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Abstract 

G protein-coupled receptors (GPCRs) are the primary signal transduction units 

responsible for the communication between cells and their environment. Thus, GPCRs 

are involved in every aspect of human physiology and are currently the target of more 

than 30% of drugs.  Understanding the activation, signaling, and silencing of GPCRs is 

crucial for designing therapeutic strategies and modern agents for treating several 

pathologies.  Here we applied single particle electron microscopy (EM) analysis to obtain 

the first snapshots of agonist occupied β2-adrenergic receptor (β2AR), a well-studied 

model GPCR, in complex with its primary signal transducer, the heterotrimeric G protein 

Gs (Gαsβγ).  EM 2D averages and 3D reconstructions of the detergent-solubilized 

complex revealed the complex architecture, and, unexpectedly, showed that the α-helical 

(AH) domain of Gαs is highly flexible in the absence of nucleotide. In contrast, the 

presence of the pyrophosphate mimic foscarnet, and also the presence of GDP favor the 

stabilization of the AH domain on the Ras-like domain of Gαs. Furthermore, we 

employed single particle EM to study the 3D architecture of β2AR in complex with β-

arrestin-1 (βarr), which is responsible for GPCR silencing and internalization. To this 

end, we took advantage of an optimized β2AR-βarr preparation that was based on 

complex stabilization by a Fab antibody. The 3D reconstructions and modeling of the 

β2AR - βarr complex provide novel insights into arrestin binding on GPCRs. Thus, herein 

we describe a starting framework to understand the structural basis of GPCR activation, 

signaling and regulation. 

Additionally, epigenetic regulation and signaling is a critical aspect of cellular function as 

well.  We have reconstituted fully functional yeast and human Set1/COMPASS complex, 

the first H3K4 methylase, in vitro and have identified the minimum subunit composition 

required for histone H3K4 methylation.  3D cryo-EM reconstructions of the core yeast 

complex, combined with immunolabeling and 2D EM analysis of the individual 



 xvii 

subcomplexes reveal a Y-shaped architecture with, the SET domain of Set1 is located at 

the juncture of Cps50, Cps30 and the Cps60-Cps25 module, lining the walls of a central 

channel that may act as the platform for catalysis and regulative processing of various 

degrees of H3K4 methylation.   

 



 1 

Chapter 1 Introduction 

1.1 Structure and function of membrane proteins 

Membrane proteins are a tremendously important group of proteins that connects the 

extracellular environment to the interior environment of the cell.  Membrane proteins 

serve a variety of functions including: transport of molecules and ions across the 

membrane, specific cell-cell interaction  (ie. immune response), and signal relay between 

the cell’s extracellular and intracellular environments.  There are two major categories of 

membrane proteins; peripheral and integral.  Peripheral membrane proteins are mostly 

transiently associated with the membrane through a combination of electrostatic, 

hydrophobic, and other non-covalent interactions.  Additionally, peripheral proteins may 

be post-translationally modified with a variety of fatty acid chains or 

glycosylphosphatidylinositiol (GPI) that may anchor the protein to the lipid bilayer 

(Figure 1-1).  Integral membrane proteins typically cross the plasma membrane with at 

least one pass possessing either α-helical or β-barrel fold.  Their hydrophobic residues 

that interact with the fatty acyl groups of the phospholipid bilayer characterize these 

proteins as integral membrane proteins.   

 

Figure 1-1. Illustration of membrane protein – plasma membrane interactions. 



 2 

There are two types of membrane proteins; peripheral and integral.  Peripheral membrane 
proteins are those that interact with one side (extracellular or intracellular) of the 
membrane, such as glycolipid or phospholipid anchor.  Integral membrane proteins span 
across the lipid bilayer represented by the single-pass or multi-pass proteins. 

While membrane proteins make up approximately 30% of the proteome, there are 

relatively few high- resolution structures determined because membrane protein 

structures are more difficult to crystalize than soluble proteins.   Less than 2% of the 

coordinate files in the Protein Data Bank (PDB) consist of membrane proteins (Figure 1-

2).  There are many difficulties that cause this disparity, including protein expression and 

purification, solubilization, and further stabilization of hydrophobic regions of these 

membrane proteins that makes it difficult to obtain high-resolution structures.  Recent 

advances in structural techniques have helped get past this roadblock, or at least alleviate 

some of these challenges. 

                   

Figure 1-2. Number of membrane protein structures currently in the PDB data 
bank. 
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1.2 G protein-coupled receptors as signal transduction units 

G protein-coupled receptor overview 

G protein-coupled receptors (GPCRs) are the largest and most diverse membrane protein 

families, encoding more than 800 genes in the human genome (Fredriksson Mol. Pharm, 

2003).  GPCRs consist of seven transmembrane (7-TM) α-helices that arrange 

themselves into a tertiary barrel-like structure (Figure 1-3). These integral membrane 

proteins  are involved in the signal transduction that mediates many cellular responses to 

an assortment of ligands including: hormones, nucleotides, peptides, and amines.  

Additionally GPCRs are responsible for olfaction, taste and vision among many other 

physiological processes. 

 

Figure 1-3. First high-resolution GPCR crystal structure. 
The x-ray crystal structure of rhodopsin was solved in 2000 (Palczewski et al., 2000), and 
was the first high-resolution structure of a GPCR. 

The 7-TM helices of GPCRs form a cavity near the plasma membrane that acts as a 

ligand-binding domain, threreby, mediating this cross-talk across the membrane with 
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intracellular interactions with guanine nucleotide-binding regulatory proteins (G proteins) 

(Strader et al., 1994).  There are five main families of GPCRs classified based on their 

three-dimensional structural similarities and amino acid sequence: A, B, C, adhesion and 

Frizzled/Taste2 (Fredriksson et al., 2003). 

GPCR structural characteristics 

The GPCR architecture is typically divided in three regions: the extracellular region, 

consisting of the amino terminus and three extracellular loops (ECL1-ECL3); the 

transmembrane (TM) region containing seven α-helices (TM1-TM7); and the 

intracellular region possessing three intracellular loops (ICL1-ICL3), an intracellular 

amphipathic helix (H8), and the carboxy terminus (Venkatakrishnan et al., 2013) (Figure 

1-4).  The greatest homology across different GPCRs is within the transmembrane 

regions, with the most diversity coming on the carboxy terminus, the amino terminus, and 

the intracellular loop spanning between helix 5 (TM5) and helix 6 (TM6).  The most 

variability occurs on the N-terminus where the sequence can be fairly short for 

monoamine and peptide receptors (10-50 amino acids), and much longer for glutamate 

and glycoprotein hormone receptors (350-600 amino acids) (Kobilka, 2007).  The 

conserved tight barrel-like formation of the hydrophobic 7-TM helices is important for 

structural stability and is involved with ligand binding. 

                  

Figure 1-4. Schematic of a GPCR 
A representative diagram of the general structure and domain assignment of a GPCR 
seven transmembrane protein (7-TM).  The extracellular portion consists of an N-
terminal domain and three extracellular loops (ECL1-3).  There are seven transmembrane 
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helices (TM1-7).  The intracellular portion includes 3 intracellular loops (ICL1-3), an 
amphipathic helix 8 (H8), and a C-terminal tail. 

Modes of GPCR activation 

The large extent of sequence diversity amongst the N-terminus and extracellular loops of 

GPCRs is thought to partially dictate ligand specificity.  The interaction between the 

ligand and the extracellular portion of the receptor is critical to initiate a transmembrane 

signal transduction event.  Ligands are categorized by their effect on the receptor, and 

they typically fall into three major categories: (1) agonist, a compound that elicits 

maximal activation response of the receptor, (2) partial agonist, a compound that 

activates the receptor, but is unable to get maximal response, and (3) inverse agonist that 

has the same binding site as agonist, but exerts the opposite pharmacological effect of 

agonist or reverses constitutive activity of receptor.  Upon ligand binding to the 

extracellular of the receptor, the receptor undergoes a conformational rearrangment.  In 

the case of an agonist binding to a receptor, this ligand-binding event causes the receptor 

to rearrange to its activated state propagating the signal through the membrane.  This also 

causes a conformation change to the intracellular portion of the receptor, allowing the 

receptor in its activated to state to interact with the intracellular G protein (Figure 1-5).   

 

Figure 1-5. Diagram of GPCR activation and G protein interaction. 
In their respective basal states, the G protein heterotrimer is in its GDP bound, trimeric 
form, and the receptor is in its unbound, inactive state.  The G protein cannot interact 
stably with the inactive receptor conformation.  Upon agonist binding to the extracellular 
portion of the receptor, this causes a conformational shift of the transmembrane helices 
changing the intracellular conformation.  This intracellular conformation in the receptor’s 
active form now allows the G protein to form a complex with the receptor, and further 
transmit the signal. 

β2-adrenergic receptor as model system 
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The β2-adrenergic receptor (β2AR) has been a model system for studying the diverse 

family of GPCRs over the past 40 years.  β2AR is a GPCR that is activated by adrenaline, 

and plays important roles in pulmonary and cardiovascular physiology.  The sites of 

interaction between receptor and agonist have been extensively studied through 

mutagenesis (Strader et al., 1989; Wieland et al., 1996), and many biophysical studies 

characterizing agonist binding and conformational changes that lead to activation 

(Ghanouni et al., 2001a; Ghanouni et al., 2001b; Yao et al., 2006).  Additionally there are 

several determined crystal structures of the β2AR bound to partial inverse agonist and 

antibody (Rasmussen et al., 2007), bound to inverse agonist with mutations to help 

solubilization (Cherezov et al., 2007), bound to irreversible agonist in its active form 

(Rosenbaum et al., 2011), and in its active form bound to camelid antibody (Rasmussen 

et al., 2011) (Figure 1-6).   These different high-resolution structures have aided in better 

understanding the conformational changes that occur upon β2AR activation.  

 

Figure 1-6. β2AR crystal structures. 
Left, β2AR crystal structure stabilized by partial inverse agonist, and T4 Lysozyme 
(purple). (PBD: 2RH1).  Middle, β2AR crystal structure in active form stabilized by 
camelid antibody, nanobody 80 (Nb80, green; PDB: 3P0G).  Right, overlay of two β2AR 
crystal structures. 
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As mentioned above, the majority of GPCR signaling is mediated through GPCR/G 

protein interactions. β2AR can couple to both the stimulatory subunit of the 

heterotrimeric G protein (Gαs) and the inhibitory subunit (Gαi) (Xiao et al., 1999), but 

can also signal in a G protein-independent manner through the MAP kinase pathway 

mediated by arrestin (Azzi et al., 2003). β2AR desensitization involves many pathways 

that includes receptor phosphorylation, arrestin-mediated endosomal internalization, 

lysozomal degradation, and receptor recycling (Freedman and Lefkowitz, 1996).  

1.3 G protein heterotrimer and other down stream effectors 

Guanine nucleotide-binding proteins (G proteins) are a family of proteins that are 

involved in intracellular signal transduction, primarily mediated by GPCRs. G proteins 

belong to the GTPase family of enzymes given that their activity is regulated by the 

ability to bind and hydrolyze guanosine triphosphate (GTP) to guanosine diphosphate 

(GDP). There are two classes of G proteins: the first includes small monomeric proteins 

that function as GTPases (eg. Ras), and the second class includes those that form and 

function in complex as a G protein heterotrimer. 
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Figure 1-7.  G-protein heterotrimer. 
a, Diagram of a heterotrimeric G protein that consists of three subunits: Gα, β, and γ.  Gα 
subunit (orange) has two domains, the Ras-like domain that has GTPase activity and the 
alpha helical domain.  The β subunit has a WD40 seven-β propeller fold, and the γ 
subunit forms a constitutive heterodimer with the β subunit.  The α and γ subunits also 
have posttranslational modifications to interact with the lipid bilayer. b, Crystal structure 
of Gt heterotrimer (Lambright et al. Nature. 1996; PDB: 1GOT). Subunits have same 
respective coloring as seen in (a) with GDP bound to the α subunit (purple). 

