(Yid | Yir)

Censored for recurrence at Yid, dead or alive:

(1− pi)λ24(Yid)
δidS2(Yid) + piλ14(Yid)

δidS1(Yid)

Censored for recurrence atYir prior to Yid, dead or alive:

(1− pi)λ24(Yid)
δidS2(Yid)+

(1− pi)
Yid∫
Yir

λ23(u)S2(u)λ34(Yid − u)δidS3(Yid | u)du+

piλ14(Yid)
δidS1(Yid)

In the 12 trials we examine, a small proportion of subjects (0.7% across all trials)

had a recurrence at the same date as their time of death. As these subjects likely truly

recurred prior to this date but for administrative or other reasons these recurrences

were not detected prior to death, their recurrence times were treated as interval

censored and their contribution to the likelihood was:

Recur at Yid,dead :

(1− pi)
Yir∫
0

λ23(u)S2(u)λ34(Yid − u)δidS3(Yid | u)du
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4.4 Estimation

We use a Bayesian MCMC technique to estimate the parameters of the multi-state

cure model. The parameters for each of the 12 trials are estimated separately, with

no mixing of patients across the different trials. There are a total of 25 parameters to

estimate for each of the trials which include a shape (ρ) and scale (α) parameter from

the Weibull model for each of the hazard rates, covariate effects for each of the hazard

models and covariate effects in the logistic model for the probability of cure. As the

cured state is only partially observed, we place informative Normal(0, 0.252) priors

on the treatment and stage coefficients in transition 1→ 4 to aid in estimation. This

seems reasonable as treatment group and cancer stage may affect the likelihood of

cure, but are unlikely to affect the survival of patients conditional on being cured of

disease. Additionally to aid in estimation, we place mildly informative Normal(0, 22)

priors on the log(α)’s and gamma priors with mean 1 and standard deviation 0.6 on

the ρ’s. Normal(0, 1) priors are placed on all of the remaining covariate coefficients

in the hazard models and in the logistic model. At each iteration of the chain the

latent variable representing cured status is simulated. Specifically, subjects without

recurrence are placed in either the cured or uncured group by drawing a Bernoulli

random variable with probability of cure

ci = piλ14(Yid)δidS1(Yid)

piλ14(Yid)δidS1(Yid)+(1−pi)λ24(Yid)δidS2(Yid)

for those censored for recurrence at Yid and

ci = piλ14(Yid)δidS1(Y id)

piλ14(Yid)δidS1(Yid)+(1−pi)λ24(Yid)δidS2(Yid)+(1−pi)
∫ Yid
Yir

λ23(u)S2(u)λ34(Yid−u)δidS3(Yid|u)du

for those censored for recurrence at Yir prior to Yid. As some integrals in the likeli-

hood do not have closed form solutions, numeric integration was used. Specifically,
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the following integrals were calculated by adaptive quadrature using the ’integrate’

function in R:

Yir∫
0

λ23(u)S2(u)λ34(Yid − u)δidS3(Yid | u)du

Yid∫
Yir

λ23(u)S2(u)λ34(Yid − u)δidS3(Yid | u)du

All covariates are centered prior to estimation, as described in Section 4.3. The

posterior distributions for all of the parameters can be obtained from the product of

the observed data likelihood and prior distributions. The Metropolis Hastings algo-

rithm is used for parameter estimation. Appendix J provides the full data likelihood

and details of the algorithm.

For each parameter, we obtain 5000 draws from its posterior distribution. Table

4.2 provides the posterior mean and standard deviation estimates for all model pa-

rameters for each of the 12 trials. Covariate effect estimates that are greater than two

times the posterior standard deviation are shown in bold. We estimate the parame-

ters of each of the 12 trials separately, and compare the estimates of each parameter

across trials in order to examine which aspects of the disease process have common

covariate effects across all of the trials, and which have varying effects. The results

show very consistent effects of most covariates on the probability of cure and on each

of the transition times across all 12 studies. Stage is seen to have a consistent and

strong effect on the probability of being cured and on the time to recurrence and a

modest effect on the time to death after recurrence, with higher stage people more

likely to recur, recurring earlier and dying sooner after recurrence. The effects of stage

on time to death for those who don’t recur are smaller in the cured group, with mixed
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effects across trials. Age has a strong effect on time to death for both those who are

cured and those who are not cured but die before recurrence, with older people dying

sooner. There is a mild positive effect of age on time to death after recurrence and

mild negative effect of age on time to recurrence. There is also a consistent effect of

time to recurrence on time to death, with those recurring quickly dying sooner. The

shape parameter, ρ, and scale parameter, α, of the Weibull model are also consistent

across trials within each transition. The shape parameter of the Weibull distribution

determines the shape of the density curve. When ρ < 1, the failure rate decreases

with time. Weibull distributions with ρ close to or equal to 1 have a fairly constant

failure rate and distributions with ρ > 1 have a failure rate that increases with time.

For all of the trials, ρ is greater than 1 in the transition from no cure to recur, indi-

cating a short tail in the distributions of recurrence times. This is characteristic of an

event with a cured group, as events become unlikely after a certain amount of time.

The intercept in the logistic model for the probability of cure indicates that the trials

where the control arm was surgery alone tend to have lower cure rates on the control

arm than the trials where the control arm included chemotherapy.

As the 12 trials compared different combinations of treatments, the treatment

effects vary for one trial to the next. Based on log-rank p-values for overall survival,

Trials 3, 8 and 9 had a significant effect of treatment on overall survival, with log-

rank p-values equal to 0.004, 0.0003, and 0.04, respectively. Trials 2, 7, and 12 had

near significant treatment effects on overall survival with log-rank p-values of 0.09,

0.07, and 0.09, respectively. Additionally, Trials 1, 3, 8, 9, and 12 had a significant

treatment effect on time to recurrence, with log-rank p-values of 0.01, < 0.0001, 0.001,

0.04, and 0.03, respectively. The treatment effect estimates from the Markov model

show some consistencies with these results, with effects of treatment primarily seen
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on the probability of cure and time to recurrence. There is a significant effect of

treatment on the probability of cure for Trials 3 and 8. Trial 8 and Trial 1 both have

a significant treatment effect on time to recurrence. All trials, except Trial 3 show no

effects of treatment on time to death after a recurrence, or on time to death without

recurrence for either the cured or uncured group. There is a small adverse effect of

treatment on the time to death after a recurrence in Trial 3. Appendix K provides

plots of each of the treatment effect estimates across the trials.

4.5 Model Checking and Model Extensions

4.5.1 Checking Goodness of Fit of the Model

Once parameter estimates for the model have been obtained, the model can be

used to estimate five year overall survival (OS), traditionally the final endpoint of

interest in trials of locally advanced colon cancer. Similarly, three year disease free

survival (DFS) which is the minimum of recurrence and death times and has been

shown to be an alternative endpoint to five year OS in these types of trials (Sargent, et

al. 2007), can also be estimated from the model. The point estimates for five year OS

and three year DFS for each treatment arm can be compared with the Kaplan-Meier

estimate to check the model fit and the standard error estimate can be compared

with that of the Kaplan-Meier estimate to assess gains in efficiency through use of

the multi-state model. For each subject we can calculate their five year OS probability

as:

P (Ti > 5 | Xi, θ) = piS1(5) + (1− pi)S2(5) + (1− pi)
5∫

0

S2(u)λ23(u)S3(5 | u)du
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and three year DFS probability as:

P (DFSi > 3 | Xi, θ) = piS1(3) + (1− pi)S2(3)

where θ is the vector of parameter values, and the probability is averaged across the

age and stage covariate values for each subject and across all of the parameter draws.

Table 4.3 provides the Kaplan-Meier and multi-state model five year OS and three

year DFS estimates and standard errors. For the 12 trials considered, both the five

year OS and three year DFS estimates from the multi-state model are similar to the

Kaplan Meier estimates, indicating that the model is an appropriate fit to the data

as measured by predictions of OS at five years and DFS at three years. There is also

some efficiency gained in estimating these quantities, as seen by the smaller standard

errors in the multi-state model estimates as compared to the Kaplan-Meier estimates.

Also noticeable from the estimates are the general improvement in five years OS from

the chronologically early trials (trials 1,2 and 3) to the more recent trials (10, 11 and

12).

Additional model fit assessments can be made by examining Cox-Snell residual

plots. For each subject, we calculate the Cox-Snell residual for time to death. Let

wi = −logŜ(Yid), where:

Ŝ(Yid) = piS1(Yid) + (1− pi)S2(Yid) + (1− pi)
∫ Yid

0
S2(u)λ23(u)S3(Yid | u)du.

If the model is correct, the pairs (wi, δid) should be like a sample from a censored

Exp(1) distribution. Therefore, a plot of wi vs. the Nelson-Aalen estimator for the

pairs of (wi, δid) should yield a straight line through the origin with slope 1. Figure

4.2 provides the Cox-Snell residual plots for overall survival for the 12 trials. For

most of the trials, the proposed model appears to provide an adequate fit to the data.
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The above Cox-Snell residuals involve all five model components. Cox-Snell residuals

can also be used to check the model fit for some selected aspects of the overall model,

specifically for the time to recurrence and for the transition from recur to death.

For the time to recurrence, the residual is wi = −logŜ(Yir), with the pair (wi, δir)

compared to the Exp(1) distribution, where:

Ŝ(Yir) = pi + (1− pi)exp
(
−
(
Yir
α23

)ρ23

exp(βtrt23Zi + βst23Si + βage23Ai)
)

and for the recur to death transition the residual is wi = −logŜ(Yid − Yir), with the

pair (wi, δid) compared to the Exp(1) distribution, where:

Ŝ(Yid − Yir) = exp
(
−
(
Yid−Yir
α34

)ρ34

exp(βtrt34Zi + βst34Si + βage34Ai + βTr34Yir)
)

where wi is calculated only for those who recur. Appendix L provides the Cox-

Snell residual plots for the time to recurrence transition and the recurrence to death

transition. The residual plots for the individual transitions show that the model

fits for the time to recurrence fairly well, but there may be some lack of fit in the

transition from recurrence to death in some trials.

Deviance residuals are a standard way of assessing the functional form of covariates

in survival analysis models. Here, we adapt them to the multi-state cure model. For

each person, the Martingale residual for overall survival is defined as ri = δid−Λ̂(Yid),

where:

Λ̂(Yid) =

−log
(
piS1(Yid) + (1− pi)S2(Yid) + (1− pi)

∫ Yid
0

S2(u)λ23(u)exp
(
−
∫ Yid−u

0
λ34(v)dv

)
du
)

The Martingale residuals can be viewed as the difference between the observed num-

ber of deaths for subject i between time 0 and Yid and the expected number based
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Figure 4.2: Cox-Snell residual plots for time to death. Results from 12 trials.
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on the model. As the Martingale residuals have an asymmetric range, the de-

viance residuals are often preferred. The deviance residuals are defined as Di =

sign(ri)
√
−2[ri + δidlog(δid − ri)]. Plots of the deviance residuals against covariates

should be symmetric about a horizontal line at 0.

In addition to checking the Deviance residuals for overall survival, we can also use

them to assess the functional forms of covariates for time to recurrence and for time

to death after recurrence. In the first case, we have: ri = δir − Λ̂(Yir) where:

Λ̂(Yir) = −log
(
pi + (1− pi)exp

(
−
(
Yir
α23

)ρ23

exp(βtrt23Zi + βst23Si + βage23Ai)
))

Di = sign(ri)
√
−2[ri + δirlog(δir − ri)]

and in the second case we have: ri = δid − Λ̂(Yid) where:

Λ̂(Yir) =
(

(Yid−Yir)
α34

)ρ34

exp(βtrt34Zi + βst34Si + βage34Ai + βTr34Yir)

Di = sign(ri)
√
−2[ri + δidlog(δid − ri)]

where ri is only calculated for those who recur. Results of these deviance residuals are

shown in Appendix M. Deviance residuals plots are in general hard to interpret. The

plots suggest that a linear function of age is not inadequate for both the recurrence

transition and the death after recurrence transition and for the overall model fit. The

covariate for recurrence time in the death after recurrence transition also appears to

be adequately modeled by a linear function. The graphs suggest that there is no

obvious, consistent departure across the 12 trials.

4.5.2 Model Adaptations

While we have shown a good fit of the multi-state cure model with meaningful

interpretation of the parameters, a natural question is could we have obtained an
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adequate fit with a simpler model. To compare the full multi-state model to simpler

models we use the DIC statistic (Spiegelhalter et al., 2002). The DIC value for

each study is calculated as DIC = 2E[D(θ)]−D(θ̄), where D(θ̄) is -2 times the log-

likelihood calculated at the mean value of each parameter, and E[D(θ)] is the mean

of -2 times the log-likelihood across all parameter draws. A multi-state model is fit to

these data without including a cured group. This results in a simpler model with 16

as opposed to 25 parameters, and may be a better choice if there is uncertainty about

the existence of the cured population and may give an adequate fit. In this case the

multi-state model would be fit without modeling the cured fraction and there would

be only one path from the alive state to the death state for subjects who died without

recurrence. Therefore, we only consider transitions 2→ 3, 2→ 4 and 3→ 4. Another

simpler model that may provide an adequate fit to the data is one in which all of

the parameters in the 1 → 4 transition and in the 2 → 4 transition are forced to be

the same. Subjects making a 1→ 4 transition are those who die after being cured of

disease and those who make a 2→ 4 transition are those who are not cured of disease

but die prior to recurrence. In both of these cases, the subjects are dying from causes

other than the cancer, so it is plausible that the parameters of these two hazard rates

may be similar. This simpler model has 5 fewer parameters to estimate than the full

model. The fit of the models without a cured fraction and with the parameters in

transitions 1 → 4 and 2 → 4 constrained to be the same can be compared to the

full model through a comparison of DIC values. Table 4.4 provides the DIC values

for each of these models for the 12 trials, with the DIC of the best fitting model in

bold. In all 12 trials, the model with a cured group and different parameter values

for the 1 → 4 and 2 → 4 transitions is preferred over the simpler models, with the

model having no cured fraction providing the worst fit. The Cox-Snell residual plots
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for time to death can also be compared between the two models to visually assess

the adequacy of the model fits. Appendix N provides the Cox-Snell residual plots for

the model with no cured fraction. These plots show a larger deviation from the line

through the origin than the plots made using the complete model, indicating a poorer

fit to the data.

4.5.3 Recurrence only model

The multi-state Markov model provides a convenient way to deal with the com-

peting risk nature of the recurrence and death events. In colon cancer, recurrence

substantially changes the risk of death, and some non-cured patients die from other

causes prior to experiencing a recurrence. Therefore, for these patients, their re-

currence time is unobservable and some caution must be taken in interpreting the

probability of recurrence in the presence of death as a competing risk. If we are only

interested in the recurrence event, we can empirically examine the effect of ignoring

death by comparing the estimates obtained from the proposed multi-state model to

those from a standard cure model for recurrence with a marginal proportional hazard

model with Weibull baseline function for the hazard of recurrence. In this model,

subjects who die without recurrence are censored for recurrence at their death time.

A comparison of the estimates from the multi-state cure model and the simpler cure

model provides insight into whether or not it is necessary to build the entire joint

multi-state model for recurrence and death if we are only interested in the recurrence

event. Figure 4.3 provides plots of the parameter estimates for treatment, stage and

age in the logistic model and hazard model for recurrence from both the multi-state

model and from a standard cure model for recurrence. The plots show similar es-

timates of covariate effects with similar standard errors of effect estimates for both
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parts of the model, indicating that if we are only interested in the recurrence end

point, a simpler model that ignores the time to death endpoint provides adequate

estimation of parameters for these data sets. It can be shown algebraically that if

we assume that λ14(t) = λ24(t) then the maximum likelihood estimates from the full

multi-state cure model are equivalent to the maximum likelihood estimates from the

simple cure model, if the censoring times for recurrence and death do not differ. The

deaths in the 1→ 4 and 2→ 4 transitions are both primarily due to causes other than

cancer, so it might be reasonable to expect λ14(t) and λ24(t) to be similar although in

the previous section we showed better DIC values for the full model compared to the

model with λ14(t) = λ24(t). While the points estimates from the data for transitions

1 → 4 and 2 → 4 are dissimilar, there is wide uncertainty in the estimation of these

quantities. Thus it is not too surprising that there is considerable similarity in the

estimates for the logistic model and for the λ23(t) parameters from the full multi-state

cure model and simple cure model.

