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ABSTRACT

Restricted mean analysis across multiple follow-up intervals

by

Nabihah Tayob

Chair: Susan Murray

The restricted mean survival, first proposed by Irwin (1949), is the expected sur-

vival time within a fixed follow-up window. This measure has a meaningful interpre-

tation for both physicians and patients in a clinical setting that motivates its further

exploration.

The first paper provides a nonparametric estimate of τ -restricted mean survival

that uses additional follow-up information beyond τ , when appropriate, to improve

precision. The variance of our estimate must account for correlation between incorpo-

rated follow-up windows and we follow an approach by Woodruff (1971) that linearizes

random components of the estimate to simplify calculations. Both asymptotic closed

form calculations and simulation studies recommend selection of follow-up intervals

spaced approximately τ/2 apart.

In the second paper we develop two recurrent events testing procedures. We take

advantage of the properties of time-to-first event analyses and use events beyond the

xii



first by combining data across multiple follow-up windows in two different ways. The

first pools the data before estimating the τ -restricted mean survival and the second

uses the area under the τ -restricted mean residual life function. We consider multiple

scenarios of treatment effect in simulation studies and find our testing procedures

perform favorably, especially when events are correlated, compared to the robust

proportional rates model proposed by Lin et al. (2000) and the nonparametric Ghosh

& Lin (2000) test.

A component of the lung allocation score, used to order patients for transplant

offers, is the 1-year restricted mean survival on waitlist. In the third paper we develop

a restricted mean survival model that combines data from multiple 1-year follow-up

windows spaced six months apart to incorporate time-dependent patient risk data,

extending work by Xiang et al. (2013) to multiple follow-up intervals. Model pa-

rameters are estimated by multiply imputing censored time-to-event data using an

inverse transform method; the complete dataset is analyzed using standard methods.

The systematic removal of patients from the lung transplant waitlist based on their

daily updated LAS results in dependent censoring, which we account for using in-

verse probability of censoring weights when estimating survival functions. Simulation

studies show that our proposed method performs well and incorporating additional

follow-up improves efficiency.

xiii



CHAPTER I

INTRODUCTION

The restricted mean survival time is the expected survival time within a fixed

follow-up interval. It was first proposed by Irwin (1949) since the mean survival time

is not estimable in the presence of censoring, which is almost always the case in time

to event studies. This measure has a meaningful interpretation for both physicians

and patients in a clinical setting. In addition, the restricted mean survival captures

information about the immediate future and health economists (Gyrd-Hansen & So-

gaard, 1998) have found that patients consider life-years closer to the present more

valuable than those in the future. The meaningful and relevant interpretation of the

restricted mean survival motivates its further exploration. Statistical methods for

estimation, hypothesis testing for treatment effect in a randomized clinical trial and

regression models based on the restricted mean survival have been widely studied but

research on incorporating follow-up information beyond the first follow-up window

has been limited.

The first paper provides a nonparametric estimate of τ -restricted mean survival

that uses additional follow-up information beyond τ , when appropriate, to improve

precision. The τ -restricted mean residual life function and its associated confidence

1
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bands are a tool to assess the stability of disease prognosis and the validity of com-

bining follow-up intervals for this purpose. The variance of our estimate, the overall

τ -restricted mean survival, must account for correlation between incorporated follow-

up windows and we follow an approach by Woodruff (1971) that linearizes random

components of the estimate to simplify calculations. Both asymptotic closed form

calculations and simulation studies recommend selection of follow-up intervals spaced

approximately τ/2 apart. In simulations, the variance we propose performs better

than the standard sandwich variance estimate. Our analysis approach is illustrated

in two settings summarizing prognosis of idiopathic pulmonary fibrosis patients and

aspirin treated diabetic retinopathy patients who had deferred photocoagulation.

In the second paper we focus on developing recurrent events testing procedures

for two independent samples. Use of a combined endpoint that includes disease pro-

gression (recurrent event) as well as mortality (terminating event) improves power for

detecting treatment effects. Standard recurrent events analyses require assumptions

about the dependence between events and time-to-first event analyses do not use the

information beyond the first event. In our approach, we take advantage of the prop-

erties of time-to-first event analyses and use events beyond the first by combining

data across multiple follow-up windows. The two testing procedures that we develop

for evaluating treatment effect combine the multiple follow-up windows in different

ways. The first uses the overall τ -restricted mean survival and the second uses the

area under the τ -restricted mean residual life function. A simulation study compares

our test to the robust proportional rates model proposed by Lin et al. (2000) and the

nonparametric Ghosh & Lin (2000) test for recurrent events subject to death. We

consider multiple scenarios of treatment effect and find our testing procedures perform

favorably, especially when events are correlated. The analysis approach is illustrated
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for a randomized trial testing the ability of azithromycin to reduce exacerbations in

patients with chronic obstructive pulmonary disease (COPD).

The motivation for the third paper comes from the lung transplant setting. The

lung allocation score (LAS) involves the difference between benefit (days of life gained

during the next year if a transplant is offered immediately) and urgency (1-year re-

stricted mean while on waitlist), and is used to order patients for organ offers. To

date, risk data at listing has been used as one of the primary drivers of model de-

velopment for the urgency model, and while time-dependent patient risk data has

been collected on the waitlist, statistical methods of incorporating this information

has been limited. We develop a restricted mean survival model that combines data

from multiple 1-year follow-up windows spaced six months apart. This is an exten-

sion of the method proposed by Xiang et al. (2013) to multiple follow-up intervals.

The model parameters are estimated by multiply imputing censored time-to-event

data using an inverse transform method to obtain complete dataset that can be an-

alyzed using standard methods. The systematic removal of patients from the lung

transplant waitlist based on their daily updated LAS results in dependent censoring

completely captured by LAS. The estimate of the survival function in the multiple

imputation procedure adjusts for the bias resulting from dependent censoring using

inverse weights. The method will also allow us to describe changes in patient urgency

over the waitlist candidate experience. The proposed method is compared to some

existing methods for fitting restricted mean survival models in simulation studies. We

found that our proposed method performs well and incorporating additional follow-

up improves efficiency. A recent release of lung waitlist data was used to implement

the proposed methodology and study the patient urgency model and the effect of

incorporating multiple follow-up windows.



CHAPTER II

NONPARAMETRIC RESTRICTED MEAN

ANALYSIS ACROSS MULTIPLE FOLLOW-UP

INTERVALS

2.1 Summary

This research provides a nonparametric estimate of τ -restricted mean survival that

uses additional follow-up information beyond τ , when appropriate, to improve preci-

sion. The τ -restricted mean residual life function and its associated confidence bands

are a tool to assess the stability of disease prognosis and the validity of combining

follow-up intervals for this purpose. The variance of our estimate must account for

correlation between incorporated follow-up windows and we follow an approach by

Woodruff (1971) that linearizes random components of the estimate to simplify calcu-

lations. Both asymptotic closed form calculations and simulation studies recommend

selection of follow-up intervals spaced approximately τ/2 apart. In simulations, the

variance we propose performs better than the standard sandwich variance estimate.

Our analysis approach is illustrated in two settings summarizing prognosis of idio-

pathic pulmonary fibrosis patients and aspirin treated diabetic retinopathy patients

who had deferred photocoagulation.

4
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2.2 Introduction

Yearly progression predictions are commonly reported for clinical longitudinal

data. For example, Raghu et al. (2011) report that mild to moderate idiopathic pul-

monary fibrosis (IPF) patients tend to lose 0.2 liters in forced vital capacity lung

function per year. This is a valuable summary statistic, for physicians and patients,

that has not been sufficiently explored for censored time to event data. For instance,

it would be useful for a physician to be able to report to a patient that IPF patients

followed for 10 years were observed to live 91% of each year, on average, given they

were alive at the start of the year. This is a concise estimate for the patient about

how their disease may affect them in the short term and gives a sense of the stability

of their disease when appropriate. In cases like these where yearly progression is rea-

sonably stable, a yearly progression estimate can be made more efficient by combining

information from different follow-up periods. Pulmonary researchers and patients are

particularly primed to interpret days of life lived in a year since a lung allocation

score introduced by Egan et al. (2006) is based on expected days of life lived in the

following year without transplant.

In the Early Treatment Diabetic Retinopathy Study (ETDRS), ETDRS Research

Group (1991a,b), time to severe vision loss was the primary endpoint. In this case

an ophthalmologist might want to report the expected days of good sight per year,

given that a patient has not yet reached the severe vision loss endpoint, based on 4-5

years of observed data from this study.

The restricted mean residual life function (RMRL) is the expected days of life per

year for those surviving at the beginning of the year and may be used to view trends

in these summary statistics over time. Ghorai et al. (1982) proposed an estimator
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based on integrated conditional Kaplan-Meier estimates Ghorai & Rejto (1987) and

Na & Kim (1999) proposed a smooth-spline estimator for this quantity, among others.

Yu (2003) developed confidence bands for restricted mean residual life functions esti-

mated via Nelson-Aalen estimates, Cox model hazard estimates and inverse weighted

hazard estimates, calling them expected life prosper functions (ELPF). Stability of

these functions suggests an opportunity for producing an overall summary statistic

that is more precise.

This paper provides a nonparametric estimate of the expected number of days

lived per τ years based on A > τ years of follow-up, a single statistic describing the

cost of the disease to a patient over a stable period of time. In the IPF and diabetic

retinopathy settings described above, A is substantially greater than τ . We study sev-

eral τ -length intervals from the follow-up period to see if follow-up intervals obtained

after time zero essentially estimate the same restricted mean and if incorporating

these extra intervals provides efficiency gains. In cases where follow-up intervals give

non-stable trends for the restricted mean, the overall trend is summarized.

In Section 2.3 we review RMRL estimation, confidence band construction and a

simple RMRL smoother. Section 2.4 describes the nonparametric τ -restricted mean

survival estimator that combines information across different τ -length intervals of

follow-up. Although the data appears clustered by individual, it turns out that the

sandwich variance estimation for clustered data, available in many software pack-

ages, does not perform well when the cluster is based on many overlapping follow-up

intervals. The proposed variance described in Section 2.4 is based on a lineariza-

tion of random components of the estimator, similar to the approach recommended

by Woodruff (1971) and more recently Williams (1995). In Section 2.5 we consider

how to choose the number of follow-up intervals useful for obtaining efficiency gains.
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A simulation study that assesses the performance of the proposed estimate and its

variance against currently available competitors is presented in Section 2.6. Two ex-

amples of the proposed analysis approach, pertaining to IPF patients and diabetic

retinopathy patients, are given in Section 2.7. A discussion follows in Section 2.8.

2.3 τ-restricted mean residual life

We define notation in Section 2.3.1. Section 2.3.2 describes a nonparametric esti-

mate of RMRL, and Section 2.3.3 gives estimated confidence bands of RMRL, follow-

ing the style laid out in Yu (2003). Section 2.3.4 provides smoothed RMRL estimates

across chosen follow-up intervals as an additional visual tool for assessing whether

these follow-up intervals may be combined.

2.3.1 Notation

For each of n patients we define observed event time, Xi = min(Ti, Ci), with

failure indicator δi = I(Ti ≤ Ci), based on true failure time, Ti, and censoring time,

Ci, i = 1, . . . , n. Calendar time, t, is measured from the start of the study. We define

the residual life observed at t as Xi(t) = (Xi − t)I(Xi ≥ t) with failure indicator

variable δi(t) = δiI(Xi ≥ t).

For a τ -length interval starting at calendar time, t, the τ -restricted mean residual

lifetime is µ(t, τ) = E{min(T − t, τ)|T > t} =
∫ τ

0
Pr(T > t + u|T > t)du. Here,

u denotes an internal time scale measured from calendar time t. This definition of

RMRL, with t as a parameter, allows us to simultaneously discuss values of µ(t, τ)

measured at different calendar times t ∈ {t1, ..., tb}. We use the convention of t1 = 0

in all that follows.
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Counting process notation includes the two timescales described, t (calendar) and

u (internal time measured from t). For individual i at calender time t, the event

counting process applied to internal timescale u is Ni(t, u) = I{Xi(t) ≤ u, δi(t) = 1}

with at-risk process Yi(t, u) = I{Xi(t) ≥ u}. At t, the total number of events

occurring no later than u is N(t, u) =
∑n

i=1Ni(t, u) and the number at risk at u is

Y (t, u) =
∑n

i=1 Yi(t, u). We require notation combining counting process quantities

across calendar times, {t1, ..., tb}. For individual i and internal time u, Ni(u) =∑b
k=1Ni(tk, u) and Yi(u) =

∑b
k=1 Yi(tk, u). Combining information across follow-

up intervals and patients gives us N(u) =
∑b

k=1N(tk, u), total number of events

occurring no later than u, and Y (u) =
∑b

k=1 Y (tk, u), total number at risk at u.

Many of the {Xi(tk), δi(tk)} pairs reflect follow-up times censored at time 0 due to

attrition prior to time tk.

2.3.2 Estimation of τ-restricted mean residual life

The τ -restricted mean residual lifetime function, µ(t, τ), tracks subsequent ex-

pected lifetime during an interval of length τ given the patient has survived up to

time t. Henceforth we call µ(t, τ) the RMRL function, submerging τ for brevity. Us-

ing notation from the previous section, a consistent nonparametric estimator of the

RMRL function is µ̂(t, τ) =
∫ τ

0
P̂ (t, s)ds where P̂ (t, s) = exp

{
−
∫ s

0
dN(t,u)
Y (t,u)

}
.

2.3.3 Confidence Bands

We slightly modify work from Yu (2003) for RMRL confidence band calculations

applied to times {t1, . . . , tb}. As opposed to 95% pointwise confidence intervals, de-

signed to cover each separate µ(t, τ) value 95% of the time, confidence bands are
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designed to cover the entire set of values {µ(t1, τ), . . . , µ(tb, τ)} 95% of the time.

Plotting the RMRL function with its corresponding bands is useful in suggesting

whether follow-up windows may be combined for estimation or not.

Technical development of confidence bands for {µ(t1, τ), . . . , µ(tb, τ)} is based on

the Gaussian process B(t, τ) = n1/2{µ̂(t, τ) − µ(t, τ)} and the covariance of this

process at times tj1 and tj2 , j1 = 1, . . . , b, j2 = 1, . . . , b. The estimated covariance

matrix
∑̂

b×b , with estimates of cov{B(tj1 , τ), B(tj2 , τ)} as the (j1, j2) elements, is

n

∫ τ

0

∫ τ

0

P̂ (tj1 , s)P̂ (tj2 , s
′)

n∑
i=1

∫ s

0

∫ s′

0

dNi(tj1 , u)dNi(tj2 , v)

Y (tj1 , u)Y (tj2 , v)
ds ds′

Following Lin et al. (1994), the asymptotic distribution of {B(t1, τ), . . . , B(tb, τ)}

is approximated by generating a large number of mean zero multivariate Normal

samples using the observed covariance structure,
∑̂

b×b. Using these samples, we

calculate qα satisfying Pr{maxt∈{t1,...,tb} |B̂(t, τ)| > qα} = α. Level 100(1 − α)%

confidence band values surrounding µ(t, τ) become
[
µ̂(t, τ) − n−1/2 × qα, µ̂(t, τ) +

n−1/2 × qα
]
, calculated at times t = {t1, . . . , tb}. In practice, these confidence bands

perform well provided that there are at least 25 event times following tb.

2.3.4 Smoothed RMRL estimated at times t = {t1, . . . , tb}

Smoothed RMRL values can be useful in visualizing trend from noise across follow-

up intervals. For each follow-up interval, {tk, tk +τ}, k = 1, . . . , b, adjoining follow-up

windows contribute information towards estimation of the smoothed RMRL estimate
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at tk, µ̂
∗(tk, τ). In particular,

µ̂∗(tk, τ) =



∫ τ
0

exp

{
−
∫ s

0

∑k+1
j=k dN(tj ,u)∑k+1
j=k Y (tj ,u)

}
ds k= 1∫ τ

0
exp

{
−
∫ s

0

∑k+1
j=k−1 dN(tj ,u)∑k+1
j=k−1 Y (tj ,u)

}
ds k= 2, . . . , b− 1∫ τ

0
exp

{
−
∫ s

0

∑k
j=k−1 dN(tj ,u)∑k
j=k−1 Y (tj ,u)

}
ds k= b

Each smoothed RMRL value at time tk is a special case of the overall τ -restricted

mean survival function developed in the next section. These smoothed RMRL values

are superimposed on RMRL plots.

2.4 Overall τ-restricted mean survival

When the RMRL (discussed in Section 2.3.2) and its corresponding confidence

bands (discussed in Section 2.3.3) do not indicate a strong trend, we develop a more

efficient estimate of the expected number of days lived in the next τ years by pooling

appropriate follow-up periods beginning at times t ∈ {t1, ..., tb}. In Section 2.4.1 we

define our proposed estimate of the overall τ -restricted mean survival. The variance

of this estimate is developed in Section 2.4.2.

2.4.1 Estimation

The proposed estimate of the overall τ -restricted mean survival is

µ̂∗(τ) =

∫ τ

0

exp

{
−
∫ s

0

dN(u)

Y (u)

}
ds. (2.1)

Let λ(tk, u) = lim∆u→0[Pr{u ≤ Xi(tk) < u + ∆u, δi(tk) = 1|Xi(tk) ≥ u}/∆u]

and let λW (u) =
∑b

k=1 λ(tk, u)Pr{Xi(tk) ≥ u}/
∑b

l=1 Pr{Xi(tl) ≥ u}. In Appendix



11

A.1, we show that (2.1) converges in probability to µ∗(τ) =
∫ τ

0
exp

[
−
∫ s

0
λW (u)du

]
ds,

which is the mean of the mixture distribution created from combining follow-up times

across the different intervals. If the overall dataset reflects a single distribution, that

is, λ(tk1 , u) = λ(tk2 , u) for 0 ≤ u ≤ τ and k1, k2 ∈ {1, ..., b}, then µ∗(τ) reduces to

µ(t1, τ), the usual restricted mean that is typically estimated using a single follow-

up period. Variance calculations in the following section acknowledge the potential

mixture of hazards that might occur when combining follow-up times across intervals.

2.4.2 Variance of proposed estimate

The proposed variance estimate is calculated via linearizing components of
√
nµ̂∗(τ)

via Taylor series approximations. This approach to obtaining variances is an attrac-

tive alternative to working through stochastic integrals of martingales for correlated

counting process, where appropriate filtrations can be challenging to define. Suppose

that in the dataset of combined follow-up times we observe M events at internal times

{0 < T1 < . . . < TM < τ} where events from the same individual during different

follow-up windows are correlated; for convenience, we define T0 = 0 and TM+1 = τ .

Let Fj{dN(Tj), Y (Tj)} = dN(Tj)/Y (Tj). In the following we temporarily submerge

arguments of Fj. We define Gm(F0, F1, . . . , Fm) = exp(−
∑m

j=0 Fj). After rewriting

√
nµ̂∗(τ) in terms of Gm(F0, F1, . . . , Fm), the variance of

√
nµ̂∗(τ) becomes

V ar

{
√
n

M∑
m=0

(Tm+1 −Tm)Gm(F0, F1, . . . , Fm)

}
.

The non-linear terms G0, G1, . . . , GM may be made more tractable for variance

calculations via linearization based on a Taylor series expansion of Gm(F0, F1, . . . , Fm)

about λW (Tj)dTj, j = 0, . . . ,m. The first order partial derivatives ofGm(F0, F1, . . . , Fm)
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with respect to each Fj are − exp
{
−
∑m

j′=0 Fj′
}

, j = 0, . . . ,m. The variance of

√
nµ̂∗(τ) is then

V ar

(
√
n

M∑
m=0

(Tm+1 −Tm) exp

{
−

m∑
j′=0

λW (Tj′)dTj′

}
(2.2a)

+
√
n

M∑
m=0

(Tm+1 −Tm)

[
m∑
j=0

− exp

{
−

m∑
j′=0

λW (Tj′)dTj′

}
Fj

]
(2.2b)

−
√
n

M∑
m=0

(Tm+1 −Tm)

[
m∑
j=0

− exp

{
−

m∑
j′=0

λW (Tj′)dTj′

}
λW (Tj)dTj

]
(2.2c)

+
√
n

M∑
m=0

(Tm+1 −Tm)
1

2!
exp

{
−

m∑
j′=0

λW (Tj′)dTj′

}[
m∑
j=0

{Fj − λW (Tj)dTj}

]2

(2.2d)

+
√
n

M∑
m=0

(Tm+1 −Tm) [ higher order terms]

)
. (2.2e)

Terms (2.2a) and (2.2c) are nonrandom and therefore do not contribute to the

variance. The fourth term (2.2d) converges to zero in probability, details given in

Appendix A.2. Similarly all higher order terms of the Taylor series linearization (2.2e)

converge to zero in probability and the variance reduces to V ar
[√

n
∑M

m=0(Tm+1 −Tm)

exp
{
−
∑m

j′=0 λ
W (Tj′)dTj′

}∑m
j=0 Fj

]
, the variance of a linear sum of non-linear com-

ponents F0, F1, . . . , FM .