The G protein heterotrimer consists of three subunits: a guanyl nucleotide binding α 

subunit (39 – 52 kDa), a β subunit (~35 kDa), and a γ chain (8 kDa) (Stryer and Bourne, 

1986) (Figure 1-7).  G proteins are divided into four families based on the sequence 

similarity in the Gα subunit: Gαs, Gαi, Gαq, and Gα12 (Oldham and Hamm, 2008).  

The α-subunit possesses two domains: the Ras domain that has GTPase activity, and the 

alpha helical domain.  The Ras domain of Gα is the most highly conserved region. It 

possesses the GTPase activity, but also is involved in the binding interface to the βγ 

subunit to form the heterotrimeric complex.  The β subunit is characterized by its WD40 

repeat, seven β-propeller fold (Wall et al., 1995).  The γ subunit forms a heterodimer with 

the β subunit by a coil-coil interaction on the γ N-terminus.  Additionally, the C-terminus 
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of the γ subunit undergoes an isoprenyl post-translational modification that allows for 

membrane interaction.    

β2AR and the G protein cycle 

β2AR can activate two families of G proteins: Gs (stimulatory) and Gi (inhibitory), which 

differentially regulates one of its downstream effectors adenylyl cyclase (AC).  In its 

basal, inactive state the G protein heterotrimer is in a GDP bound state.  When agonist 

binds to the receptor, β2AR goes from an inactive to active conformation.  This 

conformational change on the intracellular portion of the receptor, now allows the G 

protein heterotrimer to associate with the receptor, forming a receptor/G protein complex.  

Upon complex formation, GDP is released from the α-subunit of the G protein.  Due to 

significantly higher concentrations of GTP relative to GDP inside a cell, GTP then binds 

to the nucleotide-free α subunit leading to the dissociation of the G protein α and βγ 

heterodimer subunits from the receptor.   

 

Figure 1-8. Conversion of ATP to 3’,5’-cyclic AMP and diphosphate mediated by 
adenylyl cyclase (AC). 
 

After the dissociation of the G protein heterotrimer, the separate Gα-GTP and Gβγ 

subunits go on to modulate the activity of different cellular effectors (ie. kinases, 

channels, and other enzymes).  In the case of Gαs, it proceeds to interact and stimulate 

adenylyl cyclase (AC).  AC catalyzes the conversion of ATP to 3’,5’-cyclic AMP 

(cAMP) (Figure 1-8).  cAMP is characterized as a second messenger, and it is used for 

intracellular signal transduction.  It is involved in the regulation of ion channels, protein 

kinases, and other cyclic nucleotide binding proteins.  Gαi conversely leads to the 
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inhibition of AC, and therefore lower levels of cAMP.  The dissociated Gβγ heterodimer 

also has its own down stream effectors, for example, regulating the function of Ca2+ 

channels.  GTP hydrolysis then occurs in the Gα subunit, and the G protein heterotrimer 

reassembles from the Gα and Gβγ subunits (Figure 1-9).  

 

Figure 1-9. Activated receptor – G protein cycle 
In their respective basal states, the G protein heterotrimer is in its GDP bound, trimeric 
form, and the receptor is in its unbound, inactive state.  The G protein cannot interact 
with the inactive receptor.  Agonist binding to the extracellular portion of the receptor 
causes a conformational shift of the transmembrane helices changing the intracellular 
conformation.  This intracellular conformation in the receptor now allows the G protein 
to form a complex with the receptor.  Upon complex formation GDP is released from the 
α- subunit and is replaced with GTP that is in relatively higher concentrations in the cell.  
GTP binding causes the dissociation of the G protein heterotrimer in the α-GTP 
monomer and βγ heterodimer.  Gα interacts with its downstream effector Adenylyl 
cyclase that converts ATP to cyclic AMP (cAMP), while the βγ heterodimer regulates 
Ca2+ channels.  Once the Gα subunit hydrolyzes GTP to GDP, the G protein 
heterotrimeric complex reforms. 

GPCR silencing 
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After activation, GPCRs can become silenced or desensitized by arrestins.  Arrestins are 

versatile adapter proteins that form complexes with GPCRs after agonist binding and 

phosphorylation by G protein receptor kinases (GRKs) (Luttrell and Lefkowitz, 2002). 

Arrestins consist of four subtypes: Arrestin-1, Arrestin-2 (β-Arrestin-1), Arrestin-3 (β-

Arrestin-2), and Arrestin-4 (cone arrestin).  Arrestin-1 and Arrestin-4 are considered 

‘visual arrestins’ primarily being expressed in the retina, while the β-Arrestins (1 and 2) 

are expressed ubiquitously.  β-Arrestin-1 (βarr1) can bind and desensitize different 

GPCRs including β2AR and rhodopsin, but has a preference for β2AR (Lohse et al., 

1990).  β-Arrestin leads to the termination of G protein activation by uncoupling the 

receptor from the G protein, and also is involved in targeting receptors for clathrin-

mediated degradation (Figure 1-10).   

 

Figure 1-10.  Receptor – arrestin cycle 
As mentioned in the previous figure, once GDP is released and GTP binds the Gα-
subunit, the G protein heterotrimer dissociates and moves to interact with downstream 
effectors.  Subsequently the C-terminal tail and intracellular loops of the receptor become 
phosphorylated by G protein receptor kinases (GRKs).  Intracellular receptor 
phosphorylation leads to the recruitment of arrestin.  Receptor-arrestin complex 
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formation leads to subsequent clathrin mediated endocytosis, or Arrestin dependent 
signaling. 

1.4 β-arrestins 

Mechanism of β-arrestin / receptor interaction 

The primary function of arrestin is to stop receptor signaling via G proteins.  This was 

how the first member of its family, visual arrestin (Arrestin-1), was discovered (Kuhn, 

1978).  Before its function was fully known, it was understood that the activation and 

subsequent phosphorylation of rhodopsin led to the binding of arrestin.  Later on, the 

ubiquitously expressed G protein receptor kinases (GRKs) were discovered based on the 

lack of coupling between β2AR and G protein (Benovic et al., 1987).  Arrestins have an 

elongated structure with two β-sheet domains, the C domain and the N domain.  

               

Figure 1-11.  Crystal structure of β-Arrestin1. 
The main phosphate sensor, Arg175 (highlighted in purple), shown in the polar core of 
arrestin is shielded, whereas other positively charged residues in the N-domain 
(highlighted in orange (K14/K15) are highly exposed. 

A model of arrestin-receptor activation shows that there is a sequential multi-site process 

(Gurevich and Benovic, 1993). This shows arrestin has 2 “sensor” sites: a “phosphate 

sensor” that interacts with receptor-bound phosphates, and an “activation sensor” that 

binds the receptor after conformational changes upon activation.  Mutagenesis assays 

have helped identify the residues that contribute to the “phosphate sensor,” and are 

located in what is termed the polar core including residues from both the C and N 

domains of arrestin (Figure 1-11).  
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Non-canonical β-arrestin function 

The canonical view of GPCR silencing where an activated receptor becomes 

phosphorylated by GRKs, forms a complex with arrestin, is desensitized and then is 

subsequently subjugated to clathrin-mediated endocytosis for degradation is only a part 

of β-arrestins function. β-arrestins also function as adaptor proteins that possess the 

ability to signal through various mediators such as phosphoinositide 3-kinase (PI3K), 

mitogen-activated protein kinases (MAPKs), SRC, and nuclear factor-κB (NF-κB) 

(Rajagopal et al., 2010) (Figure 1-12).  One example of β-arrestin 1 mediated signaling is 

the recruitment of activated SRC, a non-receptor tyrosine kinase, which subsequently 

leads to the downstream activation of extracellular signal-regulated kinase (ERK) 

(Luttrell et al., 1999).  The concept of biased agonism, where the binding of different 

ligands can preferentially dictate which signaling pathway to activate has been shown in 

the activation of different G proteins is hypothesized to apply to differential arrestin 

signaling as well.   
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Figure 1-12.  β-Arrestin signaling 
Example of a β-Arrestin-dependent mitogen-activated protein (MAP) kinase signaling 
network downstream from the angiotensin receptor subtype 1a (AT1aR). 

1.5 Epigenetic Regulation 

The organization of genetic information is a well-orchestrated event.  As cells go through 

different processes such as development and differentiation, how DNA is packed, moved, 

activated, silenced, and repaired is regulated by a number of different epigenetic cues.  

Histones pack DNA into nucleosomes, which the most basic form of packing and 

organizing DNA into the nucleus (Kornberg, 1974; Luger et al., 1997).  The N-termini of 

histones consist of tails that protrude outward from the nucleosome and undergo different 

posttranslational modifications. These modifications regulate the accessibility of DNA to 

regulatory factors and affect events such at DNA repair, transcription, and replication.  
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Acetylation, methylation, sumoylation, ubiquitination, deimination, and ADP-

ribosylation are the main posttranslational modifications that histones can undergo 

(Shilatifard, 2006; Zhang, 2003).  Typically, histone lysine acetylation and 

serine/threonine phosphorylation upregulate gene expression, whereas the effects of 

histone lysine methylation are site-dependent (Shilatifard, 2006).  Additionally, the extent 

of the histone lysine methylation (mono-, di-, or trimethylation) adds to the complexity of 

this type of regulation. 

Methylation of lysine 4 on histone 3 (H3K4) is a paradigm for the complexity of 

outcomes from histone tail posttranslational modifications due to the variation of process 

regulation relative to the level of methylation.  Mono-, di-, and trimethylation of H3K4 

have been shown to influence and regulate gene activation and transcription.  H3K41me 

(monomethlylation), and to a greater level, H3K43me (trimethylation) have been shown 

to activate gene transcription. The first H3K4 methylase, Set1, was discovered in yeast 

and possess a catalytic SET domain (Miller et al., 2001).  Set1 in yeast forms a 

macromolecular complex named COMPASS (Complex Proteins Associated with Set1), 

and has the capability to mono-, di-, and trimethylate H3K4 (Krogan et al., 2002; Miller 

et al., 2001). 

1.6 COMPASS histone methyltransferase complex 

The COMPASS complex was discovered in yeast as the first H3K4 methylase.  It 

possesses the ability to mono-, di-, and trimethylate H3K4 via its catalytic subunit Set1.  

The other subunits in the yeast COMPASS complex are named Cps60 (Bre2), Cps50 

(Swd1), Cps40 (Spp1), Cps35 (Swd2), Cps30 (Swd3), and Cps25 (Sdc1) according to 

their apparent molecular weight. How each subunit works in the methyltransferase 

activity of the complex has been the topic of intense investigation. The Cps30 and Cps50 

subunits are characterized by their WD40 β-propeller fold.  A crystal structure of WDR5, 

the human homolog of Cps30, was co-crystallized with peptides of RbBP5 (Cps50) and 

MLL1 (Set1) giving further evidence to the protein-protein interactions within the 

complex (Figure 1-13).  Set1, Cps50, and Cps30 are necessary for mono-, di-, and 

trimethylation of H3K4, however, Cps25 and Cps40 are only necessary for the 

trimethylation of histone H3K4 (Schneider et al., 2005). There are homologous 
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COMPASS-like complexes in higher organisms, with at least seven complexes in 

mammalian cells that are capable of H3K4 methylation (Shilatifard, 2008).  The MLL 

complexes (1-4) in mammalian cells have been shown to form COMPASS-like 

complexes and function as H3K4 methylases.  Many subunits in these complexes are 

shared and have conserved function from yeast to human. 

