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CHAPTER 1 

An introduction to yeast 

1.1. A brief history of yeast research 

Humankind has leveraged yeast in the process of fermentation to produce alcoholic 

beverages and to leaven bread since ancient times. In fact, yeast is likely the oldest, 

domesticated, industrial microorganism with archaeological records indicating its use for 

brewing in Sumeria and Babylonia over 7,000 years ago (1–3), actually predating the 

development of a written language. Even the species name of the most commonly used yeast, 

Saccharomyces cerevisiae also known as baker’s yeast, demonstrates the historical significance 

of this organism in producing alcoholic beverages (cervisia, cervesia, or cerevisia are Latin for 

beer) (4).  

Though yeast was first observed by van Leeuwenhoek in 1680 (Figure 1.1), it was 

another century and half before improvements in microscopy allowed the scientists Cagniard-

Latour , Kützing, and Schwann to independently define yeast as a living organism that grows by 

budding, ferments sugar to produce ethanol, requires nitrogen-based substances, and has an 

estimated diameter of 6-9 μm (4). Despite these observations, the idea that yeast was a living 

organism was heavily challenged by leading chemists of the day, and their influence negatively 

impacted the development of microbiology. It took nearly another two decades before Louis 

Pasteur affirmed the role of yeast in alcoholic fermentation and undisputedly established yeast as 

living.  

Nevertheless, the early study of alcoholic fermentation produced vast amounts of scientific 

knowledge and, one could argue, birthed the modern life sciences. Advancements made while 

studying fermentation spurred the development of biochemistry and microbiology. For instance, 

the word enzyme actually has its origin from the Greek en (εν) meaning ‘in’ and zymi (ζυµι) 

meaning “leaven” or “yeast” and used to refer to yeast, dough, or as a root for words associated 

with beer and fermentation (1, 2). This now frequented term was actually created to identify
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compounds derived from yeast that can ferment sugar through observations that date back to the 

earlier studies of Pasteur (5). Since then, the study of yeast fermentation has contributed greatly 

to our understanding of microbial physiology, microbial pathology, and enzymology, eventually 

leading to the acceptance of enzymes as the drivers of cellular metabolism after the long 

controversy that began with the discovery of yeast being a living organism by Cagniard-Latour, 

Kützing, and Schwann (6, 7). Additionally, S. cerevisiae and other yeasts are responsible for a 

vast majority of industrial and medical applications beneficial to human life (8) (Figure 1.2). 

Modern applications of yeast include fermented foods and beverages, chemicals (reviewed in (9, 

10)), nutraceuticals, pharmaceuticals such as the Hepatitis B vaccine (1, 11), and biofuels (12).  

 

1.2. Yeast as a model organism 

The unique properties of the yeast S. cerevisiae extend beyond those humans have 

exploited for thousands of years in baking and brewing; they also make it an exceptional 

organism for research. Initially introduced as an experimental organism in the mid-1930’s (13), 

yeast rapidly became the workhorse for modern cell and molecular biology due to several 

advantageous qualities.  

First, S. cerevisiae cells are unicellular but eukaryotic, non-pathogenic, have minimal 

nutritional requirements, and reproduce by budding every 90 minutes. This means it can easily 

be maintained in a laboratory setting, and experiments typically proceed more rapidly than with 

other eukaryotic organisms. 

Yeast also has remarkably tractable genetics in that DNA can be easily and precisely 

added or removed from its genome via homologous recombination. Driven by the discovery of 

Gerald Fink’s group that yeast could be transformed with foreign DNA (14) and the 

simultaneous development of an E. coli/S. cerevisiae shuttle vector by Jean Beggs (15), genetic 

engineering quickly become the crux of yeast’s popularity and success as an experimental 

system. In fact, the effectiveness at which the yeast genome can be manipulated has led to the 

popular colloquialism “the awesome power of yeast genetics” (16). Moreover, while most wild 

strains of S. cerevisiae are diploid (17),  lab strains can typically grow as stable haploids, which 

further facilitates genetic manipulation. The haploid yeast genome is just over 12 million base 

pairs in length, consisting of 16 chromosomes ranging from 230,000bp to 2,352,000bp in size 
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(18). The haploid S. cerevisiae genome was the first eukaryotic genome to be successfully 

sequenced (19), which provided an unprecedented view of the nearly 5800 protein-coding genes 

(4% of which have introns) comprising 70% of the total genome. Consequently, the yeast 

genome has become the premier eukaryotic genome (20). 

Yeast has substantially contributed to our understanding of eukaryotic biology due to its 

easy manipulation, the elegance of its genetics, and the availability of both a complete genome 

sequence and a vast arsenal of molecular biological tools (see below). For example, most of our 

knowledge regarding the cell-division cycle is a product of yeast experimental research (21). 

This success is also due to the remarkable biological conservation between yeast and other 

eukaryotes. Yeast cells divide in a similar manner to human cells and share many other basic 

cellular processes such as cell cycle progression, nucleic acid transcription and translation, 

protein targeting and secretion, and cytoskeletal structures. Moreover, yeast share a high number 

of gene orthologs with higher eukaryotes; almost 31% of putative yeast protein-encoding genes 

have homology to mammalian protein sequences (22). Nearly 100 yeast genes (~17%) are 

members of orthologous gene families associated with human disease (23). The mammalian 

homolog for many of these genes is functional in yeast and complements the yeast deletion 

mutant. This suggests these diseases are a consequence of disrupting the basic cellular processes 

shared amongst eukaryotes, such as DNA repair, cell division, or regulation of gene expression. 

Therefore, yeast can be leveraged to investigate functional relationships involving these genes, as 

well as others, to better understand human disease states (24, 25) including cancer (26–28) and 

neurodegenerative diseases such as Alzheimer’s, Parkinson’s, and Huntington’s (29, 30). S. 

cerevisiae is also an excellent model for the study of diverse plant and human pathogenic fungi 

(31). The signaling pathways and associated genes that regulate mating and virulence in the plant 

fungal pathogens such as Ustilago maydis and the human fungal pathogens Cryptococcus 

neoformans and Candida albicans are highly conserved in yeast (32). Ergo, much of our current 

knowledge of the genetic pathways controlling virulence in fungal pathogens, specifically those 

involved in filamentous growth, has been determined by studies in S. cerevisiae (33, 34). 

 

1.3. Yeast genomics 

Not long after the yeast genome was published, another broad international initiative 

began to generate a genome-wide, yeast deletion collection (35, 36) in which nearly every yeast 
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open reading frame (ORF) was replaced with a bar-coded drug-resistance gene. Thus, each 

deletion is individually identifiable in screens of the entire mutant library. Around this same 

time, another yeast mutant collection was generated by exploiting transposons, mobile genetic 

elements that can be used to disrupt genes in a non-targeted fashion, to randomly mutate the 

yeast genome (37, 38). These mutant libraries and their derivatives have been successfully 

exploited in a vast array of genome-scale experiments allowing researchers to implement many 

novel screens for mutant phenotypes under more than 100 experimental conditions; these studies 

allowed for the assignment of over 5,000 novel phenotypic traits to yeast genes (reviewed in 

(39)).  

Many other useful yeast mutant libraries have been constructed for the analysis of gene 

function. A library of yeast genes C-terminally-tagged with green fluorescent protein (GFP) was 

created to visualize the subcellular localization and interactions of most of the proteins in yeast 

(40). Similarly, Ghaemmaghami et al generated a yeast fusion library where each ORF was 

chromosomally tagged with a high-affinity tandem affinity purification (TAP) tag (41), which 

allows immunodetection and immunopurification of the entire yeast proteome. Yet another 

collection was designed where each of its 5,573 total yeast strains carries a multicopy plasmid 

bearing a unique yeast ORF tagged C-terminally with a tandem affinity tag that includes a 

hemagglutination (HA) tag and driven by an inducible GAL1 promoter (42).This collection 

allows the targeted over-expression of most yeast genes and was recently used in a genome-wide 

study to identify novel regulators of filamentous growth in S. cerevisiae (43).  

Collectively, these yeast collections offer a unique and powerful toolkit for large-scale 

investigations into the relationship between genotype and phenotype. These numerous tools and 

ease of experimentation in yeast ensures that it will continue to be a very popular test bed for the 

development of novel high-throughput technologies.  And though the collections presented 

above have significantly contributed to the advancement of functional genomics, they are far 

from exhaustive catalogs of yeast collections. Numerous yeast culture collections exist bearing 

thousands of strains across multiple species (reviewed in (44)).  

 

1.3.1. Gene expression analysis 

The arrival of a completed genome also impelled considerable technology development 

toward the study of genome-wide gene expression, specifically the characterizing of the 
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transcriptome, the complete set and quantity of transcripts in a cell under a particular condition. 

In 1995, Schena and colleagues reported DNA microarrays as an ideal tool for the systematic, 

high-throughput, and quantitative investigation of gene expression on a large scale (45). In this 

method (Figure 1.3), cDNA products are amplified by PCR and subsequently attached to a solid 

surface, typically a glass slide, in an organized fashion. Two mRNA samples purified from an 

experimental cell population and a control cell population are then transcribed into cDNA and 

fluorescently labeled, each with its own fluorescent dye. The cDNA samples are then mixed and 

used to query the cDNA products affixed to the glass surface. Leveraging the naturally ability of 

complementary DNA to hybridize, the mixed cDNA products are washed over the microarray 

and then detected via laser scanning, such that the bound cDNA samples emit a detectable 

fluorescent signal that indicates the expression of the particular gene located at that position on 

the glass surface as measured by the ratio of the two fluorescent signals (experimental/control). 

Many different variations of DNA microarray technologies have since been developed to 

measure many genomic features in addition to gene expression, including genotyping for point 

mutations, single nucleotide polymorphisms (SNPs), and DNA-methylation (reviewed in (46)) as 

well as for the clinical detection of infectious diseases (47).  

 In yeast, microarray approaches have been used extensively to characterize the 

transcriptome upon exposure of cells to numerous conditions and stresses (48, 49). DNA 

microarrays in yeast have also led to improvements in the effectiveness of industrial yeast strains 

(50), in anticancer drug therapies (51), and in our understanding of fungal pathogenicity (52, 53). 

As described above, microarray studies are a preferred tool for large-scale gene 

expression experiments. However, robust experimentation necessitates validation of at least a 

subset of the relative gene expression changes discovered via DNA microarray analysis. In 

addition, whole-genome gene expression is generally not necessary when the gene or pathway is 

already known. In both of these situations, the data collection or validation can begin with 

quantitative real-time PCR (qRT-PCR). Since its development in the early 90’s (54), qRT-PCR 

has permitted sensitive detection and quantification of specific DNA sequences (reviewed in (55, 

56)). The procedure exploits the general principle of polymerase chain reaction (PCR) to 

fluorescently detect each copy of DNA as it is amplified from a provided cDNA template in real 

time. As each PCR cycle produces an increased level of total double-stranded DNA, the rate of 
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amplification can be used to calculate the relative measurement of the initially supplied cDNA 

template. 

qRT-PCR is a standard tool used commonly to detect and/or validate changes in gene 

expression, such as identifying transcriptional changes of genes regulating fungal pathogenicity 

(57, 58). However, it can also be used to improve the diagnosis of cancer and infectious diseases 

(59, 60) or for the detection of bacterial, fungal, or viral pathogens (61, 62). 

 Hybridization-based transcriptome studies offer a high-throughput and relatively 

inexpensive approach for elucidating the relationship between genotype and phenotype. Yet, few 

technologies have revolutionized the biological sciences as much as the development of 

massively parallel, next-generation DNA sequencing. For a review on next-generation 

sequencing technologies refer to (63, 64). These deep-sequencing technologies allow entire 

genomes to be sequenced in a very short time, in parallel, and with an amazing level of 

sensitivity and accuracy. Gene expression analysis using sequence-based approaches had been 

exploited with low-throughput technologies like sequencing EST libraries (65) and even with 

more high-throughput options like serial analysis of gene expression (SAGE) (66) and massively 

parallel signature sequencing (MPSS) (67), but these technologies were limited by experimental 

design and available technology. Next-generation sequencing spurred the development of a novel 

high-throughput sequencing technique that allowed both mapping and quantifying 

transcriptomes called RNA-seq (68) (Figure 1.4). By this methodology, a population of RNA is 

converted to a library of cDNA fragments with adaptors attached to one or both ends. The cDNA 

library is then submitted to deep sequencing using, in principle, any available high-throughput 

sequencing platform. RNA-seq can accurately determine the expression levels of specific genes, 

reveal sequence variations (SNPs), identify novel transcripts and isoforms, and characterize non-

coding RNAs (69, 70). Also, unlike microarrays, RNA-seq can be used on organisms without a 

sequenced genome. 

 RNA-seq has enabled transcriptomics to proceed at an unprecedented rate and level of 

precision (71) and full transcriptomes have been sequenced for numerous organisms including 

human, mouse, yeast, worm, and several plants across various conditions (72). Also, 

unsurprisingly, this technology was developed and first implemented in S. cerevisiae (73). 
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1.3.2. Protein interaction analysis 

  A predictive understanding of the rate, quantity, and form in which genes are transcribed 

still fails in defining the full functional relationship between genotype and phenotype because it 

lacks the characterization of proteins and their interactions, which are largely responsible for the 

execution and control of most cellular processes. One of the earliest tools for investigating 

protein-protein interactions, the yeast two-hybrid assay, was developed in yeast over two decades 

ago and is still an important contributor in the arena (74). In this system, the S. cerevisiae GAL4 

protein is split into two functional domains: a DNA binding domain, which binds to a specific 

genomic upstream activation sequence (UAS), and transcriptional activation domain, that 

activates transcription of a reporter gene, typically the E. coli lacZ gene, downstream of the UAS 

(Figure 1.5). The protein of interest (the bait) is fused to the GAL4 DNA binding domain, while 

the transcription activation domain is typically attached to different putative interaction proteins 

(the prey) within a cloned library. Activation of the reporter gene only occurs when the bait and 

prey proteins interact, which positions the activation domain in the position to activate lacZ 

transcription.  

Numerous large scale studies have been performed with this or variations of this yeast-

centric system (75), including novel drug-protein interaction studies for the development of new 

therapeutics (76, 77). For a more thorough review of the yeast two-hybrid methods and its 

applications see (78). 

Despite being widely used to uncover a vast number of interactions, this method has also 

received a fair amount of criticism typically for its high rate of false positives (79). A more 

reliable approach leverages the versatility and power of mass spectrometry for the 

comprehensive characterization of proteomes (80). Modern mass spectrometry-based proteomics 

offers an analytical platform capable of quantifying protein abundance, identifying post-

translation modifications, and revealing members of protein complexes on a large-scale (81). In 

general, the first step in any proteomics experiment is sample lysis and protein extraction 

followed by proteolysis of the extracted proteins into peptides. The peptides can then be 

enriched, for phosphopeptides or other post-translational modifications, before being submitted 

to liquid chromatography coupled to mass spectrometry (LC-MS/MS), where the peptides are 

identified, statistically validated, and assembled into proteins (Figure 1.6). 
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Early uses of mass spectrometry proteomics generated vast amounts of proteomic data 

(82), including characterizing protein interactions across nearly the entire yeast proteome (83) 

and a significant portion of the human proteome (84) as well as identifying biomarkers of cancer 

progression (85). A major innovation to the quantification of LC-MS/MS is the technique of 

stable-isotope dilution. This approach leverages the fact that a stable isotope-labeled peptide is 

chemically identical to its native equivalent and, as such, should behave identically in 

downstream analyses. Mass spectrometers can detect the mass differences between the peptides 

permitting accurate quantification of unlabeled to labeled peptides (86, 87). While many 

variations of stable-isotope tagging have been introduced (reviewed in (88)), a particularly 

attractive yeast method called ‘stable-isotope labeling with amino acids in cell culture’, or 

SILAC, offers a simple and effective means to label all peptides for proteomic analysis (Figure 

1.7). In this method (89), labeled, essential amino acids are added to amino acid-deficient media. 

Cells grown in the SILAC media metabolically incorporate the labeled amino acids into their 

proteins as they are produced. This method has been used for multiple large-scale studies, 

including a proteomic comparison of haploid and diploid yeast (90) and a genome-wide analysis 

of protein phosphorylation in mammalian cells (91). However, the cost and time associated with 

creating the cell lines often negates the value of information provided, though the ease of yeast 

genetic manipulation make it an exceptional organism for this methodology.  

 In recent years, MS-based proteomics have experienced vast improvements in 

instrumentation, computational methods, and sample preparation (92) that have greatly increased 

the depth of proteome coverage and sample throughput. Indeed, a single quantitative MS-based 

phosphoproteomic study can now identify more than 30,000 phosphosites (93). As the life 

sciences shifts toward systems level biology, it is becoming ever important to obtain a more 

holistic understanding of the component parts regulating the diverse physiological processes and 

their response to environmental changes. Mass spectrometry proteomics offers a powerful 

analytical tool for investigating one component modulating these processes, the protein 

interaction networks, on a large scale. Undoubtedly, yeast will continue to provide an excellent 

test bed for such technological developments and large-scale studies. 
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1.3.3. Data storage, analysis, and integration 

 With the development and increasing use of high-throughput -omic technologies comes 

an unprecedented increase in the production of experimental data. Success in the life sciences 

will require the integration of these large-scale, high-dimensional data sets to attain a predictive 

understanding of living systems. To achieve such a vast and integrated system, several 

infrastructures are believed necessary, which include data, communication, computational, and 

human infrastructures (94). First, biology is an information-driven science and, as such, progress 

rests on the ability to produce, share, and freely access new data (20). The data infrastructure is 

housed in the numerous online databases that were developed in the rise of the -omics era. These 

resources store vast amounts of high-throughput data including those from genomic, proteomic, 

and metabolomic studies (20, 95). These databases can even be organism specific, for instance 

anyone seeking information on just about any aspect of S. cerevisiae biology has access to the 

amazing community resource: the Saccharomyces genome Database (SGD; 

http://www.yeastgenome.org).  

Recently, there has been more focus on transitioning these data warehouses into more 

unified, functional, and relational sets of data that will better promote genotype-to-phenotype 

analyses (96) and improve clinical diagnosis (97). Critical to the development of these advanced 

electronic resources is the standardization of data structures so that the myriad of existing data 

sources are more interoperable (98). For instance, if an investigator is attempting to integrate 

data from two distinct repositories to achieve novel biological insights it is important, but 

uncommon, that the data from the two sources are syntactically and semantically compatible 

with each other (94). The transfer of functional information between and among databases 

requires not only that the data are formatted similarly, but also that the functional information 

embodied in the data is annotated using an interoperable terminology, called an ontology. The 

goal is to be able to describe gene and protein function in a manner that is biologically relevant, 

yet compatible with computational methods. Standards for many types of functional –omics data 

have been created, the most successful and cross-functional controlled vocabulary being that 

created by the Gene Ontology Consortium (99). GO annotations describe gene products in terms 

of their associated biological processes, cellular components, and molecular functions in a 

species-independent manner permitting functional information to be easily connected to and 

through other databases.  Notably, most of the GO annotations were derived from yeast-based 

http://www.yeastgenome.org/
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experiments (79). Many other ontologies are available and the Open Biological Ontologies 

(OBO) Foundry (http://www.obofoundry.org) site was generated to coordinate, organize, and 

maintain both the new and over 60 existing ontologies (100). Continued standardizing efforts 

will hopefully promote the efficient integration of experimental data into existing systems of 

genotype and phenotype databases to improve our ability to analyze and understand complex 

biological systems.  

Efficient and structured data storage would be pointless without the computational ability 

for analysis. However, the powerful combination of computational and experimental research is 

only beneficial so long as those computational methods can keep up with the ever-increasing size 

and heterogeneity of experimental data. Fortunately, novel algorithms continue to be developed 

that increase our ability to integrate and analyze –omics data (reviewed in (101)). Since most 

high-throughput data typically yield a list of differentially expressed genes or proteins, one 

popular approach for extracting meaningful biological insight from this list is to simplify the 

analysis by grouping the genes or proteins that function in the same pathways during analysis, 

known as pathway enrichment. This approach reduces the complexity of and increases the 

explanatory power in predicting the gene regulatory network responsible for the observed gene 

expression (see (102) for an excellent review of pathway analysis). 

Notably, gene expression data from yeast has been a developmental sandbox for many 

platforms designed to infer gene networks (103). Many of the bioinformatic approaches 

developed in yeast have been successfully applied to data on humans (104), e.g. (105, 106), as 

well as other model organisms (107). More recent algorithms have even been validated in yeast 

to predict regulatory sub-pathways from gene expression data (108).  For an overview of 

databases and repositories that offer tools for the integrative analysis and modeling of data 

generated by the different -omics approaches in yeast see (109). 

 

1.4. Fungal pathogens and filamentous growth 

Nosocomial fungal infections, those that are contracted while under hospital care, are a 

significant cause of morbidity and mortality, particularly in high-risk individuals such as those 

that are immunocompromised or in the ICU. Invasive fungal infections (IFIs) in these 

populations nearly triple the mortality rate and drastically increase the length of hospitalization 

resulting in an estimated $2 billion in additional costs (110, 111). In fact, the top ten fungal 

http://www.obofoundry.org/
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diseases are responsible for nearly as many annual deaths as tuberculosis or malaria (112). To 

make matters worse, the incidence of these infections continues to increase (113). Many fungal 

species are responsible for IFIs, but the most reported fungal-associated fatalities are due to 

species from the genera Cryptococcus, Candida, Aspergillus, or Pneumocystis. Most of these 

fungi also have the ability to switch between a cellular yeast form and a filamentous form in 

response to environmental stimuli and, in many species, this dimorphic transition is linked to 

virulence (114–116). Notably, the budding yeast S. cerevisiae can also undergo the dimorphic 

transition to filamentous form in response to environmental signals (117). In addition, S. 

cerevisiae is a close relative of the Candida species (118) and, though uncommon, it can become 

pathogenic (119–121). These traits together with those previously described make S. cerevisiae 

an ideal model system for elucidating the mechanisms controlling fungal pathogenicity (122). 

 

1.4.1. Filamentous growth in S. cerevisiae 

The fact that certain strains of the budding yeast S. cerevisiae are a capable of 

filamentous growth was only recently re-discovered by the lab of Gerald Fink (123). 

Interestingly, the Fink lab later determined that most commonly used lab strains, those derived 

from S288c, have a non-sense mutation in FLO8, a gene necessary for the morphological 

transition to filamentous form (124). The “wild” strain background characterized by the Fink lab 

(strain Σ1278b or the Sigma strain) is the leading genetic background for studying filamentous 

growth in S. cerevisiae.  

Filamentous growth in budding yeast is characterized by a morphological transition from 

single, oval-shaped cells to chains of elongated cells, called pseudohyphae, that can spread out 

along the surface of a solid growth substrate as well as invade the substrate (125, 126). This 

phenomenon is considered to be an adaptive mechanism to forage for nutrients when local 

resources become limited as the elongated morphology allows the cells to more effectively 

forage for additional nutrients (Figure 1.8). Driving these morphological changes are a host of 

altered developmental processes, including a delay in the G2-M cell-cycle transition that 

produces elongated cell morphology (127), a switch from axial (in haploid) or bipolar (in 

diploid) budding pattern to a unipolar budding pattern (128), and increased cell-cell adhesion 

(129). Interestingly, the pathways responsible for all of these programs overlap significantly (see 

below). 
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Though both haploid and diploid yeast can transition to filamentous form, the control 

mechanisms and the resulting morphological changes can differ slightly between the two (34). 

Both cell types can be induced to form pseudohyphae by either nitrogen or glucose 

limitation/deprivation (34, 123, 130, 131). Similarly, it was found that short chain alcohols, such 

as butanol, can also trigger filamentous growth in both cell types (132). Further studies have 

indicated budding yeast use secreted alcohols as a quorum sensing mechanism to assess cell 

density and available nutrients to induce filamentous growth (133). 

As previously mentioned, various aspects of filamentous growth in S. cerevisiae are 

shared with fungal pathogens, particularly Candida albicans and Ustilago maydis. There exists 

high conservation between the pathways and components mediating filamentous growth in 

budding yeast and these fungi. However, even in S. cerevisiae, this dimorphic switch is a 

complex phenotypic response that involves the integration of multiple nutritional and 

environmental signaling cascades to control diverse cellular processes (134). 

 

1.4.1.1. Signaling pathways that regulate filamentous growth in S. cerevisiae 

In yeast, there are at least four well characterized signaling pathways leading to 

filamentous growth: the mitogen-activated protein kinase (MAPK) pathway, the nutrient sensing 

cAMP-dependent protein kinase A (PKA) pathway, the sucrose non-fermentable (SNF) pathway, 

and the target of rapamycin (TOR) pathway. Each of these pathways, as well as other well 

described regulators of yeast filamentous growth, are discussed briefly below and recently 

reviewed in (32, 34, 117, 135). 

 

1.4.1.1.1 The mitogen-activated protein kinase (MAPK) pathway 

Mitogen-activated protein kinase (MAPK) pathways are among the most ubiquitous 

mechanisms of eukaryotic cell regulation. These highly conserved signaling cascades regulate 

diverse cellular responses to changing environmental conditions and numerous other stimuli, 

including cell growth, gene expression, differentiation, cell survival, and apoptosis (136). MAPK 

pathways consist of a triple kinase module where a MAPK kinase kinase (MKKK) 

phosphorylates and activates a MAPK kinase (MKK) which in turn activates a MAPK, typically 

via dual phosphorylation of conserved threonine and tyrosine residues(137). Activated MAPKs 

often translocate from the cytoplasm to the nucleus where they phosphorylate targets, e.g. 
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transcription factors, to modulate expression of specific genes in response to particular 

extracellular stimuli. 

In budding yeast, five MAPK pathways have been defined: the pheromone-responsive 

mating pathway regulated by the MAP kinases Fus3p (essential for mating response) and Kss1p, 

the nutrient-responsive filamentous growth pathway regulated by MAP kinase Kss1p, the high 

osmolarity/glycerol pathway regulated by Hog1p, the cell wall integrity pathway controlled by 

MAP kinases Slt2p/Mlp1p, and the spore wall assembly pathway mediated by MAPK Smk1p 

(138). Three of these MAPK pathways (mating, filamentous, and osmo-regulatory) appear to 

share common components but regulate distinct target genes and generate disparate morphogenic 

responses (139)(Figure 1.9 ). Interestingly, these pathways implement several mechanisms to 

prevent undesirable inter-pathway cross-talk despite having overlapping sets of signaling 

components (140), suggesting an unappreciated specificity in these signaling networks. 

In response to certain nutrient limiting conditions, e.g. low nitrogen, an extracellular 

signal activates the regulatory pathway responsible for filamentous growth. The protein receptors 

that initiate filamentous growth have not been fully identified, but recent studies indicate that the 

signaling mucin Msb2p (141), the integral membrane protein Opy2 (142, 143), and cell-surface 

regulator Sho1p (144) all function upstream of the core filamentous growth MAPK pathway. 

Activation of Msb2p and/or Sho1p along with other unidentified proteins stimulates the activity 

of the rho-like GTPase Cdc42p through the guanine nucleotide exchange factor (GEF) Cdc24p. 

Activated Cdc42p interacts with the p21-activated kinase (PAK) Ste20p, which in turn initiates 

the MAPK cascade consisting of the MAPKKK Ste11p, the MAPKK Ste7p, and the filamentous 

growth-specific MAPK, Kss1p (145). Interestingly, Kss1p both inhibits and stimulates 

filamentous growth (146). In its unphosphorylated state, Kss1p and the filamentous 

transcriptional regulator Ste12p associate with the filamentous growth-repressive proteins, Dig1p 

and Dig2p (147). Upon phosphorylation by Ste7p, Kss1p phosphorylates Ste12p, Dig1p, and 

Dig2p causing their dissociation. Free and activated Ste12p then induces the expression of the 

transcription factor TEC1 and also binds cooperatively with Tec1p to genomic regions known as 

filamentous growth response elements (FREs) to activate genes involved in the filamentous 

response, such as FLO11.  

 

1.4.1.1.2. The cAMP-dependent protein kinase A (PKA) pathway 
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 In Saccharomyces cerevisiae, the cAMP-dependent PKA pathway plays coordinates 

numerous cellular processes such as metabolism, proliferation, stress resistance, cell growth, 

autophagy, and filamentous growth (148–151). In fact, the cAMP-PKA pathway is the primary 

means by which yeast cells respond to changes in extracellular nutrients, e.g. glucose, to regulate 

cell cycle progression (33). Nutrient limitation increases intracellular cAMP levels, which 

activates PKA. Cellular levels of cAMP are increased by activation of the andeylate cyclase, 

Cyr1p (Figure 1.10) through two distinct G-protein systems: the Ras pathway and the Gpr1-

Gpa2 pathway (152).  

Ras1p and Ras2p are small GTPases that, in their active GTP-bound state, are capable of 

binding and activating Cyr1p. Though Ras2p is responsible for the majority of Ras function 

(153), both of their activities are controlled by the guanine nucleotide exchanged factors (GEFs), 

Cdc25p and Sdc25p, and the GTPase Activating Proteins (GAPs), Ira1p and Ira2p (154).  

 Gpr1p is a seven-transmembrane receptor believed to be a sugar sensing receptor (155) 

that, together with its heterotrimeric G-protein α subunit Gpa2p, regulate filamentous growth 

(156) in a nutrient-responsive manner. Upon glucose binding, Gpr1p activates Gpa2p, which 

then binds and activates Cyr1p. Gpa2p has also been shown to interact with two PKA inhibitors, 

Gpb1p and Gpb2p, to alleviate repression of the PKA holoenzyme (157). 

 Both pathways converged on and activate Cyr1p, which stimulates cAMP production. 

Intracellular cAMP then binds to the regulatory subunit of the PKA holoenzyme, Bcy1p, freeing 

and activating the catalytic subunits, Tpk1p, Tpk2p, and Tpk3p. Interestingly, though these 

proteins share nearly 75% sequence similarity (158), each protein induces different target genes 

(159), and deletion of each gene produce disparate phenotypes: tpk1Δ has no effect, tpk2Δ 

abolishes filamentous growth, and tpk3Δ leads to hyperfilamentous growth. While the 

downstream targets of Tpk3p are still unclear, the substrates of Tpk2p include the filamentous 

growth transcription factor Flo8p. Similarly, Tpk1p has been shown to regulate the dual-

specificity tyrosine-regulated kinase Yak1p, which positively regulates filamentous growth 

through the transcription factors Sok2 and Phd1 (160). 