Each of the non-linear Fj terms may be made more tractable for variance calcula-

tions via further linearization based on a Taylor series expansion of Fj{dN(Tj), Y (Tj)}

about the expected values of dN(Tj) and Y (Tj). The expected value of dN(Tj) is

n
∑b

k=1 λ(tk,Tj)Pr{Xi(tk) ≥ Tj}dTj and the expected value of Y (Tj) is n
∑b

k=1 Pr{

Xi(tk) ≥ Tj}. The ratio of the expectations, E{dN(Tj)}/E{Y (Tj)}, simplifies to

λW (Tj). The first-order partial derivative of Fj with respect to dN(Tj) is 1/Y (Tj)

and the first-order partial derivative of Fj with respect to Y (Tj) is −dN(Tj)/Y (Tj)
2.
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The variance of
√
nµ̂∗(τ) is then

V ar

[
√
n

M∑
m=0

(Tm+1 −Tm) exp

{
−

m∑
j′=0

λ(Tj′)dTj′

}
×{

m∑
j=0

Fj[E{dN(Tj)}, E{Y (Tj)}] (2.3a)

+
m∑
j=0

{
dN(Tj)− E{dN(Tj)}

E{Y (Tj)}

}
(2.3b)

−
m∑
j=0

{
E{dN(Tj)} [Y (Tj)− E{Y (Tj)}]

E{Y (Tj)}2

}
(2.3c)

+
m∑
j=0

1

2!

{
0− 2

[Y (Tj)− E{Y (Tj)}][dN(Tj)− E{dN(Tj)}]
E{Y (Tj)}2

+
2E{dN(Tj)}
E{Y (Tj)}3

[Y (Tj)− E{Y (Tj)}]2
}

(2.3d)

+
m∑
j=0

{ higher order terms}

]
. (2.3e)

Term (2.3a) is a constant and therefore does not contribute to the variance. Terms

(2.3b) and (2.3c) simplify to
∑m

j=0 [dN(Tj)− Y (Tj)E{dN(Tj)}/E{Y (Tj)}] /E{Y (Tj)}.

The fourth term (2.3d) converges in probability to zero, details given in Appendix

A.2. Similarly, all higher order terms of the Taylor series linearization (2.3e) converge

to zero in probability. Recall that dN(Tj) =
∑n

i=1

∑b
k=1 dNi(tk,Tj) and Y (Tj) =∑n

i=1

∑b
k=1 Yi(tk,Tj). The expected value of dN(Tj) is n

∑b
k=1 λ(tk,Tj)Pr{Xi(tk) ≥

Tj}dTj and the expected value of Y (Tj) is n
∑b

k=1 Pr{Xi(tk) ≥ Tj}. The variance

then reduces to V ar [
√
n
∑n

i=1 Zi{µ̂∗(τ)}/n] where Zi{µ̂∗(τ)} =
∑b

k=1 Zik{µ̂∗(τ)} and

Zik{µ̂∗(τ)} =
M∑
m=0

(Tm+1 −Tm) exp

{
−

m∑
j′=0

λW (Tj′)dTj′

}
×

m∑
j=0

dNi(tk,Tj)− λW (Tj)Yi(tk,Tj)dTj∑b
l=1 Pr{Xi(tl) ≥ Tj}

.
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Whereas event times across overlapping follow-up periods are generally not i.i.d.,

the Zi{µ̂∗(τ)} terms are i.i.d., making empirical variance estimates based on Zi{µ̂∗(τ)}

appropriate for this setting. In practice, the empirical variance estimator of
√
nµ̂∗(τ)

is
∑n

i=1 [Zi{µ̂∗(τ)}− Z̄{µ̂∗(τ)}
]2
/(n− 1) where Z̄{µ̂∗(τ)} =

∑n
i=1 Zi{µ̂∗(τ)}/n. The

sample estimates of Zik{µ̂∗(τ)} are given by

zik{µ̂∗(τ)} =
M∑
m=0

(Tm+1 −Tm) exp

{
−

m∑
j=0

dN(Tj)

Y (Tj)

}
m∑
j=0

dNi(tk,Tj)− dN(Tj)
Y (Tj)

Yi(tk,Tj)

Y (Tj)/n

In understanding design issues discussed in Section 2.5, it is convenient to have

the asymptotic closed form variance, σ2 = V ar
[√

n
∑n

i=1

∑b
k=1 Zik{µ̂∗(τ)}/n

]
, where

Zik{µ̂∗(τ)}=
∫ τ

0

exp

{
−
∫ s

0

λW (u)du

}[∫ s

0

dNi(tk, u)− λW (u)Yi(tk, u)du∑b
l=1 Pr{Xi(tl) ≥ u}

]
ds

in asymptotically equivalent stochastic integral notation. In Appendix A.3 we show

that

σ2 =
b∑

k=1

b∑
l=1

∫ τ

0

∫ τ

0

exp

{
−
∫ s

0

λW (u)du

}
exp

{
−
∫ s′

0

λW (v)dv

}
∫ s

0

∫ s′

0

1[∑b
l′=1 Pr{Xi(tl′) ≥ u}

] [∑b
l′=1 Pr{Xi(tl′) ≥ v}

]
[
λ(tk, u)Pr{Xi(tk) ≥ u}I(v = u+ tk − tl)du

−λW (u)λ(tl, v)Pr{Xi(tl) ≥ v}{I(u ≤ v + tl − tk) + I(u = 0)I(v < tk − tl)}du dv

−λW (v)λ(tk, u)Pr{Xi(tk) ≥ u}{I(v ≤ u+ tk − tl) + I(v = 0)I(u < tl − tk)}du dv

+λW (u)λW (v)Pr{Xi(tk) ≥ u,Xi(tl) ≥ v}du dv

−{λ(tk, u)− λW (u)}{λ(tl, v)− λW (v)}Pr{Xi(tk) ≥ u}Pr{Xi(tl) ≥ v}du dv
]
ds ds′.
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2.5 Practical Issues

Number and spacing of follow-up windows should be chosen to increase precision

of µ̂∗(τ). For this purpose, we examine the estimator’s closed form variance σ2 in

the special case where the failure time, Ti, follows an exponential distribution with

hazard λ. The censoring time, Ci, is independently sampled from a Uniform[A −

A∗, A] distribution, where A is the length of the study with accrual time A∗. In this

case, λ(tk, u) = λW (u) = λ. Standard probability calculations for u, v ∈ (0, τ ] give

Pr{Xi(tk) ≥ u} = exp{−λ(u+ tk)}{A−max(A− A∗, u+ tk)}/A∗ and Pr{Xi(tk) ≥

u,Xi(tl) ≥ v} = exp {−λmax (u+ tk, v + tl)} {A −max(A − A∗, u + tk, v + tl)}/A∗.

Details of these calculations are given in Appendix A.4.

We consider τ = 1 year. The parameter λ was chosen to give a constant 1-year

RMRL of 11 months, A∗ = 1 year, A = 3 years and n = 100. Figure 2.1 shows

the behavior of σ2/n, the finite sample size variance, for three one-year follow-up

windows with t1 = 0, t3 = 12 months and t2 varying between these values. The

one-year windows starting at t1 and t3 do not overlap, so the choice of t2 examines if

there is an advantage to adding a 3rd follow-up window that overlaps the other two.

The plot suggests that an additional 1-year window starting in the middle of t1 = 0

and t3 = 12 months, i.e. at t2 = 6 months, reduces the variance the most.

Next consider (1) whether additional equally spaced follow-up windows further

reduce σ2/n and (2) the extent to which incorporating an additional year’s worth of

follow-up information, and corresponding 1-year windows, into construction of µ̂∗(τ)

reduces its variability. The first entry of Table 2.1 corresponds to the variance ob-

tained if estimating the standard 1-year restricted mean that doesn’t use information

from additional follow-up intervals. For a given tb of 12 or 24 months, increasing
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Figure 2.1: Closed form asymptotic variance of µ̂∗(τ) for 3 year study with τ=1 year,
t1 = 0, t3 = 12 months and varying t2. Dashed line corresponds to
variance of estimator constructed using two follow-up windows t1 = 0
and t3 = 12.

the number of follow-up windows improves the precision of the estimator. However,

there are diminishing returns from introducing starting times more frequently than

at 6-month intervals.

Table 2.1: Study of follow-up window choices based on calculated variance and
Asymptotic Relative Efficiency (ARE) for the special case discussed in
Section 4.
Number of {t1, . . . , tb} σ2/n ARE
Windows

tb = 0 1 0 0.071 1.00

tb = 12
2 0, 12 0.039 1.82
3 0, 6, 12 0.035 2.03
5 0, 3, 6, 9, 12 0.035 2.03

tb = 24
3 0, 12, 24 0.030 2.37
5 0, 6, 12, 18, 24 0.026 2.73
9 0, 3, 6, 9, 12, 15, 18, 21, 24 0.025 2.84

It seems clear from exploration of this special case that spacing of t1, . . . , tb should

be at 6-month intervals when estimating an overall 1 year restricted mean, with
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tb = 24. In general, the recommended number of intervals is based on available follow-

up time and we propose using intervals starting from tk = (k − 1) τ
2

for k = 1, . . . , b,

with tb less than A− τ .

2.6 Simulation Study

Simulation experiments were conducted to assess finite sample size performance

of µ̂∗(τ). We consider whether augmenting the first observation window improved

the estimator and the effect of the number of intervals on the performance of the

estimator. The performance of our proposed variance estimate is compared to a

variance estimate that assumes independence and the sandwich variance (formulae to

calculate these are given in Appendix A.5).

The simulation experiment design assumes we wish to estimate 12-month re-

stricted mean survival in a 36-month study. We assume that 30% of the sample

(n = 100) were recruited at the start of the study and were observed for the full 36

months. The remaining 70% were uniformly accrued over the first 12 months. Ti

was simulated from a piecewise Weibull distribution with parameters chosen so that

the 12-month restricted mean survival was 11 months at the recommended follow-up

times tk ∈ {0, 6, 12, 18, 24}, k = 1, . . . , 5. The hazard function of the piecewise Weibull

distribution is given by λ(x) = αiλix
αi−1, where the parameters are constant within

a 6 month interval. The parameters are defined as α = (1.1, 0.9, 1.1, 0.9, 1.1, 0.9) and

λ = (1.25, 2.01, 1.05, 2.00, 1.26, 0.10)× 10−2.

Simulation results in Table 2.2 show that augmenting the data with additional

follow-up time improves the precision of the estimator, with ARE ranging from 1.87

to 2.70. The bias is minimal in all cases. As expected based on Section 2.5, the
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Table 2.2: Study of follow-up windows and performance of variance estimators in 500
Monte Carlo simulations (n = 100) from a piecewise Weibull distribution

{t1, ..., tb} Emp Emp Independent Sandwich Proposed
Mean Var Variance Variance Variance

Emp Cov Emp Cov Emp Cov
Mean 95% CI Mean 95% CI Mean 95% CI

0 10.986 0.073 0.070 0.938 0.069 0.938 0.070 0.938
0, 12 10.993 0.039 0.039 0.938 0.039 0.934 0.039 0.940

0, 12, 24 10.975 0.030 0.031 0.954 0.031 0.952 0.031 0.952
0, 6, 12, 18, 24 10.980 0.027 0.018 0.878 0.021 0.902 0.028 0.948
The following abbreviations are used: Empirical Mean(Emp Mean);
Empirical Variance (Emp Var);
Coverage of 95% confidence interval (Cov 95% CI)

case with {t1, . . . , t5} = {0, 6, 12, 18, 24} outperforms other scenarios for, b = 1, 2, 3.

All three variance methods perform well when {t1, . . . , tb} produced disjoint intervals

(rows 1−3 of Table 2.2). With overlapping intervals, the proposed variance gives the

best coverage; independent and sandwich variances both underestimate the simulation

empirical variance.

2.7 Examples

In a study by Schmidt et al. (2012), which aimed to provide better prognostic

information to idiopathic pulmonary fibrosis (IPF) patients, 734 patients were identi-

fied through interstitial lung disease databases from three referral centers, the Royal

Brompton and Harefield National Health Service Foundation Trust, National Jew-

ish Health and the University of Michigan Health System, from 1981 through 2008.

There is currently no effective treatment for IPF, with patients experiencing a steady

average decline in lung function per year. A natural question is whether the expected

number of days of life in the next year is also stable.

For each patient, calendar time begins at first pulmonary function test at their
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referral center within the study period. As recommended, one-year intervals with start

times every six months are used. The final interval at 9.5 years, chosen to ensure at

least 25 risk set deaths remaining, used follow-up through year 10.5. The smoothed

RMRL in Figure 2.2(a) fluctuates between 329 and 343 days with more stability in

the first 6 years, where there is more available data. The confidence bands suggest

that it is still reasonable to report an overall point estimate that the average number

of days of life lived in the next year is 333.6 (95% CI: 330.7-336.4). During the first

decade of their disease, IPF patients are expected to live 91% of each year given they

were alive at the start of the year.

The Early Treatment Diabetic Retinopathy Study (ETDRS) (ETDRS Research

Group, 1991a,b) enrolled patients with severe diabetic retinopathy in both eyes who

were taking Aspirin daily. In addition one eye of each patient was randomly assigned

to early photocoagulation and the other to deferral of photocoagulation until a later

time when high-risk proliferative retinopathy was detected. We focus on the 583

patients who were randomized to the deferred photocoagulation treatment group.

The major endpoint of interest was time to severe vision loss, defined as visual acuity

less than 5/200 at two consecutive visits.

One-year intervals with start times every six months are used. The final interval

at 3.5 years, chosen to ensure at least 25 risk set deaths remaining, used follow-up

through year 4.5. The smoothed RMRL in Figure 2.2(b) suggests a slightly declining

trend, reflecting somewhat quicker eyesight deterioration over time despite initiation

of therapy once patients became especially high risk. Given the narrow width of

the confidence bands (< 10 days), one may argue that it is reasonable to report an

overall point estimate of average days of sight per year, 362.2 days (95% CI: 361.3-

363.1), which falls within the reported confidence bands through the 3.5 year period
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considered. In this case, it may also be instructive to include the graphic so that

future potential trend may be monitored.
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Figure 2.2: One-year restricted mean residual life function (solid) evaluated every
six months. Associated CB are given (dashed) as well as the smoothed
restricted mean residual life function (long dash).

2.8 Discussion

We have developed a summary statistic of the expected number of days lived

in the next τ years that uses additional follow-up information when we observe a

stable disease progression. The RMRL plot at each time t1, . . . tb tracks the expected

lifetime in the next τ years given the patient has already lived up to time tk, k =

1, . . . , b. The RMRL plots and associated confidence bands provide a summary of the

trend in disease progression. They are a useful diagnostic tool to assist in deciding

whether disease progression is stable, i.e. the RMRL is the same at each t1, . . . tb, or

not. In cases where we observe stable disease progression the additional incorporated

follow-up windows give a more precise estimate of the τ -restricted mean survival. An

obvious example of stable disease progression is exponential failure times. However,

more generally, the RMRL is stable across b windows of follow-up when λ(tk1 , u) =
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λ(tk2 , u) for 0 ≤ u ≤ τ and k1, k2 ∈ {1, ..., b}. We showed consistency of our overall

τ -restricted mean survival in this case. We also suspect that in cases where the

integrated survival curves within the follow-up windows are equivalent, our estimate

is consistent. A rigorous proof backing up this intuition has eluded us, although

special cases of distributions with this property have given µ∗(τ) = µ(t1, τ) and

simulations also appear to perform well in these settings.

The empirical variance estimate we describe is straightforward to program and per-

formed quite well in finite sample simulations, improving upon sandwich estimation

variance results that seem to break down when follow-up intervals overlap. Although

our calculations for determining the optimal number of follow-up windows was based

on a 1-year follow-up period, these results generalize to any linear transformation of

this time-scale and so our results extend to more general cases encountered in clinical

trials or observational studies.

Our method pools the data and estimates the τ -restricted mean survival in a

combined dataset. We initially considered an alternative method of using additional

follow-up information that estimates the τ -restricted mean survival as a weighted

average of RMRL estimates across the follow-up intervals. This approach was ex-

plored in simulations, for the same Weibull setting we used in Section 2.6, but was

found to be less efficient than our recommended method and was not pursued further.

Something similar was documented in Murray & Tsiatis (1996, 2001), where weighted

averages of integrated survival curves across strata could actually result in reduced

efficiency when strata were not prognostically different from one another. That would

be the case in our setting where stability of progression across follow-up windows is

required before combining data into an overall dataset.



CHAPTER III

NONPARAMETRIC TESTS OF TREATMENT

EFFECT FOR A RECURRENT EVENT

PROCESS THAT TERMINATES

3.1 Summary

Recurrent and terminal events are common outcomes for studying treatment ef-

fects in clinical studies. Existing approaches follow either a time-to-first event analysis

approach or a recurrent event modeling approach. Recurrent event analyses are often

restricted by independence assumptions on gap-times between events. Although time-

to-first event analyses are not subject to this restriction, they discard information that

occurs beyond the initial event and are much less powerful for detecting treatment

differences. We develop two new approaches for determining treatment effects, mo-

tivated by less restrictive assumptions of time-to-first event analyses, that combine

information from multiple follow-up intervals. The first testing procedure pools (cor-

related) short term τ -restricted outcomes from pre-specified intervals starting at times

tk, k = 1, . . . , b, and compares estimated τ -restricted mean survival across treatment

groups from this combined dataset. The second procedure calculates conditional τ -

restricted means from those at risk at times tk, k = 1, . . . , b and compares the area

22
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under a function of these by treatment. Variances calculations, taking into account

correlation of short-term outcomes within individuals, linearize random components

of the test statistics following Woodruff (1971) and more recently Williams (1995).

Simulations compare the finite sample performance of our tests to the robust propor-

tional rates model proposed by Lin et al. (2000) and the Ghosh & Lin (2000) test for

recurrent events subject to death. In treatment effect patterns following proportional

incidence rates, delayed treatment effect and short duration treatment effect, the pro-

posed methods perform favorably when compared to existing methods. These new

analysis approaches also produce correct type I error rates when gap-times between

events are correlated. The analysis approach is illustrated in data from a randomized

trial of azithromycin in patients with chronic obstructive pulmonary disease (COPD).

3.2 Introduction

Clinical studies, where the outcome of interest is time-to-event, often use a com-

bined endpoint that includes disease progression as well as mortality to improve the

power of the study. For example, in idiopathic pulmonary fibrosis (IPF) studies the

combined endpoint often used is time to death, lung transplant, acute exacerbation,

10% decline in forced vital capacity (liters) or 15% decline in diffusing capacity of the

lung for carbon monoxide (ml/min/mmHg), whichever occurs first. This endpoint is

a combination of recurrent and terminating events, where multiple recurrent events

are observed in some patients. An analysis to test treatment effect based on time-

to-first event will ignore the information contained in later recurrent events and in

terminating events observed after a recurrent event. Alternatively, typical recurrent

event analyses on gap-times require independent gap-times to avoid bias from de-
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pendent censoring, which is sometimes a deterrent from use of these analyses in the

clinical trial setting. The aim of our testing procedure is to extract information from

both recurrent and terminal events regarding treatment effect while approaching the

data from a perspective closer to time-to-first event analysis that avoids independence

assumptions and dependent censoring issues.

One advantage of time-to-first event analyses is the immediate applicability to

patients about what will happen to them next. For instance, the combined endpoint

for IPF studies mentioned above is relevant to the subsequent year of life for the

patient. Health economists have noted that patients value life-years closer to the

present more than those in the future, Gyrd-Hansen & Sogaard (1998). This motivates

a testing procedure that captures short term outcomes and how they evolve over time.

One potential short term summary statistic is τ -restricted mean survival; for the

IPF study a 1-year restricted mean would be suitable. However, a standard 1-year

restricted mean survival estimate ignores data collected after year one that could

contain information on treatment effect. If additional 1-year follow-up windows are

available beyond the first year, then they would add information on short term out-

comes at different stages of the trial.

