To my family and pack

ACKNOWLEDGEMENTS

First, I must express my gratitude to my advisor, Dr. John Kuwada, for his trust, patience, and vision in guiding the development of my scientific projects and my development as a scientist. John allowed me the freedom to test my own ideas and hypotheses, while providing enough guidance to keep me focused. He contributed new ideas and scientific rigor when I got stuck and my techniques got sloppy. He inspired risk-taking and enthusiasm when it felt like just another day in the lab. He provided unique scientific insight after scientific talks, and entertaining impressions after sporting events.

I would like to thank Dr. Eric Horstick and Dr. Sean Low, two former graduate students in the lab that provided endless scientific conversations, expertise, guidance, and help. Eric's intellectual insight and willingness to collaborate through the most difficult parts of the project helped make the projects what they are today. Sean's enthusiasm and technical skills in the lab served as an instant boost of motivation in trying times. Several faithful undergraduate researchers were instrumental in many aspects of these projects, including Akhila Satish, Matt Lacey, and Kendal Rosalik, and their help is greatly appreciated. Other fellow graduate students Kenichi Iwasaki, Shawn Sprague, and Kan Sun were also helpful with both technical support and scientific insight. Fish room technicians Alex Migda and Barbara Wagner contributed excellent care for my fish, technical support when needed, as well as friendly conversation.

iii

My frequent interactions with Dr. Rich Hume and Dr. Haoxing Xu were always stimulating, supportive, and informative. Their insight into problems was unmatched and their constructive criticism, as well as friendly support was crucial. From the fist day I met Kate Barald while interviewing at the University of Michigan, I knew she would make a fantastic advisor, mentor, and friend, and her support through the my graduate work has been indispensable. Dr. Lori Isom's continuing support, kind words, and scientific insight have also been exemplary.

My research has been supported by a Rackham Graduate School Merit Fellowship, and a Cellular and Molecular Biology Department training grant. Chapter II has been published as Horstick *et al.*, (2013), Stac3 is a component of the excitation–contraction coupling machinery and mutated in Native American myopathy. *Nature communications* 4, 1952.

Finally, I must thank my fiancée, Ariel Brumbaugh, as well as my Mom, Dad, and Brother. I believe it is rare that the people you love the most are also able to understand your scientific PhD thesis, but uniquely I am blessed in that capacity. Ariel has put up with endless hours of conversations about my project, and always seems to know best when to get my mind off of my work. Without her constant love, support, and spirit to come home to, graduate school would have, long ago, taken my sanity. My parents have provided overwhelming guidance, backing, and encouragement throughout my life. I cannot image having more supportive and loving parents, or better role models. My brother has also been encouraging and supportive, and someday I hope we can publish together.

Thank you all.

iv

TABLE OF CONTENTS

Dedication	ii
Acknowledgments	iii
List of Figures	vii
List of Tables	ix
List of Abbreviations	X
Abstract	xi
CHAPTER I: INTRODUCTION	1
THE STUDY OF THE GENETICS OF BEHAVIOR	1
Mutagenesis screens to discover genes involved in behavior	1
Zebrafish mutagenesis screens have revealed the swimming circuit	5
HISTORY AND BACKGROUND OF THE EC COUPLING COMPLEX	8
The dihydropyridine receptor: the voltage sensor	
The ryanodine receptor: the Ca ²⁺ release unit	
Cardiac versus skeletal muscle EC coupling	14
HOT SPOTS IN EC COUPLING	
The L2-3 region is required for normal EC coupling	
<i>The L1-2 region and the</i> $Ca_{\nu}\beta 1a$ <i>are required for EC coupling</i>	
The L3-4 and C-terminus of $Ca_v I$. I may participate in EC coupling	
The ryanodine receptor sends retrograde signals in EC coupling	
MECHANISMS FOR TRAFFICKING DHPR	
The unique cellular biology of skeletal muscle	
The C-terminus of $Ca_v 1.1$ contributes to trafficking the DHPR complex	
The $Ca_{\nu}\beta$ la is required for normal trafficking of the DHPR complex	
PROTEINS REQUIRED FOR THE FORMATION OF TETRADS OF DHPRS	
ACCESSORY PROTEINS INVOLVED IN MODULATING EC COUPLING	35
<i>Effects of accessory proteins G</i> β 1 γ 2, <i>Rem, and JP-45 on EC coupling</i>	
The endocytotic proteins, Dyamin2 and Caveolin, and EC coupling	
CONCLUSION	
FIGURES	
CHAPTER II: STAC3 IS A COMPONENT OF THE EXCITATION-CONT	RACTION
COUPLING MACHINERY AND MUTATED IN NATIVE AMERICAN MY	OPATHY 44
Abstract	44
INTRODUCTION	
MATERIALS AND METHODS	
Results	
<i>The mi34 zebrafish mutant is defective in EC coupling</i>	
<i>The gene stac3 is the basis for the mi34 phenotype</i>	
A mutation in human STAC3 causes a congenital myopathy	