 

1.4.1.1.3. The Snf1p kinase pathway 

 Snf1 protein kinase belongs to the highly conserved Snf1/AMP-activated protein kinase 

(AMPK) family. Though first identified by its requirement for growth on carbon sources less 
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preferred than glucose such as sucrose, galactose, or ethanol, (161), recent studies have 

demonstrated a role for Snf1p directly in glucose signaling (162) and in numerous nutrient-

responsive, developmental processes including meiosis (163), aging (164), autophagy (165),  and 

filamentous growth (131, 166). Snf1p is activated by a poorly understood signal beginning with 

glucose limitation or other environmental stresses (167), and its catalytic activity is controlled by 

several methods including three upstream kinases, Sak1p, Elm1p, and Tos3p, the Reg1-Glc7 

protein phosphatase 1, and by auto-inhibition (168). Snf1p, itself, controls the transcriptional 

changes associated with glucose derepression through its activation of the transcriptional 

activators Cat8p and Sip4p, and its deactivation of the transcriptional repressor Mig1p to regulate 

glucose-repressed genes (Figure 1.11). Notably, glucose limitation appears to induce 

filamentous growth through Snf1p in a pathway independent of Gpr1p by regulating the FLO11 

repressors Nrg1p and Nrg2p (130, 169). Similarly, nitrogen deprivation has been shown to 

stimulate the filamentous growth response via Snf1p (170). These observations are significant 

because they establish Snf1p as a consistent connection between the many nutritional states 

required for filamentous growth. (135) 

 

1.4.1.1.4. The Target-Of-Rapamycin (TOR) pathway 

 The Target-Of-Rapamycin (TOR) is a conserved Serine/Threonine protein kinase. The 

TOR pathway has been implicated in the integration and regulation of cellular responses to 

nutrients (reviewed in (171–173) (Figure 1.12). In yeast, there are two distinct TOR kinases, 

Tor1p and Tor2p, which work in conjunction with the mediator protein Tap42p. In response to 

particular nutritional signals, TOR kinases phosphorylate Tap42p, which is then able to bind and 

inhibit type 2A phosphatases such as Sit4p to control cytoplasmic translation initiation and other 

downstream functions of TOR (154), including cytoplasmic protein synthesis, protein 

degradation, and cell cycle progression (174) as well as inhibiting the activity of transcription 

factors involved in nitrogen catabolite-repression (NCR) (Gat1p, Gln3p) (175), retrograde (RTG) 

response (Rtg1p, Rtg3p) (176), and stress-response (Msn2p, Msn4p) (177, 178), while promoting 

the function of transcriptional regulators involved in ribosome biogenesis (Fhl1p, Spf1p) (179). 

The protein kinase Sch9p is also directly regulated by TOR in a stress-dependent manner. Sch9p 

has been connected to the cellular response to nutrient deprivation, replicative lifespan, ribosome 
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biogenesis, and osmotic stress (180) suggesting its role as a key channel for TOR signal 

transduction (149). 

The TOR signaling cascade also plays a conserved role in regulating filamentous 

differentiation in response to nutrients, particularly nitrogen availability, (181) and appears to be 

independent of RAS/PKA and MAPK pathways. The ammonium permease, Mep2p, and the 

downstream NCRs Gln3p, Ure2p, and Npr1p are required for filamentous growth (182). 

Similarly, the TOR pathway was found to regulate transcription factor Gcn4p, a positive 

regulator of genes expressed during amino acid starvation that also mediates FLO11 expression 

(183). Interestingly, recent data indicates the existence of two, distinct nitrogen-responsive 

pathways suggesting that the regulation of NCR and RTG genes is not solely TOR dependent 

(184, 185). The nature of this pathway and its components is unclear, but the Npr2p/Npr3p 

complex, a nitrogen permease regulator and required for growth in low nitrogen ((186) and 

Unpublished data), could be members of this pathway (135). 

 

1.4.1.1.5. Other components that regulate filamentous growth 

 Noticeably, S. cerevisiae exploits multiple signaling mechanisms to response to various 

environmental cues (Figure 1.13). Nitrogen limitation induces a dimorphic switch where yeast 

cells transition into filamentous pseudohyphae, presumably to scavenge for nutrients. This 

filamentous transition is regulated by a complex system of signaling pathways that include 

MAPK, cAMP-PKA, SNF1, and TOR, which all appear to converge, in some manner, on FLO11 

as described above and reviewed in (187) (Figure 1.14). In addition, recent studies have 

identified a transcription factor cascade comprised of Sok2, Phd1, Ash1, and Swi5 that controls 

cell–cell adhesion and separation (188) (reviewed in (32) as well as numerous cis-acting 

regulators of FLO11 that do not readily fit in the above pathways (189). Furthermore, a 

systematic analysis of the yeast kinome identified six cytoplasmic proteins (Bcy1p, Fus3p, 

Ksp1p, Kss1p, Sks1p, and Tpk2p) that translocated to the nucleus under filamentous conditions 

and were required for filamentous growth (190). Interestingly, the Sks1p kinase is poorly 

characterized and only known to play a role in the cellular response to extracellular glucose (191, 

192), leaving its involvement in the complex phenotypic response that is filamentous growth to 

be determined. 
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In Chapter 2, I present a study that leverages a novel bioinformatics tool for identifying 

biological meaningful relationships in high-throughput data to discover novel regulators of yeast 

stress response and filamentous growth (108). Specifically, the Topology Enrichment Analysis 

framework (TEAK) identified two, previously unreported genes necessary for the yeast nitrogen 

stress response as well as a gene involved in lipid metabolism found to be required for 

filamentous growth. 

Chapter 3 of this text presents a study of the Sks1p kinase and its involvement in 

filamentous growth. Here, a large-scale proteomics approach was used to investigate the 

contributions of kinase signaling to the regulation of filamentous growth. We identified 903 

phosphopeptides 62 of which exhibited a two-fold decrease in phosphorylation and 52 of which 

demonstrated a two-fold increase in phosphorylation in a Sks1p kinase dead strain. The data was 

used to further characterize Sks1p in order to identify its mechanism of filamentous control. 

Fourteen putative Sks1p targets were screened for involvement in filamentous growth, and six 

proteins were found to be involved for pseudohyphal differentiation. In addition, two identified 

phosphorylated residues were found to be functionally required for filamentous growth. 

 

1.4.2. Filamentous growth in C. albicans 

 As previously described, invasive fungal infections are a serious health concern, 

particularly in individuals with weakened immune systems. Immunocompromised individuals 

are very susceptible to nosocomial infections, those acquired while in the hospital, and Candida 

albicans, a human commensal, is the predominant human nosocomial fungal pathogen (193). C. 

albicans is responsible for a spectrum of disease states ranging from superficial mucosal 

infections to life-threatening systemic disease (194–196) that have an estimated mortality rate in 

excess of 30% (197).  

First identified in the early 19
th

 century by physicians studying the cause of oral thrush in 

infants (Figure 1.15), little of its biology was elucidated until the latter half of the 20
th

 century 

(for an excellent historical review of C. albicans see (198)). The lag in scientific advancement is 

partially due to unique genetic characteristics of this organism. Specifically, Candida does not 

exist as a stable haploid, making genetic manipulation more complicated than in S. cerevisiae. 

(Note: The idea of that Candida albicans is an “obligate diploid”, though longstanding, was 

recently challenged by the discovery of mating-competent haploids (199).) Likewise, the lower 
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frequency of homologous recombination (200), its non-standard genetic code (CUG codon codes 

as Leucine instead of Serine (201)), lack of naturally occurring replicating plasmids, and a 

natural resistant to common antibiotics (202) have limited classical and targeted genetic 

approaches (203). The past couple of decades, however, have seen a dramatic increase in the 

array of experimental tools and improved protocols for experimental analysis of Candida 

albicans (reviewed in (204)), which has greatly increased our understanding of its biology.  

 C. albicans is polymorphic in that it is capable of growing in at least three different 

morphologies: budding yeast, pseudohyphae, or true, septate hyphae (Figure 1.16). (S. 

cerevisiae cannot form true hyphae). Each of these forms is believed to be a response to its 

environment. Notably, the ability to switch between yeast, hyphal and pseudohyphal 

morphologies is regularly considered necessary for virulence (205), as mutants incapable of 

switching to hyphal form have been shown to be hypovirulent (114, 206, 207). In the lab, 

morphological switching from yeast to filamentous forms can be induced by a variety of 

conditions. These conditions include growth at elevated temperature (37°C) coupled with neutral 

pH, the presence of serum, certain human hormones, Spider medium, or Lee’s medium (208–

213). The signaling pathways that transmit these environmental signals result in the activation of 

a complex regulatory network central to C. albicans filamentous growth and virulence. 

Interestingly, at least three of these pathways are highly conserved in Saccharomyces cerevisiae: 

the cAMP-dependent PKA pathway, the MAPK pathway, and the Regulation of Ace2 and 

Morphogenesis (RAM) pathway. The cAMP and MAPK pathways in budding yeast are directly 

connected to pseudohyphal growth, while the RAM pathway appears to be exhibit some 

modulation of pseudohyphal development in a manner seemingly independent of nutritional 

status (214, 215). The conservation and signaling dynamics of the cAMP-PKA, MAPK, and 

RAM pathways among filamentous fungi was recently reviewed in (33, 216, 217), respectively. 
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Figure 1.1. Early drawing of yeast. Image created by van Leeuwenhoek in his letter to 

Thomas Gale written June 14, 1680. 
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Figure 1.2. Uses of yeast in biotechnology. Modified from (8) 
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Figure 1.3. Gene expression analysis using a DNA microarray. In this illustration, mRNA 

samples from vegetative and sporulating yeast cells are compared. The total pool of messenger 

RNA from each cell population is used to prepare fluorescently labeled cDNA by reverse 

transcription in the presence of fluorescently labelled nucleotide precursors. To allow direct 

comparison of the abundance of each gene in the two samples, the two samples are labeled with 

different fluors. In this example, a red fluor for the mRNA from sporulating yeast and a green 

fluor for the mRNA from the vegetative yeast cells are used. The two fluorescently labelled 

cDNAs are then mixed and hybridized with a DNA microarray in which each yeast gene is 

represented as a distinct spot of DNA. Irrespective of their fluorescent labels, the cDNA 

sequences representing each individual transcript hybridize specifically with the corresponding 

gene sequence in the array. Thus, the relative abundance in sporulating as compared with 

vegetative yeast cells of the transcripts from each gene is reflected by the ratio of ‘red’ to ‘green’ 

fluorescence measured at the array element representing that gene. For example, the greater 

relative abundance of the TEP1mRNA in the sporulating cells results in a high ratio of red-

labelled to green-labelled copies of the corresponding cDNA, and an equivalent ratio of red to 

green signal hybridized at the array element composed of DNA from TEP1.(218) 
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Figure 1.4. A typical RNA-seq experiment. Briefly, long RNAs are first converted into a 

library of cDNA fragments through either RNA fragmentation or DNA fragmentation (see main 

text). Sequencing adaptors (blue) are subsequently added to each cDNA fragment and a short 

sequence is obtained from each cDNA using high-throughput sequencing technology. The 

resulting sequence reads are aligned with the reference genome or transcriptome, and classified 

as three types: exonic reads, junction reads and poly(A) end-reads. These three types are used to 

generate a base-resolution expression profile for each gene, as illustrated at the bottom; a yeast 

ORF with one intron is shown.(68) 
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Figure 1.5. The first sketch of the two-hybrid assay. Image as seen in a grant application 

submitted at the end of 1987 to the Procter and Gamble Company. The native yeast Gal4 protein 

is shown as having DNA-binding (GAL4D) and activation (GAL4A) domains, with the DNA-

binding domain recognizing a site on DNA known as the Upstream Activation Sequence for the 

GAL genes (UASG). Proteins P and Q form hybrids with the DNA binding and activation 

domains, respectively, and reconstitute transcriptional activity, leading to expression of the 

GAL1 gene.(74) 
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Figure 1.6. Generalized mass-spectrometry-based proteomics workflow. Extracted proteins 

are first digested into peptides, usually by trypsin. Enzymatic digestion of a full proteome 

generates hundreds of thousands of peptides, thus, the first step in the proteomics workflow is 

most often reducing the sample complexity via sample prefractionation or enrichment. These 

reduced samples are then introduced to the LC system for an additional separation step. After 

ionization, peptide precursor ions are introduced into the mass spectrometer, which records their 

mass-to-charge (m/z) ratio with high accuracy. For identification, single precursors are selected 

(on the basis of observed intensity) and subjected to a tandem MS (MS/MS) event to generate 

characteristic fragment ions for the selected precursor. The combination of precursor m/z and its 

fragment ions is then matched to known peptide sequences from large protein databases. Finally, 

data are quantified. These protein abundances are then interpreted and visualized in the context 

of the biological system under study. HILIC, hypdrophilic interaction liquid chromatography. 

(82) 
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Figure 1.7. Overview of SILAC experimentation in yeast. 
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Figure 1.8. Diploid cells of the yeast Saccharomyces cerevisiae undergo pseudohyphal 

differentiation in response to nitrogen limitation. In response to nitrogen-limiting conditions, 

diploid cells of S. cerevisiae change their growth pattern: the cells elongate and switch from 

bipolar to unipolar budding, the mother and daughter cells remain physically attached, and the 

cells invade the growth substrate. As a result, filamentous pseudohyphal colonies are 

formed.(188) 
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Figure 1.9. Three MAPK pathways in yeast share common components and also contain 

pathway-specific factors. Three MAPK pathways are shown. Colored proteins represent 

pathway-specific factors; proteins shown in black function in multiple pathways. Scaffold-

mediated interactions are shown by colored, dashed lines. Not all protein interactions are shown. 

Hot1 is one of a number of transcription factors for the HOG pathway. The red question mark 

indicates that how nutritional signals feed into filamentous growth pathway regulation is not well 

understood. (34) 
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Figure 1.10. G-protein based glucose signaling. Glucose signaling mediated by the small G-

proteins Ras and Gpa2 funnels through protein kinase A (PKA) to induce ribosome biogenesis 

and suppress the general stress response controlled by Msn2/Msn4 and Rim15. The kinases Sch9 

and Yak1 function in parallel to PKA, the former reinforcing the PKA response and the latter 

antagonizing it. Dashed lines represent regulatory interactions, which may not be direct and in 

some cases are only surmised. (149) 
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Figure 1.11. The main glucose repression pathway in S. cerevisiae. In the presence of high 

levels of glucose, the Snf1 kinase complex is inactive due to an auto-inhibitory interaction 

between the catalytic domain (CD) and the regulatory domain (RD) of Snf1. Activation of Snf1 

upon glucose exhaustion requires the phosphorylation of Thr210 in the activation loop of the 

catalytic domain of Snf1 and the binding of Snf4 to the regulatory domain of Snf1, which is 

necessary to lift Snf1 auto-inhibition. The phosphorylation status of the threonine residue is 

controlled by the upstream kinases Sak1, Elm1 and Tos3 and the Glc7–Reg1 phosphatase 

complex. Activated Snf1 phosphorylates Mig1, thereby stimulating the translocation of the 

repressor to the cytoplasm, which relieves several gene families of glucose repression. The 

glucose signal that controls Snf1 activity is possibly transduced via Hxk2 to Glc7–Reg1 and via 

a sensing of the AMP/ATP ratio by Snf4.Arrows and bars represent positive and negative 

interactions, respectively. Dashed lines are putative or indirect interactions. (173) 
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Figure 1.12. TORC1 and nitrogen regulation. Two pathways, one mediated by TORC1 and a 

second less well-defined nitrogen catabolite repression pathway, adjust growth as well as 

expression of genes required for use of alternate nitrogen sources in response to the quality and 

quantity of available nitrogen sources through regulation of transcriptional activators (blue icons) 

and repressors (red icons). TORC1 likely responds to intracellular amino acid levels sensed 

through the Ego complex and regulates growth primarily through Sch9, regulates stress, and 

alternative nitrogen source through protein phosphatase 2A and regulates permease sorting 

through Npr1. Npr2/3 lie upstream of NCR gene expression, but whether they regulate TORC1 

or the ill-defined NCR pathway is not clear. (135) 
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Figure 1.13. A simplified view of the glucose sensing mechanisms in S. cerevisiae. A schematic view of the three glucose sensing 

pathways in yeast. The major interconnections with the TOR pathway (only partially shown) are indicated. 

 

 



32 

 

Figure 1.14. Integrative network of cAMP-PKA, MAPK and TOR pathways involved in 

the regulation of filamentous growth in Saccharomyces cerevisiae. Mep2 functions upstream 

of cAMP and MAPK pathways as an ammonium sensor. Kelch repeat protein Gpb1/2 

antagonizes Gpa2 and PKA of cAMP pathway and stabilizes Ira1, which inactivates Ras2 of 

MAPK pathway. In cAMP-PKA pathway, Ras2 and Gpa2 activate adenylate cyclase, Cyr1 to 

synthesis cAMP, which binds to PKA and relieves the inhibition of catalytic subunits Tpk1, 

Tpk2 and Tpk3. Tpk2 activates the transcriptional activator Flo8 involved in the regulation of 

FLO11. In the MAPK pathway, Ras2 and Sho1 activates the Cdc42-Ste20 complex, which in 

turn activates the MAPK cascade Ste11, Ste7 and Kss1 to control the transcriptional activator 

Ste12-Tec1. Nitrogen starvation or rapamycin treatment is shown to inactivate the TOR pathway. 

Tor kinase phosphorylates Tap42, which complexes with phosphatase Sit4 and Pph21/22. 

Further, Sit4 and Pph21/22 controls Gln3 mediated NCR genes and Msn2/4 mediated STRE 

genes, respectively. Tor-activated Tap42 also participate in the global translational initiation. 

TOR pathway exerts translational control over G1 cyclin Cln3, which in turn controls the 

synthesis of other G1 cyclin Cln1/2 through transcriptional activator SBF. Cln1/2 is destabilized 

by Grr1 and is involved in the transcriptional activation of FLO11.(187) 
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Figure 1.15. The first printed illustrations of Candida (Oidium) albicans: the thrush fungus 

(champignon du muguet). Plate I from Charles Robin’s 1853 publication. Illustrates epithelial 

fragments affected by thrush, with round cells of C .albicans and its filaments bearing 

characteristic ball-like clusters of blastoconidia (Fig 3c and 5f) (198). 
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Figure 1.16. Differential morphology of C.albicans cells. (a)Yeast cells can form both (b) 

pseudohyphae and (c) true hyphae. Switching between the pseudohyphal and hyphal 

morphologies is less frequent.(219) 
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CHAPTER 2 

Detecting novel pathway components of S. cerevisiae filamentous growth signaling 

 

2.1. Introduction 

The need to better identify pathway and subpathway topologies enriched within large-

scale data sets is evident from studying the budding yeast Saccharomyces cerevisiae. As a 

prototypical eukaryote, cellular processes in yeast occur through complex sets of signaling 

modules. Genomic methods have been applied extensively in yeast to profile the signaling 

changes underlying these processes, but challenges remain toward effectively identifying 

pathways and subpathways within the gene lists resulting from these studies. In standard 

laboratory strains of S. cerevisiae, nutritional stress is mediated through several key signaling 

modules that act in concert with sets of genes responsive to a specific stimulus (1, 2). In 

particular, nitrogen starvation is a common form of nutrient stress for the budding yeast, and 

upon nitrogen stress, yeast cells initiate both general and stimulus-specific responses. Nitrogen 

stress initiates a general response referred to as the environmental stress response characterized 

by stereotypic increases and decreases in mRNA levels for ~600 genes in response to a broad set 

of environmental/nutritional stresses (1). Nitrogen deprivation also induces stress-specific 

increases in the mRNA levels of ~300 additional genes, combined with post-transcriptional 

regulatory mechanisms to upregulate autophagy, alter endocytosis and downregulate protein 

synthesis (1, 3).  

Beyond the regulatory responses discussed earlier, filamentous strains of S. cerevisiae 

initiate a complex growth transition in response to nitrogen stress, forming pseudohyphal 

filamentous of elongated and connected cells that extend outward and downward from a yeast 

colony (4, 5). This filamentation is thought to be a foraging mechanism enabling non-motile 

yeast to scavenge for nutrients. Interestingly, related processes of hyphal development are 

required for virulence in the opportunistic human fungal pathogen Candida albicans (6, 7). In S. 

cerevisiae, the pseudohyphal growth response is regulated by at least four signaling pathways: 
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the target-of-rapamycin kinase network, the Ras/cAMP-dependent protein kinase A 

(PKA) pathway, the Snf1p kinase pathway and the Kss1p mitogen-activated protein kinase 

(MAPK) pathway (5, 8). The Ste12p/Tec1p transcription factor complex acts downstream of the 

Kss1p MAPK pathway, and the Flo8p transcription factor is phosphorylated and activated by the 

Tpk2p catalytic subunit of PKA (8, 9). Both factors regulate transcription of the MUC1/FLO11 

gene encoding a Glycosylphosphatidylinositol (GPI)-anchored protein important for the 

enhanced cell–cell adhesion observed during filamentous growth (10, 11). The filamentous 

growth response, however, is extensive and encompasses several other known transcriptional 

regulators, such as Mss11p, Phd1p and Dig1/2p, and hundreds of downstream genes and 

pathways (12, 13). 

While these works have identified key regulatory modules that function to transduce 

conditions of nitrogen stress into intracellular signals that affect cell growth/shape, the full scope 

of the signal transductions involved in the core regulatory modules has yet to be determined. The 

problem is likely to be too complicated for experimental methods alone, and we believe that an 

integration of experimental and computational methods will be necessary to identify new 

subpathways within the filamentous growth network. 

Thus, to detect active subpathways underlying biological processes, we utilized the 

innovative Topology Enrichment Analysis frameworK (TEAK), to analyze DNA microarray 

data profiling changes in transcript levels for the yeast genome during nitrogen stress responses. 

To validate that TEAK is effective in identifying biologically relevant pathways and 

subpathways, we analyzed transcriptional profiles of yeast responses to varying conditions of 

nitrogen stress (1). As a result, we identified a set of subpathways within the sphingolipid 

metabolic pathway that has not been phenotypically characterized previously for fitness defects 

during nitrogen stress, and through experimental studies, we report that the deletion of the DPL1 

and LAG1 genes within these subpathways do confer a cell growth defect on low-nitrogen 

medium. Furthermore, we performed a microarray experiment and used TEAK to identify 

changes in mRNA levels upon deletion of two transcription factors, Flo8p and Mss11p, essential 

for the yeast filamentous growth response. Via TEAK we observed decreased transcript levels 

for a subset of genes within a subpathway involved in glycerophospholipid metabolism upon 

deletion of the FLO8 and MSS11 genes. By deletion analysis and phenotypic profiling, we report 
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that the SLC1 gene within this subpathway is required for yeast filamentous growth and that its 

deletion results in decreased expression of a LacZ reporter driven by promoter elements 

responsive to the filamentous growth MAPK pathway. Collectively, these laboratory studies 

validate TEAK’s utility in analyzing large-scale data sets across multiple conditions. They also 

indicate the broad scope of the yeast filamentous growth response for which wild-type activity of 

the glycerol 3-phosphate pathway for de novo biosynthesis of phosphatidic acid is required. 

 

2.2. Materials and methods  

 

2.2.1. Yeast strains and growth conditions  

Strains used for the analysis of sphingolipid metabolism during nitrogen stress were of 

the non-filamentous S288c genetic background derived from BY4742 (MATa hisΔ1 leu2Δ0 

lys2Δ0 ura3Δ0) (14). For filamentous growth studies, the strains Y825 and HLY337 were 

derived from the Σ1278b background (4, 15). The haploid strain Y825 has the genotype MATa 

ura3-52 leu2Δ0, and the haploid strain HLY337 has the genotype MATa ura3-52 trp1Δ. Standard 

growth media consisted of YPD prepared using 1% yeast extract, 2% bacto-peptone and 2% 

glucose. Synthetic media was prepared using 0.17% yeast nitrogen base (YNB) without amino 

acids and ammonia, 2% glucose and 5 mM ammonium sulfate (35). Hyperosmotic sensitivity 

was assayed using YPD supplemented with sterile 1 M Sorbitol. Nitrogen deprivation and 

filamentous growth phenotypes were assayed using Synthetic Low Ammonium Dextrose 

(SLAD) medium consisting of 0.17% YNB, 2% dextrose, 50 μM ammonium sulfate and 

supplemented with the necessary amino acids (16). For plates autoclaved 2% agar was added to 

the media.  

 

2.2.2. Yeast gene deletions and transformations  

Deletion mutants were constructed in strains Y825 and HLY337 by using a one-step 

polymerase chain reaction (PCR)-based gene disruption strategy (17, 18) with the G418 

resistance cassette from plasmid pFA6a-KanMX6 (39). After confirming the haploid mutants via 

PCR, the strains were allowed to mate on YPD+G418 plates for ~20h at 30°C. Mated cells were 

then streaked on SC-Trp-Leu plates to select for Y825 x HLY337 diploids. Yeast 
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transformations were performed according to standard lithium acetate-mediated protocols (19) 

with modifications (20–22).  

 

2.2.3. Microarray experiments and analysis  

After culturing the yeast strains as described earlier, RNA was prepared under standard 

protocols using the Poly(A) Purist kit (Ambion, Austin, TX, USA). RNA concentration and 

purity were determined spectrophotometrically and by gel electrophoresis. Microarray 

hybridization was performed with the Yeast Genome S98 Array using standard protocols 

(Affymetrix, Inc., Santa Clara, CA, USA). All microarray experiments were performed in 

quadruplicate for each strain as described by (23, 24). For preprocessing the data for use by 

TEAK, we used GCRMA (25). To detect differentially expressed genes, we used significance 

analysis of microarrays (SAM) (26). For all deletion comparisons in this study, we used SAM’s 

two-class unpaired analysis function with significance thresholds selected so that the 

corresponding false discovery rate was 0.  

 

2.2.4. Growth assays  

Yeast strains were inoculated in 5 ml YPD and incubated overnight at 30°C with constant 

shaking (250 rpm). Cultures were diluted the following morning in 5 ml YPD and allowed to 

grow until the culture reached an OD600 of ~0.6–0.8. A 1 ml aliquot of each strain was washed 

once with sterile water and then re-suspended in sterile water such that all cell titers were equal. 

Each strain was then diluted via five 10-fold serial dilutions, and 6 ml of each dilution was 

spotted on YPD, YPD+1 M Sorbitol, or SLAD media. The spotted plates were allowed to dry at 

room temperature for 15 min before being placed at 30°C for 48 h. Yeast strains were inoculated 

in 5 ml YPD and incubated overnight at 30°C with constant shaking (250 rpm). Cultures were 

back diluted the following morning in 5 ml YPD and allowed to grow until the culture reached 

an OD600 of ~0.6–0.8. A 1-ml aliquot of each strain was washed once with sterile water and re-

suspended in 1 ml sterile water. Strains were triplicate loaded into either YPD or SLAD media 

within a 96-well plate such that the final concentration of each strain was an OD600 of ~0.02 

(~40X dilution) in a total volume of 100 μl. Growth was measured optically every 5 min for a 

period of 30 h with constant shaking at 30°C in a Synergy HT Multi-Mode microplate reader 
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(BioTek, Winooski, VT, USA). Time point measurements represent the average of the three 

replicates normalized by the average of the triplicate blank controls.  

 

2.2.5. β-Galactosidase assays for lacZ activity  

Yeast strains were inoculated in 5 ml SC-URA and incubated overnight at 30°C with 

constant shaking (250 rpm). Cultures were diluted the following morning in 5 ml SC-URA or 

SLAD media and allowed to grow until the culture reached an OD600 of ~0.5–1. β-Galactosidase 

assays were performed using the Thermo Scientific Yeast β-Galactosidase Assay Kit (Thermo 

Fisher Scientific, Rockford, IL, USA) according to the manufacturer’s protocol except that the β-

galactosidase reaction was allowed to continue for a set time of 30 min for each sample before 

reading the absorbance. Measurements represent the average of three replicates.  

 

2.3. Results 

 

2.3.1. Wild-type sphingolipid metabolism is required for efficient yeast cell growth during 

nitrogen stress  

The yeast cell response to nitrogen stress is extensive, encompassing changes at the 

mRNA level for hundreds of genes. Toward this point, Gasch et al. (1) profiled transcriptional 

changes in yeast upon exposure to conditions of nitrogen stress over 10 time points ranging from 

30 min to 5 days. To consider specific pathways differentially regulated at the level of 

transcription during nitrogen stress, we analyzed these microarray data sets using TEAK for 

subpathways collectively showing significant changes in mRNA levels of constituent genes 

across the time points.  

Here, we focused our studies on linear subpathways since genes within a linear 

subpathway are more likely to share a common phenotype and, consequently, are more amenable 

to genetic analysis. Via TEAK, a sphingolipid synthesis metabolic subpathway was highly 

ranked (within the top 25) with higher-ranking subpathways corresponding to processes that 

were already known to be important for cell growth during nitrogen stress (e.g. GPI-anchor 

biosynthesis and the yeast cell cycle). In eukaryotes, sphingolipids are an abundant membrane 

component, filling a structural role in membrane support and an increasingly well-studied role as 
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bioactive compounds involved in signal transduction; sphingolipid functions in yeast are 

reviewed in (27). We were particularly intrigued by the identification of the sphingolipid 

metabolic pathway by TEAK since previous studies have reported that the modulation of 

sphingolipid synthesis impacts yeast lifespan and the regulation of the yeast high osmolarity 

stress-responsive pathway (28, 29). Consequently, we chose to use TEAK to investigate 

subpathways of the sphingolipid metabolism pathway that may contribute to yeast cell survival 

during nitrogen stress. By sampling subpathways strictly within the sphingolipid metabolic 

pathway, TEAK identified a gene set encompassing LCB3, LCB5, YDC1, LAG1 and DPL1; these 

genes were consistently identified in the subpathways extracted by TEAK. We subsequently 

analyzed these genes further for a possible role in the yeast nitrogen stress response.  

The genes selected for phenotypic analysis include LCB5, which along with LCB4 

encode long chain base kinases that catalyze formation of the phosphorylated long chain bases 

(LCBPs) dihydrosphingosine 1-phosphate and phytosphingosine 1-phosphate (30). Lcb3p is a 

phosphatase that dephosphorylates LCBPs (31). YDC1 encodes an alkaline ceramidase that is 

specific for dihydroceramide (32). Dpl1p is an LCBP lyase that cleaves LCBPs at the C2–3 bond 

to yield a long chain aldehyde and ethanolamine phosphate (33). Lag1p is a component of 

ceramide synthase, synthesizing ceramide from C26(acyl)-coenzyme A and dihydrosph¬ingosine 

or phytosphingosine (34). Interestingly, LCBs, dihydrosphingosine and phytosphingosine have 

been identified as important second messengers in signaling pathways that regulate cellular 

responses to heat stress, and LCBPs, phytoceramide and additional sphingolipid metabolic 

intermediates contribute to the regulation of cell growth (35, 36). It is important to note that a 

role in yeast cell growth under conditions of nitrogen stress had not been determined for these 

genes.  

Consequently, we analyzed homozygous diploid yeast strains singly deleted for each of 

these genes in a non-filamentous genetic background to assess their ability to grow under 

conditions of nitrogen stress. As indicated in Figure 2.1, deletion of DPL1 and LAG1 yields a 

strong reduction in cell growth under conditions of nitrogen stress, both by colony assay and by 

spectrophotometric analysis of yeast cell growth in liquid culture. This result indicates that wild-

type activity of subpathways regulating sphingolipid synthesis and catabolism is required for 
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efficient cell growth during conditions of nitrogen stress while validating TEAK’s utility in 

extracting biologically relevant subpathways from large-scale data sets.  

 

2.3.2 Transcriptional programs regulated by the filamentous growth transcription factors 

Flo8p and Mss11p  

In filamentous strains of S. cerevisiae, nitrogen stress also elicits a complex 

morphogenetic program resulting in the transition to a filamentous form of growth. The 

transcription factors Flo8p and Mss11p are both required for this filamentous growth transition 

in that homozygous diploid flo8Δ/Δ and mss11Δ/Δ strains do not undergo filamentation under 

conditions of nitrogen stress (37, 38). Flo8p is phosphorylated and activated by Tpk2p, a 

catalytic subunit of PKA (8), and is known to directly regulate transcription from the 

MUC1/FLO11 promoter (Figure 2.2). Flo8p-binding sites have been assessed by chromatin 

immunoprecipitation/microarray studies (39), indicating hundreds of target sites across the yeast 

genome. Collectively, the DNA recognition pattern suggests regulation of a broad set of cellular 

processes although the downstream effects on mRNA levels of FLO8 deletion have not been 

investigated extensively. By genetic analyses, Mss11p is thought to play a central role in the 

yeast filamentous growth response, putatively acting in concert with both the filamentous growth 

MAPK and PKA pathways (37) and also acting directly on the MUC1 promoter. Mss11p target 

sites have not been assessed by chromatin immunoprecipitation/microarray analysis although 

mRNA levels have been profiled in a haploid mss11Δ strain under normal growth conditions 

(40). In addition to their role in regulating the filamentous growth response, Flo8p and Mss11p 

bind cooperatively to the STA1 gene promoter under conditions of glucose depletion, regulating 

the transcription of this extracellular glucoamylase important for starch degradation (41). Thus, 

we expect that Flo8p and Mss11p mediate extensive and diverse transcriptional programs 

required for wild-type filamentous growth.  

