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Abstract 

Establishing the accurate subcellular distribution of organelles is essential for cell 

function and homeostasis. Transport of organelles to their correct locations by 

molecular motors is critical for the proper distribution of organelles. Recent studies 

suggest an unexpected requirement for the accurate detachment of organelles from 

their associated motors and for the proper deposition of organelles at their correct 

destinations.   

In Saccharomyces cerevisiae, in coordination with the cell cycle, organelles are 

transported from the mother cell to the bud along actin cables. Most cytoplasmic 

organelles are transported by the myosin V motor, Myo2. Myo2 attaches to organelles 

via cargo-specific adaptor proteins. For example, Inp2, Mmr1, Vac17 and Ypt31/32, 

Sec4/Sec15 attach Myo2 to peroxisomes, mitochondria, the vacuole and secretory 

vesicles respectively. Each cargo has a distinct itinerary. Myo2 orchestrates the 

transport of diverse organelles in part through the regulated attachment to and 

detachment from cargoes.  

 Studies of vacuole transport demonstrate that cargo adaptors play key roles in 

regulating the transport of organelles. At the start of the cell cycle, the vacuole-specific 

adaptor, Vac17, is phosphorylated by Cdk1 at four sites. Cdk1 dependent 

phosphorylation promotes the interaction of Vac17 with Myo2 which attaches Myo2 to 

the vacuole and initiates vacuole transport in coordination with the start of the cell cycle. 

Subsequently, the degradation of Vac17 detaches the vacuole from Myo2 and deposits 
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the vacuole in the bud. The mechanisms which regulate cargo detachment from Myo2 

remain poorly understood.  

Studies reported here demonstrate that vacuole detachment from Myo2 occurs in 

multiple regulated steps along the entire pathway of vacuole transport. Detachment 

initiates in the mother cell with the phosphorylation of Vac17 which recruits the E3 

ligase, Dma1, to the vacuole. However, Dma1 recruitment also requires the assembly of 

the vacuole transport complex and is first observed after the vacuole enters the bud. 

Dma1 remains on the vacuole until the bud and mother vacuoles separate. 

Subsequently, Dma1 targets Vac17 for proteasomal degradation. Notably, we find that 

the termination of peroxisome transport also requires Dma1. We predict that this is a 

general mechanism which detaches myosin V from select cargoes. 
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CHAPTER I 

Introduction 

 In eukaryotic cells, organelles are membrane bound subcellular compartments 

which carry out different cellular processes required for cells to function, respond to 

external stimuli and maintain homeostasis. While each organelle is a distinct 

compartment, they are not static sites which carry out isolated cellular processes, rather 

they are highly dynamic. There is abundant trafficking and communication between 

organelles to coordinate different processes (Kvam and Goldfarb, 2007; Michel and 

Kornmann, 2012; Sousa et al., 2011). For some organelles, morphology is regulated via 

cycles of fusion and fission (Mao and Klionsky, 2013; Rossanese and Glick, 2001; 

Wickner, 2010). Moreover, it is becoming increasingly clear that the subcellular location 

of organelles is critical for cell function. 

Organelles are often transported to distinct subcellular sites. For example, 

neuronal plasticity of purkinje neurons requires the transport of the ER into dendritic 

spines (Wagner et al., 2011). In hippocampal neurons and intestinal epithelia, the 

recycling of endosomes from intracellular compartments to the cell surface regulates the 

ability of these cells to respond to external stimuli. Pigmentation requires the transport 

of pigment containing melanosomes to the periphery of melanocytes and their 

subsequent transfer to neighboring keratinocytes (Hammer and Sellers, 2011).  

In general, long range transport occurs on microtubules via kinesin and dynein 

motors while short range transport occurs on actin via myosin V motors. Cargoes are 
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commonly transported to the cell periphery by kinesins and transferred on to myosin to 

navigate through actin rich networks to reach their final destinations (Wu et al., 1998). 

Thus, in mammalian cells, organelle transport occurs via the coordinated actions of both 

microtubule and actin based motors.  

In Saccharomyces cerevisiae, organelles are also transported to specific 

subcellular locations. In coordination with the cell cycle, organelles are transported from 

the mother cell to the bud. Unlike mammalian cells, transport occurs predominantly on 

actin filaments using myosin V. The directionality of organelle transport is regulated in 

part through the polarity of actin cables which directs the traffic of myosin V transport 

into the bud. In addition, the attachment of myosin V to its cargoes is highly regulated 

which dictates when and where organelle transport initiates. Furthermore, recent 

studies suggest that the detachment of organelles from myosin is also regulated which 

deposits organelles at their correct subcellular destinations. Thus, studies of S. 

cerevisiae have uncovered many mechanistic insights into the temporal and spatial 

regulation of myosin V transport.   

 

Myosin  

Myosins comprise a diverse superfamily of motor proteins which are divided into 18 

classes (Foth et al., 2006). Most eukaryotic organisms express myosin genes from 

several classes. Myosin motors convert energy derived from ATP hydrolysis into 

mechanical force which drives movement along actin cables. In general, myosins 

consist of 3 main structural domains, the motor domain at the N-terminus, the lever arm 

and a C-terminal tail domain. The motor domain contains both the actin and nucleotide 
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binding sites. The motor domain cannot strongly bind ATP and F-actin simultaneously. 

In the ATP bound state, affinity of the motor domain for F-actin decreases and motor 

domain releases from actin. In the ADP bound state, affinity of the motor domain for F-

actin increases and motor domain binds actin. ATP hydrolysis induces conformational 

changes in the motor domain which is then amplified by the lever arm into a power 

stroke and propels the motor forward along actin cables. The lever arm may contain up 

to six IQ motifs with the sequence IQxxxRGxxxR, where x denotes any amino acid 

(Terrak et al., 2005). Each IQ motif binds calmodulins or calmodulin-like light chains 

which stiffens and regulates the lever arm (Trybus, 2008). The tail domain exhibits the 

greatest degree of diversity between the classes of myosins. This diversity confers 

distinct functions to different myosins. For example, the tail domains of the conventional 

class II myosins enable these myosins to oligomerize into bipolar filaments. These 

myosins are anchored in place while their motor domains move along actin cables 

which generate a contractile force. In contrast, the tail domains of class V myosins allow 

these motors to bind and transport cargoes.  

Like other myosins, class V myosin motors consist of a motor domain, lever arm 

and tail. The tail domain contains the rod region and the cargo binding domain (CBD) 

(Figure 1.1). Two myosin V heavy chains dimerize via their rod regions and function as 

a homodimer. Coordinated cycles of ATP binding and subsequent hydrolysis of ATP 

into ADP between the two motor domains enable processive movement along actin. 

The distance between the two lever arms per myosin V dimer dictates the length of the 

72 nm steps along actin. Following the rod region is the CBD which recognizes cargoes. 

The CBD directly binds cargo specific adaptor proteins which attach myosin V to its 
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cargoes and initiates cargo transport toward the barbed end of actin filaments 

(Weisman, 2006).   

 

Establishment of Polarity 
 
In S. cerevisiae, organelle transport is coordinated with the cell cycle. Cell division 

occurs via polarized growth. Organelles and genetic material are targeted from the 

mother cell to the bud. At the start of the cell cycle, the Ras family GTPase, Rsr1, 

selects the presumptive bud site on the cell cortex which will eventually develop into the 

daughter cell. Rsr1 recruits the Rho family GTPase, Cdc42, and its Guanine Exchange 

Factor (GEF), Cdc24. Active Cdc42 establishes a polarity axis which confines cell 

growth to the bud site. In the absence of Rsr1, Cdc42/Cdc24 establish polarity at a 

random site. Cdc42 regulates the polymerization of actin into cortical patches and 

cables. Actin cortical patches function in endocytosis and their assembly require the 

actin nucleators, Arp2/3. Actin cables provide the tracks used for polarized secretion 

and organelle inheritance. Assembly of actin cables is not dependent on Arp2/3. The 

nucleators for actin cables are the formins Bni1 and Bnr1. Bni1 nucleates actin cables at 

the bud tip while Bnr1 nucleates cables at the bud neck. Cdc42 recruits Bni1 to the bud 

tip. Furthermore, Cdc42 with two other Rho family GTPases, Rho3 and Rho4, activate 

Bni1. Bni1 contains Formin Homology domains FH1 and FH2 which nucleate actin 

filaments in vitro. In budding cells, Bni1 nucleates actin cables which extend from the 

bud tip deep into the mother cell. The actin cables are polarized with the barbed ends at 

the bud tip and the pointed ends extending into the mother (Moseley and Goode, 2006; 

Pruyne and Bretscher, 2000; Pruyne et al., 2004b). Because myosin V is a barbed end 
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directed motor, the polarity of the actin cables directs the traffic of myosin V transport 

from the mother cell to the bud tip. Later in the cell cycle, as the size of the bud reaches 

that of the mother cell, Bni1 is re-localized to the mother-bud neck. The polarity of the 

actin cables is reversed and directs myosin V transport of secretory vesicles to the site 

of cytokinesis (Liu et al.; Pruyne et al., 2004a).  

 

Cargo transport 

In S. cerevisiae, Myo2 transports secretory vesicles, the late Golgi, peroxisomes, the 

vacuole/lysosome, mitochondria and microtubules. Myo4 transports the Endoplasmic 

reticulum (ER) and mRNA (Figure 1.2). The myosin V CBD directly binds cargo-specific 

adaptor proteins which attach myosin V to different cargoes.  

Secretory vesicles 

A role for Myo2 in organelle transport was first recognized with the identification 

of the temperature sensitive mutant myo2-66. myo2-66 contains a single missense 

mutation in the motor domain, E511K (Lillie and Brown, 1994). This mutation would be 

predicted to impair the transport of Myo2 cargoes. Indeed, at the restrictive temperature 

of 36OC, secretory vesicles accumulate inside cells. These studies provided evidence 

implicating that Myo2 transports secretory vesicles (Johnston et al., 1991).  

Secretory and membrane proteins modified in the Golgi are packaged into 

secretory vesicles and transported to the plasma membrane for exocytosis. Secretory 

vesicles are tethered to the plasma membrane via the exocyst complex. Subsequently, 

the vesicles fuse with the plasma membrane and release their contents from the cell. 

The formation of secretory vesicles requires the Rab GTPases, Ypt31/32. Ypt31/32 
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recruits Sec2, the GEF for the Rab GTPase Sec4. Sec2 then recruits Sec4 to the 

secretory vesicle and also binds Sec15, a subunit of the exocyst complex. Via Sec2, 

Sec4 exchanges GDP for GTP and in turn, Sec15 binds activated Sec4. Moreover, 

Sec4 promotes assembly of the exocyst complex (Guo et al., 1999). Activated Sec4 

along with Sro7 and Sec9 mediate the fusion of the secretory vesicles with the plasma 

membrane (Brennwald et al., 1994; Grosshans et al., 2006). Notably,  Myo2 directly 

interacts with Ypt31/32, Sec4 and Sec15, which attach Myo2 to secretory vesicles 

during vesicle formation, transport, tethering and fusion with the plasma membrane (Jin 

et al., 2011; Lipatova et al., 2008; Santiago-Tirado et al., 2011).  

Peroxisomes 

Peroxisomes function in the metabolism of lipids and reactive oxygen species 

(ROS). In yeast, a population of peroxisomes is localized to static positions on the cell 

cortex. In coordination with the cell cycle, a subset of peroxisomes undergoes Myo2 

dependent transport into the bud. Peroxisomes are attached to Myo2 via the integral 

membrane protein and peroxisome specific adaptor, Inp2. In the inp2∆ mutant, the bud 

fails to inherit peroxisomes (Fagarasanu et al., 2006). A recent study identified a second 

peroxisomal protein, Pex19, which also directly interacts with Myo2. Furthermore, this 

interaction is critical for peroxisome inheritance (Otzen et al.). Thus, Inp2 and Pex19 

function in the attachment of peroxisomes to Myo2.  

Vacuole 

The yeast vacuole, analogous to the mammalian lysosome, is the site of 

degradative processes, ion/metabolite/amino acid storage, intracellular pH and osmotic 

regulation. The vacuole is attached to Myo2 via a protein complex that contains Vac8 
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and Vac17. Vac8 is anchored to the vacuole membrane via myristoylation and 

palmitoylation. Vac8 functions in multiple vacuolar processes including, cytoplasm to 

vacuole protein targeting pathway, formation of the nucleus-vacuole junction, vacuole 

fusion and vacuole inheritance. Vac8 binds Vac17 and Vac17 directly interacts with 

Myo2 (Ishikawa et al., 2003; Tang et al., 2003). Assembly of the Myo2/Vac17/Vac8 

complex attaches Myo2 to the vacuole and initiates transport. Unlike Vac8, the only 

function identified for Vac17, is that of a cargo adaptor for Myo2.  

Mitochondria  

Mitochondria are sites for cellular respiration and energy production. As with 

other organelles, mitochondria are partitioned into the bud in coordination with the cell 

cycle. However, the mechanism by which mitochondria move had been largely 

controversial because two distinct mechanisms had been described. One mechanism is 

actin dependent and motor independent while the other is actin and motor dependent.  

The first mechanism proposes that actin polymerization nucleated by the Arp2/3 

complex generates the force which moves mitochondria. This model was based on 

observations that the Arp2/3 complex associates with the mitochondria and that 

mutations in the Arp2/3 complex impair mitochondrial movement (Boldogh et al., 2001). 

In this model, the directionality of transport requires the attachment of mitochondria to 

actin filaments which extend from the bud tip. Mitochondria are attached to actin 

filaments via the mitochore complex which consists of Mmm1, Mdm10 and Mdm12 

(Boldogh et al., 2003). The mitochore complex attaches to the mitochondria-associated 

Arp2/3 complex via the RNA binding protein, Puf3 (Garcia-Rodriguez et al., 2007). This 

model proposes that actin polymerization propels the mitochondria along the actin 



8 
 

cytoskeleton into the bud.  

