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Abstract

One of the most exciting areas of current physics research revolves around the physical

implementation of quantum computing. Proposals exist to embed quantum dots within

photonic crystal cavities and couple the quantum dot states with the cavity modes. With the

proper controls, it may be possible to use these systems as a basis for quantum information

processing.

Semiconductor quantum dots have recently attracted a great deal of research interest.

Due to their macroscopic size, researchers can optically access individual dots and observe

their nonclassical nature. However the applicability of quantum dots can be limited by their

random size and placement using typical growth techniques. In our work we demonstrate

our ability to control the spatial positioning of InAs/GaAs quantum dots though an in

vacuo fabrication procedure. By characterizing their growth and optical properties, we

demonstrate our ability to create optically active quantum dots and to achieve 100% site

placement fidelity.

Photonic crystal cavities are novel devices which enable us to tailor the optical response

of a material. Improving the quality of these cavity designs can strongly influence our

ability to couple them to embedded emitters, such as quantum dots. Optimizing the cavity

configuration is a problem involving many variables which cannot be fully explored using

traditional techniques. We employ a nature inspired search algorithm to discover novel cavity

arrangements that exceed existing methods.

xiii



Establishing the coupling efficiency between a quantum dot and the photonic crystal

cavity surrounding it is an important step to using these as a platform for further investiga-

tions. A variety of techniques exist to demonstrate this property, each with its advantages.

We explore the method of luminescence intensity autocorrelation to determine the exciton

lifetime of a single quantum dot and the influence of its cavity coupling. We demonstrate

this method in the Purcell regime and find the Purcell factor for a weakly coupled quantum

dot.
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Chapter 1

Introduction

Realizing the physical implementation of a quantum computer or quantum information pro-

cessing platform is the current goal of many research agendas. The ability to access new

algorithms and methods of data processing may usher in a new era in scientific discovery and

industrial innovation. Work has been limited by the need to have macroscopic access to sin-

gle quantum states and controlled interactions between states. The most developed systems

for these studies lack the necessary scalability that practical implementation requires.

A semiconductor quantum dot (QD) is a novel heterostructure composed of two dissimilar

semiconductors. Due to differences in their properties they can be suitably arranged to

create quantum confinement in all spatial dimensions. This leads to discrete, atom-like

states in a macroscopic object. Proposals exist to use the state of a single electron inside a

quantum dot as the basis for quantum computing. This is an excellent combination of well

defined quantum state (such as the spin of the electron) and larger dimensions. Additionally,

quantum dots are an extremely scalable system. Once a system has been developed using a

few QDs, we can then expand the application to include hundreds or thousands of dots.

One of the other criteria for building a quantum computer is the need to create inter-

actions between two different quantum states. Using two quantum dots embedded within
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an optical cavity, we may be able to perform such an operation by using the cavity mode

to mediate the interaction. Rather than using traditional optical devices, photonic crystal

cavities have been a preferred medium.

A photonic crystal cavity is a metamaterial with unusual optical properties. By peri-

odically varying the media used, we can change the optical density of states for the overall

structure. This allows us to make mirrors, waveguides, and cavities in a material that would

be otherwise transparent. We can tailor their optical properties by varying the amounts of

materials used and their arrangement.

Embedding quantum dots inside photonic crystal cavities does not guarantee their suc-

cessful interaction. The coupling between the two elements must be established. The

strength of the interaction between the two can rely on a variety of factors, some of which

cannot be controlled after the sample has been created. A careful study of the quantum

dot–cavity interaction is necessary to verify the usefulness of this device for further studies.

1.1 Spatially controlled quantum dots

Quantum dots have a myriad of applications. They have been used in diverse fields such

as imaging in live cells [76], solar cell improvements [50], and near field imaging [29]. The

optical and electronic properties of the QDs influence their applicability in various systems.

In Chapter 2, we discuss various heterostructure types and a brief introduction to their

associated quantum mechanics.

Semiconductor QDs are typically grown using the epitaxial methods discussed in Chap-

ter 3. In a typical growth, the dots form at random locations and with a wide range of

dimensions. Details on how these dots typically are grown are given in Section 3.1. For some

applications, we desire to predetermine the position of the QDs. This cannot be accom-

plished with usual methods. Instead we turn to a patterning process. We modify the growth
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surface of the QDs. In doing so, we create sites where QDs prefer to form. In Section 3.2 we

give details and show results from our patterning techniques. In Section 3.3, we study our

spatial control for differing growth conditions, and in Section 3.4 we show optical studies of

our quantum dots.

1.2 Photonic crystal cavity designs

Photonic crystals are marvelous devices. From their inception in 1987 [33, 77], they have been

used widely in practical applications [64] and fundamental research [32]. To gain insight into

how their unique properties arise, we first review the theory associated with their operation

in Chapter 4. In Section 4.1 we review the affects of applying periodic material parameters

into Maxwell’s Equations. Then, we discuss their effects in one, two, and three dimensions

in Sections 4.2, 4.3, and 4.4, respectively. We also discuss the idea of scale invariance as it

applies to photonic crystals in Section 4.5.

For our application, we are most interested in planar photonic crystal cavities, which are

described in Chapter 5. We consider the two main types of cavity configurations used and

analyze their properties. In Section 5.1, we discuss hexagonal cavities, and in Section 5.2, we

explore linear cavities. We then show how these cavities have been optimized in Section 5.3.

In Chapter 6, we seek to improve our cavity optimization. However this problem cannot

currently be solved using traditional optimization methods. In Section 6.1 we describe a

nature inspired algorithm that we employ to enhance our cavity response. We discuss details

of the simulations needed to characterize our cavities in Section 6.2 and we give our final

results in Section 6.3. The outcome is an unusual, non-intuitive design. We give our physical

interpretation of how it works in Section 6.4.
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1.3 Coupling quantum dots and photonic crystal cav-

ities

Demonstrating the coupling between a quantum dot and its surrounding photonic crystal

can be challenging. Coupling can be indicated through demonstration of photoluminescence

anti-crossing between the cavity and the dot [78] or through changes to the quantum dot’s

autocorrelation [19]. Directly probing the exciton dynamics gives an excellent measure of

the coupling; however, the necessary equipment is not always available[28]. Instead, we use

luminescence intensity autocorrelation which enables us to probe the exciton lifetime similar

to time resolved photoluminescence and observe cavity effects.

Chapter 7 discusses our approach to measuring the cavity, dots, and the interaction of

the two. As an independent measure of the cavity quality, we use the methods described

in Section 7.1. Then, in Section 7.2 we discuss our new method and demonstrate cavity

coupling in our samples.
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Chapter 2

Semiconductor Heterostructures

One of the simplest examples of quantum mechanics producing nonclassical results is that

of the finite square well in one dimension. In one dimension if there exists some region

of potential lower than the surrounding region, we find unique solutions to Schrödinger’s

equation. At energies below the difference between the two potential levels, discrete states

exist [26].

2.1 Finite potential wells

Suppose we have a finite potential well as shown in Figure 2.1. We consider three regions to

which we apply Schrödinger’s equation. On the left the potential is at some V0 to which we

have a solution ψleft. In the center, the potential is zero so our solution, ψctr consists of just

V (x) =

{
0 |x| < L/2

V0 otherwise
(2.1)

Figure 2.1: Potential diagram for a one dimensional finite square well.
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sine and cosine functions. On the right we have a similar situation to the left with solutions

ψright.

− h̄2

2m

∂2

∂x2
ψleft = (E − V0)ψleft − h̄2

2m

∂2

∂x2
ψright = (E − V0)ψright (2.2)

We only concern our analysis for the bound states in which E < V0. These fit the form e±αx.

Considering boundary conditions as x goes to ±∞ we have one possible solution for each

region.

ψright = Ce−αx ψleft = Deαx α =

√
2m(V0 − E)

h̄
(2.3)

ψctr = A sin(kx) +B cos(kx) k =

√
2mE

h̄
(2.4)

If we apply our boundary conditions at x = ±L/2 that ψ and ∂ψ/∂x must both be

continuous we arrive at two possible combinations of these equations. Either A = 0 and

C = D (the symmetric case) or B = 0 and C = −D (the anti-symmetric case). With

suitable combinations of the boundary conditions we arrive at a relationship between α and

k.

αsym = k tan

(
kL

2

)
αanti = −k cot

(
kL

2

)
(2.5)

Going back to our definitions of α and k we realize they both depend on the energy.

Instead we shift to the dimensionless units u = αL/2 and v = kL/2. We also define

u0 = mL2V0/2h̄
2. Making the proper substitutions into our definitions of α and k we find

the relationship u2 = u20 − v2.

√
u20 − v2 =





v tan v (symmetric)

−v cot v (anti-symmetric)

(2.6)
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u20 − v2

v · tan v
−v · cot v

Figure 2.2: Origins of the discrete solutions to the finite potential well show up as solutions to the
transcendental Equation 2.6.

The variable u0 gives us a dimensionless relationship between the quantum well’s width

and height. To perform any further analysis we must assume a value. Here we pick u20 =

20. We see that these are transcendental equations. As such they will only have discrete

solutions. This is important because this is what gives us quantized behavior of a finite

potential well at energies lower than the well depth.

Solutions to the transcendental equations can be found either numerically or using ap-

proximation methods [4]. For this choice of u20 we have v1 = 1.28, v2 = 2.54, and v3 = 3.73.

No other solutions exist. We also see from our previous definition of k and v that we can

relate the energy of the wave function to this result.

En =
2h̄2v2n
mL2

(2.7)

We find that the energy of the solutions scales as 1/L2. Thinner wells lead to higher

energy states due to greater confinement. Deeper wells do not affect the energy of the states,
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Type I
Straddled Gap

Type II
Staggered Gap

Type III
Broken Gap

Figure 2.3: Types of band offsets at the interface between two semiconductors.

but they do affect the number of discrete states that can exist. These are extremely useful

results and we will see them appear experimentally in Chapter 3.

2.2 Heterostructures as finite potential wells

The simple finite potential well system provides analytic solutions. However its usefulness is

limited since such ideal systems do not typically exist in nature. Instead we must engineer

a system using available materials for study. One such way is by creating heterostructures –

combinations of dissimilar materials, such as a stack of layered Indium Arsenide (InAs) and

Gallium Arsenide (GaAs).

For semiconductors we can define their energy levels according to a few basic parameters.

Each material has a conduction band and valence band, with energy EC and EV respectively.

When one material is adjacent to another the order in which the conduction and valence

bands line up can fall into one of the three types shown in Figure 2.3. Each of these band

alignments can serve different purposes. For our work, we are more interested in Type I band

alignment. Here the second material has a higher valence band and lower conduction band

than the first material. In such cases, electrons in the conduction band will tend to “fall

into” the lower potential of the second material. Correspondingly, any holes in the material

will move into the higher potential of the same material. Thus the electron-hole pairs can

become trapped in one material. If we sandwich the smaller gap material on both sides with
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Vacuum Level

EC1

EV 1

EC2

EV 2

EG1

χ1

EG2

χ2

Figure 2.4: This diagram represents the energy levels and material parameters at the interface of
two materials. EC and EV are the conduction and valence band levels. χ is the electron affinity
and EG is the material band gap.

Material χ EG EC EV
InAs 4.9 0.35 -4.9 -5.25
GaAs 4.07 1.42 -4.07 -5.49
AlAs 3.5 2.17 -3.5 -5.67

Table 2.1: Band properties for various materials. All values are listed in eV.

the larger gap material, we can create finite potential wells in one dimension.

To determine what types of band alignment two materials will have, we turn to the mate-

rial parameters shown in Figure 2.4. For each material the conduction band lies some energy

χ, known as the electron affinity, away from the vacuum level. The difference between the

conduction and valence bands is the band gap of the material, EG. Knowing the electron

affinity and band gap for any two materials we can often determine their band alignment us-

ing Anderson’s Rule [3]. For InAs embedded within GaAs we form a Type I band alignment,

suitable for creating a potential well for both electrons and holes[9].

2.3 Quantum wells and wires

By creating a structure that contains a thin plane of InAs embedded within GaAs or GaAs

within AlAs, we will form a finite potential well in the direction perpendicular to the plane.
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However in the plane of the InAs we have no such confinement. An electron inside the

InAs would have a continuum of possible energy levels it could inhabit. If we decompose

the electron’s wave function into a combination of the wave function in the plane (x and y

directions) and the wave function out of plane (z direction) then the possible energy levels

would be a combination of the continuum solutions and the discrete solutions [27]. This

structure is referred to as a quantum well.

Ψ(x, y, z) = Φ(x, y) · ψ(z) Etotal = Ex,y + Ez (2.8)

If the quantum well is sufficiently thin, then the electrons will be mostly confined to two

dimensional motion. This two dimensional limitation leads to a modified electron density of

states which has distinct steps rather than a smooth square root curve [80]. This leads to

these materials performing better in applications such as diode lasers and infrared sensors.

If we take a quantum well and etch away most of the low potential material along a line, we

can form a structure known as a quantum wire. Here we have confinement in two dimensions.

Since there is only one direction in which the electrons can travel, the density of states for

these materials more closely represents delta functions [80]. This greater confinement can

lead to further improved optical performance [36].

2.4 Quantum dots

If we can form material that is confined in all three dimensions we form a quantum dot.

These structures are unique from those previously described since their confinement in all

spatial dimensions leads to discrete energy levels. This means we have unique solutions to

Schrödinger’s equation, just as atoms have unique solutions. For this reason quantum dots

are sometimes referred to as “artificial atoms.” This is particularly useful since we can create
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a macroscopic object (104 − 105 atoms) that has atom-like behavior.

Quantum dot growth is discussed in Section 3.1. Based on the growth mechanism we use,

the dots typically form discs with heights 5–20 nm and diameters of approximately 40–100

nm. If we consider the solutions to this problem to be separable as in Section 2.3, then we

can consider it as a 1D finite potential well in one direction (z) and a 2D finite well in the

perpendicular direction (x and y). Since the thickness of the dot is much smaller than the

diameter, we expect the energy levels due z direction confinement to be much greater than

the in x and y direction. At low energy, we can expect electrons to lie in the lowest possible

z energy. This leaves us with a circular finite potential well, which has simple harmonic

oscillator solutions [10].

These properties of quantum dots have led researchers to study their potential application

in quantum computing. Some of the criteria necessary for a practical implementation of a

quantum computer is that we have well defined, accessible quantum states [18]. Since QDs

are relatively large in dimension we can access a single dot optically. The discretized nature

of the electron wave function gives us a clearly defined quantum state that we can manipulate

to form our quantum bit of information.
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Chapter 3

Site controlled quantum dots

Quantum dots present exciting new opportunities both for pure scientific interest and prac-

tical applications [11]. Industrial applications include low threshold lasers [41], higher sensi-

tivity detectors [74], and improved solar cell efficiency [16, 47, 50]. They have also advanced

physics research by providing single photon sources [14] and may serve as a platform for

quantum information processing [22]. For our interests, one of the main limitations of semi-

conductor QDs is that they tend to nucleate at random positions during growth. Our work

seeks to refine growth techniques to enable placement of a single QD at a predefined location

and to suppress dot formation elsewhere.

3.1 Epitaxial growth

From Chapter 2, we find that quantum dots can be created by surrounding one material with

another. To do this we wish to have dimensions sufficiently small to have confinement effects

but large enough for optical access. For InAs embedded within GaAs, the most common

method of creating these dots is molecular beam epitaxy (MBE).

In a MBE chamber, we can control the growth of our materials, often down to the level
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of a single layer of adatoms [25]. During the deposition process, one of three growth modes

is typically present. If the adatom-adatom interaction is stronger than the adatom-surface

interaction, then the deposited material will tend to form 3 dimensional islands or clumps.

This process is known as Volmer-Weber growth [54]. At the other extreme is Frank-van der

Merwe growth, in which the adatom-surface interaction is strongest. In this type growth we

have smooth layering [54]. The intermediate regime is Stranski-Krastanov (S.K.) growth.

In S.K. growth the deposited layer initially forms a layer as with the Frank-van der Merwe

growth. After some critical thickness, the deposited layer transitions to island structures

[59, 57]. The critical thickness depends on many factors, such as the materials’ lattice

parameters and surface energies.

We consider S.K. growth in terms of the strain on the deposited layer [52, 55]. For small

amounts of material, the strain due to the atom mismatch is small. As the layer thickness is

increased, the strain energy accumulates. After the critical thickness, the cumulative strain

causes the adatom-surface interaction to be weaker than that of the adatom-adatom. It

will be energetically favorable at this point to form islands instead of smooth layers. InAs

and GaAs are zinc blende semiconductors with lattice parameters 0.606 nm and 0.565 nm,

respectively. This lattice mismatch creates the in-plane strain necessary for the S.K. growth.

An interesting phenomena occurs when there are local regions of curvature on substrate.

Deformations in the starting surface of the growth influence the strain on the wetting layer.

These regions will have a lower effective critical thickness due to the added strain. Islands

may preferentially form at these sites of additional strain. This has been demonstrated

by deforming the substrates with lasers, electron beam lithography, and focused ion beam

patterning [5, 69, 70, 45].
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Figure 3.1: FIB induced QD nucleation schematic.

3.2 Focused ion beam induced dot nucleation

One significant disadvantage with S.K. grown quantum dots is the lack of control over the

dot placement and size. While some methods have been used to create uniformly sized dots

[39, 73], they still suffer from lack of spatial control. Many approaches to deterministic dot

placement have been used [5, 45, 69]. One such method is to use a focused ion beam (FIB)

to induce dot nucleation at predetermined coordinates. We do this by growing a sample in

such a manner that QDs will not typically form. Then we create nucleation sites using the

FIB.

We grow the sample below the critical thickness for dot formation. In this regime there

is insufficient stress in the layer of InAs to form quantum dots. We then induce additional

stress at predetermined locations by changing the surface topology. By using a FIB we can

mill circular holes in the GaAs substrate to create QD nucleation sites [45, 67, 48].

Figure 3.1 shows the method we use to form our quantum dots [67]. Beginning with a

GaAs substrate we grow 300 nm of GaAs at Tsub = 590◦C, RGa = 1.01ML/s, and RAs =

2.8ML/s. In these conditions, we have As overpressure, so the rate of growth of GaAs is

determined by the Ga deposition rate, RGa. The sample is transferred in vacuo to the FIB
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where it is irradiated with a 9.2pA, 30 keV Ga+ ion beam. The FIB was allowed to dwell

on each site for either 1 or 3 ms. We created square arrays 40µm× 40µm large with pattern

spacing of 0.25, 0.5, 1.0, or 2.0 µm. The samples were moved back in vacuo to the MBE

growth chamber. There, 2.0 ML of InAs was deposited and covered with 45 nm of GaAs

at Tsub = 485◦C, RGa = 1.0ML/s, RIn = 0.11ML/s, and RAs = 2.7ML/s. All substrate

temperatures were measured by optical pyrometer. This was repeated for 11 total layers of

InAs with the last layer uncapped [67]. These samples were grown by Andrew Martin.

To determine the optical quality of our quantum dots, we performed photoluminescence

measurements. The sample was cooled to 10 K and irradiated with a 633 nm Helium-

Neon laser operating at 7.5µW . Using an infinity corrected 100X microscope objective, the

laser spot was focused onto a spot with approximately 30µm diameter. To further increase

our signal to noise ratio we collected data through the same objective using a confocal

microscope setup [58]. Data was collected from a region approximately 20µm in diameter

as measured by imaging and comparing to a calibration sample. Data was detected with a

0.75 m spectrometer using a 150 G/mm reflection grating and single channel, liquid nitrogen

cooled InGaAs detector. PL data from these samples were collected by Andrew Martin and

myself.

In Figure 3.2, we see the photoluminescence from the eight regions of our sample irradi-

ated by the FIB. Also shown is a representative sample of the luminescence from a region

that was not FIB patterned. We see three distinct peaks located at 1.24, 1.38, and 1.50

eV. The 1.50 eV peak is well established as the bulk GaAs emission [23]. This comes from

both the substrate and the 45 nm of GaAs between the InAs layers. We attribute the 1.38

eV peak to the thin layer of InAs that remains after the quantum dots have formed [51].

This is referred to as the “wetting layer.” The 1.24 eV peak is from the quantum dots. We

expect the wetting layer to have a higher energy than the QD peak because it has greater

confinement. This is due to the wetting layer thickness of about two monolayers (1.2 nm),
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Figure 3.2: Photoluminescence measurements of site controlled QD arrays for 1ms (left) and 3ms
(right) dwell times and various pattern spacings. The inset shows the integrated PL peaks for the
QD and wetting layer. A representative region of the sample without FIB irradiation is shown in
black. Data was taken at 30 K.

whereas the quantum dots are often 10 nm thick [45]. A smaller feature size leads to greater

confinement and higher energy, as shown in Chapter 2.

The unpatterned area of the sample shows no emission at 1.24 eV. This is important

since it verifies that we are growing below the critical thickness for dot formation. It is

also evident that we have modified this material’s optical properties with sub micron spatial

control.

The QD emission shows the general trend that as the pattern spacing increases the

luminescence decreases. This can be mostly attributed to the number of dots formed. For

each region we have the same collection area. However, larger pattern spacings have fewer

FIB sites. Additionally since smaller FIB spacings lead to a greater QD density, less InAs

remains for wetting layer formation. We would thus expect the wetting layer emission to

decrease as the QD density increases. We see this trend in Figure 3.2.

To further study the quantum dots we measured the temperature dependence of the QD

photoluminescence, shown in Figure 3.3. The 0.25 µm pattern spacing with 1 ms FIB dwell

16



0

0.2

0.4

0.6

0.8

1

1.2

1.15 1.2 1.25 1.3 1.35 1.4 1.45 1.5 1.55

P
h
ot
ol
u
m
in
es
ce
n
ce

(A
.U

.)

Energy (eV)

10−1

100

0 50 100 150

In
te
gr
a
te
d
P
L

Temperature (K)

QD

WL

10K
30K
50K
70K

100K
150K

Figure 3.3: Temperature dependence of the photoluminescence for the 0.25 µm pattern spacing, 1
ms dwell time region.

time sample was chosen due to its bright QD peak and narrow line width [67]. The inset

shows the integrated PL intensity from the quantum dots and wetting layer as a function

of temperature.The wetting layer signal drops much more rapidly than does the QD signal.

Dots have discrete densities of states due to their confinement in all 3 dimensions. The

wetting layer has a continuum of states in two dimensions, so non radiative recombination

(thermal quenching) becomes significant at lower temperatures [40].

From this study, we conclusively showed our ability to engineer quantum dot energies

and formation. The ability to spatially control the formation of QDs can lead to new sensor

designs and other industrial applications. For most physics research involving QDs, we are

also concerned with the placement accuracy of our technique. For this we conducted a series

of sample growths and characterizations using imaging techniques and optical studies.

17



Nanotechnology 23 (2012) 135401 A J Martin et al

Figure 2. Plots of (a) QD diameter as measured at the sixth layer
and FIB-milled hole diameter as measured at the substrate of a
separate sample; (b) QD height as measured at the sixth layer and
FIB-milled hole depth as measured at the substrate of a separate
sample; (c) pattern fidelity as a function of FIB dwell time. All data
are for the 2.0 µm pattern spacing as measured on the uncapped
surface of the six layer sample.