Here, we used DNA microarray analysis to profile changes in mRNA levels in 

homozygous diploid strains of the filamentous Σ1278b genetic background deleted for FLO8 and 

MSS11, respectively, under conditions of nitrogen stress. The results of this analysis are 

summarized in Figure 2.2. As indicated, deletion of FLO8 resulted in decreased mRNA levels of 

67 genes during nitrogen stress, and 178 genes exhibited decreased transcript abundance in the 
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mss11Δ/Δ strain. A smaller set of genes showing increased transcript levels were also observed 

in the homozygous diploid deletion strains, and these genes can be accessed from the microarray 

data files provided (NCBI GEO Accession Number GSE40530). By a simple over-representation 

approach, we analyzed the resulting gene sets for enrichment of associated gene ontology (GO) 

biological process terms (Figure 2.2, Figure 2.4). The smaller gene set exhibiting increased 

transcript levels showed little enrichment for informative GO terms, but the genes showing 

decreased mRNA levels were significantly enriched for several cellular processes involved in 

filamentation. From this analysis, FLO8 deletion is likely to affect the biosynthesis/metabolism 

of sulfur-containing and nitrogenous compounds while also impairing wild-type transport of 

nitrogenous compounds. MSS11 deletion resulted in decreased transcript levels for an 

overrepresented set of genes mediating cell–cell adhesion, β-glucan biosynthesis, cytoskeletal 

organization, and, more generally, signal transduction. These processes are known to be involved 

in the filamentous growth response, and the results validate the essential roles of both 

transcription factors during pseudohyphal development.  

Interestingly, a relatively small set of genes was identified with differential mRNA levels 

in both the flo8Δ/Δ and mss11Δ/Δ strains (Figure 2.4). Within this small gene set, no GO term 

enrichment was observed, and the results may speak to the point that under conditions of 

nitrogen stress, Flo8p and Mss11p may not co-regulate an extensive set of gene targets.  

 

2.3.3. Glycerophospholipid metabolism and the SLC1 gene contribute to yeast 

pseudohyphal growth  

To supplement the overrepresentation approach utilized earlier, we further analyzed the 

mRNA profiles of the flo8Δ/Δ and mss11Δ/Δ strains by TEAK. Here, we specifically focused on 

nonlinear subpathways as we expected that nonlinear relationships would be most prevalent in 

the highly interconnected cell processes underlying filamentous growth. The resulting TEAK 

analysis identified a gene set mediating glycerophospholipid metabolism as the top-ranking 

subpathway within the data sets (Figure 2.3). The corresponding GO biological process terms 

were not identified as being enriched in the data sets by the overrepresentation analysis. To 

identify a putative functional role for this subpathway within the filamentous growth response, 

we focused on the gene SLC1.  
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As indicated in Figure 2.3, SLC1 encodes a 1-acyl-sn-glycerol-3-phosphate 

acetyltransferase catalyzing the acylation of lyso-phosphatidic acid to form the key glycerolipid 

biosynthesis intermediate phosphatidic acid (42). Deletion of SLC1 does not abolish this 

enzymatic activity, however, as Ale1p also provides lysophospholipid acetyltransferase activity 

(43). Interestingly, Slc1p additionally exhibits magnesium-dependent acetyltransferase activity 

toward lyso forms of phosphatidylserine and phosphatidylinositol (42). While these functions of 

Slc1p are well established, its contributions toward filamentous growth had not been investigated 

previously, and its role, if any, in this stress response was unknown.  

To determine if SLC1 is involved in the yeast pseudohyphal response to nitrogen stress, 

we generated a homozygous diploid deletion of the SLC1 gene and analyzed the resulting mutant 

for the ability to form surface-spread filaments under conditions of nitrogen stress. Strikingly, on 

low-nitrogen medium, the slc1Δ/Δ mutant exhibited a loss of pseudohyphal filamentation 

(Figure 2.3). To assess whether this loss of filamentous growth occurs at least in part through 

decreased activity of the Kss1p MAPK pathway, we introduced a plasmid-based filamentation 

and invasion response element (FRE)-driven lacZ reporter in the slc1Δ/Δ mutant (44). The FRE 

promoter sequence is recognized by the Ste12p-Tec1p transcription factor complex that acts 

downstream of the Kss1p MAPK pathway; thus, expression of this reporter is a good indicator of 

filamentous growth MAPK pathway activity. Under conditions of nitrogen stress in the slc1Δ/Δ 

mutant, we observed a significant decrease in lacZ-encoded β-galactosidase activity relative to 

wild type, indicating decreased activity of the filamentous growth MAPK pathway upon deletion 

of SLC1 during nitrogen deprivation. Thus, SLC1 and glycerophospholipid metabolism do 

contribute to the yeast pseudohyphal response although the mechanism of this Flo8p-and 

Mss11p-mediated effect needs to be elucidated further. In addition, TEAK was indeed effective 

in extracting biologically relevant subpathways from the transcriptional profiling data sets.  

 

2.4. Discussion and conclusion 

The identification of sphingolipid metabolic pathways as a component of the yeast 

nitrogen stress response is interesting given the important role of sphingolipids as second 

messengers. Recently, decreased sphingolipid synthesis has been reported to increase yeast cell 

lifespan through processes involving reduced Sch9p kinase activity and reduced chromosomal 
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mutations (29). More to the point, previous studies have established that inhibition of the de 

novo sphingolipid synthesis pathway activates the MAPK pathway mediating the yeast response 

to high osmolarity (the HOG pathway) (28). HOG pathway activity inhibits the yeast filamentous 

growth response to nitrogen stress (45, 46), which suggests that sphingolipid accumulation may 

be an activating signal toward pseudohyphal growth. This hypothesis can be tested in a 

filamentous strain of S. cerevisiae.  

Our article focuses significantly on the pseudohyphal response to nitrogen stress in a 

filamentation-competent strain of S. cerevisiae. We specifically chose to study the filamentous 

growth transcription factors Flo8p and Mss11p because (i) they are required for wild-type 

filamentous growth; (ii) their respective transcriptional programs remain to be fully delineated; 

and (iii) they may function cooperatively during pseudohyphal development. By the microarray-

based approach employed here, we detect changes in mRNA level that occur as both direct and 

indirect effects of FLO8 and MSS11 deletion. With respect to the transcriptional program 

controlled by Flo8p, the distinction between direct and indirect effects can be studied by 

comparing the results presented here with published chromatin immunoprecipitation/microarray 

analysis of Flo8p binding (39). As the latter method should be highly enriched for direct 

transcription factor-promoter interactions, additional transcript level changes reported here are 

likely to be enriched in indirect effects. Furthermore, the overlap between the data sets provides 

a high confidence set of Flo8p targets. In total, 15 genes were identified in common through both 

methods of study including the following genes required for wild-type filamentous growth: 

MUC1, HMS1, NDE1, PDR11 and CLN1.  

Interestingly, Flo8p and Mss11p are known to bind co-operatively to a short inverted 

repeat sequence in the STA1 gene promoter under conditions of glucose limitation (41). 

Presumably, the transcription factors also cooperatively bind additional promoters and promoter 

elements. This suggests that we may observe a significant degree of overlap between the genes 

exhibiting differential transcript levels upon FLO8 and MSS11 deletion. In our analysis, 

however, we only observed 16 such genes in common between the two data sets. This 

overlapping set does include MUC1/FLO11 whose promoter is known to be recognized by both 

factors during nitrogen stress-induced filamentous growth. In this case, though, Flo8p and 

Mss11p bind to Ste12p and Tec1p, which collectively recognize the FRE sequence in the MUC1 
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promoter (41). Further chromatin immunoprecipitation/sequencing studies will be helpful in 

determining the binding dynamics of Flo8p and Mss11p.  

The transcriptional profiles of flo8Δ and mss11Δ strains indicate a broad range of cellular 

processes encompassed within these transcriptional programs. Although additional transcription 

factors contribute to the full transcriptional regulation underlying filamentous differentiation, the 

gene set reported here is reflective of the broad scope of this growth transition. The development 

of pseudohyphal filaments requires the output of complex processes regulating cell polarity, cell 

cycle progression, cell morphology, cell–cell adhesion, cytoskeletal organization and numerous 

metabolic systems. Consequently, genomics has been and continues to be very useful in 

identifying these higher-order processes for subsequent detailed follow-up analysis. 

 

2.5. Acknowledgements 

We thank the reviewers for their thoughtful and useful feedback. 

 

 



62 

 

Figure 2.1. Sphingolipid metabolism is necessary for cellular response to nitrogen stress. 
(A) A simplified representation of the sphingolipid metabolism pathway. The shaded genes were 

selected from TEAK for phenotypic analysis. (B) Colony assays of yeast cell growth in liquid 

culture under YPD (normal nitrogen) and SLAD (low nitrogen) across 10-fold dilutions. (C) 

Spectrophotometric analysis of yeast cell growth in liquid culture under YPD and SLAD. As 

seen in B and C, deletion of the genes DPL1 and LAG1 greatly reduces yeast cell growth under 

nitrogen stress. 
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Figure 2.2. Regulation of filamentous growth by Flo8p and Mss11p. (A) Flo8p and Mss11p 

regulate the MUC1/FLO11 promoter required for wild-type filamentous growth. (B) DNA 

microarray analysis to profile mRNA level changes in homozygous diploid strains of the 

filamentous Σ1278b genetic background deleted for FLO8 and MSS11, respectively. 
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Figure 2.3. SLC1 is necessary for cellular response to nitrogen stress and pseudohyphal 

growth. (A) A simplified representation of the glycerophospholipid metabolism pathway. (B) 

Deletion of the gene SLC1 leads to loss of filamentous growth under SLAD growth conditions. 
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Figure 2.4. Results of a simple over-representation approach for the differentially 

expressed gene sets of Figure 5B in the main text. It should be noted that the SLC1 gene 

discovered by TEAK is not among the results. 
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CHAPTER 3 

The Yeast Sks1p Kinase Signaling Network Regulates Pseudohyphal Growth and Glucose 

Response 

 

3.1. Introduction 

Multiple fungal species exhibit complex morphological changes in response to 

environmental conditions, generating multicellular forms or structures critical to the respective 

life cycles of these organisms (1). These morphological transitions have been linked to virulence 

in several human and plant fungal pathogens, including Candida albicans, Cryptococcus 

neoformans, Aspergillus fumigates, and Ustilago maydis (2–4). In particular, several lines of 

study have established that the formation of hyphal filaments is required for virulence in the 

opportunistic human fungal pathogen C. albicans (5–8). The budding yeast Saccharomyces 

cerevisiae also exhibits a morphogenetic transition from its typical form to a filamentous state, 

and the study of this dimorphism in S. cerevisiae has contributed considerably to our 

understanding of important cell signaling mechanisms, while also providing insight into the 

molecular basis of fungal pathogenicity (9). 

 The morphological transition in S. cerevisiae is pronounced: yeast cells undergoing 

pseudohyphal growth are elongated and remain connected after cytokinesis, forming 

multicellular chains, or filaments (10). These filaments can spread out along the surface of a 

solid growth substrate as well as invade the substrate (11) and are referred to as pseudohyphae, 

since they resemble the hyphae of other fungal species but lack the structure of a true hyphal 

tube (12). Strains of S. cerevisiae competent to undergo pseudohyphal growth (e.g., the 1278b 

strain used here) initiate this transition in response to conditions of nitrogen stress and/or glucose 

deprivation (13). Consequently, pseudohyphal growth is considered to be an adaptive 

mechanism, enabling non-motile yeast cells to forage for nutrients when local resources become 

limited (14–16). The morphological changes associated with pseudohyphal growth are driven by 

a host of altered developmental processes, including a delay in the G2/M cell-cycle transition 
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that produces the elongated cell morphology (17), a switch to a unipolar budding pattern (18), 

and increased cell-cell adhesion (19). 

 At least 700 single gene deletions in the filamentous Σ1278b strain of S. cerevisiae result 

in pseudohyphal growth phenotypes (20, 21),  and classical genetic studies have established three 

well-studied signaling pathways as regulators of pseudohyphal differentiation in the filamentous 

1278b strain of S. cerevisiae: the mitogen-activated protein kinase (MAPK) pathway, the 

cAMP-dependent protein kinase A (PKA) pathway, and the sucrose non-fermentable (SNF) 

pathway (22). The yeast pseudohyphal growth MAPK pathway consists of the MAPKKK 

Ste11p, the MAPKK Ste7p, and the MAPK Kss1p. Ste11p is phosphorylated by the p21-

activated kinase Ste20p, and Kss1p phosphorylates the key heterodimeric transcription factor 

Ste12p/Tec1p (23). In S. cerevisiae, PKA consists of the regulatory subunit Bcy1p and one of 

three catalytic subunits, Tpk1p, Tpk2p, and Tpk3p (24). Deletion of TPK2 results in a loss of 

pseudohyphal growth, and Tpk2p has been implicated most extensively in filamentation and the 

response to nutrient stress (25). Tpk2p phosphorylates the transcription factor Flo8p, which is 

required for pseudohyphal growth (26). Snf1p is a member of the AMP-activated kinase family 

and regulates transcriptional changes associated with glucose derepression (27). Snf1p regulates 

the key pseudohyphal growth effector FLO11 through repression of the negative regulators 

Nrg1p and Nrg2p (28, 29). The Kss1p MAPK pathway and PKA also activate FLO11 

transcription through Ste12p/Tec1p and Flo8p, respectively (30). 

Notably, each pathway above is involved in the cellular response to nutrient availability 

(31–33). In particular, glucose, the preferred carbon source of budding yeast, directly activates 

the cAMP pathway via the G-protein coupled receptor Gpr1p (34) and the Snf1p network 

through the plasma membrane sensors Rgt2p and Snf3p (35). The mechanisms by which these 

signals are then propagated and executed to elicit pseudohyphal differentiation, however, are still 

under investigation. Studies from Bisson and colleagues (36, 37) identified the SKS1 gene, 

encoding a Ser/Thr kinase, as a multicopy suppressor of snf3. Yang and Bisson also 

demonstrated that Sks1p kinase activity was required for phenotypic suppression of snf3. 

Recent work in our lab indicated that Sks1p is required for nuclear localization of the 

pseudohyphal growth regulators Bcy1p and Ksp1p during butanol-induced pseudohyphal growth 

(38). Thus, SKS1 may regulate both glucose-responsive signaling and pseudohyphal 



72 
 

development, with the potential to serve as an integrator between these interrelated signaling 

processes. 

Here, we used a combination of proteomic and genetic approaches to dissect the role of 

Sks1p in the relationship between glucose-responsive signaling and pseudohyphal growth. To 

determine the Sks1p signaling network, we implemented a mass spectrometry-based approach 

identifying phosphorylation events dependent upon Sks1p kinase activity. The resulting datasets 

identified 91 phosphophorylated residues exhibiting two-fold differential abundance after 

phosphopeptide enrichment in a catalytically inactive sks1-K39R mutant. Proteins exhibiting 

decreased phosphopeptide abundance upon loss of Sks1p kinase activity mapped onto interaction 

networks contributing to pseudohyphal growth signaling pathways and 

glycolysis/gluconeogenesis pathways. We identified phosphorylated residues important for cell 

growth under conditions of low nitrogen and low glucose and residues in the mitochondrial 

pyruvate dehydrogenase subunit Pda1p required for pseudohyphal growth. Epistasis studies 

suggest that Sks1p acts downstream of the GTP-binding protein Ras2p but upstream of PKA, 

and known pseudohyphal growth and glucose signaling transcription factors contribute to the 

establishment of wild-type SKS1 transcript levels. SKS1 is conserved, and by deletion analysis 

we find that the C. albicans ortholog of SKS1, SHA3, is required for wild-type colony 

morphology in the presence of an alternate carbon source. Collectively, the work identifies 

Sks1p as an important contributor to the signaling systems enabling filamentation and wild-type 

cellular response to glucose. 

 

3.2. Materials and Methods 

 

3.2.1. Yeast strains, plasmids, and growth conditions 

The strains used in this study are listed in Table 3.1 and are isogenic derivatives of the 

Σ1278b strain (14). All strains were generated from the MATa haploid strain Y825 (ura3-52 

leu2Δ0) and the MATα haploid strain HLY337 (ura3-52 trp1-1).  

Standard yeast media and microbiological techniques were used (39, 40). Briefly, 

standard growth media consisted of YPD (1% yeast extract, 2% peptone, 2% glucose) or 

Synthetic Complete (SC) (0.67% yeast nitrogen base (YNB) without amino acids, 2% glucose, 

and 0.2% of the appropriate amino acid drop-out mix). Nitrogen deprivation and filamentous 
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phenotypes were assayed using Synthetic Low Ammonium Dextrose (SLAD) medium (0.17% 

YNB without amino acids, 2% glucose, 50μM ammonium sulfate and supplemented with 

appropriate amino acids) and Synthetic Low Ammonium Low Dextrose (SLALD) medium 

(0.17% YNB without amino acids, 0.05% glucose, 50μM ammonium sulfate and supplemented 

with appropriate amino acids) (41). Respiratory competency was assayed using YPG (1% yeast 

extract, 2% peptone, 3% glycerol). For plates, autoclaved 2% agar was added to the media.  

To promote C. albicans vegetative growth, 80 ug/mL of uridine was added to all media unless 

otherwise noted. Hyphal growth was induced in C. albicans via growth in Spider medium and/or 

10% serum-containing medium for the indicated times at 37°C (42). 

Plasmids used in this study are listed in Table 3.2. Plasmids pFRE-lacZ and pSKS1-

K39R-vYFP were constructed as described (43). To over-express SKS1, the SKS1 open reading 

frame was amplified from genomic DNA and cloned into XmaI-XhoI-digested p426GPD (44). 

The GPD promoter was then replaced with the ADH1 promoter amplified from genomic DNA (-

1464 to 0) and cloned into SacI-XmaI-digested p426-GPD-SKS1 to generate plasmid pCK020. 

 

3.2.2. Yeast gene deletions and site-directed mutagenesis 

Gene deletion mutants were constructed in strains Y825 and HLY337 using a one-step 

PCR-based gene-disruption strategy (45, 46) with the G418 resistance cassette from plasmid 

pFA6a-KanMX6 (47). Integrated point mutations were generated using the one-step site-directed 

mutagenesis strategy described in Zheng et al. (48). After confirming the haploid mutants via 

PCR and site-directed mutants via sequencing, the strains were allowed to mate on YPD + G418 

plates for approximately 20 hours at 30°C. Mated cells were then streaked on SC-Trp-Leu plates 

to select for Y825 x HLY337 diploids. All yeast transformations were performed according to 

standard lithium acetate-mediated protocols (49). 

 

3.2.3. Surface-spread filamentation assays 

Defects in surface spread filamentation were assayed as decribed in (50). In brief, yeast 

strains were inoculated in 5 mL SC supplemented with appropriate amino acids and incubated 

overnight at 30°C with constant shaking (250 rpm). Cell cultures were diluted to an OD600 of 

approximately 0.2 in fresh SC media supplemented with appropriate amino acids and grown at 

30°C with shaking for at least two doublings, to an OD600 of approximately 0.6-1.0. 
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Approximately 1 mL of each cell culture was transferred into 1.7 mL microcentrifuge tubes. The 

cultures were washed twice with sterile H2O before re-suspending in 1 mL sterile H2O and 

serially diluting such that the density of plating was approximately10
2
-10

3
 cells per plate; high-

density plating has been shown to decrease the rate at which cells transition to the filamentous 

form (51). Diluted cultures were then spread on SLAD and/or SLALD plates supplemented with 

appropriate amino acids and incubated at 30°C for 3 or more days. Cells were microscopically 

imaged using a Photometrics CoolSnapES2 digital camera mounted on a Nikon Eclipse 80i 

upright microscope. Colony morphology was imaged using a 4X objective while cellular 

morphology was imaged with a 100X oil-immersion objective. 

 

3.2.4. Peptide sample preparation and phosphopeptide enrichment 

S. cerevisiae Y825 control and sks1-K39R mutant cells were isotopically labeled with 

medium (Lys-4/Arg-8) amino acids during cell culture (SILAC). Cell cultures were lysed by 

bead beating in lysis buffer; the lysis buffer was composed of 50 mM tris buffer (pH 8.2), 8 M 

urea, and protease inhibitors (Roche) and phosphatase inhibitors (50 mM NaF, 50 mM beta-

glycerophosphate, 1 mM sodium vanadate, 10 mM sodium pyrophosphate, 1 mM 

phenylmethylsulfonyl fluoride). Frozen cells were suspended in 400 µl lysis buffer and were 

lysed by applying three cycles of bead beating (for one minute each) with a 2-minute rest on ice 

between cycles. Supernatants containing protein extract were recovered by centrifugation at 

14,000 g for 10 minutes, and protein concentrations were measured by Bradford assay.  Equal 

amounts of protein from three SILAC-labeled cells were combined, treated for disulfide 

reduction and alkylation, and digested with TMPK-treated trypsin (Worthington Biochemical 

Corp., Lakewood, NJ) at a trypsin:protein ratio of 1:10 at 37 °C overnight. 

 Peptide mixtures were desalted with C18 (Waters) and separated into 12 strong cation 

exchange (SCX) fractions on a PolySulfoethyl A column (PolyLC, 150 x 4 mm) over a 48 

minute salt gradient with two mobile phases: 100% solvent A (5 mM KH2PO4, 30% acetonitrile, 

pH 2.7) for 5 minutes, a linear gradient of 0-40% solvent B (250 mM KH2PO4, 30% acetonitrile, 

pH 2.7) in the following 35 min, a stiff increase of 40-100% B in 3 min, and flushing with 100% 

B for 5 min.  Collected SCX fractions were desalted with C18 (Waters) and subjected to 

selective phosphopeptide enrichment using ZrO2 (Glygen, 50 µm i.d. resin) under acidic 

conditions in the presence of 2,5-dihydroxy benzoic acid (52, 53). Phosphopeptides selectively 
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bound on ZrO2 were eluted with 4% NH4OH.  The ZrO2 eluate of enriched phosphopeptides and 

the flow-through of each SCX fraction were analyzed by nanoLC-tandem mass spectrometry 

(MSMS). 

 

3.2.5. Mass spectrometric analysis and SILAC quantification 

NanoLC-MSMS experiments were performed on a hybrid type mass spectrometer 

(Thermo, LTQ-Orbitrap XL) coupled to a nanoLC system (Eksigent, 2D nanoLC). Samples were 

separated on a custom capillary column (150 mm x 75 µm, 3 µm Sepax HP-C18) using a 120 

min linear aqueous gradient (9-90% acetonitrile, 0.01% formic acid) delivered at 250 nL/min. 

The eluent was introduced on-line to the LTQ-Orbitrap via an electrospray device (Advion, 

TriVersa NanoMate) in positive ion mode. 

 The LTQ-Orbitrap was operated in a data-dependent mode alternating a full MS scan 

(300-1700 m/z at 60,000 resolution power at 400 m/z) in the Orbitrap analyzer and collision-

induced dissociation scans (CID-MSMS) for the 7 most abundant ions with signal intensity 

above 500 from the previous MS scan in LTQ. Recurring precursor ions were dynamically 

excluded for 30 sec by applying charge-state monitoring, ions with 1 or unassigned charge states 

were rejected to increase the fraction of ions producing useful fragmentation. Lock mass 

([(Si(CH3)2O)6]
1+

, m/z = 445.120029) was used for internal calibration. Each sample was 

analyzed by two LC-MS experiments. Raw LC-MS data file sets were processed, database 

searched, and quantified using MaxQuant (ver 1.0.13.8) (54) and the Mascot search engine 

together. Mascot database searches were performed against a composite database of forward and 

reverse sequences of verified yeast open reading frames from the Saccharomyces Genome 

Database. Variable modifications were allowed for oxidation (M) and phosphorylations (STY), 

as well as a fixed modification of carbamidomethylation (C). Peptide, protein, and 

phosphorylation site identifications were filtered at a false discover rate of 5%. The MaxQuant 

normalized M/L (medium/light) ratios with significance A scores less than 0.05 were considered 

statistically significant. 1068 peptides were identified, corresponding to 552 distinct proteins. 

 

3.2.6. Identification of previously unreported phosphopeptides and network analysis 

A network scaffold was constructed was constructed using interactions from the publicly 

available Kyoto Encyclopedia of Genes and Genomes (KEGG), GeneMania and BioGrid 
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resources (55–57). KEGG xml files for the glycolysis/gluconeogenesis (sce00010), cell cycle 

(sce04111), meiosis (sce04113) and MAPK signalling pathways (sce04011) were downloaded 

and parsed using an in-house program to create a network. The genes in the resulting network 

were then uploaded to GeneMania in order to retrieve additional genetic and physical 

interactions. Finally, the interactions for SKS1 were downloaded from BioGrid and appended to 

the network. Differentially phosphorylated proteins, identified by differentially abundant 

phosphopeptides upon enrichment, were filtered using the significance of the medium/light 

isotope ratios; we implemented a significance (A) cut off at or below 0.05. The resulting protein 

list was mapped on to the network scaffold using Cytoscape (58). The network was clustered by 

node attributes to reflect the pathways from which the genes originated. As expected, the 

network consisted of three groups/sub-networks (glycolysis/gluconeogenesis, cell cycle/meiosis, 

and MAPK signaling sub-networks). 

 To identify novel phosphopeptides, we aggregated data from five repositories – 

PhosphoPep, Phosida, Phospho.ELM, PhosphoGRID, and GPMdb. Downloaded files were 

parsed using an in-house program, and a composite database of phosphopeptides was created. 

Modified peptide sequences identified in our dataset were queried against this database. To 

account for general ambiguity in the localization of phosphosites, we also queried the 

unmodified peptide sequences. These results were compiled into a list of novel phosphopeptides. 

 

3.2.7. Assays for fitness and respiratory deficiency 

Yeast strains were inoculated in 5 mL SC and incubated overnight at 30°C with constant 

shaking (250 rpm). Cell cultures were subsequently diluted in 6 mL of SC, SLAD, and SLALD 

to an OD600 of approximately 0.1 and incubated at 30°C with constant shaking (250 rpm) for 

approximately 15 hours. OD600 measurements were collected approximately every 3 hours from 

the time of dilution. Full growth curve datasets for the analysis of mutants in SC, SLAD, and 

SLALD media are provided in Tables 3.5, 3.6, 3.7, respectively. Assays for respiratory 

deficiency were implemented as follows. Single colonies were inoculated in 5mL YPD media 

and incubated with continuous agitation overnight. Cell cultures were diluted to an OD600 of 

approximately 0.3 in fresh YPD media and grown at 30°C with shaking for at least two 

doublings, to an OD600 of approximately 1.0. Each yeast cell culture was then adjusted to an 

identical OD600 and serially diluted 10
-1

, 10
-2

, 10
-3

, and 10
-4

, respectively. Subsequently, 5 μL of 
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each diluted yeast culture was spotted onto YPD and YPG plates and incubated at 30°C for three 

to five days. 

 

3.2.8. RNA preparation and qRT-PCR analysis 

Yeast strains were inoculated in 5 mL SC and incubated overnight at 30°C with constant 

shaking (250 rpm). Cell cultures were diluted to an OD600 of approximately 0.3 in fresh SC, 

SLAD, and SLALD media and grown at 30°C with shaking for 4 hours. Afterward, cell cultures 

were pelleted by spinning at 3000g for 5 minutes, the supernatant was removed, and cell pellets 

were flash frozen in a dry ice/ethanol bath. Total RNA was extracted using the RiboPure Yeast 

Kit (Ambion/Life Technologies, Grand Island, NY) following the manufacturer’s protocol. First-

strand cDNA synthesis was performed using the Superscript II Reverse Transcriptase Kit 

(Invitrogen/Life Technologies, Grand Island, NY) with 2 μg of total RNA as template and Oligo 

d(T)12-18 as primers according to the manufacturer’s protocol. Quantitative real-time assays were 

performed in triplicate with a Mastercycler EP Realplex4 S (Eppendorf, Hauppauge, NY) using 

SYBR Green I dye-based detection (Life Technologies, Grand Island, NY).  Each reaction 

contained 10 μL SYBR Green PCR Master Mix (Life Technologies, Grand Island, NY), 0.2 μM 

of the appropriate primers, and 120ng of cDNA template in a total volume of 20 μL. The real 

time PCR reactions were performed at 95°C for 5 minutes followed by 40 cycles of 30 seconds 

at 95°C, 30 seconds at 60°C, and a final step at 72°C for 30 seconds. Relative differences in 

RNA levels were normalized against ACT1 levels using the delta delta CT method (59). 

 

3.2.9. Western analysis 

Yeast strains were analyzed by Western blotting according to standard protocols (60). For 

Western analysis, 10 μL of protein sample were separated via SDS-PAGE and transferred to 

Immun-Blot PVDF (Bio-Rad, Hercules, CA) using standard methods. Protein detection was 

carried out using antibodies against Hemagglutinin (HA) (1:2000; Abcam, Cambridge, MA) in 

TBS + 0.1% Tween20 and 5% milk. After immunodetection of Hemagglutinin, the membrane 

was stripped using Stripping Buffer (62.5 mM Tris pH 6.8, 100mM β-mercaptoethanol, and 2% 

SDS) at 65°C for 30 minutes with occasional agitation. Normalization of loading was performed 

by probing the original membrane with antibodies against yeast 3-phosphoglycerate kinase 
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PGK1 (1:5000; Invitrogen/Life Technologies, Grand Island, NY) in the same buffer conditions 

used previously. 

 

3.2.10. Analysis of mitochondrial morphology 

Yeast strains were inoculated in 5 mL SC and incubated overnight at 30°C with constant 

shaking (250 rpm). Cell cultures were diluted to an OD600 of approximately 0.3 in fresh SC 

media and grown at 30°C with shaking for 4 hours. Mitochondrial morphology was scored using 

MitoTracker CMXR (Molecular Probes/Life Technologies, Grand Island, NY) for labeling the 

mitochondrial membrane and 4',6-diamidino-2-phenylindole (DAPI) for labeling mitochondrial 

DNA. MitoTracker was added to 1 mL aliquots of each cell culture to a final concentration of 0.5 

μM, and the samples were incubated at 30°C for 30 minutes similar to Nunnari et al. (61). 3 μL 

of stained culture was then mixed with 3 μL of DAPI mounting media (9.25 mM p-

Phenylenediamine (Sigma-Aldrich, St. Louis, MO), 0.18 μM DAPI (Sigma-Aldrich, St. Louis, 

MO), in glycerol) on a glass slide (39). The cell suspension was then covered with a glass 

coverslip and imaged using a Photometrics CoolSnapES2 digital camera mounted on a Nikon 

Eclipse 80i upright microscope. Mitochondrial morphology was imaged with a 100X oil-

immersion objective using the UV filter for DAPI and TRITC filter for Mitotracker. 

 

3.2.11. Phenotypic analysis of C. albicans sha3/SHA3 

Construction of the heterozygous C. albicans sha3::CdHIS1/SHA3 deletion mutant was 

performed using the transformation methods described in Walther et al. (62). Wild-type and 

mutant colonies were grown overnight at 30°C in 3 ml YPD or SC media minus the appropriate 

amino acids and supplemented with uridine. To assess colony morphology, cell cultures were 

diluted to an OD600 of approximately 0.25 in fresh YPD + uri and grown at 30°C with shaking 

for at least two doublings, to an OD600 of approximately 0.6-1.0. 5 μl of each culture was spotted 

onto YPD + uri, YPD + uri + 10% serum, and Spider plates. After drying on the bench, YPD + 

uri plates were incubated at 30°C and YPD + uri + 10% serum and Spider plates were incubated 

at 37°C for 3-5 days. 