 The second mechanism described for mitochondrial transport involves Myo2 and 

the actin cytoskeleton. Evidence that Myo2 transports mitochondria came from studies 

which isolated myo2 mutants, myo2-338 and myo2-573, that cause defects in 

mitochondrial motility. For myo2-338, this defect is likely caused by the loss of the 

interaction with the Rab GTPase, Ypt11. Further analysis revealed that mitochondrial 

motility is also impaired in the ypt11∆ mutant (Itoh et al., 2002). These observations 

suggest that Myo2 binds Ypt11 to transport the mitochondria. In an over-expression 

screen, Mmr1 was identified as a suppressor of myo2-573. Furthermore, Mmr1 directly 

interacted with the Myo2 CBD, localized to the mitochondria and mitochondrial 

inheritance was impaired in the mmr1∆ mutant (Itoh et al., 2004). Time lapse 

microscopy revealed that in the mmr1∆ mutant, the mitochondria fails to move into the 

bud (Eves et al., 2012). Together, these observations suggest that Mmr1 is a cargo 

adaptor for Myo2 and in conjunction with Ypt11, attaches Myo2 to the mitochondria for 

transport.  

Intriguingly, while mitochondrial inheritance is essential, Mmr1 is not. Moreover, 

the absence of Myo2 based transport causes a delay in mitochondria delivery to bud but 

does not cause a complete block. These observations are consistent with a model 

where mitochondrial movement occurs via multiple mechanisms. Because mitochondria 

are essential organelles that cannot be synthesized de novo, multiple pathways may 

have evolved to ensure that mitochondria are inherited by the bud.  

Late Golgi 



9 
 

Secretory and membrane proteins synthesized in the ER are packaged into Coat 

Protein Complex II (COPII) coated vesicles and undergo anterograde transport to the 

Golgi complex for modifications before delivery to their final destinations. Conversely, 

COPI coated vesicles undergo retrograde transport and deliver cargoes from the Golgi 

complex to the ER. In S. cerevisiae, the late Golgi, is transported by Myo2. Ret2, a 

subunit of the COPI coat, attaches Myo2 to the late Golgi. Ret2 binds Ypt11 which binds 

the Myo2 CBD (Arai et al., 2008). Similar to the mitochondria, there are other 

mechanisms that ensure that the bud receives the Golgi. While these other mechanisms 

have not been studied they likely involve the ability of the late Golgi to form via cisternal 

maturation (Rossanese and Glick, 2001).  

Microtubules  

In yeast, spindle pole bodies (SPBs), equivalent to the mammalian centrosome, 

organize both nuclear and cytoplasmic microtubules (MTs). MTs are polarized with the 

negative ends at the SPBs and the plus ends extending away from the SPBs. Nuclear 

MTs attach to the kinetochores of chromosomes and form the mitotic and meiotic 

spindles. Cytoplasmic MTs attach to the opposite poles of the dividing cell to orient a 

bipolar spindle which ensures that the proper complement of chromosomes is 

partitioned between mother and bud (Jaspersen and Winey, 2004). Spindle positioning 

occurs early in the cell cycle via actin and Myo2 dependent mechanisms (Palmer et al., 

1992; Theesfeld et al., 1999; Yin et al., 2000). The MT cargo adaptor, Kar9, associates 

with SPBs and is then delivered to the plus ends of MTs via binding the MT plus end 

tracking protein, Bim1 (Lee et al., 2000; Liakopoulos et al., 2003; Miller et al., 2000). 

Myo2 directly binds Kar9 and transports the plus ends of cytoplasmic MTs to the bud 
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which orients the spindle. The Myo2-Bim1 fusion protein tracks to the plus ends of MTs 

and orients the spindle in the absence of Kar9 which suggests that, for spindle 

positioning, Kar9 functions solely in the attachment of Myo2 to Bim1 (Hwang et al., 

2003). 

mRNA 

Multiple mRNAs are asymmetrically localized to the bud (Shepard et al., 2003). Bud 

specific mRNAs enable localized protein translation which regulates cell fate 

determination. While multiple mRNAs are transported to the bud, Asymmetrical 

Synthesis of HO1 (ASH1) mRNA transport is the best characterized. ASH1 mRNA 

encodes a transcriptional repressor of the HO endonuclease and suppresses mating 

type switching (Bobola et al., 1996; Sil and Herskowitz, 1996). Transport of ASH1 

mRNA requires Myo4 but not Myo2. Myo4 directly binds She3, She3 binds She2 and 

She2 directly binds ASH1 mRNA. Fusion of She3 with a high affinity RNA binding 

domain negates the requirement for She2 in ASH1 mRNA transport which suggests that 

the sole role of She2 is to attach Myo4/She3 to ASH1 mRNA (Long et al., 2000). Thus, 

the She3/She2 complex serves as a cargo adaptor for Myo4.    

ER 

The endoplasmic reticulum (ER) is the major site for secretory protein synthesis and 

folding. In S. cerevisiae, there are two forms of ER. The perinuclear ER surrounds the 

nucleus while the cortical ER (cER) localizes to the cell cortex adjacent to the plasma 

membrane. The cER is the only organelle cargo identified for Myo4. She3, but not 

She2, attaches the cER to Myo4 (Estrada et al., 2003). Notably, transport of the cER 

may also occur via a Myo2 dependent mechanism. The Rab GTPase, Ypt11, which 



11 
 

attaches Myo2 to mitochondria and late Golgi, shows extensive co-localization with the 

ER (Buvelot Frei et al., 2006). Moreover, the ER-mitochondria encounter structures 

(ERMES) complex mediates points of contacts between the ER and mitochondria. ER-

mitochondria contact sites are critical for lipid exchange between the two organelles, 

protein import to the mitochondria and mitochondrial morphology (Michel and 

Kornmann, 2012). Thus, Myo2/Ypt11 dependent mitochondrial transport may contribute 

to ER inheritance via the physical linkages between mitochondria and the ER.   

 
Roles of the myosin V CBD in its attachment to cargoes 

Myosin V transports different cargoes to distinct subcellular locations often in 

coordination with other cellular events such as the cell cycle or in response to external 

stimuli. To coordinate myosin V transport with other processes, the attachment of 

myosin V to specific cargoes and the initiation of transport must be tightly regulated.  

Indeed, many studies have revealed that myosin V transport is regulated via different 

mechanisms.  

 One mechanism shown to regulate mammalian myosin V is an auto-inhibition 

that occurs when an unoccupied CBD binds the motor domain. Differences in closed 

(inactive) and open (active) conformations can be observed by differential 

sedimentation. The sedimentation coefficient for activated myosin V is 11S. Inactivation 

of myosin V changes the sedimentation coefficient to 14S (Ikebe, 2008; Sellers and 

Knight, 2007). This suggests that inactive myosin V adopts a closed conformation while 

active myosin V adopts an open conformation. Electron tomography studies revealed 

that when myosin V is inactive, the CBD folds back and directly interacts with the motor 

domain, resulting in a more compact form. In the compact conformation, the ATPase 



12 
 

activity of myosin V decreases by ~50-fold compared to myosin V in the extended/active 

conformation (Lu et al., 2006). Thus, conformational changes directly regulate myosin V 

transport. It is not yet known whether this mode of regulation occurs for Myo2 or Myo4. 

 The CBD directly regulates the attachment of myosin V to cargoes. In a forward 

genetic screen designed to identify mutants that were defective in vacuole inheritance, 

the mutant myo2-2 was isolated. myo2-2 contained a point mutation in its CBD, 

G1248D, which caused a strong defect in vacuole transport (Catlett and Weisman, 

1998). Later studies further identified D1297, L1301, N1304 and N1307 as residues on 

the Myo2 CBD that directly interacts with Vac17 and are required for vacuole transport 

(Catlett et al., 2000; Ishikawa et al., 2003). Intriguingly, mutations of any of these 

residues did not cause growth defects, a phenotype that is associated with impairments 

in polarized growth. This suggests that these residues are not required for secretory 

vesicle transport. Conversely, the myo2-ΔAflII mutant, with residues 1,459-1,491 

deleted from the CBD, is defective in polarized growth but undergoes normal vacuole 

transport (Catlett and Weisman, 1998). These results suggest that distinct regions on 

the Myo2 CBD recognize different cargoes. The crystal structure of the Myo2 CBD 

(residues 1087-1574) revealed that the residues required for secretory vesicle transport 

and those required for vacuole transport are located in different regions of the CBD 

(Figure 1.3).  

The Myo2 CBD consists of 15 alpha helices connected by loops. The overall 

structure of the CBD can be separated into two five helical bundles, termed subdomains 

I and II, and are connected by helix 6. Myo2 residues D1297, L1301, N1304 and N1307, 

which directly interact with Vac17, all lay on the same surface of helix 6 in subdomain I. 
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Residues required for secretory vesicle transport, L1331, L1411, Y1415, K1444, and 

Q1447 are located in subdomain II at a site that is offset by 180O from the region which 

binds Vac17 (Pashkova et al., 2006).  

The crystal structure of the Myo2 CBD and the identification of both the vacuole 

and secretory vesicle binding sites prompted further studies to identify the binding sites 

for other Myo2 cargoes. Surprisingly, most cargoes bind the Myo2 CBD at two main 

regions. The Mmr1 and Vac17 binding sites partially overlap at one region of the CBD. 

Myo2 residues D1297 and E1293 are required solely for binding Vac17 while residues 

I1308 and K1312 are required solely for binding Mmr1. However, residues L1229, 

Q1233, L1301, Y1303, N1304 and N1307 are required for binding both Vac17 and 

Mmr1 (Figure 1.3). Similarly, the binding sites for Kar9, Inp2, Ypt11, Ypt31/32 and Sec4 

partially overlap at a second region of the CBD (Eves et al., 2012). A third binding site 

was recently identified for Sec15 (Jin et al., 2011). These overlapping binding sites 

suggest that the binding of the Myo2 CBD to different cargoes is mutually exclusive. 

Indeed, further analysis of the Vac17 and Mmr1 binding sites demonstrated that these 

two cargo adaptors compete for access to Myo2 in vitro and in vivo. Furthermore, this 

competition regulates the volume of vacuoles and mitochondria that are transported into 

the bud (Eves et al., 2012). Similar mechanisms may rely on the overlap between the 

Kar9, Inp2, Ypt11, Ypt31/32 and Sec4 binding sites. Thus, the Myo2 CBD plays critical 

roles in orchestrating the transport of multiple organelles.   

 

Roles of Cargo Adaptors in the attachment of myosin V to cargoes 

Studies of vacuole transport demonstrate that the regulation of a cargo adaptor 
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contributes to motor-cargo attachment. Vac17 mRNA and protein levels oscillate with 

the cell cycle (Spellman et al., 1998; Tang et al., 2003). This suggests that the 

attachment of Myo2 to the vacuole is coordinated with the cell cycle in part via the 

availability of the vacuole specific adaptor. In addition, Vac17 is regulated via 

phosphorylation which also oscillates with the cell cycle. The main cyclin dependent 

kinase, Cdk1, phosphorylates Vac17 at S119, T149, S178 and T248 in vitro. Cdk1 

dependent phosphorylation promotes the interaction of Vac17 with Myo2 and initiates 

vacuole transport in coordination with the cell cycle (Peng and Weisman, 2008).  

 A screen to isolate mutants that are defective in vacuole inheritance revealed 

that the type 2C serine/threonine protein phosphatase, Ptc1, is required for the transport 

of multiple Myo2 and Myo4 cargoes. Transport of the vacuole, secretory vesicles, 

peroxisomes, mitochondria, ER and ASH1 mRNA are defective in the ptc1Δ mutant (Du 

et al., 2006; Jin et al., 2009; Roeder et al., 1998). In the ptc1Δ mutant, Myo2 is partially 

mis-localized, a phenotype that is also observed in myo2 mutants that are defective in 

binding cargoes. Moreover, fusion of Vac17 with the Myo2 CBD rescues vacuole 

transport in the ptc1Δ mutant. Altogether, these observations suggest that Ptc1 

functions in the assembly of Myo2 transport complexes. Thus, Myo2 attachment to 

cargoes is regulated via both phosphorylation and dephosphorylation events.  

A critical aspect of organelle inheritance is that only a portion or subset of the 

original organelles is transported to the bud while the rest is retained in the mother cell. 

For example, there are two distinct SPBs in each dividing cell but only one SPB is 

partitioned to the bud. This is essential because each SPB is attached to one complete 

set of chromosomes, partitioning one SPB to the bud while the other remains in the 
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mother cell ensures that both cells receive the proper complement of chromosomes 

after division. SPB partitioning is regulated via the asymmetrical loading of Kar9 onto 

the SPB destined for the bud and its exclusion from the mother SPB. The asymmetry of 

Kar9 loading ensures that Myo2 attaches to only the MTs emanating from the bud-

directed SPB which is critical for the generation of a bipolar spindle. Breaking this 

asymmetry causes Kar9 to associate with both SPBs and the aberrant positioning of the 

spindle (Liakopoulos et al., 2003). Similar to SPBs, only a subset of peroxisomes is 

transported into the bud by Myo2. Inp2 is not uniformly localized to all peroxisomes but 

is enriched on the peroxisomes which are transported to the bud (Fagarasanu et al., 

2009). Thus, the regulated loading of cargo adaptors contributes to the attachment of 

Myo2 to cargoes.   

 

Regulation of myosin V detachment from cargoes 

Accurate cargo transport requires that myosin V attaches to cargoes at their 

original locations and deposits cargoes at their correct destinations. Different myosin V 

cargoes have distinct itineraries. This strongly suggests that the detachment from 

myosin V is tightly regulated. Indeed, the vacuole is deposited in the bud via 

detachment from Myo2. A defect in this detachment causes the inappropriate transport 

of the bud vacuole to the mother-bud neck late in the cell cycle, the site where Myo2 

delivers secretory vesicles (Karpova et al., 2000; Lillie and Brown, 1994). Detachment 

of the vacuole from Myo2 requires the Vac17 PEST sequence, which targets proteins 

for rapid turnover. Deletion of the Vac17 PEST sequence does not perturb the ability of 

Vac17 to bind Myo2 or Vac8 but causes an elevation of Vac17 levels. Interestingly, in 
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the vac17-ΔPEST mutant, the bud vacuole fails to detach from Myo2 and accumulates 

at the mother-bud neck. Thus, Vac17 degradation is required for the detachment of the 

vacuole from Myo2 (Tang et al., 2003).   

The degradation of Vac17 involves the p21-activated kinases Cla4 and Ste20. 

Cla4 is a bud-specific kinase that localizes to the bud cortex and also to the vacuole 

upon arrival in the bud. Over-expression of either CLA4 or STE20 causes a decrease in 

Vac17 levels and a defect in vacuole transport. Interestingly, the vac17-∆PEST mutant 

is not degraded even with the over-expression of CLA4 or STE20 (Bartholomew and 

Hardy, 2009). This raises the possibility that Cla4 and Ste20 phosphorylate the Vac17 

PEST sequence and are part of the pathway that regulates Vac17 degradation.  