For all FIB dwell times, the original pattern was retained
with some level of fidelity despite the relatively thick GaAs
spacer layer. This demonstrates that FIB patterning can
extend the maximum spacer layer thickness achievable for
retaining vertical alignment of QDs, which Xie et al found
to be approximately 7 nm for 90–100% strain correlation
between layers of unpatterned InAs/GaAs QDs grown with
the same InAs deposited thickness we report and at a growth
temperature 15 �C hotter [21, 22]. Some researchers have
reported vertical QD alignment for spacer layers as thick as
30 nm when the amount of InAs deposited for dot formation
was thicker and/or the growth temperature was higher [23,
24] than reported here. In this work, the critical thickness for
QD nucleation on a planar surface has not been surpassed.
Therefore, the vertical QD alignment is not likely to be solely
a result of island-induced strain. Instead, it is likely due to

Figure 3. AFM images of the uncapped surface of the six layer
sample for the 2.0 µm spacing patterns at FIB dwell times of
(a) 1.0 ms, (b) 3.0 ms, (c) 6.0 ms, and (d) 9.0 ms. The inset in
(a) shows a higher magnification image of the multi-dot nucleation
and the inset in (d) shows the concave shape of the FIB pattern,
which did not completely planarize upon layering for the 6.0 and
9.0 ms dwell times.

the relatively large size of our FIB-induced QDs, which were
5–15 nm in height, coupled with any additional strain in the
substrate due to FIB patterning. For the longer FIB dwell
times, pattern retention may also be due to the concave shape
of only partially filled, non-planarized holes, which persisted
through to the sixth layer. To further analyze the effects of
hole filling on layer-to-layer pattern retention, the fidelities
of single and multi-dot formation per patterned site as well
as the percentage of empty sites were measured. Figure 2(c)
shows the single QD, multi-dot, and empty site fidelities with
increasing FIB dwell time for the 2.0 µm pattern spacings.
Single QD fidelity increased from only 18% for the 1.0 ms
FIB dwell time to nearly 100% for both the 6.0 and 9.0 ms FIB
dwell time patterns. The fraction of multi-dot nucleation and
empty sites decreased with increasing FIB dwell time, which
was likely due to hole filling as previously discussed.

The pattern spacing was varied from 0.25 to 2.0 µm to
analyze its effect on QD size and pattern fidelity. Figures
4(a)–(d) show AFM images of the uncapped sixth layer for
the 0.25, 0.5, 1.0, and 2.0 µm pattern spacings at a 9.0 ms FIB
dwell time. Varying the pattern spacing did not significantly
affect the fidelity of single QDs. However, QD size increased
with increasing pattern spacing with the diameter saturating
at approximately 90 nm for the 9.0 ms FIB dwell time
patterns as shown in the plot in figure 4(e). This effect
can be explained in terms of the adatom surface diffusion
length, which determines the capture zone of the FIB-milled
hole [25, 26]. For unpatterned surfaces, QD position, size,
and areal density are limited in part by the capture zone,
which is generally determined by the growth conditions (e.g.,

3

Figure 3.4: AFM images of the surface of the 6th layer of InAs. All regions are patterned with a
FIB spacing of 2 µm. Images are for (a) 1, (b) 3, (c) 6, and (d) 9 ms FIB dwell times.

3.3 Spatial control

3.3.1 Many layer samples

Having demonstrated we can form quantum dots with certain regions and suppress it else-

where we sought to study and improve our QD spatial placement. Andrew Martin and I

grew a series of samples with 6 and 26 layers of InAs. This allowed us to study two regimes of

dot growth – near the FIB milled holes and after many layers where the pattern may become

lost due to planarization [48]. These samples were grown similar to those in Section 3.2 with

a few changes. The GaAs thickness between adjacent layers of InAs was decreased to 20 nm

for the 6 layer sample and 18 nm for the 26 layer sample. By changing to thinner layers

of GaAs we expect more pronounced effects of the dot stacking. The FIB dwell times were

extended to include 6 and 9 ms.

In Figure 3.4 we see the Atomic Force Microscopy (AFM) images for the 2 µm pattern
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spacing at each dwell time for the 6 layer sample collected by Andrew Martin. The insets are

magnified images of a single site showing either single or multiple dot formation. We see in

these images that we have excellent pattern retention, particularly for the longer dwell times.

In Figure 3.5 we report the statistics for QD dimensions and placement fidelity as a function

of dwell time. As the ion dose increases we see the QD and hole diameters increase. This is

as we should expect since longer FIB irradiation will consume more of the substrate, leading

to larger holes. Larger holes should fill in with more InAs leading to larger QD diameters.

As the dwell time increases, we see the hole depth increasing (shown as a negative height

above the surface) and the QD height increasing. These are consistent with the overall dot

size changes.

We define the fidelity as the ratio of the number of sites which contain a QD to the total

number of sites in the sample. For single QD formation, we find that the longer dwell times

are significantly better at single dot formation, reaching 100% fidelity at 6 and 9 ms FIB

dwell times. We expect that large ion doses lead to very steep hole edges. As layers of InAs

and GaAs are added to the sample, it begins to become planarized and the holes are filled

in. Those with deeper and steeper holes are less likely to fill in completely [45]. This can

be seen in the inset images in Figure 3.4. Less planarization should lead to more likely dot

formation [45].

In Figure 3.6 we show AFM images of the 9 ms dwell time for various pattern spacings

and analysis of the QD dimensions. In the magnified inset images, we see the FIB hole

remains apparent regardless of the pattern spacing. As the pattern spacing increases, the

QD diameter increases linearly until 1 µm spacing. Then it remains constant. Also, the

height increases nearly linearly with pattern spacing up to the 1 µm spacing. We believe the

constant dimensions after 1 µm occur because the QD has used all of the InAs available to

it. The wetting layer material is used to form the QDs, and it is only 2 monolayers thick.

There must exist some distance between FIB sites where the material available to the QD
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Figure 2. Plots of (a) QD diameter as measured at the sixth layer
and FIB-milled hole diameter as measured at the substrate of a
separate sample; (b) QD height as measured at the sixth layer and
FIB-milled hole depth as measured at the substrate of a separate
sample; (c) pattern fidelity as a function of FIB dwell time. All data
are for the 2.0 µm pattern spacing as measured on the uncapped
surface of the six layer sample.

For all FIB dwell times, the original pattern was retained
with some level of fidelity despite the relatively thick GaAs
spacer layer. This demonstrates that FIB patterning can
extend the maximum spacer layer thickness achievable for
retaining vertical alignment of QDs, which Xie et al found
to be approximately 7 nm for 90–100% strain correlation
between layers of unpatterned InAs/GaAs QDs grown with
the same InAs deposited thickness we report and at a growth
temperature 15 �C hotter [21, 22]. Some researchers have
reported vertical QD alignment for spacer layers as thick as
30 nm when the amount of InAs deposited for dot formation
was thicker and/or the growth temperature was higher [23,
24] than reported here. In this work, the critical thickness for
QD nucleation on a planar surface has not been surpassed.
Therefore, the vertical QD alignment is not likely to be solely
a result of island-induced strain. Instead, it is likely due to

Figure 3. AFM images of the uncapped surface of the six layer
sample for the 2.0 µm spacing patterns at FIB dwell times of
(a) 1.0 ms, (b) 3.0 ms, (c) 6.0 ms, and (d) 9.0 ms. The inset in
(a) shows a higher magnification image of the multi-dot nucleation
and the inset in (d) shows the concave shape of the FIB pattern,
which did not completely planarize upon layering for the 6.0 and
9.0 ms dwell times.

the relatively large size of our FIB-induced QDs, which were
5–15 nm in height, coupled with any additional strain in the
substrate due to FIB patterning. For the longer FIB dwell
times, pattern retention may also be due to the concave shape
of only partially filled, non-planarized holes, which persisted
through to the sixth layer. To further analyze the effects of
hole filling on layer-to-layer pattern retention, the fidelities
of single and multi-dot formation per patterned site as well
as the percentage of empty sites were measured. Figure 2(c)
shows the single QD, multi-dot, and empty site fidelities with
increasing FIB dwell time for the 2.0 µm pattern spacings.
Single QD fidelity increased from only 18% for the 1.0 ms
FIB dwell time to nearly 100% for both the 6.0 and 9.0 ms FIB
dwell time patterns. The fraction of multi-dot nucleation and
empty sites decreased with increasing FIB dwell time, which
was likely due to hole filling as previously discussed.

The pattern spacing was varied from 0.25 to 2.0 µm to
analyze its effect on QD size and pattern fidelity. Figures
4(a)–(d) show AFM images of the uncapped sixth layer for
the 0.25, 0.5, 1.0, and 2.0 µm pattern spacings at a 9.0 ms FIB
dwell time. Varying the pattern spacing did not significantly
affect the fidelity of single QDs. However, QD size increased
with increasing pattern spacing with the diameter saturating
at approximately 90 nm for the 9.0 ms FIB dwell time
patterns as shown in the plot in figure 4(e). This effect
can be explained in terms of the adatom surface diffusion
length, which determines the capture zone of the FIB-milled
hole [25, 26]. For unpatterned surfaces, QD position, size,
and areal density are limited in part by the capture zone,
which is generally determined by the growth conditions (e.g.,

3

Figure 3.5: Plots of QD and FIB hole (a) diameter, (b) height/depth, and (c) fidelity for various
FIB well times All data are taken for a 2 µm FIB pattern spacing based on AFM from the uncapped
6th InAs layer.
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Figure 4. AFM images of the uncapped surface of the six layer
sample for the 9.0 ms FIB dwell time patterns at pattern spacings of
(a) 0.5 µm, (b) 0.5 µm, (c) 1.0 µm and (d) 2.0 µm. The insets in (a)
and (d) show higher magnification images of the QDs. The concave
shape of the holes (small, dark area beside the QDs) is shown to
persist through to the sixth layer. (e), (f) Plots of the QD diameter
and height as a function of pattern spacing for the 9.0 ms FIB dwell
time patterns of the six layer sample.

temperature and growth rate) [26]. However, by creating
preferential nucleation sites using the FIB and reducing the
thickness of the deposited InAs to below the critical thickness
for dot nucleation on a planar surface, QD position and size
can instead be controlled by the capture zone of the patterned
hole and not the QD. Figures 5(a) and (b) illustrate how the
capture zone of the patterned holes changes for large and
small pattern spacings. If the pattern spacing is large enough,
adatoms moving along the surface can only reach either one
or zero FIB-milled holes before coming to rest. Therefore,
the adatom diffusion length limits the capture zone of the
patterned hole. The volume of InAs available per patterned
site, VInAs, for QD nucleation is then determined by the
maximum adatom diffusion length, �, for the given growth
conditions and the deposited InAs thickness, t, as

VInAs = t⇡�2. (1)

Therefore, increasing the pattern spacing beyond this distance
will not result in a change in QD size without altering the
growth conditions (e.g., changing the growth temperature or
the deposited InAs thickness). However, as the pattern spacing

Figure 5. Schematics showing the change in the capture zone for
(a) close pattern spacings and (b) larger pattern spacings. (c) A
schematic of the ellipsoid and cylinder shapes used to approximate
the QD volume for the wetting layer thickness estimation.

decreases to less than the maximum adatom diffusion length,
the capture zones of neighboring patterned holes begin to
overlap and VInAs is no longer dependent on the maximum
diffusion length, but on the pattern spacing, L, as

VInAs = tL2. (2)

The measured QD diameter and height are consistent with this
analysis, showing a decrease in size once the pattern spacing
decreases below approximately 1.0 µm (figure 4(e)), which is
equivalent to a maximum average adatom diffusion length of
approximately 500 nm for the given growth conditions.

The diffusion length at each pattern spacing can be used
in conjunction with the measured QD dimensions to estimate
the thickness of the WL as a function of the pattern spacing.
The minimum thickness of the WL was estimated for the
9.0 ms FIB dwell time patterns at each pattern spacing. The
volume of the QD was estimated as half of an ellipsoid (see
figure 5(c)) with an additional volume added to take into
account InAs filling of the FIB-milled holes, which were not
planarized at the sixth layer for the 9 ms FIB dwell time
patterns (see insets in figure 4). This additional QD volume
was estimated as a cylinder (see figure 5(c)) with height,
D, equal to the maximum depth of the FIB-milled holes
as measured at the substrate and radius, r, equal to that of
the QDs based on observations from the AFM images (see
figure 4) such that

VQD = 2
3⇡r2h + ⇡r2D. (3)

Although the hole dimensions at the sixth layer may be
slightly smaller than at the first layer, using the hole
dimensions from the first layer provided an overestimation
of the QD volume, ensuring a minimum estimate of the WL
thickness. The WL thickness, tWL, is estimated by setting
the volume of InAs deposited within the capture zone, VInAs,
equal to the sum of the WL and QD (equation (3)) volumes
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Figure 4. AFM images of the uncapped surface of the six layer
sample for the 9.0 ms FIB dwell time patterns at pattern spacings of
(a) 0.5 µm, (b) 0.5 µm, (c) 1.0 µm and (d) 2.0 µm. The insets in (a)
and (d) show higher magnification images of the QDs. The concave
shape of the holes (small, dark area beside the QDs) is shown to
persist through to the sixth layer. (e), (f) Plots of the QD diameter
and height as a function of pattern spacing for the 9.0 ms FIB dwell
time patterns of the six layer sample.

temperature and growth rate) [26]. However, by creating
preferential nucleation sites using the FIB and reducing the
thickness of the deposited InAs to below the critical thickness
for dot nucleation on a planar surface, QD position and size
can instead be controlled by the capture zone of the patterned
hole and not the QD. Figures 5(a) and (b) illustrate how the
capture zone of the patterned holes changes for large and
small pattern spacings. If the pattern spacing is large enough,
adatoms moving along the surface can only reach either one
or zero FIB-milled holes before coming to rest. Therefore,
the adatom diffusion length limits the capture zone of the
patterned hole. The volume of InAs available per patterned
site, VInAs, for QD nucleation is then determined by the
maximum adatom diffusion length, �, for the given growth
conditions and the deposited InAs thickness, t, as

VInAs = t⇡�2. (1)

Therefore, increasing the pattern spacing beyond this distance
will not result in a change in QD size without altering the
growth conditions (e.g., changing the growth temperature or
the deposited InAs thickness). However, as the pattern spacing

Figure 5. Schematics showing the change in the capture zone for
(a) close pattern spacings and (b) larger pattern spacings. (c) A
schematic of the ellipsoid and cylinder shapes used to approximate
the QD volume for the wetting layer thickness estimation.

decreases to less than the maximum adatom diffusion length,
the capture zones of neighboring patterned holes begin to
overlap and VInAs is no longer dependent on the maximum
diffusion length, but on the pattern spacing, L, as

VInAs = tL2. (2)

The measured QD diameter and height are consistent with this
analysis, showing a decrease in size once the pattern spacing
decreases below approximately 1.0 µm (figure 4(e)), which is
equivalent to a maximum average adatom diffusion length of
approximately 500 nm for the given growth conditions.

The diffusion length at each pattern spacing can be used
in conjunction with the measured QD dimensions to estimate
the thickness of the WL as a function of the pattern spacing.
The minimum thickness of the WL was estimated for the
9.0 ms FIB dwell time patterns at each pattern spacing. The
volume of the QD was estimated as half of an ellipsoid (see
figure 5(c)) with an additional volume added to take into
account InAs filling of the FIB-milled holes, which were not
planarized at the sixth layer for the 9 ms FIB dwell time
patterns (see insets in figure 4). This additional QD volume
was estimated as a cylinder (see figure 5(c)) with height,
D, equal to the maximum depth of the FIB-milled holes
as measured at the substrate and radius, r, equal to that of
the QDs based on observations from the AFM images (see
figure 4) such that

VQD = 2
3⇡r2h + ⇡r2D. (3)

Although the hole dimensions at the sixth layer may be
slightly smaller than at the first layer, using the hole
dimensions from the first layer provided an overestimation
of the QD volume, ensuring a minimum estimate of the WL
thickness. The WL thickness, tWL, is estimated by setting
the volume of InAs deposited within the capture zone, VInAs,
equal to the sum of the WL and QD (equation (3)) volumes
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Figure 3.6: AFM images of the uncapped 6th layer of InAs QDs. Pattern spacings are (a) 0.25, (b)
0.5, (c) 1, and (d) 2 µm. QD (e) diameter and (f) height for each spacing. All data are for 9 ms
FIB dwell times.

formation no longer interferes with the adjacent sites [48]. This may be varied by increasing

the substrate temperature to increase the atom diffusion length [49]. Beyond this distance

the effects of our process at each site is independent of the other sites. In general, we should

be able to extend the distance between sites further without changing the QD dimensions.

Analyzing the 26 layer sample shows significant differences from those shown for the 6

layer sample. Here, we have grown so much material on top of our patterned substrate that

the FIB holes are completely filled in. In Figure 3.7 we see AFM images and statistical data

for the 9 ms FIB dwell time at various pattern spacings. The differences between the 26

layer sample and the previous 6 layer sample are striking. For the closer spacings of 0.25

and 0.5 µm the FIB pattern is completely lost. However the 1 and 2 µm samples still show

pattern remnants.

In the 26 layer sample, the large pattern spacings have now formed mounds elongated

along the GaAs fast diffusion direction, [11̄0] [48]. They are approximately 800–1000 nm

long and about half as wide. As can be seen in the insets images in Figure 3.7, the QDs
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Figure 3.7: AFM images of the 26th layer of InAs QDs for 9 ms FIB dwell times at pattern spacings
of (a) 0.25, (b) 0.5, (c) 1.0, and (d) 2.0 µm. In (c) and (d) the inset shows a higher magnification
image to clearly see dot formation on the mound edges.

tend to form on the edges and very top of these mounds. These are the regions where the

surface of the material is changing the most rapidly, which could increase the local stress on

the InAs layer [48]. This additional strain, much like the surface deformation from the FIB

hole, provides a nucleation site for the QDs. However we find that the QDs are no longer

placed at FIB sites. Rather, they are located on the mound edges which may move them

spatially by up to 1 µm.

Since the mound formation reproduces the underlying FIB patterning, we believe this is

a deterministic effect [48]. We know the FIB pattern is retained at the 6 layer sample for

these long dwell times. As layers of InAs and GaAs are placed on the sample, mounding

begins to occur due to the starting surface deformation [37]. As the layers build up, the

effects accumulate until mounds form. This might have potential applications in devices

where we need to create many QDs yet still have reasonable spatial control.
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We also examined fidelity as a function of FIB dwell
time in order to determine which patterning conditions pro-
duced the highest single dot fidelity. Figure 2 shows the
fidelities of the single-, two-, and three-layer samples at the
regions with 1 and 2 lm spacings as a function of FIB
dwell time. The largest single dot fidelities for the two- and
three-layer samples occur for the lowest FIB dwell time.
The single-layer 2 lm spacing, 6 ms FIB dwell time region
was abnormal, with many little dots at each site unlike any
other region. Considering this data point to be an anomaly,
the single dot fidelities in Fig. 2(a) and the single dot and
multiple dot fidelities in Fig. 2(b) are consistent with the
fidelities measured by Lee et al. for single-layer samples
patterned with lower FIB dwell times and smaller pattern
spacings.10 However, the multiple dot fidelities in Fig. 2(a)
are higher.

We also observe that the hole dimensions and aspect ratio
changed with the number of QD layers from measurements
of the dimensions of holes on empty sites for regions with
9 ms FIB dwell time and spacings of 0.5 and 1 lm. Although
the holes on empty sites are not necessarily representative of
the holes seen before InAs deposition, they can give a gen-
eral idea of how the hole dimensions change from layer to
layer. We found that the maximum hole depth increased
with number of layers from 18 to 31 nm for the 0.5 lm spac-
ing region and from 18 to 28 nm for the 1 lm spacing region.
We found that the average hole diameter also increased with
number of layers from 135 6 17 nm to 180 6 57 nm for the
0.5 lm spacing region and from 156 6 11 nm to 167 6 47 nm
for the 1 lm spacing region. The holes also became more
elongated as the number of layers increased, with all the
holes in a region becoming elongated along the same direc-
tion. The ratio of the long and short axes of the holes
increased from about 1 to 1.62 6 0.25 and 1.89 6 0.15 for
the 0.5 and 1 lm spacing regions, respectively.

At the 9 ms FIB dwell time, 0.25 lm spacing region on
the three-layer sample, the holes at each site caused by the
underlying FIB milled hole had become deeper than the
holes on the first layer, tightly packed, and rhombic, a condi-
tion we refer to as faceting [Fig. 3(a)]. We also saw similar,
but more irregular, facets at the second layer of the 9 ms FIB
dwell time, 0.25 lm spacing region, and at the 6 ms FIB

FIG. 1. (Color online) AFM images of the (a) single-, (b) two-, and (c) three-layer regions; (d) fidelity plot for regions with 3 ms FIB dwell time, 2 lm spacing
as a function of number of layers.

FIG. 2. (Color online) Fidelity plots for the single-layer sample for the
regions with (a) 1 and (b) 2 lm spacing, the two-layer sample for the regions
with (c) 1 and (d) 2 lm spacing, and the three-layer sample for the regions
with (e) 1 and (f) 2 lm spacing as a function of FIB dwell time.
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Figure 3.8: AFM images from samples with (a) 1, (b) 2, and (c) 3 layers of InAs. (d) QD fidelity
as a function of of number of layers of InAs. FIB pattern spacing is 2 µm and dwell time is 3 ms.

3.3.2 1, 2, and 3 layer samples

We were also interested in the process of growing only a few layers and how the sample

morphology changes as new layers are added. Andrew Martin and I grew a series of three

samples with one, two, and three layers of InAs. The growth parameters were the same as in

Section 3.1 with the following exceptions. The FIB operated at 10 pA and had dwell times

of 1, 3, 6, and 9 ms. The spacing between the layers of InAs was decreased from 45 nm to 10

nm to get better QD stacking [46]. Pattern spacing of 1 and 2 µm were used. In Figure 3.8

we show AFM images from the 3 layer samples for the 2 µm pattern spacing and 3 ms dwell

time as collected by Marta Luengo-Kovac.

We are interested in the stacking fidelity of this procession, in which a perfect sample

would then have a fidelity of placing a single QD as 100% [46]. In Figure 3.8 we show the

our fidelity statistics for these three regions as a function of the number of layers of InAs.

We find that these regions show the best single dot fidelity for 2 layers. As the third layer is

added we begin to form more multiple dots, decreasing the single dot fidelity.

Encouraged by these results we sought to explore the other parameters of interest – the

FIB dwell time and pattern spacing. In Figure 3.9 we show the fidelity for all of these regions.
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We also examined fidelity as a function of FIB dwell
time in order to determine which patterning conditions pro-
duced the highest single dot fidelity. Figure 2 shows the
fidelities of the single-, two-, and three-layer samples at the
regions with 1 and 2 lm spacings as a function of FIB
dwell time. The largest single dot fidelities for the two- and
three-layer samples occur for the lowest FIB dwell time.
The single-layer 2 lm spacing, 6 ms FIB dwell time region
was abnormal, with many little dots at each site unlike any
other region. Considering this data point to be an anomaly,
the single dot fidelities in Fig. 2(a) and the single dot and
multiple dot fidelities in Fig. 2(b) are consistent with the
fidelities measured by Lee et al. for single-layer samples
patterned with lower FIB dwell times and smaller pattern
spacings.10 However, the multiple dot fidelities in Fig. 2(a)
are higher.