4.6 Simulations

A small simulation study was conducted to assess the performance of the estima-

tion procedure and the impact of the prior distributions and sample size. The first

simulation uses the same prior distributions as were used in the estimation of the

colon cancer data, with a sample size of 1000. In the second simulation, the variance

of all prior distributions is increased. The third simulation has the same prior distri-

butions as the first simulation with the sample size decreased to 500 to assess how the

prior distributions used in our data analysis performed among the varying trial sizes.

In each of these three cases, half of the subjects were assigned to be in the treatment
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Figure 4.3: Comparison of estimates from full multi-state cure model to recurrence
only model.
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arm and half were assigned to be in the control arm. Two-thirds of subjects were

assigned to have stage three disease, and the remaining one-third were assigned to

have stage two disease. Subjects were accrued over a four year period with six years

of additional follow-up.

The probability of being cured of disease is first generated using pi = exp(γ0+γtrtZi+γstageSi)

1+exp(γ0+γtrtZi+γstageSi)
,

where Zi denotes treatment group and Si denotes stage. Each of these covariates are

centered at 0 so that Zi is equal to -0.5 for the control group and 0.5 for the treat-

ment group and Si is equal to -0.75 for stage two disease and 0.25 for stage three

diseases. For those who are cured of disease, we then generate a death time using the

hazard model for transition 1 → 4 with treatment as the only covariate. For those

who are not cured of disease, we generate a recurrence time using the hazard model

for transition 2 → 3 and a death time using the hazard model for transition 2 → 4

with treatment as the only covariate in each of these hazard rates. If the death time

for uncured subjects is less than the recurrence time, then a 2 → 4 transitions is

made at the death time. If the recurrence time is less than the death time, then a

2 → 3 transition is made at that time. For those who recur, the time between their

recurrence and death is generated using the hazard model for transition 3 → 4 with

treatment and recurrence time as covariates. Subjects are censored six years after the

last accrual.

Table 4.5 provides posterior means, standard deviations, average posterior stan-

dard deviations ( ¯PSD) and coverage rates from 200 simulations. As the parameters

in the hazards for transition for subjects with a recurrence are fully identified, the

parameters in transitions 2→ 3, and 3→ 4 are estimated with little bias in all three

simulations. Parameters in the logistic model for the probability of being cured are

also consistently estimated. When the sample size remains the same, but the vari-
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ance on the priors is increased, the parameters in transition 1→ 4 have slightly lower

coverage rates and slightly higher standard deviations and ¯PSD’s. The parameters

in transition 2→ 4 also have slightly lower coverage rates and noticeably higher stan-

dard deviations and ¯PSD’s. When the priors are kept the same but the sample size is

decreased, the parameter estimates remain similar, but the standard deviations and

¯PSD’s are increased across all parameters. Simulation 1, which uses the priors that

were used in obtaining estimates for our 12 trials and a large sample size, appears

to provide the best estimation across all parameters. We note however, that even in

this simulation there is some bias and large uncertainty in estimating the parameters

for transition 2→ 4 due to the small number of subjects who are uncured of disease

but die prior to a recurrence.

4.7 Discussion

In this paper, we have used a multi-state Markov model to formulate a joint model

for recurrence and death in colon cancer with an incorporated cured fraction. The

proposed model is complex with a large number of parameters to estimate, however

it is well motivated by the context of the disease process of colon cancer, where it is

likely that a proportion of the population will be cured of disease, and recurrence is

known to influence survival time. The parameter estimates obtained from the model

provide meaningful interpretations as to how different covariates affect the various

disease elements. We presented methods for assessing the adequacy of the model fit

and the functional form of covariates, both for the overall model and individual model

components, which can aid in choosing an appropriate model. A Bayesian estimation

strategy was used to estimate parameters, with informative priors placed on some
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parameters to aid in estimation. As our simulation results show, some parts of the

model are more sensitive to the choice of the prior due to a lack of identifiability.

Adaptations to this model are possible. For example, we have used fully paramet-

ric models in this article. Semi-parametric alternatives for the Weibull model could

be explored (Saten and Sternberg, 1999), however the Weibull model appeared to

provide an adequate fit to the data in this setting, except, possibly for the transition

from recurrence to death. To explore this, we fit the proposed model with a gener-

alized Weibull baseline hazard, as described by Foucher, et al. (2007) for the 3 → 4

transition. Based on a comparison of DIC values, this model provided a slightly bet-

ter overall fit to the data for all 12 trials, and the Cox-Snell residual plots for the

3 → 4 transition appeared to provide a better fit. However, the covariate coefficient

estimates and posterior standard deviations for this model were nearly identical to

those obtained by the model presented in this paper, indicating that the proposed

model is somewhat robust to slight model misspecification.

Maximum likelihood estimation could be used to obtain parameter estimates as

opposed to our Bayesian approach; however this is computationally more difficult, and

the Bayesian estimation approach facilitates placing informative priors on selected

parameters. In our model formulation, recurrence times are treated as known, when

more realistically they occur sometime within an interval of scheduled clinic visits,

but, the left hand end of this interval is unknown to us. However, if this information

were available, the models could be formulated to reflect this by treating recurrence

time as interval censored. An additional useful extension to the proposed model for

current clinical trial practice would be the ability to return to the disease-free state

after recurrence. This now appears to occur for about 10% of patients who recur

but then live for a long time after the recurrence, presumably due to subsequent
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therapy. The model could also be adapted to consider cause specific mortality if this

information were available in the data.

As the models demonstrated, there were common effects of age, stage and the

Weibull shape parameter across studies within the logistic model and within the

transition rates. Therefore, information from these covariates could be borrowed

across trials with estimates shrunk towards common values by fitting a Hierarchical

model to the 12 trials examined. Estimates from the Hierarchical model could then be

applied to data from a new trial during follow-up to aid in the estimation and analysis

of treatment effects on overall survival. This will be described in future research.

The proposed model also has the potential to be used to use recurrence as an

auxiliary variable for overall survival. As recurrence time is often an informative

marker in predicting a patient’s overall survival time, recurrence information along

with the parameter estimates from the joint model could be used to impute death

times for censored subjects and potentially improve the efficiency in the analysis of

overall survival. This strategy could also result in the shortening of the length of the

trial, if the information lost due to early censoring could be correctly recovered by

the model. The effectiveness of this strategy will be examined in future work.
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Table 4.3: Five year OS and three year DFS estimates: Kaplan-Meier, and Multi-state
model

P (T > 5|Zi = 1, Xi, θ) P (DFS > 3|Zi = 1, Xiθ) P (T > 5|Zi = 0, Xi, θ) P (DFS > 3|Zi = 0, Xi, θ)
Kaplan-Meier Multi-state Model Kaplan-Meier Multi-state Model Kaplan-Meier Multli-state Model Kaplan-Meier Multi-state Model

Est. (SE) Est. (SE) Est. (SE) Est. (SE) Est. (SE) Est. (SE) Est. (SE) Est. (SE)
Trial 1 0.651 (0.044) 0.657 (0.037) 0.669 (0.043) 0.690 (0.036) 0.561 (0.044) 0.552 (0.036) 0.548 (0.044) 0.540 (0.038)
Trial 2 0.695 (0.029) 0.705 (0.025) 0.721 (0.028) 0.727 (0.025) 0.638 (0.039) 0.653 (0.034) 0.665 (0.038) 0.659 (0.035)
Trial 3 0.693 (0.022) 0.694 (0.019) 0.700 (0.021) 0.702 (0.020) 0.620 (0.022) 0.622 (0.020) 0.590 (0.023) 0.589 (0.021)
Trial 4 0.635 (0.018) 0.632 (0.017) 0.641 (0.018) 0.650 (0.017) 0.658 (0.032) 0.656 (0.029) 0.637 (0.032) 0.665 (0.031)
Trial 5 0.693 (0.022) 0.698 (0.019) 0.697 (0.022) 0.705 (0.020) 0.716 (0.022) 0.730 (0.019) 0.712 (0.022) 0.722 (0.020)
Trial 6 0.639 (0.026) 0.626 (0.022) 0.682 (0.025) 0.675 (0.022) 0.601 (0.025) 0.618 (0.021) 0.634 (0.025) 0.642 (0.021)
Trial 7 0.748 (0.024) 0.735 (0.020) 0.731 (0.024) 0.731 (0.021) 0.668 (0.026) 0.697 (0.021) 0.693 (0.025) 0.691 (0.023)
Trial 8 0.762 (0.019) 0.756 (0.016) 0.749 (0.019) 0.759 (0.017) 0.656 (0.021) 0.661 (0.019) 0.665 (0.021) 0.657 (0.019)
Trial 9 0.738 (0.012) 0.746 (0.011) 0.743 (0.012) 0.747 (0.012) 0.704 (0.017) 0.712 (0.016) 0.711 (0.017) 0.707 (0.016)
Trial 10 0.765 (0.013) 0.775 (0.011) 0.767 (0.013) 0.770 (0.012) 0.761 (0.013) 0.762 (0.012) 0.760 (0.013) 0.760 (0.012)
Trial 11 0.788 (0.015) 0.794 (0.013) 0.778 (0.015) 0.779 (0.013) 0.788 (0.015) 0.783 (0.013) 0.783 (0.015) 0.783 (0.014)
Trial 12 0.802 (0.012) 0.797 (0.011) 0.780 (0.012) 0.775 (0.011) 0.783 (0.012) 0.781 (0.011) 0.748 (0.013) 0.743 (0.012)

Table 4.4: Multi-state model comparison by DIC values

Complete Model No Cured Fraction Parameters in 1→ 4,
2→ 4 same

# of Parameters 25 16 20
DIC

Trial 1 1093.7 1130.8 1099.4
Trial 2 1789.4 2106.3 1793.5
Trial 3 4206.5 4375.7 4212.0
Trial 4 4392.7 4507.4 4419.6
Trial 5 3572.5 3694.5 3591.7
Trial 6 3607.8 3740.2 3615.0
Trial 7 3176.4 3301.0 3209.4
Trial 8 4084.6 4303.0 4096.4
Trial 9 7677.2 8083.2 7684.4
Trial 10 7706.4 8061.3 7721.2
Trial 11 5225.7 5407.6 5238.6
Trial 12 7172.9 7349.0 7178.5
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Table 4.5: Simulation results from the multi-state cure model

Simulations 1 and 3 use informative prior distributions, simulation 2 uses weakly informative priors.

Simulation 1 (n=1000) Simulation 2 (n=1000) Simulation 3 (n=500)
Parameter Prior True Value Estimate (SD) PSD Coverage Prior True Value Estimate (SD) PSD Coverage Prior True Value Estimate (SD) PSD Coverage
log(α14) N(0,4) 1.8 1.79 (0.04) 0.04 0.94 N(0,25) 1.8 1.79 (0.04) 0.04 0.92 N(0,4) 1.8 1.79 (0.05) 0.05 0.98
ρ14 G(1,0.4) 2 1.94 (0.16) 0.16 0.94 G(1,1.6) 2 1.94 (0.18) 0.17 0.93 G(1,0.4) 2 1.94 (0.19) 0.20 0.95
βtrt14 N(0,0.06) 0 0.004 (0.10) 0.11 0.97 N(0,4) 0 0.006 (0.12) 0.12 0.94 N(0,0.06) 0 -0.0001 (0.10) 0.12 0.995
log(α23) N(0,4) 0.8 0.80 (0.07) 0.07 0.96 N(0,25) 0.8 0.79 (0.07) 0.07 0.95 N(0,4) 0.8 0.80 (0.09) 0.10 0.94
ρ23 G(1,0.4) 1.5 1.49 (0.08) 0.08 0.93 G(1,1.6) 1.5 1.49 (0.08) 0.08 0.93 G(1,0.4) 1.5 1.47 (0.10) 0.10 0.94
βtrt23 N(0,1) -0.5 -0.49 (0.16) 0.17 0.95 N(0,4) -0.5 -0.49 (0.17) 0.17 0.93 N(0,1) -0.5 -0.50 (0.19) 0.21 0.97
log(α24) N(0,4) 1.8 2.06 (0.35) 0.41 0.95 N(0,25) 1.8 2.25 (0.60) 0.61 0.91 N(0,4) 1.8 2.13 (0.37) 0.55 0.97
ρ24 G(1,0.4) 1 0.98 (0.13) 0.13 0.95 G(1,1.6) 1 0.96 (0.16) 0.16 0.92 G(1,0.4) 1 1.01 (0.15) 0.19 0.98
βtrt24 N(0,1) 0 -0.02 (0.25) 0.30 0.97 N(0,4) 0 -0.08 (0.36) 0.40 0.96 N(0,1) 0 -0.07 (0.34) 0.43 0.98
log(α34) N(0,4) 0.9 0.89 (0.08) 0.08 0.95 N(0,25) 0.9 0.89 (0.08) 0.08 0.95 N(0,4) 0.9 0.92 (0.09) 0.10 0.95
ρ34 G(1,0.4) 0.9 0.91 (0.05) 0.05 0.95 G(1,1.6) 0.9 0.91 (0.05) 0.05 0.94 G(1,0.4) 0.9 0.90 (0.06) 0.06 0.95
βtrt34 N(0,1) 0 0.007 (0.13) 0.14 0.98 N(0,4) 0 0.005 (0.13) 0.14 0.97 N(0,1) 0 0.002 (0.18) 0.18 0.95
βTr34 N(0,1) -0.1 -0.10 (0.06) 0.07 0.95 N(0,4) -0.1 -0.10 (0.06) 0.07 0.96 N(0,1) -0.1 -0.11 (0.08) 0.08 0.95
γ0 N(0,1) 0.5 0.52 (0.13) 0.14 0.94 N(0,4) 0.5 0.54 (0.15) 0.14 0.92 N(0,1) 0.5 0.53 (0.15) 0.18 0.97
γtrt N(0,1) 0.6 0.60 (0.16) 0.18 0.98 N(0,4) 0.6 0.61 (0.17) 0.19 0.97 N(0,1) 0.6 0.58 (0.22) 0.24 0.97
γstage N(0,1) -0.9 -0.90 (0.16) 0.17 0.97 N(0,4) -0.9 -0.92 (0.16) 0.17 0.96 N(0,1) -0.9 -0.87 (0.20) 0.23 0.98
Where N(x,y)==Normal(mean, variance), G(x,y)==Gamma(mean, variance)
Where SD denotes standard deviation of posterior means. PSD denotes average of the posterior standard deviations.



CHAPTER V

Improving Efficiency in Clinical Trials Using

Auxiliary Information; Application of a

Multi-state Cure Model

5.1 Introduction

There is much interest in the use of intermediate outcome variables as either

surrogate endpoints (Alonso and Molenberghs, 2008; Buyse and Molenberghs, 1998;

Wang and Taylor, 2003) or auxiliary variables for the true outcome of interest in

randomized clinical trials. A surrogate endpoint is one that is intended to replace the

true outcome of interest in evaluating therapy and an auxiliary variable is one that is

intended to be used to improve the efficiency of the analysis of the true endpoint. For

clinical trials in locally advanced colon cancer, overall survival is traditionally consid-

ered the definitive endpoint. However, the earlier endpoint of disease-free survival,

defined as the time to the first event of either death or cancer recurrence, has been

determined to be a good surrogate for overall survival (Chen, et al. 1998; Sargent, et

al. 2007). Therefore, disease free survival is now often used as the outcome in place

of overall survival in clinical trials of colon cancer. Here, we explore an alternative

use of recurrence in colon cancer trials, that of an auxiliary variable which can be

87
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used to improve the efficiency of analysis, as measured by smaller standard errors on

treatment effect estimates of the primary endpoint of interest, overall survival.