 

The mechanisms that detach the cargoes from myosin V are likely conserved  

 The regulation of myosin V release of cargoes is likely conserved in most 

eukaryotes. Like Myo2, mammalian myosin Va, Vb and Vc move membranous 

organelle cargoes. Transport of these cargoes requires organelle specific adaptor 

proteins. For example, myosin Va transports melanosomes via interactions with 

melanophilin and Rab27a (Fukuda et al., 2002; Strom et al., 2002; Wu et al., 2002). 

Notably, melanophilin contains 3 PEST sequences, which are important for 

melanophilin degradation and melanosome transport (Fukuda and Itoh, 2004). The 

similarities between Vac17 and melanophilin, as well as the marked conservation of the 

cargo-binding domains of myosin V, make it tempting to speculate that the mechanisms 

which regulate Vac17 and the detachment of the vacuole from myosin V are similar to 

those that occur for other organelles throughout evolution.  
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In Xenopus laevis, myosin V CBD has been shown to play a role in the regulated 

detachment of cargoes. In Xenopus melanophores, the direct phosphorylation of myosin 

V regulates the release of cargoes (Rogers et al., 1999). Calcium/calmodulin-dependent 

protein kinase II (CaMKII) phosphorylates myosin V at Ser1650. The S1650A mutant 

binds but does not release melanosomes. Conversely, the S1650E phospho-mimetic 

mutant fails to bind to melanosomes. These observations suggest that CaMKII 

dependent phosphorylation of myosin V releases the melanosomes. Interestingly, 

myosin V is phosphorylated in the presence of mitotic but not interphase cell extracts 

(Karcher et al., 2001). Therefore, the phosphorylation of myosin V and the detachment 

of melanosomes are cell cycle regulated events. It is tempting to speculate that post-

translational modification of both myosin V and its cargo adaptors regulate myosin V 

transport in yeast and higher eukaryotes.    

 

Focus of the thesis 

 The regulated detachment of cargoes from myosin V deposits organelles at their 

correct subcellular locations. For the vacuole, a defect in the detachment from Myo2 

causes its inappropriate transport to the mother-bud neck late in the cell cycle. 

Detachment of the vacuole requires the degradation of the vacuole specific adaptor for 

Myo2, Vac17, via its PEST sequence. Involvement of the p21 activated kinases, Cla4 

and Ste20, in the degradation of Vac17, raises the possibility that post-translational 

modifications of Vac17 may be critical for the termination of vacuole transport. The 

studies described in this thesis suggest that the regulated modulation of Vac17 and the 

recruitment of downstream effectors directly control the detachment of the vacuole from 
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Myo2. Moreover, our findings suggest that the detachment of other cargoes from 

myosin V occurs via similar mechanisms.    
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Figure 1.1. Schematic representation of myosin V.  

Myosin V functions as a homodimer, each monomer consists of four main structural 
domains. The motor domain contains the actin and nucleotide binding site. The lever 
arm contains 6 IQ motifs for binding regulatory light chains. The rod domain is the site of 
dimerization between two myosin V heavy chains. The Cargo Binding Domain (CBD) 
attaches to cargoes. Image modified from (Hammer and Sellers, 2011). 
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Figure 1.2. Orangelle inheritance in S. cerevisiae.  

The formins Bnr1 and Bni1 nucleate actin cable polymerization at the bud neck and bud 
tip respectively. The polarity of the actin cables direct Myo2 and Myo4 transport into the 
bud. Myo2 attaches to different cargoes via cargo-specific adaptors. For example, 
Mmr1, Ypt11 (Eves et al., 2012; Fortsch et al., 2011; Itoh et al., 2004; Itoh et al., 2002), 
Inp2 (Fagarasanu et al., 2006), Ypt31/32, Sec4, Sec15 (Jin et al., 2011; Lipatova et al., 
2008; Santiago-Tirado et al., 2011), Kar9 (Korinek et al., 2000) and Vac17 (Ishikawa et 
al., 2003; Tang et al., 2003) attach Myo2 to mitochondria, peroxisomes, secretory 
vesicles, astral microtubules and the vacuole respectively. Myo4 attaches to cER via 
binding She3 (Estrada et al., 2003) and attaches to mRNA via binding the She3/She2 
complex (Long et al., 2000). Image modified from (Fagarasanu et al., 2010). 
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Figure 1.3. Crystal structure of the Myo2 CBD.  

(Top)The Mmr1 and Vac17 binding sites partially overlap and are located in subdomain 
I of the Myo2 CBD. Residues E1293 and D1297 (blue) are required solely for binding 
Vac17. Residues I1308, K1312 and P1529 (red) are required solely for binding Mmr1. 
Residues L1229, L1301, N1304, Y1303 and N1307 (purple) bind both Mmr1 and Vac17. 
The overlap between Mmr1 and Vac17 binding sites regulate the volume of vacuole and 
mitochondria inherited by the bud. (Bottom) On the opposite side of the Myo2 CBD, the 
Ypt11, Ypt31/32, Sec4, Inp2 and Kar9 binding sites partially overlap and are located in 
subdomain II. F1334 and K1408 (yellow) bind Kar9. E1484 (red) binds Inp2. Y1483 and 
W1407 (orange) bind Kar9 and Inp2. L1331 (green) binds Kar9, Sec4 and Ypt31/32. 
K1444 and Q1447 (blue) bind Sec4, Ypt11 and Ypt31/32. L1411 and Y1415 (brown) 
bind Kar9, Inp2, Sec4, Ypt11 and Ypt31/32. Image adapted from (Eves et al., 2012). 
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CHAPTER II 

Release from myosin V via regulated recruitment of an E3 ubiquitin ligase 
controls organelle localization 

Introduction 

Proper subcellular localization of organelles is essential for cell function. Actin 

based myosin V motors, conserved across eukaryotes, transport many organelles to 

their correct subcellular locations. Myosin V attaches to cargoes and initiates transport 

via the interaction of the myosin V cargo binding domain with cargo specific adaptor 

proteins. Upon arrival at their destinations, cargoes are released from myosin V which 

terminates transport and deposits cargoes at their correct subcellular locations. How 

molecular motors release cargoes is poorly understood.  

Studies in Saccharomyces cerevisiae have provided significant insights into the 

mechanisms that regulate myosin V.  The yeast myosin V motor, Myo2, transports most 

of the cytoplasmic organelles from the mother cell to the bud. Myo2 attaches to cargoes 

via direct interactions with multiple cargo specific adaptors which enable Myo2 to 

selectively transport subsets of cargoes to different locations at distinct times. For 

example, Mmr1, Ypt11(Eves et al., 2012; Fortsch et al., 2011; Itoh et al., 2004; Itoh et 

al., 2002), Inp2 (Fagarasanu et al., 2006), Ypt31/32, Sec4, Sec15 (Jin et al., 2011; 

Lipatova et al., 2008; Santiago-Tirado et al., 2011), Kar9 (Korinek et al., 2000) and 

Vac17 (Ishikawa et al., 2003; Tang et al., 2003) attach Myo2 to mitochondria, 

peroxisomes, secretory vesicles, astral microtubules and the vacuole respectively.   
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Studies of vacuole transport have revealed that cargo adaptors play key roles in 

both the spatial and temporal regulation of myosin V based transport. Early in the cell 

cycle, the vacuole specific adaptor, Vac17, is phosphorylated by the cyclin dependent 

kinase, Cdk1. Cdk1 phosphorylation promotes the interaction between Vac17 and Myo2 

thereby attaching Myo2 to the vacuole (Peng and Weisman, 2008). Myo2 moves a 

portion of the vacuole from the mother to the bud. Initially, the vacuole in the bud 

remains connected to the original vacuole in the mother via a segregation structure 

(Weisman and Wickner, 1988). Eventually, resolution of the segregation structure 

separates the bud and mother vacuoles (Bartholomew and Hardy, 2009). After vacuole 

movement terminates, Myo2 continues to transport secretory vesicles to the mother-bud 

neck (Karpova et al., 2000; Lillie and Brown, 1994). Thus, Myo2 but not the bud vacuole 

moves to the mother-bud neck. Proper detachment of the vacuole from Myo2 requires 

the Vac17 PEST sequence. PEST sequences target proteins for rapid degradation. 

Deletion of the PEST sequence causes an accumulation of Vac17. Interestingly, in the 

vac17-ΔPEST mutant, the vacuole fails to detach from Myo2. Consequently, the 

vacuole is inappropriately transported to the mother-bud neck late in the cell cycle, the 

site where Myo2 delivers secretory vesicles (Tang et al., 2003).  

Here, we present the unexpected finding that the regulated recruitment of an E3 

ubiquitin ligase, Dma1, to the vacuole is critical for the accurate detachment of the 

vacuole from Myo2. In S. cerevisiae, Dma1 and its paralogue, Dma2, are known spindle 

positioning checkpoint proteins. In addition, they play roles in septin ring deposition, 

spindle positioning and cytokinesis (Fraschini et al., 2004). Dma1 and Dma2 each 

contain a Forkhead Associated (FHA) domain and a RING finger domain. FHA domains 
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bind phosphorylated threonine residues within a TxxI/L motif (Bieganowski et al., 2004; 

Durocher et al., 1999; Durocher et al., 2000). The RING finger domain is required for E3 

ubiquitin ligase activity. Both FHA and RING domains are required for the known roles 

of Dma1 and Dma2 (Guertin et al., 2002; Johnson and Gould, 2011).  

  Here, we demonstrate that the detachment of cargoes from myosin V occurs via 

a novel Dma1/Dma2 dependent mechanism. For the vacuole, detachment from Myo2 

requires the phosphorylation of Vac17-Thr240. This phosphorylation step occurs in the 

mother cell, the site where Myo2 attaches to the vacuole. Dma1 directly binds phospho-

Thr240 and through this interaction, Dma1 localizes to the Myo2/Vac17 transport 

complex on the vacuole. Intriguingly, recruitment of Dma1 of to the vacuole is 

dependent on the attachment of Myo2 to the vacuole. Moreover, Dma1 is not observed 

on the vacuole until the vacuole enters the bud. After recruitment, Dma1 persists on the 

bud vacuole until after the bud vacuole separates from the mother vacuole. 

Subsequently, Dma1 targets Vac17 for degradation via the ubiquitin proteasome system 

(UPS) which releases the bud vacuole from Myo2. Thus, Vac17 phosphorylation, 

attachment of Myo2 to the vacuole and resolution of the segregation structure each 

provide different signals recognized by Dma1 which in turn detaches the vacuole from 

myosin V.  Notably, we show that the termination of Myo2 dependent peroxisome 

transport also requires Dma1/Dma2. Studies on how the vacuole detaches from Myo2 

will likely provide insights that are applicable to the termination of the transport of other 

myosin V cargoes.  
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Results 

An E3 ubiquitin ligase, Dma1, is critical for Vac17 degradation and the termination 

of vacuole transport 

To identify factors required for the detachment of the vacuole from Myo2, we performed 

a pilot genetic screen. Given that the termination of vacuole movement requires Vac17 

turnover (Tang et al., 2003), we sought mutants with elevated Vac17 levels. Wild-type 

cells transformed with a plasmid encoding VAC17-GFP were subjected to EMS 

mutagenesis and mutants with elevated GFP fluorescence were enriched via 

Fluorescence Activated Cell Sorting. We obtained mutants that were defective in both 

the initiation and termination of vacuole transport, as both types of mutants will cause 

an elevation of Vac17 levels (Tang et al., 2003). Mutants defective in the initiation of 

vacuole transport were not pursued. One mutant of interest, vac22-1, had elevated 

levels of both Vac17-GFP and endogenous Vac17 (Figure 2.1). This indicated that the 

causative mutation was in a gene related to the turnover of Vac17 rather than a 

mutation in Vac17-GFP. In vac22-1, Vac17-GFP and the vacuole were mis-targeted to 

the mother-bud neck in large budded cells; the site where Myo2 delivers secretory 

vesicles late in the cell cycle (Figure 2.1). This suggests that the vac22-1 mutant is 

defective in the dissociation of Vac17 and the vacuole from Myo2 causing the vacuole 

to be inappropriately dragged along the entire Myo2 itinerary.  

To identify the causative mutation of the vac22-1 phenotype, whole genome 

sequencing of the vac22-1 genome and the isogenic parental strain genome were 

performed. The haploid vac22-1 mutant was backcrossed with the isogenic wild-type 

strain. After 3 backcrosses, 12 spores with the vac22-1 phenotype (elevated Vac17 

levels) were pooled together and 12 spores with the wild-type phenotype (normal Vac17 
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levels) were pooled. Most of the potentially thousands of non-causative EMS induced 

mutations should randomly distribute between the mutant and wild-type pools. DNA 

extracted and sequenced from the mutant pool was compared to the wild-type pool 

(Birkeland et al., 2010). The point mutation, dma1-G232R, was present only in the 

mutant pool and absent from the wild-type pool.  

To determine if DMA1 is required for the termination of vacuole movement, we 

generated a dma1Δ mutant. We assessed the location of the vacuole in large budded 

cells, where Myo2 is predicted to localize to the mother-bud neck. In the dma1Δ mutant, 

40.0±0.5% of large budded cells have vacuoles mis-targeted to the mother-bud neck. 

That the inappropriate accumulation of vacuoles at the mother-bud neck did not exceed 

40% is likely due to the fact that in a percentage of large budded cells the actin 

cytoskeleton has yet to be re-organized and Myo2 has not yet moved to the mother-bud 

neck (Pruyne et al., 2004b). The presence of vacuoles at the mother-bud neck of wild-

type cells was much lower, approximately 10% of large budded cells have this 

phenotype (Figure 2.2). Furthermore, in the dma1Δ mutant, the vacuole colocalized with 

Vac17-GFP and Myo2-Venus at the mother-bud neck (Figure 2.3). These results 

suggest that Dma1 is required for the detachment of Vac17 and the vacuole from Myo2.  

Expression of DMA1 but not dma1-G232R restores the termination of vacuole 

movement in the dma1Δ mutant (Figure 2.2) and in the vac22-1 mutant ( data not 

shown). Furthermore, expression of DMA1 but not dma1-G232R rescued Vac17 levels 

in the dma1Δ mutant (Figure 2.2) and in the vac22-1 mutant (data not shown). 

Therefore, dma1-G232R is the causative mutation of the vac22-1 phenotype.   