 

Figure 1-13. Crystal structure of human Cps30 (WDR5), co-crystallized with 
peptides. 
Crystal structure of human WDR5 (green), yeast Cps30 homolog. Crystallized with 
RbBP5 (Cps50, orange), and MLL1 (Set1, cyan) peptides. PDB: 3P4F. 

Set1 methyltransferase 

Yeast Set1 methyltransferase is a 1,080 amino acid protein that contains two RNA 

recognition motifs (RRM1&2) near the C-terminus, an n-SET domain between amino 

acids (AAs) 762 and 938, the SET domain that contains the catalytic residues from AAs 

938-1061, and a post-SET domain at the N-terminus.  A recent crystal structure of the 

human MLL1 SET domain in complex with a histone H3 peptide revealed the binding 

characteristics of the peptide in the SET active site (Southall et al., 2009).   
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Figure 1-14.  Set1 schematic and MLL1 crystal structure. 
Schematic of the yeast Set1 protein.  Set1 contains two RNA recognition motifs (RRM), 
an n-SET domain between residues 762 and 938, the catalytic SET domain from residues 
938 to 1061, and a post-SET domain at the C-terminus.  Bottom, crystal structure of the 
SET domain of human MLL1 (blue) co-crystalized with histone H3 peptide (red) (PDB: 
2W5Z). 

The essential active site residues (Phe3884, Tyr3942, Tyr3944, and Phe3946 and the 

main chain of the tetrapeptide, residues Cys3882 to Phe3885) have an arrangement 

similar to those of other SET domains.  While Set1 and MLL(1-4) is the catalytic subunit 

of the COMPASS methyltransferase complex, they cannot methylate H3K4 alone, but 

require additional subunits of optimal activity.  The additional subunits of COMPASS are 

necessary for mono-, di-, and trimethylation function, highlighting the role of the entire 

complex in methylation events. 

COMPASS crosstalk in H3K4 methylation 

Different epigenetic cues are the foundation for regulating the complexity of DNA 

organization, repair, replication, and gene expression.  Recognition of different histone 
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posttranslational modifications for one purpose can lead to the occurrence of additional 

modifications to initiate an entirely different function.  It has been shown that COMPASS 

purified from yeast strains lacking H2B monoubiquitination has several fold lower 

presence of the Cps35 subunit in the complex (Lee et al., 2007).  COMPASS that has 

been purified from the same H2B monoubiquitin-deficient background lacks the 

enzymatic ability to trimethylate H3K4.  Additionally, Cps35 has been shown to interact 

with chromatin in an H2B monoubiquitination-dependent manner (Lee et al., 2007; 

Takahashi et al., 2009).  Wdr82, the human homolog of Cps35 also requires H2B 

monoubiquitination to interact with chromatin.  These findings led to the hypothesis that 

COMPASS’s trimethylation of H3K4 was partially mediated by crosstalk between Cps35 

and H2B monoubiquitination.  More recently, other evidence has suggested that the n-

SET domain of Set1, and not Cps35, regulates H2B ubiquitylation-dependent H3K4 

methylation (Kim et al., 2013).  Further studies are needed to better understand what 

regulates this crosstalk.  

 

1.7 Structural techniques in studying membrane proteins 

Difficulties in structurally characterizing membrane proteins 

The plasma membrane provides a crucial barrier that separates the extracellular 

environment from the intracellular space of a cell.  The embedding of membrane proteins 

into the lipid bilayer provides a delicate interface that helps regulate their given function.  

Signal transduction, motility, respiration, and photosynthesis are some of the biological 

functions regulated by this lipid bilayer-membrane protein interaction.  Lipids also serve 

an important role in helping to stabilize proteins embedded within them.  Studying 

membranes proteins poses difficulties due to the fact that in order to characterize them 

structurally, you need to remove (or purify) them from the lipid bilayer.  During protein 

purification, membrane proteins are typically solubilized with detergent and most of the 

lipids are lost in this process.   In many cases, lipids are re-added during the purification 

process in order to restore the membrane protein stability as seen in the purification of the 

β2AR (Cherezov et al., 2007; Raunser and Walz, 2009).  
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Methodologies for characterizing the structure of membrane proteins 

There are a number of different techniques that are used to study the structural 

characteristics of membrane proteins and membrane protein complexes.  Each method 

has its own benefits and drawbacks depending on the characteristics of the protein of 

interest.  There are numerous factors that contribute to the complexity of studying 

membrane proteins including size, solubility, protein expression, flexibility, 

hydrophobicity, and quaternary organization.  Below is an overview of some of the more 

commonly used techniques for studying the structure of membrane proteins. 

X-Ray crystallography 

X-ray crystallography is the most widely used technique for studying the structure of 

proteins, especially at high resolution.  The majority of the structures in the protein data 

bank (PDB) are generated from X-ray crystallography.  For this technique, after the 

protein of interest is purified, it is incubated with a series of different combinations of 

solvents and precipitants to find ideal conditions for crystal nucleation and growth.  

Crystal formation involves protein is packing within identical repeating units in the 

crystal lattice.  Protein crystals are then subjected to an intense X-ray beam where a 

characteristic diffraction pattern is recorded, and information about the electron densities 

of the protein are calculated and mapped.  X-ray crystallography is a powerful tool for 

studying nucleic acid and protein structure to atomic resolution.  This technique is 

excellent for studying samples of a modest size that can nicely pack into a crystal lattice, 

and form ordered crystals.  Larger proteins and protein complexes that have significant 

variability are more difficult to form highly ordered crystals.  The inherent flexible nature 

of membrane proteins (ie. conformational changes of β2AR transmembrane helices 

rearranging from inactive to active states) and protein solubility issues leads to 

difficulties in forming highly ordered crystal structures.  Recent advances in protein 

purification and engineering, for example, insertion of a well-ordered globular domaing 

such as T4 lysozyme domain to the 3rd intracellular loop of the β2AR for increased 

solubility and enhance protein-protein interactions and lattice formation (Cherezov et al., 

2007), have helped advance using x-ray crystallography to study membrane proteins.  

Additionally, lipids and detergents are needed to help stabilize and order membrane 



 20 

proteins.  The use of lipidic cubic phase (LCP) where membrane proteins can nucleate 

crystals and grow in a 3-dimensional, continuous lipid bilayer matrix has aided 

tremendously in the study of 7-TM receptors (Landau and Rosenbusch, 1996).  Finally 

the use of different antibodies and nanobodies (camelid antibodies) in combination with 

insertions of T4 lysozyme to the N-terminus of receptors have helped in advancing the 7-

TM crystallization with other proteins, in the case of the β2AR-Gs protein complex 

(Rasmussen et al., 2011). 

Nuclear Magnetic Resonance (NMR) 

Both solid state and solution NMR have been used to characterize membrane protein 

structure and membrane protein dynamics.  NMR records the magnetic properties of 

different isotopes of atoms, and employs the collective resonance of the nearby atoms to 

calculate the location of each individual residue of a protein.  The benefit to using NMR 

is that it can record a range of different protein states over a period of time and also study 

time related conformational changes in a protein sample, as opposed to x-ray 

crystallography that provides a rigid snapshot of a crystallized protein. One of the 

complications with using NMR as well as x-ray crystallography is that large amounts of 

purified proteins, typically milligrams, are needed to calculate structural properties.  This 

can pose to be extremely difficult when attempting to purify large amounts of membrane 

proteins.  What differentiates solution from solid-state NMR is in solution NMR, 

resonance is calculated by the rotational properties of the protein sample freely tumbling 

in solution NMR (Montaville and Jamin, 2010), whereas in solid state NMR when there 

is little to no mobility, the anisotropic interactions have a substantial effect on the 

behavior of nuclear spins.  Larger proteins (size greater than 40 kDa), have a slower 

tumbling in solution than smaller proteins, and therefore makes it more difficult to study 

with solution NMR.  The overlapping architecture of different hydrophobic residues in 

membrane proteins, forming primarily interacting α-helices and β-strands, can somewhat 

mask the signal from these residues and complicate the NMR spectra.  This further adds 

to the difficulty of using NMR to study membrane proteins. 

Electron Microscopy 
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Electron microscopy (EM) is a very useful tool in determining the architecture of proteins 

and protein complexes.  There are various techniques used in electron microscopy to 

characterize the three dimensional shape of proteins including the formation of 2D 

crystals (2D crystallography) or averaging numerous individual particles in the case of 

single particle analysis.  Both of these processes can be done using negative stain and 

cryo-EM.   

2D electron crystallography is a technique that has been used to determine the structure 

of membrane proteins as early at 1975, as in the case of the 7-TM bacteriorhodopsin 

receptor (Henderson and Unwin, 1975).  With this technique a purified, detergent 

solubilized membrane is slowly provided with lipids while the detergent is diluted away. 

This process drives protein packing in 2-dimensional crystals.  The 2D crystals are then 

imaged by electron microscopy, which also allows for the recording of diffraction 

patterns. Merging phase information from the crystal image and amplitude information 

from diffraction patterns allows the calculation of three-dimensional maps. 

The single-particle EM approach, where crystal formation is not necessary, depends on 

visualizing individual proteins or protein complexes at random orientations. 

Computational alignment and averaging of these individual projections allows the 

calculation of biological complexes.  As supposed to x-ray crystallography and NMR 

where relatively large proteins ( > ~100-150 kDa) become problematic for structural 

determination, protein complexes of larger size  are usually more amenable to single 

particle EM.  Additionally, symmetrical samples such as viruses that contain icosahedral 

symmetry, provide the benefit of signal redundancy that allows for improved averaging.  

The advantage from added symmetry has led to the calculation of virus 3D 

reconstructions to near atomic resolution (< 4 Å) using cryo electron microscopy 

(Grigorieff and Harrison, 2011).  Since electron microscopy is the primary technique 

used in the studies subsequently covered, a more in depth overview will follow in the 

coming section. 

1.8 Electron Microscopy 

Sample preparation 
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Negative Stain Electron Microscopy 

In negative stain electron microscopy, the sample is typically adsorbed on a carbon 

substrate that has been evaporated over a copper EM grid.  The sample is fixed and 

embedded in a solution of heavy metal salt and subsequently dried on the EM grid.  In 

areas where the protein sample is present, the staining solution is displaced (Figure 1-15, 

top).  The intensity difference between stain-excluded areas containing the sample and 

the heavily stained background provide improved contrast of the sample under 

observation (Ohi et al., 2004).  In addition, samples embedded in negative stain are more 

protected from radiation damage caused by the exposure to electrons.  A major drawback 

to negative staining is that the samples will have a variable amount of collapse due to 

their adsorption on the carbon support and subsequent drying during staining.  Also, the 

resolution of calculated 3D reconstructions is limited to the size of the dry stain grain 

(~20 Å).  Nevertheless, negative staining is an excellent technique when looking at all 

proteins and particularly relatively small proteins (< ~200 kDa) due to the drastically 

improved contrast.  In comparison to other structural techniques (x-ray crystallography 

and NMR), negative stain EM uses significantly lower concentrations of proteins (~200-

500-fold less). 
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Figure 1-15.  Negative stain and cryo-EM sample preparation. 
Top, illustrates a continuous carbon grid.  The sample is adsorbed to the carbon support.  
The sample is subsequently coated in a heavy metal stain, typically uranyl formate or 
uranyl acetate.  Bottom, illustrates a holey carbon grid used for cryo-EM.  The sample is 
incubated on the holey carbon grid, excess sample is blotted away, and the grid is 
plunged into liquid ethane that freezes the specimen in a later of vitreous ice. 