We embrace the philosophy that understanding short-term windows of treatment

effect can provide an alternative and potentially superior understanding of treatment

effect throughout the trial. We propose combining times-to-first-event across multiple

follow-up windows of length τ beginning at evenly spaced times t ∈ {t1, . . . , tb}. The

choice of the spacing between {t1, . . . , tb} is based on reducing the variance of the

restricted mean. Each starting point tk of a follow-up interval is chosen as part

of a study design, not influenced by observed data, and so avoids complications of

dependent censoring that a gap-time analysis would pose for this data structure.
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We develop two methods of combining information from follow-up windows in two-

sample testing procedures. The first statistic pools data across each of the τ -length

follow-up windows and estimates the τ -restricted mean survival in this combined

dataset. The variance of this estimate is based on a linearization of random compo-

nents of the estimator, similar to the approach recommended by Woodruff (1971) and

more recently Williams (1995). An alternative statistic combines information across

follow-up intervals by first creating a function of conditional τ -restricted means among

those at risk at tk, k = 1, . . . , b and then calculating the area under this function as a

summary statistic for comparison between treatment groups.

There are a number of advantages of our analysis approach for this type of clinical

trial. First, we include both recurrent and terminating events by defining time-to-

event as a combined endpoint, so treatment differences should emerge with respect to

either type of process. Second, we incorporate data collected beyond τ and account for

resulting correlation between multiple follow-up windows for each patient. Variance

calculations do not require any assumptions about the correlation structure between

events observed for each patient. Third, by fixing the follow-up window start times

we do not create the problem of dependent censoring commonly encountered when

modeling gap-times between recurrent events.

Section 3.3 describes the notation used in the testing procedure. In Section 3.4

we propose two test statistics for comparing treatment effect in a randomized trial.

A simulation study is used to compare the proposed two-sample tests to the robust

proportional rates model proposed by Lin et al. (2000) and the Ghosh & Lin (2000)

test for recurrent events subject to death in finite sample size settings in Section 3.5.

The analysis approach is illustrated in Section 3.6 using data from a randomized trial

of azithromycin in patients with chronic obstructive pulmonary disease (COPD). A
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discussion follows in Section 3.7.

3.3 Notation

Consider the following data structure: Di is the death time and Ci is the indepen-

dent censoring time for patient i = 1, . . . , n. For patient i we define Ti1 < Ti2 < . . . <

TiJi as recurrent event times terminating with death, i.e. TiJi = Di. Although we

assume Ci is independent of Tk, k = 1, ..., Ji, the recurrent event times and the death

time may be correlated. The process may not be fully observed due to censoring and

we define the observed data for each patient to be Xij = min(Tij, Ci) with failure

indicator variable δij = I(Tij ≤ Ci) for j = 1, 2, . . . , J̃i, where J̃i ≤ Ji.

Since our analysis approach is to combine time-to-first event outcomes across

multiple pre-specified intervals beginning at times t ∈ {t1, . . . , tb}, with t1 = 0 in all

that follows, we define for patients at risk at time t

ηi(t) = min{j = 1, . . . , J̃i : Xij ≥ t}

Xi(t) = Xiηi(t) − t

δi(t) = δiηi(t)

where Xi(t) is the observed time to the next event from t, ηi(t) is the corresponding

index of the observed event time and δi(t) is the associated failure indicator variable.

Otherwise, if a patient is not at risk at time t, we use the convention that Xi(t) =

δi(t) = 0.

For a follow-up interval starting at t, the time to the next event is censored at

time Ci − t, which is independent of Xi(t). This would not be the case if we were
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considering gap times between recurrent events, except in the special case where gap

times are independent of one another. Gap times are traditionally defined as Si1 = Ti1

and Sij = Tij − Ti(j−1) for j = 2, 3, . . . , Ji. When gap times Sij are correlated, their

corresponding censoring times Ci − Ti(j−1) become dependent on earlier gap times as

well. Focusing on times to the next event from prespecified times t1, . . . , tb avoids

dependent censoring issues faced by gap time analysis approaches, while still taking

advantage of additional recurrent event information.

For defining counting process notation, we have two time scales indexed by t and

u. The t notation defines the beginning of each pre-specified follow-up interval as

measured from the patient’s randomization time. The u notation follows continuous

time within any particular follow-up window, indexing the statistical processes from

0 to τ . We define the event counting process for each time to first event analysis

starting at t as Ni(t, u) = I{Xi(t) ≤ u, δi(t) = 1} and the at-risk process as Yi(t, u) =

I{Xi(t) ≥ u}. For the interval starting at t, N(t, u) =
∑n

i=1Ni(t, u) counts the

number of first events from the start of the interval to u and Y (t, u) =
∑n

i=1 Yi(t, u)

gives the number at-risk at time u for a first event in the interval. The hazard

rate within each follow-up interval is defined as λ(t, u) = lim∆u→0[Pr{u ≤ Xi(t) <

u+∆u, δi(t) = 1|Xi(t) ≥ u}/∆u]. In addition, we define N(u) =
∑n

i=1

∑b
k=1 Ni(tk, u)

and Y (u) =
∑n

i=1

∑b
k=1 Yi(tk, u) as the counting and at-risk processes for data that is

pooled across follow-up windows. In the remainder of the manuscript, a subscript g

is inserted as the first index to indicate treatment group; otherwise notation defined

in this section is unchanged.
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3.4 Constructing the Two-Sample Tests

3.4.1 Overall τ-restricted mean test

The first proposed summary statistic that we use to compare treatment groups

pools data from each of the follow-up windows when estimating a τ -restricted mean

time-to-first event. That is, the overall τ -restricted mean within each group is

µ̂∗g(τ) =

∫ τ

0

exp

{
−
∫ s

0

dNg(u)

Yg(u)

}
ds where g = 1, 2.

Let λWg (u) be defined as
∑b

k=1 λg(tk, u)Pr{Xgi(tk) ≥ u}/
∑b

l=1 Pr{Xgi(tl) ≥ u} so

that µ∗g(τ) =
∫ τ

0
exp

[
−
∫ s

0
λWg (u)du

]
ds is the mean of the mixture distribution created

from combining times-to-first event across the different follow-up intervals. In Ap-

pendix A of the Supplementary Materials, we show that
√
ng{µ̂∗g(τ)−µ∗g(τ)} converges

in distribution to a normal random variable with finite variance that is estimated by

σ̂2
∗g =

∑ng
i=1

[
zi{µ̂∗g(τ)} − z̄{µ̂∗g(τ)}

]2
/(ng − 1) where z̄{µ̂∗g(τ)} =

∑ng
i=1 zi{µ̂∗g(τ)}/ng,

zi{µ̂∗g(τ)} =
∑b

k=1 zik{µ̂∗g(τ)} and

zik{µ̂∗g(τ)} =

∫ τ

0

exp

{
−
∫ s

0

dNg(u)

Yg(u)

}{∫ s

0

dNgi(tk, u)− dNg(u)

Yg(u)
Ygi(tk, u)

Yg(u)/ng

}
ds.

The variance calculations avoid assumptions about the correlation structure be-

tween follow-up intervals within a subject, while taking into account that some of

these intervals overlap and some do not. This is a somewhat weaker assumption

than what is typically used when calculating robust (sandwich) covariance structures.

Sandwich covariance between follow-up intervals [0,12) and [6,18) would assume the

same correlation structure for each individual contributing to the analysis, when in
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reality, some times-to-first event in these two intervals contain overlapping follow-up

segments (e.g., long event times) and some do not (e.g., short event times). In ex-

ploratory work, we found that the robust covariance estimated some mixture of these,

which affected inference in finite sample sizes.

Let πg be proportion of individuals in group g, g = 1, 2, which can be consis-

tently estimated with π̂g = ng/(n1 + n2). A nonparametric test statistic comparing

the overall τ -restricted mean survival in two independent groups of size n1 and n2

respectively is

T∗ =

√
n1n2

n1 + n2

{µ̂∗1(τ)− µ̂∗2(τ)} .

Under the null hypothesis H0 : µ∗1(τ) = µ∗2(τ), T∗ has a mean zero normal limiting

distribution with variance π2σ
2
∗1 +π1σ

2
∗2 that can be consistency estimated by π̂2σ̂

2
∗1 +

π̂1σ̂
2
∗2, as shown in more detail in Appendix B of the Supplementary Materials.

3.4.2 Area under the τ-restricted mean residual lifetime function test

An alternative testing procedure is based on a function of conditional τ -restricted

means, hereafter called the τ -restricted mean residual lifetime function (RMRL) and

denoted by µg(t, τ). This is the expected time to the next event during an interval

of length τ given the patient has survived up to time t in each group g = 1, 2. A

consistent nonparametric estimator of the τ -RMRL function is µ̂g(t, τ) =
∫ τ

0
P̂g(t, s)ds

where P̂g(t, s) = exp
{
−
∫ s

0
dNg(t, u)/Yg(t, u)

}
. The area under µg(t, τ) from t1 to tb

is defined to be

µ̂g(·, τ) =

∫ tb

t1

µ̂g(t, τ)dt.
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In Appendix C of the Supplementary Materials we show that
√
ng{µ̂g(·, τ)−µg(·, τ)}

converges in distribution to a normal random variable with finite variance that is

estimated by σ̂2
R,g =

∑ng
i=1 [zi{µ̂g(·, τ)} − z̄{µ̂g(·, τ)}]2 / (ng − 1) where z̄{µ̂g(·, τ)} =∑ng

i=1 zi{µ̂g(·, τ)}/ng and zi{µ̂g(·, τ)} =

∫ tb

t1

∫ τ

0

exp

{
−
∫ s

0

dNg(t, u)

Yg(t, u)

}{∫ s

0

dNgi(t, u)− dNg(t,u)

Yg(t,u)
Ygi(t, u)

Yg(t, u)/ng

}
ds dt.

A nonparametric test statistic comparing the integrated τ -RMRL in two indepen-

dent groups of size n1 and n2 respectively is then defined as

TR =

√
n1n2

n1 + n2

{µ̂1(·, τ)− µ̂2(·, τ)} .

Under the null hypothesis of no difference in the area under the τ -RMRL between

the two treatment groups, TR converges in distribution to a mean zero normal dis-

tribution with variance π2σ
2
R,1 + π1σ

2
R,2 that can be estimated with π̂2σ̂

2
R,1 + π̂1σ̂

2
R,2;

see Appendix D of the Supplementary Materials for more details.

Although not required for technical results to hold, we have found it convenient

to estimate µ̂g(·, τ) using a reduced number of timepoints t1, . . . , tb and trapezoidal

rule integration for faster computation. In this case µ̂g(·, τ) becomes
∑b−1

k=1(tk+1 −

tk) {µ̂(tk+1, τ) + µ̂(tk, τ)} /2 and zi{µ̂g(·, τ)} =
∑b−1

k=1(tk+1 − tk) [zik{µ̂(tk+1, τ)}+

zik{µ̂(tk, τ)}] /2 where zik{µ̂(tk, τ)} =

∫ τ

0

exp

{
−
∫ s

0

dNg(t, u)

Yg(t, u)

}{∫ s

0

dNgi(t, u)− dNg(t,u)

Yg(t,u)
Ygi(t, u)

Yg(t, u)/ng

}
ds .



31

3.4.3 Practical issues

The power of T∗ and TR, are affected by the choice of τ and, for T∗, the number

and spacing of the follow-up intervals. Recall that in each follow-up interval of length

τ , we only use information up to the first event time. Hence as τ gets larger, the

potential loss of information increases as opposed to a gap-time oriented analysis. For

this reason, we recommend a follow-up window length that is clinically meaningful

and long enough for a treatment difference to emerge, but not excessively long. For

example, in our pulmonary setting many study designs are centered on one-year

differences, suggesting τ = 1 year as a clinically meaningful window length. Since

exacerbation rates average 1-2 per year in this setting, the choice of one year is also

reasonable enough to detect treatment differences without ignoring much follow-up

information in each window.

We advocate choosing {t1, . . . , tb} so that we have the most precise estimate of the

statistic µ∗(τ). In Appendix E of the Supplementary Materials, we summarize closed

form variance calculations and simulations for the special case when a single event is

observed for each patient. In short, we observe diminishing returns in precision gains

from introducing starting times tk, more frequently than τ/2 units apart, so that

follow-up intervals starting from tk = (k − 1)τ/2 for k = 1, . . . , b are recommended,

where b is chosen so that the final follow-up interval starting at tb does not exceed

the study period.

3.5 Simulations

Simulations based on 500 iterations, with n1 = n2 = 100, study finite sample

properties of the proposed two-sample tests. The proposed 36-month study has a
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12-month patient accrual period, where 30% of the sample is recruited at the start of

the study and observed the full 36 months; the remaining 70% are uniformly accrued

over the first 12 months, i.e., a uniform(24,36) administrative censoring mechanism.

To generate correlated recurrent and terminating events we first simulate mean

zero multivariate normal random variables Uij, j = 1, 2, . . . , Ji and Vi with Var(Uij) =

Var(Vi) = 1 for j = 1, 2, . . . , Ji, corr(Uij, Uij′) = ρ1 for j 6= j′ and corr(Uij, Vi) = ρ2.

The parameter ρ1 controls the correlation between gap times and the parameter ρ2

controls the correlation between the gap times and the time to death. Using the

probability integral transform method we then convert these multivariate normal

random variables Uij, j = 1, 2, . . . , Ji and Vi to correlated uniformly distributed ran-

dom variables U ′ij, j = 1, 2, . . . , Ji and V ′i . Finally, the inverse probability integral

transform method is used to obtain correlated exponentially distributed gap times

Sij, j = 1, 2, . . . , Ji and time to death Di. In the simulations that follow we assume

either independence (ρ1 = ρ2 = 0) or dependence (ρ1 = 0.5, ρ2 = 0.3) of events

observed within individual.

Group 1’s gap time incidence rate is λS1 = 1/12 with death hazard λD1 = 1/36.

We consider three scenarios for treatment effect in group 2: an immediate treatment

effect, a treatment effect that is delayed by 6 months and a treatment effect that

vanishes after 12 months. In each case for group 2 when the treatment effect is

active, the gap time incidence rates change to λS2 = λS1 ∗ α and the death hazard

changes to λD2 = λD1 ∗ α where α takes on values {1, 0.9, 0.8, 0.7, 0.6}.

The performance of the proposed two-sample tests, T∗ and TR, are compared to

the performance of the robust proportional rates model of Lin et al. (2000) (TPM)

applied to the combined event of recurrence or death, the combined statistic of Ghosh

& Lin (2000) with equal weights for recurrent and terminal endpoints (TGL) and the
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standard time-to-first event analysis based on the logrank test (TLR).

Type I errors of all statistics are presented on first line of Table 3.1 for the case

where treatment effect is immediate and carries through the duration of the trial. For

each correlation structure, tests maintain type I error rates around the nominal level

of 0.05 (within a 95% CI of 0.031-0.069). When the recurrent and terminating events

are independent (ρ1 = ρ2 = 0), the robust proportional rates model is observed to be

the most powerful test, with the power of our tests close to that of Ghosh and Lin

and larger than the standard logrank time-to-first-event analysis.

When events are correlated (ρ1 = 0.5, ρ2 = 0.3) , our proposed tests are observed

to be more powerful than the alternatives. The power of TPM and TLR are comparable

and slightly larger than that seen with TGL. Hence, our proposed tests are seen to

best handle the correlated event data, while taking into account termination by death

in a natural way.

Table 3.1: Power of two-sample hypothesis tests in 500 Monte Carlo simulations for
scenario one where we assume proportional incidence rates in the two treat-
ment groups and that treatment is effective immediately.

ρ1 = 0, ρ2 = 0 ρ1 = 0.5, ρ2 = 0.3
α T∗ TR TPM TGL TLR T∗ TR TPM TGL TLR

1.0 0.042 0.033 0.044 0.046 0.048 0.036 0.054 0.050 0.044 0.044
0.9 0.160 0.156 0.190 0.158 0.112 0.116 0.107 0.104 0.092 0.108
0.8 0.520 0.476 0.648 0.560 0.306 0.356 0.340 0.316 0.224 0.302
0.7 0.898 0.851 0.976 0.940 0.684 0.734 0.711 0.636 0.504 0.640
0.6 1.000 0.990 1.000 0.996 0.948 0.960 0.957 0.860 0.784 0.922

Table 3.2 shows results when the treatment effect is delayed by 6 months. The

first row, with α = 1, again shows that type I error rates are near the nominal level

of 0.05, although the logrank test for time-to-first-event is somewhat high. When the

events are uncorrelated, the area under the τ -RMRL test and the proportional rates

model are most powerful among the alternatives. The power of T∗ is similar to that
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of TGL, followed distantly by TLR, which suffers the most from the delayed treatment

effect since it uses the time-to-first-event.

In the correlated event case, the area under the τ -RMRL test has the highest

power, followed by T∗, while the remaining tests drop in power anywhere from 30-

40%. The tests that assume proportional rates suffer somewhat from violation of

the assumption in this scenario, in addition to the influence of the correlated data

structure on power.

Table 3.2: Power of two-sample hypothesis tests in 500 Monte Carlo simulations for
scenario two where we assume proportional hazards in the two treatment
groups but that treatment is only effective after a latency period.

ρ1 = 0, ρ2 = 0 ρ1 = 0.5, ρ2 = 0.3
α T∗ TR TPM TGL TLR T∗ TR TPM TGL TLR

1.0 0.042 0.045 0.058 0.042 0.072 0.052 0.056 0.062 0.046 0.056
0.9 0.112 0.142 0.144 0.134 0.068 0.084 0.098 0.072 0.058 0.062
0.8 0.344 0.391 0.396 0.326 0.120 0.212 0.295 0.168 0.114 0.132
0.7 0.688 0.741 0.744 0.618 0.206 0.476 0.563 0.342 0.228 0.270
0.6 0.934 0.966 0.956 0.898 0.342 0.736 0.856 0.544 0.396 0.404

Table 3.3 shows results when the treatment effect vanishes after 12 months. With

uncorrelated events, type I error rates are slightly inflated for all tests, although

this pattern was not seen in the correlated scenario. In either correlation setting,

the time-to-first event analysis has the greatest power compared to all the recurrent

event analyses. The recurrent event testing procedures, that use additional follow-up

information beyond the first combined-event, add statistical noise without sufficient

statistical signal towards the end of follow-up. The area under the τ -RMRL test is

especially sensitive to loss of treatment effect over time. This is perhaps the only

scenario where the time-to-first event analysis is clearly preferred.

In Appendix B.6, we include plots of the empirical mean 12-month RMRL for

group 1 and for each value of alpha for group 2 for each of the scenarios.
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Table 3.3: Power of two-sample hypothesis tests in 500 Monte Carlo simulations for
scenario 3 where we assume short duration treatment effect.

ρ1 = 0, ρ2 = 0 ρ1 = 0.5, ρ2 = 0.3
α T∗ TR TPM TGL TLR T∗ TR TPM TGL TLR

1.0 0.068 0.083 0.070 0.074 0.064 0.048 0.043 0.058 0.054 0.050
0.9 0.070 0.067 0.082 0.084 0.084 0.058 0.057 0.076 0.052 0.064
0.8 0.152 0.093 0.220 0.218 0.230 0.092 0.068 0.130 0.096 0.186
0.7 0.278 0.153 0.376 0.370 0.414 0.162 0.085 0.172 0.126 0.308
0.6 0.484 0.263 0.608 0.592 0.662 0.334 0.188 0.300 0.230 0.524

3.6 Example

The Azithromycin in COPD Trial (NACT) (Albert et al., 2011) randomized

chronic obstructive pulmonary disease (COPD) patients with a history of prior acute

exacerbations (AE) to receive either azithromycin or placebo for approximately 12-

13 months (380 days) to determine whether azithromycin reduced the frequency of

AE. The original study showed a significant benefit in the azithromycin group using

traditional methods for recurrent events. To make the example more interesting, we

restrict our attention to the first 380 randomized patients (n1 = 192 azithromycin,

n2 = 188 placebo), which corresponds to approximately one year of accrual, rather

than the full dataset with over 3 years of accrual and 1117 patients. The data includes

recurrent AE times as well as information on mortality and loss to follow-up over the

study period, with 511 observed total AE and mortality events spread throughout

the 380 days of follow-up.

The time to first event analysis gives a hazard ratio of 0.80 (95% CI: 0.62-1.03)

with a logrank test p-value of 0.085. The proportional means model recurrent event

analysis estimates the intensity rate ratio as 0.78 (95% CI: 0.61-0.99) with a p-value

of 0.045. The Ghosh & Lin test for recurrent events subject to death gives a p-value

of 0.131.
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We apply our testing procedure with τ = 250, where the follow-up window length

was chosen so that we could use two follow-up windows starting at days 0 and 130.

Limitations in the follow-up data precluded our ability to view several one-year follow-

up windows of treatment effect, which we would recommend for use with this statistic

in the design phase of a COPD study in the future. Follow-up window start times of

0 and 130 days follow recommendations in Section 3.4.3, with a slight adjustment to

ensure the entire follow-up period was used.