 

 

 



79 
 

3.3. Results 

 

3.3.1. Sks1p kinase activity is required for pseudohyphal growth 

We initially assessed the role of Sks1p in pseudohyphal growth through a series of 

phenotypic studies analyzing pseudohyphal filamentation in SKS1 mutants in medium 

supplemented with butanol, an induction condition for pseudohyphal growth that mimics 

nitrogen stress (38). For this work, we constructed homozygous diploid sks1Δ/sks1Δ, and sks1-

K39R/sks1-K39R mutants in the filamentous Σ1278b genetic background, with the latter strain 

containing a site-directed mutation yielding greatly diminished kinase activity. On low-nitrogen 

(SLAD) media, loss of either the gene or its kinase activity resulted in decreased surface-spread 

pseudohyphal filamentation relative to an isogenic wild-type strain (Figure 3.1A). The 

introduction of a centromeric plasmid bearing wildtype SKS1 under transcriptional control of its 

native promoter was able to rescue the loss of pseudohyphal growth exhibited by the sks1Δ/Δ 

mutant, while introduction of a similar plasmid bearing the kinase-dead variant of SKS1 (sks1-

K39R) was unable to restore wild-type filamentation (Figure 3.1B). Over-expression of SKS1 

from a high-copy 2 plasmid induced hyper-filamentation under conditions of nitrogen 

deprivation (Figure 3.1C). Thus, SKS1 regulates pseudohyphal growth, as SKS1 and Sks1p 

kinase activity are required for nitrogen stress-induced pseudohyphal filamentation. 

 

3.3.2. Identification of the Sks1p signaling network 

 To determine the molecular basis of Sks1p kinase regulation of peudohyphal growth, we 

analyzed the Sks1p kinase signaling network by quantitative phosphoproteomics. Our approach 

was straightforward; we implemented a mass spectrometry-based method utilizing stable isotope 

labeling of amino acids in cell culture (SILAC) to identify proteins differentially phosphorylated 

upon loss of Sks1p kinase activity. As outlined in Figure 3.2A, a strain that was wild-type with 

respect to SKS1 and an otherwise isogenic strain carrying the sks1-K39R allele in the filamentous 

1278b background were made auxotrophic for arginine and lysine; the wild-type and 

sks1kinase-dead strains were subsequently grown in triplicate for five cell doublings in media 

containing unlabeled or 
13

C6-labeled arginine and lysine, respectively, in the presence of butanol 

to induce pseudohyphal growth. Prepared proteins from both sets of samples were enriched for 
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phosphopeptides, and differences in phosphopeptide abundance between the wild-type and 

kinase-dead samples were determined by mass spectrometry. 

 By this approach, we profiled 903 phosphosites across the yeast proteome, identifying 

114 phosphopeptides differentially abundant upon enrichment from the sks1 kinase-dead strain 

relative to wild-type (Figure 3.2B). These peptides correspond to 91 proteins in total, 

encompassing phosphorylation events directly and indirectly dependent upon the presence of 

Sks1p kinase activity. Interestingly, by comparing the phosphorylation sites determined in this 

study against S. cerevisiae phosphorylation sites reported in public databases, we identified 39 

new phosphorylation sites in the yeast proteome. Table 3.3 presents novel phosphorylation sites 

in peptides differentially abundant upon phosphopeptide enrichment from the sks1-K39R mutant 

relative to wild type. A listing of phosphopeptides is presented in Table 3.4, and the full mass 

spectrometry dataset can be accessed at ProteomeXchange and Massive. 

 

3.3.3. Sks1p signaling network connectivity 

The set of Sks1p-dependent phosphoproteins identified in this study is statistically 

enriched for the cellular pathway enabling glycolysis and gluconeogenesis (Figure 3.3.A), as 

defined in the KEGG database (sce00010). To gain a better understanding of the means through 

which Sks1p-dependent glucose signaling impacts additional cell processes and pathways, we 

used this glycolysis/gluconeogenesis pathway as a starting point for the construction of an 

interaction network. In brief, reported genetic and physical interactions with components of the 

KEGG glycolysis/gluconeogenesis pathway were incorporated and expanded until Sks1p was 

included in the network as well as MAPK signaling and cell cycle pathways known to be 

required for wild-type pseudohyphal growth (Figure 3.3). The resulting interaction network 

structure indicates two points. First, the clusters of genes enriched in MAPK signaling and cell 

cycle control exhibit a greater number of genetic and physical interactions between each other 

than with the cluster of genes enriched for glycolysis/gluconeogenesis. Second, The network 

distance of Sks1p to proteins exhibiting Sks1p-dependent phosphorylation in the 

glycolysis/gluconeogenesis-enriched cluster is typically small and establishes a stronger 

interconnection between Sks1p and this cluster than with clusters enriched for MAPK signaling 

and cell cycle regulation. This result is consistent with the observed enrichment for the KEGG 
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glycolysis/gluconeogenesis pathway in the set of proteins exhibiting Sks1p-dependent 

phosphorylation. 

 

3.3.4. Phenotypic analysis of Sks1p-dependent phosphorylation sites 

As a first step towards identifying the phosphorylation events responsible for the 

filamentation defect observed in sks1-K39R, we screened a panel of yeast proteins exhibiting 

Sks1p-dependent phosphorylation for pseudohyphal growth gene deletion phenotypes. Genes 

were selected by cross-referencing the list of phosphoproteins identified by our mass 

spectrometry study with genes identified as having pseudohyphal growth phenotypes in Ryan et 

al. (21) and Jin et al. (20). For this analysis, we prioritized highly genes with a role in glucose 

signaling. Homozygous diploid gene deletions were generated and screened for fitness defects 

and surface-spread filamentation under conditions of nitrogen stress (SLAD medium) and 

nitrogen stress coupled with glucose stress (SLALD medium). Growth assay data can be found 

in Tables 3.5-7. Wild-type S. cerevisiae of the 1278b genetic background exhibits surface-

spread filamentation on both SLAD and SLALD medium, and the homozygous sks1/ mutant 

displays a loss of filamentation on both media. Figure 3.4A indicates deletion mutants exhibiting 

pseudohyphal growth phenotypes under conditions of nitrogen stress and nitrogen/glucose stress. 

Strains deleted for BUD6, ITR1, MDS3, NPR3, and PDA1 displayed significantly decreased 

pseudohyphal growth on both SLAD and SLALD medium; lrg1/ mutants exhibited decreased 

pseudohyphal growth under conditions of nitrogen stress. These genes contribute to pathways 

and cell processes required for pseudohyphal growth. MDS3 and NPR3 are TOR pathway 

components (63, 64), and LRG1 encodes a putative GTPase-activating protein involved in the 

Pkc1p signaling pathway controlling cell wall integrity (65). Bud6p is a polarity protein required 

for budding (66), and Itr1p is a myo-inositol transporter (67); Pda1p is discussed further below. 

Also as indicated in Figure 3.4A, deletion of the HXT1 gene encoding a low-affinity glucose 

transporter yielded hyperactive pseudohyphal growth under nitrogen and nitrogen/glucose stress. 

Deletion of RCK2 encoding a kinase responsive to oxidative and osmotic stress resulted in 

increased pseudohyphal growth; a similar phenotype has been observed upon decreased activity 

of the osmo-responsive Hog1p MAPK pathway (68). 

 To assess the functional significance of Sks1p-dependent phosphorylation sites, we 

constructed homozygous diploid strains containing chromosomal point mutations in BUD6, 
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ITR1, LRG1, NPR3, and PDA1, substituting a non-phosphorylatable residue for the Sks1p-

dependent phosphosite (Figure 3.4.B). Corresponding phosphopeptides for each phosphorylation 

site exhibited decreased abundance upon titanium dioxide enrichment in the kinase-dead sks1-

K39R mutant. These integrated point mutants were assayed for fitness in SLAD and SLALD 

media, and each mutant indicated a fitness defect relative to wild-type (Figure 3.4C and Figure 

3.4D) indicating that the mutated residues are necessary for optimal response to nitrogen and 

nitrogen/glucose stress. 

 

3.3.5. Pda1p residues Y309 and S313 are necessary for pseudohyphal differentiation and 

respirative growth  

Of the point mutants assayed above, strains with mutations in PDA1 exhibited 

pseudohyphal growth defects on low-nitrogen medium. In particular, two distinct point 

mutations in PDA1, the Y309A and S313A alleles, yield a dramatic fitness defect and loss of 

pseudohyphal differentiation in nitrogen-limiting conditions. Pda1p is subunit of the 

mitochondrial pyruvate dehydrogenase complex involved in the conversion of pyruvate to 

acetyl-CoA during glycolysis (69). Cells lacking PDA1 demonstrate diminished growth on 

glucose from a respiratory deficiency due to mitochondrial DNA loss (70). We found no 

noticeable difference in Pda1p protein levels for either single point-mutant (Y309A or S313A) or 

the double mutant (Y309A-S313A), indicating that Pda1p was actively transcribed and 

translated. This suggests that the mutations in Pda1p were impairing an enzymatic activity 

required for both optimal growth on glucose as well as pseudohyphal differentiation. 

Interestingly, when each mutant was screened on glycerol-containing media that forced 

respirative growth, the S313A mutant appeared to grow as well as wild-type, while the Y309A 

mutant exhibited a phenotype analogous to the pda1Δ/ pda1Δ mutant (Figure 3.5.D). The double 

Y309A-S313A mutant shared the respiration deficiency of the Y309A mutant. We also 

investigated whether the mutation of these residues altered mitochondrial structure or 

mitochondrial DNA. There appeared to be little difference in mitochondrial DNA between the 

wild-type strain, the pda1/ mutant, or any of the site-directed mutants as measured by live cell 

DAPI-staining (Figure 3.5.E, lower). However, staining with the membrane-potential-dependent 

dye MitoTracker illustrates dramatic differences in mitochondrial membrane potential or 

structure between these mutants and wild-type (Figure 3.5.E, middle). The wild-type and pda1-
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S313A strains exhibit similar mitochondrial staining, while the pda1, pda1-Y309A, and pda1-

Y309A-S313A mutants all demonstrate a mitochondrial membrane phenotype. Collectively, both 

the Y309A and S313A mutations result in the abolishment of pseudohyphal growth in conditions 

of low nitrogen, and the Y309A mutation also yields phenotypes indicative of impaired 

respiration. 

 

3.3.6. Epistasis analysis of Sks1p with respect to glucose signaling and pseudohyphal 

growth 

The studies presented here support a role for Sks1p in enabling wild-type glucose 

signaling and pseudohyphal growth; however, the molecular context and genetic relationships of 

SKS1 with respect to both glucose/nutrient-sensing and pseudohyphal growth signaling pathways 

is unclear (Figure 3.6). Consequently, we performed epistasis experiments examining the 

phenotypic consequences of over-expressing SKS1 in diploid S. cerevisiae strains deficient for 

components of both the nutrient-sensing and pseudohyphal signaling networks (Figure 3.6.A 

and Figure 3.6.B). Here, we examined whether SKS1 could act as a high-copy suppressor of 

mutations in cAMP signaling (gpr1/, ras2Δ/Δ, and tpk2/), MAPK signaling (ste20/), or 

Snf1p signaling (snf1/). Each of these mutations generates a yeast strain deficient in 

pseudohyphal differentiation under conditions of limiting nitrogen. We found that over-

expression of SKS1 was able to suppress the gpr1/ phenotype (Figure 3.6C). Interestingly, a 

ras2/ mutant also demonstrated a moderate phenotypic rescue from over-expression of SKS1; 

however, SKS1 over-expression did not restore pseudohyphal growth in a tpk2/ mutant, 

indicating that SKS1 acts downstream of GPR1 and RAS2 but upstream of TPK2. SKS1 did not 

suppress mutations in STE20 or SNF1. Consistent with this STE20 result, the sks1/ mutant 

exhibited no loss of pseudohyphal MAPK signaling under conditions of nitrogen limitation (data 

not shown), as assessed using a PFRE(TEC1)-lacZ reporter system that is specifically responsive to 

the MAPK signaling components required for filamentous growth (43). Thus, by epsistatic 

analysis, Sks1p contributes to glucose-responsive cAMP signaling. 

 

3.3.7. Mss11p and Rgt1p are involved in wild-type SKS1 transcription 

In complement to our analysis of Sks1p kinase activity, we also investigated whether 

known transcriptional regulators of pseudohyphal development influenced the expression of 
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SKS1. Analysis of SKS1 transcription via quantitative real-time PCR identified several 

interesting results. First, SKS1 mRNA levels were responsive to nitrogen and glucose deprivation 

in wild-type S. cerevisiae of the filamentous 1278b background. SKS1 transcript levels 

increased by nearly 180% under conditions of nitrogen limitation coupled with glucose stress 

(SLALD medium) (Figure 3.7A). A comparison of SKS1 transcript levels between mutants 

deleted for known transcriptional regulators of pseudohyphal differentiation (flo8/, mfg1/, 

mga1/, mss11/, phd1/, phd1/, and tec1/) and wild-type S. cerevisiae found that the 

transcription factor Mss11p, involved in nutrient response, invasive growth, and starch 

degradation, as well as Flo8p, the well-known filamentous growth transcriptional activator, 

exhibited minor decreases in SKS1 mRNA levels under the indicated extracellular conditions 

(Figure 3.7B). The flo8/ mutant displayed an approximate 30% reduction in SKS1 transcript 

levels relative to a wild-type strain in both standard and low nitrogen/glucose SLALD media. 

Mss11p demonstrated a reduction in SKS1 mRNA levels of nearly 65%, but only in standard 

media promoting vegetative growth. We also examined the SKS1 transcriptional response in a 

diploid strain deleted for RGT1, encoding a glucose-responsive transcriptional regulator known 

to repress the expression of many HXT genes. Compared to the wild-type control, the rgt1/ 

mutant demonstrated an appreciable drop in SKS1 mRNA levels under low nitrogen conditions 

and a marked increase in SKS1 transcript abundance under conditions of low nitrogen coupled 

with glucose limitation (Figure 3.7B). 

 

3.3.8. The SKS1 ortholog SHA3 is required for wild-type colony morphology in Candida 

albicans 

Candida albicans is both a successful commensal and pathogen of humans, sharing with 

S. cerevisiae the ability to undergo morphological transitions in response to appropriate 

environmental cues (71). The importance of this morphological differentiation is underscored by 

the fact that hyphal development is required for virulence in C. albicans The S. cerevisiae SKS1 

gene is conserved in C. albicans, and considering the strong conservation of pathway structure 

between these organisms, we hypothesized that the SKS1 ortholog in C. albicans may serve a 

similar function in integrating environmental cues to regulate fungal morphology. To test this 

hypothesis, we generated a heterozygous deletion of the SKS1 ortholog SHA3 in the C. albicans 

strain BWP17. SHA3 shares approximately 33% sequence identity with SKS1 and also encodes a 
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kinase involved in glucose transport and glucose-responsive signaling (Figure 3.8A). On Spider 

growth medium in which mannitol is the carbon source, the C. albicans SHA3 heterozygous 

mutant displayed an appreciable decrease in colony wrinkling relative to an isogenic wild-type 

strain (Figure 3.8B). Consistent with this result, Uhl et al. (72) found that a heterozygous mutant 

containing a transposon insertion upstream of SHA3 in its promoter region exhibited decreased 

hyphal growth on Spider medium. Collectively, these data suggest a conserved role for SKS1 and 

its ortholog SHA3 in the integration of nutritional stress-responsive signaling and colony 

morphology. 

 

3.4. Discussion 

Cellular adaptation to nitrogen or carbon deprivation in S. cerevisiae requires the 

remodeling of cellular metabolism and the precisely coordinated restructuring of cellular 

morphology. Here, we identify the glucose-responsive Sks1p kinase as a signaling protein 

required for pseudohyphal growth induced by nitrogen stress and nitrogen stress coupled with 

glucose limitation. More than 92 proteins undergo Sks1p-dependent phosphorylation, and the 

functional scope of these phosphoproteins identifies Sks1p contribution to glucose signaling as 

well as additional processes and pathways required for pseudohyphal growth, including 

mitochondrial function. Epistasis studies indicate that SKS1 acts downstream of GPR1 and RAS2, 

consistent with Sks1p regulation of or by glucose-responsive cAMP signaling. SKS1 transcript 

levels are dependent upon Mss11p and Rgt1p. SKS1 is conserved, and the SKS1 ortholog SHA3 

in C. albicans is required for wild-type colony morphology under conditions of glucose 

limitation with mannitol as a carbon source. Collectively, these results are consistent with a 

function for Sks1p kinase activity in the integration of glucose-responsive signaling and 

filamentous development – an example of signaling crosstalk that has not been extensively 

studied or well understood. 

 In this study, we utilized a SILAC-based mass spectrometry approach to identify 

phosphorylation events dependent upon Sks1p kinase activity. In S. cerevisiae, several 

phosphoproteomic strategies have been utilized to profile differential phosphorylation (73–75). 

In particular, Bodenmiller et al. (76) recently implemented a label-free mass-spectrometry 

approach to investigate the global phosphoproteomic response of S. cerevisiae to the systematic 

deletion of protein kinases and phosphatases. Trade-offs exist in considering the relative 
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advantages of both label-free and labeling strategies. Label-free methods have been shown to 

identify a larger number of proteins than label-based methods; however, SILAC-based strategies 

typically enable better quantification and identification of differentially abundant proteins, while 

also providing greater reproducibility across samples (76). It is important to bear in mind that 

both label-free and SILAC-based interventional phosphoproteomic methods identify direct and 

indirect phosphorylation events; consequently, the studies here are intended to identify the broad 

scope of cell processes and pathways encompassed within the Sks1p signaling network. 

Notably, the study by Bodenmiller and colleagues did address the Sks1p signaling 

network in a non-filamentous strain under vegetative growth conditions, and approximately 30% 

of the proteins detected in this analysis were also identified by label-free methods in that work. 

Further, the overlap between the datasets is striking, in that nine proteins exhibiting Sks1p-

dependent phosphorylation in a non-filamentous strain under vegetative conditions were also 

identified as being differentially phosphorylated in our analysis of sks1-K39R in a filamentous 

strain under conditions inducing pseudohyphal growth; these phosphoproteins include Cdc37p, 

Crp1p, Fyv8p, Hxt1p, Mrh1p, Mtc1p, Pda1p, Pil1p, Ptr2p, Rck2p, Zuo1p, and Ymr196w.  The 

proteins Hxt1p, Rck2p, and Pil1p are stress-responsive, and Mrh1p, Pil1p, and Pda1p have been 

reported to localize to mitochondria, highlighting important processes and functions required for 

wild-type glucose signaling and pseudohyphal growth. 

 The dependence of Pda1p phosphorylation upon Sks1p and phenotypic analysis of Pda1 

Y309A and S313A mutants underscores that wild-type mitochondrial membrane structure and 

function is interconnected with Sks1p kinase signaling. Interestingly, signaling pathways that 

regulate filamentation, cAMP-PKA and Snf1p, have also been shown to target mitochondria 

(77–79), and genetic screens of pseudohyphal deficient mutants have identified genes required 

for mitochondrial function (80). The S313 residue of Pda1p is a known phosphorylation site, and 

in a non-filamentous strain of S. cerevisiae, Pda1p was inactivated by Ser313 phosphorylation 

(81). Consistent with that result, the S313A mutant we constructed in the filamentous 1278b 

background did not exhibit a growth defect on medium with glycerol as the sole carbon source.  

Interestingly, however, both the Pda1p S313 and Y309 residues are required for pseudohyphal 

growth. Sks1p is a Ser/Thr kinase; consequently the Y309 residue in Pda1p is not expected to be 

a direct phosphorylation target of Sks1p. Ongoing investigations are directed towards identifying 
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the kinase that phosphorylates Pda1p Y309 and the mechanism by which the Y309 and S313 

residues contribute to pseudohyphal growth. 

 Our results indicate that SKS1 mRNA levels are glucose-regulated in the filamentous 

1278b strain and that this regulation in SLALD medium is carried out in part by Rgt1p. Two 

lines of evidence support this result. First, analysis of the yeast transcriptional response to 

glucose by Wang et al. (82) indicated that SKS1 mRNA levels increase more than two-fold when 

cells are switched from galactose to glucose-containing media. Second, over-expression of the 

SKS1 promoter sequence can partially rescue the snf3 phenotype presumably by titration of 

Rgt1p (83). In addition to possessing binding sites for Rgt1p, the SKS1 promoter is reportedly 

bound by Mss11p and Flo8p (21), although we observe that the relative individual contributions 

of these transcription factors to the establishment of SKS1 mRNA levels is modest under 

conditions of nitrogen limitation and nitrogen/glucose-stress. Considered collectively, 

transcriptional regulation of SKS1 likely results from the combinatorial contributions of 

numerous transcription factors. Under conditions of glucose limitation, Rgt1p actively binds 

target promoters to repress transcription of glucose-induced genes, and the observed increase in 

SKS1 transcript levels upon RGT1 deletion under low-glucose conditions is consistent with this 

observation. However, SKS1 mRNA levels increase upon growth in SLALD media, indicating 

that Rgt1p cannot be predominantly responsible for the establishment of overall SKS1 transcript 

levels. Additional factors, including Mss11p and Flo8p, must contribute to this transcriptional 

control as well, presenting a more complex picture of SKS1 transcriptional control. 

 Coupling findings from this study with previous work, we suggest that Sks1p mediates 

cellular response to glucose limitation and nitrogen stress by signaling through Gpr1p and the 

cAMP-PKA pathway. Early studies from Bisson and colleagues (84) indicated that SKS1 

suppression of snf3 acted independently of previously identified snf3genomic suppressors, 

ssn6, rgt1, and RGT2, consistent with involvement in a pathway independent of the 

Snf3p/Rgt2p glucose-sensing system. In this study, we demonstrate that SKS1 is a high-copy 

suppressor of pseudohyphal-deficient gpr1/ and ras2/ mutants. Both Gpr1p and Ras2 are 

components of the cAMP-dependent PKA pathway. Gpr1p is a nutrient sensor that activates 

cAMP in response to low-levels of extracellular glucose (34) and regulates pseudohyphal 

differentiation in S. cerevisiae (85). Over-expression of SKS1 failed to restore pseudohyphal 

growth to a strain deleted for TPK2. Tk2p is one of three catalytic subunits of PKA; TPK2 is 
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required for pseudohyphal growth, and its function is required for the phosphorylation of Flo8p 

and additional key signaling events necessary for pseudohyphal differentiation (86). Thus, Sks1p 

may contribute to the regulation of Tpk2p or may be regulated indirectly by Tpk1p or Tpk3p. 

Sks1p has not been identified as a phosphoprotein to date, and no such mechanism of Sks1p 

regulation have been reported. 

 Pseudohyphal growth in S. cerevisiae is an excellent model of related processes of 

filamentous development in the principal opportunistic human fungal pathogen Candida 

albicans. In C. albicans, a variety of culture conditions, including growth on Spider medium 

with mannitol as a carbon source, results in the development of pseudohyphae and true hyphal 

tubes (7). Orthologs of many S. cerevisiae pseudohyphal growth genes play similarly important 

roles in C. albicans hyphal development, and we find that the SKS1 ortholog SHA3 is required 

for wild-type colony morphology in C. albicans on Spider medium. The cAMP-PKA pathway is 

required for hyphal development and virulence in C. albicans, exhibiting structural similarity to 

the orthologous pathway in S. cerevisiae. Notably, GPR1 is conserved, and Ras1p in C. albicans 

contributes to the production of cAMP through adenylate cyclase in response to various stimuli 

(87). The PKA catalytic subunits Tpk1p and Tpk2p have been identified in C. albicans, and it 

will be interesting to determine if the functional relationship between SHA3 and this cAMP-PKA 

pathway is similar to that which we observe in S. cerevisiae. With the interrelationship between 

C. albicans morphogenesis/hyphal development and virulence, Sha3p holds relevance in 

understanding fungal pathogenicity. 
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Figure 3.1. Phenotypic analysis of Sks1p mutants in the filamentous Σ1278b genetic 

background under conditions of nitrogen deprivation. (A) Diploid sks1Δ/sks1Δ and diploid 

sks1-K39R/sks1-K39R kinase dead mutants demonstrate a loss of pseudohyphal development 

as compared to the wildtype. (B) Addition of a centromeric plasmid bearing wildtype SKS1 to 

the sks1Δ/sks1Δ deletion mutant restores pseudohyphal growth, while addition of the same 

plasmid bearing the kinase dead sks1-K39R allele fails to recover. (C) Over-expression of 

SKS1 from a 2μ plasmid induces hyper-filamentation in wildtype yeast. 
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Figure 3.2. Phosphoproteomic analysis of Sks1p kinase in the filamentous Σ1278b genetic 

background. (A) Schematic overview of the SILAC analysis of Sks1p kinase activity. (B) 

Subset of proteins demonstrating a decreased or increased abundance of phosphorylation in the 

sks1-K39R kinase dead strain relative to wildtype. 
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Figure 3.3. Regulatory network connectivity of Sks1p signaling identified via phosphoproteomic analysis. (A) Macroscopic 

view of select Sks1p signaling proteins involved in glycolysis, cell cycle, and MAPK signaling. Numbers indicated specific proteins 

demonstrating changes in peptide phosphorylation in the sks1-K39R kinase dead strain. (B) Sks1p signaling proteins identified 

within glycolysis/gluconeogenesis (red). (C) Sks1p signaling proteins identified within cell cycle/cell division cluster (red). 
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Figure 3.4. Phenotypic analysis of diploid mutants for proteins exhibiting 2-fold or greater loss of phosphorylation in sks1-K39R mutant 

background. (A) Several diploid deletion mutants exhibited changes in pseudohyphal development compared to wild type under low nitrogen and 

low nitrogen, low glucose conditions. (B) A subset of the proteins that demonstrated a change in pseudohyphal development where chosen for 

functional analysis of their identified phosphosite(s). All diploid, integrated point mutants demonstrated a significant fitness defect compared to 

wildtype when grown in liquid media under nitrogen limiting or nitrogen and glucose limiting conditions as indicated by the long-term cell titer (C) 

and growth curves (D) for each condition. 
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Figure 3.5. Phenotypic analysis of PDA1 point mutants. (A) Both diploid mutant strains, pda1-Y309A and pda1-S313A, demonstrated a marked 

decrease in pseudohyphal differentiation on nitrogen limited media. (B) The pda1-Y309A and pda1-S313A mutant strains exhibited a significant 

fitness defect when grown in low-nitrogen liquid media. (C) Western analysis of PDA1 mutants showed formation of PDA1 at wildtype levels. (D) 

Growth of all PDA1 mutants on both fermentable (YPD) and non-fermentable media (YPGlycerol) indicate a respirative defect in the 

pda1Δ/pda1Δ, the pda1-Y309A, and the pda1-Y309A-S313A mutants. (E) The mitochondrial content and membrane-potential-based structure was 

imaged using DAPI and MitoTracker, respectively. Minimal changes were observed in mitochondrial content (DAPI stain, bottom row), while 

specific morphological/membrane-potential defects were observed in the pda1Δ/pda1Δ, the pda1-Y309A, and the pda1-Y309A-S313A mutants 

(MitoTracker, middle row). 
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Figure 3.6. Sks1p signaling is epistatic with components of the nutrient responsive cAMP-dependent/PKA pathway. (A) Schematic of the 

core yeast glucose sensing components. (B) Diagram of core signaling components of yeast pseudohyphal differentiation in response to nitrogen 

stress. (C) Over-expression of SKS1 from a 2μ plasmid can restore the pseudohyphal growth phenotype of both a gpr1Δ/gpr1Δ mutant and a 

ras2Δ/ras2Δ mutant. (D) High-copy suppression of pseudohyphal deficiency via SKS1 was unsuccessful in diploid strains deleted for MAPK 

component Ste20p, PKA catalytic subunit Tpk2p, or the AMP kinase Snf1p under low nitrogen and low nitrogen, low glucose conditions. 
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Figure 3.7. SKS1 transcriptional regulation in response to nutrient deprivation. (A) Though SKS1 

mRNA levels decrease in nitrogen limiting conditions, the expression of SKS1 nearly triples in media 

deficient in nitrogen and glucose. (B) Transcriptional regulation of SKS1 involves the filamentous regulators 

Mss11p and Flo8p as well as the glucose-responsive regulator Rgt1p. 
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Figure 3.8. SKS1 homologue CaSHA3 shares a similar role in Candida albicans. (A) 

Schematic diagram demonstrating highly level of homology between SKS1 and CaSHA3. (B) A 

CaSHA3 heterozygous deletion strain exhibits a loss of wrinkling colony morphology on Spider 

media compared to wildtype strain BWP17. 
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Table 3.1. Yeast strains used in this study  

Strain Genotype Source 

Y825 ura3-52 leu2Δ0 MATa   

HLY337 ura3-52 trp1-1 MATα   

yCK021 

(825x337) ura3-52/ura3-52 leu2Δ0/LEU2 TRP1/trp1-1 MATa/MATα 
This study 

yCK009 Δrgt1::KanMX6/Δrg11::KanMX6 ura3-52/ura3-52 leu2Δ0/LEU2 TRP1/trp1-1 MATa/MATα  This study 

yCK017 Δitr1::KanMX6/Δitr1::KanMX6 ura3-52/ura3-52 leu2Δ0/LEU2 TRP1/trp1-1 MATa/MATα  This study 

yCK036 Δhxt1::KanMX6/Δhxt1::KanMX6 ura3-52/ura3-52 leu2Δ0/LEU2 TRP1/trp1-1 MATa/MATα  This study 

yCK037 Δlrg1::KanMX6/Δlrg1::KanMX6 ura3-52/ura3-52 leu2Δ0/LEU2 TRP1/trp1-1 MATa/MATα  This study 

yCK038 Δnpr3::KanMX6/Δnpr3::KanMX6 ura3-52/ura3-52 leu2Δ0/LEU2 TRP1/trp1-1 MATa/MATα  This study 

yCK039 Δpdr5::KanMX6/Δpdr5::KanMX6 ura3-52/ura3-52 leu2Δ0/LEU2 TRP1/trp1-1 MATa/MATα  This study 

yCK040 Δrbs1::KanMX6/Δrbs1::KanMX6 ura3-52/ura3-52 leu2Δ0/LEU2 TRP1/trp1-1 MATa/MATα  This study 

yCK041 Δrck2::KanMX6/Δrck2::KanMX6 ura3-52/ura3-52 leu2Δ0/LEU2 TRP1/trp1-1 MATa/MATα  This study 

yCK042 Δtpo4::KanMX6/Δtpo4::KanMX6 ura3-52/ura3-52 leu2Δ0/LEU2 TRP1/trp1-1 MATa/MATα  This study 

yCK098 Δgpr1::KanMX6/Δgpr1::KanMX6 ura3-52/ura3-52 leu2Δ0/LEU2 TRP1/trp1-1 MATa/MATα  This study 

yCK100 Δprb1::KanMX6/Δprb1::KanMX6 ura3-52/ura3-52 leu2Δ0/LEU2 TRP1/trp1-1 MATa/MATα  This study 

yCK108 Δbud6::KanMX6/Δbud6::KanMX6 ura3-52/ura3-52 leu2Δ0/LEU2 TRP1/trp1-1 MATa/MATα  This study 

yCK110 Δscp160::KanMX6/Δscp160::KanMX6 ura3-52/ura3-52 leu2Δ0/LEU2 TRP1/trp1-1 MATa/MATα  This study 

yCK112 Δsks1::KanMX6/Δsks1::KanMX6 ura3-52/ura3-52 leu2Δ0/LEU2 TRP1/trp1-1 MATa/MATα  This study 

yCK118 Δptr2::KanMX6/Δptr2::KanMX6 ura3-52/ura3-52 leu2Δ0/LEU2 TRP1/trp1-1 MATa/MATα  This study 

yCK124 Δmds3::KanMX6/Δmds3::KanMX6 ura3-52/ura3-52 leu2Δ0/LEU2 TRP1/trp1-1 MATa/MATα  This study 

yCK151 Δpda1::KanMX6/Δpda1::KanMX6 ura3-52/ura3-52 leu2Δ0/LEU2 TRP1/trp1-1 MATa/MATα  This study 

yCK169 Δmga1::KanMX6/Δmga1::KanMX6 ura3-52/ura3-52 leu2Δ0/LEU2 TRP1/trp1-1 MATa/MATα  This study 

yCK170 Δphd1::KanMX6/Δphd1::KanMX6 ura3-52/ura3-52 leu2Δ0/LEU2 TRP1/trp1-1 MATa/MATα  This study 

yCK172 Δtec1::KanMX6/Δtec1::KanMX6 ura3-52/ura3-52 leu2Δ0/LEU2 TRP1/trp1-1 MATa/MATα  This study 

yCK189 NPR3-S486A/NPR3-S486A ura3-52/ura3-52 leu2Δ0/LEU2 TRP1/trp1-1 MATa/MATα  This study 

yCK236 Δmfg1::KanMX6/Δmfg1::KanMX6 ura3-52/ura3-52 leu2Δ0/LEU2 TRP1/trp1-1 MATa/MATα  This study 

yCK237 Δmss11::KanMX6/Δmss11::KanMX6 ura3-52/ura3-52 leu2Δ0/LEU2 TRP1/trp1-1 MATa/MATα  This study 