Cryo Electron Microscopy 

In cryo electron microscopy (cryo-EM), the sample is incubated on an EM grid composed 

of perforated holes on the carbon support.  Excess sample is blotted away and the grid is 

plunged into liquid ethane at temperatures near -180º Celsius freezing the sample in a 

layer of vitreous ice (Lepault et al., 1983) (Figure 1-15, bottom).  In standard cryo-EM, 

there is no addition of heavy metal salt solution to increase electron scattering and 

improve contrast.  Therefore, the contrast in cryo-EM is significantly reduced compared 

to negative stain EM.  However, in cryo-EM the sample is flash frozen in physiological 

buffer and thus remains hydrated and devoid of artifacts such as flattening and collapse. 

In addition, with cryo-EM preparation the sample mostly assumes many different 
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orientations in the vitreous ice, whereas in negative stain EM, the sample can take on a 

preferred orientation lying on a carbon support, and thus only provides a limited range of 

angular projections.  On the other hand, in cryo-EM the sample is more susceptible to 

radiation damage, and therefore, lower electron doses have to be used during image 

acquisition.  Due to the low signal to noise ratio and reduced contrast of cryo-EM, 

relatively larger ( > ~200 kDa) proteins are suitable, which can limit the use of this 

technique on smaller proteins.  A combination of negative stain and cryo-EM sample 

preparation, termed cryo-negative stain EM, can be used to improve this but is very 

tedious in practice (Bhella et al., 2004).  Cryo-EM can inherently provide atomic 

resolution information, and in fact near atomic resolution (~4 Å) reconstructions have 

been achieved in cases of samples with high levels of symmetry (ie. viruses). 

Image formation 

Image formation in the electron microscope begins with the electrons emitted from an 

electron source, typically either tungsten or lanthanum hexaboride (LaB6) filament that 

are either heated or combined with a field emission gun (FEG) to extract electrons.  The 

electron beam is deflected through a single or set of condenser lenses to assure the beam 

is parallel (Figure 1-16A), and subsequently passes through the specimen, where the 

electrons are either scattered elastically, inelastically, or left unscattered. After passing 

through the specimen the electrons pass through the magnetic field of an objective lens, 

followed by an intermediate and projector lens that forms the final image.  This image 

can then be viewed on a fluorescent screen, and is usually recorded using conventional 

film or a charge-coupled device (CCD) camera.  On the EM image, the portion of the 

electrons that are scattered appear in a range of grey whereas the unscattered electrons 

appear as bright spots.  The inelastically scattered electrons represent the background 

noise of an image (Figure 1-16B). In regions where the electrons are unable to pass 

through the sample, the image appears dark (Frank, 2006).   
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Figure 1-16.  Microscope schematic and electron diffraction. 
A) Illustrates the electron path through the microscope. B) Electron diffraction pattern 
through a given specimen. 

The achievable resolution in transmission electron microscopy (TEM) depends on a 

number of factors including the lens aberrations.  There are three primary sources of 

aberration: chromatic aberration, spherical aberration, and astigmatism. Chromatic 

aberration comes from the relationship between the energy of the electrons from the 

electron source being bent by the objective lens, with electrons of different energy being 

bent according to their respective energy.  For example, electrons of lower energy will be 

bent more by the objective lens than electrons of higher energy.  Spherical aberration is a 

result of the peripheral electrons being deflected more than electrons closer to the center 

of the specimen.  Thinner specimens can improve on spherical aberration.  Astigmatism 

is caused by the inability for the electromagnetic lens to have perfect cylindrical 

symmetry.  Therefore astigmatism affects the capability to focus an image, but this can be 
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corrected easily by stigmators, a collection of small electromagnetic coils within the 

objective lens that apply additional magnetic fields to the electron beam (Frank, 2006). 

Single Particle Analysis  

The aim of single particle analysis is to characterize and determine the structure of 

macromolecules from images of individual particles.  Images from TEM have a relatively 

low signal-to-noise ratio, whether by cryo-EM or negative stain EM.  One of the goals for 

using single particle analysis is to average similar particle projections to increase the 

signal-to-noise ratio.  Single particle analysis uses a combination of different 

computational techniques to characterize different individual particle projections 

(hundreds to hundred of thousands), and allows the combination of these different views 

in order to reconstruct a 3D model of a macromolecule.  The number of particles, the 

number of different orientations of projections, and the inherent homogeneity of a given 

specimen all affect the resolution and overall quality of the reconstruction.  

Reference-free alignment and classification 

The goal of alignment and classification is to separate different particle views and 

increase the signal-to-noise ratio of the individual particle projections.  From each image 

collected on the EM, the individual particles are boxed out.  These particles are then 

subjected to translational and rotational alignment using reference-free procedures.  In 

this reference-free approach, particle projections from the experimental data set are 

randomly selected as initial references and the remaining particles are aligned and 

grouped against the references using cross correlation criteria.  Particle images within 

each group are then averaged, and these averages are used as new references for the next 

cycle. The process continues iteratively until there are no changes in the class averages 

(Ohi et al., 2004).  A sample’s heterogeneity can obviously affect the number of different 

conformations or projections a specimen can have.  Therefore, the number of classes 

needed to separate a particular data can vary based on sample variation and the number of 

particle projections.  EMAN (Ludtke et al., 1999), SPIDER (Frank et al., 1996), and 

IMAGIC (van Heel et al., 1996) are some of the different available software packages for 

applying this reference-free alignment and classification. 
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Contrast transfer function (CTF) 

The transmission of the electron beam through the electron microscope distorts the 

structural information from the specimen and changes the phases and amplitude of the 

recorded electron waves.  This electron-optical shortcoming depends on the microscope’s 

operating voltage, objective lens spherical aberration coefficient, the defocus value used, 

and the spatial frequency.  The contrast transfer theory explains how the Fourier 

transform of an object’s image is related to the Fourier transform of an object’s 

Coulombic potential.  To correct for the modulation of the electron beam, the Fourier 

transform of an image must be multiplied by the contrast transfer function (CTF)  (Wade, 

1992). 

 

Figure 1-17.  Contrast transfer function (CTF) curve. 
A representative contrast transfer function curve for a transmission electron microscope 
(TEM) operating at 200 kV, with Cs=2, and a defocus value of 1 µm.  The signal 
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amplitude is plotted against the resolution in inverse angstroms (x-axis).  The 
experimental CTF curve oscillates from positive to negative values, while the signal 
gradually dampens with increasing resolution. 

CTF is a sinusoidal oscillating function that becomes attenuated with increased spacial 

frequency. Figure 1-15 shows the CTF as a function of spatial frequency (resolution) for 

a 200 kV TEM and 1000nm defocus.  The CTF transitions from positive to negative 

values (contrast) and in the regions it passes through zero, no contrast or transmittance is 

transferred.  As a result, the resolution limit is the frequency where the CTF crosses the 

first zero. To overcome this limitation the EM images can be corrected by inverting the 

negative values of the CTF to positive, thereby extending the information to higher 

resolution ranges. ‘Phase flipping’ is the simplest way to computationally correct the 

CTF.  This is done by determining the parameter values contributing to the CTF of each 

micrograph, and using those values to flip the negative regions to the positive phase (Zhu 

et al., 1997).   Furthermore, the lack of information in spatial frequencies where CTF is 

zero can be compensated by collecting images with a range of different defocus values, 

thereby shifting the curve of the CTF sinusoidal function.  
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Figure 1-18. Tilt-pair imaging and backprojection. 
The black arrows show the electron path through a specimen creating a 2-dimensional 
projection.  Identical particles are imaged at 0° and 60°.  The 0° particle projections are 
subjected to classification, and the orientation parameters are assigned to both the 0° and 
60° particle projections.  Using the known orientation parameters the projections can be 
backprojected to recreate the 3-dimensional features of the specimen. 

Random conical tilt reconstruction 

The random conical tilt (RCT) approach takes advantage of the preferred orientation of a 

specimen on the carbon support to generate a three dimensional object from two 
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dimensional projections (Radermacher et al., 1987).  In this method, an image is taken at 

0º of the goniometer and then the sample is tilted to an angle of ~60º (can be any angle 

from 50º - 70º), and an image is taken of the same area.  The two images are digitized and 

put next to each other so that the same particles can be paired from both the 0º and 60º 

images.  The untilted particles are subsequently subjected to alignment and classification, 

whereby the particles are grouped into different classes based on their orientation. In this 

step, the x-y shifts and in-plane rotation of the projections belonging to each class are 

defined and are also applicable to the tilted particle projections. Since the high tilt angle 

is consistent, the different projections from the tilted particles will form a cone, with the 

azimuthal angle of each tilted particle known from the in plane rotation of the untilted 

particles of its class. The tilted particle projections can then be back-projected, and a 3D 

reconstruction can be generated.  This approach is advantageous because no initial model 

is necessary to generate a 3D reconstruction, and the volume generated can be used in 

subsequent negative stain and cryo-EM reconstructions. 

Angular refinement using model-based projection matching 

In angular refinement technique, 2D projections are generated from an initial model, also 

know as reprojections, that evenly cover all the angular space (Fuller et al., 1996; Zhu et 

al., 1997).  The individual particle projections from the experimental dataset are directly 

compared to the theoretical reprojections, and assume the Euler angles of the reprojection 

they matched best by cross correlation (CC) value.  Next, a new model is reconstructed 

from the experimental projections based on the obtained angles, and this new model is 

employed as the reference for the subsequent iteration.  This process continues iteratively 

until the Fourier Shell correlation (FSC) curve converges.  FSC measures the 

corresponding cross correlation values between the densities of two 3D volumes in 

Fourier space at each spatial frequency.  The calculation to determine the final overall 

resolution of a 3D reconstruction is done by randomly splitting the experimental dataset 

to two half datasets and calculate two 3D reconstructions with each dataset.  Comparison 

of the two reconstructions by FSC provides the resolution, typically obtained at FSC=0.5 

(van Heel et al., 1996) (Figure 1-19).  
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Figure 1-19.  Fourier shell correlation (FSC). 
Representative Fourier shell correlation (FSC) curve of the cryo-EM structure of the 
COMPASS methyltransferase complex.  Indicated resolution of the map is indicated to 
be at an FSC = 0.5.   

Multiple-reference angular refinement 

Multiple-reference supervised classification is a process that quantitatively separates an 

experimental dataset that might involve two or more particle species or particle 

conformations in the relevant subsets (Brink et al., 2004; Menetret et al., 2005).  The 

process can be followed by 3D reconstruction based on projection matching and run 

iteratively to improve the dataset partitioning and reconstructions. In the application of 

this method, two or more similar initial models with experimentally expected differences 

are used.  Particle projections are compared with the reprojections of the reference 

models, and are assigned to an angular projection of a single model with which it obtains 

the highest cross correlation value.  If the initial models are accurate, a single iteration is 

typically sufficient to properly sort the particle projections.  The separate subset of 

particle projections can then be used to further refine each individual model.  At this 

point differences in each respective model can be compared to determine a 

conformational shift, or presence or absence of a domain. 
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Molecular modeling of high-resolution structures into EM volumes 

The majority of EM reconstructions are at low to intermediate resolution, therefore 

docking known high-resolution structures (typically from x-ray crystallography) can help 

interpret the EM 3D map.  On the other hand, larger macromolecules can be problematic 

for high-resolution determination via crystallography or NMR, and these techniques often 

resort to characterizing smaller individual parts of a large protein or complex. Thus, the 

combination of electron microscopy to determine the architecture of a macromolecule at 

lower resolution, with X-ray or NMR to obtain high-resolution structures and dock them 

into the EM maps can give critical insight into the structure and function of large 

assemblies. 