The estimated average time to event within the next 250 days across the follow-

up windows is 162 days in the placebo group and 179 days in the azithromycin

group, with a p-value of 0.030. The RMRL plot in Figure 3.1 indicates there may

be a decreasing treatment effect over time but overall there is a significant treatment

difference. The p-value of the testing procedure comparing the area under each of

these RMRL functions is 0.029.

3.7 Discussion

We have developed two recurrent event testing procedures that are better able to

detect treatment effects on a combined-endpoint when there are correlated recurrent

and terminating events and the treatment effect continues to manifest in later follow-

up periods (first two simulation scenarios). A consequence of correlation in event

times within an individual is a significant drop in power that will affect the viability

of study designs if not accounted for during the design stage. That is, a study

designed assuming independent gap times will be underpowered. A study powered

based on our proposed statistics with a reasonable correlation assumption would

protect power; if correlation is weaker than that used in the design then power is
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Figure 3.1: Restricted Mean Residual Life function evaluated for follow-up windows
of interest beginning at 0 and 130 days from randomization.

better than planned. In the case that events are not correlated and incidence rates

are proportional, the proportional means model is hard to beat, with power 10-20%

higher than its competitors (first simulation scenario).

Our presentation that analyzes combined death and recurrence endpoints assumes

that there is no interest in endpoint-specific treatment effects. When such interest

exists, a competing risk testing procedure would be preferred. In the flavor of a

competing risks analysis, our method can be applied to recurrent events data where

deaths are treated as independent censoring events of the recurrent event process.

Alternatively, our method can be applied to deaths without including recurrent events.

Ghosh & Lin (2000) consider the treatment effect on the recurrent and terminating

event types separately while acknowledging that patients who die cannot experience
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any further recurrent events. When analysis of the combined event is sufficient in

defining treatment effects, as is standard in the design of pulmonary clinical trials for

example, our procedure appears to be more powerful than the Ghosh-Lin method.



CHAPTER IV

STATISTICAL CONSEQUENCES OF A

SUCCESSFUL LUNG ALLOCATION SYSTEM –

RECOVERING INFORMATION AND

REDUCING BIAS IN MODELS FOR URGENCY

4.1 Summary

The national lung allocation system has reduced the number of waitlist deaths

by ranking transplant candidates based on a lung allocation score (LAS). The LAS

requires estimation of the 1-year restricted mean waitlist survival (urgency) based on

current prognosis. Patients are required to update risk factors every 6 months. Fewer

waitlist deaths and the systematic removal of candidates from the waitlist for trans-

plantation present statistical challenges that must be addressed when using recent

waitlist data. Multiple overlapping 1-year follow-up windows are used in a 1-year re-

stricted mean model that estimates patient urgency based on risk-factors at the start

of the window. Censored patients are multiply imputed by sampling from the inverse

probability of censoring (IPCW) adjusted survival estimate, within a risk set of pa-

tients still at-risk and with similar prognosis to the censored patient. In simulation

studies, we found that the multiple imputation procedure was able to produce unbi-

39



40

ased parameter estimates with similar efficiency to those obtained if censoring had

never occurred. The analysis of 10,740 lung transplant candidates revealed that for

most risk factors incorporating additional follow-up windows produced more efficient

estimates.

4.2 Introduction

Since 2005, national lung allocation policy for those aged 12 and over has re-

lied on the statistical estimation of a lung transplant candidate’s 1-year restricted

mean lifetime without opportunity for transplant (urgency) and the number of days

to be gained in the next year if a transplant is offered immediately (benefit) (Egan

et al., 2006). The United Network for Organ Sharing (UNOS) is charged with col-

lecting and updating patient risk factors so that the lung allocation score (LAS)

that determines transplantation priority can change with a candidate’s prognosis. In

fact, patients are required to update their allocation factors every six months or be

penalized with a zero LAS value that effectively puts them at the end of the can-

didate list (OPTN Policy 3.7; http://optn.transplant.hrsa.gov/PoliciesandBylaws2/

policies/pdfs/policy 9.pdf).

One feature that was intentionally designed into the LAS was a lack of influence

of waiting time on a patient’s score. The allocation method that preceded the LAS

was based entirely on waiting time, with those waiting longer given higher priority for

transplantation. This influenced listing behavior to the extent that candidates would

enter the waitlist before being willing to accept an organ, just to accrue waiting time

in the event they needed a transplant later. This also resulted in a high number of

deaths among those who were too urgent to accrue the needed waitlist time to get to
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the top of the list.

In terms of statistical development and maintenance of the LAS, only risk factors

collected at a candidate’s entry into the waitlist have been been used to model urgency

to date and only the first year of follow-up after listing had been used for restricted

mean lifetime estimation. This reflects an unfortunate waste of statistical information

in a setting where fewer and fewer waitlist deaths are being observed, due in part

to the success of allocation to patients more likely to die. Additional information

on 1-year prognosis using windows of follow-up after listing would (1) potentially

improve efficiency of estimation from additional events occurring beyond 1 year and

(2) potentially expand the knowledge base of measured risk factors that progress

beyond the listing stage, increasing the applicability of urgency scores to those on the

waitlist beyond one year. This latter feature would be particularly useful since listing

recommendations tend to catch patients at a similar state of urgency at the time

these listing risk factors are collected, whereas patients progress at quite different

rates thereafter. There is also the statistical challenge of dependent censoring of

waitlist outcomes that are circumvented by a timely transplant intervention.

Gong & Schaubel (2013) model the distribution of survival time from a set of

specified calendar times, conditional on the risk factors measured at each specified

calendar time, through Cox-regression models. They account for dependent censor-

ing through inverse probability of censoring weights. An estimate of restricted mean

survival can be obtained from a Cox-regression model by integrating the estimated

survival curve over the follow-up window of interest. Since our interest lies in esti-

mation of a 1-year restricted mean survival, we have chosen to model the restricted

mean survival directly.

In this paper we develop a restricted mean model for transplant urgency that uses
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data from multiple follow-up windows during the listing period. Updated risk profile

information at the beginning of each follow-up window is used to predict outcomes

for the subsequent year. We extend a multiple imputation procedure developed by

Xiang et al. (2013) for dependently censored data to address issues of removal from

the lung candidate pool based on LAS values involving urgency. This, in turn, allows

us to take advantage of generalized estimating equation (GEE) (Liang & Zeger, 1986)

software to account for the particular flavor of correlation induced from incorporating

(overlapping) follow-up windows from the same patient. In addition, we consider an

inverse-weighted pseudo-observation approach, similar to that developed by Xiang

& Murray (2012), that also takes advantage of the GEE framework to account for

correlated follow-up information.

Methods are summarized in Section 4.3. Notation and the data structure induced

by using multiple follow up windows are described in Section 4.3.1. Motivation be-

hind use of GEE methods applied to imputed datasets in this setting are described in

Section 4.3.2. It will be convenient to have a working understanding of inverse prob-

ability of censoring weighted (IPCW) survival estimation, as described by Robins

(1993), as it plays an important role in our methodology. In Section 4.3.3, we briefly

review how to construct inverse weighted survival estimates that are consistent for

the survival function in the presence of dependent censoring. Our extension of the

pseudo-observation restricted mean model, which adjusts for dependent censoring as

in Xiang & Murray (2012), is described in Section 4.3.4. Methods for multiple im-

putation of dependently censored waitlist outcomes are described in Section 4.3.5.

Section 4.4 assesses our approach versus alternative approaches for estimating lung

candidate urgency via simulation. We then analyze a recent release of lung trans-

plant data collected by UNOS in Section 4.5, providing updated urgency measures in
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this cohort as well as evaluating urgency changes over time. A discussion follows in

Section 4.6.

4.3 Multiple Imputation Methodology

4.3.1 Notation

Failure and censoring times are denoted by Ti and Ci, respectively, for patient

i = 1, . . . , n. The observed event time is Xi = min(Ti, Ci) with associated failure

indicator variable δi = I(Ti < Ci). Vi(t) and Zi(t) are covariates affecting Ci and

Ti, respectively. We denote the recorded histories of Vi(t) and Zi(t) up to time t

by V̄i(t) = {Vi(u); 0 ≤ u ≤ t} and Z̄i(t) = {Zi(u); 0 ≤ u ≤ t}, respectively. The

event counting process is defined as Ni(t) = I(Xi ≤ t, δi = 1) and the at-risk process

is defined as Yi(t) = I(Xi ≥ t). We also define the counting process for censoring,

NQi(t) = I(Xi ≤ t, δi = 0).

Our proposed method incorporates information from several follow-up windows

of length 1 year, spaced 6 months apart; i.e., windows start at {0, 6, 12, ...} months

until removal from the candidate list for transplantation. More generally, windows of

length τ start at times {t1, . . . , tni}, ni = 1, . . . , b, i = 1, . . . , n. For individuals with

available follow-up during a window starting at t, we define T ∗i (t) = min(Ti− t, τ) as

the restricted time to event from t, where τ = 1 year in the lung allocation setting

but otherwise it may be any value where P (Ci > τ) > 0. We will estimate candidate

urgency using data pairs {T ∗i (t1),Zi(t1)}, {T ∗i (t2),Zi(t2)}, . . . , {T ∗i (tni),Zi(tni)} , i =

1, ..., n via the model

E[log{T ∗i (tj)}] = βTZi(tj). (4.1)
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In Figure 4.1 we illustrate the relationships between Ti, T
∗
i (t) and Zi(t) for t =

0, 6, 12 and 18 months. In our first example, patient 1 dies at 20 months post

listing (T1 = 20). Hence patient 1 contributes information on one year survival via

the data pairs {T ∗1 (0) = 12 months,Z1(0)}, {T ∗1 (6) = 12 months,Z1(6)}, {T ∗1 (12) =

8 months,Z1(12)}, and {T ∗1 (18) = 2 months,Z1(18)}. Patient 2 is has T2 = 7 months

and is therefore observed for two follow-up windows with start times {0, 6} and cor-

responding data pairs {T ∗2 (0) = 7 months,Z2(0)} and {T ∗2 (6) = 1 month,Z2(6)}.

Patient 3 was transplanted at C3 = 7 months and is therefore also observed for two

follow-up windows with start times {0, 6}. In Section 4.3.5, we describe a multi-

ple imputation procedure for missing failure times that will be used in our analysis.

Hence, if a failure time of 10 months is imputed for patient 3, this patient would

contribute data pairs {T ∗3 (0) = 10 months,Z3(0)} and {T ∗3 (6) = 4 months,Z3(6)} to

the analysis for one of the M multiply imputed datasets.

4.3.2 Generalized estimating equations for complete data

Once we have constructed the longitudinal data structure as described in Sec-

tion 4.3.1, the correlation between observations from different follow-up windows

within each patient must be accounted for when fitting model (4.1). GEE provides a

framework that easily allows the correlation between overlapping and non-overlapping

follow-up windows to differ via the unstructured working correlation matrix. In ad-

dition, the robust sandwich variance provides protection against misspecification of

working correlation matrix. The wider availability of correlation matrices makes

GEE software ideal. Currently available statistical software for correlated censored

survival outcomes assumes that correlated event times follow an exchangeable corre-

lation structure between any two pairs of outcomes that doesn’t accommodate our
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Time from listing
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T1 = 20

Z1(0)

Z1(6)

Z1(12)

Z1(18)

T*1(0) = 12

T*1(6) = 12

T*1(12) = 8

T*1(18) = 2

T2 = 7

Z2(0)

Z2(6)

T*2(0) = 7

T*2(6) = 1

C3 = 7

Z3(0)

Z3(6)

T*3(0) = 10

T*3(6) = 4

Figure 4.1: Example of how to construct the random variables T ∗i (t) = min{Ti(t), 12}
in each of the follow-up windows for which the patients are under obser-
vation in three cases. Patient 1 dies at 20 months post-listing; patient 2
dies at 7 months post-listing; and patient 3 is transplanted at 7 months
post-listing with one of their M imputed death times equal to 10 months.

data well. For example, the overlapping follow-up windows should have a different

correlation structure than the windows that do not overlap.

4.3.3 IPCW Survival Estimation

The method to construct inverse weighted survival estimates, ŜWT (t), that are

consistent for the survival function, ST (t), in the presence of dependent censoring

proceeds as follows. First we fit a Cox model for censored outcomes via the model,

λQ{t|V̄ (t)} = λQ0(t) exp{γTV(t)},
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where λQ{t|V̄ (t)} = lim∆t→0 P{t ≤ Xi < t + ∆t, δi = 0|Xi ≥ t, V̄ (t)}/∆t is the

hazard function for the censoring distribution that depends on the recorded history

of covariates V̄ (t) via a proportional hazards model and λQ0(t) is an unspecified

baseline hazard for the censoring distribution. The parameters from the model, γ,

are consistently estimated by γ̂ and the estimates can be obtained using most standard

statistical software.

For each patient i = 1, . . . , n, we define KV
i (u) = P{Ci > u|V̄i(u)} based on the

model above. Then patient i’s estimated weight becomes

Ŵi(u) = K̂V
i (u)−1 = exp

{
n∑
j=1

∫ u

0

eγ̂
TVi(v)dNQj(v)∑n

j′=1 Yj′(v)eγ̂
TVj′ (v)

}
.

We can then estimate the IPCW cumulative hazard by

Λ̂W
T (t) =

n∑
i=1

∫ t

0

dNi(u)Ŵi(u)∑n
j=1 Yj(u)Ŵj(u)

and the IPCW survival estimate adjusted for dependent censoring captured by V(t)

becomes ŜWT (t) = exp{−Λ̂W
T (t)}.

4.3.4 Restricted Mean Model via Pseudo Observations Adjusted for De-
pendent Censoring

Andersen et al. (2004) developed a pseudo observation approach to modeling (4.1)

that was later extended by Xiang & Murray (2012) to account for dependent cen-

soring through incorporating inverse weighted survival estimates described in Section

4.3.3. Although pseudo observation methods sometimes struggle with intercept bias

in small samples, resulting restricted mean estimates are useful in defining risk sets for

imputation since these sets are invariant to intercept estimation. These models also
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have the advantage of being extremely easy to implement. With the ultimate goal of

defining risk sets that will be used in our imputation procedure, we now summarize

how to estimate pseudo observations from each follow-up window.

For each patient i = 1, . . . , n at each time tj where j = 1, . . . , ni, the pseudo-

observation is defined to be

PO ij = nj δ̂j − (nj − 1)δ̂−ij (4.2)

where nj is the number of patients at-risk at time tj, and δ̂j and δ̂−ij are estimates

of E[log{T ∗i (tj)}] based on datasets with and without patient i, respectively. The

expectation of log{T ∗i (tj)} can be written as

−
∫ τ

0

log(u)dP (Ti − tj > u|Ti > tj) + log(τ)P (Ti − tj > τ |Ti > tj).

The estimate of P (Ti − tj > u|Ti > tj) from the entire dataset is given by

P̂ (Ti − tj > u|Ti > tj) =
ŜWT (tj + u)

ŜWT (tj)

and the estimate of P (Ti− tj > u|Ti > tj) from the dataset without patient i is given

by

P̂ (−i)(Ti − tj > u|Ti > tj) =
Ŝ
W (−i)
T (tj + u)

Ŝ
W (−i)
T (tj)

where

Ŝ
W (−i)
T (t) = exp

{
−

n∑
j=1,j 6=i

∫ t

0

dNj(u)Ŵj(u)∑n
j′=1,j′ 6=i Yj′(u)Ŵj′(u)

}
.
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We then estimate δ̂j and δ̂−ij with

δ̂j = −
∫ τ

0

log(u)dP̂ (Ti − tj > u|Ti > tj) + log(τ)P̂ (Ti − tj > τ |Ti > tj), and

δ̂−ij = −
∫ τ

0

log(u)dP̂ (−i)(Ti − tj > u|Ti > tj) + log(τ)P̂ (−i)(Ti − tj > τ |Ti > tj),

inserting these into equation (4.2) to obtain PO ij, i = 1, . . . , n and j = 1, . . . , ni.

GEE methodology applied to data pairs {PO ij,Zi(tj)}, i = 1, . . . , n and j = 1, . . . , ni

give us model (4.1) parameter estimates, β̂PO
W

.

4.3.5 Outline of Multiple Imputation Algorithm

Each censored patients’ current follow-up window has measured covariates Z(tni)

and a censored event time C(tni) = min(Ci− tni , τ) that requires multiple imputation

for generation of convenient complete datasets for analysis. Several authors have

suggested methods for multiple imputation in the presence of dependent censoring

including Faucett et al. (2002); Hsu et al. (2006); Liu et al. (2011); Xiang et al. (2013).

Our approach extends that used by Xiang et al. (2013) to the setting with multiple

follow-up windows, and hence is able to take advantage of time-dependent covariates

available at the beginning of each window in model (4.1)’s restricted mean estimation.

While Xiang et al. (2013) were able to use time-dependent covariates in forming risk

sets similar to what we propose in the following, they were not able to incorporate

updated covariate information directly into their restricted mean model.

Inverse Transform Imputation

The simplest case of the inverse transform imputation method is based on a

Kaplan-Meier estimate, ŜT (t), that is consistent for the survival function, ST (t). In
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this case, Taylor et al. (2002) showed that multiple imputation reproduces the the

Kaplan-Meier on average. We review this simplest case to avoid notation in delivering

the concept. Our proposed multiple imputation method follows the same procedure

with a different risk set definition for Ri and a different consistent survival estimate

that accounts for dependent censoring within the risk set, ŜWT ∗i (tni )
(t|Ri), both of which

will be given in later in Section 4.3.5.

For a patient censored at Ci, Taylor et al. (2002) generate imputes by sampling

from the distribution with survival function ST (t|T > Ci). Since ST (t|T > Ci) is

not a known function, it is consistently estimated with ŜT (t|T > Ci) in applying

the inverse transform. The impute, t, is sampled by (1) generating a Uniform(0,1)

random variable, u, and (2) finding the smallest value t where ŜT (t|T > Ci) ≤ u.

The risk set, Ri, is defined as the set of patients with comparable risk to the patient

censored at Ci and in this simple case it is comprised of patients with Tj > Ci for

j = 1, . . . , n. Step (2) can be equivalently expressed as finding the smallest value t

where ŜT (t|Ri) ≤ u when using risk set notation.

Hsu et al. (2006) extended this algorithm to more complicated risk set, Ri, com-

prised of patients with similar survival and censoring hazard estimates. Liu et al.

(2011) use restricted mean models in defining risk sets and recommend sampling

from the distribution of the residual of the restricted mean model when forming an

impute. Xiang et al. (2013) further extended this algorithm to the use of ŜWT (t) in

the inverse transform method.

In our setting, we impute for an individual censored at Ci(tni) < τ where imputes

are sampled from the survival distribution of T ∗i (tni) within the risk set, Ri. The

impute, t, is sampled by (1) generating a Uniform(0,1) random variable, u, and (2)
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finding the smallest value t where ŜWT ∗i (tni )
(t|Ri) ≤ u. Then by (3) identifying the

observed event time, T ∗k (tni), that corresponds to t, we can solve for the associated

residual ε using model (4.1) where log{T ∗k (tni)} = β̂PO
WTZk(tni) + ε. Lastly, (4) if

t = τ then impute T̃ ∗i (tni) = τ , otherwise impute T̃ ∗i (tni) = exp{β̂POWTZi(tni) + ε}.

If T̃ ∗i (tni) < Ci(tni) then sample another t and repeat steps (3) and (4) until the

imputed value is greater than Ci(tni).

Risk Set Formation

As in the simplest case of risk set formation, the minimal constraint for belonging

to Ri is Tk > Ci, k = 1 . . . , n. Further restrictions based on information from Zi(t)

improve similarity of patients in the risk set to the censored individual being imputed.

The covariates Zi(t) are related to survival and we can improve our imputation by

selecting patients with similar urgency at the censoring time Ci based on our linear

model (4.1). The second constraint for belonging to risk setRi is then |β̂POWTZk(Ci)−

β̂PO
WTZi(Ci)| < ε where ε is the parameter that controls how closely the linear

predictors should match at Ci. The choice of epsilon is based on defining a risk set

large enough to produce valid multiple imputes but as homogenous as possible with

respect to urgency. In addition we require that patient k is in the same diagnosis

group as patient i and that LASk(Ci) = LASi(Ci) so that patients have similar

urgency and transplant probability.
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Inverse Weighted Survival Estimation Within Risk Set

Within the risk set, the inverse probability of censoring weight for the kth patient

is defined as

WRi
k (u) = 1/P{Ck > u|Ck > Ci, V̄k(u)}

=
P{Ck > Ci|V̄k(u)}
P{Ck > u|V̄k(u)}

=
KV
k (Ci)

KV
k (u)

.