We also observe that the hole dimensions and aspect ratio
changed with the number of QD layers from measurements
of the dimensions of holes on empty sites for regions with
9 ms FIB dwell time and spacings of 0.5 and 1 lm. Although
the holes on empty sites are not necessarily representative of
the holes seen before InAs deposition, they can give a gen-
eral idea of how the hole dimensions change from layer to
layer. We found that the maximum hole depth increased
with number of layers from 18 to 31 nm for the 0.5 lm spac-
ing region and from 18 to 28 nm for the 1 lm spacing region.
We found that the average hole diameter also increased with
number of layers from 135 6 17 nm to 180 6 57 nm for the
0.5 lm spacing region and from 156 6 11 nm to 167 6 47 nm
for the 1 lm spacing region. The holes also became more
elongated as the number of layers increased, with all the
holes in a region becoming elongated along the same direc-
tion. The ratio of the long and short axes of the holes
increased from about 1 to 1.62 6 0.25 and 1.89 6 0.15 for
the 0.5 and 1 lm spacing regions, respectively.

At the 9 ms FIB dwell time, 0.25 lm spacing region on
the three-layer sample, the holes at each site caused by the
underlying FIB milled hole had become deeper than the
holes on the first layer, tightly packed, and rhombic, a condi-
tion we refer to as faceting [Fig. 3(a)]. We also saw similar,
but more irregular, facets at the second layer of the 9 ms FIB
dwell time, 0.25 lm spacing region, and at the 6 ms FIB

FIG. 1. (Color online) AFM images of the (a) single-, (b) two-, and (c) three-layer regions; (d) fidelity plot for regions with 3 ms FIB dwell time, 2 lm spacing
as a function of number of layers.

FIG. 2. (Color online) Fidelity plots for the single-layer sample for the
regions with (a) 1 and (b) 2 lm spacing, the two-layer sample for the regions
with (c) 1 and (d) 2 lm spacing, and the three-layer sample for the regions
with (e) 1 and (f) 2 lm spacing as a function of FIB dwell time.
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Figure 3.9: Fidelity as a function of FIB dwell times. Plots are labelled with pattern spacing (1 or
2 µm) and layers of InAs (1, 2, or 3).

Each plot is labelled with the pattern spacing (1 or 2 µm) and number of layers of InAs. It

is clearly evident that the best single dot fidelities occur for the lower FIB doses. The single

layer sample is an exception. We expect that the surface of the sample was damaged by the

FIB leading to poor dot formation [45]. As is usual with these systems, we expect the single

layer samples to have poor optical quality, so we neglect these regions henceforth [69].

Achieving the best fidelity by using low dwell times seems a sharp contrast to the results

shown for the 6 and 26 layer samples in Section 3.3.1. There, we found large ion doses led

to the best fidelities. If we want to keep pattern retention after a large amount of material

is placed on our substrate, we will need larger surface deformations to begin with. However

for these few layer samples with very thin layers of GaAs we are not working in that regime.

Here, smaller doses are sufficient to nucleate QDs. The final application of the sample should

dictate which regime is best to operate in. For studies of individual QDs it may be best to

work with only two or three QD layers to best isolate the layer of interest. For applications
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dwell time, 0.25 lm spacing region on the three-layer sam-
ple. The lower FIB dwell time may increase the number of
layers that must be grown before facets develop fully.

The 9 ms FIB dwell time, 1 lm spacing region on the
three-layer sample [Fig. 3(b)] had holes similar in shape and
depth to the faceted, 0.25 lm spacing region. The angle
between the short and long axes of the holes in the 1 lm
spacing region was 96 6 6!, which is similar to the angle
104 6 12! measured for the faceted 0.25 lm spacing region.
We note that the AFM measurements presented by Martin
et al. on their six-layer sample exhibit elongated holes for
small pattern spacings, which may reflect the underlying fac-
ets. Interestingly enough, Martin et al. showed relatively
high single dot fidelity by the sixth layer, although it should
be noted that the GaAs spacer thickness of their six-layer
sample was 20 nm, twice as thick as in the samples studied
in this paper.

From the small area scans, we found the highest single
dot fidelities in regions patterned with a short FIB dwell time
and larger spacing. At small spacings, the sites are close
enough to each other that their effects on QD nucleation may
start to interfere, leading to disorder. Additionally, the very
large holes produced by long FIB dwell times may also neg-
atively affect QD nucleation in the initial layers.

For the regions with the highest single dot fidelities, we
performed larger 20 lm " 20 lm AFM scans of the 1 ms
FIB dwell time regions with spacings of 1 and 2 lm, which
included approximately 400 and 100 sites, respectively (Fig.
4). This analysis confirmed that the two second-layer sam-
ples had the highest single dot fidelities. However, the 2 lm
spacing region had a high density (2.8 lm#2) of small inter-
stitial dots in addition to larger on-site dots (0.25 lm#2).
Interstitial dots were also apparent in both of the three-layer
samples and may be caused by a decrease in patterned hole
dimensions as the number of layers increases. Although the
single-layer regions did not have many interstitial dots, they
did have a higher percentage of empty sites and multiple
dots on a single site.

A watershed technique was used on the larger scans to
measure the diameters and heights of the dots. The diameters
were relatively consistent across different spacings and num-
ber of layers. We found for the 1 ms FIB dwell time, 1 lm
spacing regions dot diameters of 108 6 31 nm, 112 6 24 nm,
and 110 6 32 nm for the single-, two-, and three-layer
regions, respectively. The 1 ms FIB dwell time, 2 lm spacing

regions had dot diameters of 100 6 28 nm, 76 6 35 nm, and
93 6 23 nm, respectively. The heights differed depending on
whether the region included small interstitial dots. The
regions without the interstitial dots were the single-layer
1 lm spacing region with dot heights of 13 6 6 nm, the
single-layer 2 lm spacing region with dot heights of
10 6 5 nm, and the two-layer 1 lm spacing region with dot
heights of 11 6 4 nm. The regions with the interstitial dots
were the two-layer, 2 lm spacing region with an average
height of 3 6 3 nm, the three-layer 1 lm spacing region with
an average height of 5 6 2 nm, and the three-layer 2 lm
spacing region with an average height of 3 6 2 nm. The large
variation is due to the large difference in the heights of the
interstitial and on-site dots. These values for the dot heights
are similar to those measured by Martin et al., who measured
a height of 5 6 2 nm for the six-layer 1 ms FIB dwell time
region with a 2 lm pattern spacing. However, the dot diame-
ter of 47 6 12 nm measured by Martin et al. for the same
region is considerably smaller than the diameters measured
here.

FIG. 3. (Color online) AFM images of the three-layer sample for regions
with 9 ms FIB dwell time and (a) 0.25 and (b) 1 lm spacing, showing facet-
ing of the holes.

FIG. 4. (Color online) Fidelity plots obtained from larger area scans of
regions with 1 ms FIB dwell time and (a) 1 and (b) 2 lm spacing, respec-
tively. 20 lm " 20 lm AFM scans of the 1 ms FIB dwell time regions for
the single-layer sample with (c) 1 lm and (d) 2 lm pattern spacings, for the
two-layer sample with (e) 1 lm and (f) 2 lm pattern spacings, and for the
three-layer sample with (g) 1 lm and (h) 2 lm pattern spacings.
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Figure 3.10: Fidelity plots as a function of the number of InAS layers and the associated large area
AFM images. (a), (c), (e), and (g) are for 1 µm pattern spacing while (b), (d), (f), and (h) are for
2 µm spacing. (c-d), (e-f), (g-h) correspond to 1, 2, and 3 layers of InAs respectively.

such as quantum cascade lasers we may prefer higher QD densities, suggesting longer FIB

dwell times and many layers as preferable.

Having determined that the low FIB doses lead to better single dot fidelity for these

samples, we performed larger scale measurements of the 1 ms dwell time samples. By

measuring an area 20µm× 20µm we were able to collect statistics for 400 FIB sites for the 1

µm spacing and 100 sites for the 2 µm spacing. Figure 3.10 shows the AFM images of these

surfaces as well as their fidelity statistics. The trend follows that of Figure 3.8 as we would

expect. What is perhaps most interesting is that for both pattern spacings we achieve 100%
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single dot fidelity of single dots for the second InAs layer [46].

It is remarkable that the distance between the FIB sites plays no effect on the QD

placement. This has huge implications for device manufacturing and incorporating QDs in

further research. One difficulty in accessing or addressing a single dot is due to the high areal

QD density in many samples [44]. Using the FIB induced nucleation method, researchers

may be able predetermine specific sites for QD nucleation many microns away from one

another leading to compete optical isolation. Additionally this method allows us to create

extremely uniform arrays of dots for later integration into devices such as photonic crystals.

3.4 Optical studies

3.4.1 Macro photoluminescence of QD arrays

Having established our ability to place QDs at predetermined coordinates, the next step

was to determine their optical quality. Since our overarching research agenda is to integrate

QDs into devices, their energy levels need to be well established. The six layer sample from

Section 3.3.1 had promising spatial control. We performed photoluminescence measurements

on the 3, 6, and 9 ms dwell time regions.

Shown in Figure 3.11 is the data taken at 15 K collected by Andrew Martin and myself.

The sample was excited using a Helium-Neon continuous wave laser operating at 633 nm

and 101 µW. The laser was focused onto an area approximately 30 µm in diameter through

a 0.7 numeric aperture, infinity corrected objective lens. The luminescence was collected

through the same objective and dispersed by a 150 G/mm reflection grating in a 0.75 m

spectrometer. Data was collected using a liquid nitrogen cooled CCD detector [49]. Also

shown for reference is data from a region of the sample without FIB patterning.

For each of the patterned regions we see three distinct emission peaks. The peak at 1.48

eV is the GaAs substrate emission which is relatively unchanged by the patterning process.
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pattern spacing. Figure 2 shows plots of the average
uncapped QD diameter and height with respect to increasing
pattern spacing for the patterns with a 9 ms FIB dwell time.
Note that the data points for QD height in Figure 2 are
slightly offset in x in order to more clearly display the data.
For the 9 ms FIB dwell time, the average uncapped QD diam-
eter increases from 45 6 14 nm to 91 6 28 nm, and the aver-
age height increases from 6 6 3 nm to 15 6 6 nm for pattern
spacings of 0.25 to 2.0 lm, respectively. The QD diameter
and height saturate after the pattern spacing exceeds approxi-
mately 1.0 lm. This results because the pattern spacing
exceeds the In adatom surface diffusion length during dot
nucleation, therefore, limiting the maximum QD size obtain-
able under the given growth conditions (i.e., growth tempera-
ture, growth rate, deposited InAs thickness).10

Figure 3 shows the PL spectrum from the 9 ms FIB
dwell time pattern for each of the four pattern spacings and
for the unpatterned region. The GaAs substrate peak is at
approximately 1.48 eV, the wetting layer peak ranges from
1.43 to 1.45 eV, and the QD peak ranges from 1.34 to
1.39 eV for the different pattern spacings. For each FIB
dwell time, the wetting layer PL peak shifts to lower energy
with increasing pattern spacing and, for the 1.0 and 2.0 lm
pattern spacings, approaches that of the unpatterned region.

Figure 4(a) shows a plot of the wetting layer PL peak energy
for each FIB dwell time as a function of the pattern spacing.
This is consistent with the prior finding that the wetting layer
thickness increases with increasing pattern spacing,10 there-
fore, causing a shift in emission energy. Additionally, the
relative intensity of the wetting layer PL peak also increases
with pattern spacing and approaches that of the unpatterned
region. This is expected due to the increase in area of the
wetting layer and the decrease in QD areal density as the pat-
tern spacing increases.13 Figure 5 shows plots of the wetting
layer and QD PL intensities relative to the GaAs peak as a
function of pattern spacing.

The PL emission from the QDs behaves somewhat dif-
ferently than that of the wetting layer. Initially, the QD PL

FIG. 1. Atomic force microscope image of the top layer of a six-layer stack
of quantum dots patterned with a 10 pA, 30 keV Gaþ in vacuo focused ion
beam with a 9.0 ms dwell time and a 2.0 lm pattern spacing.

FIG. 2. Plot of quantum dot diameter and height for the 9.0 ms dwell time
patterns as a function of pattern spacing. Note that the height data points are
offset slightly in x to more clearly display the data.

FIG. 3. Photoluminescence data for the 9.0 ms dwell time patterns at each
pattern spacing and for the unpatterned regions. Measurements were taken at
15 K and 101 lW laser power. The GaAs substrate peak is at 1.48 eV, the
wetting layer peak ranges from 1.43 to 1.45 eV, and the QD peak ranges
from 1.34 to 1.39 eV dependent on the pattern spacing.

FIG. 4. Plots of (a) wetting layer and (b) quantum dot photoluminescence
peak energy as a function of pattern spacing for each dwell time. The dashed
line in (a) shows the peak energy for the unpatterned region.
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Figure 3.11: Photoluminescence measurements for pattern spacings of 0.25, 0.5 1.0, and 2.0 µm.
FIB dwell time was 9 ms, and data was collected at 15 K.

This follows expectation since it is a bulk material and should not be significantly affected

by patterning or InAs deposition. Any differences in the GaAs peak are small and can be

attributed to the layers of GaAs between the InAs layers. We attribute the peaks between

1.43–1.45 eV to the InAs wetting layer. We see that as the pattern spacing decreases the

wetting layer intensity decreases and shifts to higher energy The last peaks range from 1.34

to 1.39 eV and correspond to the InAs QDs. These trends are more difficult to visually

identify. Instead we analyze the peak positions and intensities separately.

In Figure 3.12 we show the peak emission energy for the wetting layer and QD peaks. As

the pattern spacing increases, the wetting layer energy decreases monotonically. For larger

spacing, less of the InAs wetting layer material is consumed in the QD formation. However

this stops after the 1 µm pattern spacing. As we see in the wetting layer emission the energy

remains constant after 1 µm. This is in excellent accord with the AFM measurements of

the QD sizes from Section 3.3.1. At smaller pattern spacings, the FIB sites compete for
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pattern spacing. Figure 2 shows plots of the average
uncapped QD diameter and height with respect to increasing
pattern spacing for the patterns with a 9 ms FIB dwell time.
Note that the data points for QD height in Figure 2 are
slightly offset in x in order to more clearly display the data.
For the 9 ms FIB dwell time, the average uncapped QD diam-
eter increases from 45 6 14 nm to 91 6 28 nm, and the aver-
age height increases from 6 6 3 nm to 15 6 6 nm for pattern
spacings of 0.25 to 2.0 lm, respectively. The QD diameter
and height saturate after the pattern spacing exceeds approxi-
mately 1.0 lm. This results because the pattern spacing
exceeds the In adatom surface diffusion length during dot
nucleation, therefore, limiting the maximum QD size obtain-
able under the given growth conditions (i.e., growth tempera-
ture, growth rate, deposited InAs thickness).10

Figure 3 shows the PL spectrum from the 9 ms FIB
dwell time pattern for each of the four pattern spacings and
for the unpatterned region. The GaAs substrate peak is at
approximately 1.48 eV, the wetting layer peak ranges from
1.43 to 1.45 eV, and the QD peak ranges from 1.34 to
1.39 eV for the different pattern spacings. For each FIB
dwell time, the wetting layer PL peak shifts to lower energy
with increasing pattern spacing and, for the 1.0 and 2.0 lm
pattern spacings, approaches that of the unpatterned region.

Figure 4(a) shows a plot of the wetting layer PL peak energy
for each FIB dwell time as a function of the pattern spacing.
This is consistent with the prior finding that the wetting layer
thickness increases with increasing pattern spacing,10 there-
fore, causing a shift in emission energy. Additionally, the
relative intensity of the wetting layer PL peak also increases
with pattern spacing and approaches that of the unpatterned
region. This is expected due to the increase in area of the
wetting layer and the decrease in QD areal density as the pat-
tern spacing increases.13 Figure 5 shows plots of the wetting
layer and QD PL intensities relative to the GaAs peak as a
function of pattern spacing.

The PL emission from the QDs behaves somewhat dif-
ferently than that of the wetting layer. Initially, the QD PL

FIG. 1. Atomic force microscope image of the top layer of a six-layer stack
of quantum dots patterned with a 10 pA, 30 keV Gaþ in vacuo focused ion
beam with a 9.0 ms dwell time and a 2.0 lm pattern spacing.

FIG. 2. Plot of quantum dot diameter and height for the 9.0 ms dwell time
patterns as a function of pattern spacing. Note that the height data points are
offset slightly in x to more clearly display the data.

FIG. 3. Photoluminescence data for the 9.0 ms dwell time patterns at each
pattern spacing and for the unpatterned regions. Measurements were taken at
15 K and 101 lW laser power. The GaAs substrate peak is at 1.48 eV, the
wetting layer peak ranges from 1.43 to 1.45 eV, and the QD peak ranges
from 1.34 to 1.39 eV dependent on the pattern spacing.

FIG. 4. Plots of (a) wetting layer and (b) quantum dot photoluminescence
peak energy as a function of pattern spacing for each dwell time. The dashed
line in (a) shows the peak energy for the unpatterned region.
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Figure 3.12: (a) Wetting layer and (b) quantum dot photoluminescence peak energy for various
pattern spacings and dwell times.

InAs material to form QDs. This leads to a decrease in the thickness of the remaining InAs

wetting layer since material is used up in the QD formation. Thinner wetting layers lead to

higher confinement energies since it is simply a quantum well as described in Section 2.1.

For the QD peak energies we have more complicated trends. From 0.25 – 1.0 µm pattern

spacing, the QD energy decreases. This is likely due to the changes in the dimensions of the

QD. We know the QDs continue to increase in size as the pattern spacing increases since

more InAs is available at each site for dot formation. Larger dots lead to less confinement

and thus lower energy. At the higher pattern spacings of 1–2 µm we see the energy increases.

We know from our AFM analysis in Section 3.3.1 that the size of these QDs when uncapped

are relatively constant [48]. During the capping process, GaAs deposition creates strain on

the wetting layer. Some of the InAs from the QDs may dissolve to decrease the strain during

this deposition. As the distance between the FIB sites increases there is more GaAs material
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peak position (Figure 3) also shifts to lower energy with
increasing pattern spacing. However, at the 2.0 lm pattern
spacing, the peak position shifts back to higher energy.
Figure 4(b) shows a plot of the QD PL peak energy as a
function of pattern spacing for each FIB dwell time. For
each FIB dwell time, the QD PL peak position follows this
same “U”-shaped trend, decreasing in energy initially and
then increasing at larger pattern spacings. Based on the QD
dimensions alone, the PL peak energy is not expected to
change for pattern spacings beyond 1.0 lm because the
dimensions of uncapped QDs remain constant beyond this
point. Therefore, it is expected to follow a similar trend to
that of the wetting layer.

These data suggest that there is a competing mechanism
that alters the QD PL emission as dot separation increases.
There are several factors that can cause QD PL emission to
shift to higher energy. Three primary factors are: QD dimen-
sions, strain, and QD composition. As the size of the QDs
increases, their PL emission energy is expected to decrease
due to reduced quantum confinement. This effect is evident
for the 0.25 to 1.0 lm pattern spacings where there is a
strong correlation between the QD dimensions and their PL
emission energy. However, the uncapped QD dimensions for
the 2.0 lm pattern spacing do not differ from those of the
1.0 lm spacing, so no change (neither increase nor decrease)
in QD PL emission energy as a result of QD size is expected
for pattern spacings larger than 1.0 lm. Strain can also affect
the QD PL emission energy; however, the effects of strain on
the band gap of the dots should be the same for a given FIB
dwell time and independent of the pattern spacing.

It is well known that capping of QDs can alter their size,
shape, and composition, which can affect their optoelec-
tronic properties. Dissolution of InAs QDs during capping
has been demonstrated experimentally using cross-sectional

scanning tunneling microscopy15,16 and simulated using
Kinetic Monte Carlo (KMC).17,18 It has been found that the
driving force for QD dissolution during capping stems from
the difference in surface energy between the QD material
and that of the cap.18 To better understand this, it is helpful
to consider the factors influencing wetting layer formation
and QD nucleation. Upon initial InAs deposition, the pri-
mary driving force is to wet the GaAs surface to reduce the
surface energy. Once the GaAs surface is covered, continued
film growth creates increasing strain due to the lattice mis-
match between InAs and GaAs. This strain creates a driving
force for dot nucleation once a critical thickness is exceeded.
During GaAs capping of the dots, the InAs wetting layer
becomes covered with higher surface energy GaAs. Because
the driving force to reduce surface energy is strong, In dif-
fuses from the QDs to cover the GaAs surface, resulting in
dissolution of the QDs and a reduction of average size and/or
In composition within the dots.18–20 The driving force for
QD dissolution is limited by the amount of available GaAs
surface area. Based upon this, a higher degree of dissolution
is expected as QD separation increases due to the increased
GaAs surface area between QDs during capping.

The patterned QDs presented in this study provide a
unique environment for studying this phenomenon. In the
case of randomly assembled QDs, the effects of surface
energy driven QD dissolution are difficult to observe because
the separation between QDs cannot be predetermined nor
held constant. The creation of large, patterned arrays of QDs
with a predetermined spacing allows for systematic studies
of their structure-property relationships. The shift in PL
emission energy with increasing pattern spacing is a result of
the competition between the effects of QD size dictated by
the pattern spacing and those of dot dissolution upon cap-
ping. At smaller pattern spacings, the effects of QD size on
the PL emission energy dominate over those of dissolution,
but at larger pattern spacings, the effects of QD dissolution
dominate. It is unclear whether the QD dissolution simply
results in a decrease in QD dimensions or a compositional
change within the QD due to GaAs intermixing, since either
will result in an increase in the PL emission energy.

Both the QD nucleation and dissolution processes are
limited by the In diffusion length, but it is important to note
that this length may be different for these two processes. The
size of the uncapped QDs increases as a function of pattern
spacing and saturates at a pattern spacing of approximately
1.0 lm (Figure 2). This suggests that the diffusion length of
In atoms on the InAs wetting layer surface is on the order of
500 nm for the given growth conditions, which corresponds
to half the pattern spacing. The PL data show that there is an
increase in the QD PL peak energy between the 1.0 and
2.0 lm pattern spacings, suggesting a longer In diffusion
length during QD dissolution. If the diffusion length of In
was the same in both cases, then the QD PL emission energy
would saturate at a pattern spacing of 1.0 lm. The fact that it
does not suggest that the diffusion length of In on GaAs is
1.0 lm or greater.

In conclusion, FIB patterning has been demonstrated as
a unique method for observing changes in QD dimensions
and dissolution by altering dot spacing in a controlled man-
ner. Changes in QD dimensions and dissolution are evident

FIG. 5. Plots of (a) wetting layer and (b) quantum dot photoluminescence
peak intensity relative to the GaAs peak intensity as a function of pattern
spacing for each dwell time.
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Figure 3.13: Photoluminescence intensity of the (a) wetting layer and (b) quantum dot peak for
various dwell times and pattern spacings.

available per site for dissolution into the QD upon capping. This would lead to small final

QD sizes, which would tend to increase the QD energy [49].