 

1.9 References 

 

Azzi, M., Charest, P.G., Angers, S., Rousseau, G., Kohout, T., Bouvier, M., and Pineyro, 
G. (2003). Beta-arrestin-mediated activation of MAPK by inverse agonists reveals 
distinct active conformations for G protein-coupled receptors. Proc Natl Acad Sci U S A 
100, 11406-11411. 

Benovic, J.L., Kuhn, H., Weyand, I., Codina, J., Caron, M.G., and Lefkowitz, R.J. 
(1987). Functional desensitization of the isolated beta-adrenergic receptor by the beta-
adrenergic receptor kinase: potential role of an analog of the retinal protein arrestin (48-
kDa protein). Proc Natl Acad Sci U S A 84, 8879-8882. 

Bhella, D., Ralph, A., and Yeo, R.P. (2004). Conformational flexibility in recombinant 
measles virus nucleocapsids visualised by cryo-negative stain electron microscopy and 
real-space helical reconstruction. J Mol Biol 340, 319-331. 

Brink, J., Ludtke, S.J., Kong, Y., Wakil, S.J., Ma, J., and Chiu, W. (2004). Experimental 
verification of conformational variation of human fatty acid synthase as predicted by 
normal mode analysis. Structure 12, 185-191. 

Cherezov, V., Rosenbaum, D.M., Hanson, M.A., Rasmussen, S.G., Thian, F.S., Kobilka, 
T.S., Choi, H.J., Kuhn, P., Weis, W.I., Kobilka, B.K., et al. (2007). High-resolution 
crystal structure of an engineered human beta2-adrenergic G protein-coupled receptor. 
Science 318, 1258-1265. 

Frank, J. (2006). Three-dimensional electron microscopy of macromolecular assemblies 
visualization of biological molecules in their native state. Oxford ; New York: 



 33 

Oxford University Press 2nd. edition. 
 
Frank, J., Radermacher, M., Penczek, P., Zhu, J., Li, Y., Ladjadj, M., and Leith, A. 
(1996). SPIDER and WEB: processing and visualization of images in 3D electron 
microscopy and related fields. J Struct Biol 116, 190-199. 

Fredriksson, R., Lagerstrom, M.C., Lundin, L.G., and Schioth, H.B. (2003). The G-
protein-coupled receptors in the human genome form five main families. Phylogenetic 
analysis, paralogon groups, and fingerprints. Mol Pharmacol 63, 1256-1272. 

Freedman, N.J., and Lefkowitz, R.J. (1996). Desensitization of G protein-coupled 
receptors. Recent Prog Horm Res 51, 319-351; discussion 352-313. 

Fuller, S.D., Butcher, S.J., Cheng, R.H., and Baker, T.S. (1996). Three-dimensional 
reconstruction of icosahedral particles--the uncommon line. J Struct Biol 116, 48-55. 

Ghanouni, P., Gryczynski, Z., Steenhuis, J.J., Lee, T.W., Farrens, D.L., Lakowicz, J.R., 
and Kobilka, B.K. (2001a). Functionally different agonists induce distinct conformations 
in the G protein coupling domain of the beta 2 adrenergic receptor. J Biol Chem 276, 
24433-24436. 

Ghanouni, P., Steenhuis, J.J., Farrens, D.L., and Kobilka, B.K. (2001b). Agonist-induced 
conformational changes in the G-protein-coupling domain of the beta 2 adrenergic 
receptor. Proc Natl Acad Sci U S A 98, 5997-6002. 

Grigorieff, N., and Harrison, S.C. (2011). Near-atomic resolution reconstructions of 
icosahedral viruses from electron cryo-microscopy. Curr Opin Struct Biol 21, 265-273. 

Gurevich, V.V., and Benovic, J.L. (1993). Visual arrestin interaction with rhodopsin. 
Sequential multisite binding ensures strict selectivity toward light-activated 
phosphorylated rhodopsin. J Biol Chem 268, 11628-11638. 

Henderson, R., and Unwin, P.N. (1975). Three-dimensional model of purple membrane 
obtained by electron microscopy. Nature 257, 28-32. 

Kim, J., Kim, J.A., McGinty, R.K., Nguyen, U.T., Muir, T.W., Allis, C.D., and Roeder, 
R.G. (2013). The n-SET domain of Set1 regulates H2B ubiquitylation-dependent H3K4 
methylation. Mol Cell 49, 1121-1133. 

Kobilka, B.K. (2007). G protein coupled receptor structure and activation. Biochim 
Biophys Acta 1768, 794-807. 

Kornberg, R.D. (1974). Chromatin structure: a repeating unit of histones and DNA. 
Science 184, 868-871. 

Krogan, N.J., Dover, J., Khorrami, S., Greenblatt, J.F., Schneider, J., Johnston, M., and 
Shilatifard, A. (2002). COMPASS, a histone H3 (Lysine 4) methyltransferase required 
for telomeric silencing of gene expression. J Biol Chem 277, 10753-10755. 



 34 

Kuhn, H. (1978). Light-regulated binding of rhodopsin kinase and other proteins to cattle 
photoreceptor membranes. Biochemistry 17, 4389-4395. 

Landau, E.M., and Rosenbusch, J.P. (1996). Lipidic cubic phases: a novel concept for the 
crystallization of membrane proteins. Proc Natl Acad Sci U S A 93, 14532-14535. 

Lee, J.S., Shukla, A., Schneider, J., Swanson, S.K., Washburn, M.P., Florens, L., 
Bhaumik, S.R., and Shilatifard, A. (2007). Histone crosstalk between H2B 
monoubiquitination and H3 methylation mediated by COMPASS. Cell 131, 1084-1096. 

Lepault, J., Booy, F.P., and Dubochet, J. (1983). Electron microscopy of frozen 
biological suspensions. J Microsc 129, 89-102. 

Lohse, M.J., Benovic, J.L., Codina, J., Caron, M.G., and Lefkowitz, R.J. (1990). beta-
Arrestin: a protein that regulates beta-adrenergic receptor function. Science 248, 1547-
1550. 

Ludtke, S.J., Baldwin, P.R., and Chiu, W. (1999). EMAN: semiautomated software for 
high-resolution single-particle reconstructions. J Struct Biol 128, 82-97. 

Luger, K., Mader, A.W., Richmond, R.K., Sargent, D.F., and Richmond, T.J. (1997). 
Crystal structure of the nucleosome core particle at 2.8 A resolution. Nature 389, 251-
260. 

Luttrell, L.M., Ferguson, S.S., Daaka, Y., Miller, W.E., Maudsley, S., Della Rocca, G.J., 
Lin, F., Kawakatsu, H., Owada, K., Luttrell, D.K., et al. (1999). Beta-arrestin-dependent 
formation of beta2 adrenergic receptor-Src protein kinase complexes. Science 283, 655-
661. 

Luttrell, L.M., and Lefkowitz, R.J. (2002). The role of beta-arrestins in the termination 
and transduction of G-protein-coupled receptor signals. J Cell Sci 115, 455-465. 

Menetret, J.F., Hegde, R.S., Heinrich, S.U., Chandramouli, P., Ludtke, S.J., Rapoport, 
T.A., and Akey, C.W. (2005). Architecture of the ribosome-channel complex derived 
from native membranes. J Mol Biol 348, 445-457. 

Miller, T., Krogan, N.J., Dover, J., Erdjument-Bromage, H., Tempst, P., Johnston, M., 
Greenblatt, J.F., and Shilatifard, A. (2001). COMPASS: a complex of proteins associated 
with a trithorax-related SET domain protein. Proc Natl Acad Sci U S A 98, 12902-12907. 

Montaville, P., and Jamin, N. (2010). Determination of membrane protein structures 
using solution and solid-state NMR. Methods Mol Biol 654, 261-282. 

Ohi, M., Li, Y., Cheng, Y., and Walz, T. (2004). Negative Staining and Image 
Classification - Powerful Tools in Modern Electron Microscopy. Biol Proced Online 6, 
23-34. 



 35 

Oldham, W.M., and Hamm, H.E. (2008). Heterotrimeric G protein activation by G-
protein-coupled receptors. Nat Rev Mol Cell Biol 9, 60-71. 

Radermacher, M., Wagenknecht, T., Verschoor, A., and Frank, J. (1987). Three-
dimensional reconstruction from a single-exposure, random conical tilt series applied to 
the 50S ribosomal subunit of Escherichia coli. J Microsc 146, 113-136. 

Rajagopal, S., Rajagopal, K., and Lefkowitz, R.J. (2010). Teaching old receptors new 
tricks: biasing seven-transmembrane receptors. Nat Rev Drug Discov 9, 373-386. 

Rasmussen, S.G., Choi, H.J., Rosenbaum, D.M., Kobilka, T.S., Thian, F.S., Edwards, 
P.C., Burghammer, M., Ratnala, V.R., Sanishvili, R., Fischetti, R.F., et al. (2007). Crystal 
structure of the human beta2 adrenergic G-protein-coupled receptor. Nature 450, 383-
387. 

Rasmussen, S.G., DeVree, B.T., Zou, Y., Kruse, A.C., Chung, K.Y., Kobilka, T.S., 
Thian, F.S., Chae, P.S., Pardon, E., Calinski, D., et al. (2011). Crystal structure of the 
beta2 adrenergic receptor-Gs protein complex. Nature 477, 549-555. 

Raunser, S., and Walz, T. (2009). Electron crystallography as a technique to study the 
structure on membrane proteins in a lipidic environment. Annu Rev Biophys 38, 89-105. 

Rosenbaum, D.M., Zhang, C., Lyons, J.A., Holl, R., Aragao, D., Arlow, D.H., 
Rasmussen, S.G., Choi, H.J., Devree, B.T., Sunahara, R.K., et al. (2011). Structure and 
function of an irreversible agonist-beta(2) adrenoceptor complex. Nature 469, 236-240. 

Schneider, J., Wood, A., Lee, J.S., Schuster, R., Dueker, J., Maguire, C., Swanson, S.K., 
Florens, L., Washburn, M.P., and Shilatifard, A. (2005). Molecular regulation of histone 
H3 trimethylation by COMPASS and the regulation of gene expression. Mol Cell 19, 
849-856. 

Shilatifard, A. (2006). Chromatin modifications by methylation and ubiquitination: 
implications in the regulation of gene expression. Annu Rev Biochem 75, 243-269. 

Shilatifard, A. (2008). Molecular implementation and physiological roles for histone H3 
lysine 4 (H3K4) methylation. Curr Opin Cell Biol 20, 341-348. 

Southall, S.M., Wong, P.S., Odho, Z., Roe, S.M., and Wilson, J.R. (2009). Structural 
basis for the requirement of additional factors for MLL1 SET domain activity and 
recognition of epigenetic marks. Mol Cell 33, 181-191. 

