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ABSTRACT 

 

Excitation-contraction (EC) coupling is the mechanism by which muscle translates 

depolarization of the sarcolemma into Ca2+ release from the sarcoplasmic reticulum (SR) 

required for muscle contraction.  EC coupling occurs at the junctions of transverse (t) tubules and 

SR called triads and is dependent on interactions between the dihydropyridine receptor (DHPR) 

in t-tubules that is the voltage detector, and the ryanodine receptor (RyR1) in the SR that is the 

Ca2+ release channel. Despite the well-studied role in EC coupling of DHPR and RyR1, other 

components of the molecular complex are less understood. A mutagenesis screen of zebrafish 

identified an autosomal, recessive mutation that causes poor mobility and reduced Ca2+ release in 

skeletal muscle, yet exhibits normal output from the central nervous system to muscles. Through 

meiotic mapping, a null mutation in stac3, a skeletal muscle-specific gene encoding a putative 

adaptor protein, was identified. As stac3 mutants display myopathic features, we explored 

whether stac3 mutations might cause human myopathies and found that a mutation in STAC3 is 

the basis of Native American Myopathy, which is characterized by muscle weakness and 

susceptibility to malignant hyperthermia. The Stac3 protein was further characterized and found 

to directly interact with the EC coupling complex, and to function in normal trafficking and 

arrangement of the DHPR in arrays of four called tetrads that are essential for Ca2+ release.  

 The neuronally expressed Stac1 protein is a homolog of Stac3, but its function is 

unknown. Informed by our research on Stac3 in skeletal muscle, we probed the function of Stac1 

in neurons. We find stac1 is expressed in a subset of spinal cord neurons in zebrafish embryos 
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called Kolmer-Agdur (KA) interneurons that are likely involved in the neuronal circuit that 

generates swim behaviors. To determine the function of Stac1, we knocked down expression of 

Stac1 protein with an antisense morpholino oligonucleotide (MO), which resulted in a motility 

defect in embryos, indicating KA interneurons are involved in the neuronal circuit underlying 

swim behavior, and Stac1 is required swimming. These results indicate that members of the 

previously uncharacterized stac family of genes are important in normal muscle and neuronal 

physiology. 

 