In Figure 3.13, we show the changes in the photoluminescence intensity for various pattern

spacings. These graphs are scaled such that the peak intensity of the 9 ms dwell time, 2

µm pattern spacing region has relative intensity 1.0. As the pattern spacing increases from

0.25–1.0 µm, the wetting layer intensity increases. Since more material is available to the

wetting layer, it follows there is more emission at higher spacing. As previously found, the

wetting layer is not appreciably used more from 1–2 µm so the intensity remains relatively

constant. For the quantum dot emission we find the inverse trend. The intensity decreases

as pattern spacing increases. This is primarily due to the fact that few dots are formed due

to the lower areal density of FIB sites. At the 2 µm pattern spacing, we have an increase in

emission. We suspect this is due to the greater confinement of these QDs serving as better

“traps” for the excitons prior to recombination.
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The sample was then transferred from the MBE chamber to the FIB
chamber in vacuo for FIB milling of a 2 mm spaced square array
pattern of holes. Next, the sample was transferred back to the MBE
chamber for growth of a multilayer stack consisting of 11 layers of
1.5 ML InAs separated by 45 nm thick GaAs spacer layers. A more
detailed description of the growth can be found in Ref. [14]. The top
layer of InAs was left uncapped for AFM. In the AFM images, such as
Fig. 1 in Ref. [14], QDs were formed only in the FIB-patterned area
because 1.5 ML InAs is below the critical thickness for self-assem-
bling of QDs on the flat surface. Also, we observe that QDs are found
to be on or at the edge of mounds, which are most likely a
consequence of the strain introduced by FIB-patterning and over-
growth. It should be noted that the stacking of QDs in our sample is
not likely to originate from the strain-coupling of QDs between
layers due to the large GaAs interlayer thickness [15], but from the
mounds formed at the FIB hole positions [12].

Micro-PL measurements for the optical characterization of the
QDs were conducted in a confocal microscopy set-up (Fig. 1b) using
a Helium–Neon laser (wavelength 633 nm) as an excitation source
and a Helium flow cryostat for temperature control. To achieve a 2D
spatial map of the emission, a two-dimensional fast-steering mirror
(FSM) scanned the angle of the beam path going into and out of the
objective lens in front of the sample. A lens pair and a 150 mm
pinhole were employed in the collection path for the confocal
microscopy to increase the spatial resolution of the PL map. With-
out the pinhole, a PL map of a QD has a lateral resolution of 5 mm,
which is determined by the diameter of the laser spot on the
sample. With the pinhole in the collection path, the lateral resolu-
tion was improved to 1 mm. The collected PL was spread through a
0.75 m spectrometer with a 1200 lines/mm reflection grating and
recorded by a LN2-cooled Si charge-coupled-device (CCD).

3. Results and discussion

3.1. Optical characterization of single quantum dot luminescence

Emission spectra from the individual QDs were resolved using
scanning micro-PL measurements. In Fig. 2, we show the narrow
line width and spatially localized emission, which is characteristic
of single quantum dots. The emission spectrum has a full width at
half maximum (FWHM) of 0.1 nm (160 meV). We attribute the QD
emissions in this figure and the rest of the paper to single exciton
transitions from the close examination of power dependence
measurements of several similarly obtained QD emissions (see
Fig. 4 for an example).

Fig. 2b shows the spatial map of the PL at the peak wavelength
of 891.1 nm. The 4!4 mm2 area was scanned by the FSM with

0.2 mm step size. In our measurements, the lateral resolution of
the QD PL image is approximately 1 mm (Fig. 2c), which is close to
the diffraction-limited spatial resolution (0.5 mm) determined by
the pinhole size in the confocal microscopy set-up [16]. The size
of the pinhole was selected to balance between the image
resolution and the PL signal loss. While this lateral resolution
enabled us to identify the lateral position of the QDs, vertical
identification of the QDs among 11 layers of InAs was not possible
since the interlayer thickness between QDs (45 nm) was smaller
than the theoretical axial resolution (1 mm). However, it is shown
in Ref. [5] that varying the size of the QDs at different layers by
changing the material deposition could indirectly enable the layer
identification through the shift of the PL wavelength.

3.2. Multiple emissions at the same site

Multiple dot emissions (A–D) at the same location are
observed in Fig. 3, while recording the spectra over a wavelength
range from 870 nm–950 nm. For each transition wavelength
(A: 897.5 nm, B: 921.4 nm, C: 923.2 nm, and D: 924.2 nm), a PL
intensity map scanned over the same area (6!6 mm2) shows the
spatially localized dot emission (inset). The black squares in the
inset indicate the position where the depicted spectrum is
measured. These multiple transitions at near sites could have
originated from either different exciton transitions of the same
QD or several different QDs from the stacked layers.

If the multiple peaks originate from the same QD, the different
exciton transitions could possibly be attributed to either
(i) ground and excited state excitons, or (ii) neutral and charged

Fig. 1. (a) Sample schematic. Seed QD positions (black circles and arrow) are patterned
by FIB in a square lattice of 2 mm spacing. 11 layers of 1.5 ML InAs QDs were
subsequently deposited with 45 nm GaAs interlayers. (b) Scanning micro-PL set-up.
FSM controls the spatial scanning electronically and confocal microscopy is employed
in the PL collection path.

Fig. 2. Spectrally and spatially resolved single dot PL from the FIB-patterned InAs/
GaAs QD sample. (a) Single dot PL measured at T¼30 K. A FWHM of 0.1 nm
(#160 meV) is observed. The inset shows the temperature dependence of the PL
peak wavelength (black circles) and a second order polynomial fit (red line). (b) 2D
spatial map of PL intensity at 891.1 nm. (c) 1D line scan through the center of the
PL peak, showing a spatial resolution of 1 mm as determined by a Gaussian fit (red
line). From Lee et al. [14]. Reprinted by permission of the American Chemical
Society, copyright (2011). (For interpretation of the references to color in this
figure legend, the reader is referred to the web version of this article.)
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Figure 3.14: (a) Photoluminescence spectra of a single quantum dot with the scanning incident
beam on the position of peak intensity. (b) Spatial map at 891.1 nm in the vicinity of the QD peak.
(c) Horizontal intensity line scan through the QD peak demonstrating 1 µm spatial resolution.

3.4.2 Single QD measurements

Our success with optical measurements of ensembles of patterned QDs led us to investigate

the optical properties of the individual dots. We used a slightly different sample from the

previous studies in which the InAs thickness was decreased to 1.5 monolayers and the GaAs

thickness was increased to 45 nm. 11 layers of InAs were grown and the surface was left

uncapped. We cooled the sample to 30 K and used a 1200 G/mm reflection grating in the

same 0.75 m spectrometer. Figure 3.14 shows the photoluminescence of a single QD with

line width of only 0.1 nm (160 µeV)[44].

Jieun Lee and Deborah Tien collected this data using a confocal microscope setup [44].

The excitation laser passes through a beam splitter and off a steerable mirror prior to entering

the objective. The emission is collected through the same objective, mirror, and beam

splitter. It then passes through a pair of matched lenses separated by two focal lengths. At
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excitons. However, as will be discussed in Section 3.3, the excited
state emissions did not appear in this sample under our measure-
ment conditions, and therefore all emissions are from the ground
states, excluding possibility (i). In addition, from the PL maps
shown in Fig. 3, the strongest emission peak position is not the
same for maps A–D and slightly deviated (0.4–0.8 mm) from each
other. From this lateral separation of the PL positions, we exclude
the second possibility as well. Therefore, the observed multiple
peaks at near locations are from separate QDs, which could be in
the same layer or different layers. Since multiple dots could be
formed at a single hole position in the initial layer as observed in
the AFM image of similar samples [10], there is a possibility that
some of the peaks are from dots in the same layer. However, by
varying the axial position of sample relative to the focused laser
spot in our measurement, we could observe changes in the
relative intensity of the peaks A–D (not shown), which is a strong
indication that these dots are located in different layers. From
these observations, we confirm that the multiple emissions are
not from the same QD, but from several different QDs, some of
which are vertically separated.

3.3. Power dependence measurements

In Fig. 4, we present a power dependence measurement of a
single QD and the wetting layer for comparison. While increasing
the excitation power from 4 nW to 2000 nW, we recorded the
emission spectrum from 800 nm to 1000 nm. The QD emission
increases nearly linearly and then saturates as a function of pump
power, which is consistent with single exciton emission by a
single photon emitter. For this spectral window and range of
excitation powers, we did not observe excited state emission. The
absence of excited state emission may be due to the emission
wavelength of ground state excitons (!900 nm) being close to
the bandgap of GaAs (!855 nm), resulting in not sufficiently
strong excited state confinement. It should be noted that similar
measurements were done on three different QDs at different
locations, which showed the same behavior.

4. Conclusions

We have investigated the emission and spatial imaging of the
individual InAs QDs produced by in vacuo FIB templating and MBE

growth of 11 vertically stacked layers. Scanning micro-PL measure-
ments and power dependence measurements indicate that the
stacked QDs are optically active and that we can attribute the
emission to the ground state transition of single excitons. We expect
that the stacking fidelity can be improved using thinner GaAs
interlayers or deeper FIB-patterned holes. The ability to spatially
pattern optically active QDs is promising for applications such as
solid-state quantum optics.
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Fig. 3. QD emission spectrum measured at one site. Multiple emissions are labeled
by letters (A–D) and their PL maps at the corresponding wavelengths are shown in
the insets. Each map is separately normalized so that the color axis shows the
relative intensity at each wavelength as a function of position. All spectra are
measured with 280 nW of HeNe excitation and at the temperature of 30 K.

Fig. 4. The power dependence measurement of a single QD and the wetting layer
(WL). The PL intensity is the recorded peak intensity of the QD and WL peaks,
measured as a function of power at the sample, from 4 nW to 2000 nW. The inset
shows the spectrum recorded at 30 nW.
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Figure 3.15: Photoluminescence intensity dependence on pump power intensity for a single QD and
the wetting layer. Spectra of the QD and wetting layer are shown in the inset for 30 nW pump
power.

the beam waist, we positioned a 150 µm pinhole. In this configuration, any rays entering the

lens pair that are not from the focal point of the objective will be blocked by the pinhole.

Rays that are allowed to pass are then collimated by the second lens. Theoretically, this

system should have a diffraction limited resolution of 0.6 µm [58].

In Figure 3.14, we used a steerable mirror to scan the beam across a 5µm× 5µm area of

our sample using step sizes of 0.2 µm. The intensity map is shown as well as a horizontal line

scan through the peak emission. Based on the full width at half maximum of the emission,

we find this system has a lateral resolution of 1 µm, very close to the diffraction limit [58].

In Figure 3.15, we see the power dependence of the wetting layer and a single QD. Across

nearly the entire power range the wetting layer shows a power law dependence with slope

1.2. However the QD shows linear dependence at low power and saturation at higher power.

This is consistent with emission from a single photon emitter and evidence of the quantum

nature of this emission. Measurements of multiple QDs at different locations all showed the

same trend [44].
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originates from the measurements. However, the center of the
QD emission can be determined with greater accuracy than the
lateral resolution by fitting the QD emission and collecting sta-
tistics from multiple scans.18

In order to determine the relative placement of the QDs, we
thenmapped the PL over a 6! 6 μm2 region containingmultiple
dots using a 0.2 μm step size. For this measurement, we collected
spectra from 890 to 910 nm. Panels a-d of Figure 3 are intensity
profiles of the same region for wavelengths 902.8, 902.0, 898.8,
and 899.2 nm, respectively. Figure 3e shows the PL spectra at the
selected positions labeled A, B, and C. Single dot PL centered at
904.8 nm was also localized around position B but is not shown
here. It should be noted that at least four dots (898.8, 902.0,
902.8, and 904.8 nm) are formed within 0.4 μm from locations A
and B while two (898.8 and 899.2 nm) are formed within 0.2 μm
around position C. In addition, we observed two dots with
the same wavelength at 898.8 nm that are spaced 2.5 μm apart
(Figure 3c), a distance close to the FIB-milled hole separation of
2 μm. In order to verify that the dots are located on the FIB
pattern, we then performed a spatial scan over a larger area and
spectral range. The data presented in Figure 4 were collected dur-
ing a different cool down than for the data used in Figure 3 and
after rotating the orientation of the sample in the cryostat in
order to better align the underlying FIB pattern with the principle
axes of the fast-steering mirror.

A larger area 2D PL scan of the sample was conducted while
recording spectra over a larger wavelength range, from 870 to 950
nm, in order to conduct statistical analysis on the placement and
emission wavelengths of optically active QDs. A total of 26 opti-
cally active dots were observed over 16 array sites, and the spec-
tral inhomogeneity of the measured dots was approximately
20 nm (30 meV) (Figure 4b). In Figure 4a, the filled circles
indicate the center positions of QD PL and the QD wavelength,
as indicated by the color scale. The location of the QDs reflects

the 2 μm square array of holes milled by the FIB. While AFM
measurements have established that the hole diameter is around
100 nm for 3.0 ms FIB dwell time, we observe that these QDs are
more disordered than the original pattern, perhaps due to the fact
that the observed mounding (see Figure 1a) shifts the dot
position.13,14 The apparent scatter in the QD position is approxi-
mately 0.4 μm from the estimated center positions of the FIB
pattern, which is on the same order as the size of the mounds.
Note that multiple dots with similar wavelength tend to form
near each other, consistent with our earlier observations for the
dots in Figure 3.

Figure 4c shows the frequency of occurrences of array sites
containing a particular number of optically active dots, as observed
in the micro-PL measurements and within 0.4 μm from the esti-
mated site positions. At least 65% of sites contained optically
active dots, and the maximum number of quantum dots detected
at one site (four) was smaller than the total number of stacks
(eleven). However, we anticipate that the initial and final (un-
capped) layers of dots may have lower luminescence due to ion
damage and surface states, respectively. In addition, the stacking
fidelity may be low due to the somewhat large interlayer GaAs
thickness.19 Due to the limited axial resolution of this measure-
ment, we cannot determine whether the observed multiple emis-
sions at some sites are from dots formed on different layers or the
same layer. AFM studies on uncapped dots have shown that mul-
tiple QDs may form at a single patterned hole.11 However, we
also noticed that the closely spaced QDs have similar wavelengths,
indicating that they may have similar sizes. Cross-sectional

Figure 3. 2D PL intensity maps of the same spatial region at four
different wavelengths (a, b, c, d) and PL spectra (e) at positions marked
A, B, and C. Each map is separately normalized so that the color axis
shows the relative intensity at each wavelength as a function of position.
Note that two dots of similar wavelength are formed within a lateral
separation of 0.4 μm: 902.8 and 902.0 nm at positions A and B,
respectively, and similarly 898.8 and 899.2 nm at position C.

Figure 4. (a) 2Dmap of single dot PL over an 8! 8μm2 area. The filled
circles indicate the center positions of QD PL and the QDwavelength as
indicated in the color bar. Estimated positions of the FIB holes are at the
center of the dashed gray circles. The circles (0.4 μm radius) are our
estimate of the site area. Note that multiple dots with similar wavelength
can be formed at the same site (arrow). (b) Wavelength distribution of
the QDs. (c) Number of occurrences of sites containing the specified
number of dots.

Figure 3.16: Photoluminescence intensity maps at (a) 902.8 nm, (b) 898.8 nm, (c) 902.0 nm, and
(d) 899.2 nm. Each map is scaled relative to the maximum intensity at that wavelength. Letters
A, B, and C represent the same spatial location for each map. (e) Spectra at positions A, B, and
C.

3.4.3 Mapped multiple QD photoluminescence

Having measured single dot luminescence and determined our optical resolution, we sought

to determine the optical quality and placement of multiple dots within our patterned regions.

Figure 3.16 shows the photoluminescence intensity at four different wavelengths for the same

spatial region collected by Jieun Lee and Deborah Tien. Also shown is the luminescence as

a function of wavelength for the three positions labelled in the maps. From map (c) we see

the spacing between site B and C is 2 µm, which corresponds very well to our FIB pattern

separation [43].
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We also performed large area scans identifying many individual dot peaks. Figure 3.17

shows a map of the peak locations for these dots. The color of the dots indicated the peak

QD wavelength. AFM images from the surface of the sample show mounds similar to those

in Figure 3.7. Each mound is associated with one FIB pattern site. For reference, the gray

circles of Figure 3.17 represent the size of these mounds. There are two striking features

of this map. First, the dots tend for form on the mound locations that are due to the FIB

patterning. Second, dots of similar energy tend for form at the same locations.

Also shown in Figure 3.17 are counting statistics for the QDs. A rough estimate of the

width of the QD frequency distribution correlates well with the QD photoluminescence of

our previous ensembles (Figure 3.11). Defining a “site” as the gray circle shown in (a) the

frequency of QDs per site is also given. Over 65% of all sites contain optically active dots.

The number of dots per site is quite high due to the mound formation. Based on these

optical studies and the previous image measurements, there is good reason to expect we can

further improve our placement of optically active single quantum dots using low FIB dwell

times and few InAs QD layers.
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originates from the measurements. However, the center of the
QD emission can be determined with greater accuracy than the
lateral resolution by fitting the QD emission and collecting sta-
tistics from multiple scans.18

In order to determine the relative placement of the QDs, we
thenmapped the PL over a 6! 6 μm2 region containingmultiple
dots using a 0.2 μm step size. For this measurement, we collected
spectra from 890 to 910 nm. Panels a-d of Figure 3 are intensity
profiles of the same region for wavelengths 902.8, 902.0, 898.8,
and 899.2 nm, respectively. Figure 3e shows the PL spectra at the
selected positions labeled A, B, and C. Single dot PL centered at
904.8 nm was also localized around position B but is not shown
here. It should be noted that at least four dots (898.8, 902.0,
902.8, and 904.8 nm) are formed within 0.4 μm from locations A
and B while two (898.8 and 899.2 nm) are formed within 0.2 μm
around position C. In addition, we observed two dots with
the same wavelength at 898.8 nm that are spaced 2.5 μm apart
(Figure 3c), a distance close to the FIB-milled hole separation of
2 μm. In order to verify that the dots are located on the FIB
pattern, we then performed a spatial scan over a larger area and
spectral range. The data presented in Figure 4 were collected dur-
ing a different cool down than for the data used in Figure 3 and
after rotating the orientation of the sample in the cryostat in
order to better align the underlying FIB pattern with the principle
axes of the fast-steering mirror.

A larger area 2D PL scan of the sample was conducted while
recording spectra over a larger wavelength range, from 870 to 950
nm, in order to conduct statistical analysis on the placement and
emission wavelengths of optically active QDs. A total of 26 opti-
cally active dots were observed over 16 array sites, and the spec-
tral inhomogeneity of the measured dots was approximately
20 nm (30 meV) (Figure 4b). In Figure 4a, the filled circles
indicate the center positions of QD PL and the QD wavelength,
as indicated by the color scale. The location of the QDs reflects

the 2 μm square array of holes milled by the FIB. While AFM
measurements have established that the hole diameter is around
100 nm for 3.0 ms FIB dwell time, we observe that these QDs are
more disordered than the original pattern, perhaps due to the fact
that the observed mounding (see Figure 1a) shifts the dot
position.13,14 The apparent scatter in the QD position is approxi-
mately 0.4 μm from the estimated center positions of the FIB
pattern, which is on the same order as the size of the mounds.
Note that multiple dots with similar wavelength tend to form
near each other, consistent with our earlier observations for the
dots in Figure 3.

Figure 4c shows the frequency of occurrences of array sites
containing a particular number of optically active dots, as observed
in the micro-PL measurements and within 0.4 μm from the esti-
mated site positions. At least 65% of sites contained optically
active dots, and the maximum number of quantum dots detected
at one site (four) was smaller than the total number of stacks
(eleven). However, we anticipate that the initial and final (un-
capped) layers of dots may have lower luminescence due to ion
damage and surface states, respectively. In addition, the stacking
fidelity may be low due to the somewhat large interlayer GaAs
thickness.19 Due to the limited axial resolution of this measure-
ment, we cannot determine whether the observed multiple emis-
sions at some sites are from dots formed on different layers or the
same layer. AFM studies on uncapped dots have shown that mul-
tiple QDs may form at a single patterned hole.11 However, we
also noticed that the closely spaced QDs have similar wavelengths,
indicating that they may have similar sizes. Cross-sectional

Figure 3. 2D PL intensity maps of the same spatial region at four
different wavelengths (a, b, c, d) and PL spectra (e) at positions marked
A, B, and C. Each map is separately normalized so that the color axis
shows the relative intensity at each wavelength as a function of position.
Note that two dots of similar wavelength are formed within a lateral
separation of 0.4 μm: 902.8 and 902.0 nm at positions A and B,
respectively, and similarly 898.8 and 899.2 nm at position C.

Figure 4. (a) 2Dmap of single dot PL over an 8! 8μm2 area. The filled
circles indicate the center positions of QD PL and the QDwavelength as
indicated in the color bar. Estimated positions of the FIB holes are at the
center of the dashed gray circles. The circles (0.4 μm radius) are our
estimate of the site area. Note that multiple dots with similar wavelength
can be formed at the same site (arrow). (b) Wavelength distribution of
the QDs. (c) Number of occurrences of sites containing the specified
number of dots.

Figure 3.17: (a) Map of the spatial location of the QD peak intensity. Gray outlines show typical
mound size for reference. (b) Number of dots at each peak wavelength. (c) Number of dots per
mound site.
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Chapter 4

Photonic crystal band structure

4.1 Maxwell’s equations in periodic media

Photonic crystals are a fascinating, non-intuitive application of Maxwell’s Equations to me-

dia with periodically varying permittivity. By manipulating the structure of the media in

different ways, it is possible to engineer the dispersion relation of light. This enables one

to build high quality “mirrors,” waveguides, and cavities. There are excellent treatments of

the theory behind these photonics crystals by both Sakoda [66] and Joannopoulos [31]. The

subject is so rich, we only have the time to touch upon the aspects relevant to our particular

study. We begin with Maxwell’s equations in a medium with no sources are given in SI units

[30].

∇ ·D(r, t) = 0 (4.1)

∇ ·B(r, t) = 0 (4.2)

∇× E(r, t) = −∂B(r, t)

∂t
(4.3)

∇×H(r, t) =
∂D(r, t)

∂t
(4.4)
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If we restrict ourselves to non-magnetic media, we can assume B(r, t) = µ0H(r, t), where

µ0 is the permeability of free space. We can also relate the electric displacement vector

to the electric field by D(r, t) = ε0ε(r)E(r, t). Here we explicitly show that the relative

permittivity, ε(r), has spatial dependence.

∇ · [ε(r)E(r, t)] = 0 (4.5)

∇ ·H(r, t) = 0 (4.6)

∇× E(r, t) = −µ0
∂H(r, t)

∂t
(4.7)

∇×H(r, t) = ε0ε(r)
∂E(r, t)

∂t
(4.8)

Combining these equations gives a wave equation at any point in space. It is important to

note that solutions to these differ from the standard solutions to the wave equation due to

the spatial dependence of ε(r). We substitute one equation into the other to get a differential

operator for just H or E.