A variety of methods have been explored to utilize the information of an intermedi-

ate variable to improve the efficiency of the analysis of the final endpoint (Finkelstein

and Schoenfeld, 1994; Fleming, et al 1994; Kosorok and Fleming, 1993; Lagakos,

1977). Cook and Lawless (2001) used a three-stage model for a time-to-event inter-

mediate marker and true endpoint and showed that substantial gains in efficiency are

possible with parametric models that assume a close structural relationship between

the intermediate variable and true endpoint. Li, et al. (2011) used a parametric

model formulation and showed an increase in efficiency gains in the analysis of the

true endpoint when plausible prior assumptions are placed on certain model parame-

ters. In particular, they showed that gains in efficiency can be made if the treatment

effect on the true outcome, conditional on the intermediate variable, was adaptively

shrunk towards zero. Broglio and Berry (2009) partitioned overall survival time into

two parts, progression-free survival and survival post-progression and discuss the ben-

efits of considering the treatment effects on each of these endpoints separately. In the

situation of an auxiliary longitudinal variable and a censored event time of interest,

Faucett, et al. (2002) developed an approach for using auxiliary variables to recover

information from censored observations in survival analysis using a joint longitudi-

nal and survival model and a multiple imputation procedure for the event times of

censored subjects. Conlon, et al. (2011) considered the use of recurrence time as an

auxiliary variable for overall survival by building separate models for time to recur-

rence and time to death. A cure model was used to model time to recurrence and

a proportional hazards model with a Weibull baseline hazard function that included

recurrence as a time dependent covariate was used to model death. The model for
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time to death was then used in a multiple imputation procedure to impute death

times for censored subjects, and these new data were used in the primary analyses

on overall survival. Using the same data as considered in this paper, they showed

modest but consistent gains in efficiency obtained by using the auxiliary information

in recurrence times. Here, we extend this idea by building a joint multi-state model

with an incorporated cured fraction for recurrence and death and use this model to

impute death times for censored subjects with the goal of improving the efficiency of

the analysis on overall survival. The model proposed here, while more complex and

more difficult to estimate than the model used by Conlon, et al. (2011), utilizes the

full data likelihood rather than a two-step procedure and offers the potential for larger

gains in efficiency. The multi-state model also allows for adaptation to the imputation

model on any of the individual sub-models that may lead to further efficiency gains.

The model that we propose for the recurrence and death events is a multi-state

model with a cured fraction, described in detail in Chapter IV. This model is moti-

vated by the disease process in colon cancer clinical trials. In these trials there are

two outcomes of interest, recurrence and death, where death can occur either without

prior recurrence or after a recurrence. Additionally, a proportion of subjects censored

for recurrence may be cured of disease, and would therefore have never experienced

a recurrence even if they had been followed for longer. For other censored subjects,

their recurrence time would occur after their censoring time with longer follow-up

and is therefore unobserved. To model these data, we use a multi-state model with

an incorporated cured fraction that jointly models the probability of being cured of

disease and the hazard of transitioning between disease states. A brief description of

this model is given here, with full details given in Chapter IV of this dissertation.

Our model includes four hazards for transitioning between the four disease states
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which include: alive and cured of disease, alive and uncured of disease, alive with

recurrence and death. Transitions between these states are described by the multi-

state model. Multi-state models (Anderson and Keiding, 2002; Meira-Machado, et

al. 2009; Putter, Fiocco and Geskus, 2007) are a common way to jointly model

disease progression events by describing the progressions and transitions over time to

the various disease states through transition intensities, which can include covariates,

and provide the hazards for moving between states. The hazard of each transition is

modeled using a proportional hazard model with Weibull baseline hazard function.

The cured fraction is modeled using the mixture model formulation of the cure model,

introduced by Berkson and Gage (1952).

The proposed parametric model itself can be used to obtain efficiency gains relative

to Kaplan-Meier estimates in the estimation of quantities of interest such as the

difference in five year survival and the difference in three year disease free survival

between treatment arms can be derived. Once parameter estimates from the model

are obtained, the estimated five year survival and three year disease free survival can

be computed from the model, with the point estimates and standard errors compared

to the five year Kaplan-Meier survival estimate and the three year Kaplan-Meier

disease free survival estimate, respectively. In addition to gains in efficiency due to the

parametric assumptions, the multi-state model incorporates recurrence information

which also contributes to efficiency gains in estimating this quantity from the model

as compared to the Kaplan-Meier estimate.

In an alternative way to gain efficiency in the estimation of overall survival, the

model can be used in a slightly weaker way by utilizing it in a multiple imputation

procedure to impute death times for censored subjects. Patients who are alive at the

time of their last follow-up are right censored for death, which we consider as a form
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of missing data. A patient’s recurrence status prior to their censoring time is usually

known, and those who experience a recurrence are likely to die sooner than those

who are recurrence free. Therefore, the information on a patient’s recurrence time

and status may be useful in predicting their survival time.

Multiple imputation is a common strategy for dealing with missing data problems

(Rubin, 1978) and has been used to impute missing event times for censored obser-

vations in survival analysis (Faucett, et al. 2002; Hsu, et al. 2006). This strategy

fills in missing values by drawing from the posterior predictive distribution of the

missing data given the observed data. The procedure is then independently repeated

M times to produce separate datasets. These completed datasets can then be ana-

lyzed separately to get estimates of overall survival, such as Cox model estimates and

Kaplan-Meier estimates and their standard errors, and log-rank tests. The results

from each of these analyses are then combined following established rules (Rubin,

1987), with potential gains in efficiency obtained as compared to an analysis of the

original data.

We explore the use of some plausible restrictions that may be placed on model

parameters and the effect of these restrictions on the amount of efficiency gained in the

final analysis of the imputed data and in the estimation of model derived quantities

relating to survival. Additionally, we can obtain model based survival estimates and

apply the imputation procedure using estimates obtained from a hierarchical model

that facilitates the sharing of information from covariates with consistent effects across

trials and assess efficiency gains. The efficiency gains obtained in the treatment effect

estimates offer the potential for the length of trials to be shorter and for the sample

size of trials to be smaller.

The remainder of the paper is organized as follows: Section 5.2 describes the data



92

and Section 5.3 describes the proposed model. In Section 5.4, ways in which efficiency

can be gained from the model or the trial can be shortened are explored. Section 5.5

provides details and results of the imputation procedure and simulation results are

provided in Section 5.6. Section 5.7 concludes with a discussion.

5.2 Data Description

The data we consider consist of a total of 13,983 subjects from 12 randomized

phase III adjuvant trials of locally advanced colon cancer. Ten of the trials are

included in the Sargent, et al. (2005) publication, with two additional new trials. A

detailed description of these data can be found in Chapter IV of this dissertation.

These 12 trials were previously analyzed by Conlon, et al. (2011), where a separate

cure model and Weibull model were used to model recurrence and death, respectively.

Of the 4346 observed recurrences, 3448 (79.3%) occurred within three years, 4075

(93.8%) occurred within five years, and 4281 (98.5%) occurred within seven years.

This type of event data where very few events happen after a fixed window of time is

characteristic of a cured group. Kaplan-Meier plots of time to recurrence show a clear

leveling off, indicating that this is data for which a cure model is appropriate. For

subjects who experienced a recurrence, 44.5% died within one year, 67.9% died within

2 years and 78.9% died within 3 years. Table 5.1 provides Kaplan-Meier estimates

of three year survival after recurrence for each trial. These estimates range from a

survival probability of 0.10 in trial 6 and 0.30 in trial 12, demonstrating the high

likelihood of dying quickly after recurring. Baseline covariates include age, cancer

stage and treatment arm. Each trial compared a different pair of treatments, with

one defined as the control arm and the other as the experimental arm. Five of the trials
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(1,2,3,6 and 7) compared surgery alone to surgery plus some form of chemotherapy. In

the other seven trials, both arms contained surgery plus some form of chemotherapy.

The primary goal of all 12 trials was to compare overall survival between the pairs of

treatments. A summary of the stage, age and treatment distributions for each trial,

as well as the number of recorded recurrences and deaths and longest follow-up time

for each trial can be seen in Table 4.1.

Table 5.1: Kaplan-Meier estimates for three year survival after recurrence for 12 trials

3 Year Survival
After Recurrence (95% CI)

Trial 1 0.13 (0.08, 0.21)
Trial 2 0.13 (0.08, 0.20)
Trial 3 0.16 (0.12, 0.20)
Trial 4 0.15 (0.12, 0.19)
Trial 5 0.21 (0.17, 0.26)
Trial 6 0.10 (0.07, 0.15)
Trial 7 0.24 (0.19, 0.31)
Trial 8 0.15 (0.12, 0.19)
Trial 9 0.15 (0.12, 0.18)
Trial 10 0.19 (0.16, 0.22)
Trial 11 0.25 (0.21, 0.30)
Trial 12 0.30 (0.26, 0.34)

5.3 Multistate model

We model the data from the 12 trials using a multi-state model with a cured

fraction, as described in Chapter IV. We provide a brief description of this model

here. Full details of the model can be found in Chapter IV. The proposed model

jointly models the recurrence and death events as well as a latent incorporated cured

fraction for the recurrence event. Deaths can occur either without a prior recurrence

or following a recurrence. The deaths that occur without a prior recurrence are
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known not to be directly due to the regrowth of the cancer, while deaths following a

recurrence may be due to the cancer or other causes. Cause of death is not available

and not considered in our models. We use the multi-state model to model four

transition intensities between four disease states, as described in Chapter IV, and

illustrated in Figure 4.1. We define State 1 to be alive and cured of disease, State 2

to be alive and not cured, State 3 to be alive with recurrence and State 4 to be death.

We model four transition times which include 1→ 4, 2→ 3, 2→ 4, and 3→ 4.

5.3.1 Notation and model specifications

Let Cir and Tir be the censoring and event times for recurrence and let Cid and

Tid be the censoring and event times for death for the ith subject, i = 1, ...n. Then

Yir = min(Cir, Tir) and the event indicator for recurrence, δir = I(Tir ≤ Cir), and

Yid = min(Cid, Tid) and the event indicator for death, δid = I(Tid ≤ Cid), are observed.

Let Zi, Si and Ai represent the baseline values of treatment group, cancer stage and

age for each subject.

Both the models for the time of entry into each state and for the probability of

cure, p, can depend on covariates. The multi-state process is characterized through

transition intensities defined as:

λkj(t) = lim∆t→0 pkj(t, t+ ∆t)/∆t

where pkj(s, t) = P (X(t) = j|X(s) = k,Hs−), for s ≤ t is the probability of being in

State j at time t, given that the process was in State k at time s and the history of

the process, Hs−. λkj(t) is then the instantaneous hazard of entering State j, given

that the previous state occupied was State k. From this hazard, we can define the

survival distributions for each transient state and their probability density functions.
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We use a proportional hazards model with a Weibull baseline hazard function.

Specifically, the hazard for transition kj for subject i is given by:

λkj(ti;Xi) =
(
ρkj
αkj

)(
ti
αkj

)ρkj−1

exp (Xiβkj)

and the probability of being cured, p, is modeled using a logistic link function given

by:

pi = exp(Xiγ)
1+exp(Xiγ)

.

For transitions 1 → 4 and 2 → 4, ti is a death time. For transition 2 → 3, ti is a

recurrence time and for transition 3 → 4, ti is the gap time between entry into the

recurred state and death. Xi represents a vector of subject specific covariates. For

transitions 1 → 4, 2 → 3, and 2 → 4, and for the probability of cure we include the

covariates age, treatment group and stage. For transition 3 → 4, we include these

variables as covariates and also include recurrence time as a covariate.

5.3.2 Estimation

We use a Bayesian MCMC technique to estimate the parameters of the multi-state

model. There are a total of 25 parameters to estimate for each of the trials which

include a shape (ρ) and scale (α) parameter from the Weibull model for each of the

hazard rates, covariate effects for each of the hazard models and covariate effects in

the logistic model for the probability of cure. We place informative Normal(0,0.252)

priors on the treatment and stage coefficients in transition 1→ 4 as treatment group

and cancer stage are unlikely to have much affect on the hazard of death in patients

who are cured of disease. We place Normal(0,22) priors on the log(α)’s and gamma

priors with mean 1 and standard deviation 0.6 on the ρ’s. Normal(0,1) are placed
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on all of the remaining covariate coefficients in the hazard models and in the logistic

model. The impact of these mildly informative priors is evaluated in Chapter IV

of this dissertation. To aid in estimation, at each iteration of the chain, subject’s

without recurrence are placed in either the cured or uncured group by drawing a

Bernoulli(ci) random variable, where ci is the probability of being cured of disease,

given Yid, Yir, Xi and the current parameter draws.

A Bayesian estimation scheme using the Metropolis Hastings algorithm is used

to obtain parameter draws from the posterior distribution. Appendix J provides the

full data likelihood and details of the algorithm. For each parameter, we obtain 5000

draws from its posterior distribution.

5.4 Efficiency gains from the model

The typical analysis of the treatment effect on overall survival would be estimates

of hazard ratios using Cox models and estimates of differences in survival at specific

times points. Since the multi-state cure model does not result in the proportional

hazard being satisfied for time to death, we focus mainly on estimates of overall

survival. Once parameter estimates for the model have been obtained, the multi-

state cure model can be used to estimate the difference in five year overall survival

(OS) between the two treatment arms. The point estimate can be compared with

the Kaplan-Meier estimate to check the model fit and the standard error estimate

can be compared with that of the Kaplan-Meier estimate to assess gains in efficiency
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through use of the multi-state cure model. Let

S1(t) = exp

− t∫
0

λ14(u)du

 and

S2(t) = exp

− t∫
0

λ23(u)du−
t∫

0

λ24(u)du

 ,

which are the survival distributions for remaining in State 1 or State 2, respectively.

Then, for each subject we can calculate their five year OS probability as:

P (Ti > 5|Xi, θ) = piS1(5) + (1− pi)S2(5) + (1− pi)
5∫

0

S2(u)λ23(u)exp

− 5−u∫
0

λ34(v)dv

 du

where θ is the vector of parameter values. This probability is calculated separately for

subjects in the treatment group and in the control group, and then averaged across

the stage and age covariate values for each subject and across all of the parameter

posterior draws to obtain a population estimate. Similarly, three year disease free

survival (DFS), defined as the time to the first event of either death or recurrence

and often used as a surrogate for five year OS, can be calculated from the model

and compared to the three year Kaplan-Meier DFS estimate to assess efficiency gains

from using the proposed model at the earlier time point. For each subject, three year

DFS is calculated as:

P (DFSi > 3|Xi, θ) = piS1(3) + (1− pi)S2(3).

This probability is then averaged across covariate values for each subject and across

all parameter draws. Using the above model derived quantities, we estimate the

treatment effect for these two separate endpoints of interest, five year OS and three
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year DFS. For trials such as these in locally advanced colon cancer, five year OS

is often considered the definitive endpoint. In this setting, three year DFS has been

determined to be a valid surrogate marker for five year OS. Therefore, there is interest

in the treatment effect estimate at both of these endpoints.

5.4.1 Application of model for efficiency gains and shortening trial length:
Model based estimates

The above modeling strategy could be used to shorten the length of a clinical trial.

To illustrate this, we artificially censor each of the 12 trials at either two years after

the last patient accrual, or at the minimum length of time after the last accrual that

provides at least 5.5 years of patient follow-up time. This artificial censoring resulted

in an overall 9.8% reduction in the number of recurrences across all trials compared

to the original data with a maximum of 15.4% in Trial 3 and a minimum of 4.3% in

Trial 9. The overall reduction in the number of deaths was 30.9% with a maximum

of 44.2% in Trial 7 and a minimum of 21.0% in Trial 9. Appendix O provides accrual

length and maximum follow-up times before and after the artificial censoring for the

12 trials. Estimates of five year OS and three year DFS can then be obtained using

parameter estimates from the multi-state cure model on the reduced follow-up data.