DISCUSSION	
CHADTED III. STAC2 IS DECLIDED FOD THE NODMAL TDAFFIC/UNC	
DHPR AND FORMATION OF TETRADS IN THE EC COUPLING COMPL	EX
	02
ABSTRACT	
MATERIALS AND METHODS	
RESULTS	
Expression of DHPR by not Ryrs at triads is reduced in stac3 mutant embryos	
Transcription of $Ca_v I.1$ and $Ca_v \beta$ are unperturbed in stac3 mutants	
stac3 mutant embryos have fewer DHPR particles per tetrad and particles per c	cluster 104
$Ca_v 1.1$ is removed from tetrads of stac3 mutant embryos at a faster rate	105
Trafficking rate of Cav1.1 is increased in stac3 mutant muscle	106
Trafficking of $Ca_v 1.1$ -GFP proceeds through the lumen of the longitudinal ER/S	<i>R</i> 107
$Ca_v l. l$ -GFP traffics longitudinally through skeletal muscle in a nocodazole-rest	istant
manner	
$Ca_v 1.1$ is trafficked in longitudinal lines to its target in the triad, independently	of Stac3109
Stac3 biochemically interacts with $Ca_v 1.1 L2-3$ and $Ca_v \beta$ in vitro	
DISCUSSION	
FIGURES	
PATTERN GENERATOR	
ADSTRACT	
MATERIALS AND METHODS	144
RESULTS	
Zebrafish genome contains single copies of stac1 and stac3	
Misexpressed Stac1 in skeletal muscle localizes subcellularly to the T-tubules, b	out fails to
rescue stac3 mutant swimming	
stac1 is expressed in a discreet subset of interneurons in zebrafish embryos, and	l the brain
beginning at 72 hpf	149
stac1 is expressed in KA interneurons in zebrafish embryos	150
Knockdown of Stac1 protein results in motility defects in zebrafish embryos	151
Optogenetic activation of KA interneurons is capable of driving swimming in en	nbryos, but
not when Stac1 is knocked down	152
DISCUSSION	
FIGURES	
CHAPTER V: DISCUSSION AND CONCLUSIONS	
THE FUTURE OF EC COUPLING STUDIES AND THE STAC3 PROJECT	
THE ROLE OF STAC1 IN NEURONS	
CONCLUSION	
BIBLIOGRAPHY	