Dma2, the paralogue of Dma1 in S. cerevisiae, shares 58% amino acid identity 
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with Dma1 and performs redundant functions in the spindle positioning checkpoint and 

cytokinesis (Fraschini et al., 2004). To test whether Dma2 also functions in the 

termination of vacuole movement, the dma2Δ and dma1Δ dma2Δ mutants were 

generated. In the dma2Δ mutant, there was a modest phenotype, 17.3±3.67% of large 

budded cells accumulate vacuoles at the mother bud neck compared to the dma1Δ 

mutant at 41.6±3.32%. In the dma1Δ dma2Δ double mutant the phenotype was stronger 

(71.9±5.90%). In wild-type cells, only 10.5±1.04% of large budded cells show this 

phenotype (Figure 2.4). These results suggest that Dma2 also functions in the 

termination of vacuole movement.  

We tested whether Dma1 and Dma2 are required for the termination of the 

transport of peroxisomes, another Myo2 cargo. We chose peroxisomes because their 

transport is entirely Myo2 dependent and similar to the vacuole, the peroxisome 

remains intact after transport (Fagarasanu et al., 2006). To visualize peroxisomes, we 

tagged GFP with the peroxisome targeting sequence, SKL. In wild type cells, 

peroxisomes are distributed along the periphery of the bud with only 2.1±1.4% of large 

budded cells showing accumulation of peroxisomes at the mother-bud neck. In the 

dma1Δdma2Δ mutant, peroxisomes were mis-targeted to the mother-bud neck in 

56.1±2.2% of large budded cells. This phenotype closely parallels the accumulation of 

vacuoles at the mother-bud neck in the dma1Δdma2Δ mutant (Figure 2.5). These 

results suggest Dma1 and Dma2 function with Myo2 to release at least two types of 

cargoes. Thus, mechanistic insights gained from studies of Dma1/Dma2 are likely to be 

applicable to other myosin V cargoes. To further investigate the mechanisms by which 

Dma1 and Dma2 regulate cargo release, we focused on the vacuole.  
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Dma1 localizes to the bud vacuole 

Dma1 functions as a spindle checkpoint protein in Schizosaccharomyces pombe 

(Murone and Simanis, 1996). In S. pombe, Dma1 localizes to the cytokinetic ring and 

the spindle pole bodies (SPBs), however, its localization in S. cerevisiae was unknown 

(Guertin et al., 2002). We found that in S. cerevisiae, Dma1-GFP localized to regions 

consistent with the septin ring and the SPBs and colocalized with Spc42-mRFP (Figure 

2.6), a core component of the SPB. Dma1 localizes to the SPBs and septin ring only in 

large budded cells late in the cell cycle. That Dma1 functions in the termination of 

vacuole transport prompted us to examine the localization of Dma1 during vacuole 

inheritance. Early in the cell cycle, we found that Dma1-GFP localized to the vacuole in 

the bud and did not colocalize with Spc42-mRFP, which remained in the mother cell 

(Figure 2.6).  

To further determine the timing of Dma1 localization to the vacuole, DMA1 was 

tagged with 3xGFP at its endogenous locus. Dma1-3xGFP localization was assessed 

during vacuole inheritance, from prior to the initiation of vacuole transport until the 

resolution of the segregation structure. In unbudded and small budded cells where the 

vacuole has not moved into the bud, no significant localization of Dma1-3xGFP to the 

vacuole was observed. Dma1-3xGFP was first observed on the portion of the vacuole 

that crossed the mother-bud neck into the bud. At this time, the vacuole in the bud is 

connected to the mother vacuole via a segregation structure. Intriguingly, after Dma1 

was recruited to the vacuole, the termination of vacuole transport did not immediately 

occur. Instead, Dma1-3xGFP moved with the vacuole to the bud tip and remained on 

the vacuole as the bud grew. Dma1-3xGFP persisted on the vacuole at the bud tip until 
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after the segregation structure was resolved and the bud vacuole separated from the 

mother vacuole (Figure 2.7). These results suggest that both recruitment of Dma1 to the 

vacuole and Dma1 activity are coordinated with vacuole inheritance.   

To determine whether recruitment of Dma1 to the vacuole is dependent on Myo2, 

we tested a condition where Myo2 does not attach to the vacuole and analyzed Dma1-

GFP localization in a myo2-D1297N mutant. The myo2-D1297N mutant does not bind 

Vac17 and the vacuole is not transported to the bud (Eves et al., 2012; Ishikawa et al., 

2003). We found that Dma1-GFP failed to accumulate on the vacuole in the myo2-

D1297N mutant in all small budded cells analyzed. In contrast, in cells expressing 

MYO2, Dma1-GFP accumulated on the bud vacuole in 76.4±5.7% of small budded cells 

(Figure 2.8). These results suggest that Dma1 recruitment to the vacuole requires the 

assembly of the Myo2/Vac17/Vac8 complex. Interestingly, in the myo2-D1297N mutant, 

where Dma1 is not recruited to the vacuole, Vac17 is not degraded (Figure 2.8). This 

suggests that the regulated recruitment of Dma1 to the vacuole is critical for Vac17 

degradation.  

 

Vac17 residues Ser222 and Thr240 are required for Vac17 degradation and the 

termination of vacuole transport 

The Vac17 PEST sequence is required for the termination of vacuole transport (Tang et 

al., 2003) (Figure 2.9). PEST sequences contain serines and threonines that are often 

phosphorylation sites critical for targeting the protein for degradation (Marchal et al., 

1998; Martinez et al., 2003). We performed an alanine scan of the threonines and 

serines within the Vac17 PEST sequence to identify potential phosphorylation sites 
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required for Vac17 degradation. Two point mutants, vac17-S222A and vac17-T240A, 

caused an elevation in Vac17 levels (Figure 2.9).  

To determine whether these point mutations cause a defect in the termination of 

vacuole transport, both vac17 point mutants were tagged with GFP. In large budded 

cells expressing VAC17-GFP, no GFP signal was detected and the vacuole remained in 

the bud suggesting that Vac17-GFP was properly degraded and that the vacuole has 

detached from Myo2. In contrast, vac17-S222A-GFP and vac17-T240A-GFP as well as 

the vacuole accumulated at the mother-bud neck in large budded cells. In cells 

expressing vac17-S222A or vac17-T240A, but not VAC17, the vacuole colocalized with 

Myo2-Venus at the mother-bud neck. Moreover, vac17-S222A-GFP and vac17-T240A-

GFP colocalized with mCherry-Myo2 at the mother-bud neck. The lack of a GFP signal 

in cells expressing VAC17-GFP suggests that Vac17 has already been degraded 

(Figure 2.10). Together, these results suggest that Vac17 residues Ser222 and Thr240 

are required for Vac17 degradation and the regulated detachment of Vac17 and the 

vacuole from Myo2.  

 

Dma1 binds directly to Vac17 at phosphorylated Thr240 in vitro 

Vac17-Thr240 is found within the sequence T240IIL243, which matches the TxxI/L motif 

recognized by FHA domains. Therefore, Vac17-Thr240 may serve as the binding site 

for Dma1. Because FHA domains bind phosphorylated threonines, we hypothesized 

that Thr240 is phosphorylated.  

To determine whether Thr240 is a phosphorylation site in vivo, we generated 

antibodies against a peptide with a central phosphorylated Thr240. To analyze Vac17 



31 
 

phosphorylation, we immunoprecipitated Vac17-GFP expressed in a vac17∆ mutant 

using anti-GFP antibodies. However, we failed to detect Vac17-GFP via western blot or 

immunoprecipitation (IP) (Figure 2.11). In wild-type cells, Vac17 levels are exceedingly 

low, present at ~20 molecules per cell (Ghaemmaghami et al., 2003; Tang et al., 2006). 

Thus, detecting phosphorylated Vac17 proved difficult. However, we postulated that 

Dma1 and Dma2 targets Vac17 for degradation by binding phosphorylated Thr240. 

Deletion of DMA1 and DMA2 would likely result in the accumulation of phosphorylated 

forms of Vac17 (Figure 2.11). Indeed, Vac17-GFP levels were elevated when 

expressed in the dma1Δ dma2Δ vac17Δ mutant. Moreover, Vac17-GFP was recognized 

by the anti- phospho-Thr240 antibody. In contrast, the levels of vac17-T240A-GFP are 

similar when expressed in both the vac17Δ and dma1Δ dma2Δ vac17Δ mutants, but 

was not recognized by the anti-phospho-Thr240 antibody, verifying the specificity of this 

antibody for Thr240.  

To further determine whether this antibody is phospho-specific, Vac17-GFP was 

expressed and immunoprecipitated from the dma1Δ dma2Δ vac17Δ mutant and treated 

with λ-phosphatase. Vac17-GFP was dephosphorylated, as indicated by an increase in 

its electrophoretic mobility, in samples treated with λ-phosphatase but not with the 

addition of phosphatase inhibitors or in untreated samples (Figure 2.11). Importantly, 

the anti-phospho-Thr240 antibody failed to recognize phosphatase treated Vac17-GFP 

indicating that this antibody is specific for phosphorylated Thr240 and that Thr240 is 

phosphorylated in vivo. These results strongly suggest that Vac17-Thr240 is a binding 

site for Dma1. Moreover, given that vac17-T240A-GFP levels were similar in the 

absence and presence of DMA1/DMA2 suggests that Thr240 and Dma1/Dma2 function 
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in the same step of the pathway.  

To test whether Dma1 binds phosphorylated Vac17-Thr240, in vitro binding 

studies were performed. Recombinant GST-Dma1 or the GST tag alone were 

immobilized on glutathione beads and incubated with yeast cell extracts from a dma1∆ 

dma2∆ VAC17-TAP strain where Vac17 levels are elevated and Vac17 is 

phosphorylated. GST-Dma1 but not the GST tag alone bound Vac17-TAP. However, 

GST-Dma1 did not bind vac17-T240A-TAP. As a control, we show that the Myo2 cargo 

binding domain, a known Vac17 binding partner, bound the vac17-T240A-TAP mutant 

(Figure 2.12). This suggests that the T240A mutation does not affect the overall 

structure of Vac17 and that Thr240 is required for Dma1 to bind Vac17.  

To further test whether Dma1 binds directly to phosphorylated Thr240, 

competition experiments were performed. Prior to incubation with yeast cell extracts, 

immobilized GST-Dma1 was first incubated with peptides that contained either a central 

phosphorylated Thr240, unphosphorylated Thr240 or phosphorylated Ser222. The 

phosphorylated Thr240 peptide blocked GST-Dma1 from binding Vac17-TAP from cell 

lysates. The unphosphorylated Thr240 or phosphorylated Ser222 peptides, did not 

affect GST-Dma1 binding to Vac17-TAP (Figure 2.13). Thus, Dma1 binds directly to 

Vac17 at phosphorylated Thr240. Furthermore, these results suggest that Dma1 does 

not bind Vac17-Ser222. Consistent with this hypothesis, we found that recombinant 

GST-Dma1 bound vac17-S222A-TAP in vitro (Figure 2.14).  

 

Recruitment of Dma1 to the vacuole requires the interaction between Dma1 and 

phosphorylated Vac17-Thr240 
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To test whether Vac17-Thr240 is required for the recruitment of Dma1 to the vacuole, 

we analyzed the localization of Dma1-GFP in cells expressing VAC17 or vac17-T240A. 

In cells expressing VAC17, Dma1-GFP localized to the vacuole in 82.9±4.3% of small 

budded cells. In contrast, Dma1-GFP localization to the vacuole occurred in 19.5±1.9% 

of small budded cells expressing vac17-T240A. Similarly, Dma1-tdTomato colocalized 

with Vac17-GFP in 79.8±2.4% of small budded cells and with vac17-T240A-GFP in 

33.6±5.3% of small budded cells (Figure 2.15).  

Given that FHA domains bind phosphorylated threonine within a TxxI/L motif, we 

tested whether the FHA domain of Dma1 is required for Dma1 recruitment to Vac17. 

We generated the dma1-R193E mutant, which contains a charge reversal of a 

conserved residue in FHA domains that directly contacts phospho-threonine (Durocher 

et al., 2000). While Dma1-GFP localized to the vacuole in 75.4±4.4% of small budded 

cells, dma1-R193E-GFP failed to localize to the vacuole in all cells analyzed (Figure 

2.16). These results suggest that interaction between the Dma1 FHA domain and 

phosphorylated Vac17-Thr240 is critical to recruit Dma1 to the vacuole.  

Dma1 is first observed on the vacuole in the bud. Furthermore, Dma1 is not 

recruited to the mother vacuole in the myo2-D1297N mutant. These observations raise 

the question of whether phosphorylation of Vac17-Thr240 is bud-specific. Surprisingly, 

we found that in the myo2-D1297N mutant, where Vac17-GFP is localized to the mother 

vacuole, Vac17-Thr240 was phosphorylated (Figure 2.17). We compared the 

phosphorylation of Vac17-Thr240 in the myo2-D1297N mutant with the phosphorylation 

of the vac17-S222A mutant. The S222A point mutation stabilizes Vac17, enables 

vacuole transport and accumulates in the bud (Figure 2.17). Vac17-GFP in the myo2-



34 
 

D1297N mutant and vac17-S222A-GFP are phosphorylated at Thr240 to similar 

extents. As expected, the vac17-T240A-GFP mutant was not phosphorylated at Thr240. 

These results suggest that Thr240 is phosphorylated in the mother cell. Moreover, 

phosphorylation of Vac17 does not require Myo2. These observations strongly suggest 

that that Vac17 is phosphorylated on Thr240 in the mother cell prior to the attachment of 

Myo2 to the vacuole and the initiation of vacuole transport. The failure of Dma1 

recruitment to the mother vacuole in the myo2-D1297N mutant is not due to a defect in 

the phosphorylation of Vac17-Thr240. Thus, phosphorylation of Vac17-Thr240 is 

required but not sufficient for recruiting Dma1 to the vacuole.  

Interestingly, in cells expressing vac17-S222A, another mutant that causes a 

defect in the termination of vacuole transport, Dma1-GFP localized to the vacuole in 

79.4±2.6% of small budded cells. Further, Dma1-tdTomato colocalized with vac17-

S222A-GFP in the bud in 87.5±4.5% of small budded cells (Figure 2.15). Thus, Ser222 

is not required for the recruitment of Dma1 to the vacuole transport complex. 

Furthermore, Dma1 binds vac17-S222A in vitro (Figure 2.14). Together, these results 

suggest that after Dma1 is recruited to the vacuole, Ser222 functions in downstream 

events that are required for the detachment of the vacuole from Myo2.   