The point estimates and posterior standard deviations of these quantities can then

be compared to the Kaplan-Meier estimates from the full follow-up data to assess

gains in efficiency from using the multi-state model and whether these quantities can

correctly be estimated using shorter follow-up data.
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5.4.2 Model restrictions

Extensions and adaptations could be made to the proposed model that may pro-

vide a better fit to the data and provide gains in efficiency in estimating overall

survival. Li, et al. (2011) showed that when an intermediate variable captures even

just a modest amount of the treatment effect on the final outcome, efficiency gains of

the estimated treatment effect on the final outcome can be achieved by shrinking the

treatment effect estimate in the conditional distribution of the final outcome given

the intermediate variable and treatment toward 0. In our setting, it is plausible that

much of the treatment effect is captured in the recurrence event by affecting the prob-

ability of being cured of disease and the time to recurrence. Therefore, one strategy

to potentially improve efficiency gains in the estimation of the treatment effect on

overall survival is to fit the multi-state cure model with prior assumptions placed on

the treatment effects of some transition times. Specifically, the treatment effect on

time to death for those who are cured (1→ 4 transition) and the treatment effect on

time to death for those who are not cured but without recurrence (2→ 4 transition)

are likely close to zero as the treatment may affect the probability of being cured,

but after this most likely has little or no effect on the hazard of death from other

causes if the person does not die from cancer. The treatment effect on time to death

after recurrence (3 → 4 transition) is also likely near zero, as patients often go off

treatment or start new treatment regimens after a recurrence. We fit one restricted

model with the above mentioned treatment effects shrunk towards zero with the use

of tighter prior distributions and another restricted model with these treatment ef-

fects forced to be zero. All other covariates in the logistic model for the probability

of cure and in the transition time models are the same as the full model. The fit of
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the restricted models can be compared to that of the full model by calculating the

DIC values for each model. Table 5.2 provides the DIC values for comparing the full

model to the models with the treatment effects for transitions 1 → 4, 2 → 4 and

3→ 4 either shrunk to zero or forced to be zero for the 12 trials for the full follow-up

data and the reduced follow-up data, with the DIC of the best fitting model in bold.

For a majority of the studies, a restricted model is preferred over the full model in

both the full follow-up and reduced follow-up data.

Table 5.2: Model comparison by DIC values- Restrictions on treatment effect param-
eters β14, β24, β34

Full Follow-up Reduced Follow-up
Complete Model β14, β24, β34 β14 = β24 = β34 = 0 Complete Model β14, β24, β34 β14 = β24 = β34 = 0

Shrunk to 0 Shrunk to 0
Trial 1 1093.7 1093.6 1092.4 894.1 909.4 909.1
Trial 2 1789.4 1789.2 1792.0 1441.7 1440.8 1443.2
Trial 3 4206.5 4197.2 4204.3 2615.7 2611.0 2617.3
Trial 4 4392.7 4393.4 4389.5 3263.0 3144.5 3142.7
Trial 5 3572.5 3573.1 3571.9 2674.0 2635.7 2609.6
Trial 6 3607.8 3616.8 3607.3 2346.1 2361.4 2363.9
Trial 7 3176.4 3176.0 3174.2 1992.0 2010.3 2010.2
Trial 8 4084.6 4089.1 4085.2 3210.6 3244.2 3247.0
Trial 9 7677.2 7689.3 7675.2 6346.7 6338.3 6292.6
Trial 10 7706.4 7713.4 7703.9 5706.3 5683.1 5667.2
Trial 11 5225.7 5235.4 5229.9 3885.1 3823.2 3850.7
Trial 12 7172.9 7174.0 7172.6 6074.1 6027.2 6074.2

5.4.3 Hierarchical model

Another way to extend the use of the multi-state model and potentially improve

upon the efficiency gains is to borrow information for other trials by use of a hi-

erarchical model. The original multi-state models fit to each individual trial pro-

vide evidence for common effects of some covariates on the probability of cure and

transition rates. In particular, the coefficients associated with age and stage in all

of the sub-models were quite similar. In addition, the coefficients associated with

Tr in the 3 → 4 transition and the shape parameters of the Weibull models were
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similar across trials. We can therefore use a hierarchical model to borrow infor-

mation across trials and shrink selected parameters towards common values. To

illustrate this, we let ρskj ∼ N(ρkj, σ
2
ρkj)I(ρskj ≥ 0), βSTskj ∼ N(βSTkj, σ

2
βST kj

),

βAGEskj ∼ N(βAGEkj, σ
2
βAGEkj

), βTrs34 ∼ N(βTr34, σ
2
βTr34), γSTskj ∼ N(γSTkj, σ

2
γST kj

),

and γAGEskj ∼ N(γAGEkj, σ
2
γAGEkj

), where kj = {12, 23, 24, 34} corresponds to the

transition and s = 1, ..., 12 represents the study number. We place Gamma hyper-

priors with mean 1 and standard deviation 1 on ρkj and on σρkj, σβST kj, σβAGEkj,

σβTrkj, σγST kj, and σγAGEkj and N(0, 22) hyper-priors on βAGEkj, βSTkj, βTrkj, γSTkj,

and γAGEkj. The remaining parameters are independent across studies. For the full

follow-up data, we borrow information across the trials for the above parameters by

fitting the hierarchical model once using all 12 trials. For the reduced follow-up data,

we fit the hierarchical model separately 12 times, each time with 1 trial artificially

censored and the remaining 11 with their full follow-up data. The parameter esti-

mates obtained from the hierarchical models can then be used in estimating five year

OS and three year DFS.

Table 5.3 provides the Kaplan-Meier estimates and standard errors and multi-state

model estimates and posterior standard deviations for five year OS and three year

DFS for the full follow-up data and the reduced follow-up data using the full multi-

state cure model, the multi-state cure model with restrictions on certain treatment

effect coefficients, and the hierarchical model. For the 12 trials considered, both

the five year OS estimates and the three year DFS estimates from the multi-state

model are similar to the Kaplan-Meier estimates, with moderate gains in efficiency

obtained by using the multi-state model, as seen by the smaller posterior standard

deviations. There is also a small amount of additional efficiency gained for some

trials in the estimation of five year OS using the restricted models. Estimating these
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quantities using estimates from the hierarchical model does not, in general, result

in efficiency gains, likely due to the fact that these are all randomized trials and

thus estimates for age and stage are likely to be at most weakly correlated with the

estimate for treatment. The point estimates from the reduced follow-up data tend

to be near those from the full follow-up data for both five year OS and three year

DFS, with posterior standard deviations that are very close to the standard errors

of the Kaplan-Meier estimates from the full follow-up data, indicating that similar

conclusions about treatment effects on these quantities would be drawn using the

reduced follow-up data and the multi-state model estimates as compared to the full

follow-up data Kaplan-Meier estimates.

5.5 Efficiency gains through imputation

5.5.1 Imputation strategy

An alternative way that the multi-state model with a cured fraction can be used to

improve efficiency in the estimation of overall survival is through a multiple imputa-

tion strategy that imputes death times for people who are censored for death. Using

the proposed model in a multiple imputation procedure is a less model dependent

approach than the estimation procedure in Section 5.4.1 because the model is only

used to aid in estimation of the missing data, with the end analysis of the original

data augmented by the imputed data. The multiple imputation approach could be

used to improve efficiency of the analysis of overall survival or to shorten the length

of a clinical trial while still keeping the primary endpoint of overall survival.

The imputation procedure is performed as follows. For each set of parameter

draws, θ, from the posterior distribution, we impute a death time from the resid-
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Table 5.3: Kaplan-Meier treatment effect estimates (standard errors) and multi-state
model estimates (posterior standard deviations) for 12 colon cancer trials

∆S(5)∗ ∆DFS(3)∗∗

Full Follow-up Reduced Follow-up Full Follow-up Reduced Follow-up
Trial 1 Kaplan-Meier 0.090 (0.062) 0.098 (0.070) 0.122 (0.062) 0.132 (0.071)

Full Model 0.105 (0.049) 0.107 (0.057) 0.150 (0.051) 0.141 (0.057)
β14, β24, β34 Shrunk to 0 0.106 (0.047) 0.112 (0.054) 0.146 (0.052) 0.142 (0.055)
β14 = β24 = β34 = 0 0.121 (0.046) 0.116 (0.055) 0.153 (0.052) 0.142 (0.057)
Hierarchical model 0.098 (0.045) 0.103 (0.055) 0.147 (0.054) 0.144 (0.056)

Trial 2 Kaplan-Meier 0.057 (0.049) 0.039 (0.049) 0.056 (0.047) 0.076 (0.050)
Full Model 0.051 (0.042) 0.053 (0.043) 0.068 (0.042) 0.070 (0.042)
β14, β24, β34 Shrunk to 0 0.051 (0.040) 0.048 (0.043) 0.066 (0.043) 0.066 (0.045)
β14 = β24 = β34 = 0 0.050 (0.038) 0.051 (0.041) 0.059 (0.042) 0.065 (0.046)
Hierarchical model 0.046 (0.041) 0.043 (0.043) 0.064 (0.042) 0.062 (0.044)

Trial 3 Kaplan-Meier 0.074 (0.031) 0.115 (0.080) 0.110 (0.031) 0.210 (0.086)
Full Model 0.072 (0.026) 0.050 (0.028) 0.113 (0.027) 0.121 (0.030)
β14, β24, β34 Shrunk to 0 0.081 (0.026) 0.098 (0.029) 0.119 (0.027) 0.137 (0.030)
β14 = β24 = β34 = 0 0.086 (0.022) 0.124 (0.027) 0.118 (0.028) 0.138 (0.029)
Hierarchical model 0.067 (0.027) 0.070 (0.029) 0.110 (0.029) 0.115 (0.029)

Trial 4 Kaplan-Meier -0.023 (0.037) 0.027 (0.043) 0.004 (0.037) -0.003 (0.042)
Full Model -0.024 (0.032) -0.010 (0.027) -0.015 (0.034) -0.003 (0.032)
β14, β24, β34 Shrunk to 0 -0.023 (0.031) -0.009 (0.034) -0.017 (0.032) -0.005 (0.035)
β14 = β24 = β34 = 0 -0.011 (0.024) -0.005 (0.031) -0.020 (0.033) -0.008 (0.033)
Hierarchical model -0.023 (0.031) -0.014 (0.033) -0.016 (0.032) -0.007 (0.035)

Trial 5 Kaplan-Meier -0.023 (0.031) -0.009 (0.035) -0.015 (0.031) -0.026 (0.035)
Full Model -0.032 (0.027) -0.029 (0.024) -0.017 (0.028) -0.018 (0.028)
β14, β24, β34 Shrunk to 0 -0.026 (0.026) -0.029 (0.031) -0.013 (0.027) -0.020 (0.032)
β14 = β24 = β34 = 0 -0.013 (0.020) -0.017 (0.029) -0.015 (0.028) -0.017 (0.031)
Hierarchical model -0.029 (0.027) -0.028 (0.029) -0.013 (0.029) -0.018 (0.030)

Trial 6 Kaplan-Meier 0.037 (0.036) 0.026 (0.042) 0.048 (0.035) 0.031 (0.041)
Full Model 0.009 (0.030) 0.004 (0.032) 0.033 (0.029) 0.032 (0.038)
β14, β24, β34 Shrunk to 0 0.009 (0.030) 0.010 (0.034) 0.028 (0.031) 0.032 (0.034)
β14 = β24 = β34 = 0 0.018 (0.025) 0.022 (0.031) 0.026 (0.030) 0.032 (0.033)
Hierarchical model 0.009 (0.030) 0.010 (0.030) 0.034 (0.032) 0.039 (0.030)

Trial 7 Kaplan-Meier 0.080 (0.035) 0.122 (0.045) 0.037 (0.035) 0.082 (0.041)
Full Model 0.039 (0.029) 0.051 (0.028) 0.040 (0.030) 0.043 (0.028)
β14, β24, β34 Shrunk to 0 0.039 (0.026) 0.052 (0.033) 0.041 (0.029) 0.045 (0.033)
β14 = β24 = β34 = 0 0.028 (0.020) 0.029 (0.027) 0.038 (0.028) 0.032 (0.032)
Hierarchical model 0.036 (0.029) 0.045 (0.030) 0.041 (0.031) 0.035 (0.030)

Trial 8 Kaplan-Meier 0.105 (0.028) 0.112 (0.031) 0.084 (0.028) 0.116 (0.031)
Full Model 0.095 (0.025) 0.085 (0.024) 0.103 (0.026) 0.096 (0.025)
β14, β24, β34 Shrunk to 0 0.096 (0.024) 0.105 (0.029) 0.103 (0.025) 0.107 (0.030)
β14 = β24 = β34 = 0 0.074 (0.019) 0.102 (0.027) 0.099 (0.024) 0.108 (0.028)
Hierarchical model 0.092 (0.025) 0.089 (0.024) 0.101 (0.025) 0.093 (0.024)

Trial 9 Kaplan-Meier 0.034 (0.021) 0.050 (0.026) 0.032 (0.021) 0.042 (0.022)
Full Model 0.034 (0.018) 0.028 (0.018) 0.039 (0.019) 0.042 (0.020)
β14, β24, β34 Shrunk to 0 0.035 (0.018) 0.040 (0.021) 0.041 (0.019) 0.050 (0.021)
β14 = β24 = β34 = 0 0.028 (0.014) 0.043 (0.019) 0.039 (0.019) 0.049 (0.021)
Hierarchical model 0.034 (0.018) 0.034 (0.018) 0.039 (0.019) 0.042 (0.019)

Trial 10 Kaplan-Meier 0.004 (0.019) 0.012 (0.021) 0.007 (0.018) 0.018 (0.022)
Full Model 0.012 (0.016) 0.015 (0.015) 0.010 (0.017) 0.008 (0.017)
β14, β24, β34 Shrunk to 0 0.011 (0.016) 0.018 (0.019) 0.009 (0.017) 0.010 (0.020)
β14 = β24 = β34 = 0 0.007 (0.013) 0.009 (0.018) 0.010 (0.016) 0.011 (0.020)
Hierarchical model 0.013 (0.016) 0.016 (0.016) 0.010 (0.017) 0.008 (0.017)

Trial 11 Kaplan-Meier -0.0001 (0.021) 0.026 (0.030) -0.005 (0.021) -0.033 (0.026)
Full Model 0.011 (0.018) 0.017 (0.017) -0.004 (0.019) -0.008 (0.019)
β14, β24, β34 Shrunk to 0 0.006 (0.017) 0.011 (0.021) -0.006 (0.019) -0.007 (0.022)
β14 = β24 = β34 = 0 -0.001 (0.012) -0.008 (0.018) -0.007 (0.019) -0.009 (0.021)
Hierarchical model 0.009 (0.017) 0.016 (0.019) -0.006 (0.019) -0.002 (0.020)

Trial 12 Kaplan-Meier 0.018 (0.017) 0.029 (0.019) 0.032 (0.017) 0.048 (0.020)
Full Model 0.017 (0.015) 0.008 (0.013) 0.033 (0.017) 0.035 (0.016)
β14, β24, β34 Shrunk to 0 0.018 (0.015) 0.020 (0.018) 0.034 (0.016) 0.041 (0.019)
β14 = β24 = β34 = 0 0.021 (0.010) 0.034 (0.015) 0.033 (0.016) 0.041 (0.019)
Hierarchical model 0.016 (0.014) 0.016 (0.016) 0.032 (0.015) 0.033 (0.017)

∗∆S(5) = P (T > 5|Zi = 1)− P (T > 5|Zi = 0)

∗∗∆DFS(3) = P (DFS > 3|Zi = 1)− P (DFS > 3|Zi = 0)



104

ual survival distribution, P (Tid > Yid + ai|Tid > Yid, δid = 0, Yir, δir, Xi, θ), for each

censored subject. Specifically, we set this function equal to a u ∼ U(0, 1) random

variable and solve for ai, the imputed time to death after Yid for each censored sub-

ject. For subjects with a recurrence prior to their censoring time (δir = 1), we

solve u = exp
(
−
∫ Yid+ai−Yir
Yid−Yir

λ34(u)du
)

for ai. For subjects censored for recurrence

(δir = 0) we first calculate their probability of being in the cured group by drawing

a Bernoulli(ci) random variable, where ci is the probability of being cured of dis-

ease, given Yid, Yir, Xi and the current parameter draws. For subjects censored for

recurrence at Yid, ci is given by

ci =
piλ14(Yid)

δidS1(Yid)

piλ14(Yid)δidS1(Yid) + (1− pi)λ24(Yid)δidS2(Yid)

and for those censored for recurrence at Yir prior to Yid, ci is given by

ci =
piλ14(Yid)δidS1(Y id)

piλ14(Yid)δidS1(Yid) + (1− pi)λ24(Yid)δidS2(Yid) + (1− pi)
∫ Yid
Yir

λ23(u)S2(u)λ34(Yid − u)δidexp
(
−
∫ Yid−u
0 λ34(v)dv

)
du
.