LIST OF FIGURES

FIGURE 1-1. THE BASIC SWIM CIRCUIT OF A ZEBRAFISH EMBRYO REVEALED BY MUTAGENESIS	41
SCREEN MUTANTS	.41
FIGURE 1-2. THE EC COUPLING COMPLEX IS LOCATED IN THE TRIADIC JUNCTION BETWEEN THE T-TUBULES AND THE SR MEMBRANE	.42
FIGURE 1-3. SCHEMATIC REPRESENTATION OF THE EC COUPLING COMPLEX WITH IDENTIFIED	
PHYSIOLOGICAL ROLES OF REGIONS OF THE COMPLEX	.43
FIGURE 2-1. <i>MI</i> ³⁴ MUTANT ZEBRAFISH EXHIBIT DEFECTIVE SWIMMING BUT CNS OUTPUT IS	
NORMAL	.73
FIGURE 2-2. THE SYNAPTIC RESPONSES OF SKELETAL MUSCLES INITIATED BY TACTILE	
STIMULATION IN 48 HPF EMBRYOS ARE COMPARABLE BETWEEN WT, SIBLING, AND	
STAC3 ^{MI34}	.74
FIGURE 2-3. DISTRIBUTION OF THE NEUROMUSCULAR JUNCTION (NMJ) IS UNPERTURBED IN	
<i>STAC3^{MI34}</i> EMBRYOS	.75
FIGURE 2-4. DEPOLARIZATION INITIATED MUSCLE CONTRACTION IS DECREASED IN <i>STAC3^{MI34}</i>	
EMBRYOS AT 48 HPF	.76
FIGURE 2-5. CAFFEINE INDUCES SKELETAL MUSCLE CONTRACTIONS THAT WERE SIMILAR BETWEI	EN
WT, SIBLING, AND <i>STAC3^{MI34}</i> EMBRYOS AT 48 HPF	.77
FIGURE 2-6. EC COUPLING IS DEFECTIVE IN <i>MI34</i> MUTANT ZEBRAFISH EMBRYOS	.78
FIGURE 2-7. MEIOTIC MAPPING OF THE <i>STAC3^{MI34}</i> LOCUS TO THE <i>STAC3</i> GENE	.79
FIGURE 2-8. THE MUSCLE-SPECIFIC GENE <i>STAC3</i> UNDERLIES THE MI34 PHENOTYPE	.80
FIGURE 2-9. <i>STAC3</i> IS EXPRESSED SPECIFICALLY BY SKELETAL MUSCLES IN ZEBRAFISH EMBRYOS	.81
FIGURE 2-10. EXPRESSION OF WT STAC3 IN MUSCLES RESCUES THE <i>STAC3^{MI34}</i> PHENOTYPE	.82
FIGURE 2-11. STAC3 FORMS A MOLECULAR COMPLEX WITH DHPR AND RYR	.83
FIGURE 2-12. STAC3 MRNA IS MATERNALLY EXPRESSED	.85
FIGURE 2-13. SKELETAL AXIAL MUSCLES FROM <i>STAC3^{MI34}</i> MUTANTS EXHIBIT PROGRESSIVELY	
DEFECTIVE SR	.86
FIGURE 2-14. MISSENSE MUTATION IN HUMAN <i>STAC3</i> CAUSES NATIVE AMERICAN MYOPATHY	
(NAM)	87
FIGURE 2-15. PEDIGREES OF FIVE FAMILIES WITH INDIVIDUALS EXHIBITING NAM	.88
FIGURE 2-16. THE <i>STAC3^{NAM}</i> ALLELE DECREASES EC COUPLING	.89
FIGURE 2-17. EXPRESSION OF HUMAN WT <i>STAC3</i> BY SKELETAL MUSCLES OF <i>STAC3^{MI34}</i> EMBRYOS	
RESCUES THE MUTANT BEHAVIOR	90
FIGURE 2-18. MODELS OF STAC3 DOMAINS	.91
FIGURE 3-1. CA _V 1.1 EXPRESSION IS REDUCED IN TRIADS OF <i>STAC3</i> MUTANTS	125
FIGURE 3-2. TRANSCRIPT LEVELS OF CACNAISA AND CACNAISB ARE COMPARABLE BETWEEN	
WILDTYPE SIBLINGS AND <i>STAC3</i> MUTANTS	126
FIGURE 3-3. TRIADIC CLUSTERS OF STAC3 EMBRYOS HAVE FEWER DHPR PARTICLES AND FEWER	
PARTICLES PER TETRAD	128

FIGURE 3-4. CAv1.1 DISPERSES FROM TRIADS OF STAC3 MUTANT EMBRYOS AT A FASTER RAT	Е129
FIGURE 3-5. TRAFFICKING RATE OF CAV1.1 IS INCREASED IN STAC3 MUTANT MUSCLE	131
FIGURE 3-6. TRAFFICKING OF CAV1.1-GFP PROCEEDS THROUGH THE LUMEN OF THE	
LONGITUDINAL ER/SR	132
FIGURE 3-7. CAV1.1-GFP TRAFFICS LONGITUDINALLY THROUGH SKELETAL MUSCLE IN A	
NOCODAZOLE RESISTANT MANNER	133
FIGURE 3-8. CAV1.1 IS TRAFFICKED IN LONGITUDINAL LINES TO ITS TARGET IN THE TRIAD,	
INDEPENDENTLY OF STAC3	134
FIGURE 3-9. STAC3 BIOCHEMICALLY INTERACTS WITH AND CAVB AND CAV1.1 L2-3 IN VITRO	135
FIGURE 3-10. MODEL OF TRAFFICKING OF CAv1.1 IN A MYOFIBER	136
FIGURE 3-11. MODEL OF TRAFFICKING OF CAv1.1 AND TETRAD FORMATION	137
FIGURE 4-1. ZEBRAFISH STAC1 IS SIMILAR TO HUMAN STAC1 AND ZEBRAFISH STAC3	159
FIGURE 4-2. PHYLOGENETIC TREE OF THE STAC PROTEIN FAMILY	160
FIGURE 4-3. STAC1-GFP LOCALIZES IN A STRIATION PATTERN IN SKELETAL MUSCLE	162
FIGURE 4-4. STAC1 IS EXPRESSED IN DISCRETE POPULATIONS OF NEURONS IN THE SPINAL COM	کD OF
22-72 HPF EMBRYOS	163
FIGURE 4-5. <i>STAC1</i> IS EXPRESSED IN THE BRAIN OF JUVENILE ZEBRAFISH	164
FIGURE 4-6. <i>STAC1</i> IS NOT EXPRESSED IN MOTOR NEURONS	165
FIGURE 4-7. <i>STAC1</i> IS EXPRESSED IN GABAERGIC KA INTERNEURONS	166
FIGURE 4-8. KNOCKDOWN OF STAC1 REDUCES TOUCH EVOKED SWIMMING	167
FIGURE 4-9. ACTIVATION OF CHR2-MCHERRY IN KA INTERNEURONS IS CAPABLE OF DRIVIN	G THE
CPG IN CONTROL MO INJECTED EMBRYOS, BUT NOT STAC1 MO	
INJECTED EMBRYOS	168