Then the inverse weighted survival estimate within the risk set is ŜWT ∗i (tni )
(t|Ri) =

exp{−ΛW
T ∗i (tni )

(u|Ri)} for Ci(tni) ≤ u < τ and ŜWT ∗i (tni )
(t|Ri) = 0 for u > τ where

Λ̂W
T ∗i (tni )

(u|Ri) is defined as

∑
k∈Ri

∫ u+tni

Ci

dNk(v)ŴRi
k (v)∑

j∈Ri Yj(v)ŴRi
j (v)

.

Analysis of the M multiply imputed datasets

We repeat the imputation procedure until we obtain M completed datasets. In

practice M=10 is usually sufficient to produce valid results. The analysis of the M

multiply imputed datasets is given by Little & Rubin (1986). For each complete

dataset, we can construct the longitudinal data structure described in Section 4.3.1.

Model (4.1) GEE parameter estimates for dataset m are denoted by β̂MI
m and their

associated variance estimates are denoted by V̂ ar(β̂MI
m ), m = 1, . . . ,M .

The estimates of β based on the multiple imputation method are β̂MI =
∑M

m=1 β̂
MI
m /M .

The associated variance estimate is V̂ ar(β̂MI) = W + (1 + M−1)B, where W =∑M
m=1 V̂ ar(β̂

MI
m )/M is the average within imputation variance and B =

∑M
m=1(β̂MI

m −
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β̂MI)2/(M − 1) is the between imputation variance. The 95% confidence intervals

and hypothesis tests for β̂MI are constructed based on the asymptotic distribution

(β̂MI − β)/

√
V ar(β̂MI) ∼ tν . The degrees of freedom of the t-distribution are given

by ν = (M − 1)[1 +W/{B(M + 1)}]2.

4.4 Simulations

In order to better understand finite sample behavior of our methods in relation to

other available approaches, we summarize simulation results from 500 Monte Carlo

iterations with n = 300 patients. Each iteration gives GEE parameter estimates

for the model, E(log[min{Ti(tj), τ}]) = β0 + β1 × Z1i(tj) + β2 × Z2i, via (a) the

IPCW pseudo observation method applied to the first follow-up window as in Xiang

& Murray (2012), (b) Xiang, Murray and Liu’s multiple imputation method applied

to the first follow-up window as in Xiang et al. (2013) and (c) our proposed multiple

imputation method that incorporates information from multiple follow up windows.

As a benchmark we also present results (d) in the absence of censoring when multiple

follow up windows are used in estimation. Each method assumes τ = 1 year. Methods

using follow-up beyond year one in estimation incorporate information from 1-year

windows starting at t1 = 0, t2 = 6 months and t3 = 12 months. The data are

generated as follows.

Step 1 : A time-dependent covariate, Z1i(tj), is simulated from a Uniform(0,1) at

t1 = 0, t2 = 6 months and t3 = 12 months. It will be convenient to denote the history

of this time-dependent covariate by Z̄1i(t) = {Z1i(u); 0 ≤ u ≤ t}. A time-independent

covariate Z2i is simulated from a Uniform(0,0.8).

Step 2 : Each failure time Ti is simulated from a piecewise exponential distribution
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with hazard equal to λi1 in the interval [0, 6], λi2 in the interval (6, 12] and λi3 in the

interval (12,∞). Then P{Ti−tj > u|Ti > tj, Z̄1i(u+tj), Z2i} = exp{−
∫ tj+u
tj

[λi1I(0 ≤

v ≤ 6) + λi2I(6 < v ≤ 12) + λi3I(12 < v < ∞)]dv}. And E(log[min{Ti(tj), τ}])

becomes

−
∫ τ

0

log(u)dP{Ti − tj > u|Ti > tj, Z̄1(u+ tj), Z2}

+ log(τ)P{Ti − tj > τ |Ti > tj, Z̄1(τ + tj), Z2},

where setting the above equal to the restricted mean model, β0 + β1Z1i(tj) + β2Z2i

gives us a way to solve for patient specific hazards. In Appendix C.1, we give further

details on the algebra involved.

Step 3 : The dependent censoring time Ci is generated from the piecewise expo-

nential distribution with hazard λCi (u) = λC0 (u) exp{0.3Z1i(0) + 0.35Z1i(6)I(u > 6) +

0.01Z1i(0)Z1i(6)I(6 < u ≤ 12)+0.4Z1i(12)I(u > 12)+0.001Z1i(0)Z1i(6)Z1i(12)I(u >

12) + 0.1Z2i} where λC0 (u) is equal to 0.01 in the interval [0, 6], 0.011 in the interval

(6, 12] and 0.012 in the interval (12,∞), producing approximately 25% censoring prior

to 24 months.

Table 4.1 presents the results under the null hypothesis with β0 = 2.1, β1 = 0

and β2 = 0 and when covariates affect survival with β0 = 2.1, β1 = −0.125 and

β2 = 0.1. For each of the parameters we present the empirical mean, bias, empirical

mean standard error, empirical standard deviation and coverage of the 95% confidence

interval for each of the analysis approaches under consideration.

Based on the results in Table 4.1, we observe that the parameter estimates from

all methods have minimal bias under both the null hypothesis and for non-zero β’s,

except for the intercept term in the IPCW pseudo observation method. Several au-
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thors have noted issues with intercept bias for pseudo observation methods (Andrei

& Murray, 2007; Xiang & Murray, 2012). Low bias for β1 and β2 was also seen when

pseudo observation regression methods were applied to data from multiple follow-up

windows as described in Section 4.3.4 (data not shown), with β0 underestimated to

a similar degree. Hence, pseudo-observation methods seem useful for describing mul-

tiplicative effects of risk factors on the restricted mean and forming comparable risk

sets of patients, but tend to underestimate restricted means compared to imputation

methods with even moderate sample sizes.

Inclusion of follow-up windows starting at t2 = 6 and t3 = 12 months results in

more efficient estimates. The asymptotic relative efficiency (ARE) of our proposed

method versus the IPCW pseudo observation method is between 3.86 and 6.49 for each

of the parameters. The ARE of our proposed method versus the multiple imputation

method of Xiang and Murray is between 1.85 and 2.71. The ARE comparing our

proposed method with versus without censoring is between 0.95 and 1 indicating

that our method effectively handles dependent censoring and produces parameter

estimates with nearly the same efficiency as if censoring never occurred.

4.5 Example

The lung waitlist consists of 10,740 transplant candidates aged 12 years and older

who were newly listed between September 1, 2006 and March 2, 2012; 7,359 of these

patients received a transplant, 884 died while on the waitlist, 1,124 dropped off the

waitlist without a transplant and 1,373 were alive on the waitlist on March 2, 2012.

Risk factors used to model LAS urgency are given by the OPTN Thoracic Committee

(OPTN Policy 3.7) and have been vetted as worthy of inclusion in the algorithm. Most
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Table 4.1: Comparison of estimates from model based on one follow-up window
the IPCW pseudo-observation (IPCW-PO) and the multiple imputation
method (MI); based on three follow-up windows using uncensored obser-
vations (Uncensored) and our multiple imputation method (MI*) under
two scenarios with 500 Monte Carlo simulations. M=10 in both multiple
imputation methods.

Parameter IPCW-PO MI Uncensored MI*
β0 = 2.1 1.753 2.152 2.121 2.101

[-0.347, 0.182, [0.052, 0.119, [0.021, 0.079, [0.001, 0.081,
0.170, 0.546] 0.113, 0.940] 0.080, 0.920] 0.080, 0.950]

β1 = 0 -0.022 -0.010 -0.000 0.001
[-0.022, 0.238, [-0.010, 0.156, [-0.000, 0.093, [0.001, 0.097,
0.237, 0.950] 0.153, 0.950] 0.092, 0.958] 0.093, 0.962]

β2 = 0 -0.004 -0.007 -0.000 -0.002
[-0.004, 0.298, [-0.007, 0.196, [-0.000, 0.134, [-0.002, 0.142,
0.292, 0.928] 0.199, 0.964] 0.143, 0.940] 0.143, 0.956]

β0 = 2.1 1.715 2.150 2.126 2.107
[-0.385, 0.183, [0.050, 0.122, [0.026, 0.081, [0.007, 0.083,
0.181, 0.436] 0.121, 0.930] 0.079, 0.940] 0.081, 0.948]

β1 = −0.125 -0.142 -0.121 -0.123 -0.117
[-0.017, 0.240, [0.004, 0.160, [0.002, 0.097, [0.007, 0.100,
0.245, 0.952] 0.166, 0.928] 0.095, 0.962] 0.097, 0.958]

β2 = 0.1 0.164 0.096 0.090 0.085
[0.064, 0.300, [-0.004, 0.199, [-0.001, 0.143, [-0.015, 0.145,
0.285, 0.956] 0.197, 0.954] 0.145, 0.946] 0.145, 0.946]

Empirical Mean
[Bias, Empirical Mean Standard Error,
Empirical Standard Deviation, Coverage of 95% Confidence Interval]

have proven historical statistical significance in at least one previous analysis of lung

candidate data.

Patients are divided into four overarching diagnosis groups, A through D, by the

OPTN Thoracic Committee that are considered to be similar with respect to waitlist

and post-transplant survival. The details of the diagnoses that comprise each group

are given in OPTN Policy 3.7. In our dataset at listing, of the 3618 patients in Group

A, 2924 (81%) were diagnosed with chronic obstructive pulmonary disease; in Group

B, 262 (56%) out of 468 were diagnosed with primary pulmonary hypertension; in
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Group C, 1284 (99%) out of 1296 were cystic fibrosis patients; and in Group D, 3633

(68%) out of 5358 patients were diagnosed with idiopathic pulmonary fibrosis. A

few group A and D diagnoses are allowed to enter the urgency model as their own

risk factors. For group A, these are bronchiectasis, lymphangioleiomyomatosis and

sarcoidosis with PA mean≤30mm Hg. For group D, these are obliterative bronchioli-

tis, pulmonary fibrosis other and sarcoidosis with PA mean>30mm Hg. Eisenmenger

syndrome, from group B, is also listed as a risk factor in LAS. Most of these smaller

diagnosis groups are not statistically different from their larger conglomerate group

designation, but having a separate parameter has been important in obtaining public

approval of the algorithm.

In Table 4.2, we summarize the risk factors at listing within each of the four di-

agnoses groups. These factors are age, body mass index (BMI), cardiac index prior

to any exercise, central venous pressure (CVP) at rest, whether they were on contin-

uous mechanical ventilation, serum creatinine, whether they were diabetic, percent

predicted forced vital capacity (FVC), whether they required assistance with the ac-

tivities of daily living (ADL), O2 requirement at rest needed to maintain adequate

oxygen saturation, partial pressure of carbon dioxide (PCO2), pulmonary artery (PA)

systolic pressure at rest, and six minute walk distance obtained while receiving sup-

plemental oxygen to maintain oxygen saturation of 88% or greater at rest. Those

familiar with the LAS may recall that bilirubin has recently been approved as an ur-

gency risk factor. However, this measure has only recently started being collected by

the OPTN and was unavailable in the March 2012 release data used for our analyses.

Patients in group C are on average the youngest transplant candidates (mean age

is 29.4 years) and this is expected since the group consists almost entirely of patients

with cystic fibrosis, a genetic disorder that results in lung disease from a very young
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age. The main diagnoses in the other groups are lung diseases that develop over time

so most patients are older when they require a lung transplant. Having a cardiac

index less than 2 L/min/m2 is considered to be an indicator that the heart is not

functioning well. Based on this measure, patients in group B tend to be the most

severely ill with 17.5% of the patients having a cardiac index < 2 L/min/m2. The

proportion of patients requiring continuous mechanical ventilation is highest in group

C (6.3%) and lowest in group A (0.7%). FVC % predicted is a measure of lung

function and in terms of this measure the diagnoses groups are ranked C, D, A and

B from most severely ill to least severely ill. However the patients in group C are

also most likely to need no assistance with activities of daily living (19.2%) and are

able to walk much long distances in the six minute walk test compared to the other

groups. Group B consists of patients with various hypertensive disorders and as we

would expect, patients in this group have the highest average PA systolic pressure at

rest (76.7 mm Hg).

As urgent patients receive transplants, they are removed from the waitlist. This

systematic removal of patients creates a problem of dependent censoring that we

adjust for using inverse probability of censoring weights in the survival estimation

procedure discussed in Section 4.3.3. For each patient on the waitlist the probability

of being censored is estimated from a time-dependent Cox model, the results of which

are presented in Table 4.3. The covariates that influence censoring are gender, race

(white, black and other), height, blood type (A, B, O and AB) and time-dependent

LAS and listing status (active and inactive). Gender, race and height are all seen to

be highly significant characteristics for differentiating which patients will be censored.

Blood types A and B were observed to be similar in terms of censoring hazard but

patients with blood type O had a lower hazard of censoring compared to blood type A
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(hazard ratio=0.96, 95% confidence interval: 0.92-1.00) and patients with blood type

AB had a higher hazard of censoring compared to blood type A (hazard ratio=1.12,

95% confidence interval: 1.00-1.25). Patients with an LAS of 0 have the lowest

possible score with a very low chance of transplant (censoring) that gets ameliorated

a bit by geography when higher risk patients are not in competition for an organ. A

one-unit increase in LAS when the 0<LAS≤30 results in a decreasing hazard which

reflects the low probability of being offered a transplant for low LAS scores. The effect

of a one unit increase in LAS decreases for higher ranges of LAS scores. This may

seem counterintuitive however the probability of being censored is counterbalanced

by the probability of surviving until a transplant becomes available.

Figure 4.2 compares the IPCW survival estimate of waitlist survival to the Kaplan-

Meier estimate of waitlist survival from listing up to three and a half years post

listing. The Kaplan-Meier estimate does not adjust for dependent censoring resulting

from transplantation and therefore estimates higher waitlist survival probabilities

compared to the IPCW survival.

Using the IPCW survival estimate, we construct IPCW pseudo-observations for

1-year follow-up windows starting at 0, 6, 12, 18, 24 and 30 months following the

method described in Section 4.3.4. The start time of the final follow-up window was

chosen to ensure we had at least 25 risk set deaths in each follow-up window. The

pseudo-observations are used to fit model (4.1) to estimate lung candidate urgency

based on LAS risk factors. The parameter estimates are then used in the multiple

imputation procedure presented in Section 4.3.5.

In Table 4.4 we present the results of fitting the restricted mean model to estimate

lung candidate urgency using three different methods, (a) the IPCW pseudo observa-

tion method applied to the first follow-up window as in Xiang & Murray (2012), (b)
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Xiang, Murray and Liu’s multiple imputation method applied to the first follow-up

window as in Xiang et al. (2013) and (c) our proposed multiple imputation method

that incorporates information from multiple follow up windows. The exponentiated

parameters (eβ̂), 95% confidence intervals and p-values are presented for each risk fac-

tor and are therefore interpreted in terms of their multiplicative effect on the number

of days lived in the next year.

The intercept estimated from the IPCW pseudo-observation (IPCW-PO) method

has a very wide confidence interval indicating that it is not estimated well. All

the effect size confidence intervals from the IPCW-PO method are wider than those

obtained using the multiple imputation method applied to the first follow-up window.

In general, the conclusions reached regarding statistically significant risk factors are

the same even if the effect sizes differ between the two methods. The exceptions

include having a cardiac index<2.0 L/min/m2 and PA systolic pressure in group B,

C or D.

Our proposed multiple imputation procedure estimates the effect of the risk fac-

tors across the 6 follow-up windows viewed during the 3.5 years since listing. Hence,

our parameter estimates should be comparable to the other methods if time since

listing does not play a strong role. Again, the intercept was the most different be-

tween our proposed method and the others, approximately 18 days smaller than the

multiple imputation method based on only the first follow-up window. Our proposed

method gave shorter confidence intervals compared to the other methods indicating

increased efficiency resulting from the incorporation of additional follow-up windows.

Comparing the two multiple imputation procedures, we observe that time since listing

does not play a role and the effect sizes remain similar. The additional information

contained in later follow-up windows allows us to confirm the statistical significance
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of some of the risk factors including CVP in group B, being a diabetic and PCO2.

Table 4.2: Summary of LAS urgency covariates at listing, by diagnosis group, in
10,740 lung transplant candidates†.

Group A Group B Group C Group D
LAS Covariates n=3618 n=468 n=1296 n=5358
Age (years) 58.1 (8.3) 45.7 (14.7) 28.4 (10.3) 57.1 (11.0)
BMI (kg/m2) 24.6 (4.3) 25.1 (4.7) 19.3 (2.9) 27.0 (4.4)
Cardiac Index<2.0 (L/min/m2) 150 (4.1%) 82 (17.5%) 16 (1.2%) 271 (5.1%)
CVP (mm Hg) 7.7 (4.2) 10.8 (6.5) 5.2 (3.8) 5.5 (4.3)
Continuous Mechanical Ventilation 26 (0.7%) 10 (2.1%) 82 (6.3%) 196 (3.7%)
Creatinine (serum mg/dL) 0.8 (0.2) 1.0 (0.6) 0.7 (0.3) 0.9 (0.3)
Diabetes 430 (11.9%) 64 (13.7%) 627 (48.4%) 1249 (23.3%)
FVC (% predicted) 54.0 (17.5) 66.4 (22.7) 40.0 (11.8) 47.6 (17.0)
No assistance with ADL 368 (10.2%) 32 (6.8%) 249 (19.2%) 506 (9.4%)
O2 requirement at rest (L/min) 3.0 (2.5) 4.0 (4.4) 2.9 (3.5) 4.9 (5.2)
PCO2 (mm Hg) 49.9 (10.8) 42.4 (6.4) 53.4 (17.4) 44.7 (8.2)
PA systolic (mm Hg) 38.3 (10.8) 76.7 (25.7) 39.0 (10.6) 43.2 (16.2)
Six-min walk distance (feet) 783.4 (347.9) 776.7 (438.4) 970.6 (465.8) 797.2 (464.2)
† For continuous variables, numbers shown are mean (standard deviation)

For binary variables, numbers shown are number (proportions)

Body Mass Index (BMI); Cardiac Index (CI); Central Venous Pressure (CVP)

Activities of Daily Living (ADL); Pulmonary Artery (PA)

4.6 Discussion

LAS implementation has successfully reduced waitlist deaths, which reflects vitally

important improvements for end stage lung disease care. This same reduction in

deaths results in less power to estimate waitlist survival in current cohorts. It is

therefore critical to develop statistical methodology that is able extract as much

information as possible from available data.

As we saw in Section 4.5, incorporating additional follow-up windows to estimate

transplant urgency resulted greater efficiency, as evidenced by narrower confidence

intervals for parameter estimates. We were also able to confirm that low central
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Table 4.3: Proportional hazards censoring model for 10,740 lung transplant candi-
dates

Hazard Ratio 95% Confidence Interval p-value
Time-independent characteristics

Female (vs Male) 0.76 (0.72,0.80) < 0.0001
Black (vs White) 0.77 (0.72,0.83) < 0.0001
Other (vs White) 0.77 (0.72,0.83) < 0.0001
Height: < 5′3′′ (versus > 5′9′′) 0.63 (0.58,0.68) < 0.0001
Height: 5′3′′-5′6′′ (versus > 5′9′′) 0.78 (0.73,0.83) < 0.0001
Height: 5′6′′-5′9′′ (versus > 5′9′′) 0.87 (0.82,0.92) < 0.0001
Blood type: B (versus A) 1.00 (0.93,1.07) 0.9285
Blood type: O(versus A) 0.95 (0.91,0.99) 0.0134
Blood type: AB (versus A) 1.12 (1.00,1.25) 0.0473
Time-dependent characteristics

LAS> 0 (versus LAS= 0) 2224 (22.14, > 3000) 0.0010
Unit increase in LAS: 0<LAS≤30 0.76 (0.65,0.88) 0.0004
Unit increase in LAS: 30<LAS≤35 1.14 (1.11,1.17) < 0.0001
Unit increase in LAS: 35<LAS≤40 1.11 (1.09,1.12) < 0.0001
Unit increase in LAS: 40<LAS≤60 1.04 (1.03,1.04) < 0.0001
Unit increase in LAS: LAS>60 1.03 (1.03,1.04) < 0.0001
Active vs inactive status 1.79 (1.65,1.95) < 0.0001

venous pressure remained a statistically significant risk factor for patients in diagnosis

group B for the current cohort. Measuring this risk factor is an invasive procedure so

it is important to reassure that its collection is useful for ranking patients.