CS337 Δtpk2::KanMX6/Δtpk2::KanMX6 ura3-52/ura3-52 leu2Δ0/LEU2 TRP1/trp1-1 MATa/MATα  This study 

CS343 Δras2::KanMX6/Δras2::KanMX6 ura3-52/ura3-52 leu2Δ0/LEU2 TRP1/trp1-1 MATa/MATα  This study 
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yCK263 PDA1-S313A/PDA1-S313A ura3-52/ura3-52 leu2Δ0/LEU2 TRP1/trp1-1 MATa/MATα  This study 

yCK264 PDA1-Y309A/PDA1-Y309A ura3-52/ura3-52 leu2Δ0/LEU2 TRP1/trp1-1 MATa/MATα  This study 

yCK274 ITR1-S26A/ITR1-S26A ura3-52/ura3-52 leu2Δ0/LEU2 TRP1/trp1-1 MATa/MATα  This study 

yCK275 SKS1-K39R/SKS1-K39R ura3-52/ura3-52 leu2Δ0/LEU2 TRP1/trp1-1 MATa/MATα  This study 

yCK283 LRG1-S605A/LRG1-S605A ura3-52/ura3-52 leu2Δ0/LEU2 TRP1/trp1-1 MATa/MATα  This study 

yCK284 PDA1-Y309A-S313A/PDA1-Y309A-S313A ura3-52/ura3-52 leu2Δ0/LEU2 TRP1/trp1-1 MATa/MATα  This study 

yCK293 BUD6-S347A/BUD6-S347A ura3-52/ura3-52 leu2Δ0/LEU2 TRP1/trp1-1 MATa/MATα  This study 

yCK300 PDA1-3HA-KanMX6 ura3-52 leu2Δ0 MATa  This study 

yCK302 PDA1-Y309A-3HA-KanMX6 ura3-52 leu2Δ0 MATa  This study 

yCK304 PDA1-S313A-3HA-KanMX6 ura3-52 leu2Δ0 MATa  This study 

yCK306 PDA1-Y309A-S313A-3HA-KanMX6 ura3-52 leu2Δ0 MATa  This study 

BWP17 ura3::λimm434/ura3::λimm434 his1::hisG/his1::hisG arg4::hisG/arg4::hisG (88) 

yCK307 sha3::CdHIS1/SHA3 ura3::λimm434/ura3::λimm434 his1::hisG/his1::hisG arg4::hisG/arg4::hisG This Study 
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Table 3.2. Plasmids used in this study  

Plasmid Description Source 

pFRE-LacZ PFRE(TEC1)::lacZ, URA3, 2μ, AMP (89) 

pSKS1-vYFP PSKS1-SKS1, URA3, Cen, AMP (38) 

pSKS1-KD-vYFP PSKS1-SKS1-K39R, URA3, Cen, AMP (38) 

p426GPD PGPD3, URA3, 2μ, AMP (44) 

pCK020 PADH1-SKS1, URA3, 2μ, AMP This study 
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Table 3.3. Previously unreported phosphosites from peptides differentially abundant in 

sks1-K39R. 

 

Protein 

 

Phosphosite 

Localization 

Probability
a 

Abundance 

sks1-K39R
b 

Bul2 ASDSQDDDIRSASTT(ph)NLDR 0.78 0.50 

Cdc16 NS(ph)MFGSTIPST(ph)LRKVSLQR 0.95 0.091 

Dna2 HQLQEVFGQAQS(ph)R 1.0 0.14 

Dse4 VS(ph)AASHSPLSVSPK 0.96 1.5 

Est2 LFNVVNAS(ph)R 1.0 0.52 

Irc5 DNSNSDDEEHS(ph)SKKR 0.99 0.15 

Lsm4 RPYS(ph)QNR 0.99 1.5 

Mds3 NS(ph)S(ph)KAVRQEGR 1.0 0.27 

Nth2 ALPQLEMLGGLVACT(ph)EKSR 0.97 0.33 

Nup157 MYS(ph)TPLKKR 0.99 0.30 

Pal1 RGGDT(ph)QDAIK 1.0 0.31 

Pat1 DLS(ph)PEEQR 1.0 2.0 

Ras2 QAINVEEAFY(ph)T(ph)LARLVR 1.0 5.8 

Rfc5 NIRLIMVCDS(ph)MSPIIAPIK 0.99 8.1 

Sas10 S(ph)VRAVY(ph)S(ph)GGQS(ph)GVYEGEKTGIK 0.99 0.51 

Ygr250c RGNLSSSDDDDQSQT(ph)DNSSK 0.77 1.8 

Ylr177w RNTQPVLNLHPAAAPT(ph)NDAGLAVVDGK 0.87 0.43 
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Table 3.4. Unique phosphopeptides identified by Sks1p SILAC   

Systematic 

Name 

Standard 

Name 

Modified Sequence Ratio 

Normalized 

Ratio 

Significance 

YAL005C SSA1 _NTIS(ph)EAGDKLEQADKDTVTK_ 1.7068 0.232 

YAL011W SWC3 _GRDDDDDDDDEES(ph)DDAYDEVGNDYDEYASR_ 0.72348 0.20136 

YAL017W PSK1 _ISLSPS(ph)T(ph)ESLADSK_ 1.833 0.19784 

YAL017W PSK1 _ISLSPS(ph)T(ph)ESLADSK_ 1.4937 0.3038 

YAL019W FUN30 _AVVEGFDETS(ph)AEPTPAPAPAPVER_ 0.77098 0.23959 

YAR002W NUP60 _S(ph)RSNLSQENDNEGK_ 1.7671 0.21498 

YAR002W NUP60 _SNVVVAET(ph)SPEKK_ 0.81459 0.27564 

YAR002W NUP60 _SNVVVAETS(ph)PEKK_ 0.70912 0.19011 

YAR028W YAR028W _EVNSGSHSDSSSNSAEDTQS(ph)PVSAGK_ 1.6164 0.26009 

YAR042W SWH1 _STLTQNDHDNDDDS(ph)TNNNNNK_ 1.3531 0.36266 

YAR042W SWH1 _GSQES(ph)TNT(ph)LEEIVK_ 0.74534 0.21878 

YAR042W SWH1 _KLNNQPQVETEANEES(ph)DDANSM(ox)IK_ 0.73583 0.21116 

YAR042W SWH1 _FIEATKESDEDS(ph)DADEFFDAEEAASDKK_ 0.53528 0.073692 

YBL007C SLA1 _NFTKS(ph)PSR_ 0.77471 0.24265 

YBL032W HEK2 _KSSGEPTS(ph)PSTSSNTR_ 2.1275 0.13703 

YBL032W HEK2 _S(ph)DSASFLEEKEEPQENHDNKEEQS_ 1.3946 0.34422 

YBL034C STU1 _KS(ph)EGDEESDDAVDENDVKK_ 0.90009 0.34713 

YBL037W APL3 _RNT(ph)IDDVNSK_ 0.82997 0.28848 

YBL047C EDE1 _FVETTVENS(ph)NLNVNR_ 2.498 0.087371 

YBL047C EDE1 _S(ph)QSLTSS(ph)VANNAPQSVRDDVELPETLEER_ 1.4932 0.30396 

YBL047C EDE1 _YPAPGT(ph)SPSHNEGNSK_ 1.3803 0.3505 

YBL047C EDE1 _ANSNEDGESVSSIQES(ph)PK_ 1.0204 0.44505 

YBL047C EDE1 _SQS(ph)LTSSVANNAPQSVRDDVELPETLEER_ 0.98027 0.41305 

YBL047C EDE1 _SQSLTSSVANNAPQS(ph)VRDDVELPET(ph)LEER_ 0.96601 0.40149 

YBL047C EDE1 _ANSNEDGESVSS(ph)IQES(ph)PK_ 0.8416 0.29821 

YBL047C EDE1 _S(ph)QSLTSS(ph)VANNAPQSVRDDVELPETLEER_ 0.81517 0.27613 
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YBL047C EDE1 _ANSNEDGES(ph)VSSIQES(ph)PK_ 0.75008 0.2226 

YBL051C PIN4 _SLS(ph)GLDLQNQNKK_ 0.98315 0.41537 

YBL051C PIN4 _S(ph)LSGLDLQNQNKK_ 0.84828 0.3038 

YBL051C PIN4 _SLSHS(ph)GLDDGLEQGLNR_ 0.80891 0.27092 

YBL051C PIN4 _S(ph)LSHSGLDDGLEQGLNR_ 0.61787 0.12356 

YBL058W SHP1 _LGSPIPGESS(ph)PAEVPKNETPAAQEQPMPDNEPK_ 1.5231 0.29271 

YBL058W SHP1 _LGS(ph)PIPGESSPAEVPKNET(ph)PAAQEQPM(ox)PDNEPK_ 1.2423 0.41635 

YBL058W SHP1 _LGS(ph)PIPGESSPAEVPK_ 0.99742 0.42682 

YBL058W SHP1 _KGST(ph)SPEPTK_ 0.75614 0.22751 

YBL058W SHP1 _LGS(ph)TIDAADEVVEDNTSQSQR_ 0.55641 0.085312 

YBL066C SEF1 _KLYPLPLYNHIS(ph)R_ 2.2471 0.11831 

YBL085W BOI1 _YGNLNDS(ph)ASNIGK_ 1.0745 0.48677 

YBL091C MAP2 _ADES(ph)DPVESK_ 1.4138 0.33601 

YBL101C ECM21 _NSSHSLS(ph)ETDLNQSK_ 1.3418 0.36785 

YBL101C ECM21 _TSGRLS(ph)VDQEPR_ 1.187 0.44571 

YBL101C ECM21 _SHNSSPT(ph)NGLSQANGTVR_ 1.1504 0.46611 

YBR001C NTH2 _ALPQLEMLGGLVACT(ph)EKSR_ 0.70497 0.18688 

YBR011C IPP1 _AASDAIPPAS(ph)PKADAPIDK_ 1.4159 0.33514 

YBR054W YRO2 _SSDS(ph)DSSIKEK_ 5.3055 0.0047584 

YBR054W YRO2 _KAQEEEEDVATDS(ph)E_ 4.6188 0.0090031 

YBR054W YRO2 _KM(ox)PS(ph)PASFK_ 3.089 0.044045 

YBR054W YRO2 _SSDSDSS(ph)IKEK_ 3.0327 0.046933 

YBR054W YRO2 _SSDSDS(ph)SIKEK_ 2.8286 0.059257 

YBR054W YRO2 _KAQEEEEDVAT(ph)DSE_ 2.7656 0.06374 

YBR054W YRO2 _M(ox)PSPAS(ph)FK_ 2.6146 0.076071 

YBR059C AKL1 _STSYGAATIGS(ph)DEALANEK_ 1.5756 0.27387 

YBR059C AKL1 _IPS(ph)QNVGQELEEEKESQSDQR_ 1.5655 0.2774 

YBR059C AKL1 _ARQS(ph)LDLER_ 1.3899 0.34629 

YBR068C BAP2 _KETS(ph)PDSISIR_ 0.50105 0.056699 
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YBR072W HSP26 _RQLANT(ph)PAK_ 5.0431 0.0060419 

YBR079C RPG1 _TAGGSS(ph)PATPATPATPATPTPSSGPK_ 1.0794 0.49042 

YBR086C IST2 _DANIKPVVNAAVNDNQSKVS(ph)VATEQTK_ 2.3535 0.10394 

YBR086C IST2 _AVDNDTAGS(ph)AGKKPLATESTEK_ 1.5849 0.27067 

YBR086C IST2 _FDEDGKS(ph)IR_ 1.097 0.49717 

YBR086C IST2 _VPT(ph)VGSYGVAGATLPETIPTSK_ 1.0163 0.44184 

YBR086C IST2 _AVDNDT(ph)AGS(ph)AGKKPLATESTEK_ 0.67492 0.16406 

YBR086C IST2 _SSAES(ph)SNATNNNTLGTESK_ 0.59017 0.10555 

YBR087W RFC5 _NIRLIM(ox)VCDSM(ox)S(ph)PIIAPIK_ 877.71 2.5565E-28 

YBR087W RFC5 _NIRLIMVCDS(ph)M(ox)SPIIAPIK_ 15.152 7.9986E-06 

YBR108W AIM3 _EAT(ph)GQDEVLNSITNELSHIK_ 1.5903 0.26882 

YBR108W AIM3 _SQS(ph)SNSSDSSYTIDGPEANHGR_ 1.5343 0.28859 

YBR108W AIM3 _VKDSSPVPS(ph)DLDEK_ 1.4447 0.32318 

YBR108W AIM3 _DS(ph)SPVPSDLDEK_ 1.2536 0.41056 

YBR112C CYC8 _SEVSNQSPAVVES(ph)NTNNTSQEEKPVK_ 1.5964 0.26676 

YBR112C CYC8 _MREEEQTSQEKS(ph)PQENTLPR_ 1.5857 0.27041 

YBR112C CYC8 _SEVSNQS(ph)PAVVESNTNNTSQEEKPVK_ 1.1764 0.45155 

YBR112C CYC8 _LNS(ph)PNSNINK_ 0.67927 0.1673 

YBR114W RAD16 _KSVNYNELS(ph)DDDTAVK_ 0.59596 0.10922 

YBR127C VMA2 _ARDDADEDEEDPDTRS(ph)SGK_ 1.8074 0.20432 

YBR127C VMA2 _VLS(ph)DKELFAINKK_ 1.0849 0.49452 

YBR142W MAK5 _KAADELGIDVDS(ph)DEDDISK_ 0.73406 0.20975 

YBR172C SMY2 _TS(ph)SLIDSIGIQR_ 0.61939 0.12459 

YBR189W RPS9B _KAEAS(ph)GEAAEEAEDEE_ 1.7127 0.23028 

YBR202W MCM7 _FVDDGTMDT(ph)DQEDSLVST(ph)PK_ 1.0073 0.43471 

YBR214W SDS24 _LSAVPM(ox)TQTPSQCLS(ph)CVHAQK_ 1.0211 0.4456 

YBR214W SDS24 _SSSSTSLNSHSPLMTAMEDPPS(ph)PR_ 0.96868 0.40366 

YBR225W YBR225W _RSS(ph)DSAASSSVSK_ 0.8293 0.28792 

YBR279W PAF1 _AADT(ph)PETSDAVHTEQKPEEEKETLQEE_ 1.3975 0.34297 
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YBR279W PAF1 _RLDDGDS(ph)DDENLDVNHIISR_ 0.99006 0.42092 

YCL014W BUD3 _LGDDYS(ph)DKETAK_ 1.4747 0.31117 

YCL014W BUD3 _LSPQASKVLTENS(ph)NELK_ 1.3855 0.34822 

YCL014W BUD3 _AADVENLS(ph)DDDEHRQNESR_ 0.58334 0.1013 

YCL020W YCL020W _VNNDHINESTVSSQYLS(ph)DDNELSLRPATERI_ 0.1372 0.000012519 

YCL032W STE50 _NKVPQISTNQSHPSAVST(ph)ANTPGPS(ph)PNEALK_ 1.8687 0.18916 

YCL032W STE50 _NKVPQISTNQSHPSAVSTANTPGPS(ph)PNEALK_ 0.89831 0.34565 

YCL050C APA1 _GQT(ph)PEGEDPLGKPEEELTVIPEFGGADNK_ 2.0422 0.15229 

YCL054W SPB1 _KEEEGKDYIEDNDDEGVEGDS(ph)DDDEAITNLISK_ 0.73097 0.20729 

YCR030C SYP1 _NVDAPVTADT(ph)PPAQTFTPSEVPPST(ph)PQQSSPPTAK_ 1.3023 0.38643 

YCR034W FEN1 _NVPT(ph)PS(ph)PSPKPQHR_ 0.99011 0.42097 

YCR034W FEN1 _NVPT(ph)PSPS(ph)PKPQHR_ 0.92948 0.37153 

YCR042C TAF2 _SKDAQDNDEEEEEGES(ph)DEEEEEGEEERR_ 1.2519 0.41143 

YCR048W ARE1 _HSVTYDNVILPQESM(ox)EVS(ph)PR_ 0.78048 0.24739 

YCR061W YCR061W _RAEGEDEGDNTS(ph)NHDTLR_ 0.26331 0.0019256 

YCR077C PAT1 _DLS(ph)PEEQR_ 3.846 0.019456 

YCR084C TUP1 _DVENLNTSSS(ph)PSSDLYIR_ 1.3569 0.36096 

YCR088W ABP1 _SFT(ph)PSKS(ph)PAPVSK_ 4.4379 0.010725 

YCR088W ABP1 _KEPVKT(ph)PS(ph)PAPAAK_ 2.2061 0.12439 

YCR088W ABP1 _KEPVKTPS(ph)PAPAAK_ 1.4279 0.33009 

YCR088W ABP1 _NVASGAPVQKEEPEQEEIAPSLPS(ph)RNSIPAPK_ 1.361 0.35909 

YCR088W ABP1 _NVASGAPVQKEEPEQEEIAPS(ph)LPSRNSIPAPK_ 1.3541 0.36221 

YCR093W CDC39 _RQT(ph)PLQSNA_ 1.214 0.43117 

YDL019C OSH2 _LDGSKT(ph)PVGVHTGSALQR_ 4.4096 0.011026 

YDL019C OSH2 _TAAS(ph)AGNGPTDDGTK_ 2.1641 0.13098 

YDL019C OSH2 _HAPPPVPNETDNDS(ph)QYVQDEK_ 1.476 0.31064 

YDL019C OSH2 _RPS(ph)NNLSVVSSEIQLNDNLTESGKR_ 0.52368 0.067675 

YDL022W GPD1 _RSSSSVS(ph)LK_ 1.1291 0.47826 

YDL022W GPD1 _SSS(ph)SVSLK_ 1.0735 0.48596 
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YDL025C RTK1 _KNTDS(ph)DQEDQIK_ 0.96362 0.39955 

YDL051W LHP1 _RNS(ph)FAVIEFTPEVLDR_ 0.54253 0.077585 

YDL088C ASM4 _EDDNTPAGHAGNPTNISS(ph)PIVANSPNK_ 1.0135 0.43963 

YDL099W BUG1 _NKNSSATGSIGSETPDLEGTPGEES(ph)TQEETVK_ 2.0093 0.15866 

YDL099W BUG1 _SENNDQNDVDEES(ph)EEKEIEQVK_ 1.6839 0.2388 

YDL110C TMA17 _LEADDS(ph)DDLENIDSGDLALYK_ 1.1683 0.45605 

YDL122W UBP1 _IIEHSDVENENVKDNEELQEIDNVS(ph)LDEPK_ 1.1127 0.48784 

YDL122W UBP1 _FEQEFEDS(ph)EEEKEYDDAEGNYASHYNHTK_ 1.0841 0.49396 

YDL122W UBP1 _IIEHS(ph)DVENENVKDNEELQEIDNVSLDEPK_ 0.96695 0.40225 

YDL126C CDC48 _SVS(ph)DAELR_ 0.87027 0.32221 

YDL131W LYS21 _DFHAELST(ph)PLLKPVNK_ 1.4443 0.32333 

YDL131W LYS21 _DFHAELS(ph)TPLLKPVNK_ 1.3457 0.36606 

YDL150W RPC53 _SEGS(ph)GSSLVQK_ 1.7808 0.21128 

YDL150W RPC53 _EIQEALS(ph)EKPT(ph)REPT(ph)PSVK_ 1.3081 0.38364 

YDL153C SAS10 _S(ph)VRAVY(ph)S(ph)GGQS(ph)GVYEGEKTGIK_ 1.129 0.47835 

YDL153C SAS10 _GM(ox)HDNNGADLDDKDYGS(ph)EDEAVSR_ 0.71316 0.19325 

YDL153C SAS10 _LNELQNS(ph)EDS(ph)DAEDGGK_ 0.64787 0.14434 

YDL160C DHH1 _GSINNNFNTNNNS(ph)NTDLDRDWK_ 1.4658 0.31469 

YDL161W ENT1 _GTGRS(ph)DENDDDLQR_ 1.1901 0.44404 

YDL161W ENT1 _GT(ph)GRSDENDDDLQR_ 1.0188 0.44376 

YDL161W ENT1 _TGTFINSQGT(ph)GYR_ 0.94014 0.38032 

YDL161W ENT1 _RNQLVAASS(ph)PQQLQQQK_ 0.55501 0.084519 

YDL173W PAR32 _S(ph)HQSLHATTSSPNNNAPIVVGR_ 1.1285 0.47861 

YDL175C AIR2 _YFGVS(ph)DDDKDAIKEAAPK_ 1.4378 0.326 

YDL182W LYS20 _NFHAEVS(ph)TPQVLSAKK_ 1.3802 0.35054 

YDL182W LYS20 _NFHAEVST(ph)PQVLSAK_ 1.0801 0.49093 

YDL188C PPH22 _SNDEDT(ph)DEELEDFNFKPGSSGIADHK_ 0.85275 0.30754 

YDL189W RBS1 _RASVEGS(ph)PSSR_ 0.47677 0.046093 

YDL195W SEC31 _VAT(ph)PLSGGVPPAPLPK_ 3.5418 0.026808 
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YDL195W SEC31 _VAT(ph)PLS(ph)GGVPPAPLPK_ 2.4017 0.098069 

YDL195W SEC31 _VPSLVATSES(ph)PR_ 1.0108 0.43743 

YDL195W SEC31 _APS(ph)SVSM(ox)VSPPPLHK_ 0.98141 0.41396 

YDL225W SHS1 _KNDTYTDLASIAS(ph)GRD_ 0.93992 0.38014 

YDL225W SHS1 _KNDT(ph)YTDLASIASGRD_ 0.8872 0.33638 

YDL225W SHS1 _SIKTESS(ph)PK_ 0.76972 0.23856 

YDL225W SHS1 _LNGSS(ph)SS(ph)INSLQQSTR_ 0.72405 0.20181 

YDL225W SHS1 _FLNS(ph)PDLPER_ 0.40821 0.022782 

YDL226C GCS1 _S(ph)ATPANSSNGANFQK_ 3.5537 0.026469 

YDL233W MFG1 _RNS(ph)GISPR_ 0.7592 0.22999 

YDL240W LRG1 _ENVFS(ph)NTKTLTLDDISR_ 0.046436 7.0291E-11 

YDR001C NTH1 _RGS(ph)EDDTYSSSQGNR_ 1.4176 0.33444 

YDR001C NTH1 _RGSEDDT(ph)YSSSQGNR_ 1.4173 0.33453 

YDR002W YRB1 _KEGDDAPES(ph)PDIHFEPVVHLEK_ 1.4861 0.30672 

YDR011W SNQ2 _VQDLINDLSKQET(ph)K_ 0.91951 0.36328 

YDR011W SNQ2 _STQDS(ph)SHNAVAR_ 0.28951 0.0034943 

YDR017C KCS1 _RNS(ph)NTTTM(ox)GNHNAR_ 0.68065 0.16833 

YDR028C REG1 _DSEGNAQS(ph)EEEHDLER_ 2.2904 0.11221 

YDR028C REG1 _GYGS(ph)DDENSK_ 1.3876 0.3473 

YDR028C REG1 _KS(ph)DVKPQENGNDSS_ 1.194 0.44188 

YDR028C REG1 _SDSGVHS(ph)PITDNSSVASSTTSR_ 1.161 0.46008 

YDR028C REG1 _SDVKPQENGNDSS(ph)_ 1.0504 0.46842 

YDR028C REG1 _KSDVKPQENGNDS(ph)S_ 0.91831 0.36228 

YDR033W MRH1 _APVAS(ph)PRPAATPNLS(ph)K_ 3.8956 0.018483 

YDR033W MRH1 _APVAS(ph)PR_ 2.466 0.090779 

YDR033W MRH1 _PAAT(ph)PNLSK_ 1.7957 0.20737 

YDR043C NRG1 _NTLS(ph)DEEDLEQR_ 0.90375 0.35018 

YDR060W MAK21 _ASNFDS(ph)DDEMDENEIWSALVK_ 0.80618 0.26865 

YDR060W MAK21 _AS(ph)NFDSDDEMDENEIWSALVK_ 0.58338 0.10133 
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YDR063W AIM7 _LIEVSSGLEDDS(ph)DVEELR_ 1.0198 0.44453 

YDR074W TPS2 _RSAS(ph)YTGAKV_ 1.7262 0.22636 

YDR119W VBA4 _IDDS(ph)PQDEVNS(ph)IK_ 1.7471 0.22048 

YDR119W VBA4 _IDDSPQDEVNS(ph)IK_ 0.43961 0.03224 

YDR122W KIN1 _EAYAAQKFEGS(ph)DDDENHPLPPLNVAK_ 1.0525 0.46998 

YDR135C YCF1 _RASDAT(ph)LGSIDFGDDENIAKR_ 1.1319 0.47669 

YDR135C YCF1 _RAS(ph)DATLGSIDFGDDENIAKR_ 1.0551 0.47195 

YDR135C YCF1 _RAS(ph)DATLGS(ph)IDFGDDENIAKR_ 0.96714 0.40241 

YDR135C YCF1 _LNDLDFGNSDAIS(ph)LR_ 0.9332 0.3746 

YDR141C DOP1 _IKM(ox)EAEENPS(ph)ETETNDSHLDR_ 1.4051 0.33972 

YDR153C ENT5 _IDDLLDWDGPKS(ph)DTDTTAAAQTSLPFAEKK_ 0.71057 0.19123 

YDR155C CPR1 _KVESLGS(ph)PSGATK_ 1.5041 0.29984 

YDR158W HOM2 _NRDS(ph)GYGVSVGR_ 0.64559 0.14272 

YDR159W SAC3 _LNQNSSVKPQINT(ph)SPK_ 0.5979 0.11046 

YDR168W CDC37 _WDKIELSDDS(ph)DVEVHPNVDKK_ 4.1447 0.014341 

YDR170C SEC7 _ETSNDAT(ph)NGM(ox)KTPEETEDTNDKR_ 2.7401 0.065658 

YDR170C SEC7 _ETSNDATNGMKT(ph)PEETEDTNDKR_ 2.5984 0.077541 

YDR170C SEC7 _RNES(ph)NEDIR_ 1.4149 0.33556 

YDR171W HSP42 _KS(ph)S(ph)SFAHLQAPSPIPDPLQVSKPETR_ 3.9079 0.018249 

YDR171W HSP42 _KS(ph)SSFAHLQAPSPIPDPLQVSKPETR_ 2.3642 0.1026 

YDR171W HSP42 _KS(ph)SS(ph)FAHLQAPSPIPDPLQVSKPETR_ 2.1683 0.1303 

YDR171W HSP42 _SSSFAHLQAPS(ph)PIPDPLQVSKPETR_ 1.5907 0.26869 

YDR173C ARG82 _LSDS(ph)TDNLDSIPVKSEK_ 2.8364 0.058726 

YDR173C ARG82 _LS(ph)DSTDNLDSIPVK_ 2.7145 0.067652 

YDR186C YDR186C _NLINKS(ph)FEELR_ 1.3865 0.34777 

YDR186C YDR186C _NSSS(ph)LLNFQNSVLTSNKDK_ 1.1749 0.45236 

YDR186C YDR186C _NNS(ph)NSNLLFEK_ 0.85928 0.31301 

YDR186C YDR186C _S(ph)GSSTDVLSSGIDSMAK_ 0.75549 0.22697 

YDR207C UME6 _GGS(ph)PSNDSQVQHNVHDDQCAVGVAPR_ 1.3009 0.38714 
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YDR229W IVY1 _PDNNTEQLQGS(ph)PSSDQR_ 1.564 0.27792 