LIST OF TABLES

TABLE 2-1. SELECTED IDENTIFIED PROTEINS BY MS/MS	
TABLE 3-1. PHENOTYPES OF PROGENY OF $STAC3^{+/-} \times STAC3^{+/-}$ crosses	127
TABLE 3-2. DYNAMIC RATES OF FLUORESCENT TAGGED PROTEINS AT TRIADS	130
TABLE 4-1. PHENOTYPES OF PROGENY OF $STAC3^{+/-} \times STAC3^{+/-}$ crosses injected with	
HSP70- <i>STAC3-GFP</i> OR HSP70- <i>STAC1-GFP</i>	161

LIST OF ABBREVIATIONS

DHPR- Dihydropyridine Receptor complex including all subunits

 Ca_v - voltage gated Ca^{2+} channel

 Na_v - voltage gated Na^{2+} channel

 $Ca_v 1-3$ - principle, α -subunit of the DHPR pore-forming subunit

Ca_v1.1- skeletetal muscle specific isoform of Ca_v1

 $Ca_{v}\beta$ - auxiliary β -subunit of the DHPR complex

 $Ca_{v}\beta 1a$ - skeletal muscle specific splice isoform of $Ca_{v}\beta 1$

 $Ca_v \alpha 2\delta$ - auxiliary $\alpha 2\delta$ -subunit of the DHPR complex

 $Ca_v\gamma$ - auxiliary γ -subunit of the DHPR conplex

RyR1- Skeletal muscle specific, Ryanodine Receptor1 isoform

Stac- Family of proteins consisting of a Src homology three and a cysteine-rich domain

NAM- Native American Myopathy

EC coupling- excitation contraction coupling

t-tubule- Transverse Tubule

L1-2, L2-3, L3-4- transmembrane, cytoplasmic loops of the Ca_v1

C1 domain- a domain with homology to the first conserved PKC cysteine rich domain

SH3 domain- Src homology three domain

Dyspedic myotubes- Ryr1 null

Dysgenic myotubes- Ca_v1.1 null

MH- malignant hyperthermia

Mi³⁴- zebrafish *stac3* mutant

hpf- hours post fertilization

RB- Rohon Beard Neurons

CPG- central pattern generator

KA- Kolmer-Agdur interneuron

MO- Morpholino antisense oligonucleotide

ABSTRACT

Excitation-contraction (EC) coupling is the mechanism by which muscle translates depolarization of the sarcolemma into Ca^{2+} release from the sarcoplasmic reticulum (SR) required for muscle contraction. EC coupling occurs at the junctions of transverse (t) tubules and SR called triads and is dependent on interactions between the dihydropyridine receptor (DHPR) in t-tubules that is the voltage detector, and the ryanodine receptor (RyR1) in the SR that is the Ca²⁺ release channel. Despite the well-studied role in EC coupling of DHPR and RyR1, other components of the molecular complex are less understood. A mutagenesis screen of zebrafish identified an autosomal, recessive mutation that causes poor mobility and reduced Ca^{2+} release in skeletal muscle, yet exhibits normal output from the central nervous system to muscles. Through meiotic mapping, a null mutation in *stac3*, a skeletal muscle-specific gene encoding a putative adaptor protein, was identified. As stac3 mutants display myopathic features, we explored whether stac3 mutations might cause human myopathies and found that a mutation in STAC3 is the basis of Native American Myopathy, which is characterized by muscle weakness and susceptibility to malignant hyperthermia. The Stac3 protein was further characterized and found to directly interact with the EC coupling complex, and to function in normal trafficking and arrangement of the DHPR in arrays of four called tetrads that are essential for Ca^{2+} release.

The neuronally expressed Stac1 protein is a homolog of Stac3, but its function is unknown. Informed by our research on Stac3 in skeletal muscle, we probed the function of Stac1 in neurons. We find *stac1* is expressed in a subset of spinal cord neurons in zebrafish embryos

xi

called Kolmer-Agdur (KA) interneurons that are likely involved in the neuronal circuit that generates swim behaviors. To determine the function of Stac1, we knocked down expression of Stac1 protein with an antisense morpholino oligonucleotide (MO), which resulted in a motility defect in embryos, indicating KA interneurons are involved in the neuronal circuit underlying swim behavior, and Stac1 is required swimming. These results indicate that members of the previously uncharacterized *stac* family of genes are important in normal muscle and neuronal physiology.