∇×
[

1

ε(r)
∇×H(r, t)

]
= ε0∇×

∂E(r, t)

∂t
(4.9)

= ε0
∂

∂t
[∇× E(r, t)] (4.10)

= −ε0µ0
∂2

∂t2
H(r, t) (4.11)

Using the fact that the speed of light in vacuum can be related to the permittivity and

permeability of free space by c2 = 1/µ0ε0, we arrive at the following differential equations

which are closely related to the standard wave equation.

∇×
[

1

ε(r)
∇×H(r, t)

]
= − 1

c2
∂2

∂t2
H(r, t) (4.12)
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This differential equation is what Joannopoulos refers to as the “master equation” [31]. If

we treat the electric and magnetic field vectors as being separable (spatially vs. temporally),

we can assume that the right hand side of the equation has solutions of the form H(r, t) =

H(r)e−iωt.

∇×
[

1

ε(r)
∇×H(r)

]
=
ω2

c2
H(r) (4.13)

Up to this point, we have done nothing but rewritten Maxwell’s equations in non-magnetic

media and assumed that the solutions were separable. If we go back to the assumption that

the permittivity of the material varies periodically, we can use Bloch’s Theorem to simplify

the problem. To do this, we assume that since the permittivity is periodic, then the solutions

to Maxwell’s equations will also be periodic with the same periodicity [38].

H(r) =
∑

k,n

Hk,n(r) =
∑

k,n

vk,n(r)eik·r (4.14)

In these equations, we assume that the set {Hk,n} form a complete basis. k will be the wave

vector and n is the order. The wave vectors {k} cover all reciprocal space, but we will find

later that we need to only consider the first Brillouin zone [31]. If we expect the solutions

to Maxwell’s equations to be waves, we can suppose that the solutions are of the form eik·r.

Therefore we can simplify this problem to solving for the spatially dependent v(r), which

must satisfy the conditions

v(r) = v(r + ai), i = 1, 2, 3 (4.15)

Here we have assumed {ai} are the primitive lattice vectors of the photonic crystal. That

is, ε(r) = ε(r + ai).

Since v(r) is periodic, we can represent it using a Fourier series [4]. We set {bi} as the

reciprocal lattice vectors of the photonic crystal (ai · bj = 2πδij), and li as integers. We can
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move around our reciprocal vector space by any G = l1b1 + l2b2 + l3b3.

Hk,n(r) =
∑

G

Hk,n(G)eiG·reik·r =
∑

G

Hk,n(G)ei(G+k)·r (4.16)

Now looking back at Equation 4.13, we see that we need to operate on factors of 1/ε(r).

Since ε(r) is periodic, so is 1/ε(r). Thus we can also expand this as a Fourier series.

1

ε(r)
=
∑

G

κ(G)eiG·r (4.17)

−
∑

G

κ(G−G′)(k + G)× {(k + G′)×Hk,n(G′)} =
ω2
k,n

c2
Hk,n(G) (4.18)

We now have an eigenvalue problem that can be solved numerically. For any given wavevector

k and mode n we can determine the eigenvalue ω2
k,n/c

2. A variety of numerical techniques ex-

ist to determine this. Iterative eigensolvers such as MPB [35] can determine these dispersion

relationships between ω and k for arbitrary geometries.

Since we know ε(r) we can calculate κ(G). The number of vectors, G, and modes, n, we

use will determine the accuracy of our calculation. Modern computer speeds give very good

convergence in solving these problems for arbitrary geometries in minutes [35].

4.2 One dimensional photonic crystals

Having the necessary theory in place to study these structures, we first look at well known

phenomena. For example, distributed Bragg reflectors can be built by alternating layers of

different materials with specific thicknesses [71]. We have four parameters in this case – the

permittivities and thicknesses of each of the two media. We calculate ω for each k along the

axis of media and find some interesting phenomena.

Suppose we begin with the limit of εhi = εlow. This is essentially a uniform medium,
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Figure 4.1: One dimensional photonic crystal schematic.

so we expect a linear dispersion relationship. That is, ω = ck. In Figure 4.2, we see this

relationship. If however, we begin with a large quantity of low dielectric material and add a

small amount of high dielectric material, it changes the dispersion relationship significantly.

We see that near the band edge (ka/2π = 1/2) there are now certain frequencies (shown

in gray) that have no corresponding wave vectors. This is referred to as a “photonic band

gap” since there is now a band of frequencies for which light cannot propagate through this

material since there is no associated wave vector, k.

For a physical interpretation of the origins of this band gap we can consider what is

happening at the band edge since this is where the two bands separate. This occurs when

the wavelength is roughly twice the lattice parameter (ka/2π = a/λ = 1/2). Since the unit

cell has symmetry though its origin, there are only two ways to align this mode. Either

the peak must be centered about either the center of the high dielectric material or the low

dielectric material [31].

Low frequency modes typically concentrate their electric field energy in high permittivity

regions. This can be seen roughly understood by looking at Equation 4.13. Higher ε should

in general have lower ω solutions. So the mode centered about the high dielectric material

will have more field energy in lower frequencies regions than the mode centered about the

low dielectric. The first band (lower ω) near ka/2π = 1/2 will have lower frequency than

39



0

0.2

0.4

0.6

0.8

1

1.2

-0.5 0 0.5

F
re
q
u
en

cy
ω
(2
π
c/
a
)

Wave vector k (2π/a)

One material

0

0.2

0.4

0.6

0.8

1

1.2

-0.5 0 0.5

Wave vector k (2π/a)

dhi/dlow = 0.01

0

0.2

0.4

0.6

0.8

1

1.2

-0.5 0 0.5

Wave vector k (2π/a)

dhi/dlow = 1

Figure 4.2: Photonic band diagrams for one dimensional multilayer crystal.

the second band near the same k. This gives rise to the separation of the two bands.

In Figure 4.2, we see that by adding a small amount of high dielectric material we have

another band gap near k = 0 and ω = 0.9. This occurs when the wavelength is roughly

equal to the lattice constant (higher order modes are folded back into the first Brillouin

zone). Again, the same argument can be made for the symmetry forcing one mode primarily

into the high dielectric material and the other mode into the low dielectric material. At

higher frequencies, we continue to see this same pattern.

To make devices, we often want to make the size of the band gap as large as possible.

A useful metric to measure the size is the dimensionless quantity of the size of the band

gap (in frequency) divided by the frequency at the center of the gap, ∆ω/ωg. The so-called

“gap-mid gap ratio” indicates how effective the material rejects light in that region [31].

We approach tuning this ∆ω/ωg by looking at the available parameters to vary. We

expect that the best result will come from materials that have very large differences in their

permittivities. This is usually limited to the materials available. In general, large differences

in ε lead to larger band gaps. We can also see in Figure 4.2 that by varying the relative

thickness of the materials we can greatly increase the band gap. With equal parts of high

and low dielectric material we see many large band gaps.
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In Figure 4.3 we calculate ∆ω/ωg for the first gap as a function of the ratio dhi/dtotal.

At dhi/dtotal = 0 and 1 we have no gap since it is a pure material and should have linear

dispersion. For εhi = 13 and εlow = 1, the largest ∆ω/ωg for the first band gap occurs

when dhi/dtotal = 0.22. By tuning these parameters, we are effectively tuning the dispersion

relationship of this material.

This is a particularly useful example because it has a well known analytical result. To

make a perfect dielectric mirror, we simply create a quarter wave plate. That is, we want one

quarter of a wavelength inside each material [71]. For our optimized solution, dhi = 0.22dtotal.

The frequency at the middle of the band gap is ωg = 0.3169 2πc/dtotal. So, for the high

dielectric material λhi = λvac/nhi = 2πc/nhiωg = 0.875dtotal. One quarter of this wavelength

is 0.22dtotal, just as expected. For the low dielectric material, we have the same result with

λlow/4 = 3.155dtotal/4 = .789dtotal .

The lessons we can learn from this simple one dimensional case can be expanded to two

and three dimensions. In general, lower lying modes primarily concentrate themselves in high

dielectric material. The more we can force the next modes into the low dielectric modes, the

larger our photonic band gaps will be.
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4.3 Two dimensional lattice of air holes in GaAs

We now extend our analysis into two dimensions. In doing so, we must also break our

discussion into the differences between the transverse electric (TE) and transverse magnetic

(TM) modes for our crystal. We know from studies of crystal structure that in 2 dimensions

we have 5 types of lattices [38]. The two most promising candidates are the square and

hexagonal lattices [31, 66]. We will consider our lattice to extend infinitely in the ẑ direction

and consist of air holes (ε = 1) inside GaAs (ε = 12.9).

4.3.1 Square array of air holes

We begin by looking at a square array of holes. When analyzing the band structure we

typically look only at the wave vectors along the edges of the first Brillouin zone. This is

because minima and maxima for bands almost always lie along these lines. For a square

array, the reciprocal lattice is also square. So the problem can be simplified to looking along

the Γ, X, and M points. These are shown in Figure 4.4(a).

Figure 4.4(a) shows the band structure for a square array of holes with r = .45a. We can

see that this structure has both TE and TM band gaps, but the gaps appear at very different

frequencies, due to the electromagnetic boundary conditions. For the TM modes, the electric

field is parallel to the interfaces of air and GaAs. Since E|| is continuous at the interface,

the energy density ε|E|2 is much lower in the air regions [31]. This allows us to concentrate

more energy in the high dielectric regions, giving lower frequencies. The next band up must

be orthogonal to this band forcing more electric field energy into the air regions with higher

frequency. Since the regions of high dielectric are connected, this severely limits the ability

to “push” modes into the air regions. Thus we have a very small TM band gap.

For the TE modes the connected regions actually help create a large band gap. The first

two modes operate very similarly to the 1D case presented before. The exception is that
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Figure 4.4: (a) Band diagram for two dimensional square array of air holes in high dielectric
material. (b) Band gap dependance on hole radius for square array in two dimensions.

they now have two orthogonal paths of high dielectric material. This allows the first two

bands to have low frequency. The third band must be orthogonal to the first two bands,

which will be primarily in the air region. This gives the third band much higher frequencies,

leading to the large TE band gap at relatively high frequency.

We look at the available tuning parameters for this structure. In Figure 4.4(b) we vary

the hole radius and consider the gap/midgap ratio. We see that for TE modes, r = 0.45a

gives the largest gap of 17%. For TM modes, we can get nearly 40% band gap for r = .55a.

It is important to note that this large band gap occurs when the high dielectric material is

completely isolated (r > .5a). This prevents the second TM mode from concentrating in high

dielectric regions Some work demonstrates inverted versions of these structures with high

dielectric pillars in air [61]. For our purposes we are more interested in planar PC cavities.
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4.3.2 Hexagonal array of holes

We saw in the previous section that isolated regions of high dielectric material led to TM band

gaps and thin veins of material led to TE gaps. As an effort to optimize a design containing

both isolated regions and connected veins, we turn to hexagonal arrays. In Figure 4.5(a)

we see the results for r = 0.48a. At this radius, the holes are almost touching with a very

thin material between them. This leads to the ideal conditions for both TE and TM modes.

This configuration has a complete photonic band gap, a region with overlapping TM and

TE gaps. This is interesting because it tells us that a structure of this form will completely

block light at those frequencies, even though both materials are optically transparent.

For two given material permittivities, this structure has one parameter to optimize – the

hole radius. In Figure 4.5 we show the band gap sizes for the TE and TM modes. We see

that for small r, TE polarizations can have large band gaps. We also see that TE modes

with a hexagonal array give larger band gaps than TE modes in a square array. At first

glance, it may appear that TM modes in square arrays are ideal, but this only occurs when
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r > 0.5a which means the high dielectric material is not connected. Our goals are focused

on planar devices in which the high dielectric material must be continuously connected. For

this reason we focus instead on the TE modes in a hexagonal array.

Creating a structure with a complete band gap can be beneficial, but there is a significant

flaw in this design for use in a planar device. Eventually, we will want to create a thin slab

of high dielectric material suspended in air. For r = 0.48a this leads to very thin veins

that provide the structural support for the high dielectric material. When building these

devices, the veins are too brittle for practical purposes. So instead we switch from examining

devices with a complete band gap and see how we achieve the best possible band gap while

maintaining structural integrity. Additionally, we must extend our analysis to include finite

slab thicknesses.

4.4 Hexagonal lattice of air holes in a GaAs slab

We turn our attention to three dimensions, since we are interested in building planar photonic

crystals. Introduction of a finite slab thickness significantly alters the mode profile of our

hexagonal array. The first question we ask is how thick our slab should be to get the best

possible band gap. For an infinitely thin slab we will no longer have modes confined to the

slab. This is simply due to the fact that all modes would have to spend a significant amount

of time in the air above and below the slab resulting in higher frequencies. Higher mid gap

frequency leads to smaller ∆ω/ωg. Also, these frequencies may lie too close to the light

cone to get discrete modes in the crystal [31]. To the other extreme, as the slab thickness is

increased, the modes tend to have more energy in the high dielectric material lowering the

frequency of all of the modes. Higher order modes have more vertical nodes, so they are

more affected than lower order modes. So as the slab thickness increases the higher order

modes are “pulled down” more than the lower order modes until the gap disappears. The
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optimal slab thickness is a balance of these two effects, which occurs at dslab ∼ 1.2a.

In Figure 4.6, we show the band structure for a hexagonal array slab with thickness 0.6a

and hole radius 0.3a. There appears to be no band gap at all. We must remember that the

speed of light sets the upper limit on the ω(k) relationship. Any frequencies above the “light

cone” shown cannot exist, even though they are valid solutions to our eigenvalue problem.

Taking this into account, we have a TE band gap with ω = 0.284 2πc/a and ∆ω/ω = 27%.

4.5 Scale invariance

One of the most interesting features of Maxwell’s equations is that they are scale invariant.

Electromagnetic phenomena have no inherent scale. Any solution we find to our band struc-

ture will work for all frequencies, provided we choose our material parameters correctly. In

our analysis we will define some scaling parameter of interest. For many of our materials, we

use the lattice parameter, a. This is typically a feature particular to the system of interest.

To express units of frequency, we use units of c/a or angular frequency 2πc/a.
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One very useful feature of this scale invariance is that we can design a system to have a

large band gap at some scale invariant frequency. Then we can build the structure to give

us any frequency of interest by setting parameters accordingly. For example, suppose we

develop a photonic crystal slab with a large band gap centered around f = 0.259c/a. Our

input parameters are that the holes are hexagonally arranged with radius r = 0.3a and the

slab has thickness d = 0.6a. If we wish to use this in a device that operates at 950 nm, we

perform a few simple calculations.

f =
c

λ0
=

c

950nm
= 0.259

c

a
(4.19)

a = (0.259)(950nm) = 246nm (4.20)

Thus we need to make the material have lattice parameter 246 nm, thickness (0.6)(246nm) =

148nm, and hole radius (0.3)(246nm) = 74nm. This is an incredibly useful feature to these

calculations. Care must be taken since we have assumed the permittivity of the material is

independent of frequency. In practice, this is not true. Since we often know the frequencies

we are interested in working with, we can usually approximate the permittivity to good

accuracy.

We must also take into account two features of the temperature dependence of our mate-

rial’s properties. First, the permittivity of the material does have some temperature depen-

dance [23]. Second, as temperature changes the material will physically expand or contract

which changes the size and separation of the air holes [38]. Transitioning from room temper-

ature to 10K we have observed 2% changes in material responses simply due to these effects

in our samples.
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Chapter 5

Photonic crystal cavities

An interesting phenomena that occurs when creating photonic crystals is the existence of

defect states in the band structure. We begin with a hexagonal lattice of air holes in a thin

GaAs slab and introduce a defect by filling in one air hole. At the location of this site, we

have violated the conditions of Bloch’s Theorem given in Chapter 4. If we move far away

from the defect site in the photonic crystal we should return to a place where the conditions

are satisfied sufficiently. Intuitively, this means that frequencies which are forbidden in the

crystal may exist at the defect site. However if light at that frequency exists at the defect

site, it should be confined spatially since it encounters a perfect mirror when penetrating

any direction into the crystal. This essentially creates an optical cavity at the defect site.

As with any optical cavity, we need to quantify how well light is confined and localized.

To parameterize the confinement, we use the quality factor – the ratio of energy stored to the

energy dissipated per cycle in the device [56]. For describing the light localization we refer

to the mode volume of the cavity. Mode volume definitions vary depending on the process

of interest. For our case, we are concerned with the Purcell enhancement (or suppression) of

spontaneous emission of a quantum dot embedded within the cavity. For our purposes, the

quantity of interest is the ratio of the quality factor to the mode volume (Q/V ). We define
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our mode volume based on Purcell enhancement [15].

V ≡
∫
ε(r) |E(r)|2 dr

max
(
ε(r) |E(r)|2

) (5.1)

Determining these parameters cannot be done with the same frequency domain analysis

used in Chapter 4. Instead, we switch to time domain analysis and use finite difference

time domain (FDTD) simulations. We create a finite sized photonic crystal and simulate

Maxwell’s equations through the material. By seeding the cavity with a broad (frequency)

Gaussian pulse at a position of low symmetry in the crystal and allow the system to decay,

we can monitor the electric field. After many time cycles have passed only the cavity defect

state frequencies will remain. We repeat this process using a narrower band input pulse until

we are exciting only a single mode of the cavity. We can then monitor the electric field at the

anti-node of the cavity to determine the quality factor. The mode volume is then calculated

at the end of the simulation. Details on the procedures used can be found in Appendix A.

When discussing the mode volume of a photonic crystal, different units can be found

in the literature. Some work reports findings in µm or another SI unit. This is often not

a useful measure since it applies only to the specific choice of lattice scale. Since photonic

crystals are scale invariant [31], a more useful measure will scale as well. In our work, we

describe the mode volume in terms of the crystal lattice parameter, a. Other work uses

either wavelength or half wavelength in the high dielectric material, (λ0/n)3 or (λ0/2n)3

respectively. λ0 represents the free space wavelength. With a known central frequency,

conversion between the two is simple. Suppose the mode has frequency f = 0.26c/a and the

high dielectric material is GaAs with n = 3.59.

λ0
n

=
c

nf
=

c

(3.59)(0.26c/a)
= 1.07a

λ0
2n

= 0.54a (5.2)

For all of the simulations shown the following parameters were assumed. The permittivity
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of the GaAs slab and air were 12.9 and 1.0, respectively. The simulation was performed on

a Yee grid with approximately 20 pixels per lattice parameter [53]. At least 12 air holes

surround the cavity in all directions. 1.5a of air surrounds the slab on each side. The

hole radius is 0.3a, and the slab thickness is 0.6a. A perfectly matched layer surrounds the

simulation on all sides with thickness 1a. The source pulse is Gaussian with fcan = 0.25c/a

and δf = 0.1c/a initially. After finding the cavity mode frequency the results were iteratively

run at narrower bandwidth until only a single mode was excited. The cavity mode is polarized

with the electric field in the plane of the slab pointed in the direction perpendicular to the

cavity axis (Ey) .

5.1 Hexagonal cavities

The simplest cavity can be created by removing a single hole from our lattice, known as a

H1 cavity (hexagonal, one layer of holes removed). This creates a very small spatial area

where the periodicity assumptions are violated. We can expect that this small spatial defect

will correspond to a small mode volume. In Figure 5.1 we show the electric field mode

profile superimposed on an outline of the cavity structure. Also shown are the H2 and H3

structures, which have two or three layers of holes removed, respectively.

Looking at the H1 mode profile we see the electric field is highly concentrated at the

antinode at the center of the cavity and more weakly near the edges of the two holes adjacent

to the cavity. This cavity has a very small mode volume of 0.32a3. The cavity’s corresponding

quality factor is only approximately 310. This cavity has excellent localization but very poor

quality.

We can explain the low quality factor by looking at the limiting cases for a cavity. For an

infinitely small cavity light could not exist since there would be no defect, leading to Q = 0.

At the other extreme, suppose we had an infinitely large cavity that met a perfect photonic
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Figure 5.1: H1 (hexagonal, one layer removed), H2, and H3 cavity mode profiles, respectively.

crystal. This we would expect to give perfect reflection for light in the photonic band gap of

the crystal, corresponding to Q =∞. For the H1 cavity, we have a very small defect region

so we have a very small quality factor. As we increase the size of our cavity we should expect

the quality factor and the mode volume to increase.

By expanding to a H2 cavity we see a significant increase in both the quality factor

(Q = 2595) and the mode volume (V = 1.01a3). The mode profile in Figure 5.1 shows the

electric field travels much further into the photonic crystal. By penetrating further into the

crystal, the mode experiences more of the conditions of an ideal photonic crystal, reflecting

the signal back toward the cavity. This leads to a higher quality factor at the expense of the

mode volume. Additionally the cavity now has three strong antinodes in comparison to the

one of the H1 cavity.

Extending this analysis to the H3 cavity, we find the effects are further exaggerated. The

H3 cavity has Q = 89291 and V = 3.32a3. From the mode profile, we see the localization is

extremely poor. In fact the cavity now contains 7 strong antinodes and 6 weaker antinodes.

From the perspective of simply considering the Q/V ratio, one might be led to consider the

H3 cavity superior to the H2. We prefer our cavity to have a single point of interaction. For

this reason the H3 cavity is not ideal. Table 5.1 shows a direct comparison of the hexagonal

cavity parameters, as well as those of the linear cavities described in Section 5.2. These

cavities do teach us an important aspect of their design. Poor spatial localization often leads
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Cavity type f(c/a) Q V (a3) Q/V (a−3)
H1 0.281 310 0.32 969
H2 0.253 2595 1.01 2381
H3 0.253 89291 3.32 26894
L3 0.260 5946 0.74 8035
L5 0.258 39098 1.16 33705

Table 5.1: Calculated parameters for various hexagonal and linear cavity designs.

to higher quality.

In Table 5.1 we also see the H1 cavity frequency is approximately 10% higher than that of

the other cavity designs. This feature is unique to the extremely small cavity configuration

[15]. In order to support a stable cavity mode, at least one half wavelength of the mode must

exist within the cavity. For a single missing hole the typical wavelength cannot fit. Instead

the mode must have a higher frequency (lower wavelength) yet still exist within the photonic

band gap of the crystal. Modes closer to the band edges are less well bound, decreasing the

cavity quality factor [31].

5.2 Linear cavities

An alternate approach to removing holes in a hexagonal array is to remove them linearly.

By removing 3 holes linearly we have an L3 cavity, the most widely used photonic crystal in

recent literature [21]. Using the same logic as with the hexagonal cavities, we expect that

increasing the cavity size with increase both the mode volume and quality factor. A table

of calculated parameters for all cavity styles shown is given in Table 5.1.

We see that going from a H1 to a L3 and then a L5 cavity we do increase both mode

volumes and quality factors. The changes in linear cavities are very different from those of

the hexagonal cavities. Going from the H1 to the H2 cavity the mode volume increase by

a factor of 2.5 and the quality increases by a factor of 8.4. In contrast going from an H1
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Figure 5.2: H1, L3 (linear, three holes removed), and L5 cavity mode profiles, respectively.

to a L3 cavity the mode volume increases by a factor of 2.3 and the quality factor by 19.2.