For those placed in the cured group, we solve u = exp
(
−
∫ Yid+ai
Yid

λ14(u)du
)

for ai,

and for those placed in the uncured group, we solve u = g(Yid+ai)
g(Yid)

for ai, where:

g(t) = P (Tid > t | δid = 0, Yir, δir = 0, Xi, θ)

= exp

− t∫
0

λ23(u)du−
t∫

0

λ24(u)du

+

t∫
Yir

exp

− v∫
0

λ23(u)du−
v∫

0

λ24(u)du

λ23(v)exp

− t−v∫
0

λ34(u)du

 dv

For each subject, we solve the appropriate equation using every 10th draw from the

posterior distribution of the parameters, giving a total of 500 data sets with imputed
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death times for censored subjects. The imputed death times are censored at the

longest follow-up time for a study. With death as the endpoint of interest, these new

imputed times are combined with the observed data and compared to analyses of the

original data to assess efficiency gains. Specific estimates of interest that are compared

include the treatment effect estimates from a Cox model (which also includes stage

and age as covariates), the log rank statistics, and the five year Kaplan Meier survival

estimates. Parameter estimates and standard errors of the Kaplan Meier estimate and

from the Cox model are obtained using the rules for multiple imputation established

by Rubin (1987). Log-Rank test Chi-Square statistics are combined using the methods

of Li, et al. (1991). Table 5.4 provides results from the analyses on the original data

and on the imputed data. The point estimates are consistent across the analyses,

suggesting that there was no distortion of the results introduced by the imputation,

but there is little gain in efficiency from using the imputed data. This is likely due

to the fact that these trials all had good follow-up. In the following section, we

demonstrate the potential of the model to shorten the length of a trial by artificially

censoring the 12 trials at an earlier time point and demonstrating the recovery of lost

information due to censoring through the imputation procedure.

5.5.2 Application of model for efficiency gains and shortening trial length:
Multiple Imputation

The artificially censored data described in Section 5.4.1 can be used to illustrate

the use of the multiple imputation procedure in shortening the length of a clinical

trial. We use the multiple imputation procedure described in Section 5.5.1 on the

reduced follow-up data with death as the endpoint of interest. These analyses are

then compared to analyses of the original, full follow-up data to assess efficiency
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Table 5.4: Analysis of the effect of treatment on survival, from original data, and
data with imputation

Study Data Log-Rank Cox model 5 year KM
P-Value Log Hazard Ratio (SE) Estimate (SE)

1 Original 0.224 -0.28 (0.188) 0.090 (0.062)
Imputed 0.149 -0.31 (0.183) 0.092 (0.062)

2 Original 0.094 -0.25 (0.155) 0.057 (0.049)
Imputed 0.105 -0.24 (0.154) 0.054 (0.048)

3 Original 0.004 -0.31 (0.098) 0.074 (0.031)
Imputed 0.007 -0.30 (0.098) 0.073 (0.031)

4 Original 0.642 0.05 (0.111) -0.023 (0.037)
Imputed 0.704 0.05 (0.109) -0.021 (0.037)

5 Original 0.352 0.09 (0.109) -0.023 (0.031)
Imputed 0.464 0.06 (0.108) -0.021 (0.031)

6 Original 0.804 -0.04 (0.101) 0.037 (0.036)
Imputed 0.734 -0.04 (0.100) 0.037 (0.036)

7 Original 0.075 -0.19 (0.115) 0.080 (0.035)
Imputed 0.070 -0.21 (0.114) 0.077 (0.035)

8 Original 0.0003 -0.37 (0.103) 0.105 (0.028)
Imputed 0.0004 -0.35 (0.102) 0.105 (0.028)

9 Original 0.037 -0.16 (0.077) 0.034 (0.021)
Imputed 0.026 -0.17 (0.077) 0.034 (0.021)

10 Original 0.855 -0.02 (0.076) 0.004 (0.019)
Imputed 0.788 -0.02 (0.076) 0.004 (0.018)

11 Original 0.838 0.008 (0.096) -0.0001 (0.021)
Imputed 0.930 0.02 (0.095) -0.002 (0.021)

12 Original 0.090 -0.14 (0.086) 0.018 (0.017)
Imputed 0.080 -0.14 (0.086) 0.018 (0.017)

gains. Table 5.5 provides log rank statistics, Cox model log hazard ratios and five

year Kaplan-Meier estimates from the original, artificially censored and imputed data.

The log rank tests and Cox models were stratified by cancer stage and the Cox models

also included age as a covariate. The imputation procedure on the reduced follow-up

data is performed using estimates obtained from the full multi-state cure model, the

multi-state cure model with restrictions on some treatment effect coefficients, and

the hierarchical model. The point estimates from the imputed data tend to be in

between those of the original data and the reduced follow-up data, indicating that

some of the information lost due to early censoring was correctly recovered using

the imputation procedure. Gains in efficiency in the estimation of the log hazard

ratio was achieved for some trials, as indicated by the smaller standard errors. The

standard errors of the Kaplan-Meier estimates from the imputed data are consistently



107

smaller than those of the artificially censored data, and in many cases are very close

to the standard errors of the original data. The point estimates resulting from the

imputation procedure on the restricted models are nearly identical to those obtained

using the full multi-state model, and for most trials, the standard errors from the

imputation procedure on the restricted models are the same, or only barely smaller

than those obtained through the use of the full model. This is likely because for these

trials, much of the efficiency lost due to early censoring was recovered through the

imputation procedure that uses the recurrence time information with the full multi-

state model, leaving little further efficiency to be gained through the use of the more

restricted models. There is no gain in efficiency in estimating the treatment effects

on overall survival by using hierarchical model, probably due to the fact that these

are all randomized trials and thus estimates for age and stage are likely to be at most

weakly correlated with the estimate for treatment. Hence improving estimates for

age and stage through the use of the hierarchical model could have limited impact on

summary measures of the treatment effect. Table 5.5 also provides results using the

modeling and imputation procedure of Conlon, et al. (2011). For these 12 trials, the

simpler method of Conlon, et al. (2011) which models overall survival with recurrence

as a time dependent covariate and bases the multiple imputation procedure off of this

model appears to perform similarly to the more complex multi-state model with a

cure fraction.

5.6 Simulations

We conduct simulations to examine the performance of the proposed imputation

method using the multi-state cure model under the full and restricted models. We
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Table 5.5: Analysis of the effect of treatment on survival, from original data, censored
data and censored data with imputation

Study Data Log-Rank Cox model 5 year KM
P-Value Log Hazard Ratio (SE) Estimate (SE)

1 Original 0.136 -0.28 (0.188) 0.090 (0.062)
Censored 0.035 -0.45 (0.214) 0.098 (0.070)
Imputed Censored 0.047 -0.39 (0.197) 0.104 (0.063)
Imputed Censored, β14, β24, β34 shrunk to 0 0.045 -0.39 (0.197) 0.105 (0.063)
Imputed Censored, β14 = β24 = β34 = 0 0.040 -0.40 (0.197) 0.105 (0.063)
Imputed Censored, hierarchical model 0.057 -0.38 (0.203) 0.102 (0.063)
Conlon, et al. (2011) method 0.117 -0.31 (0.199) 0.101 (0.065)

2 Original 0.097 -0.25 (0.155) 0.057 (0.049)
Censored 0.255 -0.20 (0.179) 0.039 (0.049)
Imputed Censored 0.187 -0.23 (0.176) 0.051 (0.049)
Imputed Censored, β14, β24, β34 shrunk to 0 0.199 -0.23 (0.177) 0.051 (0.049)
Imputed Censored, β14 = β24 = β34 = 0 0.179 -0.24 (0.176) 0.051 (0.049)
Imputed Censored, hierarchical model 0.215 -0.22 (0.178) 0.048 (0.049)
Conlon et al. (2011) method 0.203 -0.22 (0.175) 0.053 (0.050)

3 Original 0.002 -0.31 (0.098) 0.074 (0.031)
Censored 0.045 -0.27 (0.131) 0.115 (0.080)
Imputed Censored 0.036 -0.26 (0.124) 0.076 (0.033)
Imputed Censored, β14, β24, β34 shrunk to 0 0.010 -0.31 (0.118) 0.082 (0.033)
Imputed Censored, β14 = β24 = β34 = 0 0.005 -0.33 (0.117) 0.092 (0.033)
Imputed Censored, hierarchical model 0.027 -0.27 (0.122) 0.072 (0.033)
Conlon et al. (2011) method 0.039 -0.25 (0.118) 0.068 (0.034)

4 Original 0.719 0.06 (0.111) -0.023 (0.037)
Censored 0.912 -0.005 (0.134) 0.027 (0.043)
Imputed Censored 0.843 0.003 (0.132) -0.005 (0.038)
Imputed Censored, β14, β24, β34 shrunk to 0 0.832 0.02 (0.130) -0.006 (0.038)
Imputed Censored, β14 = β24 = β34 = 0 0.841 0.01 (0.131) -0.004 (0.038)
Imputed Censored, hierarchical model 0.823 0.01 (0.132) -0.002 (0.038)
Conlon et al. (2011) method 0.739 0.05 (0.131) -0.007 (0.038)

5 Original 0.355 0.09 (0.109) -0.023 (0.031)
Censored 0.459 0.10 (0.134) -0.009 (0.035)
Imputed Censored 0.374 0.11 (0.129) -0.020 (0.032)
Imputed Censored, β14, β24, β34 shrunk to 0 0.405 0.10 (0.125) -0.019 (0.032)
Imputed Censored, β14 = β24 = β34 = 0 0.459 0.09 (0.124) -0.017 (0.032)
Imputed Censored, hierarchical model 0.385 0.11 (0.128) -0.019 (0.032)
Conlon et al. (2011) method 0.443 0.09 (0.121) -0.019 (0.034)

6 Original 0.695 -0.04 (0.101) 0.037 (0.036)
Censored 0.518 -0.08 (0.126) 0.026 (0.042)
Imputed Censored 0.451 -0.09 (0.122) 0.024 (0.037)
Imputed Censored, β14, β24, β34 shrunk to 0 0.384 -0.11 (0.121) 0.026 (0.038)
Imputed Censored, β14 = β24 = β34 = 0 0.387 -0.10 (0.119) 0.026 (0.037)
Imputed Censored, hierarchical model 0.465 -0.09 (0.123) 0.023 (0.038)
Conlon et al. (2011) method 0.578 -0.06 (0.119) 0.019 (0.036)

7 Original 0.053 -0.20 (0.115) 0.080 (0.035)
Censored 0.027 -0.33 (0.156) 0.122 (0.045)
Imputed Censored 0.027 -0.31 (0.147) 0.079 (0.036)
Imputed Censored, β14, β24, β34 shrunk to 0 0.026 -0.31 (0.144) 0.078 (0.036)
Imputed Censored, β14 = β24 = β34 = 0 0.037 -0.28 (0.142) 0.074 (0.036)
Imputed Censored, hierarchical model 0.026 -0.31 (0.147) 0.077 (0.036)
Conlon et al. (2011) method 0.014 -0.35 (0.146) 0.081 (0.037)

8 Original 0.0004 -0.36 (0.103) 0.105 (0.028)
Censored 0.0005 -0.41 (0.119) 0.112 (0.031)
Imputed Censored 0.0005 -0.40 (0.117) 0.103 (0.029)
Imputed Censored, β14, β24, β34 shrunk to 0 0.0005 -0.40 (0.115) 0.104 (0.029)
Imputed Censored, β14 = β24 = β34 = 0 0.0005 -0.40 (0.115) 0.103 (0.029)
Imputed Censored, hierarchical model 0.0005 -0.40 (0.117) 0.103 (0.029)
Conlon et al. method 0.0004 -0.41 (0.116) 0.103 (0.030)

9 Original 0.041 -0.16 (0.077) 0.034 (0.021)
Censored 0.105 -0.14 (0.087) 0.050 (0.026)
Imputed Censored 0.083 -0.15 (0.086) 0.035 (0.021)
Imputed Censored, β14, β24, β34 shrunk to 0 0.080 -0.15 (0.086) 0.035 (0.021)
Imputed Censored, β14 = β24 = β34 = 0 0.071 -0.15 (0.085) 0.035 (0.021)
Imputed Censored, hierarchical model 0.082 -0.15 (0.086) 0.035 (0.021)
Conlon et al. (2011) method 0.113 -0.14 (0.086) 0.035 (0.021)

10 Original 0.827 -0.02 (0.076) 0.004 (0.019)
Censored 0.398 -0.08 (0.092) 0.012 (0.021)
Imputed Censored 0.502 -0.06 (0.091) 0.009 (0.019)
Imputed Censored, β14, β24, β34 shrunk to 0 0.511 -0.06 (0.089) 0.008 (0.019)
Imputed Censored, β14 = β24 = β34 = 0 0.585 -0.05 (0.088) 0.007 (0.019)
Imputed Censored, hierarchical model 0.488 -0.07 (0.091) 0.009 (0.019)
Conlonet al. (2011) method 0.505 -0.06 (0.088) 0.010 (0.019)

11 Original 0.907 0.007 (0.096) -0.0001 (0.021)
Censored 0.456 -0.08 (0.118) 0.026 (0.030)
Imputed Censored 0.623 -0.05 (0.117) 0.005 (0.022)
Imputed Censored, β14, β24, β34 shrunk to 0 0.758 -0.01 (0.114) 0.003 (0.022)
Imputed Censored, β14 = β24 = β34 = 0 0.812 0.008 (0.113) -0.0002 (0.022)
Imputed Censored, hierarchical model 0.672 -0.03 (0.116) 0.007 (0.022)
Conlon et al. (2011) method 0.622 -0.05 (0.111) 0.007 (0.022)

12 Original 0.083 -0.14 (0.086) 0.018 (0.017)
Censored 0.273 -0.09 (0.097) 0.029 (0.019)
Imputed Censored 0.255 -0.09 (0.094) 0.019 (0.018)
Imputed Censored, β14, β24, β34 shrunk to 0 0.194 -0.12 (0.092) 0.020 (0.018)
Imputed Censored, β14 = β24 = β34 = 0 0.140 -0.12 (0.091) 0.023 (0.018)
Imputed Censored, hierarchical model 0.226 -0.11 (0.095) 0.019 (0.017)
Conlon et al. (2011) method 0.230 -0.10 (0.091) 0.018 (0.018)
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compare the performance of the proposed method to that of Conlon, et al. (2011)

where the imputation of death times was based on a survival model with a time

dependent covariate for recurrence.

Recurrence times and death times were first simulated from the multi-state cure

model to give “original data” with long follow up. These times were then censored at

an earlier time to give “censored data”. The modeling and imputation strategy are

then performed on the “censored data” using the full model, restricted models, and

the model of Conlon, et al. (2011) to give the “imputed censored data”. We then

assess the treatment effect on overall survival using the log-rank test, the estimated

relative hazard from a Cox model, and the five year Kaplan-Meier survival estimate.