YDR229W IVY1 _RPVASSAGS(ph)ENNDHLDDMNHLR_ 1.3962 0.34356 

YDR229W IVY1 _RPVAS(ph)SAGSENNDHLDDMNHLR_ 1.3269 0.37477 

YDR229W IVY1 _PDNNTEQLQGS(ph)PSS(ph)DQR_ 1.3138 0.38095 

YDR264C AKR1 _SGNEEES(ph)GNEQVNHNDEAEEDPLLTR_ 1.3776 0.35168 

YDR266C HEL2 _KGSS(ph)STSLNNSK_ 0.6022 0.11323 

YDR293C SSD1 _SST(ph)INNDSDSLSSPTK_ 3.0183 0.047701 

YDR293C SSD1 _NQSQQPQQQLS(ph)PFR_ 2.16 0.13164 

YDR293C SSD1 _SSTINNDSDS(ph)LSSPTK_ 1.7071 0.23188 

YDR293C SSD1 _SSTINNDSDSLSS(ph)PTK_ 1.2375 0.41885 

YDR299W BFR2 _DSVDDNENS(ph)DDGLDIPK_ 0.65385 0.14862 

YDR299W BFR2 _NGES(ph)DLS(ph)DYGNSNTEETK_ 0.50162 0.056962 

YDR303C RSC3 _KLS(ph)EDGVTDGDGKPIPESER_ 0.89178 0.3402 

YDR310C SUM1 _TAGDDGALDQTENTSIS(ph)PK_ 0.5244 0.068037 

YDR320C SWA2 _TDKSPNDSLHSISAPPLIPS(ph)PK_ 0.67642 0.16517 

YDR330W UBX5 _VNDMFDEGRPES(ph)IFNQR_ 1.4589 0.31745 

YDR333C RQC1 _DKGS(ph)DDDDDDEEFDKIIQQFK_ 1.0171 0.44242 

YDR345C HXT3 _SSENSNADLPSNS(ph)SQVM(ox)NMPEEK_ 1.7717 0.21374 

YDR345C HXT3 _SSENSNADLPS(ph)NSS(ph)QVM(ox)NMPEEK_ 1.7015 0.23356 

YDR345C HXT3 _S(ph)SENSNADLPSNSSQVMNMPEEK_ 1.6322 0.25496 

YDR348C PAL1 _TSSQLS(ph)FPNIPEDEPQR_ 1.0668 0.48091 

YDR348C PAL1 _RGGDT(ph)QDAIK_ 0.60876 0.11751 

YDR356W SPC110 _NTTQTQVVS(ph)PTKVPNANNGDENEGPVK_ 0.87489 0.32609 

YDR356W SPC110 _DELNELET(ph)KFSENGS(ph)QSS(ph)AK_ 0.5773 0.097608 

YDR365C ESF1 _EAENDEDS(ph)EVNAK_ 0.88586 0.33526 

YDR365W-B YDR365W-B _EVHTNQDPLDVS(ph)ASKTEECEK_ 3.3471 0.033091 

YDR365W-B YDR365W-B _AHNVSTSNNSPSTDNDS(ph)ISK_ 2.1174 0.13875 

YDR365W-B YDR365W-B _NLS(ph)DEKNDSR_ 2.1069 0.14055 

YDR365W-B YDR365W-B _EVHTNQDPLDVSAS(ph)KTEECEKASTK_ 1.7881 0.20935 



109 
 

YDR365W-B YDR365W-B _EVHTNQDPLDVSASKTEECEKAS(ph)TK_ 1.666 0.24428 

YDR365W-B YDR365W-B _AHNVST(ph)SNNSPSTDNDSISK_ 1.2416 0.41674 

YDR365W-B YDR365W-B _TVPQIS(ph)DQETEKR_ 0.90593 0.352 

YDR365W-B YDR365W-B _AVS(ph)PTDSTPPSTHTEDSK_ 0.6223 0.12655 

YDR365W-B YDR365W-B _HSDSYS(ph)ENETNHTNVPISSTGGTNNK_ 0.61975 0.12483 

YDR365W-B YDR365W-B _AVSPT(ph)DSTPPSTHTEDSKR_ 0.6007 0.11226 

YDR365W-B YDR365W-B _SPS(ph)IDASPPENNSSHNIVPIK_ 0.39216 0.018722 

YDR365W-B YDR365W-B _AHNVSTSNNSPST(ph)DNDSISK_ 0.057369 1.0772E-09 

YDR372C VPS74 _ADSGDTSS(ph)IHSSANNTKGDK_ 1.678 0.2406 

YDR372C VPS74 _ADSGDTSSIHSS(ph)ANNTK_ 1.5294 0.29039 

YDR372C VPS74 _ADSGDTSSIHS(ph)SANNTK_ 1.2325 0.42143 

YDR372C VPS74 _ADS(ph)GDTSSIHSSANNTKGDK_ 0.78344 0.24983 

YDR379W RGA2 _NSS(ph)KEDFPIKLPER_ 2.1169 0.13883 

YDR379W RGA2 _VHDELPS(ph)PGKVPLS(ph)PSPK_ 0.65588 0.15009 

YDR382W RPP2B _EEEAKEES(ph)DDDM(ox)GFGLFD_ 0.85344 0.30812 

YDR407C TRS120 _LNFESSSTGIS(ph)PVDSNSK_ 0.47857 0.046835 

YDR422C SIP1 _VNSS(ph)NSM(ox)YTAER_ 0.66921 0.15982 

YDR428C BNA7 _AIS(ph)PDITLFNK_ 1.7631 0.21607 

YDR436W PPZ2 _GTSPIPNLNIDKPS(ph)PSASSASKR_ 0.98535 0.41714 

YDR436W PPZ2 _INTSS(ph)SADR_ 0.96765 0.40283 

YDR439W LRS4 _GGNDPDS(ph)PTSQRR_ 0.77322 0.24143 

YDR454C GUK1 _RLS(ph)AAQAELAYAETGAHDK_ 0.98628 0.41789 

YDR458C HEH2 _ANKPPESPPQS(ph)K_ 0.94473 0.3841 

YDR458C HEH2 _ANKPPES(ph)PPQSK_ 0.92494 0.36778 

YDR460W TFB3 _LKDAVPFT(ph)PFNGDR_ 1.2065 0.43517 

YDR496C PUF6 _ISIDS(ph)S(ph)DEESELSK_ 0.53832 0.075314 

YDR497C ITR1 _TSQSNVGDAVGNADS(ph)VEFNSEHDSPSKR_ 0.36844 0.013636 

YDR505C PSP1 _KGS(ph)FTTELSCR_ 0.59604 0.10927 

YDR507C GIN4 _KQNS(ph)QEGDQAHPK_ 1.1491 0.46681 
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YDR507C GIN4 _LSTIVNQSS(ph)PTPASR_ 0.60694 0.11631 

YDR507C GIN4 _LDPGIMFSSPTEEVS(ph)PVEPK_ 0.54787 0.080514 

YDR517W GRH1 _ESDDLDDVS(ph)LNHDER_ 1.513 0.29645 

YEL013W VAC8 _DSSDEAS(ph)VSPIADNER_ 1.076 0.48788 

YEL015W EDC3 _LGQM(ox)IISQS(ph)R_ 0.89012 0.33881 

YEL015W EDC3 _LGQMIISQS(ph)RSNS(ph)TSLPAANK_ 0.666 0.15746 

YEL017W GTT3 _EDDDEKPQSGDET(ph)SATKPLSSR_ 2.3661 0.10238 

YEL022W GEA2 _VNNEEAIS(ph)EDDGIEEEHIHSEK_ 1.0892 0.49776 

YEL037C RAD23 _TESAS(ph)TPGFVVGTER_ 1.2632 0.4057 

YEL043W YEL043W _S(ph)SGSIQLPLSNNMSR_ 547.32 1.0027E-24 

YEL046C GLY1 _S(ph)ESTEVDVDGNAIR_ 0.66118 0.15393 

YEL046C GLY1 _SES(ph)TEVDVDGNAIR_ 0.49813 0.055359 

YEL046C GLY1 _SEST(ph)EVDVDGNAIR_ 0.39691 0.019872 

YEL060C PRB1 _DDDEEPS(ph)DSEDKEHGK_ 0.10926 1.4556E-06 

YER024W YAT2 _KTSSSS(ph)QVNLNR_ 0.20703 0.0003643 

YER042W MXR1 _VGYANGEESKKDS(ph)PSSVSYK_ 1.2799 0.39738 

YER052C HOM3 _KGESTPPHPPENLS(ph)SSFYEK_ 4.4636 0.01046 

YER052C HOM3 _KGES(ph)TPPHPPENLSSS(ph)FYEKR_ 4.0158 0.01634 

YER052C HOM3 _KGEST(ph)PPHPPENLSSSFYEKR_ 1.3061 0.38464 

YER052C HOM3 _KGES(ph)TPPHPPENLSSSFYEK_ 1.1865 0.44601 

YER059W PCL6 _HES(ph)PSNESSLDK_ 0.99683 0.42635 

YER059W PCL6 _M(ox)SACNSNENNENDDS(ph)DDENTGVQR_ 0.90678 0.3527 

YER070W RNR1 _EAS(ph)PAPTGSHSLTK_ 1.0291 0.45184 

YER074W-A YOS1 _SNDET(ph)PVFGQDQNTTK_ 1.4418 0.32435 

YER079W YER079W _SM(ox)S(ph)PSNIASGEDR_ 1.9675 0.16715 

YER079W YER079W _PDSSHS(ph)ISSK_ 1.2194 0.42831 

YER079W YER079W _TNS(ph)GCSITSGASMIATK_ 0.82019 0.28031 

YER100W UBC6 _KLDEGDAANT(ph)GDETEDPFTK_ 0.30366 0.0046548 

YER105C NUP157 _M(ox)YS(ph)TPLKKR_ 0.61335 0.12055 
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YER112W LSM4 _RPYS(ph)QNR_ 2.5637 0.080798 

YER114C BOI2 _KT(ph)SQSLEDLPSQQNFIPTPR_ 1.5877 0.26971 

YER114C BOI2 _DKDVSDTLSPDFDSKGS(ph)ATGR_ 1.3274 0.37451 

YER114C BOI2 _NSS(ph)PIVDKK_ 0.81186 0.27337 

YER114C BOI2 _DKDVSDT(ph)LSPDFDSKGSATGR_ 0.54034 0.076396 

YER122C GLO3 _AIS(ph)SDQLFGR_ 1.1105 0.48914 

YER129W SAK1 _SRS(ph)LTVAELNEEK_ 1.4384 0.32578 

YER129W SAK1 _SRSLT(ph)VAELNEEK_ 1.1365 0.47399 

YER149C PEA2 _NT(ph)SSPPIS(ph)PNAAAIQEEDSSK_ 0.65007 0.14591 

YER164W CHD1 _AAAHQQNYFNDS(ph)DDEDDEDNIKQSR_ 0.74142 0.21563 

YER169W RPH1 _KES(ph)PVETSK_ 2.2042 0.12469 

YER169W RPH1 _NDDLDKEQGSS(ph)PLNSK_ 1.2633 0.40569 

YER169W RPH1 _NDDLDKEQGS(ph)SPLNSK_ 0.90992 0.35531 

YER176W ECM32 _KENSTIQSSS(ph)SSNLR_ 0.96871 0.40368 

YER178W PDA1 _YGGHS(ph)MSDPGTTYR_ 0.50333 0.05776 

YER178W PDA1 _Y(ph)GGHSMSDPGTTYR_ 0.46437 0.041146 

YFL004W VTC2 _LMGVDS(ph)EEEEIELPPGVK_ 1.1486 0.46711 

YFL005W SEC4 _EGNISINSGS(ph)GNSSK_ 1.6025 0.26471 

YFL005W SEC4 _EGNIS(ph)INSGSGNSSK_ 1.3537 0.36239 

YFL023W BUD27 _ILENIS(ph)DDDYDDDDDGNKK_ 0.89101 0.33956 

YFL033C RIM15 _KGSIIGDNQQTTANSSDS(ph)PTMTK_ 1.0832 0.49328 

YFL038C YPT1 _ESM(ox)S(ph)QQNLNETTQK_ 2.0548 0.14993 

YFR003C YPI1 _SYS(ph)PNAYEIQPDYSEYRR_ 1.2535 0.41065 

YFR003C YPI1 _S(ph)YSPNAYEIQPDYSEYR_ 1.0354 0.45675 

YFR010W UBP6 _KFDPSSSENVM(ox)T(ph)PR_ 1.0816 0.49208 

YFR017C IGD1 _S(ph)TNYM(ox)DALNSR_ 2.442 0.093429 

YFR024C-A LSB3 _ISSAST(ph)PQTSQGR_ 1.2943 0.3903 

YFR024C-A LSB3 _LAPTNS(ph)GGSGGK_ 1.2881 0.39336 

YFR024C-A LSB3 _LAPTNS(ph)GGSGGKLDDPSGASSYYASHR_ 0.88128 0.33143 
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YFR024C-A LSB3 _GSFDDDEDDYYDDDDYYNDIPSSFS(ph)STDASSTRPNTR_ 0.73115 0.20743 

YFR024C-A LSB3 _ISSAS(ph)T(ph)PQTSQGR_ 0.68526 0.1718 

YFR024C-A LSB3 _GSFDDDEDDYYDDDDYYNDIPS(ph)SFSSTDASSTRPNTR_ 0.56876 0.092488 

YFR024C-A LSB3 _FTAPTSPS(ph)TSSPK_ 0.34789 0.010057 

YFR028C CDC14 _KVVIESNNS(ph)DDESMQDTNGTSNHYPK_ 0.74038 0.2148 

YFR038W IRC5 _DNSNSDDEEHS(ph)SKKR_ 0.30977 0.005234 

YFR053C HXK1 _TKYDVAVDEQS(ph)PRPGQQAFEK_ 2.748 0.065061 

YFR053C HXK1 _KGS(ph)MADVPK_ 1.0008 0.42949 

YGL008C PMA1 _VS(ph)TQHEKET_ 4.5806 0.0093397 

YGL008C PMA1 _SVEDFM(ox)AAM(ox)QRVS(ph)TQHEKET(ph)_ 3.2061 0.03865 

YGL008C PMA1 _VST(ph)QHEKET_ 1.7437 0.22141 

YGL009C LEU1 
_VEVTSEDEKELES(ph)AAYDHAEPVQPEDAPQDIANDELKDI

PVK_ 
0.22924 0.00075805 

YGL009C LEU1 _DQDQSSPKVEVT(ph)SEDEK_ 0.20325 0.00031766 

YGL009C LEU1 _EFEYKDQDQSS(ph)PK_ 0.19929 0.00027416 

YGL009C LEU1 _EFEYKDQDQS(ph)SPKVEVTS(ph)EDEK_ 0.16989 0.000078317 

YGL009C LEU1 _VEVTS(ph)EDEK_ 0.1455 0.000021099 

YGL014W PUF4 _AKKPS(ph)VGANNTAK_ 0.56879 0.092503 

YGL023C PIB2 _KNS(ph)AEENVR_ 0.91384 0.35858 

YGL030W RPL30 _APVKS(ph)QESINQK_ 0.88432 0.33397 

YGL049C TIF4632 _FNNHNQSNS(ph)NR_ 1.9505 0.17074 

YGL049C TIF4632 _FNNHNQS(ph)NSNR_ 1.9354 0.17398 

YGL049C TIF4632 _TVNKS(ph)DDETINSVITTEENTVK_ 1.4143 0.33581 

YGL049C TIF4632 _SNS(ph)RFNNHNQSNSNR_ 1.1794 0.44991 

YGL077C HNM1 _VEEEIKPLDDM(ox)DS(ph)K_ 0.61173 0.11947 

YGL077C HNM1 _EFSVAAS(ph)DVELENEHVPWGKK_ 0.3942 0.01921 

YGL083W SCY1 _KDGS(ph)SDIPR_ 1.2249 0.42543 

YGL092W NUP145 _AYEPDLSDADFEGIEAS(ph)PK_ 1.3223 0.37692 

YGL092W NUP145 _TDGTFGTLSGKDDS(ph)IVEEK_ 1.0651 0.47965 



113 
 

YGL092W NUP145 _AYEPDLS(ph)DADFEGIEASPK_ 0.87441 0.32568 

YGL120C PRP43 _RFS(ph)SEHPDPVETSIPEQAAEIAEELSK_ 0.33794 0.0085821 

YGL139W FLC3 _NENAS(ph)TDALRVEAPK_ 0.67132 0.16138 

YGL171W ROK1 _TTENDS(ph)PNKEEK_ 0.71076 0.19138 

YGL173C XRN1 _KGEIKPSSGTNSTECQS(ph)PK_ 0.76251 0.23268 

YGL178W MPT5 _NAS(ph)ISNM(ox)PAM(ox)NTAR_ 1.5819 0.2717 

YGL180W ATG1 _SMDSNAIAEEQDS(ph)DDAEEEDETLKK_ 1.2789 0.3979 

YGL197W MDS3 _AQS(ph)SSTQESSGSANGEK_ 1.1841 0.4473 

YGL197W MDS3 _NS(ph)S(ph)KAVRQEGR_ 0.4551 0.037659 

YGL208W SIP2 _KVTELS(ph)LNK_ 1.7882 0.20933 

YGL208W SIP2 _KVT(ph)ELSLNK_ 1.4106 0.3374 

YGL227W VID30 _SRS(ph)AINIETESR_ 0.88939 0.33821 

YGL232W TAN1 _FQELYGDIKEGEDES(ph)ENDEKK_ 0.99921 0.42825 

YGL244W RTF1 
_RIEVGSVEDDDEEDDYNPYSVGNADYGS(ph)EEEEEANPFP

LEGK_ 
1.0054 0.43314 

YGL253W HXK2 _KGS(ph)M(ox)ADVPKELMQQIENFEK_ 0.91604 0.3604 

YGR008C STF2 _RGS(ph)NLQSHEQK_ 1.0263 0.4497 

YGR048W UFD1 _S(ph)KAPKSPEVIEID_ 0.91957 0.36333 

YGR048W UFD1 _APKS(ph)PEVIEID_ 0.86979 0.32181 

YGR054W YGR054W _SSETS(ph)PDSTPAPSAPASTNAPTNNKETSPEEKK_ 4.7413 0.00801 

YGR054W YGR054W _SSETS(ph)PDSTPAPSAPASTNAPTNNKETSPEEK_ 1.4658 0.31469 

YGR054W YGR054W _ANKKS(ph)S(ph)ETSPDSTPAPSAPASTNAPTNNK_ 1.3887 0.34681 

YGR054W YGR054W _S(ph)SETSPDSTPAPSAPASTNAPTNNK_ 1.2543 0.41025 

YGR082W TOM20 _GVVGSKAES(ph)DAVAEANDIDD_ 0.27562 0.0025765 

YGR086C PIL1 _ALLELLDDSPVT(ph)PGETRPAYDGYEASK_ 4.0058 0.016508 

YGR086C PIL1 _YKDPQS(ph)PK_ 1.534 0.28868 

YGR093W YGR093W _RPLETET(ph)ENSFDGDKQVLANR_ 1.894 0.18325 

YGR097W ASK10 _GNNS(ph)AQNLTTSSSTASR_ 1.0226 0.44673 

YGR100W MDR1 _AVDLAEEVNLIDLS(ph)DDEGEEKR_ 1.3386 0.36933 
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YGR103W NOP7 _SALNADEANTDET(ph)EKEEEQEKK_ 0.9029 0.34947 

YGR116W SPT6 _VGDEGNAAES(ph)ESDNVAASR_ 0.90124 0.34809 

YGR116W SPT6 _VGDEGNAAES(ph)ES(ph)DNVAASR_ 0.88442 0.33406 

YGR116W SPT6 _EREEDDRLS(ph)EDDLDLLMENAGVER_ 0.68556 0.17203 

YGR125W YGR125W _TIEENIDEEYS(ph)DEYSR_ 1.8142 0.20259 

YGR128C UTP8 _ALEDTTDTSNDHLS(ph)ESDIDNK_ 1.1124 0.48804 

YGR145W ENP2 _ALTAAEES(ph)DEER_ 0.71738 0.19656 

YGR148C RPL24B _KVEVDS(ph)FSGAK_ 0.55744 0.085903 

YGR152C RSR1 _VKQST(ph)PVNEK_ 2.1181 0.13863 

YGR162W TIF4631 _LKETSDSTSTSTPT(ph)PTPSTNDSK_ 1.7666 0.21511 

YGR162W TIF4631 _LKETSDSTSTST(ph)PTPTPSTNDSK_ 1.5059 0.29915 

YGR162W TIF4631 _STVS(ph)PQPESK_ 0.71964 0.19833 

YGR162W TIF4631 _APPPKEEPAAPTSTATNM(ox)FSALM(ox)GES(ph)DDEE_ 0.67048 0.16076 

YGR167W CLC1 _EAEILGDEFKTEQDDILETEAS(ph)PAKDDDEIR_ 2.7758 0.062988 

YGR178C PBP1 _S(ph)GSNISQGQSSTGHTTR_ 1.7169 0.22905 

YGR178C PBP1 _VADSGVSDS(ph)VDDLAK_ 1.6328 0.25475 

YGR178C PBP1 _TVS(ph)PTTQISAGK_ 1.4426 0.32403 

YGR180C RNR4 _SAT(ph)PSKEINFDDDF_ 2.0237 0.15584 

YGR186W TFG1 _DGSQT(ph)PTVDSVTK_ 1.0866 0.49578 

YGR186W TFG1 _DEEAPS(ph)ENEEDELFGEKK_ 0.98019 0.41298 

YGR186W TFG1 _AVDSSNNASNTVPS(ph)PIKQEEGLNSTVAER_ 0.61993 0.12495 

YGR192C TDH3 _TAS(ph)GNIIPSSTGAAK_ 1.2044 0.43631 

YGR192C TDH3 _TASGNIIPS(ph)STGAAK_ 1.1481 0.46741 

YGR192C TDH3 _IVSNASCT(ph)TNCLAPLAK_ 0.93146 0.37317 

YGR196C FYV8 _SAS(ph)FKSENR_ 0.83202 0.29019 

YGR196C FYV8 _GYLADILPAEKEENLQQEDDGEVES(ph)SGALEKK_ 0.0042367 8.31E-30 

YGR202C PCT1 _EAS(ph)PATEFANEFTGENSTAK_ 1.2331 0.42113 

YGR202C PCT1 _NQDENKDTQLT(ph)PR_ 0.77828 0.24558 

YGR229C SMI1 _SQQGLSHVTSTGSSS(ph)SM(ox)ER_ 1.1052 0.4923 
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YGR240C PFK1 _KNEAS(ph)PNTDAK_ 3.5453 0.026707 

YGR240C PFK1 _KNEASPNT(ph)DAK_ 3.0534 0.045847 

YGR240C PFK1 _ASS(ph)DAS(ph)DLLR_ 1.7948 0.20759 

YGR240C PFK1 _ASS(ph)DASDLLR_ 1.4543 0.3193 

YGR240C PFK1 _DAFLEATS(ph)EDEIISR_ 1.1984 0.43953 

YGR250C YGR250C _YFDS(ph)VRST(ph)PVAEK_ 3.8395 0.019587 

YGR250C YGR250C _RGNLSSSDDDDQSQT(ph)DNSSK_ 3.4146 0.030746 

YGR250C YGR250C _YFDS(ph)VRS(ph)TPVAEK_ 3.1763 0.039952 

YGR250C YGR250C _GNLSSS(ph)DDDDQSQTDNSSK_ 2.5167 0.085435 

YGR250C YGR250C _MDLFYPQRES(ph)FSEGR_ 1.1211 0.48295 

YGR253C PUP2 _ATS(ph)PLLESDSIEK_ 1.6497 0.24935 

YGR253C PUP2 _AT(ph)SPLLESDSIEK_ 1.5339 0.28872 

YGR253C PUP2 _EKEAAES(ph)PEEADVEM(ox)S_ 1.2787 0.39799 

YGR261C APL6 _LTGINDGDSNS(ph)ISGK_ 1.0425 0.46232 

YGR261C APL6 _IAS(ph)ALDTAK_ 0.80011 0.2636 

YGR267C FOL2 _HET(ph)PLNIRPT(ph)SPYTLNPPVER_ 1.8523 0.19311 

YGR267C FOL2 _HETPLNIRPTS(ph)PYTLNPPVER_ 0.43351 0.030242 

YGR270W YTA7 _ELQEDS(ph)PIREK_ 0.92629 0.3689 

YGR270W YTA7 _HPET(ph)PPPVRR_ 0.87263 0.32419 

YGR270W YTA7 _RGS(ph)DVEDASNAK_ 0.79563 0.2599 

YGR280C PXR1 _SSES(ph)ASNIPDAVNTR_ 0.70434 0.1864 

YGR281W YOR1 _TITVGDAVSET(ph)ELENK_ 0.44918 0.035529 

YGR285C ZUO1 _NHTWS(ph)EFER_ 0.2915 0.0036431 

YHL007C STE20 _RAT(ph)PVS(ph)TPVISKPS(ph)M(ox)TTTPR_ 1.7975 0.20688 

YHL007C STE20 _RAT(ph)PVS(ph)TPVISKPSMTTTPR_ 1.6117 0.26165 

YHL007C STE20 _HQQPVASSTVNSNKSS(ph)TDIR_ 1.3613 0.35896 

YHL007C STE20 _HQQPVASSTVNS(ph)NK_ 0.93381 0.37511 

YHL007C STE20 _SLS(ph)KELNEK_ 0.9244 0.36733 

YHL007C STE20 _LSLTDS(ph)TETIENNATVK_ 0.88475 0.33433 
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YHL007C STE20 _RAT(ph)PVSTPVISKPSM(ox)TTT(ph)PR_ 0.72248 0.20057 

YHL007C STE20 _LSLTDS(ph)TET(ph)IENNATVK_ 0.70624 0.18786 

YHL007C STE20 _SPVM(ox)NSAANVS(ph)PLK_ 0.69109 0.17623 

YHL023C NPR3 _KVNS(ph)GEADTVYDSNIGHEASTDTPNLR_ 0.42824 0.028581 

YHL034C SBP1 _FPT(ph)KIDFDNIKENYDTK_ 3.7514 0.021472 

YHL034C SBP1 _ELTVDVAVIRPENDEEEIEQET(ph)GSEEKQE_ 2.226 0.12139 

YHR005C GPA1 _LLLLGAGESGKS(ph)TVLK_ 0.90071 0.34765 

YHR016C YSC84 _GYGDFDS(ph)EDEDYDYGRSPNR_ 1.3417 0.36787 

YHR016C YSC84 _RGMS(ph)LGSR_ 1.0745 0.48674 

YHR027C RPN1 _QQTIDEQSQISPEKQT(ph)PNKK_ 2.0917 0.14323 

YHR030C SLT2 _GYSENPVENSQFLT(ph)EYVATR_ 0.72948 0.2061 

YHR052W CIC1 _KS(ph)TPVS(ph)TPSKEK_ 1.9898 0.16256 

YHR052W CIC1 _KST(ph)PVST(ph)PSKEK_ 1.4957 0.303 

YHR052W CIC1 _SSSELEKESS(ph)ESEAVK_ 1.0307 0.45314 

YHR052W CIC1 _KS(ph)TPVS(ph)TPSKEK_ 0.96817 0.40325 

YHR052W CIC1 _SSSELEKES(ph)SESEAVKK_ 0.91253 0.35749 

YHR056C RSC30 _SDS(ph)PDVPSMDQIR_ 1.23 0.42273 

YHR056C RSC30 _S(ph)DSPDVPSM(ox)DQIR_ 1.1148 0.48661 

YHR064C SSZ1 _EENAEEDDESEWS(ph)DDEPEVVR_ 1.1216 0.48265 

YHR064C SSZ1 _EENAEEDDES(ph)EWSDDEPEVVR_ 0.91809 0.3621 

YHR094C HXT1 _NESFHDNLSES(ph)QVQPAVAPPNTGK_ 0.37509 0.014954 

YHR094C HXT1 _NESFHDNLS(ph)ESQVQPAVAPPNTGK_ 0.36029 0.012128 

YHR094C HXT1 _NES(ph)FHDNLS(ph)ESQVQPAVAPPNTGK_ 0.35407 0.011056 

YHR099W TRA1 _KEDINDS(ph)PDVEMTESDKVVK_ 1.3083 0.38358 

YHR114W BZZ1 _LGSAPNNAGEDS(ph)DNNSIR_ 1.2411 0.41697 

YHR114W BZZ1 _LGSAPNNAGEDSDNNS(ph)IR_ 0.99734 0.42675 

YHR117W TOM71 _RQS(ph)EAFAGQNEDEADLKDDGSVVSGSNK_ 0.87823 0.32887 

YHR146W CRP1 _RES(ph)TEGVLDGSK_ 0.85727 0.31133 

YHR146W CRP1 _KQTAS(ph)PLSSSTEEPK_ 0.8282 0.287 
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YHR146W CRP1 _EET(ph)PLAEPTNVSK_ 0.3048 0.0047592 

YHR158C KEL1 _NNS(ph)PILETLPSNEIK_ 1.0468 0.46563 

YHR158C KEL1 _NVS(ph)PM(ox)GDVPTDTKNEEASVPINR_ 0.96919 0.40407 

YHR159W TDA11 _SVS(ph)PQDIQER_ 0.97797 0.41119 

YHR164C DNA2 _HQLQEVFGQAQS(ph)R_ 0.31357 0.0056188 

YIL021W RPB3 

_KVAS(ph)ILLALT(ph)QM(ox)DQDKVNFAS(ph)GDNNT(ph)A

S(ph)NMLGSNEDVMMTGAEQDPYSNASQM(ox)GNTGSGGY

DNAW_ 

3.2596 0.03643 

YIL026C IRR1 _SQVIEEDYDDEQNTS(ph)AQHVESDKITAK_ 0.80873 0.27077 

YIL033C BCY1 _RTS(ph)VSGETLQPNNFDDWTPDHYKEK_ 2.347 0.10477 

YIL033C BCY1 _TST(ph)PPLPMHFNAQR_ 1.3169 0.37946 

YIL036W CST6 _FGSDT(ph)DDDDIDLKPVEGGKDPDNQSLPNSEK_ 1.2602 0.40725 

YIL038C NOT3 _TPTTAAATTTSS(ph)NANSR_ 1.2154 0.43042 

YIL038C NOT3 _TPTTAAATTTSSNANS(ph)R_ 1.1417 0.47101 

YIL041W GVP36 _EFLSNSFAEEPEAKPEVAEEEKPQTAIS(ph)MNDEDDA_ 1.6786 0.24041 

YIL041W GVP36 _EFLSNSFAEEPEAKPEVAEEEKPQT(ph)AISM(ox)NDEDDA_ 1.611 0.2619 

YIL041W GVP36 _LTELTHATSAS(ph)EAQNILVAPGPIKEPK_ 1.3991 0.34229 

YIL106W MOB1 _WNTANAANNAGSVS(ph)PTK_ 0.86597 0.31861 

YIL107C PFK26 _S(ph)NPTSASSSQSELSEQPK_ 1.5626 0.27842 

YIL115C NUP159 _S(ph)LSPTSEKIPIAGQEQEEK_ 1.5664 0.27709 

YIL115C NUP159 _SLS(ph)PTSEKIPIAGQEQEEK_ 1.4223 0.33246 

YIL115C NUP159 _DHNDDPKDGYVS(ph)GSEISVR_ 1.106 0.4918 

YIL122W POG1 _DTNNDNNNHLTIPS(ph)PITTK_ 2.4272 0.095105 

YIL135C VHS2 _TVSNNAANSLS(ph)R_ 0.90421 0.35056 

YIL135C VHS2 _NFHNLS(ph)QR_ 0.89469 0.34263 

YIL135C VHS2 _RPS(ph)TIGLDR_ 0.86555 0.31826 

YIL135C VHS2 _SLSSQS(ph)FDNETSPAHPR_ 0.7372 0.21225 

YIL135C VHS2 _SPS(ph)NQQYLLK_ 0.53247 0.072208 

YIL136W OM45 _NNT(ph)GDANTEEAAAR_ 2.9601 0.050962 
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YIL138C TPM2 _YEEAQKELDEIANS(ph)LENL_ 2.244 0.11875 

YIL149C MLP2 _KVKES(ph)PANDQASNE_ 1.1094 0.4898 

YIL154C IMP2' _DSNVSS(ph)LSR_ 1.1713 0.45434 

YIL154C IMP2' _DSNVS(ph)SLSR_ 1.0434 0.463 

YIR003W AIM21 _KLS(ph)SPDTESK_ 2.0726 0.14666 

YIR003W AIM21 _ANS(ph)EPPTPAGTPNVPTRRPILK_ 2.0301 0.15459 

YIR003W AIM21 _ANS(ph)EPPT(ph)PAGTPNVPTR_ 1.7841 0.21041 

YIR003W AIM21 _SNNEVT(ph)EHSDSEDLTEKQK_ 1.1904 0.44385 

YIR003W AIM21 _IFQNPT(ph)DEESTTS(ph)LNEK_ 1.1151 0.48645 

YIR003W AIM21 _SNNEVTEHS(ph)DSEDLTEK_ 1.0897 0.49808 

YIR003W AIM21 _IFQNPT(ph)DEES(ph)TTSLNEK_ 1.0664 0.48057 

YIR003W AIM21 _RST(ph)TEELNNVMNNTSK_ 0.8027 0.26575 

YIR003W AIM21 _S(ph)TTEELNNVM(ox)NNTSK_ 0.6661 0.15753 

YIR003W AIM21 _IFQNPT(ph)DEESTTSLNEK_ 0.51346 0.062591 

YIR006C PAN1 _SVTESSPFVPSST(ph)PT(ph)PVDDR_ 2.6776 0.070637 

YIR006C PAN1 _SVTESSPFVPSST(ph)PT(ph)PVDDR_ 1.7144 0.22977 

YIR006C PAN1 _S(ph)SSPSYSQFK_ 1.4266 0.33066 

YIR006C PAN1 _SVTESS(ph)PFVPSSTPTPVDDR_ 1.1995 0.43896 

YIR006C PAN1 _GLDEDEDDGWS(ph)DEDESNNR_ 1.1518 0.46527 

YIR006C PAN1 _NEEQSSFSS(ph)PSAK_ 0.72185 0.20007 

YJL005W CYR1 _RSS(ph)IDADELDPM(ox)SPGPPSKK_ 1.1368 0.47384 

YJL020C BBC1 _DLPEPISPET(ph)KK_ 1.1592 0.46112 

YJL020C BBC1 _DLPEPIS(ph)PETKK_ 1.1233 0.48163 

YJL020C BBC1 _STT(ph)HDVGEISNNVK_ 1.0271 0.45033 

YJL026W RNR2 _AAADALS(ph)DLEIK_ 0.75684 0.22807 

YJL042W MHP1 _IVT(ph)NNEEEVTVSK_ 2.7383 0.0658 

YJL042W MHP1 _SPS(ph)PTHVDR_ 0.99833 0.42755 

YJL050W MTR4 _NADTNVGDT(ph)PDHTQDKK_ 1.5545 0.2813 

YJL057C IKS1 _RAS(ph)AGVESESSR_ 0.90429 0.35063 
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YJL070C YJL070C _VLSENDGDVS(ph)PSVLK_ 1.5723 0.27502 