The linear cavity gives better quality and mode volume than the hexagonal. The reason for

this lies in the cavity mode polarization. The electric field is oriented perpendicular to the

L3 cavity axis. By placing the additional holes above and below the cavity we have more

thinly connected regions of high dielectric material, which we know leads to our photonic

band gap. So adding these holes actually improves our quality factor by making our system

more of an ideal photonic crystal. Additionally the fact that we have fewer missing holes

forces the mode into a more concentrated region, lowering the mode volume.

When comparing the H3 and L5 cavities, we do not see the same trend. The L5 cavity

has lower quality than the H3 cavity. Since the H3 cavity is so much larger than the L5

cavity it does have a larger quality factor. The mode volume of the L5 cavity is half that of

the H3 cavity. Ultimately it has a significantly better Q/V ratio than the H3.

Since the linear cavities have much better optical responses than their hexagonal coun-

terparts, they are encountered much more in the literature [21]. The L3 cavity is the most

widely studied. Since it has high quality, low mode volume, and only 3 antinodes, it is an

excellent candidate for studying light matter interactions.
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Figure 5.3: L3 cavity mode profiles for the unmodified design (left) and for the edge holes shifted
by 0.19a (right).

5.3 Edge hole shifted L3 cavity design

In an attempt to further improve the photonic crystal cavities, researchers have tried a

number of approaches to modify their design. Some have shown improved quality factors by

elongating a line of holes [75] or varying the radii of a line of holes [21]. Others have modified

the radii of the holes surrounding the cavity [60]. Some have even exchanged the round edge

holes with very unusual designs based on an optimization procedure [24]. The most common

method is that formulated by Akahane et al., in which they shift the two holes on the edge

of the cavity outward [2].

In Figure 5.3 we show the mode profile for an unmodified cavity and that of one with the

two holes shifted outward by 0.19a. The profile does not appear to be significantly different.

For the shifted cavities the mode volume is higher, increasing from 0.74a3 to 0.91a3. This

23% increase is detrimental for our device design. It is greatly offset by the increase in cavity

quality factor from 5.9 × 103 to 1.3 × 105. These combined effects lead to an overall Q/V

improvement by a factor of 17.9.

In previous work [2] it was found that a 0.15a shift was optimal. That was assuming

the slab was composed of silicon (ε = 11.68). For our purposes, we are more interested in

GaAs (ε = 12.9). Since GaAs has a higher permittivity the ratio of the permittivities of the

two materials is greater (GaAs to air instead of silicon to air). A higher ratio leads to more
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Figure 5.4: Effects of shifting edge holes outward on quality factor.

dramatic differences in material response [31]. We find that at this higher permittivity the

optimal shift is 0.19a instead of 0.15a. For comparison to the literature, our materials give

Q = 5.5× 104 and V = 0.91a3 for the 0.15a shift.

By moving the two edge holes outward we see a trend similar to that of the previous

cavity designs. As we increase the size of the cavity we tend to increase both the quality

factor and the mode volume. By just moving two holes rather than removing them (such

as in the L5 cavity) we prevent additional antinodes from forming. Since fewer antinodes is

preferable and we can achieve qualities higher than the L5, this cavity provides an excellent

platform for study.

We wish to gain further insight into why we can achieve such great improvements in

cavity quality with this simple hole movement. Akahane et al. assumed that an ideal cavity

would fit some exact number of half wavelengths of its fundamental mode inside the cavity

[2]. If we were to look at the electric field spatially this would correspond to a sinc envelope

function multiplied by the fundamental mode. By Fourier transforming this spatial profile

they found the sinc envelope function created large components with low wave vector. The

low wave vector components lead to being able to match the leakage conditions necessary

for Snell’s law [2, 31]. If instead they were able to create a cavity with a Gaussian envelope
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function, its transform would have very small components with low wave vector. This should

lead to less leakage and thus higher quality factor.

This interpretation leads to the conclusion that the best cavities will have gentle mode

profile transitions at the cavity boundaries. More gentle changes in the cavity profile should

lead to the desired result. Since we cannot put an intermediate type material in the edge

holes, an alternative approach must be taken. One method might be to change the size of

the hole [68]. Alternately the edge shift gives the mode more space in the high dielectric

material during the transition. They show the Fourier transform of their modes gives very

low intensity at small wave vector. Ultimately gentle transitions from a cavity to an ideal

photonic crystal lead to improved quality factors.
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Chapter 6

Advanced photonic crystal cavity

designs

In Section 5.3, we found that small modifications to the structure of a photonic crystal could

lead to large changes in the quality factor of the cavity. The previous results only looked at

varying a single parameter - the position of the two holes near the edge of the cavity. From

our results of H2 and H3 cavity analysis, we anticipate that modifying the holes just above

and below the cavity will affect its performance. We also know from other studies that we

can create or modify cavities by adjusting the radii of the holes [2, 75].

We consider the holes labelled in Figure 6.1. We assume the holes surrounding the cavity

will move along lines of symmetry to improve the cavity design. Hole “A” is allowed to move

along the X direction. Holes “B” and “C” can move along the X or Y directions. All of

these holes are allowed to vary in radius. Using this parameterization we have 8 parameters

to vary. From Akahane, et al. [2] a shift in position of 0.05a made a significant difference in

the calculated quality factors. For this reason, we assume the parameters may shift by up to

±0.3a to ensure we capture the entire range of possible solutions. Using a grid size of 0.05a,

this leads to 12 data points for shifting positions. For the radius we consider a reasonable
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Figure 6.1: Holes to modify on the L3 design.

range to be from 0.1a to 0.4a. Beyond this, we cannot successfully create such device since

the material will be too thin to support the cavity. Breaking this into 10 points of interest

we have a total parameter space of 2× 108 [68].

Performing FDTD simulations at low resolution, maximally exploiting symmetry, and

using parallel processing, we can perform a single calculation in 30 seconds on average using

current technology. Even with this impressive speed, we can not fully explore our parameter

space since the simulations would run for many years. Instead, we turn to a nature inspired

search program to optimize our cavity performance, the Gravitational Search Algorithm

(GSA).

GSA falls under a larger class of uninformed search algorithms. They are called as such

since the current position in parameter space can give no information about the region in its

vicinity. That is, we have no available heuristic to determine we which direction in parameter

space we should go to continue our search. Optimizing a photonic crystal cavity is one such

search. At any given point in parameter space corresponding to hole shifts and size changes,

we can perform a FDTD simulation to determine the quality factor and mode volume of the

cavity. However we receive no information about how changing one particular parameter in

any direction will affect these figures. In effect, it is like having a deterministic function of
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which we cannot determine the gradient.

A simple method to approach these problems would be to create a grid in parameter

space. We select some number of divisions to apply to the parameter space and divide it

equally along those lines. We perform simulations at each intersection and repeat this process

until we find a converged solution. This would work extremely well for a monotonic function.

Anything more complicated can easily get the search stuck in a local optimal solution.

One common approach to these problems are algorithms that search outward from some

starting point in parameter space. After a certain amount of searching (“search depth”) they

stop and examine the best prospects. They then begin the search again using these as the

new starting point and repeat this process [65]. This depth-first search has been applied to

many problems, such as playing chess and traffic routing. It also suffers from the problem

that if the global optimal solutions lie in a small disconnected parameter space they may

never be discovered.

6.1 GSA methodology

The GSA is a new method inspired by nature. If you have a set of particles distributed

randomly in space with random velocities, they will tend to form a bound object due to

their mutual gravitational attraction. In general, the lowest mass particles will accelerate

faster than the larger mass particles. We apply this to a search in our parameter space.

We randomly place “agents” inside our eight dimensional parameter space. For each agent,

we calculate its quality factor and mode volume. We then assign a “mass” to each agent

scaled linearly with Q/V . Based on the position of every agent in relation to every other

agent in parameter space, we allow the system to accelerate for one time step. We then

repeat the FDTD simulations at the new agent positions, update their masses, and repeat

the process. This continues until the system converges onto one position or we reach some
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Figure 6.2: GSA schematic.

stopping criteria (such as number of iterations performed). A flow diagram of how this is

performed is shown in Figure 6.2.

When implementing this search algorithm we must choose some initial bounds of our

search space. Care must be taken when choosing these bounds since they can affect the

program’s ability to find the most optimal solution. If the boundaries are too large, the

search may take steps too large to find small optimal features in parameter space. If the

boundaries are too small then the system may converge on a local optimal solution rather

than the global solution. For our search, we set our boundaries for the radii of our holes to

be rmin = 0.1a and rmax = 0.5a. For the position shifts in either the X or Y direction, we

allow them to move in either direction by 0.5a (∆xmin = −0.5a, ∆xmax = 0.5a). We then

scale our position in coordinate space to give us dimensionless parameters. For each agent i

we have a new position si.

si,1 ≡
rA − rmin

rmax − rmin

si,2 ≡
rB − rmin

rmax − rmin

(6.1)

Previous studies have shown the GSA can efficiently find optimal solutions in higher

dimensional parameter spaces using 50 agents. To optimize use of available computer archi-

tecture we use 48 agents since processors are typically bundled in units of 4 or 8 cores. We
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give these agents random initial positions and velocities in our parameter space such that

0 ≤ si,j ≤ 1 for all i, j. While the agents are confined to these limits at the start of the

simulation, they can and often do travel outside of these bounds. We do place hard limits

on the radii in that they cannot be negative, since such a feature is unphysical.

For each agent, we perform an FDTD simulation to determine its quality factor and mode

volume. The details of these simulations are given in Section 6.2. For each agent, we define

a fitness function, f(si), according to its ratio of quality factor to mode volume since this is

the parameter of interest [62].

f(si) =
Quality factor (cavity i)

Mode volume (cavity i)
(6.2)

With the fitness function for each agent found we assign masses to each agent. It is important

to note that the mass of each agent will be updated at every iteration of the GSA. It maintains

no record of the agent’s previous mass (memory-less search). For each iteration, we determine

the cavity with the minimum fitness function, fmin. We also add a small mass δm to prevent

the system from having massless agents, since some cavities do not support a mode [68].

mi =
f(si)− fmin∑
j [f(sj)− fmin]

+ δm (6.3)

s̈i =
∑

j 6=i

Gmj

|sj − si|
· (sj − si) (6.4)

Based on the position of each agent with relation to every other agent and their masses,

we calculate the accelerations for one time step. The form of acceleration used differs from

true gravitational acceleration in two significant ways. In nature, the force due to gravity

decreases as the square of the distance between two particles. In GSA, the force is inde-

pendent of the distance yet still points in the direction between the particles. Additionally
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the gravitational constant, G, is typically assumed to be constant except on cosmological

timescales [13]. In GSA, we allow G to vary over the course of the evolution. Near the

beginning we wish our agents to traverse large regions of parameter space, corresponding to

a large G. At the end when most agents have converged we want the agents weakly bound

(small G) so they can search the parameter space near the optimized position [62]. We model

the gravitational constant as a decaying exponential over the lifetime of the evolution.

G(t) = G0e
−t/τ (6.5)

By varying the two parameters G0 and τ , we influence how quickly the system converges.

If G0 or τ is too small, the system may not converge at all. Conversely if one or both are

too large, we find the system converges with little to no exploration. For our simulation, we

find G0 = 4 and τ = 15 give good convergence.

6.2 FDTD simulation details

FDTD simulations were performed using the meep software package’s c++ interface[53]. A

hexagonal lattice with lattice parameter a surrounding the PC cavity consisted of air holes

(ε = 1) in a GaAs slab (ε = 12.9). The slab thickness and hole radii were 0.6a and 0.3a,

respectively. For the GSA iterations, the system consisted of 8 air holes surrounding the

cavity in every direction followed by a 1a perfectly matched layer [8]. The grid’s spatial

resolution was 0.1a and time steps were 0.05a/c. The initial pulse was Guassian, centered

at the cavity origin with central frequency 0.259c/a and width 0.05c/a. After the GSA

optimization was completed, the results were performed with spatial resolution 0.025a and

temporal resolution 0.0125a/c. The higher resolution simulations were performed with 12

holes on each side of the cavity, iteratively with narrower pulse width until a single mode
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Figure 6.3: Evolution of photonic crystal design by GSA.

was excited [68].

6.3 Optimized L3 cavity results

The GSA simulation was initially allowed to run for 1000 iterations based on previous

work [62]. Convergence was reached in 400 iterations and the simulation was halted. Fig-

ure 6.3 shows the evolution of one of the search parameters. Each agent is shown in a

different color. Here we can see that agents do in fact travel outside our original search

space. We also find that after ∼ 250 iterations the agents appear to have begun converging

on an optimized solution. All other parameters show similar convergence. Figure 6.3 also

shows the average quality factor to mode volume ratio of all agents as a function of GSA

iteration.

The horizontal line represents the results from shifting the two edge holes outwards by

0.15a, the benchmark for our comparisons. For this configuration, the quality factor and

mode volume are 68, 000 and 0.91a3 respectively. This gives the ratio Q/V = 75, 000a−3.
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Hole Radius (a) ∆x,∆y (a, a)
Final position relative to

origin x, y (a, a)

A 0.15 0.05, 0 2.05, 0

B 0.25 0.07,-0.15 1.57, 0.72

C 0.2 0.09, -0.2 0.59, 0.67

Table 6.1: Optimized L3 cavity parameters.

Figure 6.4: Final mode profile upon GSA completion.

The precise numbers differ from Akahane, et al. [2] since we are using a GaAs substrate and

they used silicon.

After approximately 120 iterations the average Q/V for our cavities exceeds that of the

benchmark. Since these simulations are run at low resolution, they may not be indicative of

the actual performance of the current cavity parameters. After the system continues to evolve

we find over an order of magnitude difference in the cavity performance over our benchmark.

This is very promising, so we extract the final cavity parameters listed in Table 6.1. We

perform these simulations at higher resolution and find that our final quality factor and

mode volume are 567, 000 and 0.87a3. This leads to a final Q/V = 650, 000(λ/n)−3, nearly

an order of magnitude improvement [68].

In Figure 6.4, we see the electric field energy density profile for our final parameter search
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and the benchmark. We can see the mode is more strongly concentrated at the origin of the

cavity. This is beneficial since coupling quantum dots to a cavity mode is strongly dependent

on the spatial extent of the mode. Since there is only a 4% difference between the mode

volumes, the profile does look very similar as expected.

6.4 Physical interpretation of final cavity design

We consider how the design shown in Figure 6.4 can lead to such enormous gains. There

appear to be three phenomena affecting the cavity. The holes surrounding the cavity are

decreasing in size, shifting outward in the X direction, and shifting inward in the Y direction.

Here we consider each of these in turn to gain intuition about the cavity design.

From Akahane et al [2], we understand that shifting the edge holes of the cavity allows

the mode to penetrate further into the photonic crystal structure. In doing so, the field

encounters more of an ideal photonic crystal which should lead to perfect reflection back

towards the cavity. This would tend to increase the quality factor but also increase the

mode volume. Additionally the size of the cavity increases. As seen in Chapter 5, larger

cavities typically have higher quality factors and higher mode volumes. Decreasing the radius

of the holes has a similar effect on the mode. It creates a more gradual transition from the

cavity to the photonic crystal. Again, we expect that the mode will penetrate further into

the crystal increasing quality factor and mode volume.

In the Y dimension, the edge holes are shifted inward with the holes closer to the origin

are shifted more. We expect this to oppose the changes in radius and X position. We are now

creating a more abrupt border between the cavity and the photonic crystal. Since electric

fields tend to concentrate in higher dielectric material, these holes are “squeezing” the mode

further towards the origin.

Ultimately, we have a balance of these two competing effects. Certain parameters are

65



tending to increase both the quality factor and mode volume. Other parameters are doing

the opposite. The key is then to find the optimal combination. There are many possible

combinations that may solve these issues. For example, increasing the radii of the holes and

shifting them all outward may be another solution. The parameter space for these cavities

may be a very complicated multimodal space. Using an advanced search algorithm such

as GSA may be the only way to explore it with current technology. As we can see, GSA

definitely shows its ability to find a solution better than the existing standard.
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Chapter 7

Coupling quantum dots to photonic

crystal cavities

So far, we have presented two very different research projects. The ultimate goal of our

agenda has been to connect these two lines of inquiry and build a strongly interacting system.

Coupled QDs and photonic crystal cavities have been proposed as one possible platform for

building a scalable quantum computer. Here, we show our ability to measure the coupling

of a cavity to embedded quantum dots.

7.1 Cavity quality factor measurements

As we found in Chapter 5 a cavity’s quality factor is one of its most significant parameters

for optical studies. Fortunately this is a feature which can be relatively easily determined

experimentally. The quality factor of a cavity can be related to its resonant frequency and

full width at half maximum intensity. This can be measured through reflection, transmission,

or luminescence.

Q =
f0
∆f

(7.1)
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Figure 7.1: Cross polarization experimental setup.

For L3 slabs we have the electric field mode in the plane of the material. This sometimes

makes measurements of the cavity difficult since we need an in plane field to measure. If we

have optical emitters embedded within the cavity, such as quantum dots, we can use them

to excite the cavity mode. If we have cavities with no active media we will need an alternate

approach. Some studies use evanescent coupling from a fiber [72] or in plane waveguides [6].

An alternate approach is to construct a cross polarization reflection (or transmission)

measurement [63, 17]. A schematic of the experimental setup is shown in Figure 7.1. An

unpolarized white light source passes through a linear polarizer oriented vertically. This

light passes through a beamsplitter and objective lens before encountering the photonic

crystal cavity. We orient the cavity axis 45◦ off vertical. For frequencies that are not in the

photonic band gap of the crystal, the vertical light is reflected back maintaining its vertical

polarization. This light encounters another linear polarizer oriented horizontally. The signal

is blocked and does not pass through to the spectrometer.

Light at the cavity mode frequency responds differently. We decompose the light into

two polarizations depending on the angle between the cavity axis and vertical, θ.

EY (ω) = E0(ω) cos θ EX(ω) = E0(ω) sin θ (7.2)
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Here EY is in reference to the orientation of the cavity. For an Ey mode in the cavity the

EY component of the incident light can exist in the cavity and the EX cannot. The EX

component reflects just as the frequencies which are not in the photonic band gap of the

crystal. Since the EY component can exist in the cavity, it exists within the cavity before

being reemitted out of the cavity plane. This light encounters the second linear polarizer.

Since the cavity is oriented at θ with respect to the initial vertical polarizer, it is at the

complementary angle to the horizontal polarizer. Thus the EY from the cavity is projected

through the second polarizer.

Eout(ω) = EY (ω) sin θ (7.3)

For cavity modes we can measure the intensity of the light emitted in this manner.

Iout(ω) = |Eout(ω)|2 = |E0(ω)|2 cos2 θ sin2 θ (7.4)

To get the best measure of the cavity mode quality we need θ = 45◦. Within ±22◦ the final

intensity is within a factor of 2 of the maximal intensity. The measurement of the cavity

quality factor is unaffected so long as signal can be detected. In practice we estimated the

orientation of the cavity by imaging the cavity onto a camera using alignment markers. The

polarizers can be adjusted to give an approximately 45◦ angle. After signal is attained the

orientation can be fine tuned to give the best possible signal. In Figure 7.2 we show example

data for a L3 cavity with the edge holes shifted outward by 0.15a.

Ideally measurements off the sample will show zero reflection signal at all wavelengths.

Since the linear polarizers do not have perfect attenuation this cannot be achieved. Any

wavelength dependence of the optics will affect the reference signal as well. In practice we

record data off the sample region at the wavelength of interest. We optimize the alignment

such that we get minimal transmission to the spectrometer at that wavelength. This can

be aligned to give a linear response. We then record data on the sample. Optimizing the

69



925 930 935 940 945 950 955
3000

4000

5000

6000

7000

8000

9000

10000

11000

12000

Wavelength (nm)

In
te

ns
ity

 (A
.U

.)

T33, r=.3a, s=.15a

 

 
On pattern
Off pattern
On − Off

Student Version of MATLAB
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(PL) measurements as shown in Fig. 1. PL measurements
from QDs with an emission wavelength well within the
cavity mode are Purcell enhanced only when the PL polar-
ization is parallel to the cavity mode field direction which is
at 0! in this cavity [16]. From the Lorentzian fit of the
Purcell enhanced PL at a laser power ¼ 190 !W, the cal-
culated cavityQ ¼ 190which corresponds to the cavity loss
rate " ¼ 5500 GHz. At a lower laser power ¼ 0:28 !W, a
smaller number of Purcell enhanced QD emissions are
observed. For both powers, the 90! polarized light emission
is suppressed due to the polarization mismatch to the cavity
mode [5].

In order to evaluate the Purcell enhancement by the
cavity, we then directly measure the lifetime of the QDs
using LIA. For the time-resolved experiment, two Ti:S
pulses arrive at the sample with a relative time delay #d
which is controlled by a mechanical delay line on one arm
of the laser path [Fig. 2(a)]. To verify that the position of
the delay line has minimal effect on the optical alignment,
we first measured the PL when scanning the delay line and
with the beam going to the other (fixed) path blocked. With
the blocked fixed line, the 2D plot of the PL from three
QDs coupled to the cavity while scanning the delay line is
shown in Fig. 2(b). For every measurement, the variation in
PL intensity for a delay line scan with the fixed path
blocked was maintained to be below 5%.

We then performed the time-resolved experiment
with pulses from both the delay line and fixed arms on
the same QDs [Fig. 2(c)]. For a long delay between pulses
(> 1:5 ns), the PL intensity becomes about twice that of a
single pulse, but when the two pulses are overlapped around
zero time delay, the PL decreases. Such delay time depen-
dence is observed in several QDs for the selected laser
power ( ¼ 36 !W). The appearance of the dip at this laser
power is related to the radiative recombination time (#) of

the QD. The origin of the dip will be examined in more
detail with the simulation described below. Fitting the data
to the exponential decay function I ¼ I0 # I1 expð##d=#Þ,
for the QD with $ ¼ 897:7 nm, we found # ¼ 0:5 ns
[Fig. 2(e), black filled circles]. The autocorrelation function
of the laser pulse is also plotted for reference.
To compare the lifetime of the Purcell enhanced QD to a

QD without a cavity, we also measured LIA for a single
QD with a similar emission wavelength in a different
sample which has no cavity [Fig. 2(e), grey open circles],
and the measured # ¼ 1 ns, similar to lifetimes of previ-
ously reported InAs QDs. Therefore the extracted Purcell
factor F ¼ 2 for this selected QD. The largest F we
observed in this cavity is 4, corresponding to a measured
# ¼ 0:25 ns. The variation of the measured Purcell factor
from QDs is due to the different spatial and spectral match
to the cavity mode [5].

FIG. 2 (color online). Experimental setup and measured PL
data. (a) Setup. (b) The measured 2D plot shows the PL intensity
of three QDs while varying the delay line position with the fixed
line blocked. The measured spectrum at a delay line position
(horizontal white dashed line) is shown in the shaded area of (d).
(c) The PL intensity with both arms unblocked exhibits a
dependence on time delay. (e) For comparison of time-resolved
data between QDs and laser autocorrelation, the detector CCD
counts at large time delays are normalized. The black filled
circles are measured from a cavity-enhanced QD and correspond
to the vertical white dashed line in (c). The grey open circles are
from a QD that is not in a cavity. The inset shows the extended
view of the laser autocorrelation (red open squares). The time-
resolved data of both QDs and the laser are fitted to the
exponential decay function.