Four different trial settings are explored, two with a treatment effect and two without

a treatment effect. For each setting, we generate 500 data sets, each with 500 subjects

per treatment arm, 750 subjects with stage 3 disease, and a five year accrual period

with eight years of additional follow-up to provide the “original data”. The “censored

data” is obtained by censoring these data sets either two years after the last accrual

(trials 1 and 3) or one year after the last accrual (trials 2 and 4) to provide a maximum

of seven years or six years, respectively, of follow-up time. The probability of being

cured of disease was first generated using pi = exp(γ0+γ1Zi+γ2Si)
(1+exp(γ0+γ1Zi+γ2Si))

, where Zi denotes

treatment group and Si denotes stage. Each of these covariates are centered at 0 so

that Zi is equal to -0.5 for the control group and 0.5 for the treatment group and Si

is equal to -0.75 for stage 2 disease and 0.25 for stage 3 disease. We set γ0 = 0.8,

γ1 = −0.4 and γ2 = −1 in trials 1 and 2 and γ0 = 0.8, γ1 = 0 and γ2 = −1 in trials 3

and 4. For those who are cured of disease, we then generate a death time using hazard

model for transition 1→ 4 with log(λ14)= 4, ρ14 = 1.5, and the treatment and stage

effects set to 0. For those who are not cured of disease, we generate a recurrence time
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using the hazard model for transition 2→ 3 with log(λ23)= 1, ρ23 = 1.5, βst23 = 0.7,

and βtrt23 equal to -0.3 in trials 1 and 2 and 0.0 in trials 3 and 4, and a death time

using the hazard model for transition 2 → 4 with log(λ24)= 4, ρ24 = 1.5 and the

treatment and stage effects set to 0. If the death time for uncured subjects is less

than the recurrence time, then a 2→ 4 transition is made at the death time and the

recurrence is censored at the death time. If the recurrence time is less than the death

time, then a 2 → 3 transition is made at that time. For those who recur, the time

between their recurrence and death is generated using the hazard model for transition

3→ 4 with log(λ34)= 1.1, ρ34 = 0.9 βtrt34 = 0, βst34 = 0.3, and βTr = −0.1.

Tables 5.6 and 5.7 provide the size of the log-rank test and the average of the

estimated log hazard ratio for the treatment coefficient from a Cox model, both

stratified by stage, as well as the average Kaplan-Meier estimate of the difference in

five year survival between the treatment and control group. The empirical standard

deviations (SD) and average standard errors (S̄E) for these estimates is also provided.

Additionally, for the null cases (trials 3 and 4) coverage rates for the Cox model log

hazard ratio estimate and Kaplan-Meier five year survival difference are given. For

each trial, the first row provides estimates for the data with a long follow-up period

following the accrual period, which we call the “original data”. The second row

provides estimates for the data where all subjects could have the maximum amount

of follow-up time given in the artificially censored data. These two rows provide

a basis of comparison for the estimates obtained from the imputation procedure.

Comparison to the first row answers the question of whether or not the imputation

procedure performed on the reduced follow-up data results in similar conclusions to

those based on the full follow-up data, thus resulting in the potential to shorten the

length of the trial. Comparison to the second row answers the statistical question of
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the bias in the estimates from the imputation procedure which censors subjects at

the maximum follow-up time, as compared to those obtained when all subjects, from

the beginning of the study, can be followed for that length of time. We note that the

Cox model estimates for the treatment effect differ between the first two rows. This

is because the proportional hazards assumption for time to death is not satisfied and

the first row is based on a much longer follow-up than the second row.

The results show that there is some efficiency gained by using the imputation pro-

cedure, and when there is no treatment effect, the procedure preserves type I error.

We note that the size of the log-rank test is slightly over conservative for the multiply

imputed data. This is likely related to the issue of uncongeniality discussed by Meng

(1994) and Rubin (1996), where the model used in creating the imputed data sets and

the model used for analyzing the imputed data differ. Here, the model used to create

the imputations was based on the multi-state model and utilized information on re-

currence to obtain the imputed survival times. In these settings where the imputation

model and analysis model differ due to auxiliary information used in the imputation

procedure, the inference with multiple imputation tends to be conservative, but more

efficient than inference done without multiple imputation (Meng, 1994). This uncon-

geniality between the imputation and analysis model is also likely the cause of the

slight discrepancy between the empirical standard deviations and average standard

errors, where the standard errors tend to be overly conservative.

The simulations demonstrate that some of the information lost due to early cen-

soring can be correctly recovered through the imputation procedure. In the settings

where there is a treatment effect on overall survival (trials 1 and 2), the Cox model

log hazard ratio estimates from the imputed data are in between that from the “cen-

sored data” and from the “original data”, and very close to the estimates from the “7
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year follow-up data” (in the case of trial 1) and the “6 year follow-up” data (in the

case of trial 2). The Kaplan-Meier estimates of the difference in five year survival are

estimated within minimal bias in all four trials, with some small gains in efficiency

obtained through the imputation procedure, as seen in the smaller standard devia-

tions and smaller average standard errors as compared to the reduced follow-up data.

There is a small amount of additional efficiency gained in all four settings by using the

restricted multi-state cure model that shrinks the treatment effect estimates β14, β24

and β34 to zero and some further efficiency gained in all four settings by restricting

these treatment effects to be 0. The method of Conlon, et al. (2011) has slightly

smaller average standard errors for the log hazard ratio estimate than those from the

multi-state cure models, but has larger empirical standard deviations, indicating that

there is a small amount of efficiency gained through the use of the multi-state cure

model.

Table 5.6: Multiple imputation simulation results: treatment effect

Data Trial 1: Treatment Effect, 2 year censored
Size of Cox model Log Hazard Ratio ∆S(5) KM ∆S(5) KM

Log-Rank Log Hazard Ratio (SD) S̄E Estimate (SD) S̄E
Original (max 13 year follow-up) 0.772 -0.30 (0.110) 0.111 0.064 (0.025) 0.025
7 year follow-up 0.778 -0.35 (0.126) 0.126 0.064 (0.025) 0.025
Censored (max 7 year follow-up) 0.731 -0.39 (0.155) 0.154 0.064 (0.028) 0.029
Imputed Censored 0.754 -0.37 (0.130) 0.142 0.063 (0.024) 0.026
Imputed Censored, β14, β24, β34 shrunk to 0 0.764 -0.37 (0.128) 0.142 0.063 (0.024) 0.026
Imputed Censored, β14 = β24 = β34 = 0 0.764 -0.37 (0.120) 0.140 0.063 (0.023) 0.026
Conlon, et al. (2011) method 0.792 -0.38 (0.133) 0.137 0.065 (0.025) 0.026

Trial 2: Treatment Effect, 1 year censored
Original (max 13 year follow-up) 0.772 -0.30 (0.110) 0.111 0.064 (0.025) 0.025
6 year follow-up 0.762 -0.36 (0.134) 0.134 0.064 (0.025) 0.025
Censored (max 6 year follow-up) 0.632 -0.41 (0.182) 0.176 0.067 (0.034) 0.033
Imputed Censored 0.678 -0.39 (0.152) 0.163 0.060 (0.025) 0.026
Imputed Censored, β14, β24, β34 shrunk to 0 0.700 -0.39 (0.141) 0.160 0.060 (0.023) 0.025
Imputed Censored, β14 = β24 = β34 = 0 0.719 -0.39 (0.132) 0.157 0.060 (0.021) 0.025
Conlon, et al. (2011) method 0.714 -0.40 (0.153) 0.156 0.060 (0.024) 0.025
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Table 5.7: Multiple imputation simulation results: no treatment effect

Data Trial 3: No Treatment Effect, 2 year censored
Size of Cox model Log Hazard Ratio ∆S(5) KM ∆S(5) KM

Log-Rank Log Hazard Ratio (SD) S̄E Coverage Estimate (SD) S̄E Coverage
Original (max 13 year follow-up) 0.068 0.00 (0.117) 0.111 0.93 0.000 (0.026) 0.025 0.94
7 year follow-up 0.066 0.00 (0.131) 0.125 0.94 0.000 (0.026) 0.025 0.94
Censored (max 7 year follow-up) 0.052 0.00 (0.155) 0.152 0.95 0.000 (0.030) 0.029 0.93
Imputed Censored 0.040 0.00 (0.132) 0.140 0.96 0.000 (0.025) 0.026 0.96
Imputed Censored, β14, β24, β34 shrunk to 0 0.036 0.00 (0.130) 0.140 0.96 0.000 (0.024) 0.026 0.96
Imputed Censored, β14 = β24 = β34 = 0 0.028 0.00 (0.124) 0.138 0.97 0.000 (0.024) 0.026 0.97
Conlon, et al. (2011) method 0.062 0.00 (0.143) 0.136 0.93 0.000 (0.026) 0.026 0.94

Trial 4: No Treatment Effect, 1 year censored
Original (max 13 year follow-up) 0.068 0.00 (0.117) 0.111 0.93 0.000 (0.026) 0.025 0.94
6 year follow-up 0.064 0.00 (0.142) 0.133 0.93 0.000(0.026) 0.025 0.94
Censored (max 6 year follow-up) 0.046 0.00 (0.171) 0.174 0.93 0.000 (0.034) 0.033 0.96
Imputed Censored 0.018 -0.01 (0.143) 0.158 0.98 0.000 (0.023) 0.026 0.97
Imputed Censored, β14, β24, β34 shrunk to 0 0.020 -0.01 (0.139) 0.157 0.98 0.000 (0.023) 0.025 0.98
Imputed Censored, β14 = β24 = β34 = 0 0.018 -0.01 (0.131) 0.154 0.98 0.000 (0.022) 0.025 0.98
Conlon, et al. (2011) method 0.036 -0.01 (0.147) 0.154 0.96 0.001 (0.023) 0.025 0.93
∆S(5) = P (T > 5 | Zi = 1)− P (T > 5 | Zi = 0)

5.7 Discussion

In this chapter, we propose a modeling and imputation procedure to assess the use

of cancer recurrence as an auxiliary variable that can be used to improve efficiency

in the analysis of overall survival. We explore the effects of plausible restrictions on

model parameters and explore the use of a hierarchical model to assess the potential

for further efficiency gains. The results show modest but consistent gains in efficiency,

as measured by smaller standard errors, by using the information from recurrence

time, with the potential for further gains by adding more restrictions to the models

in certain settings. The methods presented could be useful in shortening the planned

length of a trial and in reducing sample sizes. Although the changes in the width of

the uncertainty intervals are only modest, sample size requirements are driven by the

square of the standard deviation. Hence, if the proposed methodology were adopted,

the size of trials could be reduced by 10% to 20%. These methods could also be useful

in aiding data safety and monitoring boards in deciding whether or not to end a trial

at the time of interim analysis.

We have considered several different ways in which the multi-state cure model
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can be used to improve efficiency in the analysis of overall survival. First, we ex-

plored analyses of survival using the model itself, with the parametric assumptions of

the model and recurrence time contributing to gains in efficiency. Next we explored

methods in which the model is utilized in a weak way along with recurrence time

information in a multiple imputation procedure to impute death times for censored

subjects, with treatment effect estimates of survival obtained by combining the anal-

yses from the multiply imputed data sets. We then placed restrictions on certain

model parameters and used this adapted model in the multiple imputation proce-

dure. Lastly, we explored the effects of utilizing external data to obtain parameter

estimates for the multi-state model that was then used in the imputation procedure.

In the setting explored here, the first method of obtaining estimates directly from

the model and the imputation procedure using the multi-state cure model with no

restrictions or external data were found to be most effective in obtaining efficiency

gains.

The standard error estimates in the simulations are slightly conservative compared

to the empirical standard deviations. As we noted, this is likely due to the unconge-

nialty of the imputation and analysis models. Robins and Wang (2000) have proposed

a variance estimator for multiple imputation that is consistent when the imputation

and analysis models differ that could be used to obtain a less conservative estimate,

however, it is computationally much more difficult to obtain. We have focused on

the situation of colon cancer, where there is a strong relationship between recurrence

time and death. Cook and Lawless (2001) have noted that gains in efficiency for the

estimation of survival distributions are often small when the intermediate variable

and survival time are not highly correlated. When the intermediate variable and true

endpoint are closely related, the use of parametric models and reasonable assumptions
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about the effect of covariates on individual processes of the disease may contribute

to further gains in efficiency. For example, there may be settings in which all of the

treatment effect is on the probability of being cured, or where all of the treatment

effect is on the hazard of recurrence for those who are uncured. In these settings,

adding restrictions to the treatment effect coefficients of the full model may play a

larger role in contributing to gains in efficiency in the analysis of overall survival.



CHAPTER VI

Discussion

The identification of valid surrogate markers and the use of intermediate outcomes

as auxiliary variables has important implications in the clinical trial setting. By

utilizing early information, trials could be run faster and more cheaply, and the early

outcome information could aid regulatory boards in making preliminary decisions

about drug approval. We have considered the use of intermediate variables both

as surrogate markers for the true outcome of interest and as auxiliary variables to

improve the efficiency of the estimation of the final outcome. For candidate surrogate

markers, we proposed modeling and validation methods to assess the surrogate value

of S. For auxiliary variables, we proposed a joint model for recurrence and death in

colon cancer and demonstrated ways in which the information on recurrence times

could be used to improve efficiency in the estimation of overall survival. In this

Chapter, we summarize the ideas presented in Chapters II, III, IV and V and discuss

potential future work in the area of intermediate variables.

In Chapters II and III, we work under the “principal surrogacy” framework in-

troduced by Frangakis and Rubin (2002) and propose quantities to assess surrogacy

from the conditional distribution of the causal treatment effect on T given the causal

116
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treatment effect on S. We first consider the scenario where the potential outcomes

of S and the potential outcomes of T follow a multivariate normal distribution. A

Bayesian estimation strategy is used to estimate the parameters in this model and, as

some parameters in the model are unidentifiable, informative priors consistent with

reasonable assumptions in the surrogate marker setting are used to aid in estimation.

The assumptions made include restricting the unidentified correlation parameters

to be positive, which seems plausible when the identifiable correlation parameters

(cor(S(0), T (0)) and cor(S(1), T (1))) are positive, and assumptions that pertain to

the relationship between the correlations of the across treatment arm surrogate and

final outcomes (cor(S(1), T (0)) and cor(S(0), T (1))) and the other pairwise correla-

tions. Specifically, we constrain the across treatment arm surrogate and final outcome

correlations to be smaller than the other pairwise correlations with either a probabil-

ity of 1 or probability of 0.8. It seems reasonable to assume that the across treatment

arm correlations of S and T would be smaller than the correlation between S and T

within the same treatment arm, or the correlation between S(0) and S(1) or T (0) and

T (1). These assumptions, along with the requirement that the covariance matrix be

positive definite, restrict the ranges of possible values for the unidentified parameters.

A variety of quantities from the conditional distribution of p(T (1)−T (0) | S(1)−S(0))

are explored. The proposed quantities of γ0 and γ1, which are the intercept and slope

parameters, respectively, of the causal treatment effect on T conditional on the causal

treatment effect on S, are useful measures and easily interpretable, however proving

γ0 = 0, a necessary condition for a valid surrogate, is difficult to do in practice. The

CEP graph is also a useful tool, as it provides a way to estimate the expected treat-

ment effects on T when treatment effects on S are at relevant clinical values. The

measures proposed all consider the distribution of the causal effect of treatment on
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the outcome conditional on the causal effect of treatment on the surrogate and can

be used in combination to provide evidence about the validity of S as a surrogate

marker for T .

The ideas explored in Chapter II are extended in Chapter III to settings in which

the potential outcomes of S and the potential outcomes of T do not arise from a

multivariate normal distribution. Here, we consider an ordinal categorical variable

as a surrogate for a censored time-to-event final outcome and use a Gaussian copula

to model the joint distribution of the potential outcomes. We again explore the use

of different prior distributions for unidentified parameters. The model is applied to

data from a trial in advanced colorectal cancer, where disease progression is assessed

as a surrogate for overall survival. Using the proposed model, the expected ratio of

log survival times within each of the principal strata of S(1)−S(0) can be estimated.

The results obtained using the Gaussian copula model are compared to those that

would have been obtained using the methods of Chapter II had the model been

misspecified and the data analyzed as multivariate normal. The results show some

gains in efficiency by fitting the Gaussian copula model using the more appropriate

marginal distributions for the data than by assuming multivariate normality when it

may not hold. Both the methods of Chapter II and Chapter III could be extended

to settings where T is partially missing, and the Gaussian copula model could be

applied to data arising from other, non-normal distributions such as the Poisson.

An interesting area of future research concerning principal surrogacy is in the

relationship between the principal stratification framework and structural models.