YJL076W NET1 _KSS(ph)LETIVEK_ 1.2872 0.3938 

YJL076W NET1 _SQS(ph)SIADNNGSPVK_ 1.2787 0.398 

YJL076W NET1 _IVSNNS(ph)DDEDEDIGER_ 0.91137 0.35653 

YJL076W NET1 _IVS(ph)NNSDDEDEDIGER_ 0.80505 0.26771 

YJL080C SCP160 _LTYEPIDLSSILS(ph)DGEEKEVTKDTSNDSAK_ 0.22173 0.00059918 

YJL081C ARP4 _KVT(ph)PTEEKEQEAVSK_ 2.0173 0.15708 

YJL082W IML2 _S(ph)RTNDSSLLPGYMDSATLLHPGK_ 2.0582 0.14929 

YJL082W IML2 _TNDS(ph)SLLPGYMDSATLLHPGK_ 1.6425 0.25163 

YJL082W IML2 _LRDDLGLQTTPS(ph)QASDR_ 1.6423 0.25171 

YJL082W IML2 _SRT(ph)NDSS(ph)LLPGYMDSATLLHPGK_ 1.3503 0.36395 

YJL082W IML2 _SRT(ph)NDSSLLPGYM(ox)DSATLLHPGK_ 1.1069 0.49126 

YJL095W BCK1 _NSKS(ph)QEDISNSR_ 1.068 0.4818 

YJL115W ASF1 _KIEGGSTDIEST(ph)PK_ 1.5877 0.26973 

YJL115W ASF1 _KIEGGS(ph)TDIESTPK_ 1.5389 0.28692 

YJL123C MTC1 _KAPS(ph)ESVNNK_ 3.2094 0.038511 

YJL123C MTC1 _KQKES(ph)EDEDEDDEIIDPSEWVK_ 1.2383 0.41841 

YJL123C MTC1 _EADATPDDDRSSIS(ph)SNSNK_ 1.0844 0.49418 

YJL123C MTC1 _EADATPDDDRSSISS(ph)NSNK_ 0.9659 0.4014 

YJL128C PBS2 _TAQQPQQFAPSPS(ph)NKK_ 1.0399 0.4603 

YJL128C PBS2 _SAS(ph)VGSNQSEQDKGSSQSPK_ 0.90852 0.35415 

YJL134W LCB3 _TLS(ph)NPNDFQEPNYLLDPGNHPSDHFR_ 0.86971 0.32175 

YJL134W LCB3 _T(ph)LSNPNDFQEPNYLLDPGNHPSDHFR_ 0.78671 0.25252 

YJL141C YAK1 _NDLQPVLNAT(ph)PK_ 1.1917 0.44314 

YJL155C FBP26 _LHQLLNDS(ph)PLEDKF_ 2.8954 0.054873 

YJL155C FBP26 _GTSQVGELSQS(ph)STK_ 2.6476 0.073175 

YJL165C HAL5 _NVDS(ph)GDEKDADASVNSGDDGDNDSEANM(ox)HK_ 0.29701 0.0040793 

YJL213W YJL213W _IMGGGGVAS(ph)PTDKISNK_ 0.39815 0.020177 

YJR001W AVT1 _PEQEPLS(ph)PNGR_ 0.71457 0.19435 
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YJR002W MPP10 _HSS(ph)PDPYGINDK_ 0.57158 0.094162 

YJR007W SUI2 _ELDNRSDS(ph)EDDEDES(ph)DDE_ 0.98973 0.42066 

YJR007W SUI2 _ELDNRS(ph)DS(ph)EDDEDES(ph)DDE_ 0.70753 0.18887 

YJR049C UTR1 _KISS(ph)ESSSR_ 1.027 0.45025 

YJR059W PTK2 _SLGSPSVSSS(ph)K_ 288.41 2.9032E-20 

YJR059W PTK2 _KRPT(ph)SPSISGSGSGGNSPSSSAGAR_ 1.8502 0.1936 

YJR059W PTK2 _KRPTSPSISGSGS(ph)GGNSPSSSAGAR_ 1.7121 0.23043 

YJR059W PTK2 _NFSAPNVSSSSNS(ph)LR_ 1.3911 0.34575 

YJR059W PTK2 _NFSAPNVSSS(ph)SNSLR_ 1.3287 0.37392 

YJR059W PTK2 _S(ph)LGSPSVSSSK_ 1.1664 0.45711 

YJR059W PTK2 _S(ph)M(ox)LNSTPTTPT(ph)HNGPTPLPAK_ 1.1481 0.46737 

YJR059W PTK2 _SM(ox)LNST(ph)PT(ph)TPTHNGPTPLPAK_ 1.1281 0.47889 

YJR059W PTK2 _SM(ox)LNS(ph)TPT(ph)TPTHNGPTPLPAK_ 1.1253 0.48051 

YJR059W PTK2 _SM(ox)LNST(ph)PTT(ph)PTHNGPTPLPAK_ 1.1237 0.48141 

YJR059W PTK2 _SM(ox)LNST(ph)PTT(ph)PTHNGPTPLPAK_ 1.1194 0.48394 

YJR059W PTK2 _VEDNLS(ph)EDDSTM(ox)K_ 1.0748 0.48696 

YJR072C NPA3 _TASS(ph)ETAENIAK_ 2.843 0.05828 

YJR072C NPA3 _GEVNENS(ph)APDLQR_ 2.4386 0.093805 

YJR072C NPA3 _SSAAASDNDSIDAIS(ph)DLEEDANDGLVDRDEDEGVER_ 0.96643 0.40183 

YJR076C CDC11 _RNT(ph)NPFK_ 0.92578 0.36848 

YJR091C JSN1 _GSSDS(ph)FNLPHQISR_ 1.09 0.49837 

YJR104C SOD1 _FEQASESEPTTVSYEIAGNS(ph)PNAER_ 1.8007 0.20606 

YKL021C MAK11 _DAETADIGDQS(ph)EVESDTEELKK_ 1.0415 0.4615 

YKL021C MAK11 _DAETADIGDQSEVESDT(ph)EELKK_ 0.67993 0.1678 

YKL021C MAK11 _DAETADIGDQSEVES(ph)DTEELKK_ 0.64849 0.14478 

YKL022C CDC16 _NS(ph)M(ox)FGSTIPST(ph)LRKVSLQR_ 0.15436 0.000035188 

YKL039W PTM1 _GIDEDDLNLNFT(ph)DDEEGHDNVNNHSQGHGPVSPSPTK_ 0.96107 0.39747 

YKL042W SPC42 _VKPENNMSETFAT(ph)PTPNNR_ 1.0805 0.49128 

YKL042W SPC42 _VKPENNM(ox)SETFATPT(ph)PNNR_ 0.97353 0.40759 



121 
 

YKL054C DEF1 _KTES(ph)PLENVAELKK_ 2.0217 0.15623 

YKL054C DEF1 _KT(ph)ESPLENVAELKK_ 1.3178 0.37905 

YKL054C DEF1 _EQVKEEEQT(ph)AEELEQEQDNVAAPEEEVTVVEEK_ 1.2992 0.38796 

YKL054C DEF1 _NNYNYYQTQNGQEQQS(ph)PNQGVAQHSEDSQQK_ 1.2852 0.39476 

YKL060C FBA1 _DYIM(ox)S(ph)PVGNPEGPEKPNKK_ 1.4543 0.31929 

YKL064W MNR2 _SFVDENSPT(ph)DRR_ 2.2113 0.12361 

YKL112W ABF1 _ADDEEDLS(ph)DENIQPELR_ 0.72205 0.20023 

YKL112W ABF1 _SNS(ph)IDYAK_ 0.62043 0.12529 

YKL129C MYO3 _RGS(ph)VYHVPLNPVQATAVR_ 0.86406 0.31702 

YKL140W TGL1 _QLDANSS(ph)TTALDALNKE_ 1.0076 0.43492 

YKL146W AVT3 _NNNGGSTGISHASGS(ph)PLTDGNGGNSNGNSR_ 1.9292 0.17534 

YKL160W ELF1 _GRGALVDS(ph)DDE_ 0.99368 0.42383 

YKL160W ELF1 _TQNDGEIDS(ph)DEEEVDS(ph)DEER_ 0.9398 0.38004 

YKL175W ZRT3 _RKS(ph)EGECCDLNK_ 0.98741 0.4188 

YKL186C MTR2 _M(ox)GQDATVPIQPNNT(ph)GNR_ 1.2764 0.39912 

YKL204W EAP1 _SATSLPSLDNNNQVPSSNVSVVNNDGNS(ph)TPHQSGSR_ 0.76398 0.23388 

YKL204W EAP1 _SATSLPSLDNNNQVPSSNVS(ph)VVNNDGNSTPHQSGSR_ 0.7531 0.22504 

YKR001C VPS1 _LAALES(ph)PPPVLK_ 1.1847 0.44695 

YKR007W MEH1 _TNTFTLLTS(ph)PDSAK_ 0.68886 0.17453 

YKR018C YKR018C _LSGAHIGNS(ph)PAINR_ 3.4745 0.028817 

YKR018C YKR018C _DSSNSEDS(ph)EDEEMDGPTLLHPGK_ 1.3376 0.36978 

YKR028W SAP190 _NYYNNVETNDDDYDS(ph)DDGKSK_ 0.84781 0.30341 

YKR048C NAP1 _SSMQIDNAPT(ph)PHNT(ph)PASVLNPSYLK_ 1.3576 0.36062 

YKR048C NAP1 _AQNDS(ph)EEEQVK_ 1.3223 0.37691 

YKR048C NAP1 _SSMQIDNAPT(ph)PHNT(ph)PASVLNPSYLK_ 0.88889 0.33779 

YKR056W TRM2 _LSS(ph)PLTDSGNR_ 0.85026 0.30546 

YKR067W GPT2 _DGYDVSS(ph)DAESSISR_ 1.0237 0.44761 

YKR067W GPT2 _RDGYDVS(ph)SDAESSISR_ 0.65118 0.1467 

YKR069W MET1 _LSDIKLEDFETSS(ph)SPNKK_ 1.0179 0.44309 
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YKR071C DRE2 _VVDDLIEDS(ph)DDDDFSSDSSK_ 0.35632 0.011435 

YKR092C SRP40 _ARES(ph)DNEDAKETK_ 0.93918 0.37954 

YKR093W PTR2 _DSYVSDDVANS(ph)TER_ 0.087262 1.4206E-07 

YLL008W DRS1 _GGKDDEIDEEDDS(ph)EEAK_ 1.4054 0.33959 

YLL013C PUF3 _SVS(ph)NASLDTQNTFEQNVESDKNFNKLNR_ 0.9153 0.35979 

YLL018C DPS1 _AVEES(ph)AEPAQVILGEDGKPLSKK_ 6.0594 0.0024704 

YLL021W SPA2 _KLASSGEVDKIES(ph)PR_ 1.0775 0.489 

YLL021W SPA2 _KPASFLNDVEEEES(ph)PVKPLK_ 1.0118 0.43826 

YLL021W SPA2 _NFQEPLGNVES(ph)PDMTQK_ 0.86063 0.31415 

YLL024C SSA2 _NTIS(ph)EAGDKLEQADKDAVTK_ 1.2982 0.38844 

YLL028W TPO1 _TTT(ph)M(ox)NSAAES(ph)EVNITR_ 0.936 0.37691 

YLL032C YLL032C _TTIDNTSQSGAS(ph)PQR_ 1.158 0.46177 

YLL040C VPS13 _KLAVLDPS(ph)ILGER_ 1.8732 0.18809 

YLL040C VPS13 _SPS(ph)PDPASLSSESER_ 1.6619 0.24553 

YLL043W FPS1 _TTGAQTNM(ox)ESNES(ph)PR_ 2.4469 0.092881 

YLL043W FPS1 _NADDAHT(ph)IPESHLSR_ 0.60799 0.117 

YLL043W FPS1 _ATSNAGHS(ph)ANTGATNGR_ 0.51001 0.060922 

YLL048C YBT1 _ETSNEASSTNS(ph)ENVNK_ 0.75966 0.23036 

YLL048C YBT1 _ETSNEAS(ph)S(ph)TNSENVNK_ 0.66154 0.15419 

YLL048C YBT1 _ANS(ph)SANLAAK_ 0.65265 0.14776 

YLL055W YCT1 

_EAMKDY(ph)IT(ph)WLFGLFFLLQQLANNLPYQQNLLFEGM(

ox)GGVDALGS(ph)T(ph)LVSVAGAGFAVVCAFIAT(ph)LMLA

KWK_ 

21.348 0.000000539 

YLR006C SSK1 _DGNSS(ph)PQEFK_ 1.3291 0.37373 

YLR006C SSK1 _GKDGNS(ph)SPQEFK_ 0.95914 0.3959 

YLR018C POM34 _HSGISSTLVSANNDNNSPHT(ph)PVTR_ 2.2903 0.11223 

YLR025W SNF7 _IKQSENS(ph)VKDGEEEEDEEDEDEK_ 1.2282 0.42369 

YLR044C PDC1 _NPVILADACCS(ph)R_ 0.94299 0.38267 

YLR045C STU2 _VASS(ph)PLRNDNK_ 1.0637 0.47855 
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YLR045C STU2 _VAS(ph)SPLRNDNK_ 1.0266 0.44993 

YLR058C SHM2 _LITSHLVDTDPEVDS(ph)IIKDEIER_ 0.60027 0.11198 

YLR075W RPL10 _KGS(ph)LENNIR_ 0.94344 0.38303 

YLR079W SIC1 _SQES(ph)EDEEDIIINPVR_ 0.76244 0.23262 

YLR096W KIN2 _NES(ph)EILER_ 1.1701 0.45504 

YLR150W STM1 _ELS(ph)AEKEAQADAAAEIAEDAAEAEDAGKPK_ 3.1863 0.039507 

YLR175W CBF5 _VNENT(ph)PEQWKK_ 2.3946 0.098905 

YLR175W CBF5 _EYVPLDNAEQSTSSS(ph)QETK_ 0.84368 0.29994 

YLR177W YLR177W _RNT(ph)QPVLNLHPAAAPTNDAGLAVVDGK_ 0.89893 0.34616 

YLR177W YLR177W _RNTQPVLNLHPAAAPT(ph)NDAGLAVVDGK_ 0.85624 0.31047 

YLR181C VTA1 _EIGGES(ph)EAEDSDK_ 0.6157 0.12211 

YLR187W SKG3 _VFKNDESPSTPS(ph)SPK_ 1.5241 0.29231 

YLR187W SKG3 _VFKNDESPS(ph)TPSSPK_ 1.2085 0.43412 

YLR196W PWP1 _ATLEEAEGES(ph)GVEDDAATGSSNK_ 0.86801 0.32033 

YLR206W ENT2 _SNPHDSS(ph)PSYQDDLEK_ 1.9355 0.17396 

YLR206W ENT2 _TGTFINSQGT(ph)GYK_ 0.8413 0.29795 

YLR219W MSC3 _NVYHTDAAS(ph)DNASAPLGSNK_ 2.1223 0.13792 

YLR219W MSC3 _NVYHT(ph)DAASDNASAPLGSNK_ 1.7856 0.21002 

YLR219W MSC3 _STAGNNNDS(ph)RANSIT(ph)VK_ 1.5802 0.2723 

YLR219W MSC3 _STAGNNNDS(ph)RANSITVK_ 0.97447 0.40836 

YLR220W CCC1 _NSAQDLENSPMS(ph)VGKDNR_ 1.165 0.45785 

YLR231C BNA5 _KRSLLLTNYM(ox)T(ph)ELLEAS(ph)K_ 0.13786 0.000013073 

YLR248W RCK2 _NSS(ph)NEFLTK_ 0.7859 0.25185 

YLR248W RCK2 _DVSQITSS(ph)PK_ 0.48761 0.050675 

YLR249W YEF3 _KKELGDAYVSS(ph)DEEF_ 1.2023 0.43744 

YLR249W YEF3 _KKELGDAYVS(ph)SDEEF_ 0.95217 0.3902 

YLR257W YLR257W _AS(ph)KSNSLITSTDPVEDHISK_ 3.2656 0.036188 

YLR257W YLR257W _GS(ph)TPCLIGDSIR_ 2.684 0.070107 

YLR257W YLR257W _GES(ph)YQSAEQEIDHTAPEKSEK_ 2.3622 0.10285 
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YLR257W YLR257W _DRS(ph)YTSVAELNR_ 2.0378 0.15313 

YLR257W YLR257W _DRS(ph)YTSVAELNR_ 1.7732 0.21332 

YLR257W YLR257W _NKS(ph)INSESFSSPSLR_ 1.6852 0.23841 

YLR257W YLR257W _TVS(ph)PSKGEDSR_ 1.2221 0.42686 

YLR258W GSY2 _VARPLSVPGS(ph)PR_ 2.9792 0.049865 

YLR258W GSY2 _VARPLS(ph)VPGSPR_ 2.7412 0.06558 

YLR259C HSP60 _RGS(ph)QVAVEK_ 0.43323 0.030154 

YLR309C IMH1 _S(ph)GSIGTLANANIDSSPANNSNPTKLEK_ 0.66462 0.15645 

YLR318W EST2 _LFNVVNAS(ph)R_ 1.1133 0.48749 

YLR319C BUD6 _RLS(ph)SVVTTSPDK_ 0.44868 0.035352 

YLR330W CHS5 _DATESVAVEPSNEDVKPEEKGS(ph)EAEDDINNVSK_ 1.9319 0.17475 

YLR330W CHS5 _DATESVAVEPS(ph)NEDVKPEEK_ 1.1652 0.45776 

YLR335W NUP2 _ADGTGEAQVDNS(ph)PTTESNSR_ 2.2931 0.11185 

YLR335W NUP2 _ADGTGEAQVDNSPT(ph)TESNSR_ 1.9584 0.16905 

YLR335W NUP2 _ETYDSNES(ph)DDDVTPSTK_ 1.0209 0.44545 

YLR335W NUP2 _ETYDS(ph)NES(ph)DDDVTPSTK_ 0.60448 0.11471 

YLR345W YLR345W _PNVLS(ph)DDEELLNGLGSEIMKPSR_ 0.64353 0.14125 

YLR356W ATG33 _LAASELSDS(ph)IIDLGEDNHASENTPR_ 4.7212 0.0081642 

YLR356W ATG33 _LAASELS(ph)DSIIDLGEDNHASENTPR_ 4.3362 0.011851 

YLR371W ROM2 _YTS(ph)VSGT(ph)SLSSPR_ 1.0027 0.43106 

YLR382C NAM2 _QDTLNSGS(ph)K_ 0.83433 0.29212 

YLR399C BDF1 _RSS(ph)AQEDAPIVIR_ 1.0586 0.47469 

YLR399C BDF1 _DASS(ph)LS(ph)PTSAGSR_ 0.75326 0.22517 

YLR399C BDF1 _WADRPNLDDYDS(ph)DEDSR_ 0.71802 0.19706 

YLR399C BDF1 _DASS(ph)LS(ph)PTSAGSR_ 0.66802 0.15894 

YLR399C BDF1 _RS(ph)SAQEDAPIVIR_ 0.59595 0.10921 

YLR405W DUS4 _SAS(ph)VVERQE_ 0.39561 0.019551 

YLR410W-B YLR410W-B _NVSRTS(ph)PNTTNTK_ 0.72502 0.20257 

YLR410W-B YLR410W-B _ESTEM(ox)GGTIESDTTS(ph)PR_ 0.27765 0.0026984 
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YLR413W YLR413W _IIEEHES(ph)PIDAEK_ 0.076251 3.1918E-08 

YLR413W YLR413W _AVQESDS(ph)TTSR_ 0.062093 2.856E-09 

YLR421C RPN13 _M(ox)IGVLNNSSES(ph)DEEESNDEK_ 0.62371 0.12751 

YLR429W CRN1 _SSDIDQVNNAEDPSRDTSGWEEADDEPAPIKIETPVT(ph)PTE

TK_ 

1.6993 0.23419 

YLR429W CRN1 _SASS(ph)SSTINHVLKEDNSINK_ 1.3041 0.38557 

YLR429W CRN1 _DTSGWEEADDEPAPIKIET(ph)PVTPTETKK_ 1.1116 0.48849 

YLR429W CRN1 _SASSSS(ph)TINHVLKEDNSINK_ 1.0003 0.42913 

YML008C ERG6 _KPENAETPS(ph)QTSQEATQ_ 1.8859 0.18512 

YML008C ERG6 _KPENAETPSQTS(ph)QEATQ_ 1.7813 0.21116 

YML008C ERG6 _KPENAET(ph)PSQTSQEATQ_ 1.1569 0.46242 

YML029W USA1 _S(ph)QSPVSFAPTQGR_ 0.9809 0.41355 

YML034W SRC1 _HLNLLSSDS(ph)EIEQDYQK_ 2.2988 0.11108 

YML034W SRC1 _HLNLLS(ph)SDSEIEQDYQK_ 1.9169 0.17806 

YML035C AMD1 _KIGDEQAGVVVDDET(ph)PPLEQQDSHESLAADSR_ 3.5797 0.025744 

YML035C AMD1 _KIGDEQAGVVVDDETPPLEQQDS(ph)HESLAADSR_ 1.7754 0.21273 

YML035C AMD1 _LNDLSLEPAPSHDEQDGS(ph)GLVIDIDQR_ 0.9877 0.41903 

YML052W SUR7 _SHERPDDVS(ph)V_ 0.92637 0.36896 

YML052W SUR7 
_EKEQATDPILTATGPEDMQQS(ph)ASIVGPSSNANPVTATAA

TENQPK_ 
0.79557 0.25985 

YML057W CMP2 _TERPQSSTT(ph)PIDSK_ 2.9359 0.052388 

YML057W CMP2 _SEATPQPATSAS(ph)PK_ 1.4213 0.33287 

YML062C MFT1 _DGLLNEAEGDNIDEDYES(ph)DEDEERKER_ 1.0103 0.43709 

YML062C MFT1 _DGLLNEAEGDNIDEDY(ph)ESDEDEERKER_ 0.60797 0.11699 

YML072C TCB3 _TSNS(ph)VSDVSK_ 1.5363 0.28785 

YML072C TCB3 _SPSNLNSTSVT(ph)PR_ 1.023 0.44708 

YML093W UTP14 _TAQSNGNDDEDAS(ph)PQLK_ 0.87053 0.32243 

YML100W TSL1 _IAS(ph)PIQHEHDSGSR_ 9.1531 0.00024373 

YML101C CUE4 _TVQDAKPAPSVATNDPS(ph)PEPVPSAPEER_ 3.2151 0.038265 
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YML111W BUL2 _SAS(ph)TTNLDR_ 0.96843 0.40346 

YML111W BUL2 _IDDTASQS(ph)PSYDSK_ 0.92652 0.36909 

YML111W BUL2 _ASDSQDDDIRSASTT(ph)NLDR_ 0.89209 0.34046 

YML112W CTK3 _DSITSSSTTT(ph)PPSSQQK_ 0.69911 0.18236 

YML112W CTK3 _DSITSS(ph)ST(ph)TTPPSSQQK_ 0.65187 0.1472 

YML115C VAN1 _AM(ox)DNGLSLPIS(ph)R_ 1.1162 0.48581 

YML117W NAB6 _SSS(ph)QTVINSK_ 1.8685 0.18921 

YMR004W MVP1 _HLIALPS(ph)TSPSEER_ 1.6162 0.26018 

YMR005W TAF4 _ANS(ph)PKKPSDGTGVSASDTPK_ 1.0135 0.43963 

YMR010W YMR010W _ALKQDSNDT(ph)SDSPQDDQVGK_ 1.8104 0.20356 

YMR012W CLU1 _DDVKPELANKS(ph)VDELLTFIEGDSSNSK_ 2.4121 0.096841 

YMR014W BUD22 _ETTS(ph)DNEDLLIK_ 0.58634 0.10316 

YMR031C EIS1 _NNS(ph)ITSATSK_ 0.79639 0.26052 

YMR031C EIS1 _EATETSSAVQTKEPEEKIS(ph)IGNK_ 0.73529 0.21073 

YMR031C EIS1 _EATETSS(ph)AVQTK_ 0.72291 0.20091 

YMR031C EIS1 _NNSITS(ph)ATSK_ 0.54239 0.077507 

YMR039C SUB1 _LLS(ph)DDEYEDDNNNDSTNNDKDKNGK_ 0.98693 0.41841 

YMR039C SUB1 _LLSDDEY(ph)EDDNNNDSTNNDKDKNGK_ 0.81613 0.27693 

YMR049C ERB1 _RAASEES(ph)DVEEDEDK_ 0.7835 0.24988 

YMR054W STV1 _NQS(ph)VEDLSFLEQGYQHR_ 1.3436 0.36701 

YMR086W SEG1 _NLENDTTSS(ph)PTQDLDEK_ 1.2555 0.40963 

YMR104C YPK2 _SKEDDGSS(ph)EDENEK_ 4.2998 0.012285 

YMR104C YPK2 _KASQSST(ph)ETQGPSSESGLM(ox)TVK_ 2.3243 0.10769 

YMR109W MYO5 _RGS(ph)VYHVPLNIVQADAVR_ 0.84702 0.30274 

YMR111C YMR111C _IKPEPGLSDFENGEYDGNES(ph)DENATTR_ 1.0708 0.48393 

YMR139W RIM11 _QLKPTEPNVSY(ph)ICSR_ 0.93111 0.37288 

YMR140W SIP5 _NT(ph)SHSITPIHDESTSASR_ 0.79682 0.26088 

YMR152W YIM1 _DFVSLS(ph)S(ph)ILKAINPFK_ 1.3907 0.34594 

YMR192W GYL1 _IALRDEIS(ph)VPEGDEK_ 1.5384 0.28709 
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YMR196W YMR196W _S(ph)SVATTASTESSEQGPK_ 1.2692 0.4027 

YMR196W YMR196W _IGGTHSGLT(ph)PQSSISSDK_ 1.1326 0.47629 

YMR196W YMR196W _IGGTHSGLTPQSSIS(ph)SDKAR_ 0.5598 0.087254 

YMR196W YMR196W _SSVATTAS(ph)TES(ph)SEQGPK_ 0.23781 0.00097728 

YMR205C PFK2 _VHS(ph)YTDLAYR_ 0.83526 0.2929 

YMR205C PFK2 _VHSYT(ph)DLAYR_ 0.79357 0.25818 

YMR212C EFR3 _DNQIST(ph)SDLLSDSQVR_ 1.2641 0.40528 

YMR212C EFR3 _TATGENQNDDFKDANEDLHS(ph)LSSR_ 0.97246 0.40673 

YMR216C SKY1 _NSNNS(ph)FLNSVPHSVTR_ 1.1374 0.47353 

YMR219W ESC1 _SVESDLHEHS(ph)PDNLYDLAAR_ 1.0003 0.42911 

YMR219W ESC1 _NLS(ph)DLENYSQR_ 0.56631 0.091044 

YMR221C YMR221C _LIEGDTGS(ph)GIIPDEQER_ 1.0326 0.45459 

YMR224C MRE11 _TGS(ph)PDITQSHVDNESR_ 2.0329 0.15406 

YMR261C TPS3 _VCS(ph)PSQEASASSISASR_ 1.7079 0.23167 

YMR261C TPS3 _NPNLSFDS(ph)HPPR_ 1.6509 0.24899 

YMR285C NGL2 _DQPES(ph)PVPEKFHANEEQSELVDK_ 1.9568 0.16939 

YMR290C HAS1 _SRDS(ph)ESTEEPVVDEK_ 1.0785 0.48977 

YMR295C YMR295C _KKS(ph)SISNTSDHDGANR_ 1.1553 0.46332 

YMR295C YMR295C _KSS(ph)ISNTSDHDGANR_ 0.74976 0.22235 

YMR295C YMR295C _SSISNTS(ph)DHDGANR_ 0.56028 0.087532 

YMR300C ADE4 _RES(ph)IANNSSDM(ox)K_ 0.49024 0.051826 

YMR311C GLC8 _ENKQPDFETNDENDEDS(ph)PEAR_ 0.87358 0.32498 

YMR311C GLC8 _GGILKNPLALS(ph)PEQLAQQDPETLEEFRR_ 0.10413 8.9962E-07 

YNL004W HRB1 _ESVHNHS(ph)DGDDVDIPM(ox)DDSPVNEEAR_ 0.91923 0.36305 

YNL015W PBI2 _HNDVIENVEEDKEVHT(ph)N_ 4.3135 0.01212 

YNL027W CRZ1 _SIS(ph)PDEKAK_ 0.81309 0.2744 

YNL035C YNL035C _KMNVLGDDDREGS(ph)INLDEPLIIQK_ 3.3937 0.031451 

YNL039W BDP1 _EIEEDNS(ph)DNDKGVDENETAIVEKPSLVGER_ 0.59107 0.10612 

YNL069C RPL16B _KVSSASAAAS(ph)ESDVAK_ 1.2636 0.4055 
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YNL074C MLF3 _SNSNNSNPS(ph)FIFER_ 1.0111 0.43772 