FIG. 1 (color online). Purcell enhancement of PL from QDs
embedded in a PhC cavity. The HeNe laser polarization was set
to 45! relative to the cavity and the PL was collected at either 0!

or 90! by using a half-wave plate ($=2) and a polarizing beam
splitter (PBS) as shown in Fig. 2(a). (a) PL spectra measured at a
laser power ¼ 190 !W. Blue dashed line is the Lorentzian fit.
(b) PL spectra measured when laser power ¼ 0:28 !W. Inset:
scanning electron microscope image of the L3 cavity. This
image is tilted by 20!. The arrows show the orientation of the
collected PL.
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Figure 7.3: Polarization dependent photoluminescence measurements of QDs embedded within a
L3 cavity for (a) 190 µW and (b) 0.28 µW. Data in black have the electric field oriented along the
cavity axis and data in red are off axis. Inset in (b) is an SEM image tilted by 20◦.

collection system on the cavity has significant problems since the patterning of the crystal

causes diffraction and additional reflection at unpredictable angles. These tend to increase

the signal through the second linear polarizer and make finding the cavity mode difficult.

For these reasons, it is best to establish a reference on the unpatterned surface.

7.2 Coupling single QD to cavities

Once the quality factor of the cavity has been determined, the next goal is to couple an active

emitter to that cavity. In our case, we wish to couple individual InAs QDs to a photonic

crystal cavity and study the interaction effects of the two. Ideally we would use the FIB

patterning process demonstrated in Chapter 3. For our first studies we used self assembled

dots due to their high areal density [42]. Andrew Martin grew a single layer of InAs QDs

in the middle of a 150 nm thick GaAs layer. A L3 photonic crystal cavity with the edge

holes shifted out by 0.15a was created using electron beam lithography and chemical etching.

With our growth conditions, the sample has a QD areal density of approximately 500/µm2

as determined by analysis of a similar uncapped sample [42].

Using a Titanium Sapphire mode locked laser operating at 780 nm Jieun Lee measured the
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photoluminescence of our sample with two perpendicular polarizations shown in Figure 7.3.

This data clearly shows the polarization dependence of the emission. This can arise from

either polarization dependence of the QDs or of the cavity. From AFM images of similarly

grown samples, the QDs formed have no significant elongation. Without elongation the dots

will not have polarization dependance. As such, the polarization dependence is expected to

be due to interaction with the cavity. We see this enhanced emission for both low (0.28µW)

and high (190µW) power excitations.

Fitting the cavity emission to a Lorentzian profile [20], we have a quality factor of 190.

While this is relatively, low we see there is an distinct difference between the PL from the two

incident beam polarizations. This demonstrates coupling exists between the cavity and some

of the QDs in the sample. To determine how the strength of the interaction, we constructed

an experiment known as luminescence intensity autocorrelation (LIA) [79]. A schematic of

the experiment can be seen in Figure 7.4. Pulses from the Ti:S laser are passed through two

different paths before realigning spatially. By varying the distance along one path we can

vary the time at which the pulses arrive on the sample. The remaining experiment is similar

to our other confocal photoluminescence experiments from Chapter 3.

We model the events that occur during the LIA experiment. When the first laser pulse

arrives at the sample it creates an exciton that non-radiatively falls into the QD (or is created

in the QD). After some characteristic lifetime of the QD, the exciton will decay, giving off the

luminescence detected by the spectrometer. If the second pulse arrives after the exciton has

decayed, a new exciton is created, which then decays and gives another detection event. If

the second pulse arrives before the exciton has had an opportunity to decay, another exciton

cannot exist in the QD. For the time being, we neglect biexciton formation. Thus, only a

single detection event will occur. As we map the intensity as a function of delay time, we can

thus determine the QD lifetime. To see the cavity effects we can perform these measurements

in the cavity and in the regions of the sample without a cavity.
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(PL) measurements as shown in Fig. 1. PL measurements
from QDs with an emission wavelength well within the
cavity mode are Purcell enhanced only when the PL polar-
ization is parallel to the cavity mode field direction which is
at 0! in this cavity [16]. From the Lorentzian fit of the
Purcell enhanced PL at a laser power ¼ 190 !W, the cal-
culated cavityQ ¼ 190which corresponds to the cavity loss
rate " ¼ 5500 GHz. At a lower laser power ¼ 0:28 !W, a
smaller number of Purcell enhanced QD emissions are
observed. For both powers, the 90! polarized light emission
is suppressed due to the polarization mismatch to the cavity
mode [5].

In order to evaluate the Purcell enhancement by the
cavity, we then directly measure the lifetime of the QDs
using LIA. For the time-resolved experiment, two Ti:S
pulses arrive at the sample with a relative time delay #d
which is controlled by a mechanical delay line on one arm
of the laser path [Fig. 2(a)]. To verify that the position of
the delay line has minimal effect on the optical alignment,
we first measured the PL when scanning the delay line and
with the beam going to the other (fixed) path blocked. With
the blocked fixed line, the 2D plot of the PL from three
QDs coupled to the cavity while scanning the delay line is
shown in Fig. 2(b). For every measurement, the variation in
PL intensity for a delay line scan with the fixed path
blocked was maintained to be below 5%.

We then performed the time-resolved experiment
with pulses from both the delay line and fixed arms on
the same QDs [Fig. 2(c)]. For a long delay between pulses
(> 1:5 ns), the PL intensity becomes about twice that of a
single pulse, but when the two pulses are overlapped around
zero time delay, the PL decreases. Such delay time depen-
dence is observed in several QDs for the selected laser
power ( ¼ 36 !W). The appearance of the dip at this laser
power is related to the radiative recombination time (#) of

the QD. The origin of the dip will be examined in more
detail with the simulation described below. Fitting the data
to the exponential decay function I ¼ I0 # I1 expð##d=#Þ,
for the QD with $ ¼ 897:7 nm, we found # ¼ 0:5 ns
[Fig. 2(e), black filled circles]. The autocorrelation function
of the laser pulse is also plotted for reference.
To compare the lifetime of the Purcell enhanced QD to a

QD without a cavity, we also measured LIA for a single
QD with a similar emission wavelength in a different
sample which has no cavity [Fig. 2(e), grey open circles],
and the measured # ¼ 1 ns, similar to lifetimes of previ-
ously reported InAs QDs. Therefore the extracted Purcell
factor F ¼ 2 for this selected QD. The largest F we
observed in this cavity is 4, corresponding to a measured
# ¼ 0:25 ns. The variation of the measured Purcell factor
from QDs is due to the different spatial and spectral match
to the cavity mode [5].

FIG. 2 (color online). Experimental setup and measured PL
data. (a) Setup. (b) The measured 2D plot shows the PL intensity
of three QDs while varying the delay line position with the fixed
line blocked. The measured spectrum at a delay line position
(horizontal white dashed line) is shown in the shaded area of (d).
(c) The PL intensity with both arms unblocked exhibits a
dependence on time delay. (e) For comparison of time-resolved
data between QDs and laser autocorrelation, the detector CCD
counts at large time delays are normalized. The black filled
circles are measured from a cavity-enhanced QD and correspond
to the vertical white dashed line in (c). The grey open circles are
from a QD that is not in a cavity. The inset shows the extended
view of the laser autocorrelation (red open squares). The time-
resolved data of both QDs and the laser are fitted to the
exponential decay function.

FIG. 1 (color online). Purcell enhancement of PL from QDs
embedded in a PhC cavity. The HeNe laser polarization was set
to 45! relative to the cavity and the PL was collected at either 0!

or 90! by using a half-wave plate ($=2) and a polarizing beam
splitter (PBS) as shown in Fig. 2(a). (a) PL spectra measured at a
laser power ¼ 190 !W. Blue dashed line is the Lorentzian fit.
(b) PL spectra measured when laser power ¼ 0:28 !W. Inset:
scanning electron microscope image of the L3 cavity. This
image is tilted by 20!. The arrows show the orientation of the
collected PL.
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Figure 7.4: (a) Luminescence intensity autocorrelation experimental setup. PL intensity as a
function of delay line position with the fixed arm (b) blocked and (c) unblocked. (d) Spectra at
long delay time indicated by white dashed line in (b). (e) PL intensity as a function of delay line
for QDs inside and outside the cavity. Also shown is the pump laser autocorrelation, also magnified
in the inset.
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We studied LIA in more detail by varying the laser
power. Figure 3(a) shows the experimentally measured
PL intensity of a QD exciton as a function of time delay
where the laser power increases from 0.1 to 71:9 !W. The
laser power where the dip starts to appear is near where the
QD emission saturates. This indicates that the evolution of
LIA by varying the laser power results from the QD
nonlinearity. Such QD nonlinearity is due to an atomlike
quantized energy state of a single QD. It should be noted
that this clear relation between the QD power dependence
and LIA was not observed for an ensemble of QDs [17].

To understand the origin of the dip at high laser power
where the QD emission saturates, let us consider the two
cases where (i) "d ¼ 0 and (ii) "d " ". We are interested in
a laser power where a single laser pulse can completely fill
the QD exciton state. At "d ¼ 0, two laser pulses arrive at
the QD simultaneously but they can fill the QD exciton state
once. However, when "d " ", the first and the second pulse
can each independently fill the QD since the exciton excited
by the first pulse has enough time to relax before the second
pulse arrives. Therefore we expect that the number of exci-
tons generated when "d ¼ 0 to be half of when "d " ". In

the experimental data, the ratios PLð"d ¼ 0Þ=PLð"d " "Þ
of the 3 highest powers are f0:68; 0:64; 0:63g for P ¼
f7:3; 29:7; 71:9g !W. As the laser power increases, the ratio
approaches the expected value of 0.5. We consider that the
experimentally observed ratio is higher than 0.5 due to
imperfect alignment and a finite time step !"dð¼ 0:13 nsÞ.
The lifetime " obtained from the 3 highest powers are

f0:24; 0:38; 0:39g ns for P ¼ f7:3; 29:7; 71:9g !W. Here
the QD lifetime is increasing with laser power and saturat-
ing at some point. Note that the increase and saturation of "
with power was also observed on several QDs in a different
cavity [Fig. 4]. The increase of ", together with the
decrease of the ratio PLð"d ¼ 0Þ=PLð"d " "Þ, at the inter-
mediate power range is the result of the partial state filling
(< 100%) of the exciton state in the QD by the first pulse.
We also observed that the higherQð¼ 680Þ of the cavity

in Fig. 4 has reduced the laser power required for the onset
of nonlinearity as compared to the cavity (Q ¼ 190) shown
in Fig. 3. This observation implies that nonlinearity at the
single photon level is possible by increasingQ. Progress in
this direction was recently made by the demonstration of
nonlinearity with a few incident photons on a strongly
coupled QD-pillar cavity device [18]. Another possible
observation through LIA is the coherent dynamics
(e.g., Rabi oscillation) in the time domain.
In order to model the experimental data, we have

conducted a simulation using the quantum optics toolbox
[19]. In the simulation, we first constructed the Jaynes-
Cummings Hamiltonian that takes into account the inter-
action between the two-level system and the cavity photon
mode. The QD transition and cavity mode are assumed to
be degenerate, similar to the selected experimental data.
The pulsed laser is introduced as two Gaussian functions
(width ¼ 10 ps) with a time delay. Here the energy of the
laser is assumed to be resonant with the QD and the cavity,
which is reasonable because any coherent effects due to the
laser in the simulation cannot last longer than the pulse
width (10 ps) which is much shorter than " and the time
scale of the dynamics that we are interested in. The
dissipation factors are phenomenologically included in
the Lindblad form for all calculations: # ¼ 5500 GHz,

FIG. 3 (color online). Power-dependent LIA of an exciton
from both experiment (a), (b) and simulation (c), (d). (b) In
the experiment, the linear power dependence before the PL
saturation shows that the peak is from an exciton. (a) From
bottom to top, laser power increases. At the laser power where
the QD nonlinearity appears, the dip starts to evolve in the time-
resolved LIA. Similar results are obtained in the simulation (c).

FIG. 4 (color online). (a) PL intensity and (b) extracted exciton
lifetime of four different QDs in a different cavity (Q ¼ 680)
as a function of laser power. Lifetimes are measured for the
nonlinear power range (shaded area).

PRL 110, 013602 (2013) P HY S I CA L R EV I EW LE T T E R S
week ending

4 JANUARY 2013

013602-3

Figure 7.5: (a, c) Photoluminescence intensity as a function of pulse delay for pump powers from
0.1–72 µW. (b, d) Intensity as a function of laser power for a single pulse. (a) and (b) are
experimental data and (c) and (d) are from simulations.

In Figure 7.4, we show sample data for our experiment. With the fixed path blocked we

see the intensity is constant for the majority of the delay length. This shows the excellent

optical alignment of the experiment, which may be a significant source of error. With the

fixed path unblocked, we see a clear trend around the zero delay where the signal decreases

to about half of the maximum. Plotting the intensity of a single dot inside the cavity as a

function of delay time shows the significant decrease in QD lifetime. Fitting this we find the

cavity lifetime is approximately half that of a dot outside the cavity [42].

Our explanation of the LIA assumes that the QD is fully excited by the first laser pulse.

In our experiment we use identical pulses, though this is not necessary. To ensure we are

operating in the saturation regime, we performed the experiment at multiple laser powers

and measured LIA and the PL intensity. Figure 7.5 shows our data as well as theoretical
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We studied LIA in more detail by varying the laser
power. Figure 3(a) shows the experimentally measured
PL intensity of a QD exciton as a function of time delay
where the laser power increases from 0.1 to 71:9 !W. The
laser power where the dip starts to appear is near where the
QD emission saturates. This indicates that the evolution of
LIA by varying the laser power results from the QD
nonlinearity. Such QD nonlinearity is due to an atomlike
quantized energy state of a single QD. It should be noted
that this clear relation between the QD power dependence
and LIA was not observed for an ensemble of QDs [17].

To understand the origin of the dip at high laser power
where the QD emission saturates, let us consider the two
cases where (i) "d ¼ 0 and (ii) "d " ". We are interested in
a laser power where a single laser pulse can completely fill
the QD exciton state. At "d ¼ 0, two laser pulses arrive at
the QD simultaneously but they can fill the QD exciton state
once. However, when "d " ", the first and the second pulse
can each independently fill the QD since the exciton excited
by the first pulse has enough time to relax before the second
pulse arrives. Therefore we expect that the number of exci-
tons generated when "d ¼ 0 to be half of when "d " ". In

the experimental data, the ratios PLð"d ¼ 0Þ=PLð"d " "Þ
of the 3 highest powers are f0:68; 0:64; 0:63g for P ¼
f7:3; 29:7; 71:9g !W. As the laser power increases, the ratio
approaches the expected value of 0.5. We consider that the
experimentally observed ratio is higher than 0.5 due to
imperfect alignment and a finite time step !"dð¼ 0:13 nsÞ.
The lifetime " obtained from the 3 highest powers are

f0:24; 0:38; 0:39g ns for P ¼ f7:3; 29:7; 71:9g !W. Here
the QD lifetime is increasing with laser power and saturat-
ing at some point. Note that the increase and saturation of "
with power was also observed on several QDs in a different
cavity [Fig. 4]. The increase of ", together with the
decrease of the ratio PLð"d ¼ 0Þ=PLð"d " "Þ, at the inter-
mediate power range is the result of the partial state filling
(< 100%) of the exciton state in the QD by the first pulse.
We also observed that the higherQð¼ 680Þ of the cavity

in Fig. 4 has reduced the laser power required for the onset
of nonlinearity as compared to the cavity (Q ¼ 190) shown
in Fig. 3. This observation implies that nonlinearity at the
single photon level is possible by increasingQ. Progress in
this direction was recently made by the demonstration of
nonlinearity with a few incident photons on a strongly
coupled QD-pillar cavity device [18]. Another possible
observation through LIA is the coherent dynamics
(e.g., Rabi oscillation) in the time domain.
In order to model the experimental data, we have

conducted a simulation using the quantum optics toolbox
[19]. In the simulation, we first constructed the Jaynes-
Cummings Hamiltonian that takes into account the inter-
action between the two-level system and the cavity photon
mode. The QD transition and cavity mode are assumed to
be degenerate, similar to the selected experimental data.
The pulsed laser is introduced as two Gaussian functions
(width ¼ 10 ps) with a time delay. Here the energy of the
laser is assumed to be resonant with the QD and the cavity,
which is reasonable because any coherent effects due to the
laser in the simulation cannot last longer than the pulse
width (10 ps) which is much shorter than " and the time
scale of the dynamics that we are interested in. The
dissipation factors are phenomenologically included in
the Lindblad form for all calculations: # ¼ 5500 GHz,

FIG. 3 (color online). Power-dependent LIA of an exciton
from both experiment (a), (b) and simulation (c), (d). (b) In
the experiment, the linear power dependence before the PL
saturation shows that the peak is from an exciton. (a) From
bottom to top, laser power increases. At the laser power where
the QD nonlinearity appears, the dip starts to evolve in the time-
resolved LIA. Similar results are obtained in the simulation (c).

FIG. 4 (color online). (a) PL intensity and (b) extracted exciton
lifetime of four different QDs in a different cavity (Q ¼ 680)
as a function of laser power. Lifetimes are measured for the
nonlinear power range (shaded area).
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Figure 7.6: (a) Photoluminescence intensity of four QDs embedded within a photonic crystal cavity
as a function of laser power. (b) Exciton lifetime for the same for QDs, extracted from LIA data.

simulations. The two are in excellent agreement. We see that our PL intensity has a linear

dependence at low power, which we expect for excitons. At higher power, the QDs become

saturated and the emission levels off. For the data in Figure 7.4, we were operating at 36µW,

well within the saturation region.

To see how the cavity quality can effect the nonlinear dynamics of the system, we per-

formed similar measurements in a higher quality cavity with Q=680. Data is shown in

Figure 7.6 where we have the luminescence intensity and exciton lifetime as a function of

incident laser power. The exciton lifetime is only determined above QD saturation powers.

It is important to note that this cavity has saturation onset at much lower laser powers.

This shows there is a correlation between cavity quality and photon density of states of

these emitters.

We expect biexcitons to have similar dynamics to that of single excitons in regard to

the cavity interaction at high power. Data is shown in Figure 7.7. There is a significant

difference at low power. Here, we actually see an increase in emission near zero time delay.

We suspect this is due to the fact that we can now create additional excitations from the

second pulse that form biexcitons. Power dependence of this emission shows it scales as the

second power of the laser power as expected. At high power we see the same dynamics as

75



! ¼ 1 GHz, !d ¼ 40 GHz. Here ", !, and !d are the
cavity loss rate, QD transition rate, and the QD dephasing
rate, respectively. " and !d are from the measured cavity
and QD emission width and ! is from the measured # of the
cavity-uncoupled QD. The dot-cavity coupling strength
g is obtained by finding a best fit and the resultant
g ¼ 42 GHz. From these parameters, the calculated criti-
cal photon number n0 ¼ 0:01which is well below one. The
critical photon number is a measure of the number of
photons required in the cavity mode in order to saturate
the QD [20]. Therefore any photon number N above
n0 could be used to include the power nonlinearity in the
simulation. In our calculation, using photon numberN ¼ 1
to 4 showed similar results. The single pulse amplitude E
was varied to incorporate the varying laser power of the
two pulses (2E2). An alternative to this quantum optical
simulation has also been reported which solves the non-
linear semiclassical model [21].

In our simulation, the average QD exciton state popula-
tion hPðXÞi was calculated for each E while varying
the time delay between the two pulses. We find excellent
similarity between the experimental data and the sim-
ulation [Figs. 3(a) and 3(c)]. In addition, the dip in the
simulation starts to appear at the power where hPðXÞi
saturates which is consistent with the experimental data.
Using a single set of physical parameters, the lifetime # of
the simulation in the nonlinear regime is 0.38 ns for all E.
The peak around zero time delay is the result of resonant
excitation that could not be washed out in the simulation
within the pulse overlap (#d < 20 ps).

Finally, we show the experimental result of QD biexci-
ton emission in Fig. 5. Due to the superlinear power
dependence in the low power regime, the PL intensity at
zero delay time is higher than the PL at large time delays.
Such a rise at low power can be understood by the
formation of a biexciton through the combination of two
excitons, one from each of the first and the second laser
pulse, which is possible only when the two pulses arrive
within the lifetime of the exciton. Therefore the fitted # at
low laser power is related to the recombination time of
both the exciton and biexciton [22]. At higher laser
power, the sublinear power dependence results in a dip in
the time-resolved data, similar to what we observe for
exciton emission. At the lowest laser power, no features
are observed due to the reduced probability of creating a
biexciton. In our sample, due to the high density of QDs,
the corresponding exciton peak of this biexciton was hard
to identify. By isolating the emission from a single QD,
direct comparison between the QD exciton and biexciton
lifetime will be possible.
In conclusion, the nonlinear dynamics of a dot-cavity

coupled system is studied by LIA, which is a power-
dependent and time-resolved measurement method using
two time-delayed degenerate laser pulses. Modeling the
excitonic LIA using a quantum optical simulation, we
found physical parameters governing the coupling (g)
and emission dynamics (", !) for a cavity-coupled QD in
the Purcell regime. The LIA signal of the Purcell enhanced
QD is negative (dip) for laser powers above the dot satu-
ration point, which is qualitatively the same as the QD
outside the cavity except that the dip is narrower due to the
shorter lifetime. We expect that positive or even oscillating
excitonic LIA can be observed by increasing Q to the
strong coupling [9,10] or lasing regime [11]. This method
can be applied to study the nonlinear emission dynamics of
various types of quantum structures for the next generation
of quantum lasers and quantum information processing.
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for helpful discussions. Sample fabrication was performed
at the Lurie Nanofabrication Facility at the University of
Michigan, part of the NSF funded NNIN network. This
work was supported by the National Science Foundation
Materials Research Science and Engineering Center
program DMR 1120923.

[1] E.M. Purcell, Phys. Rev. 69, 37 (1946).
[2] H. Walther, B. T.H. Varcoe, B.-G. Englert, and T. Becker,

Rep. Prog. Phys. 69, 1325 (2006).
[3] A. Kiraz, P. Michler, C. Becher, B. Gayral, A. Imamoğlu,
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FIG. 5 (color online). Power-dependent LIA of a biexciton.
(a) Unlike the exciton, biexciton emission shows a rise at
low laser powers. This is consistent with the superlinear power
dependence of the biexciton emission (c). # from an exponential
fit from bottom to top are 0.6, 3.5, 0.33, 0.56, 0.44 ns (lowest
laser power excluded). (b) The change from rise to dip is
more apparent in the 2D plot (Left: P ¼ 2:2 $W, Right:
P ¼ 7:3 $W). The color scales of both plots are normalized.
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Figure 7.7: (a) Photoluminescence intensity as a function of pulse delay for biexciton peaks for
various laser powers. (b) Intensity as a function of emission wavelength and time delay for the
fixed path blocked and unblocked, respectively. (c) Biexciton intensity as a function of laser power.

those of single excitons.
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Chapter 8

Summary and suggestions for future

work

This work we have attempted to further our understanding of the physics of quantum dots

and photonic crystal cavities. As is the case with many areas of academia, it has opened

more doors for further investigation. We have two distinct main lines in our investigations

– spatial placement of InAs/GaAs quantum dots and photonic crystal cavity optimizations.