 

Dma1/Dma2 function in the ubiquitylation of Vac17 

In S. pombe, the E3 ubiquitin ligase activity of Dma1 is required for its function as a 

spindle checkpoint. S. Pombe Dma1-Ile194 is a conserved residue in the RING domain 

that is required for Dma1 dependent ubiquitylation in vitro and for Dma1 spindle 

checkpoint function in vivo (Johnson and Gould, 2011). This conserved isoleucine is 
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critical for the interaction between E3 ubiquitin ligases with their E2 ubiquitin conjugating 

enzyme binding partners (Zheng et al., 2000). To determine whether the E3 ubiquitin 

ligase activity of S. cerevisiae Dma1 is required for the termination of vacuole transport, 

we mutated the Dma1-I329 residue which is homologous with S. pombe Dma1-I194.  

We found that in contrast to Dma1 and Dma1-GFP, the ubiquitylation-defective 

mutant, dma1-I329-GFP, failed to target Vac17 for degradation (Figure 2.18) or rescue 

the termination of vacuole transport in the dma1Δ mutant (Figure 2.19). Moreover, the 

vacuole accumulates with Vac17-GFP and Myo2-Venus at the mother-bud neck in large 

budded cells in the dma1-I329R mutant (Figure 2.20). Thus, Dma1 dependent 

ubiquitylation is required for Vac17 degradation and the detachment of the vacuole from 

Myo2.     

To test whether the I329R mutation disrupts Dma1 binding to Vac17, in vitro 

binding experiments were performed. GST-dma1-I329R bound Vac17-TAP from cell 

extracts (Figure 2.21). These results suggest that the E3 ubiquitin ligase activity of 

Dma1 is not required for Dma1 to bind Vac17. 

We found that the levels of the ubiquitylation defective mutant dma1-I329R-GFP 

are higher than wild-type levels (Figure 2.18). Wild-type Dma1 auto-ubiquitylates in vitro 

(Loring et al., 2008), which predicts that the dma1-I329R mutant is defective in the 

regulation of its own turnover. Given that Vac17 recruits Dma1 to the vacuole and that 

both Vac17 and dma1-I329R levels are elevated (Figure 2.18) may explain why dma1-

I329R-GFP localizes to a broader area on the bud vacuole (Figure 2.22).                                    

The requirement for the E3 ligase activity of Dma1 for Vac17 degradation 

suggests that Vac17 is ubiquitylated. To test this hypothesis, we immunoprecipitated 
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Vac17-GFP using anti-GFP antibodies from cells which express myc tagged ubiquitin 

(myc-Ub). Immunoblot analysis using anti-myc antibodies showed that Vac17-GFP was 

ubiquitylated in vivo. However, in the absence of DMA1/DMA2, Vac17-GFP levels were 

elevated but not detectably ubiquitylated (Figure 2.23). These results strongly suggest 

that Dma1 and Dma2 are required for Vac17 ubiquitylation in vivo.  

That Vac17 is ubiquitylated suggests that the ubiquitin proteasome system (UPS) 

is important for Vac17 degradation. We found that Vac17 levels were elevated in the E1 

mutant, uba1-2, as well as in the proteasome mutants tested, pre1-1, doa2-T76A and 

pup1-K58E/pup3-E151K (Figure 2.24). These results suggest that Dma1 ubiquitylates 

Vac17 and targets Vac17 for degradation via the proteasome. 
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Figure 2.1. vac22-1 is defective in the termination of vacuole transport.  
 
Wild-type cells transformed with a Vac17-GFP plasmid was subjected to EMS 
mutagenesis. Fluorescence Activated Cell sorting (FACS) isolated mutants with 
elevated GFP fluorescence. (a) The vac22-1 mutant, has elevated levels of both Vac17-
GFP and endogenous Vac17. anti-Vac17 antibodies; 1:1,000 dilution. anti-
Pgk1antibodies (input control); 1:10,000 dilution. (b) Vac17-GFP and the vacuole are 
inappropriately transported to the mother-bud neck in the vac22-1 mutant (arrow). This 
suggests that the defect in the vac22-1 mutant is in the detachment of Vac17 and the 
vacuole from Myo2. Bar = 5 μm. (Screen and initial characterization were performed by 
Yutian Peng. Western blot and initial characterization of vac22-1 by microscopy 
performed by Rajeshwari Valiathan. Images shown in (b) were obtained by Richard 
Yau). 
 

 

 

(a) 

(b) 
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Figure 2.2. dma1-G232R is defective in the termination of vacuole transport.  
 
DMA1 was deleted from the wild-type strain genome, vacuole transport was assessed 
via FM4-64 labeling and Vac17 levels were tested via western blot. (a) The vacuole 
accumulates at the mother-bud neck in the dma1Δ mutant, expression of DMA1 but not 
dma1-G232R restores the proper position of the vacuole in the bud. Arrows; 
accumulation of Vac17 and vacuoles at the mother-bud neck. (b) Percentage of large 
budded cells with the accumulation of vacuoles at the mother-bud neck in the absence 
of DMA1. Expression of DMA1 but not dma1-G232R restores the proper position of the 
bud vacuole in the dma1Δ mutant. A minimum of 100 cells were counted per 
experiment for 3 experiments. Error bars; standard error of the mean (SEM). Bar = 5 
μm. (c) Vac17 levels are elevated in the dma1Δ mutant, expression of DMA1 but not 
dma1-G232R rescues Vac17 levels. anti-Vac17 antibodies; 1:1,000 dilution. anti-Pgk1 
antibodies (input control); 1:10,000 dilution. 

(a) 

(b) 

(c) 
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Figure 2.3. DMA1 is required for the detachment of Vac17 and the vacuole from 
Myo2.  
 
In a dma1∆ mutant, Vac17-GFP and vacuoles are mis-targeted to the mother-bud neck 
(a) and vacuoles colocalize with Myo2-Venus at the mother-bud neck (b). In the 
absence of DMA1, the continued association of Vac17 with Myo2 causes the 
inappropriate transport of the vacuole to the mother-bud neck, the site where Myo2 
delivers secretory vesicles late in the cell cycle. Bar = 5 μm. 
 

 

 

 

 

 

 

(a) 

(b) 
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Figure 2.4. DMA2 functions in the termination of vacuole transport.  

(Left) In the dma1Δ, dma2Δ and double dma1Δ dma2Δ mutants, termination of vacuole 
transport is defective (arrows). (Right) Percentage of large budded cells with vacuoles 
accumulated at the mother-bud neck in the mutants shown in (a). A minimum of 129 
cells were counted per experiment for 3 experiments.  Error bars; SEM. Bar = 5 μm. 

 

 

 

 

 

 

 

 

 

 

 

(a) (b) 
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Figure 2.5. The termination of peroxisome transport requires DMA1/DMA2.  

To visualize peroxisomes, GFP was tagged with the peroxisome targeting sequence, 
SKL, and expressed from a plasmid. In a dma1∆dma2∆ double mutant. (Left) 
Peroxisomes accumulate at the mother-bud neck late in the cell cycle (arrow). (Right) 
Vacuoles also accumulate at the mother-bud neck in this mutant (arrow). This suggests 
that the mechanisms which terminate vacuole transport are similar to those which 
terminate peroxisome transport. Bar = 5 μm. 
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Figure 2.6. Dma1 localizes to the SPBs, cytokinetic ring and the vacuole.  

(Top-left) In large budded cells, Dma1-GFP localizes to regions consistent with the 
SPBs (arrowhead) and septin ring (<). (Top-right) Dma1-GFP colocalizes with Spc42-
mRFP, a component of the SPB (arrow heads). (Bottom-left) In small budded cells, 
Dma1-GFP localizes to the vacuole in the bud (arrow). (Bottom-right) Dma1-GFP does 
not colocalize with Spc42-mRFP (arrow heads). Bar = 5 μm. 
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Figure 2.7. Dma1 localizes to the vacuole during transport.  

(Left) Dma1-3xGFP, expressed from its endogenous locus, is first observed on the 
vacuole as the vacuole crosses the mother-bud neck. The vacuole continues to move to 
the bud tip and Dma1 remains on the vacuole until after the resolution of the 
segregation structure. (Right) Percentage of cells with Dma1 at the vacuole in (i) 
unbudded cells, (ii) small budded cells where the vacuole is in the mother, (iii) small 
budded cells where the vacuole has crossed the mother-bud neck, (iv) small budded 
cells where the vacuole has reached the bud tip, (v) medium budded cells where the 
segregation structure was resolved. Z-sections of small budded cells were analyzed. A 
minimum of 25 cells were counted per experiment for 3 experiments. Error bars; 
standard error of the mean (SEM). Bar = 5 μm 
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Figure 2.8. Recruitment of Dma1 to the vacuole requires assembly of the vacuole 
transport complex.  

The myo2Δdma1Δ double mutant was co-transformed with DMA1-GFP and MYO2 or 
myo2-D1297N plasmids. (a) Dma1-GFP localizes to the vacuole in the bud in cells 
expressing MYO2, but fails to localize to the mother vacuole in cells expressing myo2-
D1297N, a mutant defective in vacuole transport. Bar = 5 μm. (b) Quantification of the 
percentage of small budded cells where Dma1-GFP localizes to the vacuole. Z-sections 
of small budded cells were analyzed. A minimum of 25 cells were counted per 
experiment for 3 experiments. Error bars; standard error of the mean (SEM). (c) In the 
myo2-D1297N mutant, Vac17-GFP levels are elevated compared to cells expressing 
MYO2. anti-GFP; 1:1,000 dilution. anti-Pgk1 antibodies; 1:10,000 dilution.   

(b) (a) 

(c) 
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Figure 2.9. Identification of Vac17 residues required for the termination of vacuole 
movement and Vac17 turnover.  

(Top) A schematic representation of Vac17. Vac17 residues 204-250 comprise the 
PEST sequence (Tang et al., 2003). Red; potential phosphorylation sites required for 
Vac17 turnover. Blue; FHA binding motif. (Bottom) Western blot analysis of vac17 point 
mutants from an alanine scan of all the serine and threonine residues within the Vac17 
PEST sequence that cause the accumulation of Vac17. anti-Vac17 antibodies; 1:1,000 
dilution. anti-Pgk1 antibodies; 1:10,000 dilution. (Alanine screen and initial western blot 
analysis were performed by Yutian Peng, western blot shown here was obtained by 
Richard Yau). 
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Figure 2.10. vac17 point mutants fail to dissociate from Myo2.  
 
(a) vac17-S222A-GFP and vac17-T240A-GFP as well as vacuoles are mis-targeted to 
the mother bud neck in lage budded cells (arrows). (b) In cells expressing vac17-S222A 
and vac17-T240A, but not VAC17, vacuoles colocalize with Myo2-Venus at the mother-
bud neck (arrows). (c) vac17-S222A-GFP and vac17-T240A-GFP, but not Vac17-GFP, 
colocalize with mCherry-Myo2 at the mother-bud neck (arrows). Bar = 5 μm. 
 

(a) 

(b) 

(c) 
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Figure 2.11. Vac17-Thr240 is phosphorylated in vivo.  

(a) The dma1Δdma2Δ mutant has increased Vac17-GFP (input). vac17-T240A-GFP 
levels are higher than Vac17-GFP and are not affected by the deletion of DMA1 and 
DMA2. Vac17-GFP was immunoprecipitated with anti-GFP antibodies and analyzed 
using antibodies generated against a peptide with a phosphorylated Thr240 (anti-
phThr240). These antibodies recognize Vac17-GFP but not vac17-T240A-GFP. (b) 
Model illustrating the hypothesis that in wild-type cells, Dma1 and Dma2 target 
phosphorylated Vac17 for degradation. This model predicts that phosphorylated Vac17 
would accumulate in a dma1Δ dma2Δ mutant. (c) λ-phosphatase (ppase) 
dephosphorylates Vac17-GFP as indicated by an increase in electrophoretic mobility 
(arrow). Inhibition of λ-phosphatase activity blocks dephosphorylation. The anti-
phosphoThr240 antibody does not recognize dephosphorylated Vac17-GFP. Thus, this 
antibody is specific for phospho-Thr240 and Vac17-Thr240 is phosphorylated in vivo. 
anti-phospho-Thr240 antibodies; 1:2,500 dilution. anti-GFP antibodies; 1:1,000 dilution. 

 

 

 

(a) (b) 

(c) 
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Figure 2.12. Dma1 binds Vac17 in vitro.  

Recombinant GST-Dma1 was immobilized on GST beads and incubated with yeast cell 
lysates extracted from strains expressing either VAC17-TAP or vac17-T240A-TAP from 
their endogenous loci and with DMA1/DMA2 deleted. GST-Dma1 binds Vac17-TAP (a) 
but not vac17-T240A-TAP (b). (c) GST-Myo2 cargo binding domain binds vac17-T240A-
TAP which strongly suggests that vac17-T240A folds properly. anti-TAP antibodies; 
1:1,000 dilution. Staining; Gelcode Blue stain reagent (Thermo scientific).   

(a) (b) (c) 
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Figure 2.13. Dma1 binds directly to phospho-Thr240 in vitro.  

Immobilized recombinant GST-Dma1 was pre-incubated with peptides prior to the 
addition of yeast cell lysates. Addition of a peptide with a central phosphorylated Thr240 
blocks GST-Dma1 from binding Vac17-TAP whereas a peptide with an 
unphosphorylated Thr240 or phosphorylated Ser222 does not block binding. anti-TAP 
antibodies; 1:1,000 dilution. Staining; Gelcode Blue stain reagent (Thermo scientific). 
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Figure 2.14. Dma1 binds vac17-S222A in vitro.  

GST-Dma1, but not the GST tag alone, binds vac17-S222A-TAP in yeast lysates. anti-
TAP antibodies; 1:1,000 dilution. Staining; Gelcode Blue stain reagent (Thermo 
scientific). 

 

 

 

 

 

 

 



51 
 

 

 

 

Figure 2.15. Dma1 recruitment to the Myo2/Vac17 vacuole transport complex 
requires the interaction between Dma1 and Vac17.  