Strader, C.D., Fong, T.M., Tota, M.R., Underwood, D., and Dixon, R.A. (1994). 
Structure and function of G protein-coupled receptors. Annu Rev Biochem 63, 101-132. 

Strader, C.D., Sigal, I.S., and Dixon, R.A. (1989). Genetic approaches to the 
determination of structure-function relationships of G protein-coupled receptors. Trends 
Pharmacol Sci Suppl, 26-30. 



 36 

Stryer, L., and Bourne, H.R. (1986). G proteins: a family of signal transducers. Annu Rev 
Cell Biol 2, 391-419. 

Takahashi, Y.H., Lee, J.S., Swanson, S.K., Saraf, A., Florens, L., Washburn, M.P., 
Trievel, R.C., and Shilatifard, A. (2009). Regulation of H3K4 trimethylation via Cps40 
(Spp1) of COMPASS is monoubiquitination independent: implication for a Phe/Tyr 
switch by the catalytic domain of Set1. Mol Cell Biol 29, 3478-3486. 

van Heel, M., Harauz, G., Orlova, E.V., Schmidt, R., and Schatz, M. (1996). A new 
generation of the IMAGIC image processing system. J Struct Biol 116, 17-24. 

Venkatakrishnan, A.J., Deupi, X., Lebon, G., Tate, C.G., Schertler, G.F., and Babu, M.M. 
(2013). Molecular signatures of G-protein-coupled receptors. Nature 494, 185-194. 

Wade, R.H. (1992). A Brief Look at Imaging and Contrast Transfer. Ultramicroscopy 46, 
145-146. 

Wall, M.A., Coleman, D.E., Lee, E., Iniguez-Lluhi, J.A., Posner, B.A., Gilman, A.G., and 
Sprang, S.R. (1995). The structure of the G protein heterotrimer Gi alpha 1 beta 1 gamma 
2. Cell 83, 1047-1058. 

Wieland, K., Zuurmond, H.M., Krasel, C., Ijzerman, A.P., and Lohse, M.J. (1996). 
Involvement of Asn-293 in stereospecific agonist recognition and in activation of the beta 
2-adrenergic receptor. Proc Natl Acad Sci U S A 93, 9276-9281. 

Xiao, R.P., Cheng, H., Zhou, Y.Y., Kuschel, M., and Lakatta, E.G. (1999). Recent 
advances in cardiac beta(2)-adrenergic signal transduction. Circ Res 85, 1092-1100. 

Yao, X., Parnot, C., Deupi, X., Ratnala, V.R., Swaminath, G., Farrens, D., and Kobilka, 
B. (2006). Coupling ligand structure to specific conformational switches in the beta2-
adrenoceptor. Nat Chem Biol 2, 417-422. 

Zhang, Y. (2003). Transcriptional regulation by histone ubiquitination and 
deubiquitination. Genes Dev 17, 2733-2740. 

Zhu, J., Penczek, P.A., Schroder, R., and Frank, J. (1997). Three-dimensional 
reconstruction with contrast transfer function correction from energy-filtered cryoelectron 
micrographs: procedure and application to the 70S Escherichia coli ribosome. J Struct 
Biol 118, 197-219. 

 



 37 

Chapter 2  
Structural flexibility of the Gαs  

α-helical domain in the β2-adrenoceptor Gs complex 

 

2.1 Abstract 

The active state complex between an agonist bound receptor and a guanine nucleotide-

free G protein represents the fundamental signaling assembly for the majority of hormone 

and neurotransmitter signaling. We applied single particle electron microscopy (EM) 

analysis to examine the architecture of agonist occupied β2-adrenoceptor (β2AR) in 

complex with the heterotrimeric G protein Gs (Gαsβγ). EM 2D averages and 3D 

reconstructions of the detergent-solubilized complex reveal an overall architecture that is 

in very good agreement with the crystal structure of the active state ternary complex. 

Strikingly however, the α-helical (AH) domain of Gαs appears highly flexible in the 

absence of nucleotide. In contrast, the presence of the pyrophosphate mimic foscarnet 

(phosphonoformate), and also the presence of GDP favor the stabilization of the AH 

domain on the Ras-like domain of Gαs. Molecular modeling of the AH domain in the 3D 

EM maps suggests that in its stabilized form it assumes a conformation reminiscent to the 

one observed in the crystal structure of Gαs-GTPγS. These data argue that the AH 

domain undergoes a nucleotide-dependent transition from a flexible to a conformationally 

stabilized state.  

2.2 Introduction 

The majority of hormones and neurotransmitters communicate information to cells via G 

protein coupled receptors (GPCRs), which instigate intracellular signaling by activating 

their cognate heterotrimeric G proteins on the cytoplasmic side. GPCRs constitute the 

largest family of membrane proteins and play essential roles in regulating every aspect of 

normal physiology, thereby representing major pharmacological targets. Despite a wealth 

of biochemical and biophysical studies on inactive and active conformations of several 
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heterotrimeric G proteins, the molecular underpinnings of G protein activation remain 

elusive. The β2-adrenergic receptor (β2AR) and its complex with heterotrimeric 

stimulatory G protein Gs (Gαsβγ) represent an ideal model system for the large family of 

GPCRs activated by diffusible ligands. Agonist binding to the β2AR promotes 

interactions with GDP-bound Gsαβγ heterotrimer leading to the exchange of GDP for 

GTP, and the functional dissociation of Gs into Gα-GTP and Gβγ subunits. To examine 

the architecture of agonist occupied β2AR in complex with Gαsβγ under different 

conditions, we employed electron microscopy (EM) and single particle analysis. Due to 

the limited size of the protein complex (~148 kDa) we visualized specimens embedded in 

negative stain, which provides sufficient contrast from relatively small protein assemblies 

(Ohi et al., 2004).  This approach allowed us to obtain 2D projection averages and 3D 

reconstructions that provided new insights into dynamic features of the β2AR-Gs 

complex, and helped guide a successful approach to crystallize the complex enabling a 

high-resolution structure (Rasmussen et al., 2011). 

 

Figure 2-1. |  Raw EM image of negative stained nucleotide-free T4L-β2AR-Gs 
complex. 
a, Raw image of negative stained nucleotide-free T4L-β2AR-Gs complex.  b, Excised 
particles of nucleotide-free T4L-β2AR-Gs complex. 
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Figure 2-2. Initial and secondary 2D classification of nucleotide-free T4L-β2AR-Gs 
complex. 
a) 17,205 particles classified into 200 classes.  b) 4,378 particles of nucleotide-free T4L-
β2AR-Gs complex were classified into 50 classes. Class averages with the α-helical (AH) 
domain observed to be stabilized on the Ras-like domain of Gαs are marked with an 
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orange square.  Class averages where the AH domain projection profile on the Ras-like 
domain is not visible are marked with a green circle.  Scale bar = 10nm. 

2.3 Results 

Negative Stain EM of nucleotide-free β2AR-Gs 

In a first step, we sought to examine the architecture of complexes in the nucleotide-free 

state of Gαs. Prior to coupling with an agonist-bound receptor, the nucleotide binding 

pocket of the α subunit of the Gαsβγ heterotrimer is occupied by GDP. Upon forming a 

complex with the β2AR, GDP dissociates, and the resulting nucleotide-free β2AR-Gs 

complex is highly stable (Rasmussen et al., 2011).  EM visualization of the nucleotide-

free complex showed a monodisperse particle population (Figure 2-1). Reference-free 

alignment and classification of ~17,000 particle projections revealed characteristic class 

averages with an overall density that is in very good agreement with the crystal structure 

of the complex (Rasmussen et al., 2011).  Due to its shape, the complex adsorbs on the 

carbon support with small variations (+/-20º) of mainly two diametrically opposite 

preferred orientations that generate practically identical, mirror-related 2D projections 

(Figure 2-2, 2-3a).  

The distinct features of the class averages in these preferred orientations allowed us to 

assign the negative stain projection profiles from specific components of the complex 

(Figure 2-3a & b). A central oval density represents the β2AR in a detergent micelle, with 

a small protruding density corresponding to T4 lysozyme (T4L) that replaces the 

unstructured extracellular N-terminus of the receptor and serves as an orienting landmark. 

This interpretation was confirmed by EM analysis of complexes lacking T4L (Figure 2-

3c & d). Some class averages of the T4L-β2AR-Gs complex do not reveal a density 

corresponding to the T4L. Besides the presence of a relatively flexible linker connecting 

T4L and the β2AR, this effect is mostly because T4L lies at an angle to the longitudinal 

axis of the complex, as shown in the X-ray structure (Rasmussen et al., 2011). Due to this 

geometry, even a 10-degree variation in the way the particle adsorbs on the carbon 

support drastically reduces the visibility of the T4L projection profile, as demonstrated by 

projection simulation experiments (Figure 2-4). Thus, the visibility of the T4L projection 
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profile is very sensitive to even limited out of plane particle tilting, e.g. due to particle 

“rock” and “roll” or because of variations in the flatness of the carbon support.  

             

Figure 2-3.  2D class averages and models for alpha helical domain flexibility and 
T4L comparison. 



 42 

a) Representative EM class averages of the nucleotide-free complex with the projection 
profile of the a-helical (AH) domain not visible (left panel), or visible on the Ras domain 
(right panel, AH indicated by arrow).  The cartoon models represent the conformations 
reflected by the EM averages, with the one on the left depicting the variable positioning 
of the AH domain, suggesting flexibility or multiple conformations (the position of the 
detergent micelle is indicated by gray shaded arcs and labeled with “m”). b) 
Reprojections (top) of the crystal structure (Rasmussen et al., 2011) (bottom) in the same 
orientation as (a) reveal the identity of each EM density component. The crystal structure 
on the right panel shows the AH domain in the same position (relative to the Ras-like 
domain) as the one determined in the crystal structure of Gαs-GTPγS alone (Sunahara et 
al., 1997).  c) Representative class averages of nucleotide-free β2AR-Gs complex with no 
T4 lysozyme fusion at the N-terminus of the β2AR receptor.  The detergent used in this 
preparation is a variant (MNG 28 analogue-1) of maltose neopentyl glycol [NG-310; 
Chae et al. Nature Methods 2010 Dec;7(12):1003-8].  The class average on the right 
shows the α-helical (AH) domain stabilized on the Ras-like domain of  Gαs. d) 
Representative class averages of nucleotide-free T4L-β2AR-Gs complex with T4 
lysozyme fusion on the N-terminus of the β2AR receptor.  The detergent used in this 
preparation is maltose neopentyl glycol (NG-310).  The class average on the right shows 
the AH domain stabilized on the Ras-like domain of Gαs.  Note that the difference in the 
size of the detergent micelle around β2AR between the two complexes is due to the 
different variants of detergents.  The scale bar corresponds to 10 nm. e) Overlay of the 
crystal structures of the β2AR-Gs complex and Gαs-GTPγS (1AZT).  The Ras-like 
domain of the β2AR-Gs complex is shown in orange, and the Gαs-GTPγS structure is 
shown in purple.  The α-helical (AH) domain of the Gαs-GTPγS structure is stabilized on 
the Ras-like domain in the presence of GTPγS, similarly to the conformation observed by 
single-particle EM. 

                         

Figure 2-4. Simulated projections of our 3D reconstruction displaying an ordered 
AH domain. 
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Simulated projections of our 3D reconsturction diplaying an ordered AH domain. The 
reprojections are up to +/- 20 degrees around the preferred particle orientation (40 
degrees total) and show that the projection profile of the ordered AH domain remains 
fully visible. In contrast, the separate projection profile of the T4L domain disappears at 
just 10 degree particle “rocking”. 