In the causal inference literature, there are two types of general approaches. One is

based on potential outcomes in the principal stratification framework, and one is based

on structural or graphical models. While VanderWeele (2011) has argued that the
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principal stratification framework is more appropriate for the surrogacy question, it is

also of interest to explore the structural model approach. Surrogacy validation under

the principal surrogacy framework considers the distribution of the causal treatment

effect on T conditional on the principal strata of S. However, due to the counterfactual

nature of the principal surrogacy framework, assumptions must be made to aid in the

estimation of unidentified parameters. Consider the following structural models:

Si(0) = α0 + α2Ui + εSi(0)

Si(1) = α0 + α1 + α2Ui + εSi(1)

Ti(0) = β0 + β2Si + β3Ui + εTi(0)

Ti(1) = β0 + β1 + β2Si + β3Ui + εTi(1)

where Ui ∼ N(0, σ2
u) and is a confounder in the relationship between S and T , and

εSi(0) ∼ N(0, σ2
S0), εSi(1) ∼ N(0, σ2

S1), εTi(0) ∼ N(0, σ2
T0), and εTi(1) ∼ N(0, σ2

T1) are

uncorrelated errors terms. The parameters from these equations could be related

to those of the multivariate normal model described in Chapter II. For the above

structural models, we have (Si(0), Si(1), Ti(0), Ti(1))T is normal with mean

µ =



α0
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This model relates to the correlation parameters of the multivariate normal model of
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Chapter II in following way:
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In the structural model setting, assumptions must be made to estimate the regression

coefficients, as only α0 and α1 are fully identifiable from the observed data. Various

functions of these parameters are identified, however, and some parameter values

are restricted by the requirement that Σ be positive definite. We could therefore

explore the relationship between the effects of the assumptions on the structural

model parameters and the assumptions that were placed on the model in Chapter II

to aid in estimation in the principal surrogacy setting, such as constraining certain

correlation coefficients to be positive.

In Chapters IV and V, we propose a multi-state model with an incorporated cured

fraction to model recurrence and survival in colon cancer. This model is then utilized

in a multiple imputation strategy for censored death times that uses recurrence as

an auxiliary variable to improve efficiency in the estimation of overall survival. The

model and imputation strategy are applied to data from 12 randomized trials in colon

cancer. First, in Chapter IV we describe the model and its application. The proposed
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multi-state model with a cured fraction is motivated by the disease process of colon

cancer, where there is known to be a significant proportion of patients whose tumors

are completely eliminated by the treatment and are therefore considered cured of

disease. The proposed multi-state model with an incorporated cured fraction can

be used to examine the effects of different covariates on all of the various aspects

of the disease process, including the probability of being cured of disease, time to

recurrence for those who are uncured, time to death for those who are cured, time

to death without recurrence for those who are uncured but die before experiencing a

recurrence, and time to death after recurrence. We show consistent effects of many

covariates across the 12 trials. Once parameter estimates for the model are obtained,

quantities of interest such as the differences in five year survival and three year disease

free survival between treatment arms can be estimated. We show that the point

estimates of these quantities are consistent with the Kaplan-Meier estimates, with

some efficiency gained through the use of the multi-state cure model. Additionally,

we propose the use of Cox-Snell residual plots and deviance residual plots as ways

to visually assess the adequacy of the model fit. In the formulation of this model,

recurrence times are treated as known. The model could be easily adapted to reflect

the more realistic scenario of recurrence times that are interval censored between

clinic visits if this information were available. The model could also be extended to

allow the possibility for patients to return to the disease-free state after recurrence

for those who live a long time after their recurrence, likely due to subsequent therapy.

In Chapter V, we utilize the multi-state model with a cured fraction and propose

a multiple imputation strategy for patients who are censored for death. By using the

proposed joint model for recurrence and death, the information on recurrence can be

used as an auxiliary variable in predicting the death times of censored subjects, with
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the goal of improving efficiency in the estimation of the treatment effect on overall

survival. We show the potential of the multiple imputation strategy to shorten the

length of a clinical trial by artificially censoring the 12 trials and performing the

multiple imputation procedure. The analyses of overall survival from the imputed

data sets are combined, and the results are compared to the analyses of overall sur-

vival on the original data. We show that some of the information lost due to early

censoring can be recovered through the imputation procedure and demonstrate gains

in efficiency in the estimates obtained from the imputed data as compared to the

artificially censored data. Additionally, we demonstrate ways in which model adap-

tations and a hierarchical model could be used to further gains in efficiency obtained

through the imputation procedure. We show some small gains in efficiency through

the imputation procedure using the proposed multi-state model with a cured fraction

as compared to the simpler model used by Conlon, et al. (2011), where separate

models were used for recurrence and death. The proposed model and imputation

procedure could therefore be useful to data safety and monitoring boards in decid-

ing whether or not to end a trial at the time of an interim analysis. Additionally,

as sample size requirements are driven by the square of the standard deviation, the

size of trials could be reduced by 10% to 20% by adopting the proposed methods.

Other adaptations to the proposed model, besides those explored here, are possible

and may improve efficiency gains obtained through the imputation procedure. For

example, semi-parametric alternatives to the Weibull model could be explored. This

may be especially useful in the transition between recurrence and death, where there

appeared to be a potential lack of fit using the Weibull model. Using the generalized

Weibull model described by Foucher, et al. (2005) or a semi-parametric alternative

for this transition may improve the efficiency gains of the imputation procedure.
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There is future work that could be explored in the area of intermediate markers.

One concern that arises in the assessment of surrogate makers is the presence of the

“surrogate paradox”, where S and T are positively correlated, there is a positive

treatment effect on S but the treatment effect on T is negative. As we noted in

Chapter II, in the principal surrogacy setting if both average causal necessity and

average causal sufficiency hold, then the surrogate paradox is avoided. Methods for

detecting the presence of the surrogate paradox would be useful in the meta-analytic

setting, where information is available from a large number of trials and, given the

effect of the treatment on S in a new trial, we are interested in the expected effect of

treatment on the outcome in this trial. In this setting, it would be useful to have a

measure of the probability that an expected positive effect of the treatment on T given

a positive effect of the treatment on S is not due to chance variation. Buyse, et al.

(2000) proposed the following bivariate mixed model to describe the joint distribution

of S and T in the meta-analytic setting:

Sij = αS + βSZij + aSi + bSiZij + εSij

Tij = αT + βTZij + aTi + bTiZij + εTij

for subject j in trial i, whereεSij
εTij

 ∼MVN


0

0

 , σ =

σss σst

σtt


 and



aSi

aTi

bSi

bTi


∼MVN





0

0

0

0


, D =



dss dst dsa dsb

dtt dta dtb

daa dab

dbb




.

We could consider the joint distribution of the treatment effect on S, βS + bSi , and

the treatment effect on T , βT + bTi , across the trials, and estimate the proportion
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of the CDF of this distribution that corresponds to surrogate consistency (where the

treatment effect on both S and T is positive and where the treatment effect on both S

and T is negative) relative to the proportion of the CDF where the surrogate paradox

would occur (opposite treatment effects on S and T ). The proportion of the CDF

corresponding to the region where the surrogate paradox does not occur is given by

1 − Φ1(0 | βS, daa) − Φ1(0 | βT , dbb) + 2Φ2((0, 0) | (βS, βT ),Γ), where Φk(x | Θ,Ψ) is

the CDF of a k−variate normal distribution with mean Θ and variance Ψ evaluated

at x and Γ =

daa dab

dbb

. This approach could also be used to focus on subgroups

of interest, and extended to non-normal data through the use of copulas or kernel

density estimators.
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APPENDIX A

Prior densities for MVN model parameters

Figure A.1: Density plots for MVN model correlation parameters under Beta priors
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APPENDIX B

Quadratic equations obtained from |R| = 0

Each component of Q and R are drawn one at a time. When drawing each element

of R, the range of possible values must first be determined in order to satisfy the

positive definite requirement, given that the other correlations are held fixed. The

range of values corresponding to a positive definite matrix are those in the interval

determined by the roots of the quadratic equation that result from solving |R| = 0.

For each ρ we have ρ = −b±
√
b2−4ac

2a
, where a, b, and c for each correlation is given in

the following table.

Table B.1: Quadratic Equation Elements for Correlation Ranges

Correlation a b c
ρs ρ2

t − 1 2ρ00ρ10 + 2ρ01ρ11 − 2ρ00ρ11ρt − 2ρ01ρ10ρt 1− ρ2
00 − ρ2

01 − ρ2
10 − ρ2

11 − ρ2
t + ρ2

00ρ
2
11 + ρ2

10ρ
2
01 + 2ρ10ρ11ρt + 2ρ00ρ01ρt − 2ρ00ρ11ρ01ρ10

ρ00 ρ2
11 − 1 2ρsρ10 + 2ρ01ρt − 2ρsρ11ρt − 2ρ01ρ10ρ11 1− ρ2

t − ρ2
10 − ρ2

11 − ρ2
s − ρ2

01 + ρ2
sρ

2
t + ρ2

01ρ
2
10 + 2ρ10ρ11ρt + 2ρsρ01ρ11 − 2ρsρ10ρ01ρt

ρ01 ρ2
10 − 1 2ρsρ11 + 2ρ00ρt − 2ρsρ10ρ11 − 2ρ00ρ11ρ10 1− ρ2

s − ρ2
00 − ρ2

10 − ρ2
11 − ρ2

t + ρ2
sρ

2
t + ρ2

00ρ
2
11 + 2ρ10ρ11ρt + 2ρ00ρ10ρs − 2ρsρ00ρ11ρt

ρ10 ρ2
01 − 1 2ρtρ11 + 2ρ00ρs − 2ρsρ01ρt − 2ρ00ρ11ρ01 1− ρ2

s − ρ2
00 − ρ2

01 − ρ2
11 − ρ2

t + ρ2
sρ

2
t + ρ2

00ρ
2
11 + 2ρ01ρ11ρs + 2ρ00ρ01ρt − 2ρsρ00ρ11ρt

ρ11 ρ2
00 − 1 2ρtρ10 + 2ρ01ρs − 2ρsρ00ρt − 2ρ00ρ01ρ10 1− ρ2

t − ρ2
10 − ρ2

s − ρ2
00 − ρ2

01 + ρ2
sρ

2
t + ρ2

01ρ
2
10 + 2ρ10ρ00ρs + 2ρtρ01ρ00 − 2ρsρ10ρ01ρt

ρt ρ2
s − 1 2ρ10ρ11 + 2ρ00ρ01 − 2ρsρ01ρ10 − 2ρsρ00ρ11 1− ρ2

s − ρ2
00 − ρ2

01 − ρ2
10 − ρ2

11 + ρ2
00ρ

2
11 + ρ2

10ρ
2
01 + 2ρsρ00ρ10 + 2ρ01ρsρ11 − 2ρ00ρ11ρ01ρ10
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APPENDIX C

Gibbs sampler details for MVN model

As the posterior distributions for the components of Q and R can not be easily

sampled from, draws are made using the griddy Gibbs sampler (Ritter and Tanner,

1992).

Let Y = (S(0), S(1), T (0), T (1)), and θ = (µ, S,R). We impute the unobserved

potential outcomes at step l given θl−1 from the following distributions: Si(0)
| Si(1), Ti(1), θl−1

Ti(0)

∼ N

 µS0

+Σ12Σ−1
22

Si(1)− µS1

Ti(1)− µT1

 ,Σ11 − Σ12Σ−1
22 Σ21

µT0


 Si(1)

| Si(0), Ti(0), θl−1

Ti(1)

∼ N

 µS1

+Σ12Σ−1
11

Si(0)− µS0

Ti(0)− µT0

 ,Σ22 − Σ21Σ−1
11 Σ12

µT1


Where

Σ11 =

 σ2
S0

ρ00σS0σT0

ρ00σS0σT0 σ2
T0



Σ12 =

 ρsσS0σS1 ρ01σS0σT1

ρ10σS1σT0 ρtσT1σT0
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Σ21 =

 ρsσS0σS1 ρ10σS1σT0

ρ01σS0σT1 ρtσT1σT0



Σ22 =

 σ2
S1

ρ11σS1σT1

ρ11σS1σT1 σ2
T1


µ(l) and each component of S and R are then drawn from their posterior distributions:

µ(l)|Σl−1, Y ∼ N((nΣ−1(l−1) + Σ−1
0 )−1(nΣ−1(l−1)Ȳ ), (nΣ−1(l−1) + Σ−1

0 )−1)

For i = 1, ...4

σYi |· ∝ σ−nYi exp
(
−1

2

∑n
i=1(Y − µ)Σ−1(Y − µ)′

)
For j = s, t, 01, 10, 11, 00

ρj|· ∝ |R|−n/2exp
(
−1

2

∑n
i=1(Y − µ)Σ−1(Y − µ)′

)
p(ρj),

where p(ρj) corresponds to the prior distribution for ρj. The four different sets of

priors considered are detailed in section 2.4.

As the posterior distributions for the σ’s and ρ’s can not be easily sampled from, the

griddy Gibbs algorithm is used as follows:

• Evaluate p(σYi |·) over a grid of m = 200 points, separated by hundredths to

obtain x1, x2, ..., xm. The grid for each σ is centered around the estimated

standard deviation from the observed data.

• Approximate the inverse cdf using the discrete approximation p(σYij) = xj/
∑m

k=1 xk.

• Sample a uniform (0,1) random variable and transform the observation using

the approximated cdf.

• Obtain posterior draws for each of σS0 , σS1 , σT0 , and σT1

• Posterior draws for each ρ are done similarly, but with the grid of values over
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which each posterior distribution is evaluated those which result in a positive

definite matrix.



APPENDIX D

Robustness to multivariate normality assumption

Table D.1: Simulation results under MVN model when multivariate normality does
not hold

Normal Marginals Multivariate Normal Multivariate t3 Multivariate Normal Log Normal Multivariate Normal
Parameter True Mean (SD) ¯PSD True Mean (SD) ¯PSD True Mean (SD) ¯PSD True Mean (SD) ¯PSD True Mean (SD) ¯PSD True Mean (SD) ¯PSD

Value Value Value Value Value Value
µs0 0 0.002(0.08) 0.08 0 0.01 (0.08) 0.08 4 3.99 (0.13) 0.13 4 3.99 (0.13) 0.14 4.48 4.46 (0.50) 0.44 4.48 4.49 (0.49) 0.46
µs1 1 1.00(0.08) 0.08 1 1.00 (0.09) 0.08 6 5.99 (0.13) 0.13 6 6.00 (0.14) 0.14 7.39 7.36 (0.81) 0.85 7.39 7.44 (0.88) 0.83
µt0 0 0.0001(0.09) 0.08 0 0.007 (0.09) 0.08 8.4 8.39 (0.13) 0.13 8.4 8.39 (0.13) 0.14 4.48 4.43 (0.46) 0.49 4.48 4.51 (0.47) 0.48
µt1 2 1.99(0.08) 0.08 2 1.99 (0.08) 0.08 10 9.99 (0.14) 0.13 10 10.00 (0.14) 0.14 6.69 6.65 (0.69) 0.77 6.69 6.73 (0.75) 0.75
σs0 1 1.01(0.06) 0.06 1 1.01 (0.06) 0.06 1.7 1.61 (0.25) 0.09 1.7 1.69 (0.11) 0.10 5.87 5.41 (0.46) 0.18 5.87 5.67 (0.15) 0.20
σs1 1 1.01(0.06) 0.06 1 1.02 (0.06) 0.06 1.7 1.59 (0.23) 0.09 1.7 1.68 (0.09) 0.10 9.69 10.46 (1.31) 0.35 9.69 10.14 (0.35) 0.44
σt0 1 1.01(0.06) 0.06 1 1.00 (0.06) 0.06 1.7 1.62 (0.26) 0.09 1.7 1.69 (0.10) 0.10 5.87 5.99 (0.68) 0.19 5.87 5.88 (0.18) 0.23
σt1 1 1.01(0.06) 0.06 1 1.01 (0.06) 0.06 1.7 1.61 (0.22) 0.09 1.7 1.68 (0.10) 0.10 8.76 9.39 (1.06) 0.31 8.76 9.17 (0.27) 0.41
ρ00 0.28 0.28(0.10) 0.07 0.28 0.27 (0.07) 0.07 0.8 0.76 (0.10) 0.03 0.8 0.78 (0.03) 0.04 0.73 0.72 (0.09) 0.05 0.73 0.70 (0.04) 0.05
ρ11 0.28 0.27(0.10) 0.07 0.28 0.28 (0.07) 0.07 0.8 0.76 (0.08) 0.03 0.8 0.78 (0.03) 0.03 0.72 0.76 (0.09) 0.04 0.72 0.72 (0.04) 0.04
ρs 0 0.37(0.07) 0.21 0 0.37 (0.06) 0.21 0.4 0.44 (0.09) 0.17 0.4 0.43 (0.08) 0.17 0.29 0.41 (0.09) 0.16 0.29 0.45 (0.08) 0.18
ρ01 0 0.17(0.05) 0.16 0 0.17 (0.04) 0.16 0.3 0.41 (0.10) 0.18 0.3 0.40 (0.08) 0.18 0.22 0.36 (0.10) 0.18 0.22 0.40 (0.08) 0.19
ρ10 0 0.18(0.06) 0.16 0 0.17 (0.04) 0.16 0.3 0.40 (0.09) 0.18 0.3 0.42 (0.08) 0.17 0.22 0.39 (0.10) 0.18 0.22 0.42 (0.08) 0.19
ρt 0 0.38(0.07) 0.21 0 0.37 (0.06) 0.21 0.4 0.42 (0.09) 0.17 0.4 0.41 (0.08) 0.17 0.28 0.39 (0.09) 0.18 0.28 0.43 (0.08) 0.18
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Table D.2: Simulation results: Bias, variability and coverage rate of surrogacy pa-
rameters when multivariate normality does not hold