By design, a patient’s LAS value does not change based on time-on-waitlist so that

there is no advantage to altering listing behavior to game the system and disadvantage

other patients. In our analysis we confirm that the effect sizes of most risk factors do

not depend on time-on-waitlist.
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Figure 4.2: Waitlist probability of survival estimated by the Kaplan-Meier method
and the IPCW-survival method.
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CHAPTER V

CONCLUSION

The objective of this dissertation was to develop statistical methods for estima-

tion, hypothesis testing and regression models for the τ -restricted mean survival that

included follow-up information beyond τ . To this end, we chose to use multiple obser-

vation windows, of length τ , within the available follow-up period. When estimating

the restricted mean survival the additional follow-up windows produced more effi-

cient estimates. In the hypothesis testing procedure we were able to show that both

recurrent and terminating events could be included and this resulted in a more pow-

erful test compared to some commonly used approaches when the events are highly

correlated. The restricted mean regression models that we develop allow for time-

dependent covariates that are updated every 6 months. In each of the statistical

methods we have developed we approach the data from a different perspective and

incorporate follow-up from multiple observation windows, which allows us to use more

of the observed information.

In the Chapter II we introduced the overall τ -restricted mean survival that used

follow-up from multiple observation windows to improve precision when estimating

the τ -restricted mean survival. The correlated data structure resulting from the mul-
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tiple follow-up windows required a variance estimate that was able to better account

for the correlation structure than the sandwich estimator. We followed an approach

by Woodruff (1971) where the estimator was linearized using Taylor series in order

to identify independent sums of random variables using asymptotic arguments. We

advocate the use of the empirical variance of these independent sums when estimating

the variance of the overall τ -restricted mean survival. The closed form asymptotic

variance was also studied, which required understanding the relationship between

the event process and the at-risk process across follow-up windows within the same

patient. This was necessary in order to study how the number and spacing of the

follow-up windows affect the efficiency of the estimator. We found that the using over-

lapping follow-up windows spaced τ/2 months apart provided the greatest increase in

efficiency and that introducing follow-up windows more frequently resulted in greater

complexity but only minor gains in efficiency. The finite sample-size performance of

our estimator and proposed variance was compared to the sandwich variance and the

variance that assumes independence in a simulation study. The estimate of the overall

τ -restricted mean survival was unbiased and our proposed variance was better able

to account for the correlation structure resulting from multiple overlapping follow-up

windows compared to the sandwich variance.

The nonparametric hypothesis tests that we developed in Chapter III incorpo-

rated recurrent and terminating events beyond the first by combining time-to-first

event analyses in each of the follow-up windows. This approach was an attractive al-

ternative to the usual recurrent event analyses since it did not require any assumptions

regarding the correlation between the event times but allowed us to use information

beyond the initial event. We studied two methods of combining the follow-up win-

dows for two-sample testing procedures in a randomized trial. The first pooled the
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data in the same way as the overall τ -restricted mean survival in the previous chapter

and the second used the area under the τ -restricted mean residual life function. For

each test statistic we were able to describe the asymptotic distribution under the null

using the linearization technique of Woodruff (1971) without making any assump-

tions about the correlation between events. In simulation studies we found that when

events were correlated our methods outperformed the robust proportional rates model

of Lin et al. (2000) and the Ghosh & Lin (2000) test for recurrent events subject to

death. When events were uncorrelated, the proportional rates model was difficult

to beat. We also observed that correlated events resulted in a significant decrease

in the power. This observation has consequences for study design since a recurrent

events study that does not account for potential correlation between gap-times will

be underpowered if there is correlation. Our testing procedures were more powerful

when there is correlated data and could be used in study design to ensure the study

was sufficiency powered while accounting for potential correlation.

Chapter IV developed regression models for restricted mean survival that used

risk-factors measured at the start of each follow-up windows. This allowed us to in-

corporate information from time-dependent risk factors past baseline. Our aim was

to fit the LAS urgency model using time-dependent covariates. We extended work

by Xiang et al. (2013) to estimate the parameters from the model. For each censored

patient, we multiply imputed a time-to-event using the inverse transform method.

The impute was sampled from within a risk-set of patients with similar prognosis

to the censored patient but who were still at-risk. In the lung allocation setting, a

patient’s LAS score is one of the factors used to determine if they are offered a trans-

plant. The transplantation of severely ill patients resulted in dependent censoring

that we needed to account for in our methodology. We chose to use inverse probabil-
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ity of censoring weights to decrease the bias of the survival function estimate. The

complete data was then transformed into a longitudinal data structure. GEE was

used to estimate model parameters based on data pairs comprised of 1-year restricted

time-to-event from the start of the follow-up window and the risk-factors measured

at the start of the follow-up window. The differing correlation between overlapping

and non-overlapping follow-up windows was easily handled by GEE using an unstruc-

tured working correlation matrix with a robust sandwich variance to protect against

misspecification. Simulation studies showed that our method produced unbiased and

more efficient parameter estimates compared to methods which only used informa-

tion from the baseline observation window. The increased efficiency of our method

resulted in narrower confidence intervals for parameters in the LAS urgency model

and the additional follow-up windows allowed us to study changes in the parameters

over time.
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APPENDIX A

Supplementary Materials for Chapter II

A.1 Convergence of estimator

From page 10 in Section 2.4.1, we need to show that

µ̂∗(τ) =

∫ τ

0

exp

{
−
∫ s

0

dN(u)

Y (u)

}
ds

converges in probability to

µ∗(τ) =

∫ τ

0

exp

[
−
∫ s

0

λW (u)du

]
ds,

where λW (u) =
∑b

k=1 λ(tk, u)Pr{Xi(tk) ≥ u}/
∑b

l=1 Pr{Xi(tl) ≥ u}.

We use the following definitions from Section 2.4.2: {0 < T1 < . . . < TM < τ} are

observed event times from combined dataset; T0 = 0 and TM+1 = τ ; Fj{dN(Tj), Y (Tj)}

= dN(Tj)/Y (Tj); and Gm(F0, F1, . . . , Fm) = exp(−
∑m

j=0 Fj) with arguments of Fj

submerged for brevity. We can then rewrite µ̂∗(τ) as

µ̂∗(τ) =
M∑
m=0

(Tm+1 −Tm)Gm(F0, F1, . . . , Fm).
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A Taylor series expansion of Gm(F0, F1, . . . , Fm) about λW (Tj)dTj gives

µ̂∗(τ) =
M∑
m=0

(Tm+1 −Tm) exp

{
−

m∑
j′=0

λW (Tj′)dTj′

}
(A.1)

+
M∑
m=0

(Tm+1 −Tm)(−1) exp

{
−

m∑
j′=0

λW (Tj′)dTj′

}[
m∑
j=0

{Fj − λW (Tj)dTj}

]
(A.2)

+
M∑
m=0

(Tm+1 −Tm)
1

2!
exp

{
−

m∑
j′=0

λW (Tj′)dTj′

}[
m∑
j=0

{Fj − λW (Tj)dTj}

]2

(A.3)

+
M∑
m=0

(Tm+1 −Tm) [ higher order terms] .

Term (A.1) is a non-stochastic numerical approximation of µ∗(τ) that converges

to µ∗(τ) as n→∞. Our convergence argument is complete upon showing
∑m

j=0{Fj−

λW (Tj)dTj} in (A.2) and (A.3) converges in probability to zero as n→∞.

Note that since
∑m

j=0{Fj − λW (Tj)dTj} is asymptotically equivalent in distribu-

tion to
∫ s

0

{
dN(u)/Y (u)− λW (u)du

}
with s = Tm, we may show that

∫ s
0
{dN(u)/Y (u)

−λW (u)du
}

converges in probability to zero as n→∞ to complete our convergence

argument.

It is convenient to first consider
∑n

i=1 Yi(u)/n, an empirical measure based on

i.i.d random variables. By the Glivenko-Cantelli Theorem, as well as the continuous

mapping theorem,

δ1 = sup
u∈[0,τ ]

∣∣∣∣∣Y (u)

n
−

b∑
k=1

Pr{Xi(tk) ≥ u}

∣∣∣∣∣ p→ 0 (A.4)

and δ2 = sup
u∈[0,τ ]

∣∣∣∣∣∣
{
Y (u)

n

}−1

−

[
b∑

k=1

Pr{Xi(tk) ≥ u}

]−1
∣∣∣∣∣∣ p→ 0. (A.5)
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Then
∫ s

0

{
dN(u)/Y (u)− λW (u)du

}
becomes

∫ s

0

(
dN(u)

n

[
n

Y (u)
+

1∑b
l=1 Pr{Xi(tl) ≥ u}

− 1∑b
l=1 Pr{Xi(tl) ≥ u}

]
− λW (u)du

)

=

∫ s

0

[ ∑b
k=1 dN(tk, u)

n
∑b

l=1 Pr{Xi(tl) ≥ u}
−
∑b

k=1 λ(tk, u)Pr{Xi(tk) ≥ u}∑b
l=1 Pr{Xi(tl) ≥ u}

du

]

+

∫ s

0

∑b
k=1 dN(tk, u)

n

[
n

Y (u)
− 1∑b

l=1 Pr{Xi(tl) ≥ u}

]

=
b∑

k=1

∫ s

0

dN(tk, u)− nλ(tk, u)Pr{Xi(tk) ≥ u}du
n
∑b

l=1 Pr{Xi(tl) ≥ u}

+
b∑

k=1

∫ s

0

dN(tk, u)

n

{Y (u)

n

}−1

−

[
b∑
l=1

Pr{Xi(tl) ≥ u}

]−1


≤
b∑

k=1

∫ s

0

dN(tk, u)− nλ(tk, u)Pr{Xi(tk) ≥ u}du
n
∑b

l=1 Pr{Xi(tl) ≥ u}
+

b∑
k=1

∫ s

0

dN(tk, u)

n
δ2. (A.6)

The first component of term (A.6) is a sum of b mean zero stochastic integrals with

respect to martingales. Using standard martingale theory, we derive the asymptotic

variance of each of the b stochastic integrals to be the limit of the following expression

∫ s

0

[
1

n
∑b

l=1 Pr{Xi(tl) ≥ u}

]2

nλ(tk, u)Pr{Xi(tk) ≥ u}du

=

∫ s

0

λ(tk, u)Pr{Xi(tk) ≥ u}du

n
[∑b

l=1 Pr{Xi(tl) ≥ u}
]2 .

It is easily seen that the expression converges in probability to zero as n→∞. The

asymptotic covariance between any two of the b stochastic integrals associated with
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follow-up windows beginning at tk and tl, k 6= l, is the limit of

∫ s

0

∫ s

0

∑n
i=1

∑n
j=1 cov{dNi(tk, u), dNj(tl, v)}

n2[
∑b

l′=1 Pr{Xi(t′l) ≥ u}][
∑b

l′=1 Pr{Xi(t′l) ≥ v}]

=

∫ s

0

∫ s

0

n cov{dNi(tk, u), dNi(tl, v)}
n2[
∑b

l′=1 Pr{Xi(t′l) ≥ u}][
∑b

l′=1 Pr{Xi(t′l) ≥ v}]

=

∫ s

0

∫ s

0

E{dNi(tk, u)dNi(tl, v)} − E{dNi(tk, u)}E{dNi(tl, v)}
n[
∑b

l′=1 Pr{Xi(t′l) ≥ u}][
∑b

l′=1 Pr{Xi(t′l) ≥ v}]

=

∫ s

0

λ(tk, u)Pr{Xi(tk) ≥ u}I(0 ≤ u+ tk − tl ≤ s)du

n[
∑b

l′=1 Pr{Xi(t′l) ≥ u}][
∑b

l′=1 Pr{Xi(t′l) ≥ u+ tk − tl}]

−
∫ s

0

∫ s

0

λ(tk, u)Pr{Xi(tk) ≥ u}λ(tl, v)Pr{Xi(tl) ≥ v}du dv
n[
∑b

l′=1 Pr{Xi(t′l) ≥ u}][
∑b

l′=1 Pr{Xi(t′l) ≥ v}]
.

This expression also converges in probability to zero as n → ∞. Therefore the vari-

ance of the sum of the b stochastic integrals converges to zero and the first component

of term (A.6) converges in probability to zero. The second component of term (A.6)

p→ 0 after applying Lenglart’s Inequality and (A.5) to each summand.

Therefore
∫ s

0

{
dN(u)/Y (u)− λW (u)du

} p→ 0 as n → ∞ and we have completed

our convergence argument.

A.2 Asymptotic arguments for deriving the variance of the
proposed estimate

Continuing from Section 2.4.2, we need to show the following result about the

term (2.2d) from page 12:

√
n

[
m∑
j=0

{Fj − λW (Tj)dTj}

]2

p→ 0.

This can be shown upon showing that the component asymptotically equivalent
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in distribution,

√
n

[∫ s

0

{
dN(u)/Y (u)− λW (u)du

}]2

,

converges in probability to zero. In Appendix A.1 we have shown that
∫ s

0
{dN(u)/Y (u)

−λW (u)du
} p→ 0, hence we need only show that

√
n[
∫ s

0
{dN(u)/Y (u) − λW (u)du}]

converges to a distribution with finite variance.

Similarly to arguments used to formulate equation (A.6), we have

√
n

[∫ s

0

{
dN(u)

Y (u)
− λW (u)du

}]
≤

b∑
k=1

√
n

∫ s

0

dN(tk, u)− nλ(tk, u)Pr{Xi(tk) ≥ u}du
n
∑b

l=1 Pr{Xi(tl) ≥ u}
+ δ2

b∑
k=1

√
n

∫ s

0

dN(tk, u)

n
.(A.7)

The first component of term (A.7) is the sum of b stochastic integrals and by the

martingale central limit theorem, each converges to a normal process with mean zero

and variance

∫ s

0

[ √
n

n
∑b

l=1 Pr{Xi(tl) ≥ u}

]2

nλ(tk, u)Pr{Xi(tk) ≥ u}du

=

∫ s

0

λ(tk, u)Pr{Xi(tk) ≥ u}du[∑b
l=1 Pr{Xi(tl) ≥ u}

]2 .

The asymptotic covariance between any two of the b stochastic integrals associated
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with follow-up windows beginning at tk and tl, k 6= l, is the limit of

∫ s

0

∫ s

0

∑n
i=1

∑n
j=1 cov{

√
n dNi(tk, u),

√
n dNj(tl, v)}

n2[
∑b

l′=1 Pr{Xi(t′l) ≥ u}][
∑b

l′=1 Pr{Xi(t′l) ≥ v}]

=

∫ s

0

∫ s

0

n2 cov{dNi(tk, u), dNi(tl, v)}
n2[
∑b

l′=1 Pr{Xi(t′l) ≥ u}][
∑b

l′=1 Pr{Xi(t′l) ≥ v}]

=

∫ s

0

∫ s

0

E{dNi(tk, u)dNi(tl, v)} − E{dNi(tk, u)}E{dNi(tl, v)}
[
∑b

l′=1 Pr{Xi(t′l) ≥ u}][
∑b

l′=1 Pr{Xi(t′l) ≥ v}]

=

∫ s

0

λ(tk, u)Pr{Xi(tk) ≥ u}I(0 ≤ u+ tk − tl ≤ s)du

[
∑b

l′=1 Pr{Xi(t′l) ≥ u}][
∑b

l′=1 Pr{Xi(t′l) ≥ u+ tk − tl}]

−
∫ s

0

∫ s

0

λ(tk, u)Pr{Xi(tk) ≥ u}λ(tl, v)Pr{Xi(tl) ≥ v}du dv
[
∑b

l′=1 Pr{Xi(t′l) ≥ u}][
∑b

l′=1 Pr{Xi(t′l) ≥ v}]
.

This expression is finite as n → ∞. Therefore the sum of the b stochastic integrals

has finite asymptotic variance.

After b applications of the central limit theorem to each term
√
n
∑n

i=1

∫ s
0
dNi(tk, u)/n,

k = 1, . . . , b, we note that each converges to a normal distribution with finite variance.

The covariance between any two terms associated with follow-up windows beginning

at tk and tl, k 6= l is

∫ s

0

∫ s

0

∑n
i=1

∑n
j=1 cov{

√
n dNi(tk, u),

√
n dNj(tl, v)}

n2

=

∫ s

0

∫ s

0

n2 cov{dNi(tk, u), dNi(tl, v)}
n2

=

∫ s

0

∫ s

0

E{dNi(tk, u)dNi(tl, v)} − E{dNi(tk, u)}E{dNi(tl, v)}

=

∫ s

0

λ(tk, u)Pr{Xi(tk) ≥ u}I(0 ≤ u+ tk − tl ≤ s)du

−
∫ s

0

∫ s

0

λ(tk, u)Pr{Xi(tk) ≥ u}λ(tl, v)Pr{Xi(tl) ≥ v}du dv.

Therefore
∑b

k=1

√
n
∑n

i=1

∫ s
0
dNi(tk, u)/n converges to a distribution with finite vari-

ance. By applying Slutsky’s theorem and (A.5), the second component of term (A.7)
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converges in probability to zero. Therefore we can conclude that
√
n[
∫ s

0
{dN(u)/Y (u)−

λW (u)du}] converges to a distribution with finite variance.

Next we show that the term (2.3d) from page 13 converges in probability to zero.

Once again we work with asymptotically equivalent stochastic integrals. The result

follows after showing each component of the term (2.3d) converges in probability to

zero, i.e.

i

√
n

∫ s

0

[Y (u)− E{Y (u)}][dN(u)− E{dN(u)}]
E{Y (u)}2

p→ 0

ii

√
n

∫ s

0

[Y (u)− E{Y (u)}]2E{dN(u)}
E{Y (u)}3

p→ 0

Starting with term (i) and plugging in expectations gives

√
n

∫ s

0

[Y (u)− n
∑b

k=1 Pr{Xi(tk) ≥ u}][dN(u)− n
∑b

k=1 λ(tk, u)Pr{Xi(tk) ≥ u}du]

n2
[∑b

l=1 Pr{Xi(tl) ≥ u}
]2

=
√
n

∫ s

0

[Y (u)/n−
∑b

k=1 Pr{Xi(tk) ≥ u}]
∑b

k=1[dN(tk, u)− nλ(tk, u)Pr{Xi(tk) ≥ u}du]

n
[∑b

l=1 Pr{Xi(tl) ≥ u}
]2

≤δ1

b∑
k=1

√
n

∫ s

0

dN(tk, u)− nλ(tk, u)Pr{Xi(tk) ≥ u}du

n
[∑b

l=1 Pr{Xi(tl) ≥ u}
]2 .

By the martingale central limit theorem, each of the b terms converge to a mean zero
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normal process with variance

∫ s

0

 √
n

n
[∑b

l=1 Pr{Xi(tl) ≥ u}
]2


2

nλ(tk, u)Pr{Xi(tk) ≥ u}du

=

∫ s

0

λ(tk, u)Pr{Xi(tk) ≥ u}/

[
b∑
l=1

Pr{Xi(tl) ≥ u}

]4

du.

The asymptotic covariance between any two of the b stochastic integrals associated

with follow-up windows beginning at tk and tl, k 6= l, is the limit of

∫ s

0

∫ s

0

∑n
i=1

∑n
j=1 cov{

√
n dNi(tk, u),

√
n dNj(tl, v)}

n2[
∑b

l′=1 Pr{Xi(t′l) ≥ u}]2[
∑b

l′=1 Pr{Xi(t′l) ≥ v}]2

=

∫ s

0

∫ s

0

n2 cov{dNi(tk, u), dNi(tl, v)}
n2[
∑b

l′=1 Pr{Xi(t′l) ≥ u}]2[
∑b

l′=1 Pr{Xi(t′l) ≥ v}]2

=

∫ s

0

∫ s

0

E{dNi(tk, u)dNi(tl, v)} − E{dNi(tk, u)}E{dNi(tl, v)}
[
∑b

l′=1 Pr{Xi(t′l) ≥ u}]2[
∑b

l′=1 Pr{Xi(t′l) ≥ v}]2

=

∫ s

0

λ(tk, u)Pr{Xi(tk) ≥ u}I(0 ≤ u+ tk − tl ≤ s)du

[
∑b

l′=1 Pr{Xi(t′l) ≥ u}]2[
∑b

l′=1 Pr{Xi(t′l) ≥ u+ tk − tl}]2

−
∫ s

0

∫ s

0

λ(tk, u)Pr{Xi(tk) ≥ u}λ(tl, v)Pr{Xi(tl) ≥ v}du dv
[
∑b

l′=1 Pr{Xi(t′l) ≥ u}]2[
∑b

l′=1 Pr{Xi(t′l) ≥ v}]2
.