In each of these areas, there are exciting opportunities for further work. Ultimately, the

combination of these two areas should lead to even more fruitful endeavors and hopefully

open the door a little wider toward realization of a practical, scalable quantum computing

platform.

8.1 Site controlled QD formation

We have demonstrated a FIB patterning technique for inducing InAs/GaAs quantum dot

formation at specific locations while suppressing dot formation elsewhere [67]. By careful

tuning of our patterning and epitaxial growth we have created square arrays with a single
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quantum dot at every array site [46, 48]. Our FIB process shows potential for better spatial

positioning over ex-situ techniques and optical homogeneity similar to other techniques [67,

46]. We have found a regime in which we can arbitrarily change the spacing between the

quantum dot nucleation sites without affecting the dot growth and characterization. We

have further shown through optical studies our ability to investigate a single quantum dot

with spatial optical resolution near the diffraction limit [43, 44].

Our work demonstrated our ability to create layers of quantum dots with 100% single dot

placement fidelity. However, we have not yet been able to optically characterize these dots.

These may be created modifying the parameters of the capping process – the deposition rate,

substrate temperature, and annealing time. For applications such as quantum computing, we

wish to interact with a single dot placed at the center of a photonic crystal cavity. This will

require a careful aligning of the FIB process to the electron beam lithography. Careful use

of alignment markers may be required to complete this process. Further work is ongoing to

establish the precise growth techniques necessary to form a single layer of spatially controlled,

optically active quantum dots.

8.2 Photonic crystal cavity optimization

Our application of a new search algorithm has found non-intuitive photonic crystal cavity

designs which have improved quality factors and mode volumes over traditional L3 cavities

[68]. By moving the holes surrounding a cavity and changing their radii, we have a more con-

centrated electric field mode profile. Our final Q/V ratio shows nearly an order of magnitude

improvement over existing designs. This demonstrates that shifting from more conventional

approaches of cavity design toward advanced algorithms can provide new avenues of study

with interesting results. Additionally, this work demonstrates the importance of considering

all of the holes surrounding the cavity rather than only those along the cavity axis.
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The gravitational search algorithm employed in this study has some limitations. By

setting the initial boundaries of the parameter space we may introduce bias to the search.

Further work should be done to determine how robust this solution is to changes to the

initial parameter space. Additionally, other algorithms exist that could in principle replace

the GSA in our study. Determining the best approach to this type of study could prove

useful in further experiments.

Additionally, the work on our improved cavity designs has been theoretical. Prototyp-

ing and measuring the quality factor of the design must be completed to demonstrate its

performance above standard designs. This work is currently in progress.

8.3 Coupling quantum dots and photonic crystal cav-

ities

The combination of our two main areas of research is the most promising, yet least explored

area of this work. We have demonstrated our ability to independently study our cavities and

quantum dots. We have demonstrated a technique for studying QD exciton lifetimes using

a simple experiment. We have further shown how the interaction of the two can affect the

QD states [42].

The penultimate goal of this work would be to build an ultrahigh quality cavity around a

prepositioned single quantum dot. To do this we must develop techniques to incorporate our

FIB milling techniques and our lithographic alignment. We should then be able to use our

improved cavity designs to demonstrate strong coupling between a single dot and our cavity.

This could be performed using our spatially mapped photoluminescence and luminescence

intensity autocorrelation experiments.

The longer range goals would be to place two or more quantum dots at different cavity

antinodes and use the cavity mode to mediate interaction between the two. Once we have
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established our ability to couple a single dot we can attempt this process. Coupling two QDs

via a cavity mode could enable two quantum state interactions, one of the requirements for

building a physical quantum computer [18].
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Appendix A

FDTD simulations in meep

Here we describe the methodology used to simulate a photonic crystal cavity using the

open source FDTD electromagnetic simulator, meep [53]. We demonstrate building an L3

photonic crystal cavity. Starting with our results from Section 4.4 we know that a TE mode

with frequency 0.25c/a will not propagate in a thin slab of GaAs containing a hexagonal

array of holes. To achieve reasonable results from an FDTD simulation we need at least 8

pixels per wavelength in the high dielectric material [34]. For GaAs with a permittivity of

ε = 12.9 the index of refraction is 3.59. The wavelength of interest in GaAs would therefore

be 1.11a.

λhigh =
λ0
n

=
c

nf
=

c

(3.59)(0.25c/a)
= 1.11a (A.1)

The spatial resolution in meep is set as the number of pixels per unit length, where the

lattice constant a will be our unit length. For eight pixels per wavelength, the maximum

pixel size is 1.11a/8 = 0.14a. The minimum resolution we can use is 8 pixels per lattice

constant, corresponding to a pixel size of 0.125a. Higher resolutions will give more accurate

results at a time cost that scales as (resolution)4, since we have three spatial dimensions and

one temporal dimension.

To find the cavity mode parameters, we will first define the structure of the material.
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We then create an electromagnetic pulse. After the pulse ends we monitor the electric field

as some point in the material. We expect a cavity mode to exist as a sine wave with some

decay. Since multiple modes may exist in the cavity, we model the electric field as a sum of

multiple modes.

E(r, t) = A1(r)ei(ω1+iγ1)t + A2(r)ei(ω2+iγ2)t + · · · (A.2)

Once we find a mode of interest we modify our initial pulse with a narrow bandwidth

and run the simulation again. Provided a narrow enough pulse is chosen a single mode may

be excited. When exciting a single mode on resonance we can evaluate the cavity most

accurately.

A.1 Finding the cavity mode profile

Code in meep is written using a Scheme script [1]. Typically the code is written in a text

file and executed via the command line. We begin our demonstration with setting the basic

parameters for our simulation.

(reset-meep)

(define-param res 8)

(define-param edge-shift 0.15)

(define-param tdecay 300)

(define-param pad-holes 8)

(define-param pad-air 1.5)

(define-param eps-gaas 12.9)

(define-param hole-radius 0.3)

(define-param slab-thickness 0.6)

(define-param dpml 1)

(define-param fcen 0.25)

(define-param df 0.1)

(set! eps-averaging? false)
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Most of these parameters should be self explanatory. The edge-shift parameter is to

move the two holes adjacent to the cavity out by 0.15a, as explained in Section 5.3. We

also disable sub-pixel permittivity averaging (eps-averaging) for two reasons. First, we are

attempting to get a general idea of the mode profile and frequency. Second, meep introduces

numerical errors when it is enabled and maximal symmetry is exploited (as of version 1.2.1).

We must now define the simulation space. We need it to be sufficiently large to encompass

the cavity as well as our perfectly matched layer thickness. This we will need to double since

there will be PML on both sides of each spatial dimension. We also locate our GaAs slab at

the origin of the grid.

(define sx (+ 2 (* 2 pad-holes) (* 2 dpml)))

(define sy (+ (* (sin (/ pi 3)) 2 pad-holes) (* 2 dpml)))

(define sz (+ slab-thickness (* 2 pad-air) (* 2 dpml)))

(set! geometry-lattice (make lattice (size sx sy sz)))

(set! pml-layers (list (make pml (thickness dpml))))

(set-param! resolution res)

(set! geometry

(list (make block

(center 0 0 0)

(size infinity infinity slab-thickness)

(material (make dielectric (epsilon eps-gaas))))))

In this program any materials that overlap give priority to those listed last in the script.

We can create our cavity by simply adding infinitely tall air cylinders through the GaAs

slab. We exploit some built in functions of meep to make coding simpler.

(set! geometry (append geometry

; even rows above

(geometric-objects-duplicates

(vector3 0 (* 2 (sin (/ pi 3))) 0) 1 (/ pad-holes 2)

(geometric-object-duplicates

(vector3 -1 0 0) 0 (+ 2 (* 2 pad-holes))

(make cylinder
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(center (+ 1 pad-holes) 0) (radius hole-radius)

(height infinity) (material air))))

; even rows below

(geometric-objects-duplicates

(vector3 0 (* 2 (sin (/ pi 3))) 0) (/ pad-holes -2) -1

(geometric-object-duplicates

(vector3 -1 0 0) 0 (+ 2 (* 2 pad-holes))

(make cylinder

(center (+ 1 pad-holes) 0) (radius hole-radius)

(height infinity) (material air))))

; odd rows

(geometric-objects-duplicates

(vector3 0 (* 2 (sin (/ pi 3))) 0) (/ pad-holes -2)

(- (/ pad-holes 2) 1)

(geometric-object-duplicates

(vector3 -1 0 0) 0 (+ 1 (* 2 pad-holes))

(make cylinder

(center (+ pad-holes 0.5) (sin (/ pi 3))) (height infinity)

(radius hole-radius) (material air))))

; middle row

(geometric-object-duplicates

(vector3 -1 0 0) 0 (- pad-holes 2)

(make cylinder

(center -3 0 0) (radius hole-radius)

(height infinity) (material air)))

(geometric-object-duplicates

(vector3 1 0 0) 0 (- pad-holes 2)

(make cylinder

(center 3 0 0) (radius hole-radius)

(height infinity) (material air)))

; the offset cells

(list

(make cylinder

(center (+ 2 edge-shift) 0 0) (radius hole-radius)

(height infinity) (material air))

(make cylinder

(center (- -2 edge-shift) 0 0) (radius hole-radius)

(height infinity) (material air)))))

A profile through z = 0 of our permittivity function can be seen in Figure A.1. We now

create our sources. For this cavity we do not know what the mode will look like. If we were
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Figure A.1: Cavity permittivity profile.

to place an electromagnetic source or monitoring point at a cavity node, the response will not

accurately depict the cavity’s performance. The electric field would quickly decay into the

crystal. We place both our source and monitoring point at positions of low symmetry since

we expect nodes to exist along symmetry axes. We have the program output the electric

field at the end of the simulation to locate the nodes and antinodes.

(set! sources (list (make source

(src (make gaussian-src

(frequency fcen) (fwidth df)))

(component Ey) (center 1 1 0.2))))

(run-sources+ tdecay

(at-beginning output-epsilon)

(after-sources (harminv Ey (vector3 0.2 0.1 0.05) fcen df))

(at-end output-efield-y))

This simulation gives two significant results. First, we can see the mode profile in Fig-

ure A.2 has its primary antinode at the center of the cavity (the origin of the simulation).

There appears to be a tilt in the mode profile. This is an artifact of the location of our

source and the low resolution used. Additionally our harmonic analysis of the electric field

after the source has turned off reports the four modes listed in Table A.1.
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f(c/a) Quality Amplitude Rel. error
0.250 -9861.09 0.113 1.55e-5
0.263 4565.01 0.020 6.82e-5
0.266 173.71 0.014 5.65e-4
0.286 1399.84 0.001 1.33e-4

Figure A.2 & Table A.1: L3 cavity mode profile and harmonic analysis. The initial pump pulse
and field monitoring point were located at different points of low symmetry.

A.2 Isolating the cavity mode

Ideally we would determine just a single mode for our cavity. However we know from our

previous experience in Chapter 4 with photonic band structures that multiple modes may

exist. Additionally since we have run the simulation at such a low resolution it is possible

that some of these are numerical artifacts and not actual cavity modes. The mode at f = 0.25

looks promising since it has the largest amplitude and lowest error. We can be reasonably

certain this is a real mode. However the negative quality factor is not possible.

This can be attributed to the method in which we calculate the mode quality factor.

The harmonic analysis package assumes that the electric field at the monitoring point can

be decomposed into the sum of many sine waves multiplied by a decaying exponential and

some amplitude. Hence the mode with the largest amplitude is probably the mode of in-

terest. However since we have multiple modes interfering with each other constructively or

destructively it is difficult to get an accurate value for the decay constant. This is partially

due to our resolution and partially due to the length of time the system is allowed to decay

for.
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f(c/a) Quality Amplitude Rel. error
0.226 115.57 0.002 2.56e-4
0.241 116.18 0.011 9.63e-6
0.250 45234.76 0.497 5.90e-8
0.286 1175.57 0.0449 2.00e-7

Figure A.3 & Table A.2: L3 cavity mode profile and harmonic analysis for initial pulse source
located at the origin of the cavity.

Suppose you have a signal that is the combination of two sine waves with very similar

frequencies. There would appear to be one sine wave with a superimposed beat frequency.

A similar phenomena is occurring in this analysis but with much more complex waves. If

the system does not run long enough there can not be a good fit to the data with our simple

model. This can result in an inaccurate, sometimes negative measure of the decay constant.

This is unphysical and it must be resolved in our subsequent simulations.

We move the source and harmonic analysis point to the origin, (vector3 0 0 0) and

rerun the simulation. The mode calculation is much improved, as shown in Table A.2.

At this point we wish to increase the resolution of the simulation to improve our results.

Additionally we only wish to excite a single mode to get the best possible measure of the

quality. To do this we will need to pump the cavity with a narrow band source. From Fourier

analysis we expect a narrow frequency pump to rise and decay slowly. This will lead to a

longer simulation time. For these reasons we exploit symmetry by adding a few lines in our

script before the source.
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(set! symmetries (list

(make mirror-sym (direction X) (phase 1))

(make mirror-sym (direction Z) (phase 1))

(make mirror-sym (direction Y) (phase -1))))

The phase flip on the Y direction symmetry is due to the fact that we are using an Ey

pulse. This means that the magnetic field will be in either the X or Z direction. Since the

magnetic field is a pseudovector, it requires a phase flip under mirror symmetry [31]. With

these additions we now excite only three modes at f = 0.241, 0.250, 0.286. The mode profile

is also unchanged, which is an important consistency check for our symmetry additions.

We now wish to excite only a single mode to prevent interference between the modes from

contributing to error. By passing the script a narrower band using the command line code

df=0.01 we find that we only have one mode with frequency f = 0.250c/a, Q = 55337 and

relative error 8.14e-13.

A.3 Increasing resolution to improve results

We increase the resolution of our simulation by 25% with simply passing the parameter

res=10 on the command line and find that the mode at f = 0.25 has shifted to f = 0.262.

To determine the minimum resolution necessary to perform our simulations we perform the

simulations at continually higher resolution until convergence is met. It is also important at

each step to rerun the simulation shifting fcen so we excite on resonance.

As we found in the previous section, changing our initial pulse width significantly affected

our final calculations. In Figure A.4 we show the calculated quality factor for the same crystal

with differing pulse widths. This is performed for various resolutions. For all resolutions,

the Q converges for δf ≤ 0.05c/a. At larger pulse widths (δf > 0.05c/a) we get unphysical

results due to the finite run time of the simulation. This sets our upper limit on δf we can

use in our simulation and get meaningful results. Fortunately for all pulse widths the center
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Figure A.4: Calculated quality factor as a function of pulse width.

frequency calculated does not shift. This allows the operator to use a broad source to locate

the mode and immediately jump to a narrow source on resonance.

The final check to find the cavity parameters is to increase the resolution until convergence

is met. Figure A.6 shows the final result of our simulation at a resolution of 40 pixels per

lattice parameter. In Figure A.5 we show the calculated frequency and quality factor of

the cavity. We see no general trend to the frequency calculation. However it is important

to note that the calculated frequencies are all within 2% of one another. For the quality

factor we find that resolutions of 20 pixels per lattice parameter or higher converge to within

about 10%. In general, when performing the FDTD simulations it is helpful to double the

resolution of your final result to ensure there are no significant differences. In most cases

doing so will require exploitation of multiple processors or cores within one processor. In

meep this can be performed using the MPI functionality [7].
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Figure A.5: Calculated cavity frequency and quality factor as a function of FDTD resolution.

f(c/a) Quality Amplitude Rel. error
0.259 52147 2.745 9.05e-11

Figure A.6 & Table A.3: Final L3 cavity mode profile and harmonic analysis high resolution, narrow
input pulse simulation.
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Appendix B

Controlling laboratory equipment

This appendix serves to aid future researchers in building or modifying software for control-

ling laboratory equipment. All code listed herein is written in the LabVIEW programming

language. Design principles are based primarily on the LabVIEW Style Book [12].

The goal of our equipment control is to utilize all the resources necessary to complete

an experiment in the most efficient method possible. For an experiment that will only

be used one time, a very quick “just get the job done” approach is often best. However

many times we find that certain equipment must be used in multiple experiments and in

a variety of configurations. For these cases it would be best to write control software for

the equipment in question once and then use a high level virtual instrument (VI) in our

experiment. This ultimately simplifies the experiment’s code and makes for a more easy to

understand interface.

To do this we employ a server-client architecture. We expect both client and server to

exist on the same computer. To move the client to a separate computer will take some

expansion of the code. For our applications, the server provides a direct interface to the

equipment in question. Then we have client VI’s that interact with the server to manipulate

the equipment. It is important that the client VI in no way directly interfaces with the

equipment. This allows us to isolate problems/errors at the level of the hardware, server,
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Figure B.1: Typical server architecture.

client VI, or experiment program.

B.1 Server layers of abstraction

When operating any equipment we wish to work at three levels of abstraction. The idea is

to isolate what exactly we’re trying to accomplish and confine that to a single layer. The

application layer is the highest, which is where the user interacts with their program. Next

lower is the component layer, where the logic of how to control the instrument lies. Below

that is the instrument layer, where we actually interact with the equipment.

When implementing these abstraction layers, it is best to do so in a manner that visually

relates to the code operation. In Figure B.1 there are clearly three main sections of code.

On the top right section we have our event driven state machine that runs the user inter-

face. The bottom right contains the component layer, which is implemented using a queued

state machine. On the far left are startup procedures necessary for the program to execute

correctly.
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Figure B.2: Server startup routines.

The startup routines in Figure B.2 prepare both the application layer and component

layer. First we create a user defined event structure. This will allow us to pass commands

from the component layer to the application layer if necessary. Then we have two queues.

The first is the data return queue. This is a cluster with a data component (void type)

and timestamp. When an operation is completed by the component layer, this is where it

will put the return data. The other queue is the command queue where we will tell the

component layer to execute certain commands from a separate VI or from the front panel.

This cluster contains a data component (void type also), timestamp, and an enumerated

command. After initializing we flush the command queue and then pass it the initialization

command. This structure is useful since any VI running on this same computer can access

both the command and data queues, which we exploit later on.

B.1.1 Application layer

This is the level at which the user operates. It always includes the front panel(s) that the

user interacts with. It may also include queues or other devices for interacting with client
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Figure B.3: Application layer event driven state machine.

programs. We consider client programs to be just another instance of a user interface (so

far as the equipment’s server is concerned). The application layer sends commands to the

component layer about what the user intends to happen. In our server the application layer

is typically an event driven state machine for the user interface and a queued state machine

for receiving client commands.

Figure B.3 is one example of this architecture. When the user interacts with the front

panel it will generate an event. This event tells the system to go into a specific “state.”

In this example pressing the “Shutdown button” causes the application layer to go into the

state in which it sends a command to the component layer to shut down via the command

queue. It then exits the outer while loop. In any other state the while loop is told to continue

executing. One advantage of this setup is that the event structure uses minimal computer

resources while waiting between events. When we have many different instruments operating

simultaneously this can have huge time advantages over simpler methods.
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Figure B.4: Component layer queued state machine.

B.1.2 Component layer

The purpose of the component layer is to receive instructions from the application layer and

send specific commands to the instrument layer. The component layer may be the most

important layer because it contains all of the logic of the program. If we need to expand

the server to include functionality, we must always consider how the different states of the

equipment interact. For example, if we tell the server to store the data from the camera

it needs to first decide if the camera is in single exposure or continuous exposure mode.

That will determine if we need to open the shutter and take an exposure or just store data

currently in the camera’s circular buffer. The component layer performs its logic operations

and then sends specific commands to the instrument via the instrument layer. In our server

the component layer is typically a queued state machine.

In this example the while loop is fed two inputs, the command queue and a error cluster

connected via shift register. This is extremely important because we want the program to

shut down in case of an error in any state. So we first parse the error cluster. If no error

exists, then we proceed to dequeue the next command. This will go into an idle state which

again uses minimal computer resources much like the event driven state machine. Whenever
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Figure B.5: Instrument layer sub-VI.

a command is put into the command queue, it is broken up into the command, the data,

and a timestamp. Not all command states will require all of these inputs. For the example

shown, there is no data needed for initialization. Likewise, we are not going to pass any data

back via the data queue, so we do not use the timestamp. After performing the instrument

level initialization (shown as a sub-VI labelled “INIT”) we must apply the logic necessary

to correctly operate this instrument. For example, after the hardware is initialized we want

to tell it to go to the positions listed on the front panel. This is a simple matter of putting

the command clusters into the command queue.

B.1.3 Instrument layer

The instrument layer contains the direct interaction with the equipment. These are very

low level commands and may incorporate external libraries. This is typically done through

sub-VI’s from the main server.

When writing these sub-VI’s our goal is to have a fully self contained program. It is

best to always include error cluster inputs and outputs and to bypass all code execution if

an error is fed into the VI. This is demonstrated as the case structure outlining the code in
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Figure B.6: Client VI interacting with server.

Figure B.5. The details of this code are relatively unimportant, since they are just specific

commands for this instrument.

B.2 Client/Server interaction

Having developed the server in this efficient manner, the next task is to write very simple

VI’s that allow an overarching experiment’s VI to interact with the server. The approach is

to place the desired command into the command queue and then wait for data to be returned

from the data queue, if appropriate. It is important to send in the computer’s current time

as a time stamp, since that will inform the server that data should be placed into the data

queue. That is, if the timestamp is left at the default no data will be returned to prevent

filling the data queue unnecessarily. Then we check the data queue for our time stamp. If

the entry we find has our time stamp, we return the appropriate data. If not, we place it

back into the end of the queue. This will repeat until the correct data has been found.

B.3 Experiment VIs

Having developed a server to control the underlying hardware and client VI’s to interact

with the server, we are now free to focus on the goal of the experiment. Here we should

have a very easy to understand program that controls what data we want to collect and how
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Figure B.7: Example experiment VI.

we wish to go about it. For example, suppose we have two instruments. We have a motor

controller that moves a lens position and a lock-in amplifier that reads the electrical signal

from a photodiode. We wish to design an experiment that will scan over the range of the

lens position, read the corresponding signal from the lock in amplifier, and store the data.

An example can be seen in Figure B.7. Following the goal of the experiment is very simple

and the purpose of each part can be inferred easily.

Ideally all of the inputs for an experiment will correspond to the relevant parameter of

interest. For example, instead of labeling an input as “Axis 1 position” it should be “X axis

position.” The subtle difference is that one version corresponds to the instrument and the

other corresponds to the experiment. Similarly you may want a label such as “reflection

intensity” instead of “lock-in X%.” This makes it clear exactly what we are attempting

to set/measure and has the underlying code convert that into instrument commands. The

emphasis of the experiment VI should be the experiment not the instrumentation.
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