Normal Marginals Multivariate normal
Parameter True Value Mean (SD) ¯PSD 95% Coverage True Value Mean (SD) ¯PSD 95% Coverage

β1 1.72 1.71(0.14) 0.13 0.94 1.72 1.71 (0.13) 0.13 0.95
β2 0.28 0.28(0.10) 0.07 0.83 0.28 0.27 (0.07) 0.07 0.95
β3 0 -0.004(0.15) 0.10 0.80 0 0.005 (0.11) 0.11 0.94
γ0 1.72 1.79(0.17) 0.30 0.99 1.72 1.80 (0.14) 0.29 0.99
γ1 0.28 0.20(0.12) 0.27 0.99 0.28 0.19 (0.09) 0.27 1
ρST 0.28 0.19 (0.11) 0.23 0.995 0.28 0.19 (0.08) 0.23 1

Φ10(0) 0.90 0.94 (0.02) 0.04 0.89 0.90 0.95 (0.02) 0.04 0.92

Multivariate t3 Multivariate Normal

β1 0 0.04 (0.86) 0.40 0.72 0 0.01 (0.37) 0.39 0.96
β2 0.8 0.77 (0.13) 0.05 0.73 0.8 0.79 (0.05) 0.05 0.93
β3 0 0.003 (0.18) 0.07 0.69 0 0.002 (0.07) 0.07 0.96
γ0 -0.07 0.27 (0.38) 0.51 0.93 -0.07 0.22 (0.26) 0.53 0.995
γ1 0.83 0.66 (0.18) 0.25 0.93 0.83 0.69 (0.11) 0.25 0.995
ρST 0.83 0.63 (0.14) 0.18 0.90 0.83 0.66 (0.08) 0.18 0.96

Φ10(0) 0.47 0.57 (0.10) 0.15 0.92 0.47 0.55 (0.08) 0.16 0.98

Log Normal Multivariate Normal

β1 0.67 0.71 (1.00) 0.72 0.87 0.67 0.61 (0.73) 0.75 0.94
β2 0.73 0.80 (0.14) 0.06 0.52 0.73 0.73 (0.04) 0.06 0.99
β3 -0.08 -0.11 (0.19) 0.07 0.51 -0.08 -0.07 (0.06) 0.07 0.98
γ0 0.30 0.48 (0.66) 0.83 0.99 0.30 0.55 (0.74) 0.91 0.99
γ1 0.65 0.61 (0.16) 0.18 0.93 0.65 0.57 (0.10) 0.21 1
ρST 0.70 0.64 (0.13) 0.15 0.96 0.70 0.59 (0.09) 0.18 1

Φ10(0) 0.52 0.53 (0.04) 0.05 0.99 0.52 0.53 (0.05) 0.05 0.98

Table D.3: Simulation results: principal surrogacy assessment when multivariate
normality does not hold

Model Normal Marginals MVNorm Multivariate t3 MVNorm Log Normal MVNorm
Truth
PS Invalid Surrogate Valid Surrogate Moderate Surrogate
Prentice Invalid Surrogate Valid Surrogate Invalid Surrogate
Estimation Results
γ0 = 0 Not Rejected, Reject γ1 = 0 0 0 0.82 0.91 0.92 0.84
γ0 = 0 Not Rejected 0.01 0.01 0.96 0.995 0.98 0.93
Reject γ1 = 0 0.02 0 0.84 0.91 0.92 0.90
Reject ρST = 0 0.02 0 0.84 0.91 0.92 0.90
Φ10(0) = 0.5 Not Rejected 0.01 0.01 0.96 0.995 0.98 0.93
Prentice Criteria Not Rejected 0 0 0.64 0.95 0.43 0.80



APPENDIX E

Assessment of normality in age-related macular

degeneration data

Histograms and normal QQ plots for observed age-related macular degeneration data. S is

change in visual acuity at 6 months and T is change in visual acuity at 1 year, both with

BLUP estimates subtracted off to account for random center effects.

Figure E.1: Histograms and normal QQ plots for age related macular degeneration
data
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QQ plot to assess bivariate normality. The plots were obtained by plotting the or-

dered Mahalanobis d2 measures (dj = (Xj − X̄)′S−1(Xj − X̄)), j = 1, ..., n, S =

(1/n)
∑n

j=1(Xj−X̄)(Xj−X̄)′) against the chi-square distribution quantiles QP

(
j

n+1

)
,

where P is the number of columns in X. A graph of {QP

(
j

n+1

)
, d2

(j)}nj=1 should be a

straight line under normality (Holgersson, 2006).

Figure E.2: QQ plots to assess bivariate normality for age related macular degenera-
tion data
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APPENDIX F

Assessment of normality in ovarian cancer data

Histograms and normal QQ plots for observed ovarian cancer data. S(1/4) is the

fourth root of progression free survival time, in months, and T (1/4) is the fourth root

of overall survival time, in months.

Figure F.1: Histograms and normal QQ plots for ovarian cancer data
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QQ plot to assess bivariate normality. The plots were obtained by plotting the or-

dered Mahalanobis d2 measures (dj = (Xj − X̄)′S−1(Xj − X̄)), j = 1, ..., n, S =

(1/n)
∑n

j=1(Xj−X̄)(Xj−X̄)′) against the chi-square distribution quantiles QP

(
j

n+1

)
,

where P is the number of columns in X. A graph of {QP

(
j

n+1

)
, d2

(j)}nj=1 should be a

straight line under normality (Holgersson, 2006).

Figure F.2: QQ plots to assess bivariate normality for ovarian cancer data
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APPENDIX G

Posterior predictive plots for ovarian cancer data

For each of the 4 prior distributions, there are 8 plots, one for each combination of

surrogate and treatment value. Each of the plots shows the Kaplan-Meier plot of the

observed data at the give S and Z value, with the posterior predictive mean and 95%

credible interval obtained from the Gaussian copula model overlayed on top. The

plots show that the proposed model appears to provide an adequate fit to the data.
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Figure G.1: Kaplan Meier plots for original data and posterior predictive distribution
from Gaussian copula–No restriction on ρ’s
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Figure G.2: Kaplan Meier plots for original data and posterior predictive distribution
from Gaussian copula-ρ ≥ 0
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Figure G.3: Kaplan Meier plots from original data and posterior predictive distribu-
tion from Gaussian copula-ρ ≥ 0 and ρ10, ρ01 < ρs, ρt, ρ00, ρ11
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Figure G.4: Kaplan Meier plots, original data and posterior predictive distribution-
Beta Priors
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APPENDIX H

Histograms and normal QQ plots of transformed

colorectal cancer data.

Histograms and QQ plots of the observed S and T after a transformation to approximately normalize

them. For each observed S = s, a uniform random variable between s− 1 and s was draw, and for

T , the third root was taken. Marginal normality appears to hold for T 1/3, while the transformed S

is right skewed.

Figure H.1: Histograms and normal QQ plots of transformed colorectal cancer data

Histogram of S, Z=0

S, Z=0

F
re

qu
en

cy

0 1 2 3 4

0
50

10
0

15
0

Histogram of S, Z=1

S, Z=1

F
re

qu
en

cy

0 1 2 3 4

0
50

10
0

15
0

Histogram of T^(1/3), Z=0

T^(1/3), Z=0

F
re

qu
en

cy

0.5 1.0 1.5

0
20

40
60

80

Histogram of T^(1/3), Z=1

T^(1/3), Z=1

F
re

qu
en

cy

0.5 1.0 1.5 2.0

0
50

10
0

15
0

−3 −2 −1 0 1 2 3

0
1

2
3

4

Normal Q−Q Plot for S, Z=0

Theoretical Quantiles

S
am

pl
e 

Q
ua

nt
ile

s

−3 −2 −1 0 1 2 3

0
1

2
3

4

Normal Q−Q Plot for S, Z=1

Theoretical Quantiles

S
am

pl
e 

Q
ua

nt
ile

s

−3 −2 −1 0 1 2 3

0.
5

1.
0

1.
5

Normal Q−Q Plot for T^(1/3), Z=0

Theoretical Quantiles

S
am

pl
e 

Q
ua

nt
ile

s

−3 −2 −1 0 1 2 3

0.
5

1.
0

1.
5

Normal Q−Q Plot for T^(1/3), Z=1

Theoretical Quantiles

S
am

pl
e 

Q
ua

nt
ile

s

142



143

QQ plots to assess bivariate normality. The plots were obtained by plotting the

ordered Mahalanobis d2 measures (dj = (Xj − X̄)′S−1(Xj − X̄)), j = 1, ..., n, S =

(1/n)
∑n

j=1(Xj−X̄)(Xj−X̄)′) against the chi-square distribution quantiles QP

(
j

n+1

)
,

where P is the number of columns in X. A graph of {QP

(
j

n+1

)
, d2

(j)}nj=1 should be

a straight line under normality (Holgersson, 2006). In this case, bivariate normally

appears to hold.

Figure H.2: QQ plots to assess bivariate normality for transformed colorectal cancer
data
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APPENDIX I

Kaplan-Meier plots of time to recurrence for 12

trials in conlon cancer
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Figure I.1: Kaplan-Meier plots of time to recurrence for the 12 trials. Patients who
died without recurrence are censored for recurrence at that time.
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APPENDIX J

Details of multi-state cure model estimation

procedure

Define the following indicator functions:

RDi = I(δir = 1, δid = 1, Yir < Yid)

RDsi = I(δir = 1, δid = 1, Yir = Yid)

RAi = I(δir = 1, δid = 0, Yir < Yid)

RAsi = I(δir = 1, δid = 0, Yir = Yid)

RAsi = I(δir = 1, δid = 0, Yir = Yid)

NRDi = I(δir = 0, δid = 1, Yir < Yid)

NRAi = I(δir = 0, δid = 0, Yir < Yid)

NRDsi = I(δir = 0, δid = 1, Yir = Yid)

NRAsi = I(δir = 0, δid = 0, Yir = Yid)

Zi = I(ci = 1)

The observed data likelihood is given by:∏n
i=1 { [(1− pi)S2(Yir)λ23(Yir)S3(Yid)λ34(Yid − Yir)]RDi(1−Zi)

[(1− pi)
∫ Yir

0
λ23(u)S2(u)λ34(Yid − u)δidS3(Yid | u)du]RDsi(1−Zi)
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[(1− pi)S2(Yir)λ23(Yir)S3(Yid)]
RAi(1−Zi)

[(1− pi)S2(Yir)λ23(Yir)]
RAsi(1−Zi)

[piλ14(Yid)S1(Yid)]
NRDiZi

[(1− pi)λ24(Yid)S2(Yid) + (1− pi)
∫ Yid
Yir

λ23(u)S2(u)λ34(Yid − u)S3(Yid | u)du]NRDi(1−Zi)

[piS1(Yid)λ14(Yid)]
NRDsiZi

[(1− pi)S2(Yid)λ24(Yid)]
NRDsi(1−Zi)

[piS1(Yid)]
NRAiZi

[(1− pi)S2(Yid) + (1− pi)
∫ Yid
Yir

λ23(u)S2(u)S3(Yid | u)du]NRAi(1−Zi)

[piS1(Yid)]
NRAsiZi

[(1− pi)S2(Yid)]
NRAsi(1−Zi)}

Where:

pi = exp(γ0+γtrtTi+γstSi+γageAi)

1+exp(γ0+γtrtTi+γstSi+γageAi)

S1(t) = exp
(
−
(

t
λ14

)ρ14

exp(βtrt14Ti + βst14Si + βage14Ai)
)

S2(t) = exp
(
−
(

t
λ23

)ρ23

exp(βtrt23Ti + βst23Si + βage23Ai)−
(

t
λ24

)ρ24

exp(βtrt24Ti + βst24Si + βage24Ai)
)

S3(t) = exp
(
−
(
t−Yir
λ34

)ρ34

exp(βtrt34Ti + βst34Si + βage34Ai + βTr34Yir)
)

λ23(t) =
(
ρ23

λ23

)(
t
λ23

)ρ23−1

exp(βtrt23Ti + βst23Si + βage23Ai)

λ24(t) =
(
ρ24

λ24

)(
t
λ24

)ρ24−1

exp(βtrt24Ti + βst24Si + βage24Ai)

λ34(t− Yir) =
(
ρ34

λ34

)(
(t−Yir)

λ

)ρ34−1

exp(βtrt34Ti + βst34Si + βage34Ai + βTr34Yir)

The integrals:∫ Yir
0

λ23(u)S2(u)λ34(Yid − u)δidS3(Yid | u)du∫ Yid
Yir

λ23(u)S2(u)λ34(Yid − u)δidS3(Yid | u)du

were computed by adaptive quadrature using the ’integrate’ function in R.

The Metropolis-Hastings algorithm is used to draw parameters. The chain is run

for 50,000 iterations, after a 10,000 iteration burn-in period with 5,000 draws from the



148

posterior distribution saved for each parameter by taking every 100th draw from the

post burn-in iterations. All of the proposal distributions are normal and centered at

the most recent parameter draw. For the shape parameters, the proposal distribution

is truncated at 0. For each study, the variance of the proposal distribution for each

parameter is adjusted so that each of the resulting acceptance rates are close to 40%.



APPENDIX K

Estimated treatment effects from multi-state cure

model

Figure K.1: Treatment effect estimates for each of the five model components for 12
trials. Each line represents the 95% credible interval for the coefficient
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APPENDIX L

Multi-state cure model Cox-Snell residual plots

Figure L.1: Cox-Snell residual plots for time to recur. Results from 12 trials.
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Figure L.2: Cox-Snell residual plots for time to death after recurrence. Results for
12 trials.
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APPENDIX M

Multi-state cure model deviance residual plots

Figure M.1: Deviance residual plots for time to recurrence plotted against age.
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Figure M.2: Deviance residual plots for time to death after recurrence plotted against
age.
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Figure M.3: Deviance residual plots for time to death after recurrence plotted against
time to recurrence.
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Figure M.4: Deviance residual plots for time to death plotted against age.
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APPENDIX N

Cox-Snell residual plots for multi-state model with

no cured fraction

Figure N.1: Cox-Snell residual plots for time to death for model without a cured
fraction. Results from 12 trials.
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APPENDIX O

Follow-up details for colon cancer trials

Table O.1: Accrual and follow-up details for 12 trials in colon cancer

Study Accrual Length Longest Follow-Up: Longest Follow-Up:
(Years) Original (Years) Artificially Censored (Years)

1 5.7 9.9 7.6
2 1.5 9.1 6
3 3.6 11.4 5.6
4 2 9.9 5.5
5 4.8 12.6 6.8
6 5.2 13.2 7.2
7 4.9 12.9 6.9
8 1.7 9.7 5.7
9 1.4 9.4 5.9
10 2.3 10.3 5.8
11 2 8 5.5
12 2.8 6 5.8
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