YNL074C MLF3 _SNSNNS(ph)NPSFIFER_ 0.82697 0.28597 

YNL074C MLF3 _T(ph)NSATLPSSESSPASPDLK_ 0.7319 0.20803 

YNL074C MLF3 _KNSNNVS(ph)SPLDNVIPTSR_ 0.70262 0.18507 

YNL085W MKT1 _S(ph)NLSSPSS(ph)ASSSASPATTVTK_ 0.95284 0.39075 

YNL085W MKT1 _SNLSSPSSAS(ph)SSAS(ph)PATTVTK_ 0.70285 0.18525 

YNL088W TOP2 _M(ox)GSTSATS(ph)KENT(ph)PEQDDVATKK_ 1.9986 0.16079 

YNL088W TOP2 _MGSTS(ph)ATSKENT(ph)PEQDDVATKK_ 1.9826 0.16402 

YNL088W TOP2 _MGSTS(ph)ATSKENT(ph)PEQDDVATKK_ 1.9667 0.1673 

YNL098C RAS2 _QAINVEEAFY(ph)T(ph)LARLVR_ 11.479 0.000056917 

YNL098C RAS2 _NVNSS(ph)TTVVNAR_ 2.7132 0.067755 

YNL098C RAS2 _GSGANSVPRNS(ph)GGHR_ 1.5662 0.27717 

YNL112W DBP2 _DRSDS(ph)EIAQFR_ 0.74216 0.21623 

YNL113W RPC19 _HIQEEEEQDVDMT(ph)GDEEQEEEPDREK_ 0.78962 0.25492 

YNL118C DCP2 _NPISSTVSSNQQS(ph)PK_ 0.35102 0.010554 

YNL118C DCP2 _RNS(ph)VSKPQNSEENASTSSINDANASELLGMLK_ 0.20156 0.00029844 

YNL121C TOM70 _RAS(ph)ANEGLGK_ 3.0275 0.047206 

YNL121C TOM70 _FGDIDTATATPT(ph)ELSTQPAK_ 2.1466 0.13384 

YNL121C TOM70 _FGDIDTATAT(ph)PTELSTQPAKER_ 1.6825 0.23924 

YNL121C TOM70 _STAPSNPPIYPVSS(ph)NGEPDFSNK_ 1.4772 0.31021 

YNL124W NAF1 _NKGTDASNGYDEELPEEEQEFS(ph)DDEKEALFK_ 0.81031 0.27208 

YNL149C PGA2 _RRNQGLDPDS(ph)DADIEELLEE_ 0.68524 0.1718 

YNL151C RPC31 _LKELAEDVDDAS(ph)TGDGAAK_ 0.82348 0.28306 

YNL154C YCK2 _YQLQPDDS(ph)HYDEEREASKLDPTSYEAYQQQTQQK_ 1.2168 0.42969 

YNL157W IGO1 _KYFDS(ph)GDYALQK_ 1.4986 0.3019 

YNL166C BNI5 _LADQTPHDDNSENCPNRS(ph)GGS(ph)TPLDSQTK_ 1.1777 0.45079 

YNL166C BNI5 _SGGST(ph)PLDSQTK_ 1.1187 0.48432 

YNL166C BNI5 _LADQT(ph)PHDDNSENCPNR_ 0.98594 0.41761 

YNL166C BNI5 _LADQTPHDDNSENCPNRS(ph)GGS(ph)TPLDSQTK_ 0.57697 0.097408 
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YNL173C MDG1 _SIFSQEVVELPDS(ph)EDETQQVNK_ 0.95899 0.39578 

YNL175C NOP13 _SGASEKDAQGEES(ph)TINT(ph)PTGDESGEVVK_ 2.0049 0.15952 

YNL178W RPS3 _EEEPILAPS(ph)VK_ 1.0442 0.46359 

YNL183C NPR1 _NKS(ph)SSHIGSVSNSSSSDR_ 1.0275 0.45062 

YNL183C NPR1 _ASM(ox)DSNNANATQS(ph)R_ 0.68041 0.16816 

YNL197C WHI3 _FM(ox)QQPQPEHM(ox)YPVNQSNT(ph)PQKVPPAR_ 2.0971 0.14228 

YNL206C RTT106 _DNS(ph)FASINGQPEQELQYK_ 1.0888 0.49745 

YNL212W VID27 _SSLTAS(ph)ADDLKEIEHR_ 1.7493 0.21985 

YNL231C PDR16 _LLYPVKS(ph)ESST(ph)V_ 2.1366 0.1355 

YNL231C PDR16 _LLYPVKSESS(ph)T(ph)V_ 1.9173 0.17796 

YNL231C PDR16 _LLYPVKSESS(ph)TV_ 0.82982 0.28836 

YNL243W SLA2 _T(ph)PTPTPPVVAEPAIS(ph)PRPVSQR_ 0.29833 0.0041894 

YNL246W VPS75 _M(ox)M(ox)S(ph)DQENENEHAK_ 0.75517 0.22672 

YNL247W YNL247W _GQLDLINDGEGS(ph)LSNFADNGKK_ 1.5029 0.30028 

YNL271C BNI1 _GGAENNTS(ph)AS(ph)TLPGDR_ 1.0704 0.48365 

YNL271C BNI1 _GGAENNTS(ph)AST(ph)LPGDR_ 1.0686 0.48226 

YNL272C SEC2 _IGPLVEDDS(ph)DEDQNDAISVR_ 1.175 0.45229 

YNL287W SEC21 _SETTLDTT(ph)PEAESVPEKR_ 3.3235 0.033958 

YNL287W SEC21 _ADANS(ph)FAGPNLDDHQEDLLATK_ 2.0043 0.15965 

YNL297C MON2 _NISTSSVTT(ph)S(ph)PVESTKNPSR_ 0.87674 0.32763 

YNL307C MCK1 _KLEHNQPSISY(ph)ICSR_ 1.1728 0.4535 

YNL308C KRI1 _EVS(ph)PESFGLTAR_ 0.64147 0.1398 

YNL321W VNX1 _SHSVPDLNTATPSS(ph)PK_ 0.62961 0.13154 

YNL323W LEM3 _GAIVSGDNPEEEEDVDAS(ph)EFEEDEVKPVR_ 0.91485 0.35941 

YNL330C RPD3 _DAEDLGDVEEDS(ph)AEAKDTK_ 2.9606 0.050933 

YNR002C ATO2 _HSQES(ph)ICK_ 0.17255 0.000088884 

YNR016C ACC1 _AVS(ph)VSDLSYVANSQSSPLR_ 1.2464 0.41425 

YNR019W ARE2 _KSS(ph)PDAVDSVGK_ 3.0341 0.046859 

YNR019W ARE2 _S(ph)SPDAVDSVGK_ 1.2277 0.42392 
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YNR024W MPP6 _DKEFTGS(ph)QDDGEDEYDLDKLFK_ 0.99354 0.42372 

YNR047W FPK1 _T(ph)NSFVGTEEYIAPEVIR_ 1.133 0.47606 

YNR051C BRE5 _EGS(ph)VEAINAVNNSSLPNGK_ 1.8805 0.18639 

YNR051C BRE5 _ESGNNASTPS(ph)SSPEPVANPPK_ 1.841 0.19586 

YNR051C BRE5 _ESGNNAST(ph)PSS(ph)SPEPVANPPK_ 0.92034 0.36397 

YNR051C BRE5 _ESGNNAS(ph)TPSSS(ph)PEPVANPPK_ 0.83041 0.28884 

YNR052C POP2 _QASEQHQQQNMGPQVYS(ph)PK_ 1.0431 0.46274 

YNR067C DSE4 _VS(ph)AASHSPLSVSPK_ 2.2911 0.11212 

YOL004W SIN3 _VTTPM(ox)GTTTVNNNIS(ph)PSGR_ 1.223 0.42644 

YOL004W SIN3 _IECSSNPDDPIRVTT(ph)PM(ox)GTTTVNNNIS(ph)PSGR_ 1.152 0.46517 

YOL006C TOP1 _IKTEPVQSSSLPS(ph)PPAKK_ 0.76343 0.23343 

YOL006C TOP1 _VASMNSASLQDEAEPYDS(ph)DEAISK_ 0.64898 0.14513 

YOL016C CMK2 _NMYSLGDDGDNDIEENS(ph)LNESLLDGVTHSLDDLR_ 1.3172 0.37935 

YOL041C NOP12 _KLFGTNPIAETEES(ph)GNEKEEESSK_ 0.80662 0.26901 

YOL054W PSH1 _HVIIT(ph)DDEEEEQRR_ 1.5156 0.29549 

YOL054W PSH1 _NSALAVADDS(ph)DDGITR_ 1.2261 0.42478 

YOL054W PSH1 _NYAGGRDEFDEEEYS(ph)EGELDEIR_ 1.0414 0.46144 

YOL059W GPD2 _RS(ph)DSAVSIVHLK_ 0.85023 0.30543 

YOL059W GPD2 _SDS(ph)AVSIVHLK_ 0.75179 0.22398 

YOL060C MAM3 _AADQADESS(ph)PLLSPSNSNHPSEHPQQDLNNK_ 2.2184 0.12253 

YOL060C MAM3 _TIIGPAKDWDESKS(ph)EYGNENINQENSNR_ 1.0928 0.49965 

YOL060C MAM3 _AADQADESSPLLS(ph)PSNSNHPSEHPQQDLNNK_ 0.55232 0.083 

YOL086C ADH1 _GLVKS(ph)PIKVVGLSTLPEIYEK_ 3.6018 0.025145 

YOL086C ADH1 _SIS(ph)IVGSYVGNR_ 0.571 0.093817 

YOL109W ZEO1 _NEAT(ph)PEAEQVKKEEQNIADGVEQK_ 0.82189 0.28173 

YOL109W ZEO1 _EQAEAS(ph)IDNLK_ 0.81658 0.2773 

YOL109W ZEO1 _LEETKES(ph)LQNK_ 0.61278 0.12017 

YOL137W BSC6 _RNS(ph)QDEDSLPNNTNLIK_ 0.91074 0.356 

YOL139C CDC33 _TVLSDS(ph)AHFDVKHPLNTK_ 3.8632 0.019113 
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YOL139C CDC33 _KFEENVSVDDTTAT(ph)PK_ 1.2934 0.39076 

YOL144W NOP8 _LIEDS(ph)DNDIDHAK_ 0.66587 0.15736 

YOR027W STI1 _KDAEPQS(ph)DSTTSKENSSK_ 1.3423 0.36759 

YOR039W CKB2 _SENVGTVT(ph)R_ 2.1731 0.12953 

YOR042W CUE5 _DGT(ph)PKVEEK_ 3.4711 0.028924 

YOR042W CUE5 _RQT(ph)QLEQDELLAR_ 2.7156 0.067565 

YOR042W CUE5 _SNVPES(ph)INEDISK_ 1.9582 0.1691 

YOR042W CUE5 _VVAETTYIDT(ph)PDT(ph)ETK_ 1.7779 0.21207 

YOR042W CUE5 _TTDVDLNS(ph)DGKKDNDTSAK_ 1.6582 0.2467 

YOR042W CUE5 _EQHHEDS(ph)EEEDSWSQFVEK_ 1.6245 0.25745 

YOR042W CUE5 _VVAETTYIDT(ph)PDTETK_ 1.4369 0.32637 

YOR042W CUE5 _NKKNPDEDEFLINS(ph)DDEM_ 1.3868 0.34765 

YOR042W CUE5 _WQPLPPEPLDTT(ph)PTKVNAVSR_ 1.1807 0.44919 

YOR046C DBP5 _LADIQADPNS(ph)PLYSAK_ 1.3535 0.36247 

YOR051C ETT1 _KSDEPS(ph)REST(ph)PVR_ 1.0532 0.47053 

YOR051C ETT1 _KSDEPS(ph)REST(ph)PVR_ 1.01 0.43679 

YOR051C ETT1 _S(ph)DEPSREST(ph)PVR_ 0.66763 0.15866 

YOR078W BUD21 _HVTFDKLDES(ph)DENEEALAK_ 0.92255 0.3658 

YOR089C VPS21 _TAEEQNS(ph)ASNER_ 1.4474 0.3221 

YOR089C VPS21 _TAEEQNSASNERES(ph)NNQR_ 0.96207 0.39829 

YOR092W ECM3 _TNHVDAQS(ph)VSELNDPTYR_ 1.367 0.35638 

YOR124C UBP2 _KKNESNDAEVS(ph)ENEDTTGLTSPTR_ 1.8985 0.18221 

YOR140W SFL1 _SLGSTSS(ph)LPNDR_ 1.1233 0.48165 

YOR140W SFL1 _SSSTT(ph)NIPSR_ 0.93995 0.38017 

YOR140W SFL1 _NSS(ph)GDENTGGGVQEK_ 0.65545 0.14977 

YOR140W SFL1 _KNSS(ph)NQNYDIDSGAR_ 0.49575 0.054278 

YOR141C ARP8 _APPAVQT(ph)SK_ 1.7957 0.20737 

YOR145C PNO1 _IIGINNTESIDEDDDDDVLLDDS(ph)DNNTAKEEVEGEEGSR_ 0.13812 0.000013296 

YOR153W PDR5 _NANDPENVGERS(ph)DLSSDRK_ 0.42381 0.027226 
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YOR171C LCB4 _GCLTFEPNPS(ph)PNSS(ph)PDLLSK_ 0.54155 0.077053 

YOR175C ALE1 _DISASS(ph)PNLGGILK_ 0.69335 0.17795 

YOR189W IES4 _IEDTSPPS(ph)ANSR_ 2.6104 0.076451 

YOR189W IES4 _IEDTS(ph)PPSANSR_ 1.4445 0.32325 

YOR198C BFR1 _KVVADDLVLVT(ph)PK_ 1.517 0.29498 

YOR204W DED1 _DAMMS(ph)APGS(ph)R_ 2.0617 0.14865 

YOR204W DED1 _DAMM(ox)SAPGS(ph)R_ 1.4363 0.32661 

YOR204W DED1 _VGS(ph)TSENITQK_ 1.4343 0.32745 

YOR206W NOC2 _YLEENDKDLLDFAGTNPLDGIDS(ph)QDEGEDAER_ 0.61455 0.12135 

YOR216C RUD3 _M(ox)STDPEADGIVAS(ph)PDDEGKDLSEGVDKQK_ 1.8017 0.2058 

YOR217W RFC1 _KMPVSNVIDVSET(ph)PEGEK_ 2.3853 0.10003 

YOR217W RFC1 _QVGSSKPEVIDLDTES(ph)DQESTNKTPK_ 0.93535 0.37638 

YOR220W RCN2 _SSQTS(ph)LPSQLENKDK_ 2.4557 0.091906 

YOR220W RCN2 _NKPLLSINT(ph)DPGVTGVDSSSLNK_ 2.3849 0.10008 

YOR220W RCN2 _GGSSLSPDKSSLES(ph)PTMLK_ 1.623 0.25794 

YOR220W RCN2 _SSS(ph)STSNLSLNR_ 1.2659 0.40436 

YOR220W RCN2 _SRS(ph)TDDAVSLQDNNLALLEDHR_ 1.2243 0.42573 

YOR220W RCN2 _GGSSLS(ph)PDKSSLES(ph)PTM(ox)LK_ 0.79209 0.25696 

YOR227W HER1 _IS(ph)TPTST(ph)PTTASSKPSSSGGNR_ 1.0152 0.44096 

YOR229W WTM2 _S(ph)AATPNPEYGDAFQDVEGKPLRPK_ 4.7505 0.0079408 

YOR239W ABP140 _TAEKPLETNLPKPETNEEDEEEGS(ph)M(ox)SENK_ 1.218 0.42906 

YOR239W ABP140 _TAEKPLETNLPKPET(ph)NEEDEEEGSM(ox)SENK_ 1.0918 0.49971 

YOR239W ABP140 _SDFEKS(ph)DTEGSR_ 0.75045 0.2229 

YOR261C RPN8 _VSDDS(ph)ESESGDKEAT(ph)APLIQR_ 2.5507 0.082055 

YOR261C RPN8 _VSDDSES(ph)ESGDKEATAPLIQR_ 1.502 0.30063 

YOR261C RPN8 _VSDDS(ph)ESESGDKEATAPLIQR_ 1.4073 0.33877 

YOR265W RBL2 _S(ph)AITSAQELLDSK_ 1.456 0.3186 

YOR267C HRK1 _FLNHSDCS(ph)AINQQQPAHESNLK_ 2.6473 0.073198 

YOR267C HRK1 _ST(ph)STVNLNNHYR_ 0.63987 0.13868 
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YOR267C HRK1 _STS(ph)TVNLNNHYR_ 0.52344 0.067553 

YOR273C TPO4 _PSSLT(ph)KTES(ph)NSDPR_ 0.2933 0.0037818 

YOR276W CAF20 _KKGS(ph)GEDDEEETETTPTSTVPVATIAQETLK_ 1.4145 0.33571 

YOR276W CAF20 _KKGS(ph)GEDDEEETETTPTSTVPVATIAQETLK_ 1.1077 0.4908 

YOR276W CAF20 _KKGSGEDDEEETET(ph)TPTSTVPVATIAQETLK_ 0.85175 0.3067 

YOR276W CAF20 _GSGEDDEEETETT(ph)PTSTVPVATIAQETLK_ 0.80877 0.2708 

YOR276W CAF20 _DIVADKPILGFNAFAALES(ph)EDEDDEA_ 0.60842 0.11729 

YOR287C RRP36 _EIDEQES(ph)S(ph)DDELK_ 0.37274 0.014479 

YOR290C SNF2 _NAPLDSKDENFASVS(ph)PAGPSSVHNAK_ 0.9559 0.39325 

YOR298C-A MBF1 _LRGNNIGS(ph)PLGAPK_ 1.5973 0.26646 

YOR304W ISW2 _TSATREDT(ph)PLSQNESTR_ 1.7087 0.23142 

YOR304W ISW2 _NEGS(ph)DAEEEEGEYKNAANTEGHK_ 1.0922 0.5 

YOR308C SNU66 _VKVNFDS(ph)ANNM(ox)SDEDGGDFKPLK_ 1.0807 0.49141 

YOR352W TFB6 _RLS(ph)M(ox)SQQSK_ 0.65737 0.15116 

YPL004C LSP1 _ALLELLDDS(ph)PVTPGEAR_ 2.0541 0.15006 

YPL009C TAE2 _HCTISS(ph)DTDSDSGNAK_ 0.7852 0.25127 

YPL015C HST2 _LNGHDS(ph)DEDGASNSSSSQK_ 1.0367 0.45775 

YPL019C VTC3 _SNSLSSDGNS(ph)NQDVEIGK_ 0.95014 0.38854 

YPL030W TRM44 _KFEIDNGNES(ph)GEEDVKK_ 0.87353 0.32494 

YPL032C SVL3 _KPS(ph)FPQLQQSANVR_ 0.98765 0.41899 

YPL049C DIG1 _VNDSYDS(ph)PLSGTASTGK_ 0.75396 0.22574 

YPL058C PDR12 _S(ph)LLHYLR_ 2.5303 0.084068 

YPL058C PDR12 _KEMDS(ph)FEINDLDFDLR_ 2.4345 0.094272 

YPL058C PDR12 _SNHDDDYANSVQS(ph)YAASEGQVDNEDLAATSQLSR_ 1.4588 0.31748 

YPL058C PDR12 _SNHDDDYANS(ph)VQSYAASEGQVDNEDLAATSQLSR_ 1.3151 0.38033 

YPL058C PDR12 _SNHDDDYANSVQSYAAS(ph)EGQVDNEDLAATSQLSR_ 1.301 0.38709 

YPL058C PDR12 _HLSNILS(ph)NEEGIER_ 1.0521 0.46971 

YPL058C PDR12 _HLS(ph)NILSNEEGIER_ 0.99708 0.42654 

YPL061W ALD6 _SVAVDSSES(ph)NLKK_ 2.2932 0.11184 
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YPL070W MUK1 _SNS(ph)YDGFR_ 1.2592 0.40775 

YPL075W GCR1 _FKLDDKPTPS(ph)QTALDSLLTK_ 1.0522 0.46976 

YPL075W GCR1 _KVNEDS(ph)PSSSSK_ 0.97108 0.40561 

YPL081W RPS9A _KAEAS(ph)GEAADEADEADEE_ 0.99614 0.42579 

YPL085W SEC16 _SSEEQPENIS(ph)K_ 1.9577 0.1692 

YPL085W SEC16 _NSGDDTSM(ox)LFQDDES(ph)DQKVPWEEDVKK_ 1.3616 0.35881 

YPL085W SEC16 _KGS(ph)NNSNRPPVIPLGTQEPR_ 1.1884 0.44495 

YPL085W SEC16 _SDVPPVSS(ph)STNISPANETQLEIPDTQELHHK_ 1.1048 0.49253 

YPL085W SEC16 _AFKPLESDADKYNDVIEDES(ph)DDDNM(ox)STDEAK_ 1.0882 0.49699 

YPL112C PEX25 _DDGS(ph)QSPIRK_ 1.2545 0.41012 

YPL112C PEX25 _DDGSQS(ph)PIR_ 0.98939 0.42038 

YPL112C PEX25 _FSAGSGSESHTESSRS(ph)DDEDSQAK_ 0.77174 0.24022 

YPL137C GIP3 _SSS(ph)VSNAALCNTEKPDLK_ 0.78238 0.24895 

YPL137C GIP3 _GVAPTAS(ph)KPQT(ph)PILPSPALAVK_ 0.58406 0.10174 

YPL155C KIP2 _RSDS(ph)INNNSR_ 0.91402 0.35872 

YPL169C MEX67 _AYS(ph)TGAWKTASIAIAQPPQQQASVLPQVASM(ox)NPNIT

TPPQPQPS(ph)VVPGGMSIPGAPQGAMVM(ox)APT(ph)LQLPP

DVQS(ph)R_ 

2.4324 0.094511 

YPL181W CTI6 _SHAANEAEKS(ph)PR_ 1.3888 0.34677 

YPL181W CTI6 _RNS(ph)M(ox)DDASTDQYSLDPGDSDKK_ 0.99345 0.42364 

YPL190C NAB3 _GEENGEVINT(ph)EEEEEEEHQQK_ 1.0463 0.4652 

YPL195W APL5 _AKNS(ph)PEPNEFLRDQSTDI_ 0.97441 0.40831 

YPL198W RPL7B _ILT(ph)PESQLK_ 1.9652 0.16762 

YPL217C BMS1 _IYGKPVQEEDADIDNLPS(ph)DEEPYTNDDDVQDSEPR_ 0.75213 0.22426 

YPL226W NEW1 _GTPKPVDT(ph)DDEED_ 0.81899 0.27931 

YPL228W CET1 _NLLSNGS(ph)PPM(ox)NDGSDANAK_ 0.83647 0.29391 

YPL228W CET1 _ALS(ph)LDDLVNHDENEKVK_ 0.55397 0.083931 

YPL237W SUI3 _AGLDNVDAES(ph)K_ 1.5151 0.29566 

YPL242C IQG1 _KFTPIEPSLLGPTPS(ph)LEYSPIKNK_ 1.5724 0.27499 
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YPL247C YPL247C _RNS(ph)GCDLSATYYASR_ 0.99561 0.42537 

YPL249C GYP5 _EVVSS(ph)PENR_ 2.8248 0.059515 

YPL249C GYP5 _EVVS(ph)S(ph)PENR_ 1.6382 0.25303 

YPL260W YPL260W _NSS(ph)PAYDEDGNDDRLR_ 2.8559 0.057421 

YPL263C KEL3 _SLNGEEDDES(ph)DQDLDEILSSFSKK_ 1.0827 0.49291 

YPR016C TIF6 _LQDAQPES(ph)ISGNLR_ 1.4707 0.31274 

YPR041W TIF5 _SQNAPSDGTGSST(ph)PQHHDEDEDELSR_ 2.1398 0.13496 

YPR041W TIF5 _SQNAPSDGT(ph)GSSTPQHHDEDEDELS(ph)R_ 1.969 0.16682 

YPR041W TIF5 _SQNAPSDGT(ph)GS(ph)STPQHHDEDEDELSR_ 1.8515 0.1933 

YPR041W TIF5 _SQNAPSDGT(ph)GS(ph)STPQHHDEDEDELSR_ 1.7914 0.20848 

YPR041W TIF5 _GGGLS(ph)ISDIAQGK_ 1.102 0.4942 

YPR041W TIF5 _AAKPFITWLETAES(ph)DDDEEDDE_ 0.87596 0.32698 

YPR072W NOT5 _DVS(ph)ISDR_ 1.0672 0.4812 

YPR072W NOT5 _YLM(ox)QPLQEM(ox)S(ph)PK_ 0.72368 0.20151 

YPR079W MRL1 _LRS(ph)SPSAS(ph)SSSLANR_ 1.0477 0.46631 

YPR079W MRL1 _LRSSPSASSS(ph)SLANR_ 0.97937 0.41232 

YPR091C NVJ2 _WYKDNVGNS(ph)SDTEDMDEIDVQDKK_ 1.2114 0.43255 

YPR091C NVJ2 _WYKDNVGNSS(ph)DTEDMDEIDVQDKK_ 1.0891 0.49765 

YPR105C COG4 _NEDVNIDS(ph)NQSDIET(ph)DGETEK_ 1.206 0.43544 

YPR108W RPN7 _VDVEEKSQEVEY(ph)VDPTVNRVPNYEVSEK_ 1.98 0.16456 

YPR108W RPN7 _VDVEEKS(ph)QEVEYVDPTVNRVPNYEVSEK_ 1.748 0.22021 

YPR115W RGC1 _T(ph)YSAENVPLTSTVSNDK_ 1.6334 0.25456 

YPR124W CTR1 _VAIS(ph)ENNQK_ 0.6307 0.1323 

YPR124W CTR1 _NNES(ph)KVAISENNQK_ 0.62433 0.12793 

YPR133C SPN1 _DRDSS(ph)ATPSSR_ 2.6127 0.076246 

YPR133C SPN1 _HISTDFS(ph)DDDLEKEEHNDQSLQPTVENR_ 0.99552 0.42529 

YPR160W GPH1 _RLT(ph)GFLPQEIK_ 2.7934 0.061719 

YPR160W GPH1 _PPASTSTTNDMITEEPTS(ph)PHQIPR_ 2.48 0.089268 

YPR160W GPH1 _PPASTSTTNDM(ox)ITEEPT(ph)SPHQIPR_ 2.2622 0.11614 
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YPR161C SGV1 _GHIVEKGES(ph)PVVK_ 1.2581 0.40827 

YPR161C SGV1 _YT(ph)SVVVTR_ 0.92214 0.36546 

YPR163C TIF3 _SGGFGGS(ph)FGGR_ 1.1145 0.48677 

YPR185W ATG13 _SPLQPQES(ph)QEDLMDFVK_ 1.4105 0.33741 

YPR185W ATG13 _GGGNSS(ph)TSALNSR_ 1.1784 0.45043 
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Table 3.5. Analysis of strain fitness in liquid normal (SC) media.   

  OD660      

Strain 
Time 

(hrs) 
0 2.5 5.5 8.75 12 14.5 

        
825x337   0.183 0.366 1.365 3.015 10.050 13.680 

bud6Δ/Δ   0.061 0.225 0.725 2.265 6.450 11.025 

hxt1Δ/Δ   0.138 0.235 0.742 2.195 13.100 21.255 

itr1Δ/Δ   0.137 0.223 0.569 1.617 8.260 14.925 

lrg1Δ/Δ   0.111 0.189 0.660 1.709 12.770 21.450 

mds3Δ/Δ  0.129 0.236 0.659 2.093 11.710 16.200 

npr3Δ/Δ   0.122 0.233 0.639 1.842 12.090 19.350 

pda1Δ/Δ   0.109 0.123 0.301 0.833 2.425 5.120 

pdr5Δ/Δ   0.087 0.156 0.358 1.602 4.105 9.440 

prb1Δ/Δ   0.113 0.151 0.378 1.526 4.030 9.140 

ptr2Δ/Δ   0.111 0.181 0.436 1.406 4.200 9.490 

rbs1Δ/Δ   0.117 0.223 0.400 1.740 4.425 9.950 

rck2Δ/Δ   0.092 0.247 0.549 2.060 5.335 9.640 

scp160Δ/Δ   0.106 0.175 0.453 1.492 4.150 8.790 

tpo4Δ/Δ   0.098 0.160 0.364 1.520 5.340 11.280 

bud6-S347A  0.120 0.213 0.542 1.729 6.960 10.440 

itr1-S26A  0.110 0.266 0.637 1.961 6.150 11.950 

lrg1-S605A  0.128 0.215 0.530 1.690 5.855 12.940 

npr3-S486A  0.103 0.197 0.498 1.640 5.230 15.600 

pda1-Y309A  0.102 0.146 0.364 1.003 2.820 7.710 

pda1-S313A   0.112 0.194 0.459 1.528 4.840 11.820 

pda1-Y309A-

S313A 

 0.104 0.204 0.537 1.694 5.400 14.400 
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Table 3.6. Analysis of strain fitness in liquid low nitrogen (SLAD) media.  

  OD660      

Strain 
Time 

(hrs) 
0 2.5 5.5 8.75 12 14.5 

        

825x337   0.149 0.373 1.130 2.199 6.870 7.410 

bud6Δ/Δ   0.085 0.199 0.646 1.643 3.100 3.830 

hxt1Δ/Δ   0.124 0.207 0.570 1.238 2.650 3.910 

itr1Δ/Δ   0.143 0.183 0.429 0.879 1.370 2.490 

lrg1Δ/Δ   0.171 0.237 0.544 1.038 3.210 3.140 

mds3Δ/Δ  0.134 0.202 0.567 1.331 2.400 3.530 

npr3Δ/Δ   0.120 0.171 0.312 0.443 1.370 2.900 

pda1Δ/Δ   0.127 0.167 0.210 0.214 0.391 0.485 

pdr5Δ/Δ   0.134 0.167 0.397 0.606 0.736 1.069 

prb1Δ/Δ   0.109 0.177 0.314 0.531 0.728 0.841 

ptr2Δ/Δ   0.114 0.201 0.354 0.586 0.769 1.085 

rbs1Δ/Δ   0.111 0.241 0.450 0.690 0.887 1.204 

rck2Δ/Δ   0.101 0.265 0.522 0.886 1.688 1.478 

scp160Δ/Δ   0.101 0.193 0.435 0.587 0.880 1.140 

tpo4Δ/Δ   0.116 0.190 0.395 0.523 0.780 1.006 

bud6-S347A  0.130 0.160 0.379 0.652 0.979 1.178 

itr1-S26A  0.102 0.170 0.488 0.827 1.301 1.750 

lrg1-S605A  0.118 0.199 0.413 0.688 1.027 1.300 

npr3-S486A  0.109 0.176 0.378 0.676 0.990 1.038 

pda1-Y309A  0.104 0.121 0.221 0.411 0.747 1.115 

pda1-S313A   0.130 0.142 0.269 0.563 0.871 1.043 

pda1-Y309A-S313A 0.099 0.158 0.335 0.611 1.026 1.385 
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Table 3.7. Analysis of strain fitness in liquid low nitrogen, low glucose (SLALD) 

media. 

  OD660      

Strain 
Time 

(hrs) 
0 2.5 5.5 8.75 12 14.5 

        

825x337   0.138 0.348 0.985 1.340 4.000 3.340 

bud6Δ/Δ   0.143 0.155 0.552 1.185 2.090 2.520 

hxt1Δ/Δ   0.120 0.232 0.559 0.951 1.730 1.730 

itr1Δ/Δ   0.109 0.208 0.438 0.645 1.486 1.970 

lrg1Δ/Δ   0.124 0.173 0.447 0.710 1.071 1.200 

mds3Δ/Δ  0.101 0.206 0.542 0.888 1.853 2.610 

npr3Δ/Δ   0.135 0.159 0.284 0.408 0.734 1.100 

pda1Δ/Δ   0.097 0.136 0.185 0.236 0.294 0.346 

pdr5Δ/Δ   0.093 0.198 0.383 0.560 0.620 0.894 

prb1Δ/Δ   0.107 0.203 0.397 0.569 0.687 0.800 

ptr2Δ/Δ   0.095 0.158 0.382 0.554 0.699 0.767 

rbs1Δ/Δ   0.075 0.215 0.459 0.595 0.719 0.984 

rck2Δ/Δ   0.098 0.250 0.461 0.655 0.800 1.012 

scp160Δ/Δ   0.105 0.216 0.429 0.528 0.700 0.853 

tpo4Δ/Δ   0.112 0.173 0.356 0.539 0.663 0.870 

bud6-S347A  0.130 0.137 0.350 0.540 0.747 0.835 

itr1-S26A  0.117 0.207 0.375 0.631 0.888 1.010 

lrg1-S605A  0.093 0.189 0.310 0.520 0.740 0.850 

npr3-S486A  0.128 0.139 0.284 0.460 0.629 0.720 

pda1-Y309A  0.107 0.117 0.178 0.256 0.302 0.352 

pda1-S313A   0.106 0.161 0.252 0.431 0.607 0.740 

pda1-Y309A-S313A 0.103 0.132 0.313 0.440 0.620 0.725 
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