This expression is finite as n→∞ and therefore the sum of the b stochastic integrals

has finite asymptotic variance. Applying (A.4) and Slutsky’s theorem, it can easily

be shown that term (i) converges in probability to zero.
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Plugging the expectations into term (ii) gives us

√
n

∫ s

0

[Y (u)− n
b∑

k=1

Pr{Xi(tk) ≥ u}]2
∑b

l=1 λ(tl, u)Pr{Xi(tl) ≥ u}

n2
[∑b

l′=1 Pr{Xi(tl′) ≥ u}
]3du

=

∫ s

0

√
n

[
Y (u)− n

∑b
k=1 Pr{Xi(tk) ≥ u}

n

]2 ∑b
l=1 λ(tl, u)Pr{Xi(tl) ≥ u}[∑b

l′=1 Pr{Xi(tl′) ≥ u}
]3 du

≤δ1

∫ s

0

√
n

[
Y (u)− n

∑b
k=1 Pr{Xi(tk) ≥ u}

n

] ∑b
l=1 λ(tl, u)Pr{Xi(tl) ≥ u}[∑b

l′=1 Pr{Xi(tl′) ≥ u}
]3 du

=δ1

∫ s

0

√
n

n∑
i=1

b∑
k=1

[
Yi(tk, u)− Pr{Xi(tk) ≥ u}

n

] ∑b
l=1 λ(tl, u)Pr{Xi(tl) ≥ u}[∑b

l′=1 Pr{Xi(tl′) ≥ u}
]3 du

=δ1

b∑
k=1

√
n

n∑
i=1

∫ s

0

[
Yi(tk, u)− Pr{Xi(tk) ≥ u}

n

] ∑b
l=1 λ(tl, u)Pr{Xi(tl) ≥ u}[∑b

l′=1 Pr{Xi(tl′) ≥ u}
]3 du.

By the central limit theorem, each of the b summands converge in distribution to

a normal random variable with covariance between any two terms associated with
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follow-up windows beginning at tk and tl defined as

∫ s

0

∫ s

0

∑n
i=1

∑n
j=1 cov{

√
n Yi(tk, u),

√
n Yj(tl, v)}

n2
×∑b

l=1 λ(tl, u)Pr{Xi(tl) ≥ u}[∑b
l′=1 Pr{Xi(tl′) ≥ u}

]3


∑b

l=1 λ(tl, v)Pr{Xi(tl) ≥ v}[∑b
l′=1 Pr{Xi(tl′) ≥ v}

]3

 du dv

=

∫ s

0

∫ s

0

n2 cov{Yi(tk, u), Yi(tl, v)}
n2

×∑b
l=1 λ(tl, u)Pr{Xi(tl) ≥ u}[∑b

l′=1 Pr{Xi(tl′) ≥ u}
]3


∑b

l=1 λ(tl, v)Pr{Xi(tl) ≥ v}[∑b
l′=1 Pr{Xi(tl′) ≥ v}

]3

 du dv

=

∫ s

0

∫ s

0

[E{Yi(tk, u)Yi(tl, v)} − E{Yi(tk, u)}E{Yi(tl, v)}]×∑b
l=1 λ(tl, u)Pr{Xi(tl) ≥ u}[∑b

l′=1 Pr{Xi(tl′) ≥ u}
]3


∑b

l=1 λ(tl, v)Pr{Xi(tl) ≥ v}[∑b
l′=1 Pr{Xi(tl′) ≥ v}

]3

 du dv

=

∫ s

0

∫ s

0

[Pr{Xi(tk) ≥ u,Xi(tl) ≥ v} − Pr{Xi(tk) ≥ u}Pr{Xi(tl) ≥ v}]×∑b
l=1 λ(tl, u)Pr{Xi(tl) ≥ u}[∑b

l′=1 Pr{Xi(tl′) ≥ u}
]3


∑b

l=1 λ(tl, v)Pr{Xi(tl) ≥ v}[∑b
l′=1 Pr{Xi(tl′) ≥ v}

]3

 du dv

Since the covariance terms are finite, the sum converges to a distribution with finite

variance and it can then be shown that term (ii) converges in probability to zero by

applying Slutsky’s theorem and (A.4).

A.3 Closed form asymptotic variance

The asymptotic closed form variance is useful for understanding design issues and

is defined in Section 2.4.2 on page 14. In this appendix we provide the details for the

closed form calculations. We are interested σ2 = V ar
[√

n
∑n

i=1

∑b
k=1 Zik{µ̂∗(τ)}/n

]
,
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where

Zik{µ̂∗(τ)}=
∫ τ

0

exp

{
−
∫ s

0

λW (u)du

}[∫ s

0

dNi(tk, u)− λW (u)Yi(tk, u)du∑b
l=1 Pr{Xi(tl) ≥ u}

]
ds.

Examining the variance more closely, we may simplify and expand terms.

σ2 = V ar

[
√
n

n∑
i=1

b∑
k=1

Zik{µ̂∗(τ)}/n

]

=
n∑
i=1

V ar

[
b∑

k=1

Zik{µ̂∗(τ)}

]
/n

= V ar

[
b∑

k=1

Zik{µ̂∗(τ)}

]

=
b∑

k=1

b∑
l=1

cov [Zik{µ̂∗(τ)}, Zil{µ̂∗(τ)}]

=
b∑

k=1

b∑
l=1

∫ τ

0

∫ τ

0

exp

{
−
∫ s

0

λW (u)du

}
exp

{
−
∫ s′

0

λW (v)dv

}
∫ s

0

∫ s′

0

cov

[
dNi(tk, u)− λW (u)Yi(tk, u)du∑b

l′=1 Pr{Xi(tl′) ≥ u}
,
dNi(tl, v)− λW (v)Yi(tl, v)dv∑b

l′=1 Pr{Xi(tl′) ≥ v}

]
ds ds′(A.8)

The covariance that we need to calculate is based on correlated terms from patient i:

cov
{
dNi(tk, u)− λW (u)Yi(tk, u)du, dNi(tl, v)− λW (v)Yi(tl, v)dv

}
= E{dNi(tk, u)dNi(tl, v)} − λW (u)E{Yi(tk, u)dNi(tl, v)}du− λW (v)E{Yi(tl, v)dNi(tk,

u)}dv + λW (u)λW (v)E{Yi(tk, u)Yi(tl, v)}du dv − E
{
dNi(tk, u)− λW (u)Yi(tk, u)du

}
E
{
dNi(tl, v)− λW (v)Yi(tl, v)dv

}
.

E{dNi(tk, u)dNi(tl, v)} involves the failure time of the same subject in different

observation windows. From the definitions of Xi(tk) and Xi(tl) we can deduce that
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the expectation is only non-zero when u+ tk = v + tl. Then

E{dNi(tk, u)dNi(tl, v)}

= lim
∆u,∆v→0

Pr{u ≤ Xi(tk) < u+ ∆u, δi(tk) = 1, v ≤ Xi(tl) < v + ∆v, δi(tl) = 1}

= lim
∆u→0

Pr{u ≤ Xi(tk) < u+ ∆u, δi(tk) = 1}I(v = u+ tk − tl)

= lim
∆u→0

Pr{u ≤ Xi(tk) < u+ ∆u, δi(tk) = 1|Xi(tk) ≥ u}Pr{Xi(tk) ≥ u}I(v = u+ tk − tl)

=λ(tk, u)Pr{Xi(tk) ≥ u}I(v = u+ tk − tl)du,

where du/∆u = 1 + o(du).

(a) tk ≤ tl (b) tk > tl

Figure A.1: Visual of relationship between follow-up intervals beginning at tk and tl
for two possible cases.

There are two cases we need to consider when calculating E{Yi(tk, u)dNi(tl, v)}:

tk ≤ tl and tk > tl. The first case is illustrated in Figure A.1(a). If we observe a

failure at time v = Xi(tl) for the observation window beginning at tl, the subject

can only be at risk up to time v + tl − tk in the observation window beginning at tk.

Therefore the expectation is only non-zero when u ≤ v + tl − tk. The second case is

illustrated in Figure A.1(b). The expectation is only non-zero when u ≤ v− (tk− tl).

When the failure occurs before calendar time tk, by definition Xi(tk) = 0. Therefore

the expectation is also non-zero when u = 0 and v < tk − tl. Note that if tk ≤ tl, the
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condition u = 0 and v < tk − tl is never satisfied. Hence,

E{Yi(tk, u)dNi(tl, v)}

= lim
∆v→0

Pr{Xi(tk) ≥ u, v ≤ Xi(tl) < v + ∆v, δi(tl) = 1}

= lim
∆v→0

Pr{v ≤ Xi(tl) < v + ∆v, δi(tl) = 1}
{
I(u ≤ v + tl − tk) + I(u = 0)I(v < tk − tl)

}
=λ(tl, v)Pr{Xi(tl) ≥ v}

{
I(u ≤ v + tl − tk) + I(u = 0)I(v < tk − tl)

}
dv.

Similarly,

E{Yi(tl, v)dNi(tk, u)}

=λ(tk, u)Pr{Xi(tk) ≥ u}
{
I(v ≤ u+ tk − tl) + I(v = 0)I(u < tl − tk)

}
du.

Lastly, E{Yi(tk, u)Yi(tl, v)} = Pr{Xi(tk) ≥ u,Xi(tl) ≥ v}. Substituting these

results into equation (A.8) gives us σ2.

A.4 Standard probability calculations for σ2 in special case

We provide the details of the calculation of the closed form asymptotic variance,

σ2, in the special case where the failure time, Ti, follows an exponential distribution

with hazard λ. The censoring time, Ci, is independently sampled from a Uniform[A−

A∗, A] distribution, where A is the length of the study with accrual time A∗. The

closed form asymptotic variance for this special case is required in Section 2.5 on page

15.
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For u, v ∈ (0, τ ], we have the following result:

Pr{Xi(tk) ≥ u}

=Pr{min(Ti − tk, Ci − tk)I(Ti ≥ tk, Ci ≥ tk) ≥ u}

=E[I{min(Ti − tk, Ci − tk)I(Ti ≥ tk, Ci ≥ tk) ≥ u}]

=E[I{min(Ti − tk, Ci − tk) ≥ u}I(Ti ≥ tk)I(Ci ≥ tk)]

=E{I(Ti − tk ≥ u)I(Ci − tk ≥ u)I(Ti ≥ tk)I(Ci ≥ tk)}

=E{I(Ti − tk ≥ u)I(Ti ≥ tk)}E{I(Ci − tk ≥ u)I(Ci ≥ tk)}

=Pr(Ti ≥ u+ tk)Pr(Ci ≥ u+ tk)

=exp(−λ(u+ tk))
A−max(A− A∗, u+ tk)

A∗
.

Similarly,

Pr(Xi(tk) ≥ u,Xi(tl) ≥ v)

=Pr{min(Ti − tk, Ci − tk)I(Ti ≥ tk, Ci ≥ tk) ≥ u,

min(Ti − tl, Ci − tl)I(Ti ≥ tl, Ci ≥ tl) ≥ v}

=E{I(Ti − tk ≥ u)I(Ti ≥ tk)I(Ti − tl ≥ v)I(Ti ≥ tl)}

∗E{I(Ci − tk ≥ u)I(Ci ≥ tk)I(Ci − tl ≥ v)I(Ci ≥ tl)}

=Pr(Ti ≥ max(u+ tk, v + tl))Pr(Ci ≥ max(u+ tk, v + tl))

=exp (−λ (max (u+ tk, v + tl)))
A−max(A− A∗, u+ tk, v + tl)

A∗
.

Since we assume exponential failure times, it is expected that we have constant
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hazards in each follow-up window and we show this here.

λ(tk, u)

= lim
∆u→0

Pr{u ≤ Xi(tk) < u+ ∆u, δi(tk) = 1|Xi(tk) ≥ u}
∆u

= lim
∆u→0

Pr{u ≤ Xi(tk) < u+ ∆u, δi(tk) = 1}
∆uPr{Xi(tk) ≥ u}

= lim
∆u→0

Pr(u ≤ Ti − tk < u+ ∆u)Pr(Ci ≥ u+ tk)

∆uPr(Li ≥ u+ tk)Pr(Ci ≥ u+ tk)

= lim
∆u→0

∫ u+∆u+tk
u+tk

λ exp(−λx)dx

∆u exp{−λ(u+ tk)}

= lim
∆u→0

exp{−λ(u+ tk)}{1− exp(−λ∆u)}
∆u exp{−λ(u+ tk)})

= lim
∆u→0

1− exp(−λ∆u)

∆u

= lim
∆u→0

λ∆u− λ2(∆u)2

2!
+ λ3(∆u)3

3!
+ . . .

∆u

= lim
∆u→0

λ− λ2∆u

2!
+
λ3(∆u)2

3!
+ . . .

=λ.

Using the above results we then have

λW (u)

=
b∑

k=1

λ(tk, u)
Pr(Xi(tk) ≥ u)∑b
l=1 Pr(Xi(tl) ≥ u)

=
b∑

k=1

λ
Pr(Xi(tk) ≥ u)∑b
l=1 Pr(Xi(tl) ≥ u)

=λ.



84

A.5 Alternative variance estimates

The asymptotic variance of the estimate of E{min(T, τ)} =
∫ τ

0
exp{−Λ̂(s)}ds,

where Λ̂(s) is the Nelson-Aalen estimate of the cumulative hazard, is evaluated using

the delta method.

V ar

[∫ τ

0

exp{−Λ̂(s)}ds
]

=

∫ τ

0

∫ τ

0

cov
[
exp{−Λ̂(s)}, exp{−Λ̂(s′)}

]
ds ds′

=

∫ τ

0

∫ τ

0

exp{−Λ̂(s)} exp{−Λ̂(s′)}V ar
[
Λ̂ {min(s, s′)}

]
ds ds′.

The estimate of the variance of Λ̂(s), assuming independence, is given by
∫ s

0
dN(u)/Y (u)2.

The robust sandwich estimate of the variance of the cumulative hazard Λ̂(s) is

given by

n∑
i=1

{∫ s

0

dNi(u)Y (u)− Yi(u)dN(u)

Y (u)2

}2

.

This variance estimate is based on fitting an independence working Cox proportional

hazards model with covariate Wi(tk) = 1 for i = 1, . . . , n, k = 1, . . . , b and adjusting

the covariance matrix for the association between event times within an individual

Lin & Wei (1989).



APPENDIX B

Supplementary Materials for Chapter III

B.1 Asymptotic Distribution of Overall τ-Restricted Mean
Survival

Suppose that in the dataset of combined follow-up windows we observe M events

at internal times {0 = T0 < T1 < . . . < TM < TM+1 = τ}, where times to event

from the same individual are correlated. Let Fj{dN(Tj), Y (Tj)} = dN(Tj)/Y (Tj).

For convenience, we submerge arguments of Fj and define Gm(F0, F1, . . . , Fm) =

exp(−
∑m

j=0 Fj). We can then rewrite µ̂∗(τ) as
∑M

m=0(Tm+1−Tm)Gm(F0, F1, . . . , Fm).

We then linearize Gm(F0, F1, . . . , Fm),m = 0, . . . ,M, via a Taylor series expansion

85
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about λW (Tj)dTj, j = 0, 1, . . . ,m, so that

√
n{µ̂∗(τ)− µ∗(τ)}

=
√
n

[
M∑
m=0

(Tm+1 −Tm) exp

{
−

m∑
j′=0

λW (Tj′)dTj′

}
− µ∗(τ)

]
(B.1)

+
√
n

M∑
m=0

(Tm+1 −Tm) exp

{
−

m∑
j′=0

λW (Tj′)dTj′

}
(−1)

[
m∑
j=0

{Fj − λW (Tj)dTj}

]
(B.2)

+
√
n

M∑
m=0

(Tm+1 −Tm) exp

{
−

m∑
j′=0

λW (Tj′)dTj′

}
1

2!

[
m∑
j=0

{Fj − λW (Tj)dTj}

]2

(B.3)

+
√
n

M∑
m=0

(Tm+1 −Tm) exp

{
−

m∑
j′=0

λW (Tj′)dTj′

}
{ higher order terms} . (B.4)

For s = Tm,
∑m

j=0 λ
W (Tj)dTj is a non-stochastic quantity that converges to∫ s

0
λW (u)du as n → ∞. Hence, term (B.1) converges to 0 as n → ∞. And terms

(B.3) and (B.4) converge in probability to zero if
∑m

j=0{Fj − λW (Tj)dTj}, asymp-

totically equivalent to
∫ s

0

{
dN(u)/Y (u)− λW (u)du

}
, converges in probability to zero

and
√
n[
∫ s

0
{dN(u)/Y (u) −λW (u)du}] converges to a distribution with finite variance.

By Glivenko-Cantelli and continuous mapping theorems,

δ1 = sup
u∈[0,τ ]

∣∣∣∣∣Y (u)

n
−

b∑
k=1

Pr{Xi(tk) ≥ u}

∣∣∣∣∣ p→ 0 (B.5)

and δ2 = sup
u∈[0,τ ]

∣∣∣∣∣∣
{
Y (u)

n

}−1

−

[
b∑

k=1

Pr{Xi(tk) ≥ u}

]−1
∣∣∣∣∣∣ p→ 0. (B.6)

To verify that the asymptotic variance of
√
n[
∫ s

0
{dN(u)/Y (u) −λW (u)du}] is fi-
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nite, we rewrite the expression as

√
n

∫ s

0

[
dN(u)

n

{
n

Y (u)
+

1∑b
l=1 Pr{Xi(tl) ≥ u}

− 1∑b
l=1 Pr{Xi(tl) ≥ u}

}
−λW (u)du

]
=
√
n

b∑
k=1

∫ s

0

dN(tk, u)− nλ(tk, u)Pr{Xi(tk) ≥ u}du
n
∑b

l=1 Pr{Xi(tl) ≥ u}

+
√
n

b∑
k=1

∫ s

0

dN(tk, u)

n

{Y (u)

n

}−1

−

[
b∑
l=1

Pr{Xi(tl) ≥ u}

]−1


≤
√
n

b∑
k=1

∫ s

0

dN(tk, u)− nλ(tk, u)Pr{Xi(tk) ≥ u}du
n
∑b

l=1 Pr{Xi(tl) ≥ u}
+ δ2

√
n

n∑
i=1

∫ s

0

dNi(u)

n
.(B.7)

The left term in (B.7) is the sum of b mean zero stochastic integrals of martin-

gales, each with finite asymptotic variance
∫ s

0
λ(tk, u)Pr{Xi(tk) ≥ u}/

[∑b
l=1 Pr{

Xi(tl) ≥ u}]2 du via the martingale central limit theorem. The asymptotic covari-

ance of any two of the b stochastic integrals with windows at tk and tl, k 6= l, is

∫ s

0

∫ s

0

1

[
∑b

l′=1 Pr{Xi(tl′) ≥ u}][
∑b

l′=1 Pr{Xi(tl′) ≥ v}]
×[

lim
∆u→0,∆v→0

Pr{u ≤ Xi(tk) < u+ ∆u, δi(tk) = 1, v ≤ Xi(tl) < v + ∆v, δi(tl) = 1}du dv

−λ(tk, u)Pr{Xi(tk) ≥ u}λ(tl, v)Pr{Xi(tl) ≥ v}du dv
]
,

which is also finite.

For the right hand term in (B.7), applying the central limit theorem to

√
n
∑n

i=1

∫ s
0
dNi(u)/n gives convergence to a normal distribution with finite variance.

Applying Slutsky’s theorem and (B.6), the right hand term in (B.7)
p→ 0.

Since
√
n[
∫ s

0
{dN(u)/Y (u)−λW (u)du}] converges to a distribution with finite vari-

ance,
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∫ s
0

{
dN(u)/Y (u)− λW (u)du

}
converges in probability to zero as n→∞. This com-

pletes the argument that terms (B.3) and (B.4) converge in probability to zero, leaving

us with term (B.2).

Therefore
√
n{µ̂∗(τ)− µ∗(τ)} is asymptotically equivalent in distribution to

√
n

M∑
m=0

(Tm+1 −Tm) exp

{
−

m∑
j′=0

λW (Tj′)dTj′

}
(−1)

[
m∑
j=0

{Fj − λW (Tj)dTj}

]
.

A Taylor series expansion of Fj{dN(Tj), Y (Tj)} about the expected values of dN(Tj)

and Y (Tj), used to make the non-linear Fj terms more tractable for understanding

the asymptotic distribution of µ̂∗(τ), gives

√
n

M∑
m=0

(Tm+1 −Tm) exp

{
−

m∑
j′=0

λW (Tj′)dTj′

}
m∑
j=0

[
λW (Tj)dTj −

E{dN(Tj)}
E{Y (Tj)}

]
(B.8)

+
√
n

M∑
m=0

(Tm+1 −Tm) exp

{
−

m∑
j′=0

λW (Tj′)dTj′

}
(−1)

m∑
j=0

dN(Tj)− E{dN(Tj)}
E{Y (Tj)} Y (Tj)

E{Y (Tj)}

 (B.9)

+
M∑
m=0

(Tm+1 −Tm) exp

{
−

m∑
j′=0

λW (Tj′)dTj′

}(
√
n

m∑
j=0

[Y (Tj)− E{Y (Tj)}][dN(Tj)− E{dN(Tj)}]
E{Y (Tj)}2

(B.10)

−
√
n

m∑
j=0

E{dN(Tj)}
E{Y (Tj)}3

[Y (Tj)− E{Y (Tj)}]2
)

(B.11)

+
√
n

M∑
m=0

(Tm+1 −Tm) exp

{
−

m∑
j′=0

λW (Tj′)dTj′

}
{ higher order terms}. (B.12)

Term (B.8) is equal to 0 since E{dN(Tj)} = n
∑b

k=1 λ(tk,Tj)Pr{Xi(tk) ≥ Tj}dTj

and E{Y (Tj)} = n
∑b

k=1 Pr{Xi(tk) ≥ Tj} giving E{dN(Tj)}/E{Y (Tj)} = λW (Tj)dTj.