Since we observe a single density corresponding to T4L, the detergent micelle contains 

only a single copy of the β2AR, in agreement with the crystal structure. Therefore, the 

significant additional density around the receptor stems from the large micelle formed by 

the detergent (Rubinstein, 2007). Diametrically opposite to the T4L domain, two main 

interacting densities representing the Gs trimer appear in close proximity to the receptor 

on its intracellular surface. One of the two domains appears to extensively interact with 

the receptor density, suggesting it corresponds to the Ras-like domain of Gαs, while its 

neighboring domain has a profile consistent with the side view of Gβγ. Interestingly 

however, several class averages revealed an additional small globular density bound on 

the Ras-like domain of Gαs (Figure 2-3a, right panel). In this location, the additional 

density could only be attributed to the α-helical (AH) domain of Gαs, occupying a 

position expected from the crystal structure of Gαs-GTPγS alone (Sunahara et al., 1997) 

and the structure of the Gi heterotrimer (Wall et al., 1995) (Figure 2-3b, 2-3e), but in 

entirely different location from that observed in the crystal structure of the β2AR-Gs 

complex (Rasmussen et al., 2011).  

Conformations of alpha helical domain 

To assess the fraction of particles displaying the AH domain in this location we selected 

and classified only projections clearly displaying the profiles of Ras-like, Gβγ, β2AR, and 

T4L domain densities in the same position, thereby restricting the range of particle 

projection orientations. The classification revealed that the AH domain was ordered on 

the Ras-like domain in ~35% of the particles, while in most other particle projections this 

density was absent (Figure 2-3a). It should also be noted that in contrast to the T4L 

domain, the projection profile of the AH domain in this position is not sensitive to the 

relatively limited out of plane tilts (+/- 20º) of the preferred particle orientation on the 

carbon support (Figure 2-4). This EM analysis provided the first evidence for a high 

degree of mobility of the AH domain relative to the Ras domain in the nucleotide-free 
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β2AR-Gs complex. Furthermore, the structural heterogeneity observed provided insights 

to the challenges in obtaining three-dimensional crystals of the complex.  

Nanobody binding to β2AR-Gs 

To promote complex stabilization for high-resolution structural studies we generated and 

screened llama antibodies (nanobodies) to the purified complex (Rasmussen et al., 2011). 

Nanobodies are small (approximately 15 kDa), clonable variable domains of a heavy 

chain only antibody, obtained by immunizing a llama with purified detergent-

solubilized β2AR-Gs complex stabilized with a short homobifunctional crosslinker 

(Rasmussen et al., 2011). By screening samples with negative stain EM we identified 

two nanobodies (Nb35 and Nb37) that bound to the complex, but not the receptor alone. 

Class averages of particles incubated with Nb35 indicated a homogeneous protein 

complex displaying increased density between Gαs and Gβγ.  Even though the nanobody 

projection profile was not clearly distinguished in the preferred particle orientations,  its 

presence appeared to enhance the uniformity in the disposition of Gαs-ras and Gβγ 

domains.  The use of Nb35 indeed allowed us to obtain the crystal structure of the T4L-

β2AR-Gs complex, which showed that the nanobody binds at the interface of the Gαs-Ras 

and Gβγ. In this location, Nb35 would not be predicted to interact with or stabilize the 

AH domain (Rasmussen et al., 2011). Accordingly, the classification of Nb35-bound 

complexes revealed a similar distribution of particles with an ordered AH domain on the 

Ras-like domain as in the absence of Nb35 (Figure 2-5).  

                 



 45 

 
Figure 2-5.  Raw image and 2D classification of negative stained T4L-β2AR-Gs 
complex with bound camelid antibody Nb35. 
a) Raw image of negative stained T4L-β2AR-Gs complex with bound camelid antibody 
(nanobody; Nb35).  b) Excised particles of T4L-β2AR-Gs complex with bound Nb35. c) 
2D classification 6,514 particles classified into 75 classes. d) Secondary 2D classification 
1,151 particles of nucleotide-free T4L-β2AR-Gs complex with bound camelid antibody 
Nb35 were classified into 30 classes. Class averages with the α-helical (AH) domain 
observed to be stabilized on the Ras-like domain of Gαs are marked with an orange 
square.  Class averages where the AH domain projection profile on the Ras-like domain 
is not visible are marked with a green circle.  Class averages of insufficient quality to 
categorize are marked with a cyan star. Scale bar = 10nm. 
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In contrast to Nb35, Nb37 appears bound directly to the AH domain (as also determined 

by DXMS, Figure 2-6) and could be distinguished in single particle EM class averages of 

the β2AR-Gs complex as an extension of the AH domain. Using Nb37 as a domain 

marker, allowed us to track the variable positioning of the small α-helical region of Gαs 

(Figure 2-7). 2D class averages from this preparation reveal an enhanced and elongated 

density adopting different orientations around the Ras-like domain, ranging from close 

proximity to the Gβγ module, to extending much further out of the complex in the 

opposite direction (Figure 2-7b). Collectively, these findings suggest that in the absence 

of nucleotide, the AH domain is flexible, thereby sampling different positions around the 

Ras-like domain. Deuterium exchange studies are consistent with a dynamic interface 

between the Gαs Ras and AH domains (Chung et al., 2011). Therefore, the unexpected 

position of the “open” AH domain in the crystal structure (Rasmussen et al., 2011) 

represents just one of the possible conformations.  

 

Figure 2-6. Effect of Nb37 binding to deuterium exchange profile of helical domain 
of Gas unit. 
a) The difference of deuterium exchange percentage of Gas subunit after Nb37 binding.  
Decreased deuterium exchange upon Nb37 binding was marked in blue, and increased 
deuterium binding exchange was marked in red. b) the number of deuterium incorporated 
in the region indicated with arrow (a) was plotted in the absence (blue) and in the 
presence (pink) of Nb37.  The scale of y-axis is the maximum exchangeable amides. 
(Figure courtesy of Sunahara lab)  
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Figure 2-7.  2D classification of T4L-β2AR-Gs complex with bound camelid 
antibody Nb37.   
a) 14,704 particles classified into 200 classes. b) Representative class averages of 
nucleotide-free complex with nanobody Nb37 bound on the AH domain (arrows) reveal 
its flexibility.  Scale bar = 10 nm. 
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3D negative stain reconstruction 

To obtain a more detailed view of the complex architecture, we used the random conical-

tilt approach (Radermacher et al., 1987) to calculate initial 3D reconstructions of 

complexes with and without ordered AH domain on the Ras-like domain (Figure 2-8). 

These initial 3D models were subsequently employed for multireference supervised 

alignment (Brink et al., 2004; Menetret et al., 2005) to separate particle projections from 

our entire dataset according to the AH positioning. This approach allowed us to obtain 

quality 3D reconstructions from particle projections with and without density 

corresponding to AH domain on the Ras-like domain.  

 

Figure 2-8. Initial models of T4L-β2AR-Gs complex. 
Initial models calculated from individual particle classes based on the random conical-tilt 
method.   Left, an initial model of T4L-β2AR-Gs complex with no α-helical (AH) domain 
visible on the Ras-like domain of Gαs.  Right, an initial model with the AH domain 
visible on the Ras-like domain of Gαs. 

The reconstructions are in excellent agreement with the corresponding 2D averages 

(Figure 2-9a, 2-10). In 3D reconstructions of particles where density for AH domain is 

observed, its orientation relative to the Ras-like domain appears to be similar to that 

found in the crystal structure of Gαs-GTPγS (Sunahara et al., 1997) (Figure 2-9a, Figure 
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2-3e). In addition, we obtained 3D reconstructions of nucleotide-free complexes with 

bound Nb37 marking the positioning of the AH domain.  The 3D maps clearly reveal that 

the Nb37-enhanced density of the AH domain can adopt different conformations around 

the Ras-like domain, indicative of a relative flexibility in the interaction between the two 

domains (Figure 2-9b, Figures 2-11 & 2-12). This variability in the 3D conformation of 

the AH domain or the AH/Nb37 module around the Ras-like domain was further 

confirmed by cross-validating 3D reconstructions (Figure 2-13). 
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Figure 2-9. 3D reconstructions of the T4L-β2AR-Gs complex in the nucleotide-free 
state.  
Representative class averages and corresponding 3D reconstructions of particles in each 
category show the variability in the positioning of the AH domain in the nucleotide-free 
complex. In the reconstruction to the left, the AH domain (orange ribbon) is shown in the 
same position as found in the docked crystal structure (Rasmussen et al., 2011). Absence 
of sufficient density to accommodate this domain indicates that its position is highly 
variable in this particle population. In the reconstruction to the right, the AH domain is 
modeled within the available EM density right below the Ras-like domain of Gαs, as also 
suggested by the 2D averages. b) 3D reconstructions of distinct conformations of 
nucleotide-free T4L-β2AR-Gs complex with bound nanobody Nb37. The Nb37-enhanced 
density of the AH domain (marked with an oval) shows variable positioning around the 
Ras-like domain of Gαs. The scale bars correspond to 5 nm. 
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Figure 2-10. 3D reconstructions of nucleotide-free T4L-β2AR-Gs complex. 
a, 3D reconstructions of T4L-β2AR-Gs complex in two different observed conformations 
of the α-helical (AH) domain in nucleotide-free conditions. Shown are front, side, and 
top views of the T4L-β2AR-Gs complex. Left, model with no density sufficient to 
accommodate the AH domain.  The AH domain is shown in the same position shown in 
crystal structure (Rasmussen et al., 2011).  Right, a model is shown with the AH domain 
observed on the Ras-like domain of Gαs. The AH domain structure (orange) has been 
docked in this position.  b, Fourier shell correlation (FSC) curves for each of the 
respective 3D reconstructions. 

                

Figure 2-11. 3D reconstructions of T4L-β2AR-Gs complex with bound camelid 
antibody Nb37. 
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a, 3D reconstructions of different conformations of T4L-β2AR-Gs complex with bound 
camelid antibody Nb37 targeted to the α-helical (AH) domain of Gαs.  Models of front, 
side, and top views of the T4L-β2AR-Gs complex with bound Nb37.  The density marked 
by the orange oval corresponds to AH domain with bound Nb37.  The structure of the 
AH domain is not shown.  b, Fourier shell correlation (FSC) curves for each of the 
respective 3D reconstructions. 