(a) (Left) Dma1-GFP localizes to the vacuole at the bud tip (arrows) in cells expressing 
VAC17 and vac17-S222A but not vac17-T240A. (Right) Quantification of the percentage 
of small budded cells where Dma1-GFP is localized to the bud vacuole. A minimum of 
30 cells were counted per experiment for 3 experiments. (b) (Left) Dma1-tdTomato 
colocalizes with Vac17-GFP and vac17-S222A-GFP but not vac17-T240A-GFP. Dma1 
colocalizes with Vac17 at the bud tip. Arrows; colocalization between Dma1 and Vac17. 
(Right) Quantification of the percentage of small budded cells where Dma1-tdTomato 
colocalizes with GFP tagged Vac17 and vac17 point mutants. A minimum of 13 cells 
were counted per experiment for 3 experiments. Error bars; SEM. Bar = 5 μm. 

 

 

(a) 

(b) 
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Figure 2.16. The FHA domain of Dma1 is required for the recruitment of Dma1 to 
the vacuole.  

(Left) The dma1-R193E-GFP mutant fails to localize to the bud vacuole. (Right) 
Quantification of the percentage of small budded cells where Dma1-GFP or dma1-
R193E-GFP localizes to the vacuole. A minimum of 20 cells were counted per 
experiment for 3 experiments. Z-sections of small budded cells were analyzed. Error 
bars; SEM. Bar = 5 μm.   
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Figure 2.17. Phosphorylation of Vac17-Thr240 does not require Myo2 attachment 
to the vacuole.  

In a myo2Δvac17Δ double mutant myo2-D1297N and VAC17-GFP or MYO2 and 
vac17-S222A-GFP were co-expressed from plasmids. (Left) In cells expressing myo2-
D1297N, VAC17-GFP is localized throughout the mother vacuole. In cells expressing 
MYO2, vac17-S222A-GFP and the vacuole are transported to the bud. (Right) Vac17-
GFP in the myo2-D1297N mutant and vac17-S222A-GFP in cells expressing MYO2 are 
phosphorylated at Thr240 to a similar extent. anti-phospho-Thr240 antibodies; 1:2,500 
dilution. anti-GFP antibodies; 1:1,000 dilution. 
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Figure 2.18. Dma1 dependent ubiquitylation is required for Vac17 turnover. 

The conserved Ile329 residue, essential for the E3 ubiquitin ligase activity of Dma1, was 
mutated. The GFP tagged dma1-I329R mutant was expressed from a plasmid in the 
dma1Δ mutant and Vac17 levels were tested. Expression of DMA1 and DMA1-GFP but 
not dma1-I329R-GFP or vector control rescues Vac17 levels in the dma1∆ mutant. anti-
Vac17 antibodies; 1:1,000 dilution. anti-GFP antibodies; 1:1,000 dilution. anti-Pgk1 
antibodies; 1:10,000 dilution.  
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Figure 2.19. The E3 ubiquitin ligase activity of Dma1 is required for the 
termination of vacuole movement.  
 
(Left) Expression of DMA1 and DMA1-GFP but not a ubiquitylation defective mutant, 
dma1-I329R-GFP, or vector control rescues the termination of vacuole movement in the 
dma1Δ mutant. Arrowheads; vacuoles are deposited properly in the bud and do not 
accumulate at the mother-bud neck. Arrows; vacuoles are mis-targetd to the mother-
bud neck. Bar = 5 μm. (Right) Percentage of large budded cells with vacuoles 
accumulated at the mother-bud neck in the dma1Δ mutant expressing vector control, 
DMA1, DMA1-GFP or dma1-I329R-GFP. A minimum of 100 cells were counted per 
experiment for 3 experiments. Error bars; SEM.  
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Figure 2.20. The E3 ubiquitin ligase activity of Dma1 is required for the 
detachment of Vac17 and the vacuole from Myo2.  

dma1-I329R was expressed in the dma1Δ mutant and the localization of the vacuole 
with Vac17-GFP or Myo2-Venus was analyzed. In the dma1-I329R mutant, in large 
budded cells, (top) Vac17-GFP and the vacuole are mis-targeted to the mother-bud and 
(bottom) the vacuole colocalizes with Myo2-Venus at the mother-bud neck (arrows). Bar 
= 5 μm. 
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Figure 2.21. The enzymatically inactive dma1 mutant binds Vac17 in vitro.  

Immobilized recombinant GST-dma1-I329R binds Vac17-TAP in yeast cell lysates. anti-
TAP antibodies; 1:1,000 dilution. Staining; Gelcode Blue stain reagent (Thermo 
scientific).  
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Figure 2.22. dma1-I329R-GFP localizes to a broader region of the vacuole.  
 
DMA1-GFP or dma1-I329R-GFP was expressed in the dma1 mutant and their 
localization was analyzed. dma1-I329R-GFP localizes to a broader area on the bud 
vacuole. Bar = 5 μm. 
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Figure 2.23. Dma1 and Dma2 are required for Vac17 ubiquitylation in vivo.  

A plasmid encoding VAC17-GFP under an ADH promoter and a plasmid encoding myc-
Ub under a CUP1 promoter were co-transformed into wild-type or dma1Δdma2Δ cells. 
myc-Ub over-expression was induced with the addition of 100μM CuCl2. Vac17-GFP 
was immunoprecipitated with anti-GFP antibodies and analyzed with anti-myc 
antibodies. Anti-myc antibodies recognize myc-Ub conjugated to Vac17-GFP from cells 
over-expressing myc-Ub. Deletion of DMA1/DMA2 results in the accumulation of Vac17-
GFP that is not recognized by the anti-myc antibodies. anti-GFP antibodies; 1:1000 
dilution. anti-myc antibodies; 1:2,000 dilution. anti-Pgk1 antibodies; 1:10,000 dilution.   
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Figure 2.24. The Ub-proteasome system is required for Vac17 degradation.  

In the uba1-2 E1 mutant and in the pre1-1, doa3-T76A and pup1-K58E/pup3-E151K 
proteasome mutants, Vac17 levels are elevated compared to the wild-type. anti-Vac17 
antibodies; 1:1000 dilution. anti-Pgk1 antibodies; 1:10,000 dilution.   
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Figure 2.25. Model for the regulation of vacuole transport.  

(a-b) Vac17 is phosphorylated at Thr240 as well as at four Cdk1 sites. (c) Myo2 binds 
Vac17 and attaches to the vacuole in the mother cell to initiate transport. (d) After 
assembly of the Myo2/Vac17/Vac8 transport complex, Dma1 is recruited to the vacuole 
via binding directly to Vac17 at phospho-Thr240. (e-f) Vac17 ubiquitylation by Dma1 
targets Vac17 for degradation via the proteasome which detaches the vacuole from 
Myo2 and terminates vacuole transport. The timing of these late events remains to be 
determined. However, note that the vacuole remains associated with Dma1 and Myo2 
until after the resolution of the segregation structure, the connection between the 
mother and bud vacuoles.  

  

(a) (b) (c) 

(d) (e) (f) 
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CHAPTER III 

Discussion 

Within a single cell type, myosin V transports multiple organelles. Accurate 

transport requires that myosin V attaches to cargoes at their original locations and 

detaches from cargoes at their destinations. The accurate release of organelles from 

myosin V is critical for their proper subcellular location (Tang et al., 2003). Our findings 

suggest that the detachment of cargoes from myosin V occurs in multiple steps along 

the entire route of cargo transport. Phosphorylation of Vac17-Thr240 occurs in the 

mother cell and sets up the termination of vacuole transport which occurs later in the 

bud. Vac17-Thr240 is phosphorylated at the same cellular location where Cdk1 

phosphorylates Vac17 at S119, T149, S178, and T248 to recruit Myo2, which initiates 

vacuole transport (Peng and Weisman, 2008). Because phosphorylation of Vac17-

Thr240 does not require Myo2, it is likely that phosphorylation of the 4 Cdk1 sites as 

well as Thr240 occur concurrently prior to the initiation of vacuole transport. Moreover, 

phosphorylation of Thr240 likely does not require Cdk1 phosphorylation of Vac17. In the 

vac17-S119/T149/S178/T248A mutant, vacuoles that are transported to the bud 

undergo normal release from Myo2 (data not shown).  

Our results demonstrate that Thr240 phosphorylation creates a binding site on 

Vac17 that is critical for the recruitment of Dma1 to the vacuole. Intriguingly, while 

phosphorylation of Vac17-Thr240 occurs in the mother cell and does not require the 

attachment of Myo2 to the vacuole, Dma1 is first observed on the vacuole in the bud
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and its recruitment to the vacuole requires Myo2. This suggests that either Dma1 

recognizes the intact Myo2/Vac17/Vac8 vacuole transport or that Dma1 is recruited to 

the vacuole in the bud. Furthermore, these results suggest that Thr240 phosphorylation 

is required but not sufficient for Dma1 recruitment. Moreover, our results suggest that 

the regulated recruitment of Dma1 to the vacuole is critical for Vac17 degradation.  

Notably, after Dma1 is recruited to the vacuole, there is a delay in the 

mechanism which terminates vacuole transport. Dma1 moves with the vacuole to the 

bud tip and persists on the vacuole after the bud vacuole separates from the mother 

vacuole. This suggests that Dma1 activity is regulated so that termination of vacuole 

transport is coordinated with the resolution of the vacuole segregation structure. Overall, 

our findings suggest that Dma1 recruitment and function are modulated by at least three 

events: 1) Vac17 phosphorylation on Thr240, 2) Myo2 attachment to the vacuole and 3) 

the resolution of the segregation structure.  

 We further find that Dma1 and Dma2 function in the ubiquitylation of Vac17 in 

vivo. Dma1 dependent ubiquitylation targets Vac17 for degradation via the proteasome 

which releases the vacuole from Myo2 (Figure 2.25). In addition to the vacuole, we 

found that the termination of peroxisome transport also requires DMA1 and DMA2 

(Figure 2.5). Like the vacuole, peroxisomes are transported by Myo2 and are attached 

to Myo2 via a cargo adaptor, Inp2. The mechanisms that detach the vacuole from Myo2 

also likely terminate the transport of peroxisomes. Together, these studies suggest that 

the degradation of cargo adaptors by the Ub-proteasome system may be a common 

mechanism to release cargoes from molecular motors.  
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Myo2 transports multiple cargoes 

 In addition to the vacuole, Myo2 cargoes include peroxisomes, the mitochondria, 

secretory vesicles, microtubules (MTs) and the late Golgi. The mechanisms which 

detach the vacuole from Myo2 may be similar to those which regulate the transport of 

other Myo2 cargoes. Consistent with this hypothesis, recent studies demonstrate that 

Vac17 and other cargo adaptors are regulated via similar mechanisms.  

 Vac17 levels and phosphorylation oscillate with the cell cycle. This oscillation 

contributes to the coordination of vacuole transport with the cell cycle (Peng and 

Weisman, 2008; Tang et al., 2003). Intriguingly, the levels of the peroxisome adaptor, 

Inp2, and microtubule adaptor, Kar9, also oscillate with the cell cycle. Moreover, Kar9, 

Inp2 and Ypt11 are phosphorylated. Like Vac17, Kar9 is a substrate of Cdk1, Cdk1 

dependent phosphorylation ensures asymmetrical loading of Kar9 onto MTs which are 

transported to the bud by Myo2 (Fagarasanu et al., 2006; Fagarasanu et al., 2009; 

Lewandowska et al., 2013; Liakopoulos et al., 2003).  

 Bud-specific degradation of Vac17 is required for the accurate placement of the 

vacuole in the bud. Vac17 levels are elevated in myo2 point mutants that are defective 

in vacuole transport. This suggests that Vac17 is degraded in the bud. Notably, Inp2 

and Mmr1 levels are elevated in myo2 mutants which are defective in peroxisome and 

mitochondria transport, respectively (Eves et al., 2012; Fagarasanu et al., 2009). 

Therefore, Inp2 and Mmr1 are also degraded via bud-specific mechanisms. Moreover, 

the termination of vacuole and peroxisome transport requires DMA1/DMA2. These 

observations suggest that Vac17 and other Myo2 cargo adaptors are regulated via 

similar mechanisms.  
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Myosin V transport in yeast and vertebrates  

Myosin V motors are present in virtually all eukaryotic organisms. S. cerevisiae express 

Myo2 and Myo4. In Schizosaccaromyces pombe, there are also 2 myosin V motors, 

Myo51 and Myo52. Unlike Myo2 and Myo4, there is no evidence to suggest that either 

Myo51 or Myo52 transport organelle cargoes. Myo51 is a component of the contractile 

actomyosin ring and functions in cytokinesis.  Myo52 functions in cytokinesis as well as 

cell wall deposition and cell growth (Win et al., 2001). Myo52 also regulates vacuole 

morphology and distribution in an MT dependent manner (Mulvihill et al., 2001). It is 

unclear whether the mechanisms which regulate Myo2 and Myo4 transport are similar 

to those which regulate Myo51 and/or Myo52. 

The differences in myosin V function in S. cerevisiae versus S. pombe are further 

highlighted by the fact that cargo adaptors which attach Myo2 and Myo4 to cargoes in 

S. cerevisiae are not conserved in S. pombe. For example, Vac17, Inp2, Mmr1 and 

She2 are present only in S. cerevisiae and closely related yeast species. These cargo 

adaptors function solely in the attachment of myosin V to cargoes. Cargo adaptors bind 

both myosin V and a second protein found on the cargo. For example, Vac17 binds both 

Myo2 and Vac8, a vacuolar protein. While the only known role of Vac17 is in vacuole 

transport, Vac8 functions in other vacuole related processes. Notably, Vac8 and other 

proteins involved in cargo transport that have additional roles in other pathways tend to 

be conserved (Mast et al., 2012). This rapid evolution of cargo adaptors enables 

organisms to evolve different mechanisms of organelle transport while leaving organelle 

related pathways intact.    

Although Vac17 is not conserved, the mechanisms which regulate Vac17 and 
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vacuole transport may be similar to those which regulate other myosin V cargoes in 

higher eukaryotes. Mammals have 3 class V myosins, myosin Va, Vb and Vc (Desnos 

et al., 2007; Hammer and Sellers, 2011; Weisman, 2006). Myosin V motors are present 

in diverse cell types and transports different cargoes. For example, myosin V transports 

melanosomes in melanocytes, the ER in Purkinje neurons and recycling endosomes in 

epithelial cells (Hammer and Sellers, 2012). Like yeast Myo2, mammalian myosin V 

attaches to cargoes via cargo specific adaptor proteins.  