Also, after plugging in these expectations, terms (B.10) through (B.12) can be shown
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to
p→ 0 as follows.

Term (B.10) is asymptotically equivalent to

√
n

∫ s

0

[Y (u)− n
∑b

k=1 Pr{Xi(tk) ≥ u}][dN(u)− n
∑b

k=1 λ(tk, u)Pr{Xi(tk) ≥ u}du]

n2
[∑b

l=1 Pr{Xi(tl) ≥ u}
]2

≤δ1

b∑
k=1

√
n

∫ s

0

dN(tk, u)− nλ(tk, u)Pr{Xi(tk) ≥ u}du

n
[∑b

l=1 Pr{Xi(tl) ≥ u}
]2 .

By the martingale central limit theorem, each of the b terms converge to a mean zero

normal process with finite variance
∫ s

0
λ(tk, u)Pr{Xi(tk) ≥ u}/

[∑b
l=1 Pr{Xi(tl) ≥ u}

]4

du.

The finite asymptotic covariance between any two of the b stochastic integrals with

follow-up windows starting at tk and tl, k 6= l, is

∫ s

0

∫ s

0

1

[
∑b

l′=1 Pr{Xi(tl′) ≥ u}]2[
∑b

l′=1 Pr{Xi(tl′) ≥ v}]2
×[

lim
∆u→0,∆v→0

Pr{u ≤ Xi(tk) < u+ ∆u, δi(tk) = 1, v ≤ Xi(tl) < v + ∆v, δi(tl) = 1}du dv

−λ(tk, u)Pr{Xi(tk) ≥ u}λ(tl, v)Pr{Xi(tl) ≥ v}du dv
]
.

Hence, applying (B.5) and Slutsky’s theorem, term (B.10)
p→ 0.

Term (B.11) is asymptotically equivalent to

√
n

∫ s

0

[Y (u)− n
b∑

k=1

Pr{Xi(tk) ≥ u}]2
∑b

l=1 λ(tl, u)Pr{Xi(tl) ≥ u}

n2
[∑b

l=1 Pr{Xi(tl) ≥ u}
]3 du

≤δ1

b∑
k=1

√
n

n∑
i=1

∫ s

0

[
Yi(tk, u)− Pr{Xi(tk) ≥ u}

n

] ∑b
l=1 λ(tl, u)Pr{Xi(tl) ≥ u}[∑b

l=1 Pr{Xi(tl) ≥ u}
]3 du.

By the central limit theorem, each of the b summands converge in distribution to a
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normal with finite asymptotic covariance between any two summands equal to

∫ s

0

∫ s

0

[
Pr{Xi(tk) ≥ u,Xi(tl) ≥ v} − Pr{Xi(tk) ≥ u}Pr{Xi(tl) ≥ v}

]
∗
∑b

l′=1 λ(tl′ , u)Pr{Xi(tl′) ≥ u}[∑b
l′=1 Pr{Xi(tl′) ≥ u}

]3

∑b
l′=1 λ(tl′ , v)Pr{Xi(tl′) ≥ v}[∑b

l′=1 Pr{Xi(tl′) ≥ v}
]3 du dv.

Hence an application of Slutsky’s theorem and (B.5) have term (B.11)
p→ 0. Sim-

ilar arguments applied to higher order terms show that (B.12)
p→ 0, leaving us with

term (B.9). Therefore
√
n{µ̂∗(τ)−µ∗(τ)} is asymptotically equivalent in distribution

to

√
n

∫ τ

0

exp

{
−
∫ s

0

λW (u)du

}
(−1)

∫ s

0

[
dN(u)− λW (u)Y (u)du

n
∑b

l=1 Pr{Xi(tl) ≥ u}

]
ds

=
√
n

1

n

n∑
i=1

b∑
k=1

(−1)

∫ τ

0

exp

{
−
∫ s

0

λW (u)du

}∫ s

0

[
dNi(tk, u)− λW (u)Yi(tk, u)du∑b

l=1 Pr{Xi(tl) ≥ u}

]
ds

=
√
n

1

n

n∑
i=1

b∑
k=1

−Zik{µ̂∗(τ)},

where Zik{µ̂∗(τ)} =
∫ τ

0
exp

{
−
∫ s

0
λW (u)du

} ∫ s
0

[
dNi(tk, u)− λW (u)Yi(tk, u)du

]
/[∑b

l=1 Pr{Xi(tl) ≥ u}
]
ds. Hence, the asymptotic distribution of

√
n{µ̂∗(τ)− µ∗(τ)}

boils down to application of the central limit theorem acting on mean zero independent

and identically distributed random variables Zi{µ̂∗(τ)} =
∑b

k=1−Zik{µ̂∗(τ)}, i =

1, . . . , n. We define Z̄{µ̂∗(τ)} =
∑n

i=1 Zi{µ̂∗(τ)}/n. By the central limit theorem

√
n[Z̄{µ̂∗(τ)} − 0] has a limiting mean 0 normal distribution with finite variance

σ2
∗ = V ar[Zi{µ̂∗(τ)}].

Empirical variance estimates of σ2
∗ are given by σ̂2

∗ =
∑n

i=1 [zi{µ̂∗(τ)} − z̄{µ̂∗(τ)}]2 /(n−
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1) where z̄{µ̂∗(τ)} =
∑n

i=1 zi{µ̂∗(τ)}/n, zi{µ̂∗(τ)} =
∑b

k=1 zik{µ̂∗(τ)} and

zik{µ̂∗(τ)} =

∫ τ

0

exp

{
−
∫ s

0

dN(u)

Y (u)

}{∫ s

0

dNi(tk, u)− dN(u)
Y (u)

Yi(tk, u)

Y (u)/n

}
ds.

B.2 Asymptotic Distribution of T∗

Under H0 : µ∗1(τ) = µ∗2(τ),

T∗ =

√
n1n2

n1 + n2

{µ̂∗1(τ)− µ̂∗2(τ)}

=

√
n2

n1 + n2

√
n1 {µ̂∗1(τ)− µ∗1(τ)} −

√
n1

n1 + n2

√
n2 {µ̂∗2(τ)− µ∗2(τ)} .

In Appendix B.1 we show that
√
ng{µ̂∗g(τ)−µ∗g(τ)}, g = 1, 2, each converge in dis-

tribution to a normal with mean 0 and variance σ2
∗g. Slutsky’s theorem applied to the

above expression for T∗ results in the desired mean zero limiting normal distribution

with variance π2σ
2
∗1 + π1σ

2
∗2.

B.3 Asymptotic Distribution of the Area under µ(t, τ) from
t1 to tb

The integrated τ -RMRL estimator is defined to be

µ̂(·, τ) =

∫ tb

t1

µ̂(tk, τ)dtk.

Since µ̂(tk, τ) is a special case of µ̂∗(τ) for b=1, results from Appendix B.1

show that
√
n{µ̂(tk, τ) − µ(tk, τ)} is asymptotically equivalent in distribution to
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√
n 1
n

∑n
i=1−Zik{µ̂(tk, τ)} where

Zik{µ̂(tk, τ)}

=

∫ τ

0

exp

{
−
∫ s

0

λ(tk, u)du

}∫ s

0

[
dNi(tk, u)− λ(tk, u)Yi(tk, u)du

Pr{Xi(tk) ≥ u}

]
ds.

Incorporating these results into the integrated τ -RMRL estimator,
√
n{µ̂(·, τ) −

µ(·, τ)} is asymptotically equivalent in distribution to

√
n

∫ tb

t1

µ̂(tk, τ)− µ(tk, τ)dtk

=

∫ tb

t1

√
n

1

n

n∑
i=1

−Zik{µ̂(tk, τ)}dtk

=
√
n

1

n

n∑
i=1

∫ tb

t1

−Zik{µ̂(tk, τ)}dtk

=
√
n

1

n

n∑
i=1

Zi{µ̂(·, τ)},

where Zi{µ̂(·, τ)} =
∫ tb
t1
−Zik{µ̂(tk, τ)}dtk is a mean zero random variable. Let

Z̄{µ̂(·, τ)} =
∑n

i=1 Zi{µ̂(·, τ)}/n. By the central limit theorem
√
n[Z̄{µ̂(·, τ)} − 0]

has a limiting mean 0 normal distribution with finite variance σ2
R = V ar[Zi{µ̂(·, τ)}].

Empirical variance estimates of σ2
R are given by σ̂2

R =
∑n

i=1 [zi{µ̂(·, τ)} − z̄{µ̂(·, τ)}]2

/(n− 1) where z̄{µ̂(·, τ)} =
∑n

i=1 zi{µ̂(·, τ)}/n and

zi{µ̂(·, τ)} =

∫ tb

t1

∫ τ

0

exp

{
−
∫ s

0

dN(tk, u)

Y (tk, u)

}{∫ s

0

dNi(tk, u)− dN(tk,u)
Y (tk,u)

Yi(tk, u)

Y (tk, u)/n

}
ds dtk.
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B.4 Asymptotic Distribution of TR

Under H0 : µ1(·, τ) = µ2(·, τ),

TR =

√
n1n2

n1 + n2

{µ̂1(·, τ)− µ̂2(·, τ)}

=

√
n2

n1 + n2

√
n1 {µ̂1(·, τ)− µ1(·, τ)} −

√
n1

n1 + n2

√
n2 {µ̂2(·, τ)− µ2(·, τ)} .

In Appendix B.3 we show that
√
ng{µ̂g(·, τ)− µg(·, τ)} each converge in distribu-

tion to a mean 0 normal with variance σR,g, g = 1, 2. By Slutsky’s theorem we have

that the expression above converges in distribution to a mean zero normal random

variable with variance π2σ
2
R,1 + π1σ

2
R,2.

B.5 Spacing of Follow-up Windows

The choice of {t1, . . . , tb} should be governed by potential to make efficiency gains

in estimating µ∗(τ). To gain intuition we consider the special case where a single

event occurs for each patient. In this case, derivation of an asymptotic closed form

variance of µ̂∗(τ) is tractable and efficiency of different spacings between {t1, . . . , tb}
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can be evaluated. In particular, the asymptotic variance of
√
nµ̂∗(τ) becomes

b∑
k=1

b∑
l=1

∫ τ

0

∫ τ

0

exp

{
−
∫ s

0

λW (u)du

}
exp

{
−
∫ s′

0

λW (v)dv

}
×∫ s

0

∫ s′

0

1[∑b
l′=1 Pr{Xi(tl′) ≥ u}

] [∑b
l′=1 Pr{Xi(tl′) ≥ v}

]×
[
λ(tk, u)Pr{Xi(tk) ≥ u}I(v = u+ tk − tl)du

−λW (u)λ(tl, v)Pr{Xi(tl) ≥ v}{I(u ≤ v + tl − tk) + I(u = 0)I(v < tk − tl)}du dv

−λW (v)λ(tk, u)Pr{Xi(tk) ≥ u}{I(v ≤ u+ tk − tl) + I(v = 0)I(u < tl − tk)}du dv

+λW (u)λW (v)Pr{Xi(tk) ≥ u,Xi(tl) ≥ v}du dv

−{λ(tk, u)− λW (u)}{λ(tl, v)− λW (v)}Pr{Xi(tk) ≥ u}Pr{Xi(tl) ≥ v}du dv
]
ds ds′.

In the special case where the event time follows an exponential distribution and the

censoring mechanism is uniform, λ(tk, u) = λW (u) = λ. Also, standard probability

calculations for u, v ∈ (0, τ ] give Pr{Xi(tk) ≥ u} = exp{−λ(u + tk)}{A −max(A −

A∗, u+ tk)}/A∗ and Pr{Xi(tk) ≥ u,Xi(tl) ≥ v} = exp {−λmax (u+ tk, v + tl)} {A−

max(A−A∗, u+tk, v+tl)}/A∗, where A is the length of the study with accrual time, A∗.

In the results that follow we assume n = 100, an exponential hazard corresponding to

µ∗(12) = 11 months (τ = 12 months) and a uniform(24,36) administrative censoring

mechanism.

Figure B.1 evaluates the potential for an overlapping follow-up window to con-

tribute efficiency in estimation of µ̂∗(τ). Fixed (non-overlapping) follow-up windows

at t1 = 0 and t3 = 12 are included in estimation and the vertical axis shows values

of the closed form asymptotic variance as an additional follow-up window starting at

t2 ∈ (0, 12) is used in estimation. We observe that an additional 12-month window

starting at 6 months optimizes the available precision from including a single overlap-
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ping follow-up window. Since the time-scale used in these calculations is arbitrary,

Figure B.1 suggests that a window evenly spaced between two existing windows has

the best potential to improve efficiency.

Figure B.1: Finite sample (n = 100) closed form asymptotic variance of µ̂∗(τ) as-
suming a single exponential event time for a 36 month study with an
administrative censoring mechanism when τ=12 months. t1 = 0, t3 = 12
months and we vary t2. Dashed line corresponds to variance of estimator
constructed using two follow-up windows t1 = 0 and t3 = 12.

Table B.1 explores the potential for efficiency gain with additional equally spaced

follow-up windows. The optimal variance identified in Figure B.1 is shown for the

case with tb = 12 with 3 windows; the dashed line in this figure corresponds to tb = 12

with 2 windows. Asymptotic relative efficiencies relative to use of a single window

at tb = 0 are given in the final column. Results indicate (a) additional follow-up

time, as indicated by increasing tb, provides the highest improvement in efficiency

and (b) introducing windows more frequently that at 6-month intervals results in

diminishing returns. Gains provided by (a) may require additional resources in the

implementation of a clinical trial, whereas available gains provided by (b) are cost-free.
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Based on this special case, we recommend using intervals starting from tk = (k−1)τ/2

for k = 1, . . . , b, where b is chosen so that the final follow-up interval starting at tb

does not exceed the study period. Simulation methods are recommended to explore

the merits of more complex designs than given here.

Table B.1: Study of follow-up window choices based on finite sample (n = 100) closed
form variance (σ2/n) and Asymptotic Relative Efficiency (ARE) for the
special case were we assume a single exponential event time per patient
in a 36 month study with an administrative censoring mechanism.
Number of {t1, . . . , tb} σ2/n ARE
Windows

tb = 0 1 0 0.071 1.00

tb = 12
2 0, 12 0.039 1.82
3 0, 6, 12 0.035 2.03
5 0, 3, 6, 9, 12 0.035 2.03

tb = 24
3 0, 12, 24 0.030 2.37
5 0, 6, 12, 18, 24 0.026 2.73
9 0, 3, 6, 9, 12, 15, 18, 21, 24 0.025 2.84

B.6 Simulation Study: Empirical Mean 12-month RMRL

The plot of the empirical mean 12-month RMRL for group 1 and for each value

of alpha for group 2 is given in Figure B.2, B.3 and B.4 for scenarios of immedi-

ate treatment effect, delayed treatment effect and short duration treatment effect

respectively.

In these plots we observe that assuming proportional hazard results in constant

parallel trajectories for the τ -RMRL when the events are uncorrelated. When the

events are correlated, we no longer have constant τ -RMRL functions, but rather the

τ -RMRL are initially decreasing then constant. We were initially perplexed by why

this would be the case. In order to better understand the dependent data structure

we considered the simpler scenario where we only have recurrent events with no
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(a) Uncorrelated events
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(b) Strongly correlated events

Figure B.2: Plot of the empirical mean 12-month RMRL for group 1 (black) and for
each value of alpha for group 2 (α = 1: red, α = 0.9: green, α = 0.8: dark
blue, α = 0.7: light blue, α = 0.6: pink) when we assume proportional
hazards.

terminating events. In this case the simulations still showed decreasing τ -RMRL

functions with greater slopes for stronger positive correlations. To explain the τ -

RMRL function at 6 months, we need to understand the distribution of the next

event from 6 months. T1 and T2 are the times to recurrent event from time 0. They

are defined as T1 = S1 and T2 = S1 + S2 in terms of gap times S1 and S2. In our

simulations, we assume gap times are exponentially distributed with parameter λS.

If T1 > 6 then the next event at 6 months will follow the same exponential

distribution as time 0, i.e ∼ Exponential(λS). If T1 < 6 and T2 > 6 then the next

event from 6 months ∼ T2|T1 < 6, T2 > 6. The survival function of this distribution is

Pr(T2 > t, T1 < 6)/Pr(T2 > 6, T1 < 6) for t > 6. The probability Pr(T2 > t, T1 < 6)
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(a) Uncorrelated events
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(b) Strongly correlated events

Figure B.3: Plot of the empirical 12-month RMRL for group 1 (black) and for each
value of alpha for group 2 (α = 1: red, α = 0.9: green, α = 0.8: dark blue,
α = 0.7: light blue, α = 0.6: pink) when we assume delayed proportional
treatment effect.

can be written in terms of the random variables S1 and S2,

Pr(T2 > t, T1 < 6)

=Pr(S1 + S2 > t, S1 < 6)

=

∫ 6

0

Pr(S2 > t− s|S1 = s)fS1(s)ds.

If S1 and S2 are independent, the survival function of T2|T1 < 6, T2 > 6 is

exp{−λS(t− 6)} for t > 6, i.e ∼ Exponential(λS). If S1 and S2 are positively corre-

lated Pr(S2 > t − s|S1 = s) < Pr(S2 > t − s), where s ∈ [0, 6) and t > 6, since S1

is small and therefore S2 is then more likely to be small. We can define k(t) to be a

function such that

Pr(T2 > t, T1 < 6)

=k(t)6λS exp(−λSt),
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(a) Uncorrelated events
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(b) Strongly correlated events

Figure B.4: Plot of the empirical 12-month RMRL for group 1 (black) and for each
value of alpha for group 2 (α = 1: red, α = 0.9: green, α = 0.8: dark
blue, α = 0.7: light blue, α = 0.6: pink) when we assume short duration
treatment effect.

where 0 < k(t) < 1 for t > 6 and is a decreasing function of t. Intuitively k(t) must be

a decreasing function because when S1 and S2 are positively correlated the conditions

on S2 are more restrictive and it is less likely that S2 > t − s for any s ∈ [0, 6).

Therefore the survival function of T2|T1 < 6, T2 > 6 is k(t) exp{−λS(t − 6)}/k(6)

where k(t)/k(6) < 1 for t > 6. Therefore the area under the survival function up to

τ is smaller for positively correlated recurrent events.



APPENDIX C

Supplementary Materials for Chapter IV

C.1 Patient specific hazards

To simulate the failure time Ti for i = 1, . . . , n, we require patient specific hazards

for the survival function P{Ti−tj > u|Ti > tj, Z̄1i(u+tj), Z2i} = exp{−
∫ tj+u
tj

[λi1I(0 ≤

v ≤ 6) + λi2I(6 < v ≤ 12) + λi3I(12 < v < ∞)]dv}, that obey the restricted mean

model E(log[min{Ti(tj), τ}]) = β0 + β1Z1i(tj) + β2Z2i.

Therefore we have

β0 + β1Z1i(tj) + β2Z2i

= −
∫ τ

0

log(u)dP{Ti − tj > u|Ti > tj, Z̄1(u+ tj), Z2}

+ log(τ)P{Ti − tj > τ |Ti > tj, Z̄1(τ + tj), Z2},

for each window tj, j = 1, 2, 3. In this case we have three nonlinear equations with

three unknown parameters that we need to solve for: λi1, λi2 and λi3. In each case

the solution is obtained using numerical algorithms for nonlinear equations.

100
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Starting with j = 3, we have

β0 + β1Z1i(12) + β2Z2i

=

∫ 12

0

log(u)λi3 exp{−uλi3}du+ log(12) exp{−12λi3},

where λi3 is the only unknown quantity.

For j = 2, we have

β0 + β1Z1i(6) + β2Z2i

=

∫ 6

0

log(u)λi2 exp{−uλi2}du+

∫ 12

6

log(u)λi3 exp{−6λi2 − uλi3}

+ log(12) exp{−6λi2 − 6λi3},

where λi2 is the only unknown quantity.

For j = 1, we have

β0 + β1Z1i(0) + β2Z2i

=

∫ 6

0

log(u)λi1 exp{−uλi1}du

+

∫ 12

6

log(u)λi2 exp{−6λi1 − uλi2}+ log(12) exp{−6λi1 − 6λi2},

where λi1 is the only unknown quantity.
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