         

Figure 2-12. 3D reconstructions of T4L-β2AR-Gs complex with bound camelid 
antibody Nb37. 
a, 3D reconstructions of different conformations of T4L-β2AR-Gs complex with bound 
camelid antibody Nb37 targeted to the α-helical (AH) domain of Gαs.  Models of front, 
side, and top views of the T4L-β2AR-Gs complex with bound Nb37.  The density marked 
by the orange oval corresponds to AH domain with bound Nb37.  The structure of the 
AH domain is not shown.  b, Fourier shell correlation (FSC) curves for each of the 
respective 3D reconstructions. 
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Figure 2-13. Cross-validating 3D reconstructions. 
a, Projections classified as not having an ordered AH domain were aligned against a 3D 
reference volume with ordered AH domain. The resulting 3D map shows no ordered AH 
domain, as its density disappears. b, Cross sections of starting and final maps in the same 
orientation after alignment and reconstruction of projections with AH/Nb37. The 2D 
input data have a different conformation of the AH/Nb37 module compared to the 
starting reference map.  The final 3D map reflects the AH/Nb37 conformation of the 
input data, which is entirely different from the initial reference 3D map. 
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Incubation of different nucleotides or mimics with β2AR-Gs 

As noted above, previous crystal structures of G proteins show that bound nucleotides 

contribute to the stability of interactions between the Ras and AH domains. We therefore 

investigated the positioning of the AH domain in the presence of guanine nucleotides and 

nucleotide fragments. Pyrophosphate (PPi), representing two phosphates in GTP or GDP, 

has been shown to bind Ras in a Mg2+-dependent manner, presumably at the β- and γ-

phosphate positions (Zhang et al., 2005). PPi and its chemically more stable analogue 

foscarnet, more known for its antiviral properties (Sundquist and Oberg, 1979), also bind 

to heterotrimeric Gαs with an apparent affinity of ~0.5 and 1.6 mM, respectively, as 

determined by competition binding with a fluorescent GTPγS probe (Bodipy-GTPγS) 

(Figure 2-14). Binding of PPi and foscarnet most likely substitutes for the α- and β-

phosphates of GDP rather than the β- and γ-phosphates of GTP. Binding of β- and γ-

phosphates would result in modification of the switch II domain with subsequent Gβγ 

dissociation and dissolution of the complex (Sprang, 1997). However, PPi (with our 

without Mg2+) does not disrupt the receptor-G protein complex. This is in contrast to 

dissociation of the complex observed with the GTP mimetic GTPγS (Rasmussen et al., 

2011). 
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Figure 2-14.  GTPγS binding 
a, Analytical gel filtration of the T4L-β2AR:Gs complex (120 ug) incubated in the 
absence (solid line) or presence of 100 μM GTPγS (broken line) for 5 min at room 
temperature.  b, The effect of foscarnet and PPi was measured using 100 nM bodipy-
GTPγS-FL (Invitrogen, CA).  Fluorescence intensity of bodipy-GTPγS-FL (λex~470 nm) 
increases upon G protein binding as demonstrated by McEwan et al. 2001. Fig b shows a 
wavelength scan of bodipy-GTPγS-FL (100 nM) in the absence (dotted) or presence 
(solid) of a molar excess of purified Gαs (1 mM).  (inset), Bodipy-GTPγS (100 nM) was 
incubated with 1 μM purified Gαs and fluorescence measured in realtime. c, 
Pyrophosphate (PPi) and its chemically stable pyrophosphate analogue 
phosphonoformate (foscarnet), inhibits bodipy-GTPγS-FL (λex~470nm,   λem~515) 
binding to purified Gαs as in b) in a concentration-dependent manner (IC50 ~ 0.5 and 1.6 
mM, respectively).  d, inhibition of bodipy-GTPγS-FL by both PPi (3 mM) and foscarnet 
(10 mM) in both Gαs alone or in its trimeric form with Gβγ (Gαsβγ). Figure courtesy of 
the Sunahara Lab. 

Even though the presence of PPi does not appear to affect the AH domain positioning, in 

the presence of Mg2+•foscarnet we observe a significantly higher proportion (~70%) of 

complexes with an ordered AH region on the Ras-like domain (Figures 2-15 thru 2-20). 

The observations in 2D class averages were also reproduced by individual 3D 

reconstructions for the different conformers in each state (Figures 2-19 and 2-20). These 

results further confirm that the variability in the visibility of the AH domain is indeed due 

to its variable positioning and not due negative stain artifacts such as incomplete 

embedding. The ability of foscarnet to stabilize the AH domain on the Ras domain 

suggests it is acting as a ligand fragment that binds to the nucleotide binding pocket.  

Given its low affinity, it is not surprising that the stabilization is incomplete.  
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Figure 2-15. Nucleotide dependent positioning of the Gαs AH domain 
Distribution of particles with a distinct projection profile of the AH domain stabilized on 
the Ras-like domain across different conditions (inset, right panel, and marked with a 
white dot). A class average of a particle with a non-visible AH domain is shown for 
comparison (inset, left panel). The presence of foscarnet and GDP significantly increases 
the number of particles with stabilized AH domain. 
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Figure 2-16.  Initial and secondary 2D classification of T4L-β2AR-Gs complex in the 
presence of 1 mM Pyrophosphate (PPi). 
a) Initial 2D classification.  13,220 particles classified into 150 classes.  b) Secondary 2D 
classification. 3,196 particles of T4L-β2AR-Gs complex in the presence of 1 mM PPi 
were classified into 50 classes. Class averages with the α-helical (AH) domain observed 
to be stabilized on the Ras-like domain of Gαs are marked with an orange square.  Class 
averages where the AH domain projection profile on the Ras-like domain is not visible 
are marked with a green circle.  Scale bar = 10 nm. 
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Figure 2-17. Initial and secondary 2D classification of T4L-β2AR-Gs complex in the 
presence of 10 mM Pyrophosphate (PPi). 
a) Initial 2D classification. 30,006 particles classified into 200 classes.  b) Secondary 2D 
classification. 4,464 particles of T4L-β2AR-Gs complex in the presence of 10 mM PPi 
were classified into 50 classes.  Class averages with the α-helical (AH) domain observed 
to be stabilized on the Ras-like domain of Gαs are marked with an orange square.  Class 
averages where the AH domain projection profile on the Ras-like domain is not visible 
are marked with a green circle.  Class averages of insufficient quality to categorize are 
marked with a cyan star. Scale bar = 10 nm 
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Figure 2-18. Initial and secondary 2D classification of T4L-β2AR-Gs complex in the 
presence of 10 mM Foscarnet. 
a) Initial 2D classification. 15,630 particles were classified into 200 classes. b) Secondary 
2D classification. 3,715 particles of T4L-β2AR-Gs complex in the presence of 10 mM 
Foscarnet were classified into 50 classes. Class averages with the α-helical (AH) domain 
observed to be stabilized on the Ras-like domain of Gαs are marked with an orange 
square.  Class averages where the AH domain projection profile on the Ras-like domain 
is not visible are marked with a green circle.  Scale bar = 10 nm. 
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Figure 2-19. 3D reconstructions of T4L-β2AR-Gs complex in the presence of 10 mM 
Pyrophosphate (PPi). 
a, 3D reconstructions of T4L-β2AR-Gs complex in two different observed conformations 
of the α-helical (AH) domain in the presence of 10 mM PPi.  Shown are front, side, and 
top views of the T4L-β2AR-Gs complex.  Left, model with no density sufficient to 
accommodate the AH domain.  The AH domain is shown in the same position shown in 
crystal structure (Rasmussen et al., 2011).  Right, a model is shown with the AH domain 
observed on the Ras-like domain of Gαs.  The AH domain structure (orange) has been 
docked in this position.  b, Angular distributions of particle projections for each of the 
respective 3D reconstructions. c, Fourier shell correlation (FSC) curves for each of the 
respective 3D reconstructions. 
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Figure 2-20. 3D reconstructions of T4L-β2AR-Gs complex in the presence of 10 mM 
Foscarnet. 
a, 3D reconstructions of T4L-β2AR-Gs complex in two different observed conformations 
of the α-helical (AH) domain in the presence of 10 mM foscarnet.  Shown are front, side, 
and top views of the T4L-β2AR-Gs complex.  Left, model with no density sufficient to 
accommodate the AH domain.  The AH domain is shown in the same position shown in 
crystal structure (Rasmussen et al., 2011).  Right, a model is shown with the AH domain 
observed on the Ras-like domain of Gαs.  The AH domain structure (orange) has been 
docked in this position.  b, Angular distributions of particle projections for each of the 
respective 3D reconstructions. c, Fourier shell correlation (FSC) curves for each of the 
respective 3D reconstructions. 
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In contrast to PPi and foscarnet, addition of GDP or the non-hydrolyzable GTP analogue 

GTPγS leads to dissociation of the β2AR-Gs complex (Rasmussen et al., 2011). To 

examine the effect of GDP and GTPγS, we rapidly mixed the complex with nucleotide 

and immediately fixed the sample by negative stain embedding. Addition of either of 

these nucleotides at concentrations above 10 µM resulted in significant amounts of 

partially dissociated complexes (Figure 2-21). This result is expected since a large excess 

of either of these nucleotides would uncouple the G protein from the receptor. However, 

short incubation with lower GDP concentrations (1 µM) and immediate sample fixation 

for EM allowed to us to examine intact complexes, revealing that the AH region was 

ordered in ~60% of the intact particles (Figures 2-22 and 2-23). In contrast, even low 

concentrations of GTPγS (1 µM) showed a significant amount of destabilized complexes, 

and we were able to capture an array of intermediate dissociation states (Figure 2-24a and 

2-22c & 2-22d). Collectively, these data strongly suggest that the presence of nucleotide, 

or nucleotide fragments such as foscarnet, results in AH domain stabilization against the 

Ras-like domain of Gαs.  In the absence of nucleotide, the position of the AH domain is 

highly variable (Figures 2-15 and 2-25).  

Confirming alpha helical flexibility with other techniques 

Our results are in agreement with a recent study of the complex formed by Gi and 

rhodopsin. Using double electron-electron resonance (DEER) spectroscopy, Hamm, 

Hubbell and colleagues documented large (up to 20 Å) changes in distance between 

nitroxide probes positioned on the Ras and AH domains of Gi upon formation of a 

complex with light-activated rhodopsin (Van Eps et al., 2011).  The broad distance 

distributions observed for several labeling pairs are compatible with multiple 

conformations in dynamic equilibrium. Our findings are also consistent with results from 

DXMS that show increased deuterium exchange at both the nucleotide binding pocket 

and at sites of interaction between the Ras and AH domains upon formation of the β2AR-

Gs complex (Chung et al., 2011). 

 



 63 

       

Figure 2-21. Raw EM image of negative stained T4L-β2AR-Gs complex in the 
presence of 10 μM GTPγS and GDP. 
a, Raw image of negative stained T4L-β2AR-Gs complex in the presence of 10 μM 
GTPγS.  b, Excised particles of T4L-β2AR-Gs complex in the presence of 10 μM GTPγS 
show complex dissociation. c, Raw image of negative stained T4L-β2AR-Gs complex in 
the presence of 10 μM GDP.  d, Excised particles of T4L-β2AR-Gs complex in the 
presence of 10 μM GDP show complex dissociation. 
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Figure 2-22. Raw EM image of negative stained T4L-β2AR-Gs complex in the 
presence of 1 μM GDP and 1 μM GTPγS. 
a, Raw image of negative stained T4L-β2AR-Gs complex in the presence of 1 μM GDP.  
b, Excised particles of T4L-β2AR-Gs complex in the presence of 1 μM GDP. c, Raw 
image of negative stained T4L-β2AR-Gs complex in the presence of 1 μM GTPγS.  d, 
Excised particles of T4L-β2AR-Gs complex in the presence of 1 μM GTPγS. 
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Figure 2-23.  Initial and secondary 2D classification of T4L-β2AR-Gs complex in the 
presence of 1 μM GDP. 
a) Initial 2D classification. 17,438 particles were classified into 200 classes.   Class 
averages where the T4L-β2AR-Gs complex is partially dissociated are marked with a 
magenta hexagon.  b) Secondary 2D classification. 2,588 particles of T4L-β2AR-Gs 
complex in the presence of 1 μM GDP were classified into 50 classes.  Class averages 
with the α-helical (AH) domain observed to be stabilized on the Ras-like domain of Gαs 
are marked with an orange square.  Class averages where the AH domain projection 
profile on the Ras-like domain is not visible are marked with a green circle.  Class 
averages of insufficient quality to categorize are marked with a cyan star. Scale bar = 10 
nm. 