The mammalian lysosome is analogous to the yeast vacuole. However, it is 

unknown whether lysosomes undergo myosin V dependent transport. Thus, it is difficult 

to predict whether the mechanisms which regulate vacuole transport are similar for the 

lysosome. In contrast, melanosomes, pigment containing organelles that are similar to 

lysosomes, are well characterized myosin V cargoes. Myosin Va transports 

melanosomes via binding the adaptor, melanophilin, and Rab27a (Fukuda et al., 2002; 

Strom et al., 2002; Wu et al., 2002). Notably, melanophilin contains 3 PEST sequences 

which are important for melanophilin turnover and melanosome transport (Fukuda and 

Itoh, 2004). Intriguingly, western blot analyses show that melanophilin, like Vac17, runs 

at a higher molecular weight than predicted, suggesting that melanophilin may be 

phosphorylated (Wu et al., 2002). Given the similarities between Vac17 and 

melanophilin, we propose that the mechanisms that regulate Vac17 and the termination 

of vacuole transport may be similar to those that regulate the detachment of other 

organelles from myosin V in higher eukaryotes. 

Like S. cerevisiae, the mammalian genome encodes 2 proteins that contain both 

FHA and RING domains, Rnf8 and Chfr. Chfr also contains a poly-ADPribose binding 
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zinc (PBZ) finger. While Rnf8 and Chfr are checkpoint proteins, their known functions 

differ from Dma1 and Dma2. Rnf8 is part of the DNA Double-Strand Break (DSB) repair 

pathway. Upon DNA damage, Rnf8 accumulates at the breakage site and ubiquitylates 

exposed histones, H2A and H2AX, which then recruits downstream effectors of the DSB 

repair pathway to the site of DNA breakage (Huen et al., 2007; Mailand et al., 2007). 

Chfr inhibits mitotic entry in response to a range of microtubule stress agents such as 

nocodazole and taxol (Chaturvedi et al., 2002; Scolnick and Halazonetis, 2000). Recent 

studies suggest that Chfr, with Rnf8, functions in the DSB repair pathway as well (Wu et 

al.). While the FHA and RING domains of Rnf8 and Chfr exhibit the greatest sequence 

homology, they share little homology with the FHA and RING domains of yeast Dma1 

and Dma2 (Brooks et al., 2008). It remains unclear as to whether Rnf8 or Chfr are the 

mammalian homologues of Dma1 and Dma2 and whether Rnf8 or Chfr functions in the 

termination of myosin V dependent transport.  

 

Regulation of the termination of myosin V transport 

In S. cerevisiae, Myo2 actively transports cargoes throughout the cell cycle. The 

itineraries for Myo2 cargoes overlap but are not identical. For example, Myo2 transports 

the vacuole and secretory vesicles from the mother cell to the bud early in the cell cycle. 

However, after vacuole transport terminates, Myo2 continues to transport secretory 

vesicles to the mother-bud neck. Our studies show that the modulation and degradation 

of Vac17 directly regulate vacuole transport. Because Myo2 and Vac8 have functions 

other than vacuole transport, specifically targeting Vac17 for degradation terminates 

vacuole transport without perturbing other processes involving Myo2 or Vac8.  
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Evidence from Xenopus laevis suggests that, in addition to cargo adaptors, the 

cargo binding domain of myosin V may also play a critical role in the detachment of 

cargoes. In Xenopus, Calcium/calmodulin-dependent protein kinase II (CaMKII) directly 

phosphorylates the myosin V cargo binding domain (Karcher et al., 2001). This 

phosphorylation event causes the release of the melanosome from myosin V. Thus, the 

modulation of both myosin V and its cargo adaptor followed by degradation of the cargo 

adaptor may be common mechanisms that regulate the termination of myosin V 

transport.  

In S. cerevisiae Myo2 actively transports organelles to different locations and at 

distinct times during the cell cycle. Therefore, it is important for Myo2 to attach to a 

subset of organelles while releasing others. In this situation, it is advantageous to 

regulate the cargo adaptors which link Myo2 to specific cargoes. In contrast, myosin V 

transport ceases during cell division in Xenopus laevis melanophores. Since myosin V 

transport is globally inhibited, it may be advantageous to directly regulate the motor 

instead of targeting individual cargo adaptors. 

 

Dma1 and Dma2 regulate multiple cell cycle coordinated processes 

The segregation of chromosomes is critical to cell division. In yeast, spindle pole bodies 

(SPBs) organize the microtubules which attach to the kinetochores. Correct attachment 

of kinetochores to the mitotic spindle and proper alignment of the sister chromatids 

along the metaphase plate ensures that both mother and daughter cells receive the 

proper complement of chromosomes (Jaspersen and Winey, 2004). The spindle 

assembly checkpoint inhibits the metaphase-anaphase transition until the correct 

kinetochore-spindle attachments are achieved. Successful segregation of chromosomes 
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activates a signaling pathway that triggers mitotic exit and cytokinesis. This pathway 

originates from the SPB and is referred to as the mitotic exit network (MEN) in S. 

cerevisiae and the septation initiation network (SIN) in S. pombe (Seshan and Amon, 

2004).  

In S. pombe, Dma1 participates in the spindle assembly checkpoint. If spindle 

assembly is compromised, Dma1 inhibits mitotic exit. In this situation, Dma1 

ubiquitylates the SPB associated scaffold protein, Sid4. Dma1 dependent ubiquitylation 

of Sid4 prevents the recruitment of the polo-like kinase, Plo1, to the SPBs (Guertin et 

al., 2002; Johnson and Gould, 2011; Murone and Simanis, 1996). Plo1 is an activator of 

the septation initiation network and inhibition of Plo1 recruitment to the SPBs prevents 

mitotic exit and cytokinesis.  

In S. cerevisiae, Dma1 and Dma2 inhibit mitotic exit in response to mis-

positioned spindles (Fraschini et al., 2004). Unlike in S. pombe, Dma1 and Dma2 do not 

directly inhibit the mitotic exit network, but rather are upstream regulators of the spindle 

position checkpoint. Dma1 and Dma2 recruit the kinase Elm1 to the mother-bud neck 

where it regulates Kin4, a kinase that activates Bfa1, a direct inhibitor of the mitotic exit 

network. Moreover, Dma1 and Dma2 are important for proper septin ring assembly 

which in turn is required for proper spindle positioning and for cytokinesis (Chahwan et 

al., 2013; Fraschini et al., 2004). Further studies demonstrate that Dma1 and Dma2 

regulate the levels of Swe1, a kinase which regulates the G2/M transition, and Pcl1, a 

cyclin for Pho85 required for progression through G1 (Chahwan et al., 2013; Raspelli et 

al., 2011). Thus, Dma1 and Dma2 function in regulating cell cycle progression.  
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Given that Dma1 and Dma2 regulate multiple cell cycle processes, it is tempting 

to speculate that these E3 ubiquitin ligases may coordinate the termination of myosin V 

transport with other cell cycle events such as mitotic exit and/or cytokinesis. Ensuring 

that the termination of Myo2 cargo delivery occurs prior to mitotic exit and cytokinesis is 

likely important to ensure that the daughter cell receives all the components required for 

viability.   
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CHAPTER IV 

Future directions 

These studies demonstrate that post-translational modifications of Vac17 directly 

regulate Vac17 degradation and the termination of vacuole transport. We found that 

phosphorylation of Vac17-Thr240 recruits the E3 ubiquitin ligase Dma1 to the vacuole 

transport complex. Dma1 ubiquitylation of Vac17 is required for detachment of the 

vacuole from Myo2 and for Vac17 turnover, which likely occurs via the proteasome. 

These studies provide insights into the mechanisms which terminate vacuole transport. 

However, several questions remain.  

 

Is Dma1 recruited to the vacuole specifically in the bud?  

In the myo2-D1297N mutant, Dma1-GFP is not recruited to the mother vacuole. 

Moreover, Dma1-3xGFP is first observed on the vacuole in the bud. One possibility is 

that Dma1 is recruited specifically to the bud vacuole. Alternatively, Dma1 may 

recognize the intact vacuole transport complex and initially bind Myo2/Vac17/Vac8 in 

the mother cell. Based on in vivo organelle tracking studies, the rate of myosin V 

transport averages ~3μm/s, thus after Myo2 attaches to the vacuole, the vacuole moves 

into the bud within seconds, making it difficult to ascertain whether Dma1 initially 

localizes to the vacuole in the mother. To address this question, recruitment of Dma1 to 

the vacuole can be tested under conditions where the vacuole transport complex is 
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assembled, but the vacuole is not transported to the bud. Over-expression of Myo2-

tail∆AflII, a mutated Myo2 CBD which binds the vacuole but not secretory vesicles, 

causes a defect in vacuole transport by competing with endogenous Myo2 for Vac17 

binding (Catlett et al., 2000). This predicts that a Myo2-tail∆AflII/Vac17/Vac8 complex is 

assembled on the mother vacuole but because Myo2-tail∆AflII lacks a motor domain, 

the vacuole does not move into the bud. We can test whether over-expression of Myo2-

tail∆AflII results in the localization of Dma1 to the mother vacuole. Because Myo2-

tail∆AflII does not bind secretory vesicles, over-expression of this construct is not lethal.  

 

Is Dma1 activated at the bud tip? 

After Dma1 localizes to the vacuole, there is a delay in the termination of vacuole 

transport and the vacuole continues to move to the bud tip (Figure 2.7). This suggests 

that Dma1 activity is regulated. Another factor which localizes to the vacuole in the bud 

is Cla4, a p21activated kinase.  Furthermore, Cla4 functions in Vac17 degradation and 

the termination of vacuole transport (Bartholomew and Hardy, 2009). These 

observations raise the intriguingly hypothesis that Cla4 functions in the termination of 

vacuole transport via activating Dma1 at the bud tip. To address this question, the 

colocalization of Cla4-GFP with Dma1-tdTomato will be tested. Whether Dma1 is 

phosphorylated in a Cla4 dependent manner will also be tested.   

 

Is Vac17 localization perturbed in the dma1-I329R mutant? 

The GFP tagged dma1-I329R localizes to a broader region of the bud vacuole (Figure 

2.22). The recruitment of Dma1 to the vacuole is dependent on the interaction between 
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Dma1 and Vac17. Moreover, Dma1 colocalizes with Vac17 on the vacuole (Figure 

2.15). Therefore, the localization of dma1-I329R-GFP may be a result of Vac17 

localizing to a broader region on the vacuole in this mutant. To explore this question, 

Vac17-GFP localization will be tested in cell expressing dma1-I329R.  

 

Is vacuole inheritance required for spindle positioning or spindle positioning 

checkpoint activation? 

Given that Dma1 and Dma2 function in spindle positioning, the spindle positioning 

checkpoint and the termination of vacuole transport, we hypothesize that these cell 

cycle processes may be coordinated. However, we found that in the vac17Δ mutant, 

spindle positioning is not perturbed (data not shown). This suggests that vacuole 

inheritance and spindle positioning are separate processes. However, it is possible that 

vacuole transport is required for Dma1/Dma2 to function in the spindle positioning 

checkpoint. To address this question, activation of a checkpoint arrest will be tested in a 

kar9Δvac17Δ mutant. In the absence of Kar9, which functions in spindle positioning, a 

subset of cells will have misaligned spindles and will arrest in mitosis in a Dma1/Dma2 

dependent manner. If Vac17 is required for the checkpoint function of Dma1/Dma2, the 

absence of Vac17 will enable cells with mis-aligned spindles to exit mitosis and continue 

into cytokinesis.   

 

Does a defect in the termination of vacuole transport trigger a checkpoint arrest?  

The termination of vacuole transport is regulated by checkpoint proteins Dma1 and 

Dma2. This raises the hypothesis that a defect in the termination of vacuole transport 
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may activate a Dma1/Dma2 mediated checkpoint arrest. To address this question, cells 

expressing vac17-T240A will be tested for a delay in mitotic exit and cytokinesis. If 

these cells progress normally through the cell cycle, this would suggest that a defect in 

the termination of vacuole transport does not activate checkpoint arrest.  

 

What other factors are required for the termination of vacuole transport?  

To identify additional factors required for the detachment of the vacuole from Myo2, we 

can perform a systematic and high content microscopy based screen to identify all non-

essential genes required for Vac17 abundance and localization. Vac17-GFP will be 

introduced into a library of mutants where each non-essential gene is individually 

deleted. High throughput fluorescence microscopy will determine the abundance and 

localization of Vac17-GFP. Mutants with elevated GFP fluorescence will be further 

analyzed. Vac17 levels will be tested in these mutants via western blot. The 

corresponding genes can be tagged with GFP and the localizations of the GFP tagged 

fusion protein can be determined. Furthermore, the vacuoles in these mutants will be 

labeled with FM4-64 and vacuole transport will also be analyzed. Hypomorphic alleles 

of all essential genes, with reduced levels of expression, can also be tested. This 

unbiased screen will likely identify novel factors which regulate the detachment of the 

vacuole from Myo2.  
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CHAPTER V 

Methods 

Yeast Strains, Plasmids and Media  

Yeast cultures were grown in yeast extract peptone dextrose (YEPD) containing 1% 

yeast extract, 2% peptone and 2% dextrose or synthetic complete (SC) media lacking 

the indicated amino acid(s) at 24OC unless specified. Yeast strains and plasmids listed 

in Tables S1 and S2 respectively.  

Western Blot Analysis and Immunoprecipitation Experiments 

Cells were lysed in chilled 1 ml 0.2 M NaOH/ 0.2% β-mercaptoethanol and incubated on 

ice for 10 min. 100 μl trichloroacetic acid (TCA) was added to the lysates and incubated 

on ice for 5 min. Precipitated proteins were harvested via centrifugation at 12,000 rpm 

for 5 min. Pellets were resuspended in 100 μl 2X SDS sample buffer, 20 μl of 1 M Tris 

base (pH 11) was then added and the samples were heated at 75OC for 10 min (Peng 

and Weisman, 2008). Protein samples were analyzed via immunoblot.  

For immunoprecipitations, TCA precipitated proteins were pelleted and washed 

with acetone. The dried protein pellets were resuspended in 200 μl urea cracking buffer 

(6 M urea, 1% SDS, 50 mM Tris-HCl, pH 7.5) and heated at 75OC for 10 min. 1.8ml 

TWIP buffer (50 mM Tris-HCl, pH 7.5, 150 mM NaCl, 0.5% Tween 20, 0.1 mM EDTA) 

containing 1 mM Na3VO4 and 1X protease inhibitor cocktail (Sigma) was added to the 

resuspended protein. Undissolved proteins were pelleted via centrifugation. 4 μg of 
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mouse anti-GFP antibodies (Roche) was added to the supernatant and incubated with 

agitation at 4OC, overnight. 50 μl of protein G beads (Sigma) washed with TWIP buffer 

was added and incubated with agitation at 4OC for 1 hour. Beads were collected via 

centrifugation and washed with TWIP buffer. Bound proteins were analyzed via 

immunoblot.  

For dephosphorylation of Vac17-GFP, Protein G beads were collected via 

centrifugation and washed 3 times with TWIP buffer without EDTA. The beads were 

resuspended in 1X λ-ppase buffer containing 1X protease inhibitor cocktail (Sigma) and 

10 mM MnCl2. Either water, λ-ppase (400 units, New England Biolabs) or λ-ppase plus 

phosphatase inhibitors (100 mM NaF, 10 mM Na3VO4, 50 mM EDTA, 20 mM β-

glycerophosphate and 20 mM sodium pyrophosphate) were added to the samples. 

Phosphatase reactions were performed in 100 μl and incubated at 30OC for 1 hour. 

Reactions were terminated by addition of 50 μl 2X SDS sample buffer and heated at 

75OC for 10 min. 

For immunoblot analyses, mouse anti-GFP (1:1,000; Roche), rabbit anti-GFP (1:1,000; 

abcam), rabbit anti-TAP (1:1,000; Thermo Scientific), mouse anti-Pgk1 (1:10,000; 

Invitrogen), sheep anti-Vac17 (1:1,000) and rabbit anti-phosphoThr240 (1:2,500) 

antibodies were used.  

In Vitro Binding and Competition Experiments 

Expression of GST tagged fusion proteins from BL21 star DE3 cells was induced with 

0.4 mM IPTG (Denville Scientific); 16OC overnight. Cells were resuspended in 50 mM 

Tris-HCl, pH 7.5, 1 mM EDTA, 4 mM MgCl2, 10% glycerol, 1 M NaCl, 5 mM DTT, 1 mM 

Pefabloc and Complete EDTA-free protease inhibitor cocktail (Roche) and lysed via 

sonication. An equal amount of lysis buffer without NaCl was added to the clarified 
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lysates and incubated with glutathione Sepharose beads (GE Healthcare). Immobilized 

GST fusion proteins were washed with wash buffer (50 mM Tris-HCl, pH 7.5, 4 mM 

MgCl2, 10% glycerol, 0.5 M NaCl and 1 mM DTT and then with 50 mM HEPES-KOH, 

pH 7.6, 150 mM KCl, 1 mM EDTA, 1 mM Na3VO4 and 10% glycerol) (Loring et al., 

2008). Yeast cells grown in YEPD at 24OC were resuspended in 50 mM HEPES-KOH, 

pH 7.6, 150 mM KCl, 1 mM EDTA, 20 mM sodium pyrophosphate, 10 mM NaN3, 20 

mM NaF, 1 mM Na3VO4, 100mM β-glycerophosphate, 0.5% OG, 10% glycerol, 1X 

Protease inhibitor cocktail (Sigma) and Complete EDTA-free protease inhibitor cocktail 

(Roche) and lysed with glass beads. GST and GST fusion protein bound beads were 

incubated with clarified yeast cell extracts for 1 hour at 4OC with agitation. Beads were 

then washed with wash buffer. Bound proteins were analyzed via SDS-page, Gelcode 

Blue staining (Thermo Scientific) and by immunoblot.  

For competition experiments, GST-Dma1 bound beads were first incubated with 0.5 mg 

peptides resuspended in 50 mM HEPES-KOH, pH 7.6, 150 mM KCl, 1 mM EDTA and 

10% glycerol prior to incubation with yeast cell extracts.  

In vivo ubiquitylation experiments 

Cells were co-transformed with pVT102-VAC17-GFP and CUP1-myc-Ub plasmids. 

Myc-Ub expression was induced with 100μM CuCl2 and cells were grown overnight. 

Vac17-GFP was immunoprecipitated as described above and analyzed via immunoblot 

using anti-myc antibodies (1:2,000; Cell Signaling).  

 

Microscopy  

To visualize vacuoles, cells were labeled with 12 μg FM4-64 in 250 μL media for 1 hour, 



78 
 

then washed twice and grown in 5 ml fresh media for one doubling time (2-3 hours). 

Live cell images were obtained on a DeltaVision Restoration system (Applied Precision) 

using an inverted epifluorescence microscope (IX-71; Olympus) with a charge-coupled 

device camera (Cool-SNAP HQ; Photometrics) and processed in Photoshop. 

Whole Genome Sequencing  

Wild-type and mutant backcross pools were derived from sporulation of diploid strain 

LWY10741, which was obtained by mating strains vac22-1 and LWY3250 (wild-type). 

Construction of pooled libraries and analysis of the resulting Illumina sequencing data 

was performed as previously described (Birkeland et al., 2010). The filter for potential 

vac22-1 mutations demanded that (i) the candidate mutation changed the coding of a 

yeast ORF, (ii) the mutation site was covered by at least three reads in both the wild-

type and vac22-1 mutant pools, (iii) all reads in the wild-type pool corresponded to the 

wild-type allele, and (iv) all reads in the mutant pool corresponded to the mutant allele. 

This filter yielded only the dma1-G232R mutation. We note that the vac22-1 mutant pool 

was a low quality library with only 4-fold base coverage of the yeast genome.  As a 

result, we cannot rule out that other potential candidate mutations were missed. 

However, based on the biological analysis of dma1-G232R it is likely to be the sole 

cause of the vac22-1 phenotype. 

Genetic Screens 

Wildtype (LWY3250) cells transformed with pRS416-VAC17-GFP were grown in SC-

Ura + 0.5% CA media. Cells were resuspended in 1 ml 0.1 M sodium phosphate buffer, 

pH 7.0. EMS (Sigma) was added to a final concentration of 36.18 mg/ml and cells were 

incubated at 24OC for 1 hour (Burke et al., 2000).  Cells were washed with ddH20, then 
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washed twice with 5% sodium thiosulfate and were grown in SC-Ura+ 0.5% CA media 

for 12 hours. Mutants with elevated Vac17-GFP fluorescence were isolated via 

Fluorescence Activated Cell Sorting (FACS) and were plated on SC-Ura media. 

Microscopy and western blot analysis were used to confirm the elevation of Vac17 

levels in these mutants.  
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Table S1. Yeast Strains Used in this Study. 

Strain Genotype Source 
LWY7235 MATa, ura3-52, leu2-3,-112, his3-Δ200, trp1-∆901, lys2-801, suc2-

∆9 
(Catlett and 
Weisman, 1998) 

LWY5798 MATa, ura3-52, leu2-3,-112, his3-Δ200, trp1-∆901, lys2-801, suc2-
∆9, vac17∆::TRP1 

(Tang et al., 2003) 

LWY7664 MATa, ura3-52, leu2-3,-112, his3-Δ200, trp1-∆901, lys2-801, suc2-
∆9, vac17Δ::TRP1, MYO2-GFP::HIS3 

(Peng and 
Weisman, 2008) 

LWY12269 MATa, ura3-52, leu2-3,-112, his3-Δ200, trp1-∆901, lys2-801, suc2-
∆9, GFP-TUB1::URA3, kar9Δ ::kanr, SPC42-mCherry::HIS3 

This study 

LWY12086 MATα, ura3-52, leu2-3,-112, his3-∆200, trp1-∆901, lys2-801, suc2-
∆9, vac17∆::TRP1, myo2Δ::TRP1 [pRS413-mCherry-MYO2] 

This study 

LWY11102 MATa, ura3-52, leu2-3,-112, his3-Δ200, trp1-∆901, lys2-801, suc2-
∆9, dma1Δ::kanr 

This study 

LWY11125 MATα, ura3-52, leu2-3,-112, his3-∆200, trp1-∆901, lys2-801, suc2-
∆9, dma2Δ::kanr 

This study 

LWY11156 MATa, ura3-52, leu2-3,-112, his3-Δ200, trp1-∆901, lys2-801, suc2-
∆9, dma1Δ::kanr, dma2Δ::kanr 

This study 

LWY11269 MATα, ura3-52, leu2-3,-112, his3-∆200, trp1-∆901, lys2-801, suc2-
∆9, vac17∆::TRP1, dma1Δ::kanr 

This study 

LWY11389 MATa, ura3-52, leu2-3,-112, his3-∆200, trp1-∆901, lys2-801, suc2-
∆9, dma1Δ::kanr, dma2Δ::kanr, VAC17-TAP::LEU2 

This study 

LWY11524 MATα, ura3-52, leu2-3,-112, his3-∆200, trp1-∆901, lys2-801, suc2-
∆9, dma1Δ::kanr, dma2Δ::kanr, vac17-F225S-TAP::LEU2 

This study 

LWY11528 MATα, ura3-52, leu2-3,-112, his3-∆200, trp1-∆901, lys2-801, suc2-
∆9, dma1Δ::kanr, dma2Δ::kanr, vac17-L221P-TAP::LEU2 

This study 

LWY11507 MATα, ura3-52, leu2-3,-112, his3-∆200, trp1-∆901, lys2-801, suc2-
∆9, dma1Δ::kanr, dma2Δ::kanr, vac17-T240A-TAP::LEU2 

This study 

LWY11541 MATa, ura3-52, leu2-3,-112, his3-∆200, trp1-∆901, lys2-801, suc2-
∆9, dma1Δ::kanr, dma2Δ::kanr, vac17-S222A-TAP::LEU2 

This study 

LWY11687 MATα, ura3-52, leu2-3,-112, his3-∆200, trp1-∆901, lys2-801, suc2-
∆9, dma1Δ::kanr, dma2Δ::kanr, vac17∆::TRP1 

This study 

LWY12966 MATa, ura3-52, leu2-3,-112, his3-Δ200, trp1-∆901, lys2-801, suc2-
∆9, DMA1-3xGFP::HIS3 

This study 

LWY8195 MATa, ura3-52, leu2-3,-112, his3-∆200, trp1-∆901, lys2-801, suc2-
∆9, pep4-Δ1137, vac17∆::TRP1, myo2Δ::TRP1 [YCp50-MYO2] 

This study 

MHY501 MATα, his3-Δ200, leu2-3, -112, ura3-52, lys2-801, trp1-1 (Chen et al., 
1993) 

MHY1409 MATα, his3-Δ200, leu2-3, -112, ura3-52, lys2-801, trp1-1, uba1-2 (Swanson and 
Hochstrasser, 
2000) 

MHY605  MATα, his3-11, leu2-3, -112, ura3-Δ5, pre1-1::canR (Chen and 
Hochstrasser, 
1996) 

MHY952 MATα, his3-Δ200, leu2-3, -112, ura3-52, lys2-801, trp1-1, doa3-
delta1::HIS3 [YEpDOA3LS][YCpUbDOA3∆LS] 

(Chen and 
Hochstrasser, 
1996) 

MHY973 MATα, his3-Δ200, leu2-3, -112, ura3-52, lys2-801, trp1-1, doa3-
delta1::HIS3 [YEpDOA3LS][YCpUbDOA3∆LS-T76A] 

(Chen and 
Hochstrasser, 
1996) 

MHY1072 MATa, his3-Δ200, leu2-3, -112, ura3-52, lys2-801, trp1-1, 
pup1::leu2::HIS3, pup3-∆2::HIS3 [Ycplac22PUP1][Yeplac181PUP3] 

(Chen and 
Hochstrasser, 
1996) 
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MHY1071 MATa, his3-Δ200, leu2-3, -112, ura3-52, lys2-801, trp1-1, 
pup1::leu2::HIS3, pup3-∆2::HIS3 [Ycplac22pup1-K58E] 
[Yeplac181pup3-E151K] 

(Chen and 
Hochstrasser, 
1996) 
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Table S2. Plasmids Used in this Study.  
 

Plasmid Description Ref. 
pRS416-VAC17 CEN, URA3 (Tang et al., 2003) 
pRS416-vac17-L221P CEN, URA3 This study 
pRS416-vac17-S222T CEN, URA3 This study 
pRS416-vac17-F225S CEN, URA3 (Peng and Weisman, 

2008) 
pRS416-vac17-D237G CEN, URA3 This study 
pRS416-vac17-Q238R CEN, URA3 This study 
pRS416-vac17-S202A CEN, URA3 This study 
pRS416-vac17-S206A,S207A,S208A CEN, URA3 This study 
pRS416-vac17-S213A CEN, URA3 This study 
pRS416-vac17-S222A CEN, URA3 This study 
pRS416-vac17-T224A CEN, URA3 This study 
pRS416-vac17-S236A CEN, URA3 This study 
pRS416-vac17-T240A CEN, URA3 This study 
pRS416-vac17-S247A,T248A CEN, URA3 This study 
pRS416-VAC17-GFP  CEN, URA3 (Tang et al., 2006) 
pRS416-vac17-L221P-GFP CEN, URA3 This study 
pRS416-vac17-S222A-GFP CEN, URA3 This study 
pRS416-vac17-F225S-GFP CEN, URA3 (Peng and Weisman, 

2008) 
pRS416-vac17-T240A-GFP CEN, URA3 This study 
pRS413-mCherry-MYO2 CEN, HIS3 (Jin et al., 2011) 
pRS416-vac17-∆PEST-GFP CEN, URA3 (Tang et al., 2006) 
pRS416-DMA1 CEN, URA3 This study 
pRS416-dma1-G232R CEN, URA3 This study 
pRS416-DMA1-GFP CEN, URA3 This study 
pRS416-Dma1-tdTomato CEN, URA3 This study 
pRS415-VAC17 CEN, LEU2 This study 
pRS415-vac17-L221P CEN, LEU2 This study 
pRS415-vac17-S222A CEN, LEU2 This study 
pRS415-vac17-F225S CEN, LEU2 This study 
pRS415-vac17-T240A CEN, LEU2 This study 
pRS415-VAC17-GFP CEN, LEU2 This study 
pRS415-vac17-L221P-GFP CEN, LEU2 This study 
pRS415-vac17-S222A-GFP CEN, LEU2 This study 
pRS415-vac17-F225S-GFP CEN, LEU2 This study 
pRS415-vac17-T240A-GFP CEN, LEU2 This study 
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pGEX4T-1 Dma1 Amp This study 
pGEX4T-1 Myo2 cargo-binding domain Amp This study 
pRS416-dma1-I329R CEN, URA3  This study 
pRS416-dma1-I329R-GFP CEN, URA3 This study 
CUP1-myc-Ub 2μ, LEU2 This study 
pVT102-Vac17-GFP 2μ, URA3 This study 
pVT102-VAC17 2μ, URA3 